WorldWideScience

Sample records for hydrated mantle wedge

  1. Numerical simulations of an ocean/continent convergent system: influence of subduction geometry and mantle wedge hydration on crustal recycling

    CERN Document Server

    Roda, Manuel; Spalla, Maria Iole; 10.1029/2009GC003015

    2011-01-01

    The effects of the hydration mechanism on continental crust recycling are analyzed through a 2D finite element thermo-mechanical model. Oceanic slab dehydration and consequent mantle wedge hydration are implemented using a dynamic method. Hydration is accomplished by lawsonite and serpentine breakdown; topography is treated as a free surface. Subduction rates of 1, 3, 5, 7.5 and 10 cm/y, slab angles of 30o, 45o and 60o and a mantle rheology represented by dry dunite and dry olivine flow laws, have been taken into account during successive numerical experiments. Model predictions pointed out that a direct relationship exists between mantle rheology and the amount of recycled crustal material: the larger the viscosity contrast between hydrated and dry mantle, the larger the percentage of recycled material into the mantle wedge. Slab dip variation has a moderate impact on the recycling. Metamorphic evolution of recycled material is influenced by subduction style. TPmax, generally representative of eclogite facie...

  2. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone

    Science.gov (United States)

    Nagaya, Takayoshi; Walker, Andrew M.; Wookey, James; Wallis, Simon R.; Ishii, Kazuhiko; Kendall, J.-Michael

    2016-07-01

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed.

  3. Intensive hydration of the wedge mantle at the Kuril arc - NE Japan arc junction: implications from mafic lavas from Usu Volcano, northern Japan

    Science.gov (United States)

    Kuritani, T.; Tanaka, M.; Yokoyama, T.; Nakagawa, M.; Matsumoto, A.

    2015-12-01

    ; this may have resulted in the intensive hydration of the wedge mantle due to efficient release of the fluids from the slab.

  4. Mantle wedge serpentinization effects on slab dips

    Directory of Open Access Journals (Sweden)

    Eh Tan

    2017-01-01

    Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.

  5. Mantle wedge dynamics from seismic anisotropy (Invited)

    Science.gov (United States)

    Long, M. D.; Wirth, E. A.

    2013-12-01

    The mantle wedge above subducting slabs plays a critical role in many of the physical processes associated with subduction, including water transport into the upper mantle and the generation and transport of melts. Our understanding of mantle wedge dynamics is incomplete; in particular, the mantle flow field above subducting slabs remains poorly understood. Because seismic anisotropy is a consequence of deformation, observations of anisotropy (such as shear wave splitting and P-to-SH converted waves) can constrain the geometry of the wedge flow field. Additionally, because the presence of water (either in nominally anhydrous minerals or as hydrous phases) can have a large effect on anisotropic structure, a detailed understanding of mantle wedge anisotropy can help to constrain processes related to water cycling in subduction systems. We present a global, synoptic view of anisotropy observations in subduction zone mantle wedges, compiled from a large number of individual studies, with the goal of understanding the first-order controls on wedge anisotropy and flow patterns. This compilation allows us to explicitly test the predictions made by many different conceptual models for wedge anisotropy, as well as to explore the relationships between observed anisotropy parameters and other parameters that describe subduction. We find that no simple model can explain all of the trends observed in the global data set. Mantle wedge flow is likely controlled by a combination of downdip motion of the slab, trench migration, ambient mantle flow, small-scale convection, proximity to slab edges, and slab morphology, with the relative contributions of these in any given subduction system controlled by the subduction kinematics and mantle rheology. There is also a likely contribution from B-type olivine and/or serpentinite fabric in many subduction zones, governed by the local thermal structure and volatile distribution.

  6. Mantle flow in subduction systems: The mantle wedge flow field and implications for wedge processes

    Science.gov (United States)

    Long, Maureen D.; Wirth, Erin A.

    2013-02-01

    The mantle wedge above subducting slabs is associated with many important processes, including the transport of melt and volatiles. Our understanding of mantle wedge dynamics is incomplete, as the mantle flow field above subducting slabs remains poorly understood. Because seismic anisotropy is a consequence of deformation, measurements of shear wave splitting can constrain the geometry of mantle flow. In order to identify processes that make first-order contributions to the pattern of wedge flow, we have compiled a data set of local S splitting measurements from mantle wedges worldwide. There is a large amount of variability in splitting parameters, with average delay times ranging from ~0.1 to 0.3 s up to ~1.0-1.5 s and large variations in fast directions. We tested for relationships between splitting parameters and a variety of parameters related to subduction processes. We also explicitly tested the predictions made by 10 different models that have been proposed to explain splitting patterns in the mantle wedge. We find that no simple model can explain all of the trends observed in the global data set. Mantle wedge flow is likely controlled by a combination of downdip motion of the slab, trench migration, ambient mantle flow, small-scale convection, proximity to slab edges, and slab morphology, with the relative contributions of these in any given subduction system controlled by the subduction kinematics and mantle rheology. There is also a likely contribution from B-type olivine and/or serpentinite fabric in many subduction zones, governed by the local thermal structure and volatile distribution.

  7. Growth and mixing dynamics of mantle wedge plumes

    Science.gov (United States)

    Gorczyk, Weronika; Gerya, Taras V.; Connolly, James A. D.; Yuen, David A.

    2007-07-01

    Recent work suggests that hydrated partially molten thermal-chemical plumes that originate from subducted slab as a consequence of Rayleigh-Taylor instability are responsible for the heterogeneous composition of the mantle wedge. We use a two-dimensional ultrahigh-resolution numerical simulation involving 10 × 109 active markers to anticipate the detailed evolution of the internal structure of natural plumes beneath volcanic arcs in intraoceanic subduction settings. The plumes consist of partially molten hydrated peridotite, dry solid mantle, and subducted oceanic crust, which may compose as much as 12% of the plume. As plumes grow and mature these materials mix chaotically, resulting in attenuation and duplication of the original layering on scales of 1-1000 m. Comparison of numerical results with geological observations from the Horoman ultramafic complex in Japan suggests that mixing and differentiation processes related to development of partially molten plumes above slabs may be responsible for the strongly layered lithologically mixed (marble cake) structure of asthenospheric mantle wedges.

  8. Numerical modeling of mantle wedge processes and exhumation of UHP mantle in subduction zones

    Science.gov (United States)

    Gorczyk, W.; Gerya, T. V.; Guillot, S.; Connolly, J. A.; Yuen, D.

    2007-12-01

    The upwelling of subduction generated partially molten rocks is potentially a mechanism for the exhumation of UHP rocks through the mantle wedge. We investigated this processes using a 2-D coupled petrological- thermomechanical model that incorporates slab dehydration and water transport as well as partial melting of mantle and crustal rocks. This approach allows us to study the dynamics of mantle wedge processes including evolution of partially molten plumes and their interaction with surrounding dry mantle. To study the internal structure of the plumes we used ultra-high resolution numerical simulations with 10 billion active markers to detail the internal structure of natural plumes originating from the slab. The plumes consist of partially molten hydrated peridotite, dry solid mantle and subducted oceanic crust, which may comprise up to 12 volume % of the plume. As the plumes grow and mature these materials mix chaotically resulting in attenuation and duplication of the original layering on scales of 1-1000 m. Comparison of numerical results with geological observations from the Horoman ultramafic complex in Japan suggests that mixing and differentiation processes related to development of partially molten plumes above slabs may be responsible for strongly layered lithologically mixed (marble cake) structure of asthenospheric mantle wedges. The recent discovery of garnet bearing peridotites in the subduction zone of the Great Antilles in Hispaniola has raised questions about the process that leads to their exhumation. To evaluate whether upwelling plumes are a plausible exhumation mechanism we investigated the dynamics of subduction of slow spreading ridges. The results show that subduction of strongly serpentinized oceanic plate causes strong dehydration of the slab and leads to a rheological weakening of the interface between subducting and overriding plate. This weakening triggers trench retreat and massive asthenospheric upwelling into the gap between the

  9. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens.

    Science.gov (United States)

    Hansen, S M; Schmandt, B; Levander, A; Kiser, E; Vidale, J E; Abers, G A; Creager, K C

    2016-11-01

    Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<∼700 °C). These results suggest that the melt source region lies east towards Mount Adams.

  10. Brucite as an important phase of the shallow mantle wedge: Evidence from the Shiraga unit of the Sanbagawa subduction zone, SW Japan

    Science.gov (United States)

    Kawahara, Hirokazu; Endo, Shunsuke; Wallis, Simon R.; Nagaya, Takayoshi; Mori, Hiroshi; Asahara, Yoshihiro

    2016-06-01

    Large parts of the shallow mantle wedge are thought to be hydrated due to release of fluids from the subducting slab and serpentinization of the overlying mantle rocks. If serpentinization proceeds under low SiO2 activity, brucite can be a major phase in the low-temperature (< 450 °C) part of the serpentinized mantle wedge, but only very few natural examples have been documented. A combined petrological, geochemical, and geological study shows that brucite is widely distributed in the wedge mantle-derived Shiraga metaserpentinite body in the Sanbagawa metamorphic belt of SW Japan. Thermodynamic modeling combined with bulk rock composition and point counting indicates that the original fully hydrated shallow parts of the Sanbagawa mantle wedge contained ~ 10-15 vol.% brucite before the onset of exhumation of the Shiraga body and before peak metamorphic conditions. A distinct zone of brucite-free essentially monomineralic antigorite serpentinite occurs limited to a 100-m-thick marginal zone of the body. This indicates a limited degree of Si-metasomatism by slab-derived fluids in the shallow mantle wedge. The presence of brucite may strongly affect the H2O budget and mechanical properties of serpentinite; these should be taken into consideration when examining the behavior of the shallow mantle wedge.

  11. Deformation in the mantle wedge associated with Laramide flat-slab subduction

    Science.gov (United States)

    Behr, Whitney M.; Smith, Douglas

    2016-07-01

    Laramide crustal deformation in the Rocky Mountains of the west-central United States is often considered to relate to a narrow segment of shallow subduction of the Farallon slab, but there is no consensus as to how deformation along the slab-mantle lithosphere interface was accommodated. Here we investigate deformation in mantle rocks associated with hydration and shear above the flat-slab at its contact with the base of the North American plate. The rocks we focus on are deformed, hydrated, ultramafic inclusions hosted within diatremes of the Navajo Volcanic Field in the central Colorado Plateau that erupted during the waning stages of the Laramide orogeny. We document a range of deformation textures, including granular peridotites, porphyroclastic peridotites, mylonites, and cataclasites, which we interpret to reflect different proximities to a slab-mantle-interface shear zone. Mineral assemblages and chemistries constrain deformation to hydrous conditions in the temperature range ˜550-750°C. Despite the presence of hydrous phyllosilicates in modal percentages of up to 30%, deformation was dominated by dislocation creep in olivine. The mylonites exhibit an uncommon lattice preferred orientation (LPO) in olivine, known as B-type LPO in which the a-axes are aligned perpendicular to the flow direction. The low temperature, hydrated setting in which these fabrics formed is consistent with laboratory experiments that indicate B-type LPOs form under conditions of high stress and high water contents; furthermore, the mantle wedge context of these LPOs is consistent with observations of trench-parallel anisotropy in the mantle wedge above many modern subduction zones. Differential stress magnitudes in the mylonitic rocks estimated using paleopiezometry range from 290 to 444 MPa, and calculated effective viscosities using a wet olivine flow law are on the order of 1019-1023 Pa s. The high stress magnitudes, high effective viscosities, and high strains recorded in these

  12. Slab-derived halogens and noble gases illuminate closed system processes controlling volatile element transport into the mantle wedge

    Science.gov (United States)

    Kobayashi, Masahiro; Sumino, Hirochika; Nagao, Keisuke; Ishimaru, Satoko; Arai, Shoji; Yoshikawa, Masako; Kawamoto, Tatsuhiko; Kumagai, Yoshitaka; Kobayashi, Tetsuo; Burgess, Ray; Ballentine, Chris J.

    2017-01-01

    Halogen and noble gas systematics are powerful tracers of volatile recycling in subduction zones. We present halogen and noble gas compositions of mantle peridotites containing H2O-rich fluid inclusions collected at volcanic fronts from two contrasting subduction zones (the Avacha volcano of Kamchatka arc and the Pinatubo volcano of Luzon arcs) and orogenic peridotites from a peridotite massif (the Horoman massif, Hokkaido, Japan) which represents an exhumed portion of the mantle wedge. The aims are to determine how volatiles are carried into the mantle wedge and how the subducted fluids modify halogen and noble gas compositions in the mantle. The halogen and noble gas signatures in the H2O-rich fluids are similar to those of marine sedimentary pore fluids and forearc and seafloor serpentinites. This suggests that marine pore fluids in deep-sea sediments are carried by serpentine and supplied to the mantle wedge, preserving their original halogen and noble gas compositions. We suggest that the sedimentary pore fluid-derived water is incorporated into serpentine through hydration in a closed system along faults at the outer rise of the oceanic, preserving Cl/H2O and 36Ar/H2O values of sedimentary pore fluids. Dehydration-hydration process within the oceanic lithospheric mantle maintains the closed system until the final stage of serpentine dehydration. The sedimentary pore fluid-like halogen and noble gas signatures in fluids released at the final stage of serpentine dehydration are preserved due to highly channelized flow, whereas the original Cl/H2O and 36Ar/H2O ratios are fractionated by the higher incompatibility of halogens and noble gases in hydrous minerals.

  13. Intraplate volcanism and mantle dynamics in East Asia: Big mantle wedge (BMW) model (Invited)

    Science.gov (United States)

    Zhao, D.

    2009-12-01

    In the East Asia continent there are many Cenozoic volcanoes, but only a few are still active now, such as the Changbai, Wudalianchi, and Tengchong volcanoes which have erupted several times in the past 1000 years. Although many studies have been made by using various approaches, the origin of the intraplate volcanoes in East Asia is still not very clear. Recently we used regional and global seismic tomography to determine high-resolution 3-D mantle structure under Western Pacific to East Asia (Zhao, 2004; Huang and Zhao, 2006; Zhao et al., 2009). Our results show prominent low-velocity anomalies from the surface down to 410 km depth beneath the intraplate volcanoes and a broad high-velocity anomaly in the mantle transition zone under East Asia. Focal-mechanism solutions of deep earthquakes indicate that the subducting Pacific slab under the Japan Sea and the East Asia margin is subject to compressive stress regime. These results suggest that the Pacific slab meets strong resistance at the 660-km discontinuity and so it becomes stagnant in the mantle transition zone under East Asia. The Philippine Sea slab has also subducted down to the mantle transition zone under western Japan and the Ryukyu back-arc region. The western edge of the stagnant slab is generally parallel with the Japan trench and the Ryukyu trench and roughly coincides with a prominent surface topography and gravity boundary in East China, which is located approximately 1800 km west of the trenches. The upper mantle under East Asia has formed a big mantle wedge (BMW) above the stagnant slab. The BMW exhibits low seismic-velocity and high electrical-conductivity, which is hot and wet because of the deep dehydration reactions of the stagnant slab and the convective circulation process in the BMW. These processes lead to the upwelling of hot and wet asthenospheric materials and thinning and fracturing of the continental lithosphere, leading to the formation of the active intraplate volcanoes in East

  14. Experiments on melt-rock reaction in the shallow mantle wedge

    Science.gov (United States)

    Mitchell, Alexandra L.; Grove, Timothy L.

    2016-12-01

    This experimental study simulates the interaction of hotter, deeper hydrous mantle melts with shallower, cooler depleted mantle, a process that is expected to occur in the upper part of the mantle wedge. Hydrous reaction experiments ( 6 wt% H2O in the melt) were conducted on three different ratios of a 1.6 GPa mantle melt and an overlying 1.2 GPa harzburgite from 1060 to 1260 °C. Reaction coefficients were calculated for each experiment to determine the effect of temperature and starting bulk composition on final melt compositions and crystallizing assemblages. The experiments used to construct the melt-wall rock model closely approached equilibrium and experienced phase equilibria, melt compositions, and reaction coefficients provide a framework for understanding how melt-wall rock reaction occurs in the natural system during melt ascent in the mantle wedge.

  15. P-wave anisotropy, mantle wedge flow and olivine fabrics beneath Japan

    Science.gov (United States)

    Liu, Xin; Zhao, Dapeng

    2017-09-01

    We present a new 3-D anisotropic P-wave velocity (Vp) model for the crust and upper mantle of the Japan subduction zone obtained by inverting a large number of high-quality P-wave traveltime data of local earthquakes and teleseismic events. By assuming orthorhombic anisotropy with a vertical symmetry axis existing in the modeling space, isotropic Vp tomography and 3-D Vp azimuthal and radial anisotropies are determined simultaneously. According to a simple flow field and the obtained Vp anisotropic tomography, we estimate the distribution of olivine fabrics in the mantle wedge. Our results show that the forearc mantle wedge above the subducting Pacific slab beneath NE Japan exhibits an azimuthal anisotropy with trench-parallel fast velocity directions (FVDs) and Vhf > Vv > Vhs (here Vv is Vp in the vertical direction, Vhf and Vhs are P-wave velocities in the fast and slow directions in the horizontal plane), where B-type olivine fabric with vertical trench-parallel flow may dominate. Such an anisotropic feature is not obvious in the forearc mantle wedge above the Philippine Sea (PHS) slab under SW Japan, probably due to higher temperatures and more fluids there associated with the young and warm PHS slab subduction. Trench-normal FVDs and Vhf > Vv > Vhs are generally revealed in the mantle wedge beneath the arc and backarc in Japan, where E-type olivine fabric with FVD-parallel horizontal flow may dominate. Beneath western Honshu, however, the mantle wedge exhibits an anisotropy of Vv > Vhf > Vhs and so C-type olivine fabric may dominate, suggesting that the water content is the highest there, because both the PHS and Pacific slabs exist there and their dehydration reactions release abundant fluids to the overlying mantle wedge.

  16. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure

    Science.gov (United States)

    Turner, Stephen J.; Langmuir, Charles H.; Katz, Richard F.; Dungan, Michael A.; Escrig, Stéphane

    2016-10-01

    The processes that lead to the fourfold variation in arc-averaged compositions of mafic arc lavas remain controversial. Control by the mantle-wedge thermal structure is supported by chemical correlations with the thickness of the underlying arc crust, which affects the thermal state of the wedge. Control by down-going slab temperature is supported by correlations with the slab thermal parameter. The Chilean Southern Volcanic Zone provides a test of these hypotheses. Here we use chemical data to demonstrate that the Southern Volcanic Zone and global arc averages define the same chemical trends, both among elements and between elements and crustal thickness. But in contrast to the global arc system, the Southern Volcanic Zone is built on crust of variable thickness with a constant slab thermal parameter. This natural experiment, along with a set of numerical simulations, shows that global arc compositional variability is dominated by different extents of melting that are controlled by the thermal structure of the mantle wedge. Slab temperatures play a subordinate role. Variations in the subducting slab's fluid flux and sediment compositions, as well as mantle-wedge heterogeneities, produce second-order effects that are manifested as distinctive trace element and isotopic signatures; these can be more clearly elucidated once the importance of wedge thermal structure is recognized.

  17. Pervasive seismic wave reflectivity and metasomatism of the Tonga mantle wedge.

    Science.gov (United States)

    Zheng, Yingcai; Lay, Thorne; Flanagan, Megan P; Williams, Quentin

    2007-05-11

    Subduction zones play critical roles in the recycling of oceanic lithosphere and the generation of continental crust. Seismic imaging can reveal structures associated with key dynamic processes occurring in the upper-mantle wedge above the sinking oceanic slab. Three-dimensional images of reflecting interfaces throughout the upper-mantle wedge above the subducting Tonga slab were obtained by migration of teleseismic recordings of underside P- and S-wave reflections. Laterally continuous weak reflectors with tens of kilometers of topography were detected at depths near 90, 125, 200, 250, 300, 330, 390, 410, and 450 kilometers. P- and S-wave impedances decreased at the 330-kilometer and 450-kilometer reflectors, and S-wave impedance decreased near 200 kilometers in the vicinity of the slab and near 390 kilometers, just above the global 410-kilometer increase. The pervasive seismic reflectivity results from phase transitions and compositional zonation associated with extensive metasomatism involving slab-derived fluids rising through the wedge.

  18. Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.

    Science.gov (United States)

    Sylvia, R. T.; Kincaid, C. R.

    2015-12-01

    Analogue laboratory experiments generate 4-D flow of mantle wedge fluid and capture the evolution of buoyant mesoscale diapirs. The mantle is modeled with viscous glucose syrup with an Arrhenius type temperature dependent viscosity. To characterize diapir evolution we experiment with a variety of fluids injected from multiple point sources. Diapirs interact with kinematically induced flow fields forced by subducting plate motions replicating a range of styles observed in dynamic subduction models (e.g., rollback, steepening, gaps). Data is collected using high definition timelapse photography and quantified using image velocimetry techniques. While many studies assume direct vertical connections between the volcanic arc and the deeper mantle source region, our experiments demonstrate the difficulty of creating near vertical conduits. Results highlight extreme curvature of diapir rise paths. Trench-normal deflection occurs as diapirs are advected downward away from the trench before ascending into wedge apex directed return flow. Trench parallel deflections up to 75% of trench length are seen in all cases, exacerbated by complex geometry and rollback motion. Interdiapir interaction is also important; upwellings with similar trajectory coalesce and rapidly accelerate. Moreover, we observe a new mode of interaction whereby recycled diapir material is drawn down along the slab surface and then initiates rapid fluid migration updip along the slab-wedge interface. Variability in trajectory and residence time leads to complex petrologic inferences. Material from disparate source regions can surface at the same location, mix in the wedge, or become fully entrained in creeping flow adding heterogeneity to the mantle. Active diapirism or any other vertical fluid flux mechanism employing rheological weakening lowers viscosity in the recycling mantle wedge affecting both solid and fluid flow characteristics. Many interesting and insightful results have been presented based

  19. A possible relict mantle wedge:Geochemical evidence from Paleogene volcanics in North China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The major and trace element and isotopic composition were analyzed for the Paleogene volcanics in North China dated by the K-Ar method. The geochemical data show that most volcanics are in caic-alkaline series and the minor is in alkaline series. They differ obviously from Neogene and Quaternary volcanics in geochemistry. In particular, the Paleogene volcanics from the southern part of North China were derived from enriched lithospheric mantle (EMⅡ), which were likely to be a relict mantle wedge formed during the subduction of the Yangtze plate into the North China plate in late Triassic (Indo- Sinian).

  20. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    Science.gov (United States)

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  1. Temporal evolution of fO2 in the Mariana mantle wedge

    Science.gov (United States)

    Brounce, M. N.; Kelley, K. A.; Cottrell, E.

    2013-12-01

    The elevated oxygen fugacity (fO2) recorded by arc lavas appears to be linked to slab fluid influence globally and locally; however, many details regarding the capacity that slab fluids have to oxidize the mantle wedge remain unknown. At the time of subduction initiation, melts may be produced by a combination of decompression and fluid-fluxed melting and the role of flux melting may increase as the subduction zone matures (Reagan et al., 2010, G3 11(3)). Immediately prior to subduction initiation, the mantle presumably has fO2 and fluid concentrations similar to mid-ocean ridge (MOR) source mantle (near the quartz-fayalite-magnetite buffer, QFM, and relatively dry). As subduction zones mature, slab fluids may become more dominant in melt generation as evidenced by increases in fluid-mobile trace element signatures, but the fO2 of slab fluids and temporal changes in the fO2 of erupted basalt remains undocumented. The Mariana forearc southwest of Guam records the initiation of Pacific plate subduction (Reagan et al., 2010). At the base, fore-arc basalts (FAB) erupted at the immediate onset of subduction (51-52 Ma) show minor traces of slab fluid influence and likely reflect decompression melting that occurred as mantle rose to accommodate the sinking Pacific plate. The FAB are overlain by 37-44 Ma 'transitional' basalts whose fluid mobile trace element enrichments indicate that slab fluids have greater influence in their petrogenesis. These lavas provide the opportunity to directly constrain the timescales of mantle wedge oxidation during the initiation and maturation of an oceanic subduction zone. We present Fe3+/ΣFe ratios (μ-XANES) determined on FAB and transitional basalt glasses, paired with previously published major and trace element data. These glasses range in MgO from 2.75 - 7.56 wt% and have Fe3+/ΣFe ratios (0.171 - 0.208) that are slightly more oxidized than MORB (0.16), similar to Mariana trough lavas that reflect minor traces of slab fluid influence

  2. Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea

    Science.gov (United States)

    Zhao, Dapeng

    2017-09-01

    The Japan Sea is a part of the western Pacific trench-arc-backarc system and has a complex bathymetry and intense seismic activities in the crust and upper mantle. Local seismic tomography revealed strong lateral heterogeneities in the crust and uppermost mantle beneath the eastern margin of the Japan Sea, which was determined using P and S wave arrival times of suboceanic earthquakes relocated precisely with sP depth phases. Ambient-noise tomography revealed a thin crust and a thin lithosphere beneath the Japan Sea and significant low-velocity (low-V) anomalies in the shallow mantle beneath the western and eastern margins of the Japan Sea. Observations with ocean-bottom seismometers and electromagnetometers revealed low-V and high-conductivity anomalies at depths of 200-300 km in the big mantle wedge (BMW) above the subducting Pacific slab, and the anomalies are connected with the low-V zone in the normal mantle wedge beneath NE Japan, suggesting that both shallow and deep slab dehydrations occur and contribute to the arc and back-arc magmatism. The Pacific slab has a simple geometry beneath the Japan Sea, and earthquakes occur actively in the slab down to a depth of ∼600 km beneath the NE Asian margin. Teleseismic P and S wave tomography has revealed that the Philippine Sea plate has subducted aseismically down to the mantle transition zone (MTZ, 410-660 km) depths beneath the southern Japan Sea and the Tsushima Strait, and a slab window is revealed within the aseismic Philippine Sea slab. Seismic anisotropy tomography revealed a NW-SE fast-velocity direction in the BMW, which reflects corner flows induced by the fast deep subduction of the Pacific slab. Large deep earthquakes (M > 7.0; depth > 500 km) occur frequently beneath the Japan Sea western margin, which may be related to the formation of the Changbai and Ulleung intraplate volcanoes. A metastable olivine wedge is revealed within the cold core of the Pacific slab at the MTZ depth, which may be related

  3. The mantle transition zone beneath the Afar Depression and adjacent regions: implications for mantle plumes and hydration

    Science.gov (United States)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.

    2016-06-01

    The Afar Depression and its adjacent areas are underlain by an upper mantle marked by some of the world's largest negative velocity anomalies, which are frequently attributed to the thermal influences of a lower-mantle plume. In spite of numerous studies, however, the existence of a plume beneath the area remains enigmatic, partially due to inadequate quantities of broad-band seismic data and the limited vertical resolution at the mantle transition zone (MTZ) depth of the techniques employed by previous investigations. In this study, we use an unprecedented quantity (over 14 500) of P-to-S receiver functions (RFs) recorded by 139 stations from 12 networks to image the 410 and 660 km discontinuities and map the spatial variation of the thickness of the MTZ. Non-linear stacking of the RFs under a 1-D velocity model shows robust P-to-S conversions from both discontinuities, and their apparent depths indicate the presence of an upper-mantle low-velocity zone beneath the entire study area. The Afar Depression and the northern Main Ethiopian Rift are characterized by an apparent 40-60 km depression of both MTZ discontinuities and a normal MTZ thickness. The simplest and most probable interpretation of these observations is that the apparent depressions are solely caused by velocity perturbations in the upper mantle and not by deeper processes causing temperature or hydration anomalies within the MTZ. Thickening of the MTZ on the order of 15 km beneath the southern Arabian Plate, southern Red Sea and western Gulf of Aden, which comprise the southward extension of the Afro-Arabian Dome, could reflect long-term hydration of the MTZ. A 20 km thinning of the MTZ beneath the western Ethiopian Plateau is observed and interpreted as evidence for a possible mantle plume stem originating from the lower mantle.

  4. The impact of slab dip variations, gaps and rollback on mantle wedge flow: insights from fluids experiments

    Science.gov (United States)

    MacDougall, Julia G.; Kincaid, Chris; Szwaja, Sara; Fischer, Karen M.

    2014-05-01

    Observed seismic anisotropy and geochemical anomalies indicate the presence of 3-D flow around and above subducting slabs. To investigate how slab geometry and velocity affect mantle flow, we conducted a set of experiments using a subduction apparatus in a fluid-filled tank. Our models comprise two independently adjustable, continuous belts to represent discrete sections of subducting slabs that kinematically drive flow in the surrounding glucose syrup that represents the upper mantle. We analyse how slab dip (ranging from 30° to 80°), slab dip difference between slab segments (ranging from 20° to 50°), rates of subduction (4-8 cm yr-1) and slab/trench rollback (0-3 cm yr-1) affect mantle flow. Whiskers were used to approximate mineral alignment induced by the flow, as well as to predict directions of seismic anisotropy. We find that dip variations between slab segments generate 3-D flow in the mantle wedge, where the path lines of trenchward moving mantle material above the slab are deflected towards the slab segment with the shallower dip. The degree of path line deflection increases as the difference in slab dip between the segments increases, and, for a fixed dip difference, as slab dip decreases. In cases of slab rollback and large slab dip differences, we observe intrusion of subslab material through the gap and into the wedge. Flow through the gap remains largely horizontal before eventual downward entrainment. Whisker alignment in the wedge flow is largely trench-normal, except near the lateral edges of the slab where toroidal flow dominates. In addition, whisker azimuths located above the slab gap deviate most strongly from trench-normal orientations when slab rollback does not occur. Such flow field complexities are likely sufficient to affect deep melt production and shallow melt delivery. However, none of the experiments produced flow fields that explain the trench-parallel shear wave splitting fast directions observed over broad arc and backarc

  5. Evidence of Arc Magma Genesis in a Paleo-Mantle Wedge, the Higashi-Akaishi Peridotite, Japan

    Science.gov (United States)

    Till, C. B.; Guild, M. R.; Grove, T. L.; Carlson, R. W.

    2014-12-01

    Located in the Sanbagawa subduction-related high-pressure metamorphic belt in SW Japan on the island of Shikoku, the Higashi-akaishi peridotite body is composed of dunite, lherzolite and garnet clinopyroxenite, interfingered in one locality with quartz-rich eclogite. Previous work indicates the P-T history of the peridotite includes rapid prograde metamorphism with peak temperatures of 700-810°C and pressures of 2.9-3.8 GPa [1] at ~88-89 Ma followed by rapid exhumation at >2.5 cm/yr [2,3]. Major and trace element and isotopic data from samples within the Higashi-akaishi peridotite presented here and in another recent study [4] provide a record of subduction zone melting processes in a paleo-mantle wedge. Ultramafic samples range from 40-52 wt.% SiO2, 1-11 wt.% Al2O3 and 21-45 wt.% MgO with olivine and clinopyroxene Mg#'s as high as 0.93. The quartz-rich eclogite contains 62 wt.% SiO2, 6 wt.% MgO and 13 wt.% Al2O3 with trace element concentrations that are enriched relative to the ultramafic samples. 87Sr/86Sr (.703237-.704288), 143Nd/144Nd (ɛNd=+2 to +6) and Pb isotopic compositions are within the range of previously studied Japanese arc rocks. We interpret the pyroxenites as shallowly crystallized cumulates with varying amounts of trapped hydrous melt and the harzburgites as residues of melting. The peak P-T conditions of these rocks are similar to the solidus conditions of H2O-saturated fertile mantle near the base of the mantle wedge [5,6]. The presence of garnet porphyroblasts that enclose primary euhedral chlorite together with the chemical evidence, suggest these samples are associated with mantle melting in the presence of H2O. Major element modeling suggests the quartz-rich eclogite composition can be reproduced through mixing melts of subducted sediment with wet peridotite melts in the mantle wedge. Thus the Higashi-aikashi rock suite provides an in-situ record of the beginnings of hydrous melting and the mechanisms of metasomatism in the mantle wedge

  6. Estimating Upper Mantle Hydration from In Situ Electrical Conductivity

    Science.gov (United States)

    Behrens, J.; Constable, S.; Heinson, G.; Everett, M.; Weiss, C.; Key, K.

    2004-12-01

    The electrical conductivity of 35-40 Ma Pacific plate has been measured in situ; one robust result is the presence of bulk anisotropy in the lithospheric upper mantle. We interpret this anisotropy to be a result of hydrothermal circulation into the upper mantle along spreading-ridge-parallel normal faults: the associated zones of serpentinized peridotite provide the pathways of enhanced electrical conductivity required by the data. Our modeling bounds the range of possible anisotropic ratios, which are then used to estimate the amount of water required to serpentinize the requisite amounts of peridotite. These data sets, however, do not indicate anisotropy in the bulk conductivity of the crust, nor in the asthenospheric mantle. This second point is significant, as recent measurements of sub-continental asthenospheric conductivity have been interpreted to indicate anisotropy aligned with present plate motion, with the diffusion of hydrogen through olivine advanced as an explanation.

  7. Mud volcano venting induced gas hydrate formation at the upper slope accretionary wedge, offshore SW Taiwan

    Science.gov (United States)

    Lin, Saulwood; Tseng, Yi-Ting; Cheng, Wan-Yen; Chou, Cheng-Tien; Chen, NeiChen; Hsieh, I.-Chih

    2016-04-01

    TsanYao Mud Volcano (TYMV) is the largest mud volcano cone in the Hengchun Mud Volcano Group (HCMVG), located at the upper slope of the accrretionary wedge, southwest of Taiwan. The region is under active tectonic activity with the Philippine Plate, moving northwestward at a rate of ~8 cm/year. This region also receives huge quantity of suspended particle load of ~100 mT/year at present time from adjacent small rivers of the Island of Taiwan. Large loads of suspended sediments influx become a major source of organic carbon and later gas and other hydrocarbon. Gas and fluid in the mud volcano are actively venting from deep to the sea floor on the upper slope of the accretionary wedge. In order to understand venting on the HCMVG, echo sounder, towcam and coring were carried out. Pore water sulfate, chloride, potassium, calcium, stable isotope O-18, gas compositions, dissolved sulfide were analysed. The HCMVG consists of 12 volcano cones of different sizes. Large quantity of gas and fluid are venting directly from deep to the TYMV structure high, as well as 50+ other vents as appeared as flares on the echo sounder. Some flares are reaching to the atmosphere and likely a source of green house gases to the atmosphere. Venting fluids include gas bubbles, suspended particle, mud, and breccia. Breccia size could reach more than 12 cm in diameter. Circular bands in different color appeared around the cone may represent stages of vent eruptions. Compositions of vent gas include methane, ethane and propane. High proportions of ethane and propane in the vent gas demonstrated that source of gas are thermogenic in origin. Patchy authigenic carbonate, bacterial mats, bivalves, tube worms and other chemosynthesis organisms were supported by venting gas AOM process near the sea floor. Pore water chloride concentrations show distinct variation pattern from center cone to the side of the volcano, with low in the center and high away from the cone. Pore water with higher than seawater

  8. Inside the subduction factory: Modeling fluid mobile element enrichment in the mantle wedge above a subduction zone

    Science.gov (United States)

    Shervais, John W.; Jean, Marlon M.

    2012-10-01

    Enrichment of the mantle wedge above subduction zones with fluid mobile elements is thought to represent a fundamental process in the origin of arc magmas. This "subduction factory" is typically modeled as a mass balance of inputs (from the subducted slab) and outputs (arc volcanics). We present here a new method to model fluid mobile elements, based on the composition of peridotites associated with supra-subduction ophiolites, which form by melt extraction and fluid enrichment in the mantle wedge above nascent subduction zones. The Coast Range ophiolite (CRO), California, is a Jurassic supra-subduction zone ophiolite that preserves mantle lithologies formed in response to hydrous melting. We use high-precision laser ablation ICP-MS analyses of relic pyroxenes from these peridotites to document fluid-mobile element (FME) concentrations, along with a suite of non-fluid mobile elements that includes rare earth and high-field strength elements. In the CRO, fluid-mobile elements are enriched by factors of up to 100× DMM, whereas fluid immobile elements are progressively depleted by melt extraction. The high concentrations of fluid mobile elements in supra-subduction peridotite pyroxene can be attributed to a flux of aqueous fluid or fluid-rich melt phase derived from the subducting slab. To model this enrichment, we derive a new algorithm that calculates the concentration of fluid mobile elements added to the source: C=[C/[[D/(D-PF)]∗[1-(PF/D)

  9. Possibility of titanium transportation within a mantle wedge: formation process of titanoclinohumite in Fujiwara dunite in Sanbagawa belt, Japan

    Directory of Open Access Journals (Sweden)

    S. Ishimaru

    2012-01-01

    Full Text Available Titinoclinohumite-bearing dunites from Fujiwara, the Sanbagawa metamorphic belt of high-pressure type, Japan, were described to examine the possibility of Ti mobility during metasomatism within the mantle wedge. The Fujiwara dunite body and surrounding high-pressure Sanbagawa schists possibly form a subduction complex, and the dunites are a good analogue to the mantle wedge overlying the slab. The Fujiwara dunites are of deserpentinization origin; the deserpentinized olivine is high in Fo (up to 96 and low in NiO (0.2 to 0.3 wt %, and contains magnetite inclusions. Titanoclinohumites are associated with the deserpentinized olivine, as lamellar intergrowth or veinlets, up to 1 cm in width. Other metamorphic minerals include antigorite, brucite, chlorite, ilmenite, perovskite, Ti-rich ludwigite, and carbonates. The protolith of the Fujiwara dunite was partially serpentinized cumulative dunites from intra-plate magma, containing relatively low-Fo (85 to 86 olivines and TiO2-rich (up to 3 wt % chromian spinels. The metamorphic olivines and titanoclinohumites contain micro-inclusions of methane (CH4 with or without serpentine and brucite. The source of Ti for titanoclinohumite was possibly the Ti-rich chromian spinel, but Ti was mobile through hydrocarbon-rich fluids, which were activated during the metamorphism. The hydrocarbons, of which remnants are carbonates and methane micro-inclusions, were derived from carbonaceous materials or bitumen, possibly incorporated in the precursory serpentinized and brecciated peridotite (= the protolith for the Fujiwara dunites before subduction. Ti can be mobile in the mantle wedge if hydrocarbons are available from the subducted slab.

  10. Multiple magmatism in an evolving suprasubduction zone mantle wedge: The case of the composite mafic-ultramafic complex of Gaositai, North China Craton

    Science.gov (United States)

    Yang, Fan; Santosh, M.; Tsunogae, T.; Tang, Li; Teng, Xueming

    2017-07-01

    Mesozoic, suggesting continuous mantle metasomatism through melts and fluids associated with prolonged subduction, which is also substantiated by the pervasive hydration of all the ultramafic units. Zircon Lu-Hf isotopic data from the basement rock (hornblendite) on concordant grains yield εHf(t) values in the range of - 23.8 to - 5.2 with TDM of 1979-2424 Ma and TDMC between 2754 and 2899 Ma, suggesting Mesoarchean to Neoarchean reworked and juvenile sources. Concordant grains in the serpentinite also display a large range of εHf(t) values (- 5.0 to 5.8) suggesting multiple sources, whereas the concordant magmatic zircon grains in the dunite have a tight range of εHf(t) values between - 2.3 and 0.1 indicating primitive source. Those from the pyroxenite are characterized by highly negative εHf(t) values of - 21.5 to - 18.6 suggesting reworked ancient components. The diverse ages, lack of typical geochemical imprints, and magmas derived from multiple sources including Mesoarchean to Neoarchean reworked and primitive components within the same mafic-ultramafic complex exclude an ;Alaskan-type; affinity and suggest multiple magmatism in an evolving and metasomatized suprasubduction zone mantle wedge. We correlate the tectonics with the prolonged subduction regime of the Paleo-Asian Ocean with melt-peridotite interaction and geologic history spanning through compression to extension.

  11. Aqueous fluids and sedimentary melts as agents for mantle wedge metasomatism, as inferred from peridotite xenoliths at Pinatubo and Iraya volcanoes, Luzon arc, Philippines

    Science.gov (United States)

    Yoshikawa, Masako; Tamura, Akihiro; Arai, Shoji; Kawamoto, Tatsuhiko; Payot, Betchaida D.; Rivera, Danikko John; Bariso, Ericson B.; Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Kobayashi, Tetsuo

    2016-10-01

    Mantle xenoliths entrained in subduction-zone magmas often record metasomatic signature of the mantle wedge. Such xenoliths occur in magmas from Iraya and Pinatubo volcanoes, located at the volcanic front of the Luzon arc in the Philippines. In this study, we present the major element compositions of the main minerals, trace element abundances in pyroxenes and amphiboles, and Nd-Sr isotopic compositions of amphiboles in the peridotite xenoliths from Pinatubo volcano. The data indicate enrichment in fluid-mobile elements, such as Rb, Ba, U, Pb, and Sr, and Nd-Sr isotopic ratios relative to those of mantle. The results are considered in terms of mixing of asthenospheric mantle and subducting oceanic crustal components. The enrichments observed in the Pinatubo mantle xenoliths are much less pronounced than those reported for the Iraya mantle xenoliths. This disparity suggests differences in the metasomatic agents contributing to the two suites; i.e., aqueous fluids infiltrated the mantle wedge beneath the Pinatubo volcano, whereas aqueous fluids and sediment-derived melts infiltrated the mantle wedge beneath the Iraya volcano.

  12. Deep long-period earthquakes west of the volcanic arc in Oregon: evidence of serpentine dehydration in the fore-arc mantle wedge

    Science.gov (United States)

    Vidale, John E.; Schmidt, David A.; Malone, Stephen D.; Hotovec-Ellis, Alicia J.; Moran, Seth C.; Creager, Kenneth C.; Houston, Heidi

    2014-01-01

    Here we report on deep long-period earthquakes (DLPs) newly observed in four places in western Oregon. The DLPs are noteworthy for their location within the subduction fore arc: 40–80 km west of the volcanic arc, well above the slab, and near the Moho. These “offset DLPs” occur near the top of the inferred stagnant mantle wedge, which is likely to be serpentinized and cold. The lack of fore-arc DLPs elsewhere along the arc suggests that localized heating may be dehydrating the serpentinized mantle wedge at these latitudes and causing DLPs by dehydration embrittlement. Higher heat flow in this region could be introduced by anomalously hot mantle, associated with the western migration of volcanism across the High Lava Plains of eastern Oregon, entrained in the corner flow proximal to the mantle wedge. Alternatively, fluids rising from the subducting slab through the mantle wedge may be the source of offset DLPs. As far as we know, these are among the first DLPs to be observed in the fore arc of a subduction-zone system.

  13. Mantle hydration and Cl-rich fluids in the subduction forearc

    Science.gov (United States)

    Reynard, Bruno

    2016-12-01

    In the forearc region, aqueous fluids are released from the subducting slab at a rate depending on its thermal state. Escaping fluids tend to rise vertically unless they meet permeability barriers such as the deformed plate interface or the Moho of the overriding plate. Channeling of fluids along the plate interface and Moho may result in fluid overpressure in the oceanic crust, precipitation of quartz from fluids, and low Poisson ratio areas associated with tremors. Above the subducting plate, the forearc mantle wedge is the place of intense reactions between dehydration fluids from the subducting slab and ultramafic rocks leading to extensive serpentinization. The plate interface is mechanically decoupled, most likely in relation to serpentinization, thereby isolating the forearc mantle wedge from convection as a cold, potentially serpentinized and buoyant, body. Geophysical studies are unique probes to the interactions between fluids and rocks in the forearc mantle, and experimental constrains on rock properties allow inferring fluid migration and fluid-rock reactions from geophysical data. Seismic velocities reveal a high degree of serpentinization of the forearc mantle in hot subduction zones, and little serpentinization in the coldest subduction zones because the warmer the subduction zone, the higher the amount of water released by dehydration of hydrothermally altered oceanic lithosphere. Interpretation of seismic data from petrophysical constrain is limited by complex effects due to anisotropy that needs to be assessed both in the analysis and interpretation of seismic data. Electrical conductivity increases with increasing fluid content and temperature of the subduction. However, the forearc mantle of Northern Cascadia, the hottest subduction zone where extensive serpentinization was first demonstrated, shows only modest electrical conductivity. Electrical conductivity may vary not only with the thermal state of the subduction zone, but also with time for

  14. Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones

    Science.gov (United States)

    Mallik, Ananya; Dasgupta, Rajdeep; Tsuno, Kyusei; Nelson, Jared

    2016-12-01

    This study investigates the partial melting of variable bulk H2O-bearing parcels of mantle-wedge hybridized by partial melt derived from subducted metapelites, at pressure-temperature (P-T) conditions applicable to the hotter core of the mantle beneath volcanic arcs. Experiments are performed on mixtures of 25% sediment-melt and 75% fertile peridotite, from 1200 to 1300 °C, at 2 and 3 GPa, with bulk H2O concentrations of 4 and 6 wt.%. Combining the results from these experiments with previous experiments containing 2 wt.% bulk H2O (Mallik et al., 2015), it is observed that all melt compositions, except those produced in the lowest bulk H2O experiments at 3 GPa, are saturated with olivine and orthopyroxene. Also, higher bulk H2O concentration increases melt fraction at the same P-T condition, and causes exhaustion of garnet, phlogopite and clinopyroxene at lower temperatures, for a given pressure. The activity coefficient of silica (ϒSiO2) for olivine-orthopyroxene saturated melt compositions (where the activity of silica, aSiO2 , is buffered by the reaction olivine + SiO2 = orthopyroxene) from this study and from mantle melting studies in the literature are calculated. In melt compositions generated at 2 GPa or shallower, with increasing H2O concentration, ϒSiO2 increases from transition from non-ideal mixing as OH- in the melt (ϒSiO2 2 GPa, ϒSiO2 >1 at higher H2O concentrations in the melt, indicate requirement of excess energy to incorporate molecular H2O in the silicate melt structure, along with a preference for bridging species and polyhedral edge decorations. With vapor saturation in the presence of melt, ϒSiO2 decreases indicating approach towards ideal mixing of H2O in silicate melt. For similar H2O concentrations in the melt, ϒSiO2 for olivine-orthopyroxene saturated melts at 3 GPa is higher than melts at 2 GPa or shallower. This results in melts generated at 3 GPa being more silica-poor than melts at 2 GPa. Thus, variable bulk H2O and pressure of

  15. Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: Evidence from boron isotope systematics

    Science.gov (United States)

    Tonarini, Sonia; Leeman, William P.; Leat, Phil T.

    2011-01-01

    The South Sandwich volcanic arc is sited on a young oceanic crust, erupts low-K tholeiitic rocks, is characterized by unexotic pelagic and volcanogenic sediments on the down-going slab, and simple tectonic setting, and is ideal for assessing element transport through subduction zones. As a means of quantifying processes attending transfer of subduction-related fluids from the slab to the mantle wedge, boron concentrations and isotopic compositions were determined for representative lavas from along the arc. The samples show variable fluid-mobile/fluid-immobile element ratios and high enrichments of B/Nb (2.7 to 55) and B/Zr (0.12 to 0.57), similar to those observed in western Pacific arcs. δ11B values are among the highest so far reported for mantle-derived lavas; these are highest in the central part of the arc (+ 15 to + 18‰) and decrease toward the southern and northern ends (+ 12 to + 14‰). δ11B is roughly positively correlated with B concentrations and with 87Sr/86Sr ratios, but poorly coupled with other fluid-mobile elements such as Rb, Ba, Sr and U. Peridotites dredged from the forearc trench also have high δ11B (ca. + 10‰) and elevated B contents (38-140 ppm). Incoming pelagic sediments sampled at ODP Site 701 display a wide range in δ11B (+ 5 to - 13‰; average = - 4.1‰), with negative values most common. The unusually high δ11B values inferred for the South Sandwich mantle wedge cannot easily be attributed to direct incorporation of subducting slab materials or fluids derived directly therefrom. Rather, the heavy B isotopic signature of the magma sources is more plausibly explained by ingress of fluids derived from subduction erosion of altered frontal arc mantle wedge materials similar to those in the Marianas forearc. We propose that multi-stage recycling of high-δ11B and high-B serpentinite (possibly embellished by arc crust and volcaniclastic sediments) can produce extremely 11B-rich fluids at slab depths beneath the volcanic arc

  16. Trace element features of hydrothermal and inherited igneous zircon grains in mantle wedge environment: A case study from the Myanmar jadeitite

    Science.gov (United States)

    Lei, Weiyan; Shi, Guanghai; Santosh, M.; Ng, Yinok; Liu, Yingxin; Wang, Jing; Xie, Gen; Ju, Yan

    2016-12-01

    Jadeitites are considered to crystallise in ultramafic rocks in the subduction channel presumably from the overlying mantle wedge, and therefore zircons from these rocks provide important insights into mantle wedge processes. Here we investigate hydrothermal zircon (Group II) formed within a subduction zone and compare these with the igneous zircon cores (Group I) from the Myanmar jadeitite. Previous U-Pb studies reported ages of Groups I and II zircons as 163 Ma, and 147 Ma respectively, and both show isotope signature of the depleted mantle. Group I zircons have much higher total concentrations of rare earth elements (REEs) (500-1945 ppm) than those of Group II zircon (112-307 ppm), and contains relatively higher abundance of Y, Nb, Ta, Ti, Th and U with higher (Sm/La)N ratios (25.3-501) and Ce-anomalies (8.04-140) but lower (Yb/Gd)N ratios (9.76-57.0) than those of the Group II ((Sm/La)N ratios = 2.12-32.2, Ce-anomalies = 1.63-19.6, (Yb/Gd)N ratios = 44.8-142). Hf concentrations are broadly similar in both Groups. The Group I zircons are considered to be magmatic and crystallised from H2O-rich basaltic melt at relatively high pressure in the mantle wedge, whereas the Group II zircon overgrowth took place through recrystallisation and precipitation with distinct dissolution of the Group I zircons. Variation in the concentration of trace elements in zircons from Groups I to II in the mantle wedge is related to an intra-oceanic subduction system in the presence of Na-rich hydrothermal fluids under high-pressure and low-temperature. The Ti-in-zircon thermometer yield a mean crystallisation temperature of 742 ± 141 °C for Group I zircons, whereas the Group II zircons yield 339 ± 33 °C. The two groups of zircons also provide insights into the probable protolith involved in formation of the Myanmar jadeitite.

  17. Early Eocene clinoenstatite boninite and boninite-series dikes of the ophiolite of New Caledonia; a witness of slab-derived enrichment of the mantle wedge in a nascent volcanic arc

    Science.gov (United States)

    Cluzel, Dominique; Ulrich, Marc; Jourdan, Fred; Meffre, Sebastien; Paquette, Jean-Louis; Audet, Marc-Antoine; Secchiari, Arianna; Maurizot, Pierre

    2016-09-01

    Clinoenstatite-bearing boninites (CE-boninite) from the serpentinite sole of the Cenozoic ophiolite of New Caledonia near Nepoui have been dated by the 40Ar/39Ar method, yielding two plateau ages of 47.4 ± 0.9 Ma and 50.4 ± 1.3 Ma. Coarser grained, geochemically similar boninite-series felsic dikes consistently yielded U-Pb zircon ages of ca. 54 Ma. Nepoui CE-boninites display whole rock geochemical features similar to that of Cape Vogel boninites (Papua-New Guinea). They similarly have been generated by low degree hydrous melting of depleted peridotite. High contents in LILE and LREE, and some elemental ratios suggest source enrichment by subduction-derived fluids and melts. However, unlike the Cape Vogel boninite, moderately depleted MORB-like isotopic signatures (εNd50 = 7.9) rule out the role of OIB-like, or E-MORB component that might account for the relatively high LREE and LILE contents measured in the rocks. Nd isotopic ratios and positive anomalies in Zr and Hf are closely similar to that of the slightly older felsic dikes (55-50 Ma) that crosscut the peridotite from the ophiolite in New Caledonia. Most of these magmas have been generated by slab melting during the early stages of intra-oceanic subduction. The Early Eocene subduction started at or near the "oceanic" ridge and involved young and hot lithosphere; therefore, slab-derived melts may have reacted locally with hot depleted peridotites. Finally, water influx into the mantle wedge during the subduction of slightly older (cooler and hydrated) lithosphere initiated a low degree partial melting event in the mantle wedge and generated the CE-boninite magma. Geochemical modeling of hydrous melting of a depleted mantle re-enriched by slab melts suggest that the additional slab melt component was derived from the partial melting of a BABB-like barroisite-bearing eclogite, similar to some elements of the Eocene HP-LT Pouebo terrane. This potential magma source is similar to the BABB-like HT amphibolites

  18. Fluid-present melting of sulfide-bearing ocean-crust: Experimental constraints on the transport of sulfur from subducting slab to mantle wedge

    Science.gov (United States)

    Jégo, Sébastien; Dasgupta, Rajdeep

    2013-06-01

    To constrain the sulfur enrichment of arc magma source-regions and the agent of sulfur transport from subducting slab to mantle wedge, here we report experimental measurements of sulfur content at sulfide saturation (SCSS) of slab-derived hydrous partial melts at 2.0 and 3.0 GPa and from 800 to 1050 °C, using Ni-NiO (NNO) and Co-CoO (CCO) external oxygen fugacity (fO2) buffers. A synthetic H2O-saturated MORB with 1 wt.% S (added as pyrite) was used as starting material. All experiments produced pyrrhotite- and fluid-saturated assemblages of silicate glass, clinopyroxene, garnet, quartz, and rutile (plus amphibole at 2 GPa/800 °C and phengite at 3 GPa/850 °C). The silicate partial melt composition evolves from rhyolitic to rhyodacitic compositions with increasing temperature and melting degree in equilibrium with an eclogitic residue, showing substantial decrease in SiO2 and Mg# and increase in FeOT, TiO2 and Na2O. At all temperatures melt sulfur concentrations are very low, with an average of 110 ± 50 ppm S, similar to previous measurements at lower pressures. Melt SCSS appears to be mainly controlled by the melt composition, the activity of water, aH2O and the sulfur fugacity, fS2 (calculated from the composition of pyrrhotite). Mass-balance calculations show that the proportion of bulk sulfur dissolved in the silicate melt is negligible (<0.005 wt.% of the bulk sulfur). In contrast, diminishing proportion of pyrrhotite with increasing temperature suggests that the fluid phase at equilibrium may contain as much as 10-15 wt.% S at ⩾1050 °C, and more than 40 wt.% of the bulk sulfur initially present in the slab may be transferred to the aqueous fluid. Our data also suggest that fluid/melt sulfur partitioning increases with increasing temperature, from ˜300 at 900 °C to ˜1200 at 1050 °C, whereas pressure appears to have less of an effect. With respect to fO2, no real difference of fluid/melt S partitioning, within data uncertainties, between NNO and CCO at

  19. Toroidal, Counter-Toroidal, and Upwelling Flow in the Mantle Wedge of the Rivera and Cocos Plates: Implications for IOB Geochemistry in the Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Neumann, Florian; Vásquez-Serrano, Alberto; Tolson, Gustavo; Negrete-Aranda, Raquel; Contreras, Juan

    2016-10-01

    We carried out analog laboratory modeling at a scale 1:4,000,000 and computer rendering of the flow patterns in a simulated western Middle American subduction zone. The scaled model consists of a transparent tank filled with corn syrup and housing two conveyor belts made of polyethylene strips. One of the strips dips 60° and moves at a velocity of 30 mm/min simulating the Rivera plate. The other one dips 45°, moves at 90 mm/min simulating the subduction of the Cocos plate. Our scaled subduction zone also includes a gap between the simulated slabs analogous to a tear recently observed in shear wave tomography studies. An acrylic plate 3 mm thick floats on the syrup in grazing contact with the polyethylene strips and simulates the overriding North America plate. Our experiments reveal a deep toroidal flow of asthenospheric mantle through the Cocos-Rivera separation. The flow is driven by a pressure gradient associated with the down-dip differential-motion of the slabs. Similarly, low pressure generated by the fast-moving Cocos plate creates a shallow counter-toroidal flow in the uppermost 100 km of the mantle wedge. The flow draws mantle beneath the western Trans-Mexican Volcanic Belt to the Jalisco block, then plunges into the deep mantle by the descending poloidal cell of the Cocos slab. Moreover, our model suggests a hydraulic jump causes an ~250 km asthenosphere upwelling around the area where intra-arc extensional systems converge in western Mexico. The upwelling eventually merges with the shallow counter-toroidal flow describing a motion in 3D space similar to an Archimedes' screw. Our results indicate the differential motion between subducting slabs drives mixing in the mantle wedge of the Rivera plate and allows the slab to steepen and retreat. Model results are in good agreement with seismic anisotropy studies and the geochemistry of lavas erupted in the Jalisco block. The model can explain the eruption of OIB lavas in the vicinity of the City of

  20. Toroidal, Counter-Toroidal, and Upwelling Flow in the Mantle Wedge of the Rivera and Cocos Plates: Implications for IOB Geochemistry in the Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Neumann, Florian; Vásquez-Serrano, Alberto; Tolson, Gustavo; Negrete-Aranda, Raquel; Contreras, Juan

    2015-12-01

    We carried out analog laboratory modeling at a scale 1:4,000,000 and computer rendering of the flow patterns in a simulated western Middle American subduction zone. The scaled model consists of a transparent tank filled with corn syrup and housing two conveyor belts made of polyethylene strips. One of the strips dips 60° and moves at a velocity of 30 mm/min simulating the Rivera plate. The other one dips 45°, moves at 90 mm/min simulating the subduction of the Cocos plate. Our scaled subduction zone also includes a gap between the simulated slabs analogous to a tear recently observed in shear wave tomography studies. An acrylic plate 3 mm thick floats on the syrup in grazing contact with the polyethylene strips and simulates the overriding North America plate. Our experiments reveal a deep toroidal flow of asthenospheric mantle through the Cocos-Rivera separation. The flow is driven by a pressure gradient associated with the down-dip differential-motion of the slabs. Similarly, low pressure generated by the fast-moving Cocos plate creates a shallow counter-toroidal flow in the uppermost 100 km of the mantle wedge. The flow draws mantle beneath the western Trans-Mexican Volcanic Belt to the Jalisco block, then plunges into the deep mantle by the descending poloidal cell of the Cocos slab. Moreover, our model suggests a hydraulic jump causes an ~250 km asthenosphere upwelling around the area where intra-arc extensional systems converge in western Mexico. The upwelling eventually merges with the shallow counter-toroidal flow describing a motion in 3D space similar to an Archimedes' screw. Our results indicate the differential motion between subducting slabs drives mixing in the mantle wedge of the Rivera plate and allows the slab to steepen and retreat. Model results are in good agreement with seismic anisotropy studies and the geochemistry of lavas erupted in the Jalisco block. The model can explain the eruption of OIB lavas in the vicinity of the City of

  1. Anomalous porosity preservation and preferential accumulation of gas hydrate in the Andaman accretionary wedge, NGHP-01 site 17A

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Kelly K.; Johnson, Joel E.; Torres, Marta E.; Hong, WeiLi; Giosan, Liviu; Solomon, E.; Kastner, Miriam; Cawthern, Thomas; Long, Philip E.; Schaef, Herbert T.

    2014-12-01

    In addition to well established properties that control the presence or absence of the hydrate stability zone, such as pressure, temperature, and salinity, additional parameters appear to influence the concentration of gas hydrate in host sediments. The stratigraphic record at Site 17A in the Andaman Sea, eastern Indian Ocean, illustrates the need to better understand the role pore-scale phenomena play in the distribution and presence of marine gas hydrates in a variety of subsurface settings. In this paper we integrate field-generated datasets with newly acquired sedimentology, physical property, imaging and geochemical data with mineral saturation and ion activity products of key mineral phases such as amorphous silica and calcite, to document the presence and nature of secondary precipitates that contributed to anomalous porosity preservation at Site 17A in the Andaman Sea. This study demonstrates the importance of grain-scale subsurface heterogeneities in controlling the occurrence and distribution of concentrated gas hydrate accumulations in marine sediments, and document the importance that increased permeability and enhanced porosity play in supporting gas concentrations sufficient to support gas hydrate formation. The grain scale relationships between porosity, permeability, and gas hydrate saturation documented at Site 17A likely offer insights into what may control the occurrence and distribution of gas hydrate in other sedimentary settings.

  2. Fluid Source-based Modeling of Melt Initiation within the Subduction Zone Mantle Wedge: Implications for Geochemical Trends in Arc Lavas

    Science.gov (United States)

    Hebert, L. B.; Asimow, P. D.; Antoshechkina, P. M.

    2008-12-01

    The GyPSM-S (Geodynamic and Petrological Synthesis Model for Subduction) scheme couples a petrological model (pHMELTS) with a 2D thermal and variable viscosity flow model (ConMan), to describe and compare fundamental processes occurring within subduction zones. Here we supplement basic GyPSM-S models with a more sophisticated treatment of trace element partitioning in the fluid phase and of melt transport regimes to investigate the influences of slab fluid source lithology and fluid transport mechanisms on melt geochemistry, the implications of mantle source depletion related to fluid fluxing, and potential melt migration processes. Changing model parameters indicate that slab age and slab dip are the primary controls on slab-adjacent low-viscosity channel (LVC) shape and thickness, due to changes in the fluid release patterns. Slab age and convergence velocity, which contribute to the slab thermal structure, are significant for the locations of dehydration reactions within the different lithological layers of the slab. The fluid source lithology determines the fluid flux and the fluid-mobile trace element input to the wedge. This study focuses on two cases that represent extremes within our model set, an old slab with a low rate of convergence and and a relatively young slab with a higher rate of convergence. Results are compared to actual geochemical datasets for the Izu-Bonin intra-oceanic subduction system and the Central Costa Rican part of the Central American arc. We find that there is a progression of geochemical characteristics described in studies of cross-arc and along-arc lavas that can be duplicated assuming (i) limited fluid-rock interaction within the mantle wedge and (ii) that melt migration preserves the spatial distinction among melts initiated in different areas of the wedge. Specifically, volcanic front lavas have significant contributions from shallower slab fluid sources, and rear-arc lavas have significant contributions from deeper slab fluid

  3. Three-dimensional elastic wave speeds in the northern Chile subduction zone: variations in hydration in the supraslab mantle

    Science.gov (United States)

    Comte, Diana; Carrizo, Daniel; Roecker, Steven; Ortega-Culaciati, Francisco; Peyrat, Sophie

    2016-11-01

    We use seismic tomography to investigate the state of the supraslab mantle beneath northern Chile, a part of the Nazca-South America Plate boundary known for frequent megathrust earthquakes and active volcanism. We performed a joint inversion of arrival times from earthquake generated body waves and phase delay times from ambient noise generated surface waves recorded by a combined 360 seismic stations deployed in northern Chile at various times over several decades. Our preferred model shows an increase in Vp/Vs by as much as 3 per cent from the subducting slab into the supraslab mantle throughout northern Chile. Combined with low values of both Vp and Vs at depths between 40 and 80 km, we attribute this increase in Vp/Vs to the serpentinization of the supraslab mantle in this depth range. The region of high Vp/Vs extends to 80-120 km depth within the supraslab mantle, but Vp and Vs both increase to normal to high values. This combination, along with the greater abundance of ambient seismicity and higher temperatures at these depths, suggest that conversion from basalt to eclogite in the slab accelerates and that the fluids expelled into the supraslab mantle contribute to partial melt. The corresponding maximum melt fraction is estimated to be about 1 per cent. Both the volume of the region affected by hydration and size of the wave speed contrasts are significantly larger north of ˜21°S. This latitude also delimits large coastal scarps and the eruption of ignimbrites in the north. Ambient seismicity is more abundant north of 21°S, and the seismic zone south of this latitude is offset to the east. The high Vp/Vs region in the north may extend along the slab interface to depths as shallow as 20 km, where it corresponds to a region of reduced seismic coupling and overlaps the rupture zone of the recent 2014 M8.2 Pisagua earthquake. A potential cause of these contrasts is enhanced hydration of the subducting oceanic lithosphere related to a string of seamounts

  4. Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth

    Science.gov (United States)

    Höning, Dennis; Spohn, Tilman

    2016-06-01

    A model of Earth's continental coverage and mantle water budget is discussed along with its thermal evolution. The model links a thermal evolution model based on parameterized mantle convection with a model of a generic subduction zone that includes the oceanic crust and a sedimentary layer as carriers of water. Part of the subducted water is used to produce continental crust while the remainder is subducted into the mantle. The total length of the subduction zones is calculated from the total surface area of continental crust assuming randomly distributed continents. The mantle viscosity is dependent of temperature and the water concentration. Sediments are generated by continental crust erosion, and water outgassing at mid-oceanic ridges closes the water cycle. We discuss the strongly coupled, non-linear model using a phase plane defined by the continental coverage and mantle water concentration. Fixed points are found in the phase plane at which the rates of change of both variables are zero. These fixed points evolve with time, but in many cases, three fixed points emerge of which two are stable and an intermediate point is unstable with respect to continental coverage. With initial conditions from a Monte-Carlo scheme we calculate evolution paths in the phase plane and find a large spread of final states that all have a mostly balanced water budget. The present day observed 40% continental surface coverage is found near the unstable fixed point. Our evolution model suggests that Earth's continental coverage formed early and has been stable for at least 1.5 Gyr. The effect of mantle water regassing (and mantle viscosity depending on water concentration) is found to lower the present day mantle temperature by about 120 K, but the present day mantle viscosity is affected little. The water cycle thus complements the well-known thermostat effect of viscosity and mantle temperature. Our results further suggest that the biosphere could impact the feedback cycles by

  5. Modeling Continental Growth and Mantle Hydration in Earth's Evolution and the Impact of Life

    Science.gov (United States)

    Höning, Dennis; Spohn, Tilman

    2016-04-01

    The evolution of planets with plate tectonics is significantly affected by several intertwined feedback cycles. On Earth, interactions between atmosphere, hydrosphere, biosphere, crust, and interior determine its present day state. We here focus on the feedback cycles including the evolutions of mantle water budget and continental crust, and investigate possible effects of the Earth's biosphere. The first feedback loop includes cycling of water into the mantle at subduction zones and outgassing at volcanic chains and mid-ocean ridges. Water is known to reduce the viscosity of mantle rock, and therefore the speed of mantle convection and plate subduction will increase with the water concentration, eventually enhancing the rates of mantle water regassing and outgassing. A second feedback loop includes the production and erosion of continental crust. Continents are formed above subduction zones, whose total length is determined by the total size of the continents. Furthermore, the total surface area of continental crust determines the amount of eroded sediments per unit time. Subducted sediments affect processes in subduction zones, eventually enhancing the production rate of new continental crust. Both feedback loops affect each other: As a wet mantle increases the speed of subduction, continental production also speeds up. On the other hand, the total length of subduction zones and the rate at which sediments are subducted (both being functions of continental coverage) affect the rate of mantle water regassing. We here present a model that includes both cycles and show how the system develops stable and unstable fixed points in a plane defined by mantle water concentration and surface of continents. We couple these feedback cycles to a parameterized thermal evolution model that reproduces present day observations. We show how Earth has been affected by these feedback cycles during its evolution, and argue that Earth's present day state regarding its mantle water

  6. Stable isotopic (O, H) evidence for hydration of the central Colorado Plateau lithospheric mantle by slab-derived fluids

    Science.gov (United States)

    Marshall, E. W.; Barnes, J.; Lassiter, J. C.

    2013-12-01

    The Colorado Plateau is a tectonically stable, relatively undeformed Proterozoic lithospheric province in the North America Cordillera. Although the stability of the Colorado Plateau suggests that it is rheologically strong, evidence from xenoliths show that the lithospheric mantle is extensively hydrated (e.g., presence of hydrous minerals, 'high' water contents in nominally anhydrous minerals), and therefore weakened. In addition, LREE enrichments in clinopyroxene (cpx) imply that the lithospheric mantle has been metasomatized ([1],[2]). Here we analyze mineral separates from spinel and garnet peridotite xenoliths from the Navajo Volcanic Field (NVF), located in the center of the Plateau, for their oxygen and hydrogen isotope compositions. These compositions are compared to those of xenoliths at the margins of the Plateau: spinel peridotites from the Grand Canyon Volcanic Field (GCVF) in the west and Zuni-Bandera Volcanic Field (ZBVF) in the east. NVF xenoliths are significantly more hydrous than the xenoliths on the margins of the Colorado Plateau based on modal abundances of hydrous minerals and structural water in olivine (e.g. [3]). All hydrous phases have high δD values (antigorite = -71 to -46‰ (n = 6 xenoliths); chlorite = -49 to -31‰ (n=3); amphibole = -47‰ (n=1)) compared to normal mantle (~-80‰), suggesting the addition of a fluid that is enriched in D compared to typical mantle. δ18O values for the same hydrous minerals range from 6.0 to 6.6‰ (n=6). δ18O values of olivine from NVF spinel peridotites have a narrow range, 5.0 to 5.4‰ (n = 4), near mantle olivine values (~5.2‰). Olivines from spinel peridotites from the GCVF and ZBVF also have mantle-like δ18O values (5.1 to 5.2‰ (n=3) and 5.1 to 5.4‰ (n=7), respectively). However, olivines and orthopyroxenes (opx) from NVF garnet peridotites have a slightly larger range and some record 18O enrichment (olivine = 5.1 to 5.6‰ (n = 3); opx = 5.9‰ (n=1)). The high δ18O values of

  7. Crustal influx, indentation, ductile thinning and gravity redistribution in a continental wedge: Building a Moldanubian mantled gneiss dome with underthrust Saxothuringian material (European Variscan belt)

    Science.gov (United States)

    Chopin, F.; Schulmann, K.; Skrzypek, E.; Lehmann, J.; Dujardin, J. R.; Martelat, J. E.; Lexa, O.; Corsini, M.; Edel, J. B.; Å TíPská, P.; Pitra, P.

    2012-02-01

    The contribution of lateral forces, vertical load, gravity redistribution and erosion to the origin of mantled gneiss domes in internal zones of orogens remains debated. In the Orlica-Śnieżnik dome (Moldanubian zone, European Variscan belt), the polyphase tectono-metamorphic history is initially characterized by the development of subhorizontal fabrics associated with medium- to high-grade metamorphic conditions in different levels of the crust. It reflects the eastward influx of a Saxothuringian-type passive margin sequence below a Teplá-Barrandian upper plate. The ongoing influx of continental crust creates a thick felsic orogenic root with HP rocks and migmatitic orthogneiss. The orogenic wedge is subsequently indented by the eastern Brunia microcontinent producing a multiscale folding of the orogenic infrastructure. The resulting kilometre-scale folding is associated with the variable burial of the middle crust in synforms and the exhumation of the lower crust in antiforms. These localized vertical exchanges of material and heat are coeval with a larger crustal-scale folding of the whole infrastructure generating a general uplift of the dome. It is exemplified by increasing metamorphic conditions and younging of 40Ar/39Ar cooling ages toward the extruded migmatitic subdomes cored by HP rocks. The vertical growth of the dome induces exhumation by pure shear-dominated ductile thinning laterally evolving to non-coaxial detachment faulting, while erosion feeds the surrounding sedimentary basins. Modeling of the Bouguer anomaly grid is compatible with crustal-scale mass transfers between a dense superstructure and a lighter infrastructure. The model implies that the Moldanubian Orlica-Śnieżnik mantled gneiss dome derives from polyphase recycling of Saxothuringian material.

  8. Nd, Sr and Pb isotopic composition of metasomatised xenoliths from the backarc Patagonian Mantle Wedge: Insights into the origin of the uprising melts

    Science.gov (United States)

    Zanetti, Alberto; Mazzucchelli, Maurizio; Hemond, Christope; Cipriani, Anna; Bertotto, Gustavo W.; Cingolani, Carlos; Vannucci, Riccardo

    2010-05-01

    Information about the geochemical composition of metasomatic melts migrating through the Patagonian mantle wedge is provided by the ultramafic xenoliths occurrence of Tres Lagos (TL; lat. 49.13°S, long. 71.18°W), Argentina. Such a locality is placed at the eastern border of the Meseta de la Muerte backarc basaltic plateau, where a post-plateau volcanic diatreme contains mantle xenoliths in both pyroclastites and lavas. Its latitude corresponds with the Northern limit of the Austral Volcanic Arc (AVZ), which is separated from the Southern Volcanic Zone (SVZ) by a gap in the arc magmatism ranging between 49° and 46°30' latitude S. The analysed xenoliths have been distinguished into two groups (Group 1 & 2). Group 1 consists of lherzolites and harzburgites, whereas Group 2 is formed by harzburgites. The texture of the Group 1 lherzolites varies from protogranular to granoblastic to porphyroblastic, whereas Group 1 harzburgites have always granoblastic texture. Group 2 harzburgites have granular texture, which may change to porphyroblastic owing to the random concentration of large olivine and orthopyroxene crystals. The clinopyroxenes (Cpx) from Group 1 lherzolites have PM-normalised REE patterns ranging from LREE-depleted (LaN/SmN= 0.24-0.37), to LREE-enriched (LaN/YbN up to 4.08) and spoon-shaped: the latter have minimum at Pr and Pr-Yb concentrations similar to those shown by the LREE-depleted Cpx. The Cpx from Group 1 harzburgites have lower REE concentrations with respect to the lherzolite ones and their REE patterns vary from HREE-enriched, steadily fractionated, (LaN/YbN = 0.21-0.35, Ybn ~ 1-2) to spoon-shaped (LaN/SmN = 2.81; SmN/YbN = 0.89; YbN ~ 3. The Cpx from the Group 2 harzburgites have convex-upward (LaN/SmN = 0.31; SmN/YbN = 1.50) to LREE-enriched (LaN/YbN = 2.94) patterns. The Sr, Nd and Pb isotopic compositions of the Group 1 clinopyroxenes form arrays spanning from DM to the field delimited by the TL basaltic lavas, pointing to EMI end

  9. Effect of Bulk Water Concentration on Mantle Wedge Hybridization by Rhyolitic Sediment Melt - Implications for Generation of K-rich Basalts to Andesites in Subduction Zones

    Science.gov (United States)

    Mallik, A.; Dasgupta, R.; Nelson, J. M.; Tsuno, K.

    2014-12-01

    Similarities in trace element geochemistry between ocean-floor sediments and arc lavas suggest the involvement of subducted sediments in the mantle source of arc volcanoes. Siliciclastic sediments produce rhyo-dacitic, hydrous partial melts at sub-arc depths, which must react with wedge peridotite during their ascent. In addition to fluids, these sediment melts can be a major carrier of water to the arc source. Here we investigate the effects of bulk water concentration on the phase equilibria of reaction between sediment partial melt and peridotite. Piston-cylinder experiments were performed using Au-Pd capsules, at 2 and 3 GPa, 1050 - 1350 °C with mixtures of 25% rhyolite + 75% lherzolite, bearing bulk water content of 2 (low-water) and 4 wt.% (high-water). Melting degree is higher in high-water experiments at both 2 and 3 GPa with a sharp increase in melt mode from 31 to 53 wt.% at 1250-1300 °C, 2 GPa and 21 to 49 wt.% at 1225-1250 °C, 3 GPa. This sharp increase in melt mode is accompanied by a corresponding abrupt increase in residual olivine to opx ratio at both pressures (0.11 to 0.53 at 1250-1300 °C, 2 GPa and 0 to 0.71 at 1225-1250 °C, 3 GPa). The stability field of phlogopite, clinopyroxene, and garnet are reduced in high-water experiments due to higher degrees of partial melting. Low-water experiments produce basalts with SiO2, on a volatile-free basis, increasing from 49 to 51 wt.% at 2 GPa and 46 to 48 wt.% at 3 GPa. For high-water experiments, melt SiO2 contents at 2 GPa are slightly higher than those in low-water experiments for a given temperature, varying from 51 to 52 wt.%, and, at 3 GPa, the melts trend towards andesitic compositions with SiO2 ~54 wt.%. These compositional characteristics of the melts can be attributed to the effect of increased olivine to opx ratios in the residue as a function of increasing bulk water concentration. Our study shows that a spectrum of ultra-potassic, high-Mg arc lavas (MgO varying from 10-16 wt.%) from

  10. Single crystal neutron diffraction of hydrous wadsleyite and the reason of sensitivity difference for hydration between upper and lower mantle transition zones

    Science.gov (United States)

    Purevjav, N.; Okuchi, T.; Tomioka, N.; Wang, X.; Hoffmann, C.

    2016-12-01

    Evidences from seismological and mineralogical studies increasingly indicates that water has been transported from the oceans into the Earth's deep mantle, where the mantle transition zone is believed to be the largest reservoir of this transported water. Wadsleyite and ringwoodite are the major constituents and the most important host minerals absorbing this type of water in the transition zone. These minerals are capable of storing the entire mass of the oceans as a hidden reservoirs. In order to understand the effects of such water on the physical properties and chemical evolution of the Earth's interior, it is essential to determine where in the crystal structure the hydration occurs, and which chemical bonds are altered and weakened after hydration. Here we show the result of a neutron single-crystal Laue diffraction study of hydrous wadsleyite. A crystal of homogenously-hydrated wadsleyite involving 1.4 wt. % of H2O was synthesized by our recently-established slow cooling method, which was an effective way to grow high quality large single crystals [1]. By analyzing this crystal using pulsed neutron beam, we demonstrated that the hydrogen atoms exchange only with Mg2+ at the one of the specific octahedron sites (M3) in wadsleyite. We also determined hydrogen's bonding distances and bonding angle. The results unambiguously demonstrated the unique mechanism of hydrogen incorporation into the wadsleyite crystal structure. We previously found that the hydrogen atoms exchanged with both Mg2+ and Si4+ sites simultaneously in the crystal structure of hydrous ringwoodite [2]. Therefore, the current results show that hydration mechanisms are qualitatively different between the upper and the lower transition zones in the wet mantle. The difference is a vital clue towards understanding why these mantle transition zone minerals show different sensitivity for water in their softening behaviors. In addition, we demonstrated that maximum water concentration in wadsleyite is

  11. Generation of ascending flows in the Big Mantle Wedge (BMW) beneath northeast Asia induced by retreat and stagnation of subducted slab

    Science.gov (United States)

    Kameyama, Masanori; Nishioka, Ryoko

    2012-05-01

    We conducted two-dimensional numerical experiments of mantle convection with imposed kinematic motions of cold slabs, in order to study the mechanism for the generation of ascending flows in the “Big Mantle Wedge” (BMW), which has been recently proposed in order to relate the stagnant Pacific slab with the intraplate volcanism in northeast Asia. Our calculations demonstrated that the BMW is expanded oceanward in response to the retreating motion of trench and slab, which strongly affects the flows in the region. In particular, the subducting and retreating motion of slab induces a local but strong circulation near the oceanward end (or a hinge) of the stagnant slab in the BMW. Our findings suggest that ascending flows in the BMW can be triggered most easily near the hinge of the stagnant slab, which is in good agreement with the occurrence of several active intraplate volcanoes above the stagnant Pacific slab.

  12. Fluid-mediated mass transfer from a paleosubduction channel to its mantle wedge: Evidence from jadeitite and related rocks from the Guatemala Suture Zone

    Science.gov (United States)

    Harlow, George E.; Flores, Kennet E.; Marschall, Horst R.

    2016-08-01

    Jadeitites in serpentinite mélanges are the product of crystallization from and/or metasomatism by aqueous fluids that transfer components from and within a subduction channel-the slab-mantle interaction volume-into discrete rock units, most commonly found within the serpentinized or serpentinizing portion of the channel or the overlying mantle rocks at high pressure (1 to > 2 GPa). Two serpentinite mélanges on either side of the Motagua fault system (MFS) of the Guatemala Suture Zone contain evidence of this process. Whole rock compositional analyses are reported here from 86 samples including jadeitites and the related rocks: omphacitites, albitites and mica rocks. The predominance of a single phase in most of these rocks is reflected in the major element compositions and aspects of the trace elements, such as REE abundances tracking Ca in clinopyroxene. Relative to N-MORB all samples show relative enrichments in the high field strength elements (HFSE) Hf, Zr, U, Th, and the LILE Ba and Cs, contrasted by depletions in K and in some cases Pb or Sr. Most jadeitites are also depleted in the highly compatible elements Cr, Sc and Ni despite their occurrence in serpentinite mélange; however, some omphacitite samples show the opposite. Trace elements in these jadeitite samples show a strong similarity with GLOSS (globally subducted oceanic sediment) and other terrigenous sediments in terms of their trace-element patterns, but are offset to lower abundances. Jadeitites thus incorporate a strong trace-element signature derived from sediments mixed with that from fluid derived from altered oceanic crust. Enrichment in the HFSE argues for mobility of these elements in aqueous fluids at high P/T conditions in the subduction channel and a remarkable lack of fractionation that might otherwise be expected from dissolution and fluid transport.

  13. Rethinking wedges

    Science.gov (United States)

    Davis, Steven J.; Cao, Long; Caldeira, Ken; Hoffert, Martin I.

    2013-03-01

    Abstract Stabilizing CO2 emissions at current levels for fifty years is not consistent with either an atmospheric CO2 concentration below 500 ppm or global temperature increases below 2 °C. Accepting these targets, solving the climate problem requires that emissions peak and decline in the next few decades, and ultimately fall to near zero. Phasing out emissions over 50 years could be achieved by deploying on the order of 19 'wedges', each of which ramps up linearly over a period of 50 years to ultimately avoid 1 GtC y-1 of CO2 emissions. But this level of mitigation will require affordable carbon-free energy systems to be deployed at the scale of tens of terawatts. Any hope for such fundamental and disruptive transformation of the global energy system depends upon coordinated efforts to innovate, plan, and deploy new transportation and energy systems that can provide affordable energy at this scale without emitting CO2 to the atmosphere. 1. Introduction In 2004, Pacala and Socolow published a study in Science arguing that '[h]umanity can solve the carbon and climate problem in the first half of this century simply by scaling up what we already know how to do' [1]. Specifically, they presented 15 options for 'stabilization wedges' that would grow linearly from zero to 1 Gt of carbon emissions avoided per year (GtC y-1 1 Gt = 1012 kg) over 50 years. The solution to the carbon and climate problem, they asserted, was 'to deploy the technologies and/or lifestyle changes necessary to fill all seven wedges of the stabilization triangle'. They claimed this would offset the growth of emissions and put us on a trajectory to stabilize atmospheric CO2 concentration at 500 ppm if emissions decreased sharply in the second half of the 21st century. The wedge concept has proven popular as an analytical tool for considering the potential of different technologies to reduce CO2 emissions. In the years since the paper was published, it has been cited more than 400 times, and

  14. Radial wedge flange clamp

    Science.gov (United States)

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  15. Numerical modelling of volatiles in the deep mantle

    Science.gov (United States)

    Eichheimer, Philipp; Thielmann, Marcel; Golabek, Gregor J.

    2017-04-01

    The transport and storage of water in the mantle significantly affects several material properties of mantle rocks and thus water plays a key role in a variety of geodynamical processes (tectonics, magmatism etc.). The processes driving transport and circulation of H2O in subduction zones remain a debated topic. Geological and seismological observations suggest different inflow mechanisms of water e.g. slab bending, thermal cracking and serpentinization (Faccenda et al., 2009; Korenaga, 2017), followed by dehydration of the slab. On Earth both shallow and steep subduction can be observed (Li et al., 2011). However most previous models (van Keken et al., 2008; Wilson et al., 2014) did not take different dip angles and subduction velocities of slabs into account. To which extent these parameters and processes influence the inflow of water still remains unclear. We present 2D numerical models simulating the influence of the various water inflow mechanisms on the mantle with changing dip angle and subduction velocity of the slab over time. The results are used to make predictions regarding the rheological behavior of the mantle wedge, dehydration regimes and volcanism at the surface. References: van Keken, P. E., et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Int. 171, 187-197 (2008). Faccenda, M., T.V. Gerya, and L. Burlini. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790-793 (2009). Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1-9 (2017). Wilson, C. R., et al. Fluid flow in subduction zones: The role of solid rheology and compaction pressure. Earth Planet. Sci. Lett. 401, 261-274 (2014). Li, Z. H., Z. Q. Xu, and T. V. Gerya. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65-77 (2011).

  16. Structural and metamorphic evolution of serpentinites and rodingites recycled in the Alpine subduction wedge

    Science.gov (United States)

    Zanoni, D.; Rebay, G.; Spalla, M. I.

    2015-12-01

    Hydration-dehydration of mantle rocks affects the viscosity of the mantle wedge and plays a prominent role in subduction zone tectonics, facilitating marble cake-type instead of large-slice dynamics. An accurate structural and petrologic investigation of serpentinites from orogenic belts, supported by their long-lived structural memory, can help to recognize pressure-sensitive mineral assemblages for deciphering their P-prograde and -retrograde tectonic trajectories. The European Alps preserve large volumes of the hydrated upper part of the oceanic lithosphere that represents the main water carrier into the Alpine subduction zone. Therefore, it is important to understand what happens during subduction when these rocks reach P-T conditions proximal to those that trigger the break-down of serpentine, formed during oceanic metamorphism, to produce olivine and clinopyroxene. Rodingites associated with serpentinites are usually derived from metasomatic ocean floor processes but rodingitization can also happen in subduction environments. Multiscale structural and petrologic analyses of serpentinites and enclosed rodingites have been combined to define the HP mineral assemblages in the Zermatt-Saas ophiolites. They record 3 syn-metamorphic stages of ductile deformation during the Alpine cycle, following the ocean floor history that is testified by structural and metamorphic relics in both rock types. D1 and D2 developed under HP to UHP conditions and D3 under lower P conditions. Syn-D2 assemblages in serpentinites and rodingites indicate conditions of 2.5 ± 0.3 GPa and 600 ± 20°C. This interdisciplinary approach shows that the dominant structural and metamorphic imprint of the Zermatt-Saas eclogitized serpentinites and rodingites developed during the Alpine subduction and that subduction-related serpentinite de-hydration occurred exclusively at Pmax conditions, during D2 deformation. In contrast, in the favourable rodingite bulk composition (Ca-rich), hydrated minerals

  17. Hydration of marginal basins and compositional variations within the continental lithospheric mantle inferred from a new global model of shear and compressional velocity

    DEFF Research Database (Denmark)

    Tesoniero, Andrea; Auer, Ludwig; Boschi, Lapo;

    2015-01-01

    We present a new global model of shear and compressional wave speeds for the entire mantle, partly based on the data set employed for the shear velocity model savani. We invert Rayleigh and Love surface waves up to the sixth overtone in combination with major P and S body wave phases. Mineral...

  18. Slab mantle dehydrates beneath Kamchatka—Yet recycles water into the deep mantle

    Science.gov (United States)

    Konrad-Schmolke, Matthias; Halama, Ralf; Manea, Vlad C.

    2016-08-01

    The subduction of hydrated slab mantle is the most important and yet weakly constrained factor in the quantification of the Earth's deep geologic water cycle. The most critical unknowns are the initial hydration state and the dehydration behavior of the subducted oceanic mantle. Here we present a combined thermomechanical, thermodynamic, and geochemical model of the Kamchatka subduction zone that indicates significant dehydration of subducted slab mantle beneath Kamchatka. Evidence for the subduction of hydrated oceanic mantle comes from across-arc trends of boron concentrations and isotopic compositions in arc volcanic rocks. Our thermodynamic-geochemical models successfully predict the complex geochemical patterns and the spatial distribution of arc volcanoes in Kamchatka assuming the subduction of hydrated oceanic mantle. Our results show that water content and dehydration behavior of the slab mantle beneath Kamchatka can be directly linked to compositional features in arc volcanic rocks. Depending on hydration depth of the slab mantle, our models yield water recycling rates between 1.1 × 103 and 7.4 × 103 Tg/Ma/km corresponding to values between 0.75 × 106 and 5.2 × 106 Tg/Ma for the entire Kamchatkan subduction zone. These values are up to one order of magnitude lower than previous estimates for Kamchatka, but clearly show that subducted hydrated slab mantle significantly contributes to the water budget in the Kamchatkan subduction zone.

  19. Phlogopite and K-amphibole in the upper mantle: Implication for magma genesis in subduction zones

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Akira; Tatsumi, Yoshiyuki (Kyoto Univ. (Japan))

    1990-01-01

    High-pressure phase relations have been examined for phlogopite + diopside with and without enstatite under vapor absent conditions in the pressure range of 5 to 13 GPa and in the temperature range of 1,000 to 1,300C. Phlogopite in these systems can be stable up to 6-7 GPa and decomposes through pressure-dependent reactions to crystallize phases including potassic amphibole. The experimental results suggest that phlogopite, which is one of main hydrous phases in the downdragged hydrated peridotite at the base of mantle wedge, plays an important role in the formation of magmas at the backarc side of a volcanic arc. The existence of potassic amphibole at higher pressure regions may imply the involvement of subduction component in magma generation in the region far away from the trench axis.

  20. Wedges of Anxiety

    DEFF Research Database (Denmark)

    Hellström, Maria; Brandt, Eva

    2005-01-01

    The Heraclitian notion of a reality in constant flux seems to have settled even in the public consciousness. We are, to an ever-increasing extent, on the move; in motion between different places of abode, between domiciles and places of residence, between temporary addresses and provisory settlem...... cones of light, as the cut their way into the unknown, like wedges of anxiety...

  1. Shock detachment from curved wedges

    Science.gov (United States)

    Mölder, S.

    2017-03-01

    Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.

  2. Shock detachment from curved wedges

    Science.gov (United States)

    Mölder, S.

    2017-09-01

    Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.

  3. A- to B-Type Olivine Fabric Transitions Associated with Hydration, Dehydration and Shear Above the Farallon Flat Slab

    Science.gov (United States)

    Behr, W. M.; Smith, D.

    2014-12-01

    We investigate mantle rocks associated with hydration, dehydration and shear above the Farallon flat-slab at its contact with the base of North America. The rocks we focus on are ultramafic inclusions hosted within serpentinized ultramafic microbreccia diatremes of the Navajo Volcanic Field (New Mexico) that erupted to the surface at the waning stages of the Laramide orogeny. A large number of petrological and geochronological studies have pinpointed the origin of these rocks to the hydrated mantle wedge above the Farallon slab as well as tectonically eroded and entrained fragments of the plate interface. We combine petrological observations and EBSD measurements of olivine grainsize and LPO to examine the effects of hydration on olivine fabric development in different parts of the supra-subduction zone mantle. The rocks examined include weakly deformed to strongly foliated tectonites we interpret to represent partially hydrated fragments of the upper plate mantle; and mylonites and ultramylonites we interpret to represent deformed fragments of the plate interface. The rocks deformed at temperatures ranging from 500-900°C based on thermometry, and olivine compositions in some record heating just before incorporation in the diatreme mix. We observe the following: Tectonites exhibit A-type bulk olivine LPOs, but show transitions to B-type LPO in local, fine-grained, dynamically recrystallized regions associated with hydrous minerals. Mylonites and ultramylonites with stable chlorite and/or antigorite and recrystallized grainsizes of less than 10μm show strong B-type olivine LPOs. A single mylonite with recrystallized grainsizes of ~35μm shows evidence for prograde metamorphism and dehydration through the chlorite breakdown reaction at temperatures above ~770°C. It contains no hydrous minerals and shows a strong A-type olivine LPO. Together these rocks demonstrate a strong correlation between hydration under high stress conditions, and B-type olivine LPO

  4. Viscoelastic lower crust and mantle relaxation following the 14-16 April 2016 Kumamoto, Japan, earthquake sequence

    Science.gov (United States)

    Pollitz, Fred F.; Kobayashi, Tomokazu; Yarai, Hiroshi; Shibazaki, Bunichiro; Matsumoto, Takumi

    2017-09-01

    The 2016 Kumamoto, Japan, earthquake sequence, culminating in the Mw=7.0 16 April 2016 main shock, occurred within an active tectonic belt of central Kyushu. GPS data from GEONET reveal transient crustal motions from several millimeters per year up to ˜3 cm/yr during the first 8.5 months following the sequence. The spatial pattern of horizontal postseismic motions is shaped by both shallow afterslip and viscoelastic relaxation of the lower crust and upper mantle. We construct a suite of 2-D regional viscoelastic structures in order to derive an optimal joint afterslip and viscoelastic relaxation model using forward modeling of the viscoelastic relaxation. We find that afterslip dominates the postseismic relaxation in the near field (within 30 km of the main shock epicenter), while viscoelastic relaxation dominates at greater distance. The viscoelastic modeling strongly favors a very weak lower crust below a ˜65 km wide zone coinciding with the Beppu-Shimabara graben and the locus of central Kyushu volcanism. Inferred uppermost mantle viscosity is relatively low beneath southern Kyushu, consistent with independent inferences of a hydrated mantle wedge within the Nankai trough fore -arc.

  5. Mantle Volatiles - Distribution and Consequences

    Science.gov (United States)

    Luth, R. W.

    2003-12-01

    O and 10-44% of the CO2 that is subducted is returned to the surface in arc magmatism. He emphasized that the "missing" volatiles may have multiple fates, including incorporation into the mantle wedge, large-scale fluid flow up along the interface between the subducting slab and overlying mantle, and transport into the deeper mantle.Because of the hydrous nature of arc magmatism, a common hypothesis is that there is a hydrous phase that breaks down at subarc conditions to trigger melting in the overlying mantle wedge to produce arc magmas. A key research goal has been to identify this phase, or phases. For example, serpentine in peridotite will break down during subduction to produce olivine+orthopyroxene+fluid or, in cooler slabs, a progression of DHMSs, the last of which may survive into the transition zone.At some point, however, because of the limited thermal or pressure stability of the hydrous phases, water will be liberated from the slab into the surrounding mantle. At this point, the water will either exist as a fluid, a melt - or something intermediate if we are above the second critical end point in the relevant system (Wyllie and Ryabchikov, 2000) - or it may dissolve into nominally anhydrous phases.The understanding of the relevant phase relations for the other volatiles is not as advanced. For carbon, we have a reasonable understanding of its phase stability in the mantle, but there is still no good understanding of the relative importance of carbonates, elemental carbon, and other forms as hosts for carbon in the mantle. In the upper mantle, sulfur resides primarily in sulfides; their behavior during partial melting will play a major role in the geochemical cycling of sulfur as well as of chalcophile elements. The halogens are rare (and rarely studied) in mantle-derived samples; more insight into their behavior is currently coming from the study of mantle-derived magmas.This review will first consider the evidence from mantle-derived magmas pertaining

  6. Magmatism significantly alters the thermal structure of the wedge

    Science.gov (United States)

    Rees Jones, D. W.; Katz, R. F.; Rudge, J. F.; Tian, M.

    2016-12-01

    The temperature structure of the mantle wedge is typically modelled as a balance between thermal diffusion and advection by the solid mantle [e.g., 1]. The thermal state of the wedge promotes melting and melt transport in the natural system, but the thermal consequences of these processes have been neglected from previous models. We show that advective transport of sensible and latent heat by liquid magma can locally alter the temperature structure from canonical models by up to 200K. Liquids are liberated from the subducting slab by de-volatilization reactions. They trigger melting and become silicic en route to the surface, where they cause arc volcanism. These liquids transport heat advectively, and consume or supply latent heat as they melt or freeze. To analyse these effects, we parameterise melting in the presence of volatile species. We combine this with a one-dimensional "melting-column model," previously used to understand mid-ocean ridge volcanism. Our calculations highlight the thermal and chemical response to melt transport across the mantle wedge. Finally, we solve two-dimensional geodynamic models with a prescribed slab flux [2]. These models allow us to identify the most thermally significant fluxes of melt in the system. Perturbations of 200K are found at the base of the overriding lithosphere. This thermal signature of melt migration should be considered when interpreting heat flow, petrologic and seismic data [e.g., 3]. Such a thermal perturbation is likely to affect the chemistry of arc volcanoes, the solid mantle flow and, perhaps, the location of the volcanos themselves [4]. [1] van Keken, P. E., Currie, C., King, S. D., Behn, M. D., Cagnioncle, A., He, J., et al. (2008). A community benchmark for subduction zone modeling. PEPI, doi:10.1016/j.pepi.2008.04.015 [2] Wilson, C. R., Spiegelman, M., van Keken, P. E., & Hacker, B. R. (2014). Fluid flow in subduction zones: The role of solid rheology and compaction pressure. EPSL, doi:10.1016/j

  7. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    and the role it plays in the global climate and the future of fuels. Russia, Japan, Nigeria, Peru, Chile, Pakistan, Indonesia, Korea, etc are various countries who are perusing the gas hydrates studies as a future resource for fuel. Indian Initiative..., 1993, Free gas at the base of the gas hydrate zone in the vicinity of the Chile Triple junction: Geology, v. 21, pp. 905-908. Borowski, W.S., C.K. Paull, and U. William, III, 1999, Global and local variations of interstitial sulfate gradients...

  8. Relative impact of mantle densification and eclogitization of slabs on subduction dynamics: A numerical thermodynamic/thermokinematic investigation of metamorphic density evolution

    Science.gov (United States)

    Duesterhoeft, Erik; Quinteros, Javier; Oberhänsli, Roland; Bousquet, Romain; de Capitani, Christian

    2014-12-01

    Understanding the relationships between density and spatio-thermal variations at convergent plate boundaries is important for deciphering the present-day dynamics and evolution of subduction zones. In particular, the interaction between densification due to mineralogical phase transitions and slab pull forces is subject to ongoing investigations. We have developed a two-dimensional subduction zone model that is based on thermodynamic equilibrium assemblage calculations and includes the effects of melting processes on the density distribution in the lithosphere. Our model calculates the 'metamorphic density' of rocks as a function of pressure, temperature and chemical composition in a subduction zone down to 250 km. We have used this model to show how the hydration, dehydration, partial melting and fractionation processes of rocks all influence the metamorphic density and greatly depend on the temperature field within the subduction system. These processes are largely neglected by other approaches that reproduce the density distribution within this complex tectonic setting. Our model demonstrates that the initiation of eclogitization (i.e., when crustal rocks reach higher densities than the ambient mantle) of the slab is not the only significant process that makes the descending slab denser and generates the slab pull force. Instead, the densification of the lithospheric mantle of the sinking slab starts earlier than eclogitization and contributes significantly to slab pull in the early stages of subduction. Accordingly, the complex metamorphic structure of the slab and the mantle wedge has an important impact on the development of subduction zones.

  9. Role of the subduction filter in mantle recycling

    Science.gov (United States)

    Kimura, J. I.; Skora, S. E.; Gill, J.; Van Keken, P. E.

    2015-12-01

    Subduction modifies the descending basaltic and sedimentary oceanic crust and generates felsic arc materials and continental crust. Studies of element mass balances in the subduction zone therefore reveal the evolution of the Earth's two major geochemical reservoirs: the continent crust and mantle. We use the Arc Basalt Simulator ver.4 (ABS4) to model the geochemical mass balance during dehydration by prograde metamorphism and melting of the slab followed by subsequent flux melting of the wedge mantle caused by the addition of slab-derived liquids. The geochemistry of high-Mg andesite or adakite formed in a hot subduction zone is akin to the present-day bulk continental crust and to the Archean (>2 Ga) Tonalite-Trondjhemite-Granodiorite composition. Therefore, the residual slab and the metasomatized mantle wedge at hot subduction zones should be the most plausible sources for materials recycled back into the deep mantle. Model calculations of isotopic growth in the residual slab and mantle formed in hot subduction zones reproduce fairly well the EM1-FOZO-HIMU isotope arrays found in ocean island basalts (OIBs) of deep mantle plume origin, although FOZO with high 3He/4He is not generated by this slab recycling process. The recycled materials are bulk igneous ocean crust for HIMU and metasomatized mantle wedge peridotite for EM1. In contrast, the EM2-FOZO array can be generated in a cold subduction zone with igneous oceanic crust for FOZO and sediment for EM2 sources. Necessary residence time are ~2 Ga to form HIMU-FOZO-EM1 and ~1 Ga to form EM2-FOZO. The subducted oceanic crust (forming HIMU) and mantle wedge peridotite (forming EM1) may have travelled in the mantle together. They then melted together in an upwelling mantle plume to form the EM1-FOZO-HIMU isotopic variations found frequently in OIBs. In contrast, the less frequent EM2-FOZO array suggests a separate source and recycling path. These recycling ages are consistent with the change in the mantle potential

  10. Contamination of the Convecting Mantle in Eastern Tethyan 'Subduction Factories'

    Science.gov (United States)

    Flower, M. F.; Nguyen, T. H.

    2003-04-01

    As subduction gives way to collision at the end of a Wilson Cycle the associated magmatic activity becomes increasingly enriched in potassium and other large-ion lithophile elements. This is usually attributed to the addition of continental crust-derived material to the convecting mantle wedge. Corresponding depletions in high-field strength elements (Ti and Nb) are more commonly explained in terms of accessory phase buffering or protracted reaction of melts with mantle wallrock. It is increasingly apparent that mantle wedge magmatic sources range from 'fertile' (lherzolitic) to 'refractory' (harzburgitic) although the extent to which this corresponds to the LILE and HFSE variation is unclear. Mantle wedge mass balances clearly hold clues to enrichment-depletion histories of the convecting asthenosphere with respect to both the overriding and subducting plates. With a view to better understanding these effects we have used the MELTS algorithm to calculate hypothetical partial melt compositions as a function of source fertility and H2O content, in the pressure range, 0-1.0 GPa as a basis comparison for natural partial melts. Primitive magmas characterizing the Mariana (western Pacific) and Sunda-Banda (Indonesia) arcs, and the northeastern syntaxis of the India-Asia collision suture (Yunnan) appear to resemble calculated equilibrium melts of refractory (basalt-depleted) peridotite, variably enriched in lithophile and light rare earth elements. These comparisons lead to three observations. 1) HFSE and Fe abundances in primitive MORB, calcalkaline, and boninite magmas, and their respective high-potassium variants are consistent with those implied by phase equilibria associated with partial melting and fractionation, suggesting accessory phases, wall-rock reaction, and slab contamination are probably not important as causes of HFSE depletions. 2) Magmatic sources at convergent and colliding margins are typically refractory (basalt-depleted) compared to those yielding

  11. Portal dosimetry in wedged beams

    NARCIS (Netherlands)

    Spreeuw, H.; Rozendaal, R.; Camargo, P.; Mans, A.; Wendling, M.; Olaciregui-Ruiz, I.; Sonke, J.J.; Herk, M. van; Mijnheer, B.

    2015-01-01

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the s

  12. Wedge wetting by electrolyte solutions

    Science.gov (United States)

    Mußotter, Maximilian; Bier, Markus

    2017-09-01

    The wetting of a charged wedgelike wall by an electrolyte solution is investigated by means of classical density functional theory. As in other studies on wedge wetting, this geometry is considered as the most simple deviation from a planar substrate, and it serves as a first step toward more complex confinements of fluids. By focusing on fluids containing ions and surface charges, features of real systems are covered that are not accessible within the vast majority of previous theoretical studies concentrating on simple fluids in contact with uncharged wedges. In particular, the filling transition of charged wedges is necessarily of first order, because wetting transitions of charged substrates are of first order and the barrier in the effective interface potential persists below the wetting transition of a planar wall; hence, critical filling transitions are not expected to occur for ionic systems. The dependence of the critical opening angle on the surface charge, as well as the dependence of the filling height, of the wedge adsorption, and of the line tension on the opening angle and on the surface charge are analyzed in detail.

  13. The crust and upper mantle of central East Greenland - implications for continental accretion and rift evolution

    Science.gov (United States)

    Schiffer, Christian; Balling, Niels; Ebbing, Jörg; Holm Jacobsen, Bo; Bom Nielsen, Søren

    2016-04-01

    The geological evolution of the North Atlantic Realm during the past 450 Myr, which has shaped the present-day topographic, crustal and upper mantle features, was dominated by the Caledonian orogeny and the formation of the North Atlantic and associated igneous activity. The distinct high altitude-low relief landscapes that accompany the North Atlantic rifted passive margins are the focus of a discussion of whether they are remnant and modified Caledonian features or, alternatively, recently uplifted peneplains. Teleseismic receiver function analysis of 11 broadband seismometers in the Central Fjord Region in East Greenland indicates the presence of a fossil subduction complex, including a slab of eclogitised mafic crust and an overlying wedge of hydrated mantle peridotite. This model is generally consistent with gravity and topography. It is shown that the entire structure including crustal thickness variations and sub-Moho heterogeneity gives a superior gravity and isostatic topographic fit compared to a model with a homogeneous lithospheric layer (1). The high topography of >1000 m in the western part of the area is supported by the c. 40 km thick crust. The eastern part requires buoyancy from the low velocity/low density mantle wedge. The geometry, velocities and densities are consistent with structures associated with a fossil subduction zone. The spatial relations with Caledonian structures suggest a Caledonian origin. The results indicate that topography is isostatically compensated by density variations within the lithosphere and that significant present-day dynamic topography seems not to be required. Further, this structure is suggested to be geophysically very similar to the Flannan reflector imaged north of Scotland, and that these are the remnants of the same fossil subduction zone, broken apart and separated during the formation of the North Atlantic in the early Cenozoic (2). 1) Schiffer, C., Jacobsen, B.H., Balling, N., Ebbing, J. and Nielsen, S

  14. Water-saturated physical modeling of accretionary wedges

    Science.gov (United States)

    Yamada, Y.; Zhang, M.; Nakajima, H.; Driss, E.

    2005-12-01

    Accretionary wedges have been an important research target from view points of earthquake mechanism at the subduction zone, sediment deformation that is closely coupled with hydrology, and resource exploration such as methane hydrates. The knowledge obtained from the study may also be useful for site selection of geological disposal of hazardous materials including radioactive nuclear wastes, in coastal areas of tectonically unstable island arc systems like Japan. The wedges have been well-investigated with analogue models in particular sandbox experiments that typically use dry granular materials, thus the inter-granular pore space of the sandbox experiments is filled with air. In natural sediments, however, the pore space is filled with formation water and its pressure has special effects on structural development. In order to accurately simulate the in-situ conditions and to examine the effects of water on the deformation process of accretionary wedge, a new apparatus was recently constructed in AIST, Japan, to perform physical analog experiments of accretionary wedges under water-saturated condition. For comparisons, equivalent experiments with dry materials were also conducted. The physical properties of the materials were also measured with tri-axial compression tests to interpret the experimental observations. Preliminary results obtained from this study showed that the fundamental parameters on structural geometry, such as taper angle and fault spacing, can be correlated well in wet and dry experiments. These are also in good agreement with physical properties obtained by the tri-axial compression tests, suggesting that the internal friction coefficient decreases as the overburden pressure increases. In the under water models, buoyancy decreases apparent grain density and overburden pressure thus the internal friction coefficient also decreases. This also agrees with the structural geometry of the experimental results. These results suggest that under

  15. Contact process in a wedge

    CERN Document Server

    Cox, J Theodore; Schinazi, Rinaldo B

    2009-01-01

    We prove that the supercritical one-dimensional contact process survives in certain wedge-like space-time regions, and that when it survives it couples with the unrestricted contact process started from its upper invariant measure. As an application we show that a type of weak coexistence is possible in the nearest-neighbor ``grass-bushes-trees'' successional model introduced in Durrett and Swindle (1991).

  16. Conflicting Geophysical and Geochemical Indicators of Mantle Temperature Beneath Tibet

    Science.gov (United States)

    Klemperer, S. L.

    2013-12-01

    In Tibet a small number of earthquakes occurs at 75-100 km depth, spanning the Moho, reaching >350 km and >550 km north of the Himalayan front in south-eastern Tibet and western Tibet respectively. 'Earthquake thermometry' implies these deep earthquakes occur in anhydrous lower lithosphere, either anorthitic or ultramafic, at 0.1RA (~1% mantle fluid) are conventionally taken to imply an unequivocal mantle component. Time-averaged upward flow rates calculated from measured 3He/4He ratios (R) and [4He] range from ~1-15 cm/a, implying transport times of 0.5-7 Ma through a 70-km thick crust. Discussion of 3He in Tibet in the western literature has been dominated by a single paper (Hoke et al., EPSL, 2000) that reported modest mantle helium (0.110% mantle fluids are reported 120 km and 150 km south of the northern limit of deep earthquakes in southeastern and western Tibet respectively. These hot springs apparently sampled mantle with T>800°C south of the locations where earthquake thermometry implies Moho temperatures India, Nepal and Pakistan, even though the 800°C isotherm is substantially shallower there than beneath southern Tibet? More plausibly the mantle helium is derived from an Asian mantle wedge above the region of deep earthquakes, in which case underthrusting Indian lithosphere is not intact, but breaks into an upper layer forming the lower crust of the Tibetan Plateau, and a lower seismogenic layer that is subducted more deeply into the mantle. Based on the geothermal springs, an Asian mantle wedge extended south of the Indus Tsangpo suture in SE Tibet and to the Karakoram fault in W Tibet until the latest Miocene, or even more recently.

  17. Multiscale seismic tomography and mantle dynamics

    Science.gov (United States)

    Zhao, Dapeng

    2010-05-01

    Multiscale (local, regional and global) tomographic studies are made to determine the 3-D structure of the Earth, particularly for imaging mantle plumes and subducting slabs. Plume-like slow anomalies are clearly visible under the major hotspot regions in most parts of the mantle, in particular, under Hawaii, Iceland, Kerguelen, South Pacific and Africa (Zhao, 2001, 2004, 2009). The slow anomalies under South Pacific and Africa have lateral extensions of over 1000 km and exist in the entire mantle, representing two superplumes. The Pacific superplume has a larger spatial extent and stronger slow anomalies than that of the Africa superplume. The Hawaiian plume is not part of the Pacific superplume but an independent whole-mantle plume (Zhao, 2004, 2009). The slow anomalies under hotspots usually do not show a straight pillar shape, but exhibit winding images, suggesting that plumes are not fixed in the mantle but can be deflected by the mantle flow. As a consequence, hotspots are not really fixed but can wander on the Earth's surface, as evidenced by the recent paleomagnetic and numeric modeling studies. Wider and more prominent slow anomalies are visible at the core-mantle boundary (CMB) than most of the lower mantle, and there is a good correlation between the distribution of slow anomalies at the CMB and that of hotspots on the surface, suggesting that most of the strong mantle plumes under the hotspots originate from the CMB. However, there are some small-scaled, weak plumes originating from the transition zone or mid mantle depths (Zhao et al., 2006; Zhao, 2009; Lei et al., 2009; Gupta et al., 2009). Clear images of subducting slabs and magma chambers in the upper-mantle wedge beneath active arc volcanoes are obtained, indicating that geodynamic systems associated with arc magmatism and back-arc spreading are related to deep processes, such as convective circulation in the mantle wedge and dehydration reactions of the subducting slab (Zhao et al., 2002, 2007

  18. Linking mantle upwelling with the lithosphere descent [corrected] and the Japan Sea evolution: a hypothesis.

    Science.gov (United States)

    Ismail-Zadeh, Alik; Honda, Satoru; Tsepelev, Igor

    2013-01-01

    Recent seismic tomography studies image a low velocity zone (interpreted as a high temperature anomaly) in the mantle beneath the subducting Pacific plate near the Japanese islands at the depth of about 400 km. This thermal feature is rather peculiar in terms of the conventional view of mantle convection and subduction zones. Here we present a dynamic restoration of the thermal state of the mantle beneath this region assimilating geophysical, geodetic, and geological data up to 40 million years. We hypothesise that the hot mantle upwelling beneath the Pacific plate partly penetrated through the subducting plate into the mantle wedge and generated two smaller hot upwellings, which contributed to the rapid subsidence in the basins of the Japan Sea and to back-arc spreading. Another part of the hot mantle migrated upward beneath the Pacific lithosphere, and the presently observed hot anomaly is a remnant part of this mantle upwelling.

  19. Seismic Velocities and Earthquake Locations in the Central America Upper Mantle: results from the TUCAN Experiment

    Science.gov (United States)

    Syracuse, E. M.; Abers, G. A.; Auger, L.; Fischer, K.; Protti, M.; Gonzalez, V.; Strauch, W.; Brewer, J.

    2006-12-01

    The processes that govern magma generation and extraction at subduction zones are not yet well understood. Velocity tomography and earthquake locations from the TUCAN (Tomography Under Costa Rica and Nicaragua) PASSCAL experiment give insight into the geometry and structure of the Central American subduction zone, which exhibits large variations in downgoing plate roughness and dip, volcano locations, and geochemistry over a short distance along the arc. Approximately 14000 P travel times and 11000 S travel times are used in joint Vp, Vp/Vs and hypocenter inversions. The present-day slab geometry is highlighted by contrasts in dip beneath the two arc sections: a near-vertical slab dip beneath the volcanic front in Nicaragua, similar to that indicated by teleseismic hypocenters and a 30° slab dip beneath central Costa Rica, similar to that indicated by a previous local study. In both regions, the intermediate-depth seismic zone is a single layer as thin as 5 km in some areas and no more than 10 to 20 km thick overall. Tomographic images show that throughout Nicaragua and Costa Rica, the slowest mantle velocities appear directly below the volcanic front, indicating likely zones of mantle melting extending 80 to 120 km depth. This region is much larger beneath Nicaragua than beneath Costa Rica, potentially allowing a greater extent of melting. Within the downgoing plate, a low-velocity region is imaged at depths less than 150 km beneath Nicaragua and in the upper 60 km of the slab beneath Costa Rica. This feature may represent a hydrated layer at the top of the downgoing plate, similar to that seen in waveguide studies. Beneath Nicaragua, we also see evidence for a dipping high-velocity region in the mantle wedge beneath Nicaragua extending from 20 to 100 km trenchward of the arc, consistent with results from receiver function analysis and offshore active source tomography. This high-velocity region may serve as an impediment to mantle flow and fluid migration

  20. Origin of geochemical mantle components: Role of subduction filter

    Science.gov (United States)

    Kimura, Jun-Ichi; Gill, James B.; Skora, Susanne; van Keken, Peter E.; Kawabata, Hiroshi

    2016-08-01

    We quantitatively explore element redistribution at subduction zones using numerical mass balance models to evaluate the roles of the subduction zone filter in the Earth's geochemical cycle. Our models of slab residues after arc magma genesis differ from previous ones by being internally consistent with geodynamic models of modern arcs that successfully explain arc magma genesis and include element fluxes from the dehydration/melting of each underlying slab component. We assume that the mantle potential temperature (Tp) was 1400-1650°C at 3.5-1.7 Ga and gradually decreased to 1300-1350°C today. Hot subduction zones with Tp ˜1650°C have a thermal structure like modern SW Japan where high-Mg andesite is formed which is chemically like continental crust. After 2.5-1.7 Gyr of storage in the mantle, the residual igneous oceanic crust from hot subduction zones can evolve isotopically to the HIMU mantle component, the residual base of the mantle wedge to EMI, the residual sediment becomes an essential part of EMII, and the residual top of the mantle wedge can become the subcontinental lithosphere component. The Common or Focal Zone component is a stable mixture of the first three residues occasionally mixed with early depleted mantle. Slab residues that recycled earlier (˜2.5 Ga) form the DUPAL anomaly in the southern hemisphere, whereas residues of more recent recycling (˜1.7 Ga) underlie the northern hemisphere. These ages correspond to major continental crust forming events. The east-west heterogeneity of the depleted upper mantle involves subcontinental mantle except in the Pacific.

  1. Geometry and kinematics of extensional structural wedges

    Science.gov (United States)

    Gui, Baoling; He, Dengfa; Zhang, Yongsheng; Sun, Yanpeng; Huang, Jingyi; Zhang, Wenjun

    2017-03-01

    Structural wedges in the compressive environment have been recognized and studied in different locations. However, extension structural wedges are less well-understood. Based on the normal fault-bend folding theory and inclined shear model, this paper quantitatively analyses deformations related to extensional structural wedges and builds a series of geometric models for them. An extensional structural wedge is a fault-block held by two or more normal faults, the action of which would fold its overlying strata. Extensional structural wedges of different shapes will lead to different deformation results for the overlying strata, and this paper illustrates both the triangular and quadrangular wedges and their related deformations. This paper also discusses differences between the extensional structural wedges and the normal fault-bend-folding. By analysing two seismic sections from Langfang-Gu'an Sag, East China, this paper provides two natural examples of the triangular and quadrangular extensional structural wedges, where the models can reasonably explain the overlying distinct highs and lows without obvious faults. The establishment of a geometric model of extensional structural wedges can provide reference and theoretical bases for future quantitative analysis of deformations in the extensional environment.

  2. Clathrate hydrates in nature.

    Science.gov (United States)

    Hester, Keith C; Brewer, Peter G

    2009-01-01

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO2. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves.

  3. Experimental Constraints on Mantle Heterogeneity and Mantle-Melt Equilibration Depths along the Volcanic Front of the Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Weaver, S.; Wallace, P. J.; Johnston, A.

    2012-12-01

    Primitive magmas erupted along the volcanic front in the Trans-Mexican Volcanic Belt (TMVB) span a wide geochemical range, with variations in silica, alkalies, and volatiles, indicating that the subarc mantle wedge is chemically heterogeneous. In this work we present the results of hydrous, near-liquidus piston-cylinder experiments for three chemically distinct primitive magmas that have erupted at the volcanic front along the TMVB. The experiments were aimed to constrain the mineralogy of equilibrium residues and final equilibration pressures and temperatures for these primitive melts over a range of H2O contents (1.5-7 wt%). The results provide an along-arc view of primitive magma equilibration conditions beneath the volcanic front of the TMVB. The experimental starting materials included a medium-K basaltic andesite (JR-28, Jorullo, Central Mexico; Weaver et al., 2011), potassic trachybasalt (JOR-46, La Pilita, central Mexico), and an alkali basalt (AY-509, Ayutla, western Mexico). The residual mineralogy for these three compositions at upper mantle pressures was harzburgite (JR-28) and wehrlite (JOR-46 and AY-509). Experimentally constrained equilibration pressures varied from 1.4 GPa-1.8 GPa, with the lowest pressure observed in the central Mexico lavas (Jorullo and La Pilita) and the highest pressures observed for the Ayutla basalt from western Mexico. Other experimental studies on primitive Mexican lavas have produced similar mantle residues and equilibration pressures; high-Mg basaltic andesite (Pelagatos, Mexico City region; Weber et al., 2011) and primitive absarokite (Mascota, Jalisco, western Mexico; Hesse and Grove, 2003) both equilibrated with harzburgite at 1.3 GPa and 1.6 GPa, respectively. We combine all of the available experimental data with recent geodynamic models of the mantle wedge beneath the TMVB to provide a comprehensive, along-arc perspective of mantle-melt equilibrium beneath the volcanic front. There is significant experimental and

  4. Ice Particle Impacts on a Moving Wedge

    Science.gov (United States)

    Vargas, Mario; Struk, Peter M.; Kreeger, Richard E.; Palacios, Jose; Iyer, Kaushik A.; Gold, Robert E.

    2014-01-01

    This work presents the results of an experimental study of ice particle impacts on a moving wedge. The experiment was conducted in the Adverse Environment Rotor Test Stand (AERTS) facility located at Penn State University. The wedge was placed at the tip of a rotating blade. Ice particles shot from a pressure gun intercepted the moving wedge and impacted it at a location along its circular path. The upward velocity of the ice particles varied from 7 to 12 meters per second. Wedge velocities were varied from 0 to 120 meters per second. Wedge angles tested were 0 deg, 30 deg, 45 deg, and 60 deg. High speed imaging combined with backlighting captured the impact allowing observation of the effect of velocity and wedge angle on the impact and the post-impact fragment behavior. It was found that the pressure gun and the rotating wedge could be synchronized to consistently obtain ice particle impacts on the target wedge. It was observed that the number of fragments increase with the normal component of the impact velocity. Particle fragments ejected immediately after impact showed velocities higher than the impact velocity. The results followed the major qualitative features observed by other researchers for hailstone impacts, even though the reduced scale size of the particles used in the present experiment as compared to hailstones was 4:1.

  5. Miocene-Pliocene mantle depletion event in the northern Fossa Magna, western NE Japan

    Science.gov (United States)

    Okamura, Satoshi; Inaba, Mitsuru; Adachi, Yoshiko; Shinjo, Ryuichi

    2016-07-01

    New isotopic and trace element data presented here imply a temporal change in magma sources and thermal conditions beneath the northern Fossa Magna of NE Japan from the Miocene to the Pliocene. Less radiogenic 176Hf/177Hf and 143Nd/144Nd, high Zr/Hf, and little or no Hf anomaly characterize the Early Miocene volcanism in the northern Fossa Magna region. The mantle wedge consisted of chemically heterogeneous mantle source. Based on out isotope proxies, we propose that during the onset of subduction, influx of hot asthenospheric mantle provided sufficient heat to partially melt newly subducting sediment. Geochemical modeling demonstrates that slab-derived melt mixed with mantle wedge produces the observed isotopic and trace elemental characteristics. In the Middle Miocene, the injection of hot and depleted asthenospheric material replaced the mantle beneath the northern Fossa Magna region of NE Japan. This caused the isotopic signature of the rocks to change from enriched to depleted. Then, the mantle wedge was gradually cooled during the Middle Miocene to the Pliocene with back-arc opening ending in the Late Miocene. Slab surface temperatures were still high enough for sediments to melt but not too high (<∼780 °C) to lose zircon as a residual phase. The Late Miocene and Pliocene volcanism at the post stage of the back-arc opening is best explained by a partial melting of subducted metasediment saturated with trace quantities of zircon and rutile.

  6. Melt- versus fluid-induced metasomatism in spinel to garnet wedge peridotites (Ulten Zone, Eastern Italian Alps): clues from trace element and Li abundances

    Science.gov (United States)

    Scambelluri, M.; Hermann, J.; Morten, L.; Rampone, E.

    2006-04-01

    anomalies in Cs, Ba, Pb and U and moderate enrichment in Li, indicating addition of a crustal component to the mantle rocks. Amphibole hosts most of these trace elements. Clinopyroxene displays high LILE/HFSE (Pb N /Nb N =300-600), low Ce/Pb (1.4-2.7 in garnet-facies clinopyroxene compared with 2.6-24.5 in the spinel-facies one) and variable LILE and LREE enrichments. The coupled increase of modal amphibole, Sr and Pb, together with positive Pb-Sr and Pb-U correlations, further indicate that incompatible element influx in these samples was fluid-mediated. In the garnet-facies samples, amphibole and, interestingly, olivine have similarly high Li concentrations as clinopyroxene, leading to cpx/amph D Li=0.7 and cpx/ol D Li=0.7-0.8, the latter being up to ten times lower than in the spinel-facies rocks. Due to its high modal abundance, olivine is the main host of Li in the garnet-amphibole peridotites. The observed metasomatic features provide evidence for the infiltration of an aqueous fluid in the mantle wedge above a subducting slab. This fluid most likely derived from subducted crustal rocks that underwent partial melting. Successive retrograde re-equilibration during exhumation of the garnet peridotite is accompanied by garnet and clinopyroxene breakdown and amphibole formation. This process produced minor changes, such as an increase of HREE and Li in amphibole, and an increase of Li in olivine. The general trace element signature remains essentially unchanged during retrogression and further hydration, indicating that fluids with a similar composition to the one present at the garnet-amphibole peridotite formation, were responsible for increased amphibole formation. The combined evidence from the metamorphic and metasomatic evolution indicates that the peridotites experienced first corner flow in a mantle wedge, followed by subduction and finally entrapment and exhumation within a crustal slab. During their entire history the Ulten peridotites were percolated first by

  7. Seismic Evidence for Widespread Serpentinized Forearc Upper Mantle Along the Cascadia Margin

    Science.gov (United States)

    Brocher, T. M.; Parsons, T.; Trehu, A. M.; Snelson, C. M.; Fisher, M. A.

    2002-12-01

    Petrologic models for subducting slabs suggest that metamorphism of such slabs releases water that serpentinizes the overlying forearc mantle wedge. We use controlled-source-seismic and earthquake-tomography data from Cascadia to test the hypothesis that a narrow wedge of low velocity, serpentinized upper mantle extends along the Cascadia forearc from Vancouver Island to the Mendocino triple junction. The primary evidence for this wedge is low upper mantle (Pn) velocities (<7.8 km/s) and/or absent or low-amplitude wide-angle reflections from the top of the upper mantle (PmP) in a narrow belt (about 50 to 70 km wide) beneath the Georgia Strait, Puget Lowland, Willamette Valley, and the northern Great Valley. These results are compatible with a recent teleseismic model from central Oregon showing a weak and even inverted velocity contrast across the forearc Moho. Tomography models from Georgia Strait and the northern Puget Lowland show low upper mantle velocities. The absence of near-vertical and wide-angle PmP reflections from the top of the upper mantle in the SHIPS data from Puget Lowland are consistent with a weak continental Moho contrast there. Similarly, wide-angle reflections from the continental Moho (PmP) along a 1995 SW Washington seismic profile are discontinuous in the forearc. No clear PmP reflections or upper mantle refractions are observed from the North America plate, above the subducting Gorda plate, along Line 6 from the 1993 Mendocino seismic experiment. Local seismic reflectivity within the forearc upper mantle wedge may indicate, among other possibilities, that these low-velocity rocks have undergone extensive shearing. These observations are consistent with the suggestion that this wedge of low-velocity, rheologically-weak, serpentinized rocks facilitates slow slip events on the megathrust by lubricating the megathrust and/or accommodating some of the interplate deformation. The presence of a low-velocity forearc upper mantle wedge in Cascadia

  8. Hydrothermal experiments on serpentinization at crust/mantle boundary

    Science.gov (United States)

    Oyanagi, R.; Okamoto, A.; Tsuchiya, N.

    2013-12-01

    Serpentinization commonly proceeds in seafloor hydrothermal systems at mid-ocean ridges, along the bending faults, and at the boundary of wedge mantle and subducting plate. Silica activity are key factors in controlling reaction paths and the rate of serpentinization (e.g., Frost and Beard, 2007; Klein et al., 2009; Ogasawara et al.,2013). However, most of the previous experimental studies focused on bulk solid materials and solutions within the reaction vessel, and local changes of products reaction rate in response to concentration gradient have not been clarified. Ogasawara et al. (2013) conducted hydrothermal experiments in Ol-Opx-H2O system, and modeled the progress of serpentinization by coupled reactions and silica diffusion. In their experiment, reaction product is only serpentine and no talc or brucite were found. In this study, we conducted hydrothermal experiments in olivine (Ol)-quartz (Qtz)-H2O and Ol-plagioclase (Pl)-H2O systems as the analogue of crust/mantle boundary. The condition was 250 degreeC and at a vapor-saturated pressure. Composite powders (composed of Qtz/Ol zone, or Pl/Ol zone) were set in tube-in-tube vessels, and then loaded into autocrave with fluid ( NaOHaq, pH = 13.8 at 25 degreeC ). Runnig time is up to 25 days and maximum water content in the products is 12 wt% H2O. After the experiments, solution chemistry and the extent of serpentinization were analyzed in detail. In the Ol-Qtz-H2O experiments, we observed systematic changes of reaction products in the Ol zone. Smectite and serpentine was formed at Ol-Qtz boundary due to high Na concentration although talc is expected to form in MgO-SiO2-H2O system at Ol-Qtz boundary. Mg/Si ratio of products from EDS analyze shows high Si gradient near the boundary indicate that amount of smectite decreased with increasing distance from the Ol-Qtz boundary and only serpentine zone was observed at ~10mm. At >10mm away from Ol-Qtz boundary, serpentine ( chrysotile nano tubes) and brucite was

  9. Optical dating of relict sand wedges and composite-wedge pseudomorphs in Flanders, Belgium

    DEFF Research Database (Denmark)

    Buylaert, Jan-Pieter; Ghysels, Günther; Murray, Andrew S.;

    2009-01-01

    We report on quartz Optically Stimulated Luminescence (OSL) dating of the infill of 14 relict sand wedges and composite-wedge pseudomorphs at 5 different sites in Flanders, Belgium. A laboratory dose recovery test indicates that the single-aliquot regenerative-dose (SAR) procedure is suitable...... appear to have been commonplace in Flanders during the Late Pleniglacial (Oxygen Isotope Stage 2; OIS2); more specifically, around the Last Glacial Maximum (LGM, similar to 21 kyr ago) and the transition period between the LGM and the start of the Lateglacial (similar to 15 kyr ago). Optical dating...... at one site has revealed two significantly older wedge levels, the younger inset into the older; the younger wedge has an age of 36 +/- 4 kyr (Middle Pleniglacial; OIS3), the older wedge 129 +/- 11 kyr, which points to formation during the Late Saalian (OIS6). Our OSL ages of the wedges and host...

  10. Importance of Mantle Viscosity in Interseismic Deformation

    Science.gov (United States)

    Wang, K.; He, J.; Hu, Y.

    2012-12-01

    The role of mantle viscosity in subduction earthquake cycles was postulated when the plate tectonics theory had just gained wide acceptance. The process was described using Elsasser's 1-D model for diffusion of stress from the subduction boundary to the plate interior. Main features of interseismic surface deformation predicted by this elegantly simple model were later verified by GPS observations following giant subduction earthquakes. However, and intriguingly, the vast majority of interseismic deformation models developed in the era of space geodesy assume an elastic Earth, incorrectly regarding interseismic deformation as a subdued mirror image of coseismic deformation. The reason is four-fold. (1) The 1-D model and subsequent 2-D viscoelastic models failed to recognize the role of rupture length in the strike direction and could not self-consistently explain deformation following medium and small earthquakes. (2) Based on global mantle viscosity models derived from glacial isostatic adjustment studies, the viscoelastic mantle should indeed behave elastically in earthquake cycles of a few hundred years. (3) The effect of viscous mantle deformation can often be equivalently described by deep fault creep in a purely elastic Earth. (4) The use of an elastic model provides convenience in inverting geodetic data to determine fault locking and creep. Here we use 3D finite element models to show that the main characteristics of surface deformation following subduction earthquakes of all sizes can be explained with a viscoelastic Earth in which the mantle wedge is less viscous than global upper-mantle average of 1020 - 1021 Pa s by one to two orders of magnitude. Following giant earthquakes, such as 1700 Cascadia, 1960 Chile, 1964 Alaska, 2004 Sumatra, and 2011 Japan, upper-plate land deformation undergoes phases of wholesale seaward motion, opposing motion of coastal and inland areas, and wholesale landward motion. The "speed" of the evolution scales inversely with

  11. Use of Wedge Absorbers in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Summers, D. [Univ. of Mississippi, Oxford, MS (United States); Mohayai, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Snopok, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Rogers, C. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL)

    2017-03-01

    Wedge absorbers are needed to obtain longitudinal cooling in ionization cooling. They also can be used to obtain emittance exchanges between longitudinal and transverse phase space. There can be large exchanges in emittance, even with single wedges. In the present note we explore the use of wedge absorbers in the MICE experiment to obtain transverse–longitudinal emittance exchanges within present and future operational conditions. The same wedge can be used to explore “direct” and “reverse” emittance exchange dynamics, where direct indicates a configuration that reduces momentum spread and reverse is a configuration that increases momentum spread. Analytical estimated and ICOOL and G4BeamLine simulations of the exchanges at MICE parameters are presented. Large exchanges can be obtained in both reverse and direct configurations.

  12. Benchmarking numerical models of brittle thrust wedges

    NARCIS (Netherlands)

    Buiter, Susanne J H; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric|info:eu-repo/dai/nl/270177493; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-01-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the

  13. A specially curved wedge for eliminating wedge angle effect in unsteady shock reflection

    Science.gov (United States)

    Wang, He; Zhai, Zhigang; Luo, Xisheng; Yang, Jiming; Lu, Xiyun

    2017-08-01

    A curved wedge with a specific shape is designed and manufactured to guarantee the wedge angle unvaried during the cylindrically converging shock moving along the wedge. Thus the variation of the wedge angle caused by the wedge will be eliminated in unsteady shock reflection. Different initial wedge angles are considered to observe regular reflection and Mach reflection. When Mach reflection occurs, it is found that direct Mach reflection is persisted over the wedge without wave pattern transitions, which differs from our previous work with varied wedge angles [Zhang et al. "Reflection of cylindrical converging shock wave over a plane wedge," Phys. Fluids 28, 086101 (2016)]. Moreover, the Mach stem is nearly straight when the wedge angle is relatively large, and the trajectory of triple point can be well predicted by three-shock theory. It is believed that the straight Mach stem results from the coupling effect of the converging shock and the convexly curved wedge, which exert opposite effects on the Mach stem curvature. As the wedge angle reduces, the three-shock theory prediction deviates from the present results owing to the curved Mach stem. Stronger vortices are produced near the wall, which are caused by the interaction of two shear layers, and whether the stronger vortices will be generated near the wall depends on the reflection number of the shock wave over the tube wall and wedge. The length of disturbed shock front in the Mach reflection is found to increase nonlinearly due to the unsteady feature of the flow. The growth rate of length reduces as the shock converges because of the geometrical contraction effect. Further the lengths of the Mach stem and the disturbed shock front are compared, and the results show that although the difference exists between them, both of them show a similar variation tendency. Compared with our previous work with varied wedge angles, the variation of the wedge angle has great effects on the Mach stem length and wave

  14. Long-range hybrid wedge plasmonic waveguide.

    Science.gov (United States)

    Zhang, Zhonglai; Wang, Jian

    2014-11-03

    We design a novel long-range hybrid wedge plasmonic (LRHWP) waveguide composed of two identical dielectric nanowires symmetrically placed on two opposed wedges of a diamond shaped metal wire. With strong coupling between the dielectric nanowire mode and long-range surface plasmon polariton (SPP) mode, both deep subwavelength mode confinement and low propagation loss are achieved. On one hand, when compared to the previous long-range hybrid SPP waveguide, LRHWP waveguide can achieve smaller mode size with similar propagation length; on the other hand, when compared to the previous hybrid wedge SPP waveguide, LRHWP waveguide can provide an order of magnitude longer propagation length with similar level of mode confinement. The designed LRHWP waveguide also features an overall advantage of one-order improvement of Figure of Merit. We further evaluate in detail the impacts of possible practical fabrication imperfections on the mode properties. The obtained results of mode properties show that the proposed LRHWP waveguide with an optimized wedge tip angle of 140 degree is fairly tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, asymmetry in the vertical direction, variation of wedge tip angle, tilt or rotation of metal wire, and variation of wedge tip curvature radius.

  15. Mantle plumes in the vicinity of subduction zones

    Science.gov (United States)

    Mériaux, C. A.; Mériaux, A.-S.; Schellart, W. P.; Duarte, J. C.; Duarte, S. S.; Chen, Z.

    2016-11-01

    We present three-dimensional deep-mantle laboratory models of a compositional plume within the vicinity of a buoyancy-driven subducting plate with a fixed trailing edge. We modelled front plumes (in the mantle wedge), rear plumes (beneath the subducting plate) and side plumes with slab/plume systems of buoyancy flux ratio spanning a range from 2 to 100 that overlaps the ratios in nature of 0.2-100. This study shows that 1) rising side and front plumes can be dragged over thousands of kilometres into the mantle wedge, 2) flattening of rear plumes in the trench-normal direction can be initiated 700 km away from the trench, and a plume material layer of lesser density and viscosity can ultimately almost entirely underlay a retreating slab after slab/plume impact, 3) while side and rear plumes are not tilted until they reach ∼600 km depth, front plumes can be tilted at increasing depths as their plume buoyancy is lessened, and rise at a slower rate when subjected to a slab-induced downwelling, 4) rear plumes whose buoyancy flux is close to that of a slab, can retard subduction until the slab is 600 km long, and 5) slab-plume interaction can lead to a diversity of spatial plume material distributions into the mantle wedge. We discuss natural slab/plume systems of the Cascadia/Bowie-Cobb, and Nazca/San Felix-Juan Fernandez systems on the basis of our experiments and each geodynamic context and assess the influence of slab downwelling at depths for the starting plumes of Java, Coral Sea and East Solomon. Overall, this study shows how slab/plume interactions can result in a variety of geological, geophysical and geochemical signatures.

  16. Formation and modification of chromitites in the mantle

    Science.gov (United States)

    Arai, Shoji; Miura, Makoto

    2016-11-01

    ultrahigh-pressure chromitites. Some of these reappear at the shallower mantle, and can coexist with newly formed low-pressure igneous chromitites. High-temperature hydrothermal fluids can dissolve and precipitate chromite, and hydrothermal chromitites (chromitites precipitated from aqueous fluids) are possibly formed within the mantle where the circulation of hydrous fluid is available, e.g., at the mantle wedge.

  17. Studying wedge factors and beam profiles for physical and enhanced dynamic wedges

    Directory of Open Access Journals (Sweden)

    Ahmad Misbah

    2010-01-01

    Full Text Available This study was designed to investigate variation in Varian′s Physical and Enhanced Dynamic Wedge Factors (WF as a function of depth and field size. The profiles for physical wedges (PWs and enhanced dynamic wedges (EDWs were also measured using LDA-99 array and compared for confirmation of EDW angles at different depths and field sizes. WF measurements were performed in water phantom using cylindrical 0.66 cc ionization chamber. WF was measured by taking the ratio of wedge and open field ionization data. A normalized wedge factor (NWF was introduced to circumvent large differences between wedge factors for different wedge angles. A strong linear dependence of PW Factor (PWF with depth was observed. Maximum variation of 8.9% and 4.1% was observed for 60° PW with depth at 6 and 15 MV beams respectively. The variation in EDW Factor (EDWF with depth was almost negligible and less than two per cent. The highest variation in PWF as a function of field size was 4.1% and 3.4% for thicker wedge (60° at 6 and 15 MV beams respectively and decreases with decreasing wedge angle. EDWF shows strong field size dependence and significant variation was observed for all wedges at both photon energies. Differences in profiles between PW and EDW were observed on toe and heel sides. These differences were dominant for larger fields, shallow depths, thicker wedges and low energy beam. The study indicated that ignoring depth and field size dependence of WF may result in under/over dose to the patient especially doing manual point dose calculation.

  18. Origins of hydration lubrication.

    Science.gov (United States)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-14

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  19. Metastable olivine wedge beneath northeast China and its applications

    Science.gov (United States)

    Jiang, G.; Zhao, D.; Zhang, G.

    2013-12-01

    When the Pacific slab subducted into the mantle transition zone, there might exist a metastable olivine wedge (MOW) inside the slab due to the phase transition. Lots of researchers have adopted such various methods to detect the characteristics of this MOW as the forward modeling of travel times, shear wave amplitude patterns, teleseismic P wave coda, receiver function imaging, thermodynamic simulation and so on. Almost all results could be more or less affected by the source, the receiver and/or the velocity model passed through by the seismic rays. In this study, we have used 21 deep earthquakes, greater than 400 km and locating beneath northeast China, to study the velocity within the MOW. For more precisions, we have done further modifications in two ways based on our previous studies. (1) Double-difference location method is used to relocate all events with an error of 1-2 km with the data recorded by stations both at northeast China and at Japan. All relocated events locate in a zone about 30 km away from the upper boundary of Pacific slab. (2) Double residual travel times, generated by an event-pair at a common station at only Japan, are used to constrain the velocity anomaly rather than the residuals themselves. As a result, we have found that an ultra-lower velocity zone (ULVZ), averagely -7% relative to the iasp91 model, exists within the subducted Pacific slab around the deep earthquakes, which might be represented as the metastable olivine wedge. Because of the lower-velocity corresponding to the lower-density, the MOW would provide upward buoyancy forces which might prevent the slab from free subduction into the mantle transition zone. This feed-back mechanism of MOW to the slab is called ';parachute-effect', which is characterized by other researchers. In addition, the existence of the ULVZ or the MOW in the slab may supply a possible mechanism for triggering deep earthquakes, called ';phase transformation faulting', which was already proposed few

  20. Zoned mantle convection.

    Science.gov (United States)

    Albarède, Francis; Van Der Hilst, Rob D

    2002-11-15

    We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced

  1. Wedged tibial components for total knee arthroplasty.

    Science.gov (United States)

    Jeffery, R S; Orton, M A; Denham, R A

    1994-08-01

    Severe coronal deformity of the knee is frequently associated with erosion of one tibial condyle. This can cause problems with fixation and alignment during total knee arthroplasty. If the tibia is cut to the level of the more worn side, valuable bone is sacrificed; if the less worn side is chosen, the deficiency must be filled with bone--graft, cement, or a prosthesis. Tibial components with an integral polyethylene wedge on the undersurface were introduced in 1980 for use in patients with a bony deficit on one tibial condyle. The authors believe that the Denham prosthesis (Biomet, Wales, U.K.) was the first knee arthroplasty to offer such spacers. Twenty-six patients with preoperative varus deformity in whom a wedged component was used were compared with 29 historic control subjects. None of the wedged components loosened after a median follow-up period of 8 years compared with loosening in five of the control subjects (P = .01). In three of the control subjects a fractured triangle of cement was present on the radiographs. Use of the wedges was not accompanied by an improvement in postoperative alignment. The authors conclude that the wedges resulted in improved fixation that was independent of postoperative alignment.

  2. Long polymers near wedges and cones

    Science.gov (United States)

    Hammer, Yosi; Kantor, Yacov

    2015-12-01

    We perform a Monte Carlo study of N -step self-avoiding walks, attached to the corner of an impenetrable wedge in two dimensions (d =2 ), or the tip of an impenetrable cone in d =3 , of sizes ranging up to N =106 steps. We find that the critical exponent γα, which determines the dependence of the number of available conformations on N for a cone or wedge with opening angle α , is in good agreement with the theory for d =2 . We study the end-point distribution of the walks in the allowed space and find similarities to the known behavior of random walks (ideal polymers) in the same geometry. For example, the ratio between the mean square end-to-end distances of a polymer near the cone or wedge and a polymer in free space depends linearly on γα, as is known for ideal polymers. We show that the end-point distribution of polymers attached to a wedge does not separate into a product of angular and radial functions, as it does for ideal polymers in the same geometry. The angular dependence of the end position of polymers near the wedge differs from theoretical predictions.

  3. Commissioning, clinical implementation and quality assurance of Siemen's Virtual Wedge.

    Science.gov (United States)

    Rathee, S; Kwok, C B; MacGillivray, C; Mirzaei, M

    1999-01-01

    This report presents the results of commissioning, clinical implementation and quality assurance of Siemens Virtual Wedge. Our measurements show that: (1) wedge factors are within 2% of unity, (2) percentage depth doses are within 1% of open beam data, and (3) wedged beam profiles can be modeled similarly to a physical wedge and follow a well defined equation to facilitate modeling of an arbitrary wedge angle. The gantry angle dependence of wedge profiles is similar to open beam profiles. The output of wedged fields is linear with delivered monitor units within 1%. Quality assurance results indicate the wedge profiles are very stable over time. Day to day variations of two points measured along the wedge gradient direction are within 1.5%.

  4. Structure of turbulent wedges created by isolated surface roughness

    Science.gov (United States)

    Kuester, Matthew S.; White, Edward B.

    2016-04-01

    Isolated surface roughness in a laminar boundary layer can create a wedge of turbulence that spreads laterally into the surrounding laminar flow. Some recent studies have identified high- and low-speed streaks along the exterior of turbulent wedges. In this experiment, developing turbulent wedges are measured to observe the creation of these streaks. Naphthalene shear stress surface visualization and hotwire measurements are utilized to investigate the details of turbulent wedges created by cylinders in a laminar flat-plate boundary layer. Both the surface visualization and the hotwire measurements show high- and low-speed streaks in the wake of the cylinder that devolve into a turbulent wedge. The turbulent wedge spreading is associated with the emergence of these high- and low-speed streaks along the outside of the wedge. As the wedge evolves in the streamwise direction, these streaks persist inside of the core of the wedge, while new, lower amplitude streaks form along the outside of the wedge. Adding asymmetry to the cylinder moved the virtual origin closer to the roughness and increased the vortex shedding frequency, while adding small-scale roughness features did not strongly affect turbulent wedge development. Intermittency calculations additionally show the origin of the turbulent core inside of the wedge. The structure and spacing of the high-speed streaks along the extremities of the turbulent wedge give insight into the spreading angle of the turbulent wedge.

  5. Explicit reconstruction of the entanglement wedge

    CERN Document Server

    Kim, Jung-Wook

    2016-01-01

    The problem of bulk locality, or how the boundary encodes the bulk in AdS/CFT, is still a subject of study today. One of the major issues that needs more elucidation is the problem of subregion duality; what information of the bulk a given boundary subregion encodes. Although proofs given by two teams of researchers, Dong, Harlow, and Wall and Bao, and Kim, state that the entanglement wedge of the bulk should be reconstructible from boudnary subregions, no explicit procedure for reconstructing the entanglement wedge was as of yet given. In this paper, mode sum approach to obtaining smearing functions is generalised to include bulk reconstruction in the entanglement wedge of boundary subregions. It is generally expectated that solutions to the wave equation on a complicated coordinate patch are needed, but this hard problem has been transferred to a less hard but tractable problem of matrix inversion.

  6. Seismic Anisotropy and Mantle Flow Driven by the Cocos Slab Under Southern Mexico

    Science.gov (United States)

    Bernal-López, Leslie A.; Garibaldi, Berenice R.; León Soto, Gerardo; Valenzuela, Raúl W.; Escudero, Christian R.

    2016-10-01

    Shear wave splitting measurements were made using SKS and SKKS waves recorded by the Meso-American Subduction Experiment, which was deployed in southern Mexico starting at the coast of the Pacific Ocean and running north toward the Gulf of Mexico. In this segment of the Middle America Trench the oceanic Cocos plate subducts under the continental North American plate. The active volcanic arc is located at the southern end of the Trans-Mexican Volcanic Belt. Unlike most subduction zones, however, the volcanic arc is not subparallel to the trench. In the fore-arc, between the trench and the Trans-Mexican Volcanic Belt, the Cocos slab subducts subhorizontally. Beneath the volcanic belt, however, the slab dives steeply into the mantle. A marked difference in the orientation of the fast polarization directions is observed between the fore-arc and the back-arc. In the fore-arc the fast axes determined using SKS phases are oriented NE-SW, in the same direction as the relative motion between the Cocos and North American plates, and are approximately perpendicular to the trench. Physical conditions in the subslab mantle are consistent with the existence of A-type olivine and consequently entrained mantle flow is inferred. Strong coupling between the slab and the surrounding mantle is observed. In the back-arc SKS fast polarization directions are oriented N-S and are perpendicular to the strike of the slab. Given the high temperatures in the mantle wedge tip, the development of A-type, or similar, olivine fabric throughout the mantle wedge is expected. The orientation of the fast axes is consistent with corner flow in the mantle wedge.

  7. Non-Newtonian viscosity wedge in film formation of EHL

    Institute of Scientific and Technical Information of China (English)

    GUOF.; WONGP.L.

    2001-01-01

    This paper aims to evaluate the action of viscosity wedge in the oil film formation ofEHL at opposite sliding and zero entrainment. Using solvers developed for Newtonian and Eyringfluids, the film formation behavior originating from viscosity wedge is investigated. The numericalsimulation displays that lubricant film formation induced by viscosity wedge is different from that bythe well-known geometrical wedge with entrainment in classic EHL. The numerical analyses showthat at high opposite sliding speed the viscosity wedge acts as a leading role in film formation, thenon-Newtonian effects can have a pronounced influence on action of the viscosity wedge.

  8. A review of dynamics modelling of friction wedge suspensions

    Science.gov (United States)

    Wu, Qing; Cole, Colin; Spiryagin, Maksym; Sun, Yan Quan

    2014-11-01

    Three-piece bogies with friction wedge suspensions are the most widely used bogies in heavy haul trains. Fiction wedge suspensions play a key role in these wagon systems. This article reviews current techniques in dynamic modelling of friction wedge suspension with various motivations: to improve dynamic models of friction wedge suspensions so as to improve general wagon dynamics simulations; to seek better friction wedge suspension models for wagon stability assessments in complex train systems; to improve the modelling of other friction devices, such as friction draft gear. Relevant theories and friction wedge suspension models developed by using commercial simulation packages and in-house simulation packages are reviewed.

  9. Graphene Plasmons in Triangular Wedges and Grooves

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Dias, E. J. C.; Xiao, Sanshui

    2016-01-01

    and electric-field distributions. We have found that the dispersion of wedge/groove graphene plasmons follows the same functional dependence as their flat-graphene plasmon counterparts, but now scaled by a (purely) geometric factor in which all the information about the system’s geometry is contained. We...... and tunability of graphene plasmons guided along the apex of a graphene-covered dielectric wedge or groove. In particular, we present a quasi-analytic model to describe the plasmonic eigenmodes in such a system, including the complete determination of their spectrum and corresponding induced potential...

  10. Hydration Assessment of Athletes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ KEY POINTS · Although there is no scientific consensus for 1 ) howbest to assess the hydration status of athletes, 2)what criteria to use as acceptable outcome measurements, or 3) the best time to apply practical assessment methods, there are methods that can be used toprovide athletes with useful feedback about their hydration status

  11. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  12. Benchmarking numerical models of brittle thrust wedges

    NARCIS (Netherlands)

    Buiter, Susanne J H; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-01-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the s

  13. PARADOX SOLUTION ON ELASTIC WEDGE DISSIMILAR MATERIALS

    Institute of Scientific and Technical Information of China (English)

    姚伟岸; 张兵茹

    2003-01-01

    According to the Hellinger-Reissner variational principle and introducing proper transformation of variables, the problem on elastic wedge dissimilar materials can be led to Hamiltonian system, so the solution of the problem can be got by employing the separation of variables method and symplectic eigenfunction expansion under symplectic space, which consists of original variables and their dual variables. The eigenvalue - 1 is a special one of all symplectic eigenvalue for Hamiltonian system in polar coordinate. In general, the eigenvalue - is a single eigenvalue, and the classical solution of an elastic wedge dissimilar materials subjected to a unit concentrated couple at the vertex is got directly by solving the eigenfunction vector for eigenvalue - 1 . But the eigenvalue - 1 becomes a double eigenvalue when the vertex angles and modulus of the materials satisfy certain definite relationships and the classical solution for the stress distribution becomes infinite at this moment, that is, the paradox should occur. Here the Jordan form eigenfunction vector for eigenvalue - 1 exists, and solution of the paradox on elastic wedge dissimilar materials subjected to a unit concentrated couple at the vertex is obtained directly by solving this special Jordan form eigenfunction. The result shows again that the solutions of the special paradox on elastic wedge in the classical theory of elasticity are just Jordan form solutions in symplectic space under Hamiltonian system.

  14. Radiotherapy treatment planning with dynamic wedges--an algorithm for generating wedge factors and beam data.

    Science.gov (United States)

    Thomas, S J; Foster, K R

    1995-09-01

    If the jaws of a linear accelerator are moved under computer control during irradiation, dose distributions similar to those with wedge filters can be produced. Varian linear accelerators utilize this effect to give a 'dynamic wedge', using segmented treatment tables (STTs). An algorithm is described to generate the dose per monitor unit at any point in a beam, using the STT values. Dynamically wedged beams are modelled as the superposition of static asymmetric beams, using an algorithm based on beam data measured for symmetric beams. Predictions of wedge factors, depth doses and profiles generated using the algorithm are compared with measurements. Good agreement is found between predictions and measurements. The calculation time is typically 5 ms/dose point on a PC with a 486DX processor.

  15. A comparison of exact TM plane wave diffraction by coated wedges and impedance wedges

    DEFF Research Database (Denmark)

    Andersen, Lars S.; Breinbjerg, Olav; Moore, John T.

    1996-01-01

    without interference from direct fields or reflected fields. Results have been obtained in the case of illumination by a transverse magnetic (TM) uniform plane wave. The analysis of the coated wedge is based on an integral equation formulation combined with a hybrid technique, while the analysis......The purpose of this work is to numerically investigate the accuracy of the standard impedance boundary condition (SIBC) approximation for edge diffraction. To this end, we compare the scattering by coated wedges and SIBC wedges for which the diffracted field from a single edge can be observed...... of the SIBC wedge is based on Maliuzhinets' solution. Comparisons have been carried out for a series of configurations including lossy coatings as well as lossless coatings permitting unattenuated propagation of surface waves. The results show that the presence of an edge in a coated structure does...

  16. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  17. Benchmarking numerical models of brittle thrust wedges

    Science.gov (United States)

    Buiter, Susanne J. H.; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-11-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the stable wedge test, showing negligible internal deformation and maintaining the initial surface slope upon horizontal translation over a frictional interface. Eight codes participated in the unstable wedge test that examines the evolution of a wedge by thrust formation from a subcritical state to the critical taper geometry. The critical taper is recovered, but the models show two deformation modes characterised by either mainly forward dipping thrusts or a series of thrust pop-ups. We speculate that the two modes are caused by differences in effective basal boundary friction related to different algorithms for modelling boundary friction. The third experiment examines stacking of forward thrusts that are translated upward along a backward thrust. The results of the seven codes that run this experiment show variability in deformation style, number of thrusts, thrust dip angles and surface slope. Overall, our experiments show that numerical models run with different numerical techniques can successfully simulate laboratory brittle thrust wedge models at the cm-scale. In more detail, however, we find that it is challenging to reproduce sandbox-type setups numerically, because of frictional boundary conditions and velocity discontinuities. We recommend that future numerical-analogue comparisons use simple boundary conditions and that the numerical Earth Science community defines a plasticity test to resolve the variability in model shear zones.

  18. Where is mantle's carbon?

    Science.gov (United States)

    Oganov, A. R.; Ono, S.; Ma, Y.

    2008-12-01

    Due to the strongly reducing conditions (the presence of metallic iron was suggested both by experiments [1] and theory [2]), diamond was believed to be the main host of carbon through most of the lower mantle [3]. We showed [4] that cementite Fe3C is another good candidate to be the main host of "reduced" carbon in the mantle, reinforcing an earlier hypothesis [5]. The fate of "oxidised" carbon (in subducted slabs) is of particular importance - if carbonates decompose producing fluid CO2, this would have important implications for the chemistry and rheology of the mantle. Knowledge of crystal structures and phase diagrams of carbonates is crucial here. The high-pressure structures of CaCO3 were predicted [6] and subsequently verified by experiments. For MgCO3, Isshiki et al. [7] found a new phase above 110 GPa, and several attempts were made to solve it [8,9]. Here [4], using an evolutionary algorithm for crystal structure prediction [10], we show that there are two post-magnesite phases at mantle-relevant pressure range, one stable at 82-138 GPa, and the other from 138 GPa to ~160 GPa. Both are based on threefold rings of CO4-tetrahedra and are more favourable than all previously proposed structures. We show that through most of the P-T conditions of the mantle, MgCO3 is the major host of oxidized carbon in the Earth. We predict the possibility of CO2 release at the very bottom of the mantle (in SiO2-rich basaltic part of subducted slabs), which could enhance partial melting of rocks and be related to the geodynamical differences between the Earth and Venus. 1.Frost D.J., Liebske C., Langenhorst F., McCammon C.A., Tronnes R.G., Rubie D.C. (2004). Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428, 409-412. 2.Zhang F., Oganov A.R. (2006). Valence and spin states of iron impurities in mantle-forming silicates. Earth Planet. Sci. Lett. 249, 436-443. 3.Luth R.W. (1999). Carbon and carbonates in the mantle. In: Mantle

  19. The Elephants' Graveyard: Constraints from Mantle Plumes on the Fate of Subducted Slabs and Implications for the Style of Mantle Convection

    Science.gov (United States)

    Lassiter, J. C.

    2007-12-01

    The style of mantle convection (e.g., layered- vs. whole-mantle convection) is one of the most hotly contested questions in the Geological Sciences. Geochemical arguments for and against mantle layering have largely focused on mass-balance evidence for the existence of "hidden" geochemical reservoirs. However, the size and location of such reservoirs are largely unconstrained, and most geochemical arguments for mantle layering are consistent with a depleted mantle comprising most of the mantle mass and a comparatively small volume of enriched, hidden material either within D" or within seismically anomalous "piles" beneath southern Africa and the South Pacific. The mass flux associated with subduction of oceanic lithosphere is large and plate subduction is an efficient driver of convective mixing in the mantle. Therefore, the depth to which oceanic lithosphere descends into the mantle is effectively the depth of the upper mantle in any layered mantle model. Numerous geochemical studies provide convincing evidence that many mantle plumes contain material which at one point resided close to the Earth's surface (e.g., recycled oceanic crust ± sediments, possibly subduction-modified mantle wedge material). Fluid dynamic models further reveal that only the central cores of mantle plumes are involved in melt generation. The presence of recycled material in the sources of many ocean island basalts therefore cannot be explained by entrainment of this material during plume ascent, but requires that recycled material resides within or immediately above the thermo-chemical boundary layer(s) that generates mantle plumes. More recent Os- isotope studies of mantle xenoliths from OIB settings reveal the presence not only of recycled crust in mantle plumes, but also ancient melt-depleted harzburgite interpreted to represent ancient recycled oceanic lithosphere [1]. Thus, there is increasing evidence that subducted slabs accumulate in the boundary layer(s) that provide the source

  20. Triggers and sources of volatile-bearing plumes in the mantle transition zone

    Institute of Scientific and Technical Information of China (English)

    Inna Safonova; Konstantin Litasov; Shigenori Maruyama

    2015-01-01

    The paper discusses generation of volatile-bearing plumes in the mantle transition zone (MTZ) in terms of mineral-fluid petrology and their related formation of numerous localities of intra-plate bimodal volcanic series in Central and East Asia. The plume generation in the MTZ can be triggered by the tectonic erosion of continental crust at Pacific-type convergent margins and by the presence of water and carbon dioxide in the mantle. Most probable sources of volatiles are the hydrated/carbonated sediments and basalts and serpentinite of oceanic slabs, which can be subducted down to the deep mantle. Tectonic erosion of continental crust supplies crustal material enriched in uranium and thorium into the mantle, which can serve source of heat in the MTZ. The heating in the MTZ induces melting of subducted slabs and continental crust and mantle upwelling, to produce OIB-type mafic and felsic melts, respectively.

  1. Triggers and sources of volatile-bearing plumes in the mantle transition zone

    Directory of Open Access Journals (Sweden)

    Inna Safonova

    2015-09-01

    Full Text Available The paper discusses generation of volatile-bearing plumes in the mantle transition zone (MTZ in terms of mineral-fluid petrology and their related formation of numerous localities of intra-plate bimodal volcanic series in Central and East Asia. The plume generation in the MTZ can be triggered by the tectonic erosion of continental crust at Pacific-type convergent margins and by the presence of water and carbon dioxide in the mantle. Most probable sources of volatiles are the hydrated/carbonated sediments and basalts and serpentinite of oceanic slabs, which can be subducted down to the deep mantle. Tectonic erosion of continental crust supplies crustal material enriched in uranium and thorium into the mantle, which can serve source of heat in the MTZ. The heating in the MTZ induces melting of subducted slabs and continental crust and mantle upwelling, to produce OIB-type mafic and felsic melts, respectively.

  2. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    Science.gov (United States)

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  3. Oceanic mantle alteration in the trench-outer rise region of the Japan trench

    Science.gov (United States)

    Fujie, G.; Takahashi, T.; Kodaira, S.; Obana, K.; Yamada, T.

    2014-12-01

    Dehydration processes and the expulsion of the water from the subducting oceanic plate affect various subduction-zone processes, including arc volcanism and generation of earthquakes and tremor. Since the amount of chemically bound water in the oceanic plate is highest in serpentinized mantle, it is important to reveal the degree of oceanic mantle serpentinization prior to subduction.In 2009 and 2013, to reveal the structural evolution of the incoming oceanic plate prior to subduction, we conducted wide-angle seismic structural surveys in the trench-outer rise region of the Japan trench. We found P-wave velocity (Vp) within the oceanic crust and mantle gradually decreases toward the trench axis, especially beneath the well-developed horst and grabens. Generally, reduction of Vp suggests two possibilities; one is a fracturing (dry mechanism) and the other is fracturing and water penetration (wet mechanism). The Vp/Vs ratio is a key to distinguish these two possibilities. Using P-to-S converted phases, we successfully modeled Vs within the oceanic crust by the travel-time inversion, and we found the Vp/Vs ratio within the oceanic crust gradually increases toward the trench, suggesting the water infiltration into the oceanic crust. However, it is not straightforward to determine Vs within the oceanic mantle because signal-to-noise ratio of S-wave mantle refraction was too poor to pick arrival times. Therefore, we calculated S-wave mantle refractions by assuming wide variety of Vp/Vs ratio within the oceanic mantle and compared with the observed horizontal data. Although S-wave mantle refraction was observed at only limited number of OBSs, we found that Vp/Vs ratio within the oceanic mantle did not change even in the area where mantle Vp become lower. This implies that the mantle Vp reduction in our seismic profile is mainly governed by the "dry mechanism" or mantle hydration might be confined in only topmost mantle.

  4. Wet hydrate dissolution plant

    OpenAIRE

    Stanković Mirjana S.; Kovačević Branimir T.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with capacity of 50,000 t/y was manufactured, at "Zeolite Mira", Mira (VE), Italy, in 1997, for increasing detergent zeolite production from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate ...

  5. Tomographic imaging of the Nazca slab and surrounding mantle in the mantle transition zone beneath the Central Andes

    Science.gov (United States)

    Scire, A. C.; Biryol, C. B.; Zandt, G.; Beck, S. L.; Wagner, L. S.; Long, M. D.; Minaya, E.; Tavera, H.

    2013-12-01

    The central Andes in South America is an ideal location to investigate the interaction between a subducting slab and the surrounding mantle to the base of the mantle transition zone (MTZ). We used finite-frequency teleseismic P-wave tomography to image velocity anomalies in the mantle from 100 - 700 km between 10° and 28°S in the central Andes by combining data from twelve separate networks deployed in the region between 1994 and 2013. P- and PKIKP- (diffracted PKP) arrivals were picked in multiple frequency bands for earthquakes at distances between 30° and 90° and between 155° to 180° from the array, respectively. The tomographic algorithm used calculates approximate finite frequency kernels for each ray, providing additional sampling for each model layer to potentially increase the resolution of our images. The trench-parallel, fast anomaly which appears to correspond with the subducting Nazca slab is the most prominent anomaly in our tomograms. Variations in the width of the slab anomaly in the deeper parts of the model show evidence for deformation of the slab between 300 and 660 km. Our results show localized thickening of the Nazca slab in the MTZ north of 14°S, between 16° and 18°S, and south of 25°S, in agreement with the idea that the Nazca slab stagnates at least temporarily in the transition zone before resuming subduction into the lower mantle. Our images of the deeply subducted Nazca slab also show evidence of varying degrees of thinning in the mantle transition zone, particularly at 20° and 24°S, possibly indicating that the stress state changes along strike as the slab deforms in the MTZ before resuming subduction into the lower mantle. We also image along-strike variations in the sub-slab mantle in the MTZ including a strong low velocity anomaly between 22° and 28°S which is similar to those seen in other subduction zones, and is interpreted as either a local thermal anomaly or a region of hydrated material in the MTZ. A similar

  6. Life at the wedge: the activity and diversity of arctic ice wedge microbial communities.

    Science.gov (United States)

    Wilhelm, Roland C; Radtke, Kristin J; Mykytczuk, Nadia C S; Greer, Charles W; Whyte, Lyle G

    2012-04-01

    The discovery of polygonal terrain on Mars underlain by ice heightens interest in the possibility that this water-bearing habitat may be, or may have been, a suitable habitat for extant life. The possibility is supported by the recurring detection of terrestrial microorganisms in subsurface ice environments, such as ice wedges found beneath tundra polygon features. A characterization of the microbial community of ice wedges from the high Arctic was performed to determine whether this ice environment can sustain actively respiring microorganisms and to assess the ecology of this extreme niche. We found that ice wedge samples contained a relatively abundant number of culturable cells compared to other ice habitats (∼10(5) CFU·mL(-1)). Respiration assays in which radio-labeled acetate and in situ measurement of CO(2) flux were used suggested low levels of microbial activity, though more sensitive techniques are required to confirm these findings. Based on 16S rRNA gene pyrosequencing, bacterial and archaeal ice wedge communities appeared to reflect surrounding soil communities. Two Pseudomonas sp. were the most abundant taxa in the ice wedge bacterial library (∼50%), while taxa related to ammonia-oxidizing Thaumarchaeota occupied 90% of the archaeal library. The tolerance of a variety of isolates to salinity and temperature revealed characteristics of a psychrotolerant, halotolerant community. Our findings support the hypothesis that ice wedges are capable of sustaining a diverse, plausibly active microbial community. As such, ice wedges, compared to other forms of less habitable ground ice, could serve as a reservoir for life on permanently cold, water-scarce, ice-rich extraterrestrial bodies and are therefore of interest to astrobiologists and ecologists alike. .

  7. Radiation pressure on a dielectric wedge

    CERN Document Server

    Mansuripur, Masud; Moloney, Jerome V

    2014-01-01

    The force of electromagnetic radiation on a dielectric medium may be derived by a direct application of the Lorentz law of classical electrodynamics. While the light's electric field acts upon the (induced) bound charges in the medium, its magnetic field exerts a force on the bound currents. We use the example of a wedge-shaped solid dielectric, immersed in a transparent liquid and illuminated at Brewster's angle, to demonstrate that the linear momentum of the electromagnetic field within dielectrics has neither the Minkowski nor the Abraham form; rather, the correct expression for momentum density has equal contributions from both. The time rate of change of the incident momentum thus expressed is equal to the force exerted on the wedge plus that experienced by the surrounding liquid.

  8. Graphene Plasmons in Triangular Wedges and Grooves

    CERN Document Server

    Gonçalves, P A D; Xiao, Sanshui; Vasilevskiy, M I; Mortensen, N Asger; Peres, N M R

    2016-01-01

    The ability to effectively guide electromagnetic radiation below the diffraction limit is of the utmost importance in the prospect of all-optical plasmonic circuitry. Here, we propose an alternative solution to conventional metal-based plasmonics by exploiting the deep subwavelength confinement and tunability of graphene plasmons guided along the apex of a graphene-covered dielectric wedge or groove. In particular, we present a quasi-analytic model to describe the plasmonic eigenmodes in such a system, including the complete determination of their spectrum and corresponding induced potential and electric field distributions. We have found that the dispersion of wedge/groove graphene plasmons follows the same functional dependence as their flat-graphene plasmons counterparts, but now scaled by a (purely) geometric factor in which all the information about the system's geometry is contained. We believe our results pave the way for the development of novel custom-tailored photonic devices for subwavelength waveg...

  9. Checking the virtual treatment modality Wedge from Siemens; Verificacion de la modalidad de tratamiento virtual WEDGE de SIEMENS

    Energy Technology Data Exchange (ETDEWEB)

    Suero Rodrigo, M. A.; Marques Fraguela, E.

    2011-07-01

    The treatment modality Virtual Wedge (VW) or implemented by Siemens virtual wedge in electron linear accelerators achieved dose distributions are similar but not identical, to those obtained with physical wedges. Among the advantages against the latter is the greater ease of use, wedge factor close to one, and lower peripheral dose. However, these benefits are to be effective requires a through quality control dependence because a larger number of parameters that control the generation of the beam, the dose monitor system and the movement of the jaws of the collimator. We performed a study of the wedge taking into account different configurations that can affect their behavior from the dosimetric point of view.

  10. A two-dimensional model of the methane cycle in a sedimentary accretionary wedge

    Directory of Open Access Journals (Sweden)

    D. E. Archer

    2012-08-01

    Full Text Available A two-dimensional model of sediment column geophysics and geochemistry has been adapted to the problem of an accretionary wedge formation, patterned after the margin of the Juan de Fuca plate as it subducts under the North American plate. Much of the model description is given in a companion paper about the application of the model to an idealized passive margin setting; here we build on that formulation to simulate the impact of the sediment deformation, as it approaches the subduction zone, on the methane cycle. The active margin configuration of the model shares sensitivities with the passive margin configuration, in that sensitivities to organic carbon deposition and respiration kinetics, and to vertical bubble transport and redissolution in the sediment, are stronger than the sensitivity to ocean temperature. The active margin simulation shows a complex sensitivity of hydrate inventory to plate subduction velocity, with results depending strongly on the geothermal heat flux. In low heat-flux conditions, the model produces a larger inventory of hydrate per meter of coastline in the passive margin than active margin configurations. However, the local hydrate concentrations, as pore volume saturation, are higher in the active setting than in the passive, as generally observed in the field.

  11. Volatile cycling and the thermal evolution of planetary mantle

    Science.gov (United States)

    Sandu, Constantin

    The thermal histories of terrestrial planets are investigated using two parameterized mantle convection models for either Earth like planets and planets with no active plate tectonics. Using parameterized models of mantle convection, we performed computer simulations of planetary cooling and volatile cycling. The models estimate the amount of volatile in mantle reservoir, and calculate the outgassing and regassing rates. A linear model of volatile concentration-dependent is assumed for the activation energy of the solid-state creep in the mantle. The kinematic viscosity of the mantle is thus dynamically affected by the activation energy through a variable concentration in volatile. Mantle temperature and heat flux is calculated using a model derived from classic thermal boundary layer theory of a single layered mantle with temperature dependent viscosity. The rate of volatile exchanged between mantle and surface is calculated by balancing the amount of volatiles degassed in the atmosphere by volcanic and spreading related processes and the amount of volatiles recycled back in the mantle by the subduction process. In the cases that lack plate tectonics, the degassing efficiency is dramatically reduced and the regassing process is absent. The degassing effect is dependent on average spreading rate of tectonic plates and on the amount of volatile in the melt extract in the transition zone between mantle and upper boundary laver. The regassing effect is dependent on the subduction rate and on the amount of volatile present on a hydrated layer on top of the subducting slab. The degassing and regassing parameters are all related to the intensity of the convection in the mantle and to the surface temperature of the planet, and they are regulated by the amount of volatiles in reservoir. Comparative study with the previous models display significant differences and improve the versatility of the model. The optimum efficiency factors found are in the range of 0.01--0.06 for

  12. Modes of continental extension in a lithospheric wedge

    Science.gov (United States)

    Wu, G.; Lavier, L. L.; Choi, E.

    2014-12-01

    We studied extension of a lithospheric wedge as an approximation to an orogenic belt or a continental margin. We ran a series of numerical models to quantify the effects of the strength of the lower crust and a mid-crustal shear zone (MCSZ) on the extension processes. When the MCSZ is present, we found that the regional lower crustal flow plays a critical role in controlling the modes of extension. The compensation is long-wavelength when the lower crust flows from the highest to the lowest elevation in order to compensate upper crustal thinning. In response to this motion, the mantle flows towards the highest elevation in order to balance for the lower crust leaving the area under the highest topography. For weak (wet quartz regime with partial melting) or intermediate (wet quartz regime), or strong (dry quartz regime) lower crust, we recognized three predominantly decoupled modes of extension characterized by 1) significant lower crustal exhumation exemplified as a large massif, 2) formation of core complexes and detachment faults, and 3) distributive domino faulting, respectively. Without the MCSZ, however, the lower crustal flow is essentially subdued with predominantly coupled extension. For weak or intermediate, or strong lower crust, we recognized three coupled modes characterized by 1) localized generally symmetric crustal exhumation, 2) distributed grabens and narrow rifts, and 3) wide continental margins, respectively. The MCSZ controls the degree of decoupling of the lower crustal flow such that a frictionally stronger MCSZ does not change the behaviors of the models but results in a more distributed extension. Due to the long-wavelength compensation, subhorizontal Moho is achieved where intensive extension occurred for all the decoupled models with a MCSZ. Natural counterparts for each mode may be easily identified, for instance, in the Basin and Range or the Aegean.

  13. Insights on slab-driven mantle flow from advances in three-dimensional modelling

    Science.gov (United States)

    Jadamec, Margarete A.

    2016-10-01

    The wealth of seismic observations collected over the past 20 years has raised intriguing questions about the three-dimensional (3D) nature of the mantle flow field close to subduction zones and provided a valuable constraint for how the plate geometry may influence mantle flow proximal to the slab. In geodynamics, there has been a new direction of subduction zone modelling that has explored the 3D nature of slab-driven mantle flow, motivated in part by the observations from shear wave splitting, but also by the observed variations in slab geometries worldwide. Advances in high-performance computing are now allowing for an unprecedented level of detail to be incorporated into numerical models of subduction. This paper summarizes recent advances from 3D geodynamic models that reveal the complex nature of slab-driven mantle flow, including trench parallel flow, toroidal flow around slab edges, mantle upwelling at lateral slab edges, and small scale convection within the mantle wedge. This implies slab-driven mantle deformation zones occur in the asthenosphere proximal to the slab, wherein the mantle may commonly flow in a different direction and rate than the surface plates, implying laterally variable plate-mantle coupling. The 3D slab-driven mantle flow can explain, in part, the lateral transport of geochemical signatures in subduction zones. In addition, high-resolution geographically referenced models can inform the interpretation of slab structure, where seismic data are lacking. The incorporation of complex plate boundaries into high-resolution, 3D numerical models opens the door to a new avenue of research in model construction, data assimilation, and modelling workflows, and gives 3D immersive visualization a new role in scientific discovery.

  14. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  15. A great thermal divergence in the mantle beginning 2.5 Ga: Geochemical constraints from greenstone basalts and komatiites

    Directory of Open Access Journals (Sweden)

    Kent C. Condie

    2016-07-01

    Full Text Available Greenstone basalts and komatiites provide a means to track both mantle composition and magma generation temperature with time. Four types of mantle are characterized from incompatible element distributions in basalts and komatiites: depleted, hydrated, enriched and mantle from which komatiites are derived. Our most important observation is the recognition for the first time of what we refer to as a Great Thermal Divergence within the mantle beginning near the end of the Archean, which we ascribe to thermal and convective evolution. Prior to 2.5 Ga, depleted and enriched mantle have indistinguishable thermal histories, whereas at 2.5–2.0 Ga a divergence in mantle magma generation temperature begins between these two types of mantle. Major and incompatible element distributions and calculated magma generation temperatures suggest that Archean enriched mantle did not come from mantle plumes, but was part of an undifferentiated or well-mixed mantle similar in composition to calculated primitive mantle. During this time, however, high-temperature mantle plumes from dominantly depleted sources gave rise to komatiites and associated basalts. Recycling of oceanic crust into the deep mantle after the Archean may have contributed to enrichment of Ti, Al, Ca and Na in basalts derived from enriched mantle sources. After 2.5 Ga, increases in Mg# in basalts from depleted mantle and decreases in Fe and Mn reflect some combination of growing depletion and cooling of depleted mantle with time. A delay in cooling of depleted mantle until after the Archean probably reflects a combination of greater radiogenic heat sources in the Archean mantle and the propagation of plate tectonics after 3 Ga.

  16. Tracing Proterozoic arc mantle Hf isotope depletion of southern Fennoscandia through coupled zircon U-Pb and Lu-Hf isotopes

    Science.gov (United States)

    Petersson, Andreas; Bjärnborg, Karolina; Scherstén, Anders; Gerdes, Axel; Næraa, Tomas

    2017-07-01

    Constraints on the composition of the depleted mantle Sm-Nd and Lu-Hf crust formation ages have a long history of scientific debate. When calculating mantle extraction ages, and constructing crustal growth models, a linear evolution of incompatible trace elements in a depleted mantle since > 4 Ga is routinely used. Mantle depletion however varies regionally and over time and subduction of sediments and oceanic crust renders a mantle-wedge variously enriched relative to a modelled depleted mantle. Here we show that primitive mantle-derived subduction related gabbroic intrusions from southern Fennoscandia have Hf isotope compositions that are enriched relative to a MORB-like linear depleted mantle evolution curve. Extrapolation of primitive Paleoproterozoic gabbro suites enables the construction of a regional mantle evolution curve, providing improved constraints on model ages, crustal residence times and the fraction of juvenile versus reworked continental crust. Convergent margins are assumed to be one of the main sites of continental crust growth, and using an overly depleted mantle source yield model ages that are too old, and hence cumulative crustal growth models show too much crust generation early in the Earth's history. The approach of using the Hf isotope composition of zircon from primitive subduction related gabbroic intrusions as a proxy for mantle Hf isotope composition, piloted in this study, can be applied to other convergent margins.

  17. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geo- metrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hy- drodynamic load support as high as 2.5 times of what the geometrical conver- gent-wedge can produce. Wall slip usually gives a small surface friction.

  18. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)

    MA GuoJun; WU ChengWei; ZHOU Ping

    2007-01-01

    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geometrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hydrodynamic load support as high as 2.5 times of what the geometrical convergent-wedge can produce. Wall slip usually gives a small surface friction.

  19. Formation of porous gas hydrates

    CERN Document Server

    Salamatin, Andrey N

    2015-01-01

    Gas hydrates grown at gas-ice interfaces are examined by electron microscopy and found to have a submicron porous texture. Permeability of the intervening hydrate layers provides the connection between the two counterparts (gas and water molecules) of the clathration reaction and makes further hydrate formation possible. The study is focused on phenomenological description of principal stages and rate-limiting processes that control the kinetics of the porous gas hydrate crystal growth from ice powders. Although the detailed physical mechanisms involved in the porous hydrate formation still are not fully understood, the initial stage of hydrate film spreading over the ice surface should be distinguished from the subsequent stage which is presumably limited by the clathration reaction at the ice-hydrate interface and develops after the ice grain coating is finished. The model reveals a time dependence of the reaction degree essentially different from that when the rate-limiting step of the hydrate formation at...

  20. Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas

    Science.gov (United States)

    Bénard, A.; Arculus, R. J.; Nebel, O.; Ionov, D. A.; McAlpine, S. R. B.

    2017-02-01

    Primary arc melts may form through fluxed or adiabatic decompression melting in the mantle wedge, or via a combination of both processes. Major limitations to our understanding of the formation of primary arc melts stem from the fact that most arc lavas are aggregated blends of individual magma batches, further modified by differentiation processes in the sub-arc mantle lithosphere and overlying crust. Primary melt generation is thus masked by these types of second-stage processes. Magma-hosted peridotites sampled as xenoliths in subduction zone magmas are possible remnants of sub-arc mantle and magma generation processes, but are rarely sampled in active arcs. Published studies have emphasised the predominantly harzburgitic lithologies with particularly high modal orthopyroxene in these xenoliths; the former characteristic reflects the refractory nature of these materials consequent to extensive melt depletion of a lherzolitic protolith whereas the latter feature requires additional explanation. Here we present major and minor element data for pristine, mantle-derived, lava-hosted spinel-bearing harzburgite and dunite xenoliths and associated primitive melts from the active Kamchatka and Bismarck arcs. We show that these peridotite suites, and other mantle xenoliths sampled in circum-Pacific arcs, are a distinctive peridotite type not found in other tectonic settings, and are melting residues from hydrous melting of silica-enriched mantle sources. We explore the ability of experimental studies allied with mantle melting parameterisations (pMELTS, Petrolog3) to reproduce the compositions of these arc peridotites, and present a protolith ('hybrid mantle wedge') composition that satisfies the available constraints. The composition of peridotite xenoliths recovered from erupted arc magmas plausibly requires their formation initially via interaction of slab-derived components with refractory mantle prior to or during the formation of primary arc melts. The liquid

  1. Knee abduction angular impulses during prolonged running with wedged insoles.

    Science.gov (United States)

    Lewinson, Ryan T; Worobets, Jay T; Stefanyshyn, Darren J

    2013-07-01

    Wedged insoles may produce immediate effects on knee abduction angular impulses during running; however, it is currently not known whether these knee abduction angular impulse magnitudes are maintained throughout a run when fatigue sets in. If changes occur, this could affect the clinical utility of wedged insoles in treating conditions such as patellofemoral pain. Thus, the purpose of this study was to determine whether knee abduction angular impulses are altered during a prolonged run with wedged insoles. It was hypothesized that knee abduction angular impulses would be reduced following a prolonged run with wedged insoles. Nine healthy runners participated. Runners were randomly assigned to either a 6-mm medial wedge condition or a 6-mm lateral wedge condition and then ran continuously overground for 30 min. Knee abduction angular impulses were quantified at 0 and 30 min using a gait analysis procedure. After 2 days, participants returned to perform the same test but with the other wedge type. Two-way repeated-measures analysis of variance was used to evaluate main effects of wedge condition and time and interactions between wedge condition and time (α = 0.05). Paired t-tests were used for post hoc analysis (α = 0.01). No interaction effects (p = 0.958) were found, and knee abduction angular impulses were not significantly different over time (p = 0.384). Lateral wedge conditions produced lesser knee abduction angular impulses than medial conditions at 0 min (difference of 2.79 N m s, p = 0.006) and at 30 min (difference of 2.76 N m s, p < 0.001). It is concluded that significant knee abduction angular impulse changes within wedge conditions do not occur during a 30-min run. Additionally, knee abduction angular impulse differences between wedge conditions are maintained during a 30-min run.

  2. Plastic deformation of a wedge by a sliding punch

    Science.gov (United States)

    Nepershin, R. I.

    2016-11-01

    We present a self-similar solution of the problem of deformation of an ideally plastic wedge by a sliding punch with regard to contact friction; such a solution generalizes the well-known solutions of the problem of wedge penetration into a plastic half-space and of compression of an ideally plastic wedge by a plane punch. The problem is of interest for modeling the processes of plastic deformation of rough surfaces of metal pieces by a rigid tool.

  3. Optimal clinical implementation of the Siemens virtual wedge.

    Science.gov (United States)

    Walker, C P; Richmond, N D; Lambert, G D

    2003-01-01

    Installation of a modern high-energy Siemens Primus linear accelerator at the Northern Centre for Cancer Treatment (NCCT) provided the opportunity to investigate the optimal clinical implementation of the Siemens virtual wedge filter. Previously published work has concentrated on the production of virtual wedge angles at 15 degrees, 30 degrees, 45 degrees, and 60 degrees as replacements for the Siemens hard wedges of the same nominal angles. However, treatment plan optimization of the dose distribution can be achieved with the Primus, as its control software permits the selection of any virtual wedge angle from 15 degrees to 60 degrees in increments of 1 degrees. The same result can also be produced from a combination of open and 60 degrees wedged fields. Helax-TMS models both of these modes of virtual wedge delivery by the wedge angle and the wedge fraction methods respectively. This paper describes results of timing studies in the planning of optimized patient dose distributions by both methods and in the subsequent treatment delivery procedures. Employment of the wedge fraction method results in the delivery of small numbers of monitor units to the beam's central axis; therefore, wedge profile stability and delivered dose with low numbers of monitor units were also investigated. The wedge fraction was proven to be the most efficient method when the time taken for both planning and treatment delivery were taken into consideration, and is now used exclusively for virtual wedge treatment delivery in Newcastle. It has also been shown that there are no unfavorable dosimetric consequences from its practical implementation.

  4. Vibration frequencies of a constrained cantilever wedge

    Science.gov (United States)

    Craver, W. Lionel, Jr.; Lu, Yangshan

    1989-05-01

    This paper presents the solution for the natural frequencies of a beam tapered in one direction, or a wedge, with both a rotational and a translational constraint at a position along the length of the beam. The eigenfrequencies were determined using an incremental search and bisection method, accurate to the fourth decimal place. The taper ratio was varied from 1.4 to 5.0 and the dimensionless spring constants were varied from 0 to 1000. Graphs are provided to illustrate some results.

  5. Gas hydrate saturation and distribution in the Kumano Forearc Basin of the Nankai Trough

    Science.gov (United States)

    Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-02-01

    The Kumano Forearc Basin is located to the south-east of the Kii Peninsula, Japan, overlying the accretionary prism in the Nankai Trough. The presence of gas hydrate in submarine sediments of the forearc basin has resulted in the widespread occurrence of bottom simulating reflectors (BSRs) on seismic profiles, and has caused distinct anomalies in logging data in the region. We estimated the in situ gas hydrate saturation from logging data by using three methods: effective rock physics models, Archie's equation, and empirical relationships between acoustic impedance (AI) and water-filled porosity. The results derived from rock physics models demonstrate that gas hydrates are attached to the grain surfaces of the rock matrix and are not floating in pore space. By applying the empirical relationships to the AI distribution derived from model-based AI inversion of the three-dimensional (3D) seismic data, we mapped the spatial distribution of hydrate saturation within the Kumano Basin and characterised locally concentrated gas hydrates. Based on the results, we propose two different mechanisms of free gas supply to explain the process of gas hydrate formation in the basin: (1) migration along inclined strata that dip landwards, and (2) migration through the faults or cracks generated by intensive tectonic movements of the accretionary prism. The dipping strata with relatively low AI in the forearc basin could indicate the presence of hydrate formation due to gas migration along the dipping strata. However, high hydrate concentration is observed at fault zones with high pore pressures, thus the second mechanism likely plays an important role in the genesis of gas hydrates in the Kumano Basin. Therefore, the tectonic activities in the accretionary wedge significantly influence the hydrate saturation and distribution in the Kumano Forearc Basin.

  6. Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds

    Science.gov (United States)

    Serafini, John S

    1954-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  7. [Hydration in clinical practice].

    Science.gov (United States)

    Maristany, Cleofé Pérez-Portabella; Segurola Gurruchaga, Hegoi

    2011-01-01

    Water is an essential foundation for life, having both a regulatory and structural function. The former results from active and passive participation in all metabolic reactions, and its role in conserving and maintaining body temperature. Structurally speaking it is the major contributer to tissue mass, accounting for 60% of the basis of blood plasma, intracellular and intersticial fluid. Water is also part of the primary structures of life such as genetic material or proteins. Therefore, it is necessary that the nurse makes an early assessment of patients water needs to detect if there are signs of electrolyte imbalance. Dehydration can be a very serious problem, especially in children and the elderly. Dehydrations treatment with oral rehydration solution decreases the risk of developing hydration disorders, but even so, it is recommended to follow preventive measures to reduce the incidence and severity of dehydration. The key to having a proper hydration is prevention. Artificial nutrition encompasses the need for precise calculation of water needs in enteral nutrition as parenteral, so the nurse should be part of this process and use the tools for calculating the patient's requirements. All this helps to ensure an optimal nutritional status in patients at risk. Ethical dilemmas are becoming increasingly common in clinical practice. On the subject of artificial nutrition and hydration, there isn't yet any unanimous agreement regarding hydration as a basic care. It is necessary to take decisions in consensus with the health team, always thinking of the best interests of the patient.

  8. Global Existence of a Shock for the Supersonic Flow Past a Curved Wedge

    Institute of Scientific and Technical Information of China (English)

    Hui Cheng YIN

    2006-01-01

    This note is devoted to the study of the global existence of a shock wave for the supersonic flow past a curved wedge. When the curved wedge is a small perturbation of a straight wedge and the angle of the wedge is less than some critical value, we show that a shock attached at the wedge will exist globally.

  9. Molecular depth profiling by wedged crater beveling.

    Science.gov (United States)

    Mao, Dan; Lu, Caiyan; Winograd, Nicholas; Wucher, Andreas

    2011-08-15

    Time-of-flight secondary ion mass spectrometry and atomic force microscopy are employed to characterize a wedge-shaped crater eroded by a 40-keV C(60)(+) cluster ion beam on an organic film of Irganox 1010 doped with Irganox 3114 delta layers. From an examination of the resulting surface, the information about depth resolution, topography, and erosion rate can be obtained as a function of crater depth for every depth in a single experiment. It is shown that when measurements are performed at liquid nitrogen temperature, a constant erosion rate and reduced bombardment induced surface roughness is observed. At room temperature, however, the erosion rate drops by ∼(1)/(3) during the removal of the 400 nm Irganox film and the roughness gradually increased to from 1 nm to ∼4 nm. From SIMS lateral images of the beveled crater and AFM topography results, depth resolution was further improved by employing glancing angles of incidence and lower primary ion beam energy. Sub-10 nm depth resolution was observed under the optimized conditions on a routine basis. In general, we show that the wedge-crater beveling is an important tool for elucidating the factors that are important for molecular depth profiling experiments.

  10. Ice-Creams and Wedge Graphs

    CERN Document Server

    Ackerman, Eyal; Pinchasi, Rom

    2011-01-01

    We show that for every compact convex set $S$ in the plane and every $0 < \\alpha < \\pi$, there exist a point $O$ and two supporting lines to $S$ passing through $O$ and touching $S$ at two \\emph{single points} $X$ and $Y$, respectively, such that $|OX|=|OY|$ and the angle between the two lines has measure $\\alpha$. As a consequence, we provide a simplified proof to the following result by Carmi, Katz, Lotker, and Ros\\'en \\cite{CKLR10}. Given a set of $\\frac{\\pi}{3}$-directional antennas (that is, antennas each of which can communicate along a wedge of angle $\\frac{\\pi}{3}$), one can always assign a direction to each antenna such that the resulting communication graph is connected, where two antennas can communicate if and only if each lies in the wedge assigned to the other. In fact we obtain a much stronger and optimal result (see Theorem \\ref{theorem:main}) saying in particular that one can chose the directions of the antennas so that the communication graph has diameter $\\le 4$.

  11. Flat-slab subduction, topography, and mantle dynamics in southwestern Mexico

    Science.gov (United States)

    Gérault, Mélanie; Husson, Laurent; Miller, Meghan S.; Humphreys, Eugene D.

    2015-09-01

    Topography above subduction zones arises from the isostatic contribution of crustal and lithospheric buoyancy, as well as the dynamic contribution from slab-driven mantle flow. We evaluate those effects in southwestern Mexico, where a segment of the Cocos slab subducts horizontally. The eastern part of the volcanic arc—the Trans-Mexican Volcanic Belt—stands at an average elevation of 2.3 km, nearly 1.3 km above the fore-arc. Lateral changes in bulk crustal density are relatively small, and seismic imaging shows that there is little variation in crustal thickness between these two regions. Thus, the elevation difference between the arc and the fore-arc should arise from differences in mantle properties. We present finite element models of flat-slab subduction that provide a simultaneous match to topography, plate velocities, and stress state in the overriding plate. We find that the dynamic effects are primarily controlled by the amount of coupling at the subduction interface and in the mantle wedge, the lack of slab anchoring into the lower mantle, and the absence of continental mantle lithosphere. With a mantle wedge and a subduction interface that are, respectively, 2 and 4 orders of magnitude weaker than the asthenosphere, the flat slab exerts a downward pull that can explain most of the elevation difference between the fore-arc and the arc. We infer that lateral viscosity variations play a significant role in shaping dynamic topography in complex tectonic settings and that sublithospheric dynamics can influence the topography at wavelengths that are significantly shorter than previously recognized.

  12. 49 CFR 215.113 - Defective plain bearing wedge.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  13. Comparison of wedge resection (Winograd procedure) and wedge resection plus complete nail plate avulsion in the treatment of ingrown toenails.

    Science.gov (United States)

    Huang, Jia-Zhang; Zhang, Yi-Jun; Ma, Xin; Wang, Xu; Zhang, Chao; Chen, Li

    2015-01-01

    The present retrospective study compared the efficacy of wedge resection (Winograd procedure) and wedge resection plus complete nail plate avulsion for the treatment of ingrown toenails (onychocryptosis). Two surgical methods were performed in 95 patients with a stage 2 or 3 ingrown toenail. Each patient was examined weekly until healing and then at 1, 6, and 12 months of follow-up. The outcomes measured were surgical duration, healing time, recurrence rate, the incidence of postoperative infection, and cosmetic appearance after surgery. Of the 95 patients (115 ingrown toenails) included in the present study, 39 (41.1%) underwent wedge resection (Winograd procedure) and 56 (59%), wedge resection plus complete nail plate avulsion. The mean surgical duration for wedge resection (Winograd procedure) and wedge resection plus complete nail plate avulsion was 14.9 ± 2.4 minutes and 15.1 ± 3.2 minutes, respectively (p = .73). The corresponding healing times were 2.8 ± 1.2 weeks and 2.7 ± 1.3 weeks (p = .70). Recurrence developed in 3 (3.2%) patients after wedge resection (Winograd procedure) and in 4 (4.2%) after wedge resection plus complete nail plate avulsion. In addition, postoperative infection occurred in 3 (3.2%) patients after wedge resection (Winograd procedure) and 2 (2.1%) after wedge resection plus complete nail plate avulsion. Both of the surgical procedures were practical and appropriate for the treatment of ingrown toenails, being simple and associated with low morbidity and a high success rate. However, cosmetically, wedge resection (Winograd procedure) would be the better choice because the nail plate remains intact.

  14. Ground penetrating radar estimates of permafrost ice wedge depth

    Science.gov (United States)

    Parsekian, A.; Slater, L. D.; Nolan, J. T.; Grosse, G.; Walter Anthony, K. M.

    2013-12-01

    Vertical ground ice wedges associated with polygonal patterning in permafrost environments form due to frost cracking of soils under harsh winter conditions and subsequent infilling of cracks with snow melt water. Ice wedge polygon patterns have implications for lowland geomorphology, hydrology, and vulnerability of permafrost to thaw. Ice wedge dimensions may exceed two meters width at the surface and several meters depth, however few studies have addressed the question of ice wedge depth due to challenges related to measuring the vertical dimension below the ground. Vertical exposures where ice wedges maybe observed are limited to rapidly retreating lake, river, and coastal bluffs. Coring though the ice wedges to determine vertical extent is possible, however that approach is time consuming and labor intensive. Many geophysical investigations have noted signal anomalies related to the presence of ice wedges, but no reliable method for extracting wedge dimensions from geophysical data has been yet proposed. Here we present new evidence that ground penetrating radar (GPR) may be a viable method for estimating ice wedge depth. We present three new perspectives on processing GPR data collected over ice wedges that show considerable promise for use as a fast, cost effective method for evaluating ice wedge depth. Our novel approaches include 1) a simple frequency-domain analysis, 2) an S-transform frequency domain analysis and 3) an analysis of the returned signal power as a radar cross section (RCS) treating subsurface ice wedges as dihedral corner retro-reflectors. Our methods are demonstrated and validated using finite-difference time domain FDTD) GPR forward models of synthetic idealized ice wedges and field data from permafrost sites in Alaska. Our results indicate that frequency domain and signal power data provide information that is easier to extract from raw GPR data than similar information in the time domain. We also show that we can simplify the problem by

  15. Characterization of CNRS Fizeau wedge laser tuner

    Science.gov (United States)

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.

  16. Modeling Hydrates and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Weihua Wang

    2007-06-01

    Full Text Available Natural gas hydrates, as an important potential fuels, flow assurance hazards, and possible factors initiating the submarine geo-hazard and global climate change, have attracted the interest of scientists all over the world. After two centuries of hydrate research, a great amount of scientific data on gas hydrates has been accumulated. Therefore the means to manage, share, and exchange these data have become an urgent task. At present, metadata (Markup Language is recognized as one of the most efficient ways to facilitate data management, storage, integration, exchange, discovery and retrieval. Therefore the CODATA Gas Hydrate Data Task Group proposed and specified Gas Hydrate Markup Language (GHML as an extensible conceptual metadata model to characterize the features of data on gas hydrate. This article introduces the details of modeling portion of GHML.

  17. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  18. A study on gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byoung Jae; Jung, Tae Jin; Sunwoo, Don [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Sufficient documents were reviewed to understand solid components of water and gaseous hydrocarbon known as gas hydrates, which represent an important potential energy resource of the future. The review provides us with valuable information on crystal structures, kinetics, origin and distribution of gas hydrates. In addition, the review increased our knowledge of exploration and development methods of gas hydrates. Large amounts of methane, the principal component of natural gas, in the form of solid gas hydrate are found mainly offshore in outer continental margin sediment and, to a lesser extent, in polar regions commonly associated with permafrost. Natural gas hydrates are stable in some environments where the hydrostatic pressure exerted by overlying water column is sufficient for hydrate formation and stability. The required high pressures generally restrict gas hydrate to sediments beneath water of approximately 400 m. Higher sediment temperatures at greater subbottom depths destabilize gas hydrates. Based on the pressure- temperature condition, the outer continental margin of East Sea where water depth is deep enough to form gas hydrate is considered to have high potential of gas hydrate accumulations. (author). 56 refs., tabs., figs.

  19. Mantle hydrocarbons: abiotic or biotic?

    Science.gov (United States)

    Sugisaki, R; Mimura, K

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) arid peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro arid granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from held contamination; these compounds found in the mantle-derived rocks are called here "mantle hydrocarbons." The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) delta 13C of the mantle hydrocarbons is uniform (about -27%). Possible origins for the mantle hydrocarbons are as follows. (1) They were in organically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH4 at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C4H10.

  20. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S.H.; Suter, G.F. [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia)

    1993-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  1. Drilling Gas Hydrates on hydrate Ridge, Oregon continental margin

    Science.gov (United States)

    Trehu, A. M.; Bohrmann, G.; Leg 204 Science Party

    2002-12-01

    During Leg 204, we cored and logged 9 sites on the Oregon continental margin to determine the distribution and concentration of gas hydrates in an accretionary ridge and adjacent slope basin, investigate the mechanisms that transport methane and other gases into the gas hydrate stability zone (GHSZ), and obtain constraints on physical properties of hydrates in situ. A 3D seismic survey conducted in 2000 provided images of potential subsurface fluid conduits and indicated the position of the GHSZ throughout the survey region. After coring the first site, we acquired Logging-While-Drilling (LWD) data at all but one site to provide an overview of downhole physical properties. The LWD data confirmed the general position of key seismic stratigraphic horizons and yielded an initial estimate of hydrate concentration through the proxy of in situ electrical resistivity. These records proved to be of great value in planning subsequent coring. The second new hydrate proxy to be tested was infrared thermal imaging of cores on the catwalk as rapidly as possible after retrieval. The thermal images were used to identify hydrate samples and to estimate the distribution and texture of hydrate within the cores. Geochemical analyses of interstitial waters and of headspace and void gases provide additional information on the distribution and concentration of hydrate within the stability zone, the origin and pathway of fluids into and through the GHSZ, and the rates at which gas hydrate is forming. Bio- and lithostratigraphic description of cores, measurement of physical properties, and in situ pressure core sampling and thermal measurements complement the data set, providing ground-truth tests of inferred physical and sedimentological properties. Among the most interesting preliminary results are: 1) that gas hydrates are distributed through a broad depth range within the GHSZ and that different physical and chemical proxies for hydrate distribution and concentration give generally

  2. Water concentrations in mantle peridotite minerals

    Science.gov (United States)

    Warren, J. M.; Hauri, E. H.

    2010-12-01

    The concentration and distribution of volatiles in the mantle is important for constraining many key properties, including melting systematics at ridges and subduction zones. We present measurements of water concentrations in nominally anhydrous minerals from abyssal, orogenic and xenolith peridotites. Analyses of fresh and altered samples from a variety of locations are used to assess the extent to which mineral water concentrations reflect primary mantle compositions, versus diffusive loss and/or hydration due to secondary processes. Water concentrations were measured in olivine (Ol), orthopyroxene (Opx) and clinopyroxene (Cpx) by ion microprobe, using mineral specific standards and monitoring background concentrations by analysis of synthetic forsterite. Analytical reproducibility, based on 11 repeat analyses of an Ol grain, is 10%, while background H2O levels varied from 7-19 ppm. Samples include xenoliths from Pali Aike, Samoa and Spitsbergen, along with unusually fresh oceanic peridotites from the Gakkel Ridge and the Tonga Trench. In addition, samples were analyzed from the Southwest Indian Ridge (SWIR) and the Josephine Peridotite, both of which have moderate degrees of alteration. In olivine, water concentrations are Pali Aike xenoliths, which have water concentrations of 16-33 ppm. On average, peridotite Opx have 187 ppm and Cpx have 474 ppm. Pyroxenite veins from the Southwest Indian Ridge have systematically lower concentrations, with an average of 12 ppm in Opx and 55 ppm in Cpx. Water partition coefficients for Opx/Ol have an average value of 28 and Cpx/Ol of 57, significantly higher than previous estimates (e.g., Hirth and Kohlstedt, 1996). Excluding the pyroxenites, the average Cpx/Opx partition coefficient is 2, in agreement with published estimates. This suggests that Cpx and Opx preserve mantle water concentrations, whereas Ol has undergone hydrogen loss. Mineral rims have water concentrations that are within error of core concentrations. The

  3. Triggers and sources of volatile-bearing plumes in the mantle transition zone

    OpenAIRE

    Inna Safonova; Konstantin Litasov; Shigenori Maruyama

    2015-01-01

    The paper discusses generation of volatile-bearing plumes in the mantle transition zone (MTZ) in terms of mineral-fluid petrology and their related formation of numerous localities of intra-plate bimodal volcanic series in Central and East Asia. The plume generation in the MTZ can be triggered by the tectonic erosion of continental crust at Pacific-type convergent margins and by the presence of water and carbon dioxide in the mantle. Most probable sources of volatiles are the hydrated/carbona...

  4. Water contents in pyroxenes of intraplate lithospheric mantle

    Science.gov (United States)

    Bonadiman, C.; Hao, Y.-T.; Coltorti, M.; Dallai, L.; Faccini, B.; Hu, H.; Qunke, X.

    2009-04-01

    Water contents of clinopyroxene and orthopyroxene in mantle peridotites from various xenolith occurrences in intraplate settings (both oceanic and continental) were determined by Fourier Transform Infrared Spectroscopy (FTIR). The localities are as follow: Sal Island (Cape Verde Archipelago); Baker Rocks and Greene Point (Northern Victoria Land, Antarctica); Panshishan and Lianshan (Subei Basin, Eastern China). They represent well-known localities where detailed petrographical and geochemical studies have already been carried out or areas which are currently under investigation. The water incorporated in these pyroxenes is low (cpx, 37-399ppm; opx: 9-166ppm)(or very low as in Greene Point, Antarctica; cpx, 5-16ppm; opx: 9-16ppm) and, among each population, no clear correlation with melting parameters (MgO contents) in single mineral is evident. Results are compared with the available literature data on water contents in mantle pyroxene which includes peridotites from on-craton (hosted by kimberlitic-type magmas) and off-craton (hosted by alkaline basic magmas), as well as subarc mantle settings. The "relatively dry" (cpx: 140-528 ppm; opx: 38-280 ppm) sub-arc mantle xenoliths (Peslier et al., 2002) are shown to be wetter than the intraplate (off-craton) xenoliths. Cratonic mantle pyroxenes are only represented by a few determinations on garnet peridotites and eclogite from Kaapvaal and Colorado Plateau. They record the highest water contents (cpx: 342-1012 ppm; opx: 180-491 ppm) so far measured in mantle pyroxenes from various tectonic settings. Despite the limited data set, the indication that the cratonic mantle is strongly hydrated is compelling. Rehydration for the Colorado Plateau craton may be due to the Farallon plate subduction (Li et al., 2008), while for Kaapvaal Craton it might be related to young (<100Ma) metasomatic enrichments (Griffin et al., 2003a; Kobussen et al., 2008). If this is the case then the Archean mantle water content needs to be

  5. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  6. Tracking the evolution of mantle sources with incompatible element ratios in stagnant-lid and plate-tectonic planets

    Science.gov (United States)

    Condie, Kent C.; Shearer, Charles K.

    2017-09-01

    The distribution of high field strength incompatible element ratios Zr/Nb, Nb/Th, Th/Yb and Nb/Yb in terrestrial oceanic basalts prior to 2.7 Ga suggests the absence or near-absence of an enriched mantle reservoir. Instead, most oceanic basalts reflect a variably depleted mantle source similar in composition to primitive mantle. In contrast, basalts from hydrated mantle sources (like those associated with subduction) exist from 4 Ga onwards. The gradual appearance of enriched mantle between 2 and 3 Ga may reflect the onset and propagation of plate tectonics around the globe. Prior to 3 Ga, Earth may have been in a stagnant-lid regime with most basaltic magmas coming from a rather uniform, variably depleted mantle source or from a non-subduction hydrated mantle source. It was not until the extraction of continental crust and accompanying propagation of plate tectonics that ;modern type; enriched and depleted mantle reservoirs developed. Consistent with the absence of plate tectonics on the Moon is the near absence of basalts derived from depleted (DM) and enriched (EM) mantle reservoirs as defined by the four incompatible element ratios of this study. An exception are Apollo 17 basalts, which may come from a mixed source with a composition similar to primitive mantle as one end member and a high-Nb component as the other end member. With exception of Th, which requires selective enrichment in at least parts of the martian mantle, most martian meteorites can be derived from sources similar to terrestrial primitive mantle or by mixing of enriched and depleted mantle end members produced during magma ocean crystallization. Earth, Mars and the Moon exhibit three very different planetary evolution paths. The mantle source regions for Mars and the Moon are ancient and have HFS element signatures of magma ocean crystallization well-preserved, and differences in these signatures reflect magma ocean crystallization under two distinct pressure regimes. In contrast, plate

  7. Gas hydrate, fluid flow and free gas: Formation of the bottom-simulating reflector

    Science.gov (United States)

    Haacke, R. Ross; Westbrook, Graham K.; Hyndman, Roy D.

    2007-09-01

    Gas hydrate in continental margins is commonly indicated by a prominent bottom-simulating seismic reflector (BSR) that occurs a few hundred metres below the seabed. The BSR marks the boundary between sediments containing gas hydrate above and free gas below. Most of the reflection amplitude is caused by the underlying free gas. Gas hydrate can occur without a BSR, however, and the controls on its formation are not well understood. Here we describe two complementary mechanisms for free gas accumulation beneath the gas hydrate stability zone (GHSZ). The first is the well-recognised hydrate recycling mechanism that generates gas from dissociating hydrate when the base of the GHSZ moves upward relative to hydrate-bearing sediment. The second is a recently identified mechanism in which the relationship between the advection and diffusion of dissolved gas with the local solubility curve allows the liquid phase to become saturated in a thick layer beneath the GHSZ when hydrate is present near its base. This mechanism for gas production (called the solubility-curvature mechanism) is possible in systems where the influence of diffusion becomes important relative to the influence of advection and where the gas-water solubility decreases to a minimum several hundred metres below the GHSZ. We investigate a number of areas in which gas hydrate occurs to determine where gas formation is dominated by the solubility-curvature mechanism and where it is dominated by hydrate recycling. We show that the former is dominant in areas with low rates of upward fluid flow (such as old, rifted continental margins), low rates of seafloor uplift, and high geothermal gradient and/or pressure. Conversely, free-gas formation is dominated by hydrate recycling where there are rapid rates of upward fluid flow and seabed uplift (such as in subduction zone accretionary wedges). Using these two mechanisms to investigate the formation of free gas beneath gas hydrate in continental margins, we are able

  8. The Tax Wedge in Slovenia: International Comparison and Policy Recommendations

    Directory of Open Access Journals (Sweden)

    Primož Dolenc

    2005-09-01

    Full Text Available When taxes on labor are introduced, a “tax wedge” appears between the labor costs paid by the employer (gross wage and the net wage received by an employee. At a certain level of wage, a higher tax wedge increases unemployment and decreases employment, all other things being equal. The paper tackles three main questions: the characteristics of the tax wedge, unemployment and employment rates in OECD countries in the recent past, tax wedge policy in the EU15 and the new EU members and the tax system and its effects on the unemployment and employment rates in Slovenia. We found that the OECD countries can be classified into two groups of countries if the tax wedge, the unemployment rate and the employment rate are taken into consideration. The first group is the high tax wedge, high unemployment rate and low employment rate group of countries, whereas the other group has the opposite characteristics. European member states (old and new have on average a higher tax burden on labor than the OECD average, consequently suffering from higher unemployment rates. Slovenia has an unreasonably high tax wedge; in the EU only Belgium and Germany have a higher tax burden. According to previous and our empirical findings we suggest that Slovenia could benefit from a reduction in the tax wedge.

  9. Group sequential designs for stepped-wedge cluster randomised trials.

    Science.gov (United States)

    Grayling, Michael J; Wason, James Ms; Mander, Adrian P

    2017-06-01

    The stepped-wedge cluster randomised trial design has received substantial attention in recent years. Although various extensions to the original design have been proposed, no guidance is available on the design of stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequential methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established group sequential methodology can be adapted for stepped-wedge designs. Utilising the error spending approach to group sequential trial design, we detail the assumptions required for the determination of stepped-wedge cluster randomised trials with interim analyses. We consider early stopping for efficacy, futility, or efficacy and futility. We describe first how this can be done for any specified linear mixed model for data analysis. We then focus on one particular commonly utilised model and, using a recently completed stepped-wedge cluster randomised trial, compare the performance of several designs with interim analyses to the classical stepped-wedge design. Finally, the performance of a quantile substitution procedure for dealing with the case of unknown variance is explored. We demonstrate that the incorporation of early stopping in stepped-wedge cluster randomised trial designs could reduce the expected sample size under the null and alternative hypotheses by up to 31% and 22%, respectively, with no cost to the trial's type-I and type-II error rates. The use of restricted error maximum likelihood estimation was found to be more important than quantile substitution for controlling the type-I error rate. The addition of interim analyses into stepped-wedge cluster randomised trials could help guard against time-consuming trials conducted on poor performing treatments and also help expedite the implementation of efficacious treatments. In future, trialists should consider incorporating early stopping of some kind into

  10. Stable and Critical Noncohesive Coulomb Wedges: Exact Elastic Solutions

    Science.gov (United States)

    Wang, K.; Hu, Y.

    2004-12-01

    The theory of critically tapered Coulomb wedge has been successfully applied to model active fold-and-thrust belts or submarine accretionary prisms. Brittle mountain building is episodic in nature, controlled by changes in basal friction, erosion and sedimentation, and hydrogeology. Sediment accretion may be modulated by great subduction earthquakes. Between deformation episodes and/or during transition between compressional and extensional tectonics, the Coulomb wedges are stable (i.e., supercritical), to which the critical taper theory does not apply. In this work, we provide an exact elastic solution for stable wedges based on Airy stress functions. The stress equilibrium equation and definition of basal friction and basal and internal pore fluid pressure ratios are exactly the same as those used for Dahlen's [1984] exact solution for critical noncohesive Coulomb wedges, but internal friction μ becomes irrelevant. Given elastic - perfectly Coulomb-plastic rheology, for stresses in a wedge on the verge of Coulomb failure there must co-exist a critical taper solution involving μ and a unique equivalent elastic solution not involving μ . Our elastic solution precisely reduces to Dahlen's critical taper solution for critical conditions. For stable conditions, normal stress perpendicular to the surface slope σ z and shear stress τ xz are identical with those in a critical taper, but the slope-parallel normal stress is different. The elastic solution is also generally applicable to purely elastic wedges and useful for modeling geodetic observations. A stable noncohesive Coulomb wedge differs from a general elastic wedge in that its upper and lower surfaces stay at zero curvature during loading. Dahlen, F.A. (1984), Noncohesive critical Coulomb wedges: An exact solution, JGR, 89, 10,125-10,133.

  11. Iron geochemistry of the mantle

    Science.gov (United States)

    Humayun, M.; Campbell, T. J.; Brandon, A. D.; Davis, F. A.; Hirschmann, M. M.

    2011-12-01

    The Fe/Mg ratio is an important constraint on the compositionally controlled density of the mantle. However, this ratio cannot be inferred from erupted lavas from OIB or MORB sources, but must be determined directly from mantle peridotites. Recently, the Fe/Mn ratio of erupted lavas has been used as an indicator of potential Fe variability in the mantle driven by core-mantle interaction, recycled oceanic crust, or even variations in the temperature of mantle melting. The classic compilation of McDonough & Sun (1995) provided the currently accepted Fe/Mn ratio of the upper mantle, 60±10. The uncertainty on this ratio allows for 15-30% variability in mantle iron abundances, which is equivalent to a density variation larger than observed by seismic tomography in the mantle. To better understand the relationship between mantle peridotites and erupted lavas, and to search for real variability in the Fe/Mn ratio of mantle peridotites, we report precise new ICP-MS measurements of the transition element geochemistry of suites of mantle xenoliths that have known Fe/Mg ratios. For 12 Kilbourne Hole xenoliths, we observe a clear correlation between Fe/Mn and MgO (or Fe/Mg) over an Fe/Mn range of 59-72. Extrapolation of this trend to a Primitive Mantle (PM) MgO content of 37.8 yields an Fe/Mn of 59±1 for the PM. Our new analyses of KLB-1 powder and fused glass beads yield an Fe/Mn of 61.4 for both samples, which plots on the Kilbourne Hole Fe/Mn vs. MgO trend. A set of ten xenoliths from San Carlos yield a wide range of Fe/Mn (56-65) not correlated with MgO content. The San Carlos xenoliths may have experienced a metasomatic effect that imprinted variable Fe/Mn. A clinopyroxene-rich lithology from San Carlos yields an Fe/Mn of 38, which plots on an extension of the Kilbourne Hole Fe/Mn vs. MgO trend. These new results, and those from other xenolith localities being measured in our lab, provide new constraints on the compositional variability of the Earth's upper mantle. Mc

  12. Employment and productivity: The role of the tax wedge

    Directory of Open Access Journals (Sweden)

    Andrea FESTA

    2015-11-01

    Full Text Available After the economic crisis, many countries aim at reducing unemployment and foster productivity. To address these issues one of the most common policy indications recommends lowering the tax wedge on labour in order to increase employment and growth. As a consequence, a review of the empirical studies focused on the relation between tax wedge, employment and productivity is an useful and demanding exercise, especially in those European countries where the topic is on the front page of the domestic policy debate because the productivity growth is low and the tax wedge on labour is high.

  13. Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia

    Science.gov (United States)

    Chen, Chuanxu; Zhao, Dapeng; Tian, You; Wu, Shiguo; Hasegawa, Akira; Lei, Jianshe; Park, Jung-Ho; Kang, Ik-Bum

    2017-04-01

    3-D P- and S-wave velocity structures of the mantle down to a depth of 800 km beneath NE Asia are investigated using ∼981 000 high-quality arrival-time data of local earthquakes and teleseismic events recorded at 2388 stations of permanent and portable seismic networks deployed in NE China, Japan and South Korea. Our results do not support the existence of a gap (or a hole) in the stagnant slab under the Changbai volcano, which was proposed by a previous study of teleseismic tomography. In this work we conducted joint inversions of both local-earthquake arrival times and teleseismic relative traveltime residuals, leading to a robust tomography of the upper mantle and the mantle transition zone (MTZ) beneath NE Asia. Our joint inversion results reveal clearly the subducting Pacific slab beneath the Japan Islands and the Japan Sea, as well as the stagnant slab in the MTZ beneath the Korean Peninsula and NE China. A big mantle wedge (BMW) has formed in the upper mantle and the upper part of the MTZ above the stagnant slab. Localized low-velocity anomalies are revealed clearly in the crust and the BMW directly beneath the active Changbai and Ulleung volcanoes, indicating that the intraplate volcanism is caused by hot and wet upwelling in the BMW associated with corner flows in the BMW and deep slab dehydration as well.

  14. Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia

    Science.gov (United States)

    Chen, Chuanxu; Zhao, Dapeng; Tian, You; Wu, Shiguo; Hasegawa, Akira; Lei, Jianshe; Park, Jung-Ho; Kang, Ik-Bum

    2017-01-01

    Three-dimensional P and S wave velocity structures of the mantle down to a depth of 800 km beneath NE Asia are investigated using ˜981,000 high-quality arrival-time data of local earthquakes and teleseismic events recorded at 2388 stations of permanent and portable seismic networks deployed in NE China, Japan and South Korea. Our results do not support the existence of a gap (or a hole) in the stagnant slab under the Changbai volcano, which was proposed by a previous study of teleseismic tomography. In this work we conducted joint inversions of both local-earthquake arrival times and teleseismic relative travel-time residuals, leading to a robust tomography of the upper mantle and the mantle transition zone (MTZ) beneath NE Asia. Our joint inversion results reveal clearly the subducting Pacific slab beneath the Japan Islands and the Japan Sea, as well as the stagnant slab in the MTZ beneath the Korean Peninsula and NE China. A big mantle wedge (BMW) has formed in the upper mantle and the upper part of the MTZ above the stagnant slab. Localized low-velocity anomalies are revealed clearly in the crust and the BMW directly beneath the active Changbai and Ulleung volcanoes, indicating that the intraplate volcanism is caused by hot and wet upwelling in the BMW associated with corner flows in the BMW and deep slab dehydration as well.

  15. Flow braking and the substorm current wedge

    Science.gov (United States)

    Birn, J.; Hesse, M.; Haerendel, G.; Baumjohann, W.; Shiokawa, K.

    1999-09-01

    Recent models of magnetotail activity have associated the braking of earthward flow with dipolarization and the reduction and diversion of cross-tail current, that is, the signatures of the substorm current wedge. Estimates of the magnitude of the diverted current by Haerendel [1992] and Shiokawa et al. [1997, 1998] tend to be lower than results from computer simulations of magnetotail reconnection and tail collapse [Birn and Hesse, 1996], despite similar underlying models. An analysis of the differences between these estimates on the basis of the simulations gives a more refined picture of the diversion of perpendicular into parallel currents. The inertial currents considered by Haerendel [1992] and Shiokawa et al. [1997] contribute to the initial current reduction and diversion, but the dominant and more permanent contribution stems from the pressure gradient terms, which change in connection with the field collapse and distortion. The major effect results from pressure gradients in the z direction, rather than from the azimuthal gradients [Shiokawa et al., 1998], combined with changes in By and Bx. The reduction of the current density near the equatorial plane is associated with a reduction of the curvature drift which overcompensates changes of the magnetization current and of the gradient B drift current. In contrast to the inertial current effects, the pressure gradient effects persist even after the burst of earthward flow ends.

  16. Hydration and physical performance.

    Science.gov (United States)

    Murray, Bob

    2007-10-01

    There is a rich scientific literature regarding hydration status and physical function that began in the late 1800s, although the relationship was likely apparent centuries before that. A decrease in body water from normal levels (often referred to as dehydration or hypohydration) provokes changes in cardiovascular, thermoregulatory, metabolic, and central nervous function that become increasingly greater as dehydration worsens. Similarly, performance impairment often reported with modest dehydration (e.g., -2% body mass) is also exacerbated by greater fluid loss. Dehydration during physical activity in the heat provokes greater performance decrements than similar activity in cooler conditions, a difference thought to be due, at least in part, to greater cardiovascular and thermoregulatory strain associated with heat exposure. There is little doubt that performance during prolonged, continuous exercise in the heat is impaired by levels of dehydration >or= -2% body mass, and there is some evidence that lower levels of dehydration can also impair performance even during relatively short-duration, intermittent exercise. Although additional research is needed to more fully understand low-level dehydration's effects on physical performance, one can generalize that when performance is at stake, it is better to be well-hydrated than dehydrated. This generalization holds true in the occupational, military, and sports settings.

  17. Storage and recycling of water in the Earth's mantle

    Science.gov (United States)

    Bolfan-Casanova, N.

    2015-12-01

    Most natural samples originating from the mantle contain traces of water. It can be observed that water content varies laterally as a function of the geodynamic context, but also with depth in cratons. Basalts from mid-ocean ridges, which sample the convecting upper mantle, contain generally below 0.6 wt% H2O leading to 50-330 parts per million by weight in the source. Oceanic Islands Basalts are more hydrated with contents ranging from 0.6 to 1.1 wt%, leading to 350-1100 ppm wt H2O in the source. Arc basalts are even more hydrated with water contents ranging from 0.2 to 5-6 wt% H2O testifying of the recycling of water by subduction. Kimberlite magmas are also the proof that local saturation in volatiles is possible. Among xenoliths, the samples from cratons are very interesting because they may provide a depth profile of water. However, the variation of water content in olivine with depth differs from craton to craton, and is the result of a complex geological history. Also, olivine inclusions in diamond and olivine from peridotite xenoliths do not give the same message regarding to water activity. The water storage capacity of the mantle is defined as the maximum water or hydroxyl that can be incorporated in its constitutive minerals before a free fluid phase appears. It can be determined experimentally and confronted to geophysical observations, such as low seismic velocities, and electrical conductivity. In this talk we will review our current knowledge of water incorporation in NAMs as determined experimentally and compare it with available observations. New data concerning clinopyroxenes will be shown. The aim being to understand the deep water cycle.

  18. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  19. Casimir Effect for a Semitransparent Wedge and an Annular Piston

    CERN Document Server

    Milton, Kimball A; Kirsten, Klaus

    2009-01-01

    We consider the Casimir energy due to a massless scalar field in a geometry of an infinite wedge closed by a Dirichlet circular cylinder, where the wedge is formed by $\\delta$-function potentials, so-called semitransparent boundaries. A finite expression for the Casimir energy corresponding to the arc and the presence of both semitransparent potentials is obtained, from which the torque on the sidewalls can be derived. The most interesting part of the calculation is the nontrivial nature of the angular mode functions. Numerical results are obtained which are closely analogous to those recently found for a magnetodielectric wedge, with the same speed of light on both sides of the wedge boundaries. Alternative methods are developed for annular regions with radial semitransparent potentials, based on reduced Green's functions for the angular dependence, which allows calculations using the multiple-scattering formalism. Numerical results corresponding to the torque on the radial plates are likewise computed, whic...

  20. Electrodynamic Casimir effect in a medium-filled wedge.

    Science.gov (United States)

    Brevik, Iver; Ellingsen, Simen A; Milton, Kimball A

    2009-04-01

    We re-examine the electrodynamic Casimir effect in a wedge defined by two perfect conductors making dihedral angle alpha=pi/p. This system is analogous to the system defined by a cosmic string. We consider the wedge region as filled with an azimuthally symmetric material, with permittivity and permeability epsilon1, micro1 for distance from the axis ra. The results are closely related to those for a circular-cylindrical geometry, but with noninteger azimuthal quantum number mp. Apart from a zero-mode divergence, which may be removed by choosing periodic boundary conditions on the wedge, and may be made finite if dispersion is included, we obtain finite results for the free energy corresponding to changes in a for the case when the speed of light is the same inside and outside the radius a , and for weak coupling, |epsilon1-epsilon2|cosmic string, situated along the cusp line of the pre-existing wedge.

  1. ELASTIC INTERACTION BETWEEN WEDGE DISCLINATION DIPOLE AND INTERNAL CRACK

    Institute of Scientific and Technical Information of China (English)

    FANG Qi-hong; LIU You-wen

    2006-01-01

    The system of a wedge disclination dipole interacting with an internal crack was investigated. By using the complex variable method, the closed form solutions of complex potentials to this problem were presented. The analytic formulae of the physics variables, such as stress intensity factors at the tips of the crack produced by the wedge disclination dipole and the image force acting on disclination dipole center were obtained.The influence of the orientation, the dipole arm and the location of the disclination dipole on the stress intensity factors was discussed in detail. Furthermore, the equilibrium position of the wedge disclination dipole was also examined. It is shown that the shielding or antishielding effect of the wedge disclination to the stress intensity factors is significant when the disclination dipole moves to the crack tips.

  2. Reactive Atom Plasma Processing of Slumped Glass Wedges Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Reactive Atom Plasma (RAPTM) process will be evaluated as a rapid and practical method for fabricating precision wedges in glass sheets. The glass sheets are to...

  3. Some thermodynamical aspects of protein hydration water

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Mallamace, Domenico [Dipartimento SASTAS, Università di Messina, I-98166 Messina (Italy); Vasi, Sebastiano [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Vasi, Cirino [CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  4. Structure and Kinematics of the Indo-Burmese Wedge

    Science.gov (United States)

    Maurin, T.; Rangin, C.

    2007-12-01

    The Burma subduction trench and the associated Indo Burmese wedge mark the present eastern boundary of the Indian plate in the northern Bengal area. The initiation, duration and history of the Bengal crust subduction beneath Burma is still debated. The aim of this paper is to provide a structural and kinematic analysis of the Indo- Burmese wedge in order to better constraints the Bengal crust subduction history beneath Burma. On the basis of field observations, seismic reflection data interpretation and well logs data we present a structural analysis of the Outer Indo-Burmese Wedge. We also constrain the onset of this Outer Wedge to be younger than 2Ma, implying a recent and fast westward growth (~10cm/yr) since Late Pliocene in close relationship with the onset of the Shillong plateau. Restoration process of a synthetic cross section through the Outer Wedge allowed us to estimate the amount of EW shortening accommodated in the Outer Wedge to be 5.1mm/yr since 2Ma. These results combined with previous available GPS data from central Myanmar suggest strain partitioning at wedge scale. The core of the wedge is affected by shear deformation and acts as a buttress for a frontal wedge that accommodates a more compressive strain component. Finally we propose that the main characteristic of the Indo-Burmese wedge growth mechanism is the progressive incorporation of the most internal part of the wedge, formerly affected by transpressive thin-skinned tectonics, to the buttress where they are subsequently affected by shear deformation. The crustal structure boarding the newly formed buttress seems to be guided by the subducting crust fabrics. We are in favour of a very recent (Late Miocene) onset of the present Indian crust subduction beneath Burma coeval with the global plate kinematics reorganisation related to the Indian/Australian plate spliting. This subduction postdates the Indo Burmese range onset that must have started in early Miocene. This range first began to

  5. Scattering of wedges and cones with impedance boundary conditions

    CERN Document Server

    Lyalinov, Mikhail

    2012-01-01

    This book is a systematic and detailed exposition of different analytical techniques used in studying two of the canonical problems, the wave scattering by wedges or cones with impedance boundary conditions. It is the first reference on novel, highly efficient analytical-numerical approaches for wave diffraction by impedance wedges or cones. The applicability of the reported solution procedures and formulae to existing software packages designed for real-world high-frequency problems encountered in antenna, wave propagation, and radar cross section.

  6. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  7. Optical refractometry based on Fresnel diffraction from a phase wedge.

    Science.gov (United States)

    Tavassoly, M Taghi; Saber, Ahad

    2010-11-01

    A method that utilizes the Fresnel diffraction of light from the phase step formed by a transparent wedge is introduced for measuring the refractive indices of transparent solids, liquids, and solutions. It is shown that, as a transparent wedge of small apex angle is illuminated perpendicular to its surface by a monochromatic parallel beam of light, the Fresnel fringes, caused by abrupt change in refractive index at the wedge lateral boundary, are formed on a screen held perpendicular to the beam propagation direction. The visibility of the fringes varies periodically between zero and 1 in the direction normal to the wedge apex. For a known or measured apex angle, the wedge refractive index is obtained by measuring the period length by a CCD. To measure the refractive index of a transparent liquid or solution, the wedge is installed in a transparent rectangle cell containing the sample. Then, the cell is illuminated perpendicularly and the visibility period is measured. By using modest optics, one can measure the refractive index at a relative uncertainty level of 10(-5). There is no limitation on the refractive index range. The method can be applied easily with no mechanical manipulation. The measuring apparatus can be very compact with low mechanical and optical noises.

  8. Conceptual design of heavy ion beam compression using a wedge

    Directory of Open Access Journals (Sweden)

    Jonathan C. Wong

    2015-10-01

    Full Text Available Heavy ion beams are a useful tool for conducting high energy density physics (HEDP experiments. Target heating can be enhanced by beam compression, because a shorter pulse diminishes hydrodynamic expansion during irradiation. A conceptual design is introduced to compress ∼100  MeV/u to ∼GeV/u heavy ion beams using a wedge. By deflecting the beam with a time-varying field and placing a tailor-made wedge amid its path downstream, each transverse slice passes through matter of different thickness. The resulting energy loss creates a head-to-tail velocity gradient, and the wedge shape can be designed by using stopping power models to give maximum compression at the target. The compression ratio at the target was found to vary linearly with (head-to-tail centroid offset/spot radius at the wedge. The latter should be approximately 10 to attain tenfold compression. The decline in beam quality due to projectile ionization, energy straggling, fragmentation, and scattering is shown to be acceptable for well-chosen wedge materials. A test experiment is proposed to verify the compression scheme and to study the beam-wedge interaction and its associated beam dynamics, which will facilitate further efforts towards a HEDP facility.

  9. Compositional Evolution of the Mantle

    Science.gov (United States)

    Bennett, V. C.

    2003-12-01

    The mantle is the Earth's largest chemical reservoir comprising 82% of its total volume and 65% of its mass. The mantle constitutes almost all of the silicate Earth, extending from the base of the crust (which comprises only 0.6% of the silicate mass) to the top of the metallic core at 2,900 km depth. The chemical compositions of direct mantle samples such as abyssal peridotites (Chapter 2.04) and peridotite xenoliths (Chapter 2.05), and of indirect probes of the mantle such as basalts from mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) (Chapter 2.03), and some types of primitive granites, tell us about the compositional state of the modern mantle, with ever increasingly detailed information providing strong evidence for chemical complexity and heterogeneity at all scales (Chapter 2.03). This chemical heterogeneity must reflect the complex physical interplay of a number of distinct long-lived geochemical reservoirs that are identified primarily by their radiogenic isotopic compositions.Many of the chapters in this volume provide detailed images of the current chemical and physical state of the Earth's mantle, whereas other contributions examine the starting composition for the Earth (Chapter 2.01). This chapter attempts to link these two areas by tracking the composition of the mantle through time. The first part of this chapter is a summary of the empirical evidence for secular change in the chemical composition of the mantle from the formation of the Earth at 4.56 Ga throughto the present day. The emphasis is on results from the long-lived radiogenic isotopic systems, in particular 147Sm-143Nd, 176Lu-176Hf, 87Rb-87Sr, and 187Re-187Os systems as these isotopic data provide some of the best constraints on the composition of the mantle in the first half of Earth history, and the timing and extent of chemical differentiation that has affected the mantle over geologic time. Selected trace element data and the "short-lived" 146Sm-142Nd isotopic systems

  10. Redox conditions for mantle plumes

    Science.gov (United States)

    Heister, L. E.; Lesher, C. E.

    2005-12-01

    The vanadium to scandium ratio (V/Sc) for basalts from mid-ocean ridge (MOR) and arc environments has been proposed as a proxy for fO2 conditions during partial melting (e.g. [1] and [2]). Contrary to barometric measurements of the fO2 of primitive lavas, the V/Sc ratio of the upper mantle at mid-ocean ridges and arcs is similar, leading previous authors to propose that the upper mantle has uniform redox potential and is well-buffered. We have attempted to broaden the applicability of the V/Sc parameter to plume-influenced localities (both oceanic and continental), where mantle heterogeneities associated with recycled sediments, mafic crust, and metasomatized mantle, whether of shallow or deep origin, exist. We find that primitive basalts from the North Atlantic Igneous Province (NAIP), Hawaii (both the Loa and Kea trends), Deccan, Columbia River, and Siberian Traps show a range of V/Sc ratios that are generally higher (average ~9) than those for MOR (average ~ 6.7) or arc (average ~7) lavas. Based on forward polybaric decompression modeling, we attribute these differences to polybaric melting and melt segregation within the garnet stability field rather than the presence of a more oxidized mantle in plume-influenced settings. Like MORB, the V/Sc ratios for plume-influenced basalts can be accounted for by an oxidation state approximately one log unit below the Ni-NiO buffer (NNO-1). Our analysis suggests that source heterogeneities have little, if any, resolvable influence on mantle redox conditions, although they have significant influence on the trace element and isotopic composition of mantle-derived melts. We suggest that variations in the redox of erupted lavas is largely a function of shallow lithospheric processes rather than intrinsic to the mantle source, regardless of tectonic setting. [1] Li and Lee (2004) EPSL, [2] Lee et al. (2005) J. of Petrology

  11. Investigation on Gas Storage in Methane Hydrate

    Institute of Scientific and Technical Information of China (English)

    Zhigao Sun; Rongsheng Ma; Shuanshi Fan; Kaihua Guo; Ruzhu Wang

    2004-01-01

    The effect of additives (anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactant alkyl polysaccharide glycoside (APG), and liquid hydrocarbon cyclopentane (CP)) on hydrate induction time and formation rate, and storage capacity was studied in this work. Micelle surfactant solutions were found to reduce hydrate induction time, increase methane hydrate formation rate and improve methane storage capacity in hydrates. In the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation were reduced. The critical micelle concentrations of SDS and APG water solutions were found to be 300× 10-6 and 500× 10-6 for methane hydrate formation system respectively. The effect of anionic surfactant (SDS) on methane storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduced hydrate induction time and improved hydrate formation rate, but could not improve methane storage in hydrates.

  12. Mantle temperature control on composition of arc magmas along the Central Kamchatka Depression

    Science.gov (United States)

    Portnyagin, Maxim; Constantin Manea, Vlad

    2008-07-01

    Abundant volcanism in the Central Kamchatka Depression (CKD)adjacent to the Kamchatka-Aleutian Arc junction occurswhere the Pacific slab edge is subducting beneath Kamchatka.Here we summarize published data on CKD rocks and demonstratea systematic south-to-north change of their compositions frommoderately fractionated basalt-andesite tholeiitic series tohighly fractionated basalt-rhyolite calc-alkaline series includinghigh-magnesian andesites near the slab edge. Localized slabmelting at the slab edge cannot explain these regional geochemicalvariations. Instead, we propose that the thermal state of themantle wedge can be the key factor governing the compositionof CKD magmas. We integrate the results from petrology and numericmodeling to demonstrate the northward decrease of the mantlewedge temperatures beneath CKD volcanoes, which correlates withdecreasing slab dip, length of mantle columns, and magma flux.We envision two petrogenetic models, which relate the compositionof erupted magmas to the subduction parameters beneath the CKD.The first model suggests that mantle temperature governs melt-peridotiteequilibria and favors generation of andesitic primary meltsin cold mantle regions above the shallowly subducting Pacificslab edge. Alternatively, mantle temperature may control magmaticproductivity along the CKD, which decreases sharply toward theslab edge and thus allows more extensive magma fractionationdeeper in the crust and mixing of highly evolved and mantle-derivedmagmas to generate Si-rich "primitive" magmas. These resultspoint to a possible casual link between deep mantle and shallowcrustal magmatic processes. Similar effects of mantle temperatureon the composition and productivity of arc magmatism are expectedelsewhere, particularly in volcanic regions associated withsignificant slab dip variation along the arc.

  13. Benchmarking analogue models of brittle thrust wedges

    Science.gov (United States)

    Schreurs, Guido; Buiter, Susanne J. H.; Boutelier, Jennifer; Burberry, Caroline; Callot, Jean-Paul; Cavozzi, Cristian; Cerca, Mariano; Chen, Jian-Hong; Cristallini, Ernesto; Cruden, Alexander R.; Cruz, Leonardo; Daniel, Jean-Marc; Da Poian, Gabriela; Garcia, Victor H.; Gomes, Caroline J. S.; Grall, Céline; Guillot, Yannick; Guzmán, Cecilia; Hidayah, Triyani Nur; Hilley, George; Klinkmüller, Matthias; Koyi, Hemin A.; Lu, Chia-Yu; Maillot, Bertrand; Meriaux, Catherine; Nilfouroushan, Faramarz; Pan, Chang-Chih; Pillot, Daniel; Portillo, Rodrigo; Rosenau, Matthias; Schellart, Wouter P.; Schlische, Roy W.; Take, Andy; Vendeville, Bruno; Vergnaud, Marine; Vettori, Matteo; Wang, Shih-Hsien; Withjack, Martha O.; Yagupsky, Daniel; Yamada, Yasuhiro

    2016-11-01

    We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing

  14. Effects of volatiles on melt production and reactive flow in the mantle

    CERN Document Server

    Keller, Tobias

    2015-01-01

    Magmatism in the Earth interior has a significant impact on its dynamic, thermal and compositional evolution. Experimental studies of petrology of mantle melting find that small concentrations of water and carbon dioxide have a significant effect on the solidus temperature and distribution of melting in the upper mantle. However, it has remained unclear what effect small fractions of deep, volatile-rich melts have on melting and melt transport in the shallow asthenosphere. We present a method to simulate the thermochemical evolution of the upper mantle in the presence of volatiles. The method is based on a novel, thermodynamically consistent framework for reactive, disequilibrium, multi-component melting/crystallisation. This is coupled with a system of equations representing conservation of mass, momentum, and energy for a partially molten grain aggregate. Application of this method to upwelling-column models demonstrates that it captures leading-order features of hydrated and carbonated peridotite melting. ...

  15. Calculating dose distributions and wedge factors for photon treatment fields with dynamic wedges based on a convolution/superposition method.

    Science.gov (United States)

    Liu, H H; McCullough, E C; Mackie, T R

    1998-01-01

    A convolution/superposition based method was developed to calculate dose distributions and wedge factors in photon treatment fields generated by dynamic wedges. This algorithm used a dual source photon beam model that accounted for both primary photons from the target and secondary photons scattered from the machine head. The segmented treatment tables (STT) were used to calculate realistic photon fluence distributions in the wedged fields. The inclusion of the extra-focal photons resulted in more accurate dose calculation in high dose gradient regions, particularly in the beam penumbra. The wedge factors calculated using the convolution method were also compared to the measured data and showed good agreement within 0.5%. The wedge factor varied significantly with the field width along the moving jaw direction, but not along the static jaw or the depth direction. This variation was found to be determined by the ending position of the moving jaw, or the STT of the dynamic wedge. In conclusion, the convolution method proposed in this work can be used to accurately compute dose for a dynamic or an intensity modulated treatment based on the fluence modulation in the treatment field.

  16. Ice wedges as climate archives - opportunities and limitations

    Science.gov (United States)

    Opel, Thomas; Meyer, Hanno; Dereviagin, Alexander; Wetterich, Sebastian; Schirrmeister, Lutz

    2014-05-01

    Permafrost regions are assumed to play a major role for Global Climate Change as they are susceptible to recent warming in particular with regard to the potential release of stored fossil carbon. Permafrost serves as archive of past environmental and climate conditions (such as sedimentation processes, temperature and precipitation regimes as well as landscape and ecosystem development) over tens of thousands of years that can be traced by the study of the frozen deposits, paleontological content and ground ice. Ground ice comprises all types of ice contained in frozen ground, including pore ice, segregation ice and ice wedges. Here, we focus on ice wedges as the most promising climate archive that can be studied by stable water isotope methods analogously to glacier ice. They may be identified by their vertically oriented foliations. Ice wedges form by the repeated filling of wintertime thermal contraction cracks by snow melt water in spring. As the melt water quickly refreezes at negative ground temperature no isotopic fractionation takes place. Hence, the isotopic composition (δ18O, δD, d excess) of wedge ice is assumed to be representative of annual cold period climate conditions, i.e. winter and spring. Ice wedges are widely distributed in non-glaciated high northern latitudes, are diagnostic of permafrost and, in general, indicative of cold and stable climate conditions. They are found in continuous and discontinuous permafrost zones and may also have formed during and survived interglacials. They may provide unique paleo information that is not captured by other climate archives. Usually, ice wedges are dated by radiocarbon dating of organic material incorporated in the ice, but also 36Cl/Cl ratios have been successfully used to date ice wedges. Nevertheless reliable age determination is challenging when studying ice wedges. Here we tackle the potential of ice wedges from the Siberian and American Arctic to trace past climate changes from stable isotope

  17. Quantitative analysis of hydrogen sites and occupancy in deep mantle hydrous wadsleyite using single crystal neutron diffraction

    Science.gov (United States)

    Purevjav, Narangoo; Okuchi, Takuo; Tomioka, Naotaka; Wang, Xiaoping; Hoffmann, Christina

    2016-01-01

    Evidence from seismological and mineralogical studies increasingly indicates that water from the oceans has been transported to the deep earth to form water-bearing dense mantle minerals. Wadsleyite [(Mg, Fe2+)2SiO4] has been identified as one of the most important host minerals incorporating this type of water, which is capable of storing the entire mass of the oceans as a hidden reservoir. To understand the effects of such water on the physical properties and chemical evolution of Earth’s interior, it is essential to determine where in the crystal structure the hydration occurs and which chemical bonds are altered and weakened after hydration. Here, we conduct a neutron time-of-flight single-crystal Laue diffraction study on hydrous wadsleyite. Single crystals were grown under pressure to a size suitable for the experiment and with physical qualities representative of wet, deep mantle conditions. The results of this neutron single crystal diffraction study unambiguously demonstrate the method of hydrogen incorporation into the wadsleyite, which is qualitatively different from that of its denser polymorph, ringwoodite, in the wet mantle. The difference is a vital clue towards understanding why these dense mantle minerals show distinctly different softening behaviours after hydration. PMID:27725749

  18. Quantitative analysis of hydrogen sites and occupancy in deep mantle hydrous wadsleyite using single crystal neutron diffraction

    Science.gov (United States)

    Purevjav, Narangoo; Okuchi, Takuo; Tomioka, Naotaka; Wang, Xiaoping; Hoffmann, Christina

    2016-10-01

    Evidence from seismological and mineralogical studies increasingly indicates that water from the oceans has been transported to the deep earth to form water-bearing dense mantle minerals. Wadsleyite [(Mg, Fe2+)2SiO4] has been identified as one of the most important host minerals incorporating this type of water, which is capable of storing the entire mass of the oceans as a hidden reservoir. To understand the effects of such water on the physical properties and chemical evolution of Earth’s interior, it is essential to determine where in the crystal structure the hydration occurs and which chemical bonds are altered and weakened after hydration. Here, we conduct a neutron time-of-flight single-crystal Laue diffraction study on hydrous wadsleyite. Single crystals were grown under pressure to a size suitable for the experiment and with physical qualities representative of wet, deep mantle conditions. The results of this neutron single crystal diffraction study unambiguously demonstrate the method of hydrogen incorporation into the wadsleyite, which is qualitatively different from that of its denser polymorph, ringwoodite, in the wet mantle. The difference is a vital clue towards understanding why these dense mantle minerals show distinctly different softening behaviours after hydration.

  19. Hydrates fighting tools; Des outils de lutte contre les hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-04-01

    Shell Exploration and Production company (SEPCo) is the operator of the 'Popeye' deep offshore field in the Gulf of Mexico. Thanks to the introduction of a low dosing hydrates inhibitor (LDHI) elaborated by Shell Global Solutions, the company has added a 7.5 Gpc extra volume of gas to its recoverable reserves. This new technology avoids the plugging of pipes by hydrates formation. (J.S.)

  20. The evolving energy budget of accretionary wedges

    Science.gov (United States)

    McBeck, Jessica; Cooke, Michele; Maillot, Bertrand; Souloumiac, Pauline

    2017-04-01

    The energy budget of evolving accretionary systems reveals how deformational processes partition energy as faults slip, topography uplifts, and layer-parallel shortening produces distributed off-fault deformation. The energy budget provides a quantitative framework for evaluating the energetic contribution or consumption of diverse deformation mechanisms. We investigate energy partitioning in evolving accretionary prisms by synthesizing data from physical sand accretion experiments and numerical accretion simulations. We incorporate incremental strain fields and cumulative force measurements from two suites of experiments to design numerical simulations that represent accretionary wedges with stronger and weaker detachment faults. One suite of the physical experiments includes a basal glass bead layer and the other does not. Two physical experiments within each suite implement different boundary conditions (stable base versus moving base configuration). Synthesizing observations from the differing base configurations reduces the influence of sidewall friction because the force vector produced by sidewall friction points in opposite directions depending on whether the base is fixed or moving. With the numerical simulations, we calculate the energy budget at two stages of accretion: at the maximum force preceding the development of the first thrust pair, and at the minimum force following the development of the pair. To identify the appropriate combination of material and fault properties to apply in the simulations, we systematically vary the Young's modulus and the fault static and dynamic friction coefficients in numerical accretion simulations, and identify the set of parameters that minimizes the misfit between the normal force measured on the physical backwall and the numerically simulated force. Following this derivation of the appropriate material and fault properties, we calculate the components of the work budget in the numerical simulations and in the

  1. Plume-subduction interaction in southern Central America: Mantle upwelling and slab melting

    Science.gov (United States)

    Gazel, Esteban; Hoernle, Kaj; Carr, Michael J.; Herzberg, Claude; Saginor, Ian; den Bogaard, Paul van; Hauff, Folkmar; Feigenson, Mark; Swisher, Carl

    2011-01-01

    The volcanic front in southern Central America is well known for its Galapagos OIB-like geochemical signature. A comprehensive set of geochemical, isotopic and geochronological data collected on volumetrically minor alkaline basalts and adakites were used to better constrain the mantle and subduction magma components and to test the different models that explain this OIB signature in an arc setting. We report a migration of back-arc alkaline volcanism towards the northwest, consistent with arc-parallel mantle flow models, and a migration towards the southeast in the adakites possibly tracking the eastward movement of the triple junction where the Panama Fracture Zone intersects the Middle America Trench. The adakites major and trace element compositions are consistent with magmas produced by melting a mantle-wedge source metasomatized by slab derived melts. The alkaline magmas are restricted to areas that have no seismic evidence of a subducting slab. The geochemical signature of the alkaline magmas is mostly controlled by upwelling asthenosphere with minor contributions from subduction components. Mantle potential temperatures calculated from the alkaline basalt primary magmas increased from close to ambient mantle (~ 1380-1410 °C) in the Pliocene to ~ 1450 °C in the younger units. The calculated initial melting pressures for these primary magmas are in the garnet stability field (3.0-2.7 GPa). The average final melting pressures range between 2.7 and 2.5 GPa, which is interpreted as the lithosphere-asthenosphere boundary at ~ 85-90 km. We provide a geotectonic model that integrates the diverse observations presented here. The slab detached after the collision of the Galapagos tracks with the arc (~ 10-8 Ma). The detachment allowed hotter asthenosphere to flow into the mantle wedge. This influx of hotter asthenosphere explains the increase in mantle potential temperatures, the northwest migration in the back-arc alkaline lavas that tracks the passage of the

  2. Obsidian Hydration: A New Paleothermometer

    Energy Technology Data Exchange (ETDEWEB)

    Anovitz, Lawrence {Larry} M [ORNL; Riciputi, Lee R [ORNL; Cole, David R [ORNL; Fayek, Mostafa [ORNL; Elam, J. Michael [University of Tennessee, Knoxville (UTK)

    2006-01-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  3. Obsidian hydration: A new paleothermometer

    Science.gov (United States)

    Anovitz, Lawrence M.; Riciputi, Lee R.; Cole, David R.; Fayek, Mostafa; Elam, J. Michael

    2006-07-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  4. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  5. Heterogeneous mantle anisotropy and fluid upwelling: implication for generation of the 1891 Nobi earthquake

    Science.gov (United States)

    Iidaka, Takashi; Hiramatsu, Yoshihiro

    2016-10-01

    The 1891 Nobi earthquake was the largest historic intraplate earthquake in Japan. The rupture origin corresponds to a zone of high strain rate inferred from geodetic data. To understand the geologic setting of this event, we deployed temporary seismic stations in the area. Shear-wave splitting analysis was performed using data from temporary and permanent seismic stations, revealing significant lateral variations in polarization directions. Polarization directions of NE-SW, ESE-WNW, and ENE-WSW were observed in the northeastern, central, and southwestern parts of the study area, respectively. The NE-SW- and ENE-WSW-aligned polarizations are consistent with the subduction directions of the Philippine Sea plate and Pacific plate, respectively; thus, shear-wave splitting in the northeastern and southwestern regions of the study area is likely caused by mantle wedge anisotropy, a consequence of mantle flow caused by the subducting oceanic slabs. However, the ESE-WNW orientations observed in the central Chubu Region are inconsistent with the subduction direction of either slab. Regions of low seismic velocity and low resistivity have been reported in the inferred position of the mantle wedge; these heterogeneities are thought to be caused by fluid rising from the dehydrated oceanic slabs. Thus, the ESE-WNW polarization in central Chubu could be a consequence of structural heterogeneities created by fluid to the crust from the mantle. The presence of crustal fluid is closely related to weakening, and the faults responsible for the 1891 Nobi earthquake are located just above the anisotropic region. Because fluids in the crust weaken the surrounding rock, this could explain the occurrence of the 1891 Nobi earthquake.[Figure not available: see fulltext.

  6. Implementation of enhanced dynamic wedge in the focus rtp system.

    Science.gov (United States)

    Miften, M; Wiesmeyer, M; Beavis, A; Takahashi, K; Broad, S

    2000-01-01

    The FOCUS RTP system implementation of Varian's enhanced dynamic wedge (EDW) is presented. Calculations of both dose distributions and wedge factors (WFs) are based on segmented treatment tables (STTs). Calculating dose requires a "transmission matrix" derived from an STT to model the modified fluence from the source. The dose calculation is then performed using either the Clarkson or convolution/superposition algorithms. An initial "primary dose/monitor unit (MU) fraction" WF estimate at the weight point of symmetric and asymmetric fields is calculated from the STT as the ratio of MU delivered on the axis of the weight point divided by total MU delivered for the treatment field. In our approach, we go beyond this initial estimate with a "scatter dose" correction. This requires measured 60 degrees WFs for 5 fields. Scatter corrections derived from measured WFs are interpolated for other wedge angles and field sizes in much the same way as arbitrary wedge angle STTs are derived from a "golden STT" using the "ratio of tangents" formalism. Dose comparisons with measured distributions show good agreement to within 3% or 3 mm for 6-MV beams and all EDW angles. Agreement with measurements to within 1% is obtained for WFs in all symmetric and asymmetric fields for 6- and 10-MV beams. For large wedge angles and field sizes, this represents a significant improvement over the 3% to 4% errors often observed using the MU fraction model alone.

  7. Storing natural gas as frozen hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, J.S.; Khokhar, A.A. (Univ. of Trondheim (Norway)); Parlaktuna, M. (Middle East Technical Univ., Ankara (Turkey))

    1994-02-01

    The formation of natural gas hydrates is a well-known problem in the petroleum and natural gas industries. Hydrates are solid materials that form when liquid water and natural gas are brought in contact under pressure. Hydrate formation need not be a problem. On the contrary, it can be an advantage. The volume of hydrates is much less than that of natural gas. At standard conditions, hydrates occupy 150 to 170 times less volume than the corresponding gas. Typically, natural gas hydrates contain 15% gas and 85% water by mass. It follows that hydrates can be used for large-scale storage of natural gas. Benesh proposed using hydrates to improve the load factor of natural gas supply systems. The author suggested that hydrates could be produced by bringing liquid water into contact with natural gas at the appropriate temperature and high pressure. The hydrate then would be stored at a temperature and pressure where it was stable. When gas was needed for the supply system, the hydrate would be melted at low pressure. The stability of a natural gas hydrate during storage at atmospheric pressure and below-freezing temperatures was studied in the laboratory. The gas hydrate was produced in a stirred vessel at 2- to 6-MPa pressure and temperatures from 0 to 20 C. The hydrate was refrigerated and stored in deep freezers at [minus]5, [minus]10, and [minus]18 C for up to 10 days. The natural gas hydrate remained stable when kept frozen at atmospheric pressure.

  8. Seismology in Ryukyu arc, Japan reveals the distribution and orientation of serpentine minerals suggesting convection and low viscosity of forearc mantle

    Science.gov (United States)

    Nagaya, T.; Walker, A.; Wookey, J. M.; Kendall, M.; Wallis, S.

    2014-12-01

    Refining available estimates of the amount, distribution and alignment of serpentinite in the forearc wedge is needed to develop a better understanding of the seismic anisotropy, strength and fluid transport in this region. Mantle dominantly consists of olivine. However, petrological studies and thermal modeling of convergent margins predict that olivine will be replaced by hydrous mineral phases in fluid-rich and relatively cold forearc mantle. The dominant hydrous mineral will be antigorite. Lower seismic velocities (Vp values (> ~1.8) of serpentine minerals than those of olivine are commonly used as to detect the distribution of antigorite and estimate its proportion compared to olivine. However, antigorite is highly anisotropic and this anisotropy can disguise the presence of antigorite in seismic tomography; the apparent Vp/Vs ratio of antigorite can vary from 1.2-3.4 (Vp = 5.6-8.9 km/s and Vs = 2.5-5.1 km/s) depending on the propagation path of the seismic wave relative to the crystal orientation. Here, we take advantage of this anisotropy and perform an analysis of seismic anisotropy that takes into account ray path measured above the forearc mantle of the Rykuyu arc subduction zone. The measured shear wave splitting delay time above this subduction zone is very large, suggesting the presence of aligned antigorite. Comparing the results of modeling to observed shear wave splitting for both local-S and teleseismic SKS phases, we conclude that the mantle wedge consists of 65 % antigorite and that the antigorite must be aligned along the subducting slab in the deepest part of the wedge but aligned vertically at intermediate depths. This distribution of different orientations strongly suggests the presence of convective mantle flow in the forearc mantle. Physical modeling of the dynamics of the mantle wedge shows that a bulk long-term viscosity of less than 1019 Pa s is required to maintain this large-scale flow. This analysis reveals the presence of otherwise

  9. Airway Hydration and COPD

    Science.gov (United States)

    Ghosh, Arunava; Boucher, R.C.; Tarran, Robert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443

  10. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  11. Subduction zone mantle enrichment by fluids and Zr-Hf-depleted crustal melts as indicated by backarc basalts of the Southern Volcanic Zone, Argentina

    Science.gov (United States)

    Holm, Paul M.; Søager, Nina; Alfastsen, Mads; Bertotto, Gustavo W.

    2016-10-01

    rocks. The fluid-borne enrichment seems to have been derived from South Atlantic wedge mantle with no significant transfer of solubles in the slab fluids from the subducting altered Pacific oceanic crust to the wedge. The Northern Segment magmatism is proposed to be related to the steepening of Nazca plate subduction in the Pleistocene after a shallow slab period, where melts of subducted UCC plus slab fluids metasomatized the overlying depleted wedge mantle. During this steepening, the enriched depleted and undepleted mantle mixed or interacted, and yielded the Northern Segment and Nevado magmas.

  12. Rogue mantle helium and neon.

    Science.gov (United States)

    Albarède, Francis

    2008-02-15

    The canonical model of helium isotope geochemistry describes the lower mantle as undegassed, but this view conflicts with evidence of recycled material in the source of ocean island basalts. Because mantle helium is efficiently extracted by magmatic activity, it cannot remain in fertile mantle rocks for long periods of time. Here, I suggest that helium with high 3He/4He ratios, as well as neon rich in the solar component, diffused early in Earth's history from low-melting-point primordial material into residual refractory "reservoir" rocks, such as dunites. The difference in 3He/4He ratios of ocean-island and mid-ocean ridge basalts and the preservation of solar neon are ascribed to the reservoir rocks being stretched and tapped to different extents during melting.

  13. Abrupt change in magma generation processes across the Central American arc in southeastern Guatemala: flux-dominated melting near the base of the wedge to decompression melting near the top of the wedge

    Science.gov (United States)

    Walker, J. A.; Carr, M. J.; Patino, L. C.; Johnson, C. M.; Feigenson, M. D.; Ward, R. L.

    1995-07-01

    Lavas erupted behind the volcanic front in southeastern Guatemala have many important distinctions from lavas erupted on the volcanic front. These include: generally higher MgO, Nb, Sr, TiO2, and rare earth element concentrations; higher La/Yb and Nb/Y ratios; and lower Ba/La, La/Nb, Ba/Zr and Zr/Nb ratios. These major and trace element distinctions are caused by reduced fractionation during ascent and storage in the crust, lower degrees of melting in the source, and greatly reduced contributions from the subducted Cocos plate in the source. In addition, because all of these important distinctions are even borne in lavas erupted within 20 km of the front, there is little apparent petrogenetic continuity between front and behind-the-front magmas. What little geochemical continuity exists is in radiogenic isotopes: 143Nd/144Nd falls across the arc, Pb isotopic ratios (except 206Pb/204Pb) rise across the arc, and 87Sr/86Sr rise across the arc after an initial discontinuity within 20 km of the front. These continuous across-arc changes in radiogenic isotopes are caused by increased contamination with older, more isotopically disparate rocks, away from the front. Once the effects of crustal contamination are removed, the remaining isotopic variability behind the front is non-systematic and reflects the inherent isotopic heterogeneity of the source, the mantle wedge. Geochemical disconnection in southeastern Guatemala suggests that behind-the-front magmas are produced by decompression melting near the top of the wedge, not by flux-dominated melting near the base of the wedge.

  14. Casimir effect at nonzero temperature for wedges and cylinders

    CERN Document Server

    Ellingsen, Simen Å; Milton, Kimball A

    2010-01-01

    We consider the Casimir-Helmholtz free energy at nonzero temperature $T$ for a circular cylinder and perfectly conducting wedge closed by a cylindrical arc, either perfectly conducting or isorefractive. The energy expression at nonzero temperature may be regularized to obtain a finite value, except for a singular corner term in the case of the wedge which is present also at zero temperature. Assuming the medium in the interior of the cylinder or wedge be nondispersive with refractive index $n$, the temperature dependence enters only through the non-dimensional parameter $2\\pi naT$, $a$ being the radius of the cylinder or cylindrical arc. We show explicitly that the known zero temperature result is regained in the limit $aT\\to 0$ and that previously derived high temperature asymptotics for the cylindrical shell are reproduced exactly.

  15. Dislocation Nucleation and Pileup under a Wedge Contact at Nanoscale

    Directory of Open Access Journals (Sweden)

    Y. F. Gao

    2008-01-01

    Full Text Available Indentation responses of crystalline materials have been found to be radically different at micrometer and nanometer scales. The latter is usually thought to be controlled by the nucleation of dislocations. To explore this physical process, a dislocation mechanics study is performed to determine the conditions for the nucleation of a finite number of dislocations under a two-dimensional wedge indenter, using the Rice-Thomson nucleation criterion. The configurational force on the dislocation consists of the applied force, the image force, and the interaction force between dislocations. Dislocations reach equilibrium positions when the total driving force equals the effective Peierls stress, giving a set of nonlinear equations that can be solved using the Newton-Raphson method. When the apex angle of the wedge indenter increases, the critical contact size for dislocation nucleation increases rapidly, indicating that dislocation multiplication near a blunt wedge tip is extremely difficult. This geometric dependence agrees well with experimental findings.

  16. Indentation tectonics in the accretionary wedge of middle Manila Trench

    Institute of Scientific and Technical Information of China (English)

    LI Jiabiao; JIN Xianglong; RUAN Aiguo; WU Shimin; WU Ziyin; LIU Jianhua

    2004-01-01

    Based on the multibeam morpho-tectonic analysis of the Manila Trench accretionary wedge and its indentation tectonics and the contrasting researches with other geological and geophysical data, three tectonic zones of the wedge are established, faulting features, tectonic distribution and stress mechanism for the indentation tectonicsareanalyzed,oblique subduction along Manila Trench with convergent stress of NW55. Is presented, and the relationship of the ceasing of Eastern Subbasin spreading of South China Sea Basin to the formation of subduction zone of Manila Trench is discussed. By the model analysis and regional research, it is found that the seamount subduction along Manila Trenchoes not lead to the erosion of the accretionary wedge and the oblique subduction actually is a NWWtrending obducfion of Luzon micro-plate that results from the NWW-trending displacement of the Philippine Sea plate.

  17. Surface Geophysical Measurements for Locating and Mapping Ice-Wedges

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Tomaskovicova, Sonia; Larsen, S.H.

    2012-01-01

    With the presently observed trend of permafrost warming and degradation, the development and availability of effective tools to locate and map ice-rich soils and massive ground ice is of increasing importance. This paper presents a geophysical study of an area with polygonal landforms in order...... to test the applicability of DC electrical resistivity tomography (ERT) and Ground Penetrating Radar (GPR) to identifying and mapping ice-wedge occurrences. The site is located in Central West Greenland, and the ice-wedges are found in a permafrozen peat soil with an active layer of about 30 cm. ERT...... and GPR measurements give a coherent interpretation of possible ice-wedge locations, and active layer probing show a tendency for larger thaw depth in the major trench systems consistent with a significant temperature (at 10 cm depth) increase in these trenches identified by thermal profiling. Three...

  18. Modeling and Stability Analysis of Wedge Clutch System

    Directory of Open Access Journals (Sweden)

    Jian Yao

    2014-01-01

    Full Text Available A wedge clutch with unique features of self-reinforcement and small actuation force was designed. Its self-reinforcement feature, associated with different factors such as the wedge angle and friction coefficient, brings different dynamics and unstable problem with improper parameters. To analyze this system, a complete mathematical model of the actuation system is built, which includes the DC motor, the wedge mechanism, and the actuated clutch pack. By considering several nonlinear factors, such as the slip-stick friction and the contact or not of the clutch plates, the system is piecewise linear. Through the stability analysis of the linearized system in clutch slipping phase, the stable condition of the designed parameters is obtained as α>arctan⁡(μc. The mathematical model of the actuation system is validated by prototype testing. And with the validated model, the system dynamics in both stable and unstable conditions is investigated and discussed in engineering side.

  19. Tricritical wedge filling transitions with short-ranged forces

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Enrique, J M [Departamento de Fisica Atomica, Molecular y Nuclear, Area de Fisica Teorica, Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla (Spain); Parry, A O [Department of Mathematics, Imperial College 180 Queen' s Gate, London SW7 2BZ (United Kingdom)

    2005-11-16

    We show that the 3D wedge filling transition in the presence of short-ranged interactions can be first order or second order depending on the strength of the line tension associated with the wedge bottom. This fact implies the existence of a tricritical point characterized by a short-distance expansion which differs from the usual continuous filling transition. Our analysis is based on an effective one-dimensional model for the 3D wedge filling, which arises from the identification of the breather modes as the only relevant interfacial fluctuations. From such analysis we find a correspondence between continuous 3D filling at bulk coexistence and 2D wetting transitions with random-bond disorder.

  20. Effects of change in slab geometry on the mantle flow and slab fabric in Southern Peru

    Science.gov (United States)

    Knezevic Antonijevic, Sanja; Wagner, Lara S.; Beck, Susan L.; Long, Maureen D.; Zandt, George; Tavera, Hernando

    2016-10-01

    The effects of complex slab geometries on the surrounding mantle flow field are still poorly understood. Here we combine shear wave velocity structure with Rayleigh wave phase anisotropy to examine these effects in southern Peru, where the slab changes its geometry from steep to flat. To the south, where the slab subducts steeply, we find trench-parallel anisotropy beneath the active volcanic arc that we attribute to the mantle wedge and/or upper portions of the subducting plate. Farther north, beneath the easternmost corner of the flat slab, we observe a pronounced low-velocity anomaly. This anomaly is caused either by the presence of volatiles and/or flux melting that could result from southward directed, volatile-rich subslab mantle flow or by increased temperature and/or decompression melting due to small-scale vertical flow. We also find evidence for mantle flow through the tear north of the subducting Nazca Ridge. Finally, we observe anisotropy patterns associated with the fast velocity anomalies that reveal along strike variations in the slab's internal deformation. The change in slab geometry from steep to flat contorts the subducting plate south of the Nazca Ridge causing an alteration of the slab petrofabric. In contrast, the torn slab to the north still preserves the primary (fossilized) petrofabric first established shortly after plate formation.

  1. Lateral variation of differential stress in the uppermost mantle across the island arc of southwest Japan

    Science.gov (United States)

    Toriumi, Mitsuhiro

    1980-07-01

    The dislocation density and the subgrain size of olivine in peridotite xenoliths in southwest Japan were investigated in order to draw out the lateral variation of the differential stress in the upper mantle of the island arc. Alkali basaltic and andesitic dykes including peridotite xenoliths of Dogo, Kikuma, and Shingu are situated about 200 km behind the Nankai Trough, and those of Oki-Dogo and Takashima located at the portions 400-500 km apart from the trough. The mean dislocation densities of olivine are 2 × 10 6 cm -2 for Oki-Dogo, 8 × 10 6 cm -2 for Takashima, 1 × 10 7 cm -2 for Hamada, 5 × 10 7 cm -2 for Aratoyama, 4 × 10 7 cm -2 for Kikuma, 3 × 10 7 cm -2 for Dogo, and 5 × 10 6 cm -2 for Shingu peridotites. It is concluded that the differential stress is high in the uppermost mantle beneath the island arc and low in the back-arc and the mantle wedge behind the plate boundary. The lateral variation of stress may be due to the diapiric upwelling of upper mantle materials under the island arc. The size of the diapir is suggested to be 200 km in width and 60-150 km in depth.

  2. A view into crustal evolution at mantle depths

    Science.gov (United States)

    Kooijman, Ellen; Smit, Matthijs A.; Ratschbacher, Lothar; Kylander-Clark, Andrew R. C.

    2017-05-01

    melted, densified, and buried to 80-90 km depth - 20 km deeper than the present-day Moho - at 930 ± 35°C. The material descended rapidly, accelerating from 0.9-1.7 mm yr-1 to 4.7-5.8 mm yr-1 within 10-12 Myr, and continued descending after reaching mantle depth at 14-13 Ma. The data reflect the foundering of differentiated deep-crustal fragments (2.9-3.5 g cm-3) into a metasomatized and less dense mantle wedge. Through our new approach in constraining the burial history of rocks, we provided the first time-resolved record of this crustal-recycling process. Foundering introduced vestiges of old evolved crust into the mantle wedge over a relatively short period (c. 10 Myr). The recycling process could explain the variability in the degree of crustal contamination of mantle-derived magmatic rocks in the Pamir and neighboring Tibet during the Cenozoic without requiring a change in plate dynamics or source region.

  3. Flow Analysis for the Falkner–Skan Wedge Flow

    DEFF Research Database (Denmark)

    Bararnia, H; Haghparast, N; Miansari, M

    2012-01-01

    the constant coefficients in the approximated solution. The effects of the polynomial terms of HAM are considered and the accuracy of the results is shown, which increases with the increasing polynomial terms of HAM. Analytical results for the dimensionless velocity and temperature profiles of the wedge flow......In this article an analytical technique, namely the homotopy analysis method (HAM), is applied to solve the momentum and energy equations in the case of a two-dimensional incompressible flow passing over a wedge. The trail and error method and Padé approximation strategies have been used to obtain...

  4. Molecular Depth Profiling with Cluster SIMS and Wedges

    Science.gov (United States)

    Mao, Dan; Wucher, Andreas; Winograd, Nicholas

    2009-01-01

    Secondary ion mass spectrometry and atomic force microscopy are employed to characterize a wedge-shaped crater eroded by 40 keV C60+ bombardment of a 395-nm thin film of Irganox 1010 doped with four delta layers of Irganox 3114. The wedge structure creates a laterally magnified cross section of the film. From an examination of the resulting surface, information about depth resolution, topography and erosion rate can be obtained as a function of crater depth in a single experiment. This protocol provides a straightforward way to determine the parameters necessary to characterize molecular depth profiles, and to obtain an accurate depth scale for erosion experiments. PMID:19968247

  5. Surgical treatment of idiopathic syringomyelia: Silastic wedge syringosubarachnoid shunting technique

    Directory of Open Access Journals (Sweden)

    Teck M Soo

    2014-01-01

    Conclusions: Shunting procedures for the syringomyelia disease spectrum have been criticized due to the inconsistent long-term outcomes. This surgical technique used to treat symptomatic idiopathic syringomyelia has been devised based on our intraoperative experience, surgical outcomes, and evaluation of the literature. The purpose of the wedges is to preserve patency of the communication between the syrinx cavity and the expanded subarachnoid space by preventing healing of the myelotomy edges and by maintaining an artificial conduit between the syrinx cavity and the subarachnoid space. Although short-term results are promising, continued long-term follow up is needed to determine the ultimate success of the silastic wedge shunting procedure.

  6. Three-dimensional wedge filling in ordered and disordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Greenall, M J [Department of Mathematics, Imperial College London, 180 Queen' s Gate, London SW7 2BZ (United Kingdom); Parry, A O [Department of Mathematics, Imperial College London, 180 Queen' s Gate, London SW7 2BZ (United Kingdom); Romero-Enrique, J M [Department of Mathematics, Imperial College London, 180 Queen' s Gate, London SW7 2BZ (United Kingdom)

    2004-04-21

    We investigate interfacial structural and fluctuation effects occurring at continuous filling transitions in 3D wedge geometries. We show that fluctuation-induced wedge covariance relations that have been reported recently for 2D filling and wetting have mean-field or classical analogues that apply to higher-dimensional systems. Classical wedge covariance emerges from analysis of filling in shallow wedges based on a simple interfacial Hamiltonian model and is supported by detailed numerical investigations of filling within a more microscopic Landau-like density functional theory. Evidence is presented that classical wedge covariance is also obeyed for filling in more acute wedges in the asymptotic critical regime. For sufficiently short-ranged forces mean-field predictions for the filling critical exponents and covariance are destroyed by pseudo-one-dimensional interfacial fluctuations. We argue that in this filling fluctuation regime the critical exponents describing the divergence of length scales are related to values of the interfacial wandering exponent {zeta}(d) defined for planar interfaces in (bulk) two-dimensional (d = 2) and three-dimensional (d = 3) systems. For the interfacial height l{sub w} {approx} {theta}-{alpha}){sup -{beta}}{sub w}, with {theta} the contact angle and {alpha} the wedge tilt angle, we find {beta}{sub w} = {zeta}(2)/2(1-{zeta}(3)). For pure systems (thermal disorder) we recover the known result {beta}{sub w} = 1/4 predicted by interfacial Hamiltonian studies whilst for random-bond disorder we predict the universal critical exponent {beta} {approx} even in the presence of dispersion forces. We revisit the transfer matrix theory of three-dimensional filling based on an effective interfacial Hamiltonian model and discuss the interplay between breather, tilt and torsional interfacial fluctuations. We show that the coupling of the modes allows the problem to be mapped onto a quantum mechanical problem as conjectured by previous authors

  7. Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition

    Science.gov (United States)

    Hyndman, R. D.; McCrory, P. A.; Wech, A.; Kao, H.; Ague, J.

    2015-06-01

    In this study we first summarize the constraints that on the Cascadia subduction thrust, there is a 70 km gap downdip between the megathrust seismogenic zone and the Episodic Tremor and Slip (ETS) that lies further landward; there is not a continuous transition from unstable to conditionally stable sliding. Seismic rupture occurs mainly offshore for this hot subduction zone. ETS lies onshore. We then suggest what does control the downdip position of ETS. We conclude that fluids from dehydration of the downgoing plate, focused to rise above the fore-arc mantle corner, are responsible for ETS. There is a remarkable correspondence between the position of ETS and this corner along the whole margin. Hydrated mineral assemblages in the subducting oceanic crust and uppermost mantle are dehydrated with downdip increasing temperature, and seismic tomography data indicate that these fluids have strongly serpentinized the overlying fore-arc mantle. Laboratory data show that such fore-arc mantle serpentinite has low permeability and likely blocks vertical expulsion and restricts flow updip within the underlying permeable oceanic crust and subduction shear zone. At the fore-arc mantle corner these fluids are released upward into the more permeable overlying fore-arc crust. An indication of this fluid flux comes from low Poisson's Ratios (and Vp/Vs) found above the corner that may be explained by a concentration of quartz which has exceptionally low Poisson's Ratio. The rising fluids should be silica saturated and precipitate quartz with decreasing temperature and pressure as they rise above the corner.

  8. Tetrahydrofuran hydrate decomposition characteristics in porous media

    Science.gov (United States)

    Song, Yongchen; Wang, Pengfei; Wang, Shenglong; Zhao, Jiafei; Yang, Mingjun

    2016-12-01

    Many tetrahydrofuran (THF) hydrate properties are similar to those of gas hydrates. In the present work THF hydrate dissociation in four types of porous media is studied. THF solution was cooled to 275.15 K with formation of the hydrate under ambient pressure, and then it dissociated under ambient conditions. THF hydrate dissociation experiments in each porous medium were conducted three times. Magnetic resonance imaging (MRI) was used to obtain images. Decomposition time, THF hydrate saturation and MRI mean intensity (MI) were measured and analyzed. The experimental results showed that the hydrate decomposition time in BZ-4 and BZ-3 was similar and longer than that in BZ-02. In each dissociation process, the hydrate decomposition time of the second and third cycles was shorter than that of the first cycle in BZ-4, BZ-3, and BZ-02. The relationship between THF hydrate saturation and time is almost linear.

  9. Non-linear critical taper model and determination of accretionary wedge strength

    Science.gov (United States)

    Yang, Che-Ming; Dong, Jia-Jyun; Hsieh, Yuan-Lung; Liu, Hsueh-Hua; Liu, Cheng-Lung

    2016-12-01

    The critical taper model has been widely used to evaluate the strength contrast between the wedge and the basal detachment of fold-and-thrust belts and accretionary wedges. However, determination of the strength parameters using the traditional critical taper model, which adopts the Mohr-Coulomb failure criterion, is difficult, if not impossible. In this study, we propose a modified critical taper model that incorporates the non-linear Hoek-Brown failure criterion. The parameters in the proposed critical Hoek-Brown wedge CHBW model can be directly evaluated via field investigations and laboratory tests. Meanwhile, the wedge strength is a function of the wedge thickness, which is oriented from stress non-linearity. The fold-and-thrust belt in western central Taiwan was used as an example to validate the proposed model. The determined wedge strength was 0.86 using a representative wedge thickness of 5.3 km; this was close to the inferred value of 0.6 from the critical taper. Interestingly, a concave topographic relief is predicted as a result of the wedge thickness dependency of the wedge strength, even if the wedge is composed of homogeneous materials and if the strength of the detachment is uniform. This study demonstrates that the influence of wedge strength on the critical taper angle can be quantified by the spatial distribution of strength variables and by the consideration of the wedge thickness dependency of wedge strength.

  10. Partitioning of halogens between mantle minerals and aqueous fluids: implications for the fluid flow regime in subduction zones

    Science.gov (United States)

    Bernini, Diego; Wiedenbeck, Michael; Dolejš, David; Keppler, Hans

    2013-01-01

    We have performed phase equilibrium experiments in the system forsterite-enstatite-pyrope-H2O with MgCl2 or MgF2 at 1,100 °C and 2.6 GPa to constrain the solubility of halogens in the peridotite mineral assemblage and the fluid-mineral partition coefficients. The chlorine solubility in forsterite, enstatite and in pyrope is very low, 2.1-3.9 and 4.0-11.4 ppm, respectively, and it is independent of the fluid salinity (0.3-30 wt% Cl), suggesting that some intrinsic saturation limit in the crystal is reached already at very low chlorine concentrations. Chlorine is therefore exceedingly incompatible in upper-mantle minerals. The fluorine solubility is 170-336 ppm in enstatite and 510-1,110 ppm in pyrope, again independent of fluid salinity. Forsterite dissolves 1,750-1,900 ppm up to a fluid salinity of 1.6 wt% F. At higher fluorine contents in the system, forsterite is replaced by the minerals of the humite group. The lower solubility of chlorine by three orders of magnitude when compared to fluorine is consistent with increasing lattice strain. Fluid-mineral partition coefficients are 100-102 for fluorine and 103-105 for chlorine. Since the latter values are orders of magnitude higher than those for hydroxyl partitioning, fluid flow from the subducting slab through the mantle wedge will lead to an efficient sequestration of H2O into the nominally anhydrous minerals in the wedge, whereas chlorine becomes enriched in the residual fluid. Simple mass balance calculations reveal that rock-fluid ratios of up to >3,000 are required to produce the elevated Cl/H2O ratios observed in some primitive arc magmas. Accordingly, fluid flow from the subducted slab into the zone of melting in the mantle wedge does not only occur rapidly in narrow channels, but at least in some subduction zones, fluid pervasively infiltrates the mantle peridotite and interacts with a large volume of the mantle wedge. Together with the Cl/H2O ratios of primitive arc magmas, our data therefore constrain

  11. How inheritance, geochemical and geophysical properties of the lithospheric mantle influence rift development and subsequent collision

    Science.gov (United States)

    Picazo, Suzanne; Chenin, Pauline; Müntener, Othmar; Manatschal, Gianreto; Karner, Garry; Johnson, Christopher

    2017-04-01

    . Conversely to a classical subduction where the oceanic lithosphere being subducted produces a mobile component that contributes to the formation of long-lived volcanic arcs, a hyper-extended rifted system and small oceanic basins (production of arc magmas. Such a mantle wedge might remains fertile with a high potential to melt during the first stages of subsequent extension. Hacker, B. R., Abers, G. A., and Peacock, S. M. (2003). Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research, 108(B1):2029. Picazo, S., Müntener, O., Manatschal, G., Bauville, A., Karner, G., & Johnson, C. (2016). Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: Evidence for mantle modification during an extensional cycle. Lithos, 266, 233-263.

  12. Mantle superplumes induce geomagnetic superchrons

    Directory of Open Access Journals (Sweden)

    Peter eOlson

    2015-07-01

    Full Text Available We use polarity reversal systematics from numerical dynamos to quantify the hypothesis that the modulation of geomagnetic reversal frequency, including geomagnetic superchrons, results from changes in core heat flux related to growth and collapse of lower mantle superplumes. We parameterize the reversal frequency sensitivity from numerical dynamos in terms of average core heat flux normalized by the difference between the present-day core heat flux and the core heat flux at geomagnetic superchron onset. A low-order polynomial fit to the 0-300 Ma Geomagnetic Polarity Time Scale (GPTS reveals that a decrease in core heat flux relative to present-day of approximately 30% can account for the Cretaceous Normal Polarity and Kiaman Reverse Polarity Superchrons, whereas the hyper-reversing periods in the Jurassic require a core heat flux equal to or higher than present-day. Possible links between GPTS transitions, large igneous provinces (LIPs, and the two lower mantle superplumes are explored. Lower mantle superplume growth and collapse induce GPTS transitions by increasing and decreasing core heat flux, respectively. Age clusters of major LIPs postdate transitions from hyper-reversing to superchron geodynamo states by 30-60 Myr, suggesting that superchron onset may be contemporaneous with LIP-forming instabilities produced during collapses of lower mantle superplumes.

  13. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.;

    1999-01-01

    Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...... and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6...

  14. Progress of Gas Hydrate Studies in China

    Institute of Scientific and Technical Information of China (English)

    樊栓狮; 汪集旸

    2006-01-01

    A brief overview is given on the gas hydrate-related research activities carried out by Chinese researchers in the past 15 years. The content involves: (1) Historical review. Introducing the gas hydrate research history in China; (2) Gas hydrate research groups in China. There are nearly 20 groups engaged in gas hydrate research now; (3) Present studies.Including fundamental studies, status of the exploration of natural gas hydrate resources in the South China Sea region, and development of hydrate-based new techniques; (4) Future development.

  15. Hydration of fly ash cement

    Energy Technology Data Exchange (ETDEWEB)

    Etsuo Sakai; Shigeyoshi Miyahara; Shigenari Ohsawa; Seung-Heun Lee; Masaki Daimon [Tokyo Institute of Technology, Tokyo (Japan). Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering

    2005-06-01

    It is necessary to establish the material design system for the utilization of large amounts of fly ash as blended cement instead of disposing of it as a waste. Cement blended with fly ash is also required as a countermeasure to reduce the amount of CO{sub 2} generation. In this study, the influences of the glass content and the basicity of glass phase on the hydration of fly ash cement were clarified and hydration over a long curing time was characterized. Two kinds of fly ash with different glass content, one with 38.2% and another with 76.6%, were used. The hydration ratio of fly ash was increased by increasing the glass content in fly ash in the specimens cured for 270 days. When the glass content of fly ash is low, the basicity of glass phase tends to decrease. Reactivity of fly ash is controlled by the basicity of the glass phase in fly ash during a period from 28 to 270 days. However, at an age of 360 days, the reaction ratios of fly ash show almost identical values with different glass contents. Fly ash also affected the hydration of cement clinker minerals in fly ash cement. While the hydration of alite was accelerated, that of belite was retarded at a late stage.

  16. Variation of the upper mantle velocity structure along the central-south Andes

    Science.gov (United States)

    Liang, Xiaofeng; Sandvol, Eric; Shen, Yang; Gao, Haiying

    2014-05-01

    Variations in the subduction angle of the Nazca plate beneath the South American plate has lead to different modes of deformation and volcanism along the Andean active margin. The volcanic gap between the central and southern Andean volcanic zones is correlated with the Pampean flat-slab subduction zone, where the subducting Nazca slab changes from a 30-degree dipping slab beneath the Puna plateau to a horizontal slab beneath the Sierras Pampeanas, and then to a 30-degree dipping slab beneath the south Andes from north to south. The Pampean flat-slab subduction correlates spatially with the track of the Juan Fernandez Ridge, and is associated with the inboard migration of crustal deformation. A major Pliocene delamination event beneath the southern Puna plateau has previously been inferred from geochemical and geological and preliminary geophysical data. The mechanisms for the transition between dipping- and flat-subduction slab and the mountain building process of the central Andean plateau are key issues to understanding the Andean-type orogenic process. We use a new frequency-time normalization approach with non-linear stacking to extract very-broadband (up to 300 second) empirical Green's functions (EGFs) from continuous seismic records. The long-period EGFs provide the deeper depth-sensitivity needed to constrain the mantle structure. The broadband waveform data are from 393 portable stations of four temporary networks: PUNA, SIEMBRA, CHARGE, RAMP, East Sierras Pampeanas, BANJO/SEDA, REFUCA, ANCORP, and 31 permanent stations accessed from both the IRIS DMC and GFZ GEOFON DMC. A finite difference waveform propagation method is used to generate synthetic seismograms from 3-D velocity model. We use 3-D traveltime sensitivity kernels, and traveltime residuals measurement by waveform cross-correlation to directly invert the upper mantle shear-wave velocity structure. The preliminary model shows strong along-strike velocity variations within in the mantle wedge and

  17. Comparison of stromal hydration techniques for clear corneal cataract incisions: conventional hydration versus anterior stromal pocket hydration.

    Science.gov (United States)

    Mifflin, Mark D; Kinard, Krista; Neuffer, Marcus C

    2012-06-01

    Anterior stromal pocket hydration was compared with conventional hydration for preventing wound leak after 2.8 mm uniplanar clear corneal incisions (CCIs) in patients having routine cataract surgery. Conventional hydration involves hydration of the lateral walls of the main incision with visible whitening of the stroma. The anterior stromal pocket hydration technique involves creation of an additional supraincisional stromal pocket overlying the main incision, which is then hydrated instead of the main incision. Sixty-six eyes of 48 patients were included in the data analysis with 33 assigned to each study group. The anterior stromal pocket hydration technique was significantly better than conventional hydration in preventing wound leak due to direct pressure on the posterior lip of the incision. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. locally fabricated metal step wedge for quality assurance in ...

    African Journals Online (AJOL)

    DR. AMINU

    materials, as well as to investigate an alternative wedge material. The values of the ... The use of low performance x-ray machines. b. ... machine in the Radiology Department of. JUTH is .... the x-ray beam, while ms determines the interaction.

  19. Stark effect in a wedge-shaped quantum box

    CERN Document Server

    Reyes-Esqueda, J A; Castillo-Mussot, M; Vazquez, G J; Reyes-Esqueda, Jorge-Alejandro; Mendoza, Carlos I.; Castillo-Mussot, Marcelo del; Vazquez, Gerardo J.

    2005-01-01

    The effect of an external applied electric field on the electronic ground state energy of a quantum box with a geometry defined by a wedge is studied by carrying out a variational calculation. This geometry could be used as an approximation for a tip of a cantilever of an atomic force microscope. We study theoretically the Stark effect as function of the parameters of the wedge: its diameter, angular aperture and thickness; as well as function of the intensity of the external electric field applied along the axis of the wedge in both directions; pushing the carrier towards the wider or the narrower parts. A confining electronic effect, which is sharper as the wedge dimensions are smaller, is clearly observed for the first case. Besides, the sign of the Stark shift changes when the angular aperture is changed from small angles to angles theta>pi. For the opposite field, the electronic confinement for large diameters is very small and it is also observed that the Stark shift is almost independent with respect t...

  20. Thoracoscopic pulmonary wedge resection without post-operative chest drain

    DEFF Research Database (Denmark)

    Holbek, Bo Laksafoss; Hansen, Henrik Jessen; Kehlet, Henrik

    2016-01-01

    : Forced expiratory volume in 1 s (FEV1) ≥60 % of expected, FEV1/forced vital capacity ≥70 %, tumour diameter ≤2 cm, distance from tumour to visceral pleura ≤3 cm, ≤2 separate wedges, no air leak on an intraoperative air leakage test and absence of severe adhesions, bullous/emphysematous disease, pleural...

  1. Wedges, Cones, Cosmic Strings, and the Reality of Vacuum Energy

    CERN Document Server

    Fulling, S A; Truong, P N; Wagner, J

    2012-01-01

    One of J. Stuart Dowker's most significant achievements has been to observe that the theory of diffraction by wedges developed a century ago by Sommerfeld and others provided the key to solving two problems of great interest in general-relativistic quantum field theory during the last quarter of the twentieth century: the vacuum energy associated with an infinitely thin, straight cosmic string, and (after an interchange of time with a space coordinate) the apparent vacuum energy of empty space as viewed by an accelerating observer. In a sense the string problem is more elementary than the wedge, since Sommerfeld's technique was to relate the wedge problem to that of a conical manifold by the method of images. Indeed, Minkowski space, as well as all cone and wedge problems, are related by images to an infinitely sheeted master manifold, which we call Dowker space. We review the research in this area and exhibit in detail the vacuum expectation values of the energy density and pressure of a scalar field in Dowk...

  2. Discrete dislocation plasticity analysis of the wedge indentation of films

    NARCIS (Netherlands)

    Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van der Giessen, E.

    2006-01-01

    The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at +/- 35.3 degrees and 90 degrees with respect to the indentation direction. The analyses are carried out for

  3. Fixed Points of Maps of a Nonaspherical Wedge

    Directory of Open Access Journals (Sweden)

    Merrill Keith

    2009-01-01

    Full Text Available Abstract Let be a finite polyhedron that has the homotopy type of the wedge of the projective plane and the circle. With the aid of techniques from combinatorial group theory, we obtain formulas for the Nielsen numbers of the selfmaps of .

  4. Magnetic and structural instabilities of ultrathin Fe(100) wedges

    Energy Technology Data Exchange (ETDEWEB)

    Bader, S.D.; Li, Dongqi; Qiu, Z.Q.

    1994-05-01

    An overview is provided of recent efforts to explore magnetic and related structural issues for ultrathin Fe films grown epitaxially as wedge structures onto Ag(100) and Cu(100). Experiments were carried out utilizing the surface magneto-optic Kerr effect (SMOKE). Ordinary bcc Fe is lattice-matched to the primitive unit cell of the Ag(100) surface. Fe wedges on Ag(100) can be fabricated whose thick end has in-plane magnetic easy axes due to the shape anisotropy, and whose thin end has perpendicular easy axes due to the surface magnetic anisotrophy. A spin-reorientation transition can thus be studied in the center of the wedge where the competing anisotropies cancel. The goal is to test the Mermin-Wagner theorem which states that long-range order is lost at finite temperatures in an isotropic two-dimensional Heisenberg system. Fe wedges on Cu(100) can be studied in like manner, but the lattice matching permits fcc and tetragonally-distorted fcc phases to provide structural complexity in addition to the interplay of competing magnetic anisotropies. The results of these studies are new phase identifications that help both to put previous work into perspective and to define issues to pursue in the future.

  5. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  6. Seismic Anisotropy due to Crust and Uppermost Mantle Deformation Beneath Southern Peru and Bolivia: Constraints from Receiver Functions

    Science.gov (United States)

    Bar, N.; Long, M. D.; Wagner, L. S.; Beck, S. L.; Tavera, H.

    2016-12-01

    Subduction systems play a key role in plate tectonics, but the deformation of the crust and uppermost mantle during subduction and orogenesis in continental subduction systems remains poorly understood. Observations of seismic anisotropy can provide important constraints on dynamic processes in the crust and uppermost mantle in subduction systems. The subduction zone beneath Peru and Bolivia, where the Nazca plate subducts beneath South America, represents a particularly interesting location to study subduction-related deformation, given the complex slab morphology and the along-strike transition from flat to normally dipping subduction. In particular, understanding the structure and deformation of the crust and mantle will yield insight into the relationship between the flat slab and the overriding continental lithosphere. In this study we constrain seismic anisotropy within and above the subducting slab (including the mantle wedge and the overriding plate) beneath southern Peru and Bolivia using transverse component receiver functions. Because anisotropic receiver function analysis can constrain the depth distribution of anisotropy, this analysis is complementary to previous studies of shear wave splitting in this region. We examine data from two dense lines of seismometers from the PULSE and CAUGHT deployments in Peru and Bolivia, each anchored by a long-running permanent station. The northern line overlies the Peru flat slab, while the southern line overlies the normally dipping slab beneath Bolivia. Beneath Peru, our investigation of anisotropic structure along the flat slab will help test the recently suggested hypothesis of a slab tear; beneath Bolivia, we aim to characterize the pattern of flow in the mantle wedge as well as the nature of deformation in the lower crust of the overriding plate.

  7. Spatial and Temporal Variability in the Circulation and Thermal Evolution of the Mantle in Subduction Zones: Insights From 3-D Laboratory Experiments.

    Science.gov (United States)

    Kincaid, C.; Griffiths, R. W.

    2003-12-01

    The subduction of oceanic lithosphere plays a key role in plate tectonics, the thermal evolution of the mantle and recycling processes between Earth's interior and surface. The majority of subduction models are two-dimensional (2-D), assuming limited variability in the direction parallel to the trench. Observationally based models increasingly appeal to three-dimensional (3-D) flow associated with trench migration and the sinking of oceanic plates with a translational component of motion (rollback). We report results from laboratory experiments that reveal fundamental differences in 3-D mantle circulation and temperature structure in response to subduction with and without a rollback component. In our experiments the upper mantle is simulated with glucose syrup and the subducting plate is represented with a Phenolic sheet that is forced to sink into the glucose along prescribed trajectories. An array of 40 thermisters embedded within the plate is used to monitor slab surface temperatures (SSTs). We vary the relative magnitude of downdip and translational components of slab motion and also consider cases where the plate steepens with time. Another parameter is the initial thickness of the thermal boundary layer (TBL) beneath the overriding plate. Without rollback motion, flow in the mantle wedge is sluggish, there is no mass flux around the plate, and plate edges heat up faster than plate centers. Rollback subduction drives flow around and beneath the sinking plate, velocities increase within the mantle wedge and are focussed towards the center of the plate and the surface of the plate heats more along the centerline. In addition to lateral variability in flow and mantle temperatures, results highlight temporal variability in SSTs and 3-D mantle flow trajectories associated with the initiation of subduction and variations between periods of predominantly downdip versus rollback sinking.

  8. Wedges, cones, cosmic strings and their vacuum energy

    Science.gov (United States)

    Fulling, S. A.; Trendafilova, C. S.; Truong, P. N.; Wagner, J.

    2012-09-01

    One of J Stuart Dowker’s most significant achievements has been to observe that the theory of diffraction by wedges developed a century ago by Sommerfeld and others provided the key to solving two problems of great interest in general-relativistic quantum field theory during the last quarter of the 20th century: the vacuum energy associated with an infinitely thin, straight cosmic string, and (after an interchange of time with a space coordinate) the apparent vacuum energy of empty space as viewed by an accelerating observer. In a sense the string problem is more elementary than the wedge, since Sommerfeld’s technique was to relate the wedge problem to that of a conical manifold by the method of images. Indeed, Minkowski space, as well as all cone and wedge problems, are related by images to an infinitely sheeted master manifold, which we call Dowker space. We review the research in this area and exhibit in detail the vacuum expectation values of the energy density and pressure of a scalar field in Dowker space and the cone and wedge spaces that result from it. We point out that the (vanishing) vacuum energy of Minkowski space results, from the point of view of Dowker space, from the quantization of angular modes, in precisely the way that the Casimir energy of a toroidal closed universe results from the quantization of Fourier modes; we hope that this understanding dispels any lingering doubts about the reality of cosmological vacuum energy. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  9. Hydration of highly charged ions.

    Science.gov (United States)

    Hofer, Thomas S; Weiss, Alexander K H; Randolf, Bernhard R; Rode, Bernd M

    2011-08-01

    Based on a series of ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulations, the broad spectrum of structural and dynamical properties of hydrates of trivalent and tetravalent ions is presented, ranging from extreme inertness to immediate hydrolysis. Main group and transition metal ions representative for different parts of the periodic system are treated, as are 2 threefold negatively charged anions. The results show that simple predictions of the properties of the hydrates appear impossible and that an accurate quantum mechanical simulation in cooperation with sophisticated experimental investigations seems the only way to obtain conclusive results.

  10. Great Market Potential of Hydrazine Hydrate

    Institute of Scientific and Technical Information of China (English)

    Shi Yuying

    2007-01-01

    @@ Stable consumption growth worldwide Hydrazine hydrate is an organic chemical raw material with extensive applications. The world's capacity to produce hydrazine hydrate has reached more than 200 thousand t/atoday (based on 100% hydrazine content).

  11. Methods to determine hydration states of minerals and cement hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  12. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  13. Molecular Dynamics Modeling of Hydrated Calcium-Silicate-Hydrate (CSH) Cement Molecular Structure

    Science.gov (United States)

    2014-08-30

    properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown...public release; distribution is unlimited. Molecular Dynamics Modeling of Hydrated Calcium-Silicate- Hydrate (CSH) Cement Molecular Structure The views... Cement Molecular Structure Report Title Multi-scale modeling of complex material systems requires starting from fundamental building blocks to

  14. Vertebral Osteotomies in Ankylosing Spondylitis-Comparison of Outcomes Following Closing Wedge Osteotomy versus Opening Wedge Osteotomy: A Systematic Review.

    Science.gov (United States)

    Ravinsky, Robert A; Ouellet, Jean-Albert; Brodt, Erika D; Dettori, Joseph R

    2013-04-01

    Study Design Systematic review. Study Rationale To seek out and assess the best quality evidence available comparing opening wedge osteotomy (OWO) and closing wedge osteotomy (CWO) in patients with ankylosing spondylitis to determine whether their results differ with regard to several different subjective and objective outcome measures. Objective The aim of this study is to determine whether there is a difference in subjective and objective outcomes when comparing CWO and OWO in patients with ankylosing spondylitis suffering from clinically significant thoracolumbar kyphosis with respect to quality-of-life assessments, complication risks, and the amount of correction of the spine achieved at follow-up. Methods A systematic review was undertaken of articles published up to July 2012. Electronic databases and reference lists of key articles were searched to identify studies comparing effectiveness and safety outcomes between adult patients with ankylosing spondylitis who received closing wedge versus opening wedge osteotomies. Studies that included pediatric patients, polysegmental osteotomies, or revision procedures were excluded. Two independent reviewers assessed the strength of evidence using the GRADE criteria and disagreements were resolved by consensus. Results From a total of 67 possible citations, 4 retrospective cohorts (class of evidence III) met our inclusion criteria and form the basis for this report. No differences in Oswestry Disability Index, visual analog scale for pain, Scoliosis Research Society (SRS)-24 score, SRS-22 score, and patient satisfaction were reported between the closing and opening wedge groups across two studies. Regarding radiological outcomes following closing versus opening osteotomies, mean change in sagittal vertical axis ranged from 8.9 to 10.8 cm and 8.0 to 10.9 cm, respectively, across three studies; mean change in lumbar lordosis ranged from 36 to 47 degrees and 19 to 41 degrees across four studies; and mean change

  15. Hydration and Thermal Expansion in Anatase Nanoparticles.

    Science.gov (United States)

    Zhu, He; Li, Qiang; Ren, Yang; Fan, Longlong; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2016-08-01

    A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.

  16. Hydration and Thermal Expansion in Anatase Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, He [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Li, Qiang [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Ren, Yang [Argonne National Laboratory, X-Ray Science Division, Argonne IL 60439 USA; Fan, Longlong [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Chen, Jun [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Deng, Jinxia [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China

    2016-06-06

    A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.

  17. Comparison of clinical and radiological outcomes between opening-wedge and closing-wedge high tibial osteotomy: A comprehensive meta-analysis

    Science.gov (United States)

    Wu, Lingfeng; Lin, Jun; Jin, Zhicheng; Cai, Xiaobin; Gao, Weiyang

    2017-01-01

    High tibial osteotomy (HTO) has been widely used for clinical treatment of osteoarthritis of the medial compartment of the knee, and both opening-wedge and closing-wedge HTO are the most commonly used methods. However, it remains unclear which technique has better clinical and radiological outcomes in practice. To systematically evaluate this issue, we conducted a comprehensive meta-analysis by pooling all available data for the opening-wedge HTO and closing-wedge HTO techniques from the electronic databases including PubMed, Embase, Wed of Science and Cochrane Library. A total of 22 studies encompassing 2582 cases were finally enrolled in the meta-analysis. There was no significant difference regarding surgery time, duration of hospitalization, knee pain VAS, Lysholm score and HSS knee score (clinical outcomes) between the opening-wedge and closing-wedge HTO groups (P > 0.05). However, the opening-wedge HTO group showed wider range of motion than the closing-wedge HTO group (P = 0.003). Moreover, as for Hip-Knee-Ankle angle and mean angle of correction, no significant difference was observed between the opening-wedge and closing-wedge HTO groups (P > 0.05), while the opening-wedge HTO group showed greater posterior tibial slope angle (P < 0.001) and lesser patellar height than the closing-wedge HTO group (P < 0.001). On light of the above analysis, we believe that individualized surgical approach should be introduced based on the clinical characteristics of each patient. PMID:28182736

  18. Terahertz sensing of corneal hydration.

    Science.gov (United States)

    Singh, Rahul S; Tewari, Priyamvada; Bourges, Jean Louis; Hubschman, Jean Pierre; Bennett, David B; Taylor, Zachary D; Lee, H; Brown, Elliott R; Grundfest, Warren S; Culjat, Martin O

    2010-01-01

    An indicator of ocular health is the hydrodyanmics of the cornea. Many corneal disorders deteriorate sight as they upset the normal hydrodynamics of the cornea. The mechanisms include the loss of endothelial pump function of corneal dystophies, swelling and immune response of corneal graft rejection, and inflammation and edema, which accompany trauma, burn, and irritation events. Due to high sensitivity to changes of water content in materials, a reflective terahertz (300 GHz and 3 THz) imaging system could be an ideal tool to measure the hydration level of the cornea. This paper presents the application of THz technology to visualize the hydration content across ex vivo porcine corneas. The corneas, with a thickness variation from 470 - 940 µm, were successfully imaged using a reflective pulsed THz imaging system, with a maximum SNR of 50 dB. To our knowledge, no prior studies have reported on the use of THz in measuring hydration in corneal tissues or other ocular tissues. These preliminary findings indicate that THz can be used to accurately sense hydration levels in the cornea using a pulsed, reflective THz imaging system.

  19. Physical properties of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kliner, J.T.R.; Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates are naturally occurring, solid crystalline compounds (clathrates) that encapsulate gas molecules inside the lattices of hydrogen bonded water molecules within a specific temperature-pressure stability zone. Estimates of the total quantity of available methane gas in natural occurring hydrates are based on twice the energy content of known conventional fossil fuels reservoirs. Accurate and reliable in-situ quantification techniques are essential in determining the economic viability of this potential energy yield, which is dependent upon several factors such as sensitivity of the temperature-pressure stability zone, sediment type, porosity, permeability, concentration/abundance of free gas, spatial distribution in pore spaces, specific cage occupancy, and the influence of inhibitors. Various techniques like acoustic P and S waves, time domain reflectometry, and electrical resistance have been used to analyze the quantity and spatial distribution of the gas hydrate samples. These techniques were reviewed and the results obtained in the course of gas hydrate research were presented. 34 refs., 8 figs.

  20. Hydration kinetics of transgenic soybeans

    Directory of Open Access Journals (Sweden)

    Aline Francielle Fracasso

    2015-01-01

    Full Text Available The kinetic and experimental analyses of the hydration process of transgenic soybeans (BRS 225 RR are provided. The importance of the hydration process consists of the grain texture modifications which favor grinding and extraction of soybeans. The soaking isotherms were obtained for four different temperatures. Results showed that temperature affected transgenic soybeans´ hydration rate and time. Moisture content d.b. of the soybeans increased from 0.12 ± 0.01 kg kg-1 to 1.45 ± 0.19 kg kg-1 during 270 min. of process. Two models were used to fit the kinetic curves: an empirical model developed by Peleg (1988 and a phenomenological one, proposed by Omoto et al. (2009. The two models adequately represented the hydration kinetics. Peleg model was applied to the experimental data and the corresponding parameters were obtained and correlated to temperature. The model by Omoto et al. (2009 showed a better statistical fitting. Although Ks was affected by temperature (Ks = 0.38079 exp (-2289.3 T-1, the equilibrium concentration remained practically unchanged.

  1. How stratified is mantle convection?

    Science.gov (United States)

    Puster, Peter; Jordan, Thomas H.

    1997-04-01

    We quantify the flow stratification in the Earth's mid-mantle (600-1500 km) in terms of a stratification index for the vertical mass flux, Sƒ (z) = 1 - ƒ(z) / ƒref (z), in which the reference value ƒref(z) approximates the local flux at depth z expected for unstratified convection (Sƒ=0). Although this flux stratification index cannot be directly constrained by observations, we show from a series of two-dimensional convection simulations that its value can be related to a thermal stratification index ST(Z) defined in terms of the radial correlation length of the temperature-perturbation field δT(z, Ω). ST is a good proxy for Sƒ at low stratifications (SƒUniformitarian Principle. The bound obtained here from global tomography is consistent with local seismological evidence for slab flux into the lower mantle; however, the total material flux has to be significantly greater (by a factor of 2-3) than that due to slabs alone. A stratification index, Sƒ≲0.2, is sufficient to exclude many stratified convection models still under active consideration, including most forms of chemical layering between the upper and lower mantle, as well as the more extreme versions of avalanching convection governed by a strong endothermic phase change.

  2. Teleseismic P-wave tomography and mantle dynamics beneath Eastern Tibet

    Science.gov (United States)

    Lei, Jianshe; Zhao, Dapeng

    2016-05-01

    We determined a new 3-D P-wave velocity model of the upper mantle beneath eastern Tibet using 112,613 high-quality arrival-time data collected from teleseismic seismograms recorded by a new portable seismic array in Yunnan and permanent networks in southwestern China. Our results provide new insights into the mantle structure and dynamics of eastern Tibet. High-velocity (high-V) anomalies are revealed down to 200 km depth under the Sichuan basin and the Ordos and Alashan blocks. Low-velocity (low-V) anomalies are imaged in the upper mantle under the Kunlun-Qilian and Qinling fold zones, and the Songpan-Ganzi, Qiangtang, Lhasa and Chuan-Dian diamond blocks, suggesting that eastward moving low-V materials are extruded to eastern China after the obstruction by the Sichuan basin, and the Ordos and Alashan blocks. Furthermore, the extent and thickness of these low-V anomalies are correlated with the surface topography, suggesting that the uplift of eastern Tibet could be partially related to these low-V materials having a higher temperature and strong positive buoyancy. In the mantle transition zone (MTZ), broad high-V anomalies are visible from the Burma arc northward to the Kunlun fault and eastward to the Xiaojiang fault, and they are connected upward with the Wadati-Benioff seismic zone. These results suggest that the subducted Indian slab has traveled horizontally for a long distance after it descended into the MTZ, and return corner flow and deep slab dehydration have contributed to forming the low-V anomalies in the big mantle wedge. Our results shed new light on the dynamics of the eastern Tibetan plateau.

  3. Mid-mantle heterogeneities and iron spin transition in the lower mantle: Implications for mid-mantle slab stagnation

    Science.gov (United States)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.

    2017-01-01

    Recent high pressure experimental results reveal that the elastic and transport properties of mantle materials are impacted by the electronic spin transition in iron under lower mantle pressure and temperature conditions. The electronic transition in ferropericlase (Fp), the second major constituent mineral of the lower mantle material, is associated with a smooth increase in density starting from the mid-mantle depth to the core-mantle boundary (CMB). The transition also yields softening in the elastic moduli and an increase in the thermal expansivity over the transition zone in the lower mantle. Although there is not yet robust experimental evidence for spin-transition induced density change in the perovskite (Pv) phase (the major constituent mineral in the lower mantle), the spin transition in the octahedral (B) site in Al-free perovskite causes a bulk modulus hardening (increase in the bulk modulus) in the mineral. We have incorporated these physical processes into high resolution 3D-spherical control volume models for mantle convection. A series of numerical experiments explore how the electronic spin transition in iron modifies the mantle flow, and in particular the fate of sinking cold slabs. Such mid-mantle stagnations are prevalent globally in seismic tomographic inversions, but previous explanations for their existence are not satisfactory. Employing density anomalies from the iron spin transition in ferropericlase and density anomaly models for perovskite, we study the influence of the spin transition in the minerals of the lower mantle on mantle flow. Our model results reveal that while the spin transition-induced property variations in ferropericlase enhance mixing in the lower depths of the mantle, the density anomaly arising from the hardening in the bulk modulus of Al-free perovskite can be effective in slowing the descent of slabs and may cause stagnation at mid-mantle levels. A viscosity hill in the lower mantle may further enhance the stagnation

  4. Melting the hydrous, subarc mantle: the origin of primitive andesites

    Science.gov (United States)

    Mitchell, Alexandra L.; Grove, Timothy L.

    2015-08-01

    of mantle lherzolite under anhydrous conditions. This study shows that experimental melts of a FM peridotite plus the addition of alkalis reproduce the compositions of natural PAs in SiO2, Al2O3, TiO2, Cr2O3, MgO, and Na2O at 1.0-1.2 GPa and H2O contents of 0-7 wt%. Our results also suggest that PAs form under a maximum range of extents of melting from F = 0.2-0.3. The CaO contents of the melts produced are 1-5 wt% higher than the natural samples. This is not a result of a depleted source composition or of extremely high extents of melt but is potentially caused by a very low CaO content contribution from deeper in the mantle wedge.

  5. Stabilization of ammonia-rich hydrate inside icy planets.

    Science.gov (United States)

    Naden Robinson, Victor; Wang, Yanchao; Ma, Yanming; Hermann, Andreas

    2017-08-22

    The interior structure of the giant ice planets Uranus and Neptune, but also of newly discovered exoplanets, is loosely constrained, because limited observational data can be satisfied with various interior models. Although it is known that their mantles comprise large amounts of water, ammonia, and methane ices, it is unclear how these organize themselves within the planets-as homogeneous mixtures, with continuous concentration gradients, or as well-separated layers of specific composition. While individual ices have been studied in great detail under pressure, the properties of their mixtures are much less explored. We show here, using first-principles calculations, that the 2:1 ammonia hydrate, (H2O)(NH3)2, is stabilized at icy planet mantle conditions due to a remarkable structural evolution. Above 65 GPa, we predict it will transform from a hydrogen-bonded molecular solid into a fully ionic phase O(2-)([Formula: see text])2, where all water molecules are completely deprotonated, an unexpected bonding phenomenon not seen before. Ammonia hemihydrate is stable in a sequence of ionic phases up to 500 GPa, pressures found deep within Neptune-like planets, and thus at higher pressures than any other ammonia-water mixture. This suggests it precipitates out of any ammonia-water mixture at sufficiently high pressures and thus forms an important component of icy planets.

  6. Physical activity, hydration and health

    Directory of Open Access Journals (Sweden)

    Ascensión Marcos

    2014-06-01

    Full Text Available Since the beginning of mankind, man has sought ways to promote and preserve health as well as to prevent disease. Hydration, physical activity and exercise are key factors for enhancing human health. However, either a little dose of them or an excess can be harmful for health maintenance at any age. Water is an essential nutrient for human body and a major key to survival has been to prevent dehydration. However, there is still a general controversy regarding the necessary amount to drink water or other beverages to properly get an adequate level of hydration. In addition, up to now the tools used to measure hydration are controversial. To this end, there are several important groups of variables to take into account such as water balance, hydration biomarkers and total body water. A combination of methods will be the most preferred tool to find out any risk or situation of dehydration at any age range. On the other hand, physical activity and exercise are being demonstrated to promote health, avoiding or reducing health problems, vascular and inflammatory diseases and helping weight management. Therefore, physical activity is also being used as a pill within a therapy to promote health and reduce risk diseases, but as in the case of drugs, dose, intensity, frequency, duration and precautions have to be evaluated and taken into account in order to get the maximum effectiveness and success of a treatment. On the other hand, sedentariness is the opposite concept to physical activity that has been recently recognized as an important factor of lifestyle involved in the obesogenic environment and consequently in the risk of the non-communicable diseases. In view of the literature consulted and taking into account the expertise of the authors, in this review a Decalogue of global recommendations is included to achieve an adequate hydration and physical activity status to avoid overweight/obesity consequences.

  7. New machining and testing method of large angle infrared wedge mirror parts

    Science.gov (United States)

    Su, Ying; Guo, Rui; Zhang, Fumei; Zhang, Zheng; Liu, Xuanmin; Zengqi, Xu; Li, Wenting; Zhang, Feng

    2016-10-01

    Large angle wedge parts were widely used in the optical system that was used for achieving a wide range of scanning. Due to the parts having the characteristic of large difference in the thickness of both ends and high density, the accuracy of the wedge angle was hard to ensure to reach second level in optical processing. Generally, wedge mirror angle was measured by contact comparison method which was easy to damage the surface. In view of the existence of two practical problems, in this paper, based on theoretical analysis, by taking three key measures that were the accurate positioning for the central position of the large angle wedge part, the accuracy control of angle precision machined of wedge mirror and fast and non destructive laser assisted absolute measurement of large angle wedge, the qualified rate of parts were increased to 100%, a feasible, controllable and efficient process route for large angle infrared wedge parts was found out.

  8. Electrodynamic Casimir Effect in a Medium-Filled Wedge II

    CERN Document Server

    Ellingsen, Simen Adnoy; Milton, Kimball A

    2009-01-01

    We consider the Casimir energy in a geometry of an infinite magnetodielectric wedge closed by a circularly cylindrical arc embedded in another magnetodielectric medium, under the condition that the speed of light be the same in both media. An expression for the Casimir energy corresponding to the arc is obtained and it is found that in the limit where the reflectivity of the boundaries tends to unity the finite part of the Casimir energy of a perfectly conducting wedge-shaped sheet closed by a circular cylinder is regained. The energy of the latter geometry possesses divergences due to the presence of sharp corners. We argue how this is a pathology of the assumption of ideal conductor boundaries, and that no analogous term enters in the present geometry.

  9. MHD Casson nanofluid flow past a wedge with Newtonian heating

    Science.gov (United States)

    Ahmad, Kartini; Hanouf, Zahir; Ishak, Anuar

    2017-02-01

    The problem of steady Casson nanofluid flow past a wedge is studied in this paper. The presence of magnetic field along with Newtonian heating at the surface is considered. The governing partial differential equations are first transformed into a set of nonlinear ordinary differential equations by similarity transformations, before being solved numerically using the Keller-box method. The effects of the wedge angle Ω from 0° (horizontal plate) to 180° (vertical plate) as well as of as the magnetic parameter M on the non-Newtonian fluid flow and heat transfer characteristics are investigated. It is found that the surface temperature is slightly higher for the flow over a horizontal plate compared to that over a vertical plate. It is also found that the magnetic field decreases the surface temperature but increases the skin friction. The flow of a Newtonian fluid is found to give higher skin friction as compared to that of Casson fluid.

  10. Wedge Diffraction as an Instance of Radiative Shielding

    CERN Document Server

    Grzesik, J A

    2016-01-01

    The celebrated Sommerfeld wedge diffraction solution is reexamined from a null interior field perspective. Exact surface currents provided by that solution, when considered as disembodied half-plane laminae radiating into an ambient, uniform space both inside and outside the wedge proper, do succeed in reconstituting both a specular, mirror field above the exposed face, and a shielding plane-wave field of a sign opposite to that of the incoming excitation which, under superposition, creates both the classical, geometric-optics shadow, and a strictly null interior field at the dominant, plane-wave level. Both mirror and shadow radiated fields are controlled by the residue at just one simple pole encountered during a spectral radiative field assembly, fixed in place by incidence direction $\\phi_{0}$ as measured from the exposed face. The radiated fields further provide diffractive contributions drawn from two saddle points that track observation angle $\\phi.$ Even these, more or less asymptotic contributions, a...

  11. Direct FVM Simulation for Sound Propagation in an Ideal Wedge

    Directory of Open Access Journals (Sweden)

    Hongyu Ji

    2016-01-01

    Full Text Available The sound propagation in a wedge-shaped waveguide with perfectly reflecting boundaries is one of the few range-dependent problems with an analytical solution. This provides a benchmark for the theoretical and computational studies on the simulation of ocean acoustic applications. We present a direct finite volume method (FVM simulation for the ideal wedge problem, and both time and frequency domain results are analyzed. We also study the broadband problem with large-scale parallel simulations. The results presented in this paper validate the accuracy of the numerical techniques and show that the direct FVM simulation could be applied to large-scale complex acoustic applications with a high performance computing platform.

  12. Wedge Splitting Test and Fracture Energy on Particulate Reinforced Composites

    Energy Technology Data Exchange (ETDEWEB)

    Na, Seong Hyeon; Kim, Jae Hoon; Choi, Hoon Seok [Chungnam National Univ., Daejeon (Korea, Republic of); Park, Jae Beom; Kim, Shin Hoe; Jung, Gyoo Dong [Agency for Defense Developmen, Daejeon (Korea, Republic of)

    2016-03-15

    The effect of temperature on the fracture energy, crack propagation, and crack tip opening displacement(CTOD) was determined for particulate reinforced composites using the wedge splitting test. The materials that were used consisted of a polymer binder, an oxidizing agent, and aluminum particles. The test rate of the wedge splitting specimen was 50 mm/min, the temperature conditions were 50℃, room temperature, -40℃, and -60℃. The fracture energy, calculated from splitting load-crack mouth opening displacement(CMOD) curves, increased with decreasing temperature from 50℃ to -40℃. In addition, the strength of the particulate reinforced composites increased sharply at -60℃, and the composites evidenced brittle fracture due to the glass transition temperature. The strain fields near the crack tip were analyzed using digital image correlation.

  13. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  14. Handbook of gas hydrate properties and occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  15. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goa...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products......Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...

  16. Modal Analysis in Lined Wedge-Shaped Ducts

    Science.gov (United States)

    Mechel, F. P.

    1998-10-01

    It has been suggested to describe the sound field in a wedge-shaped duct in a cylindrical co-ordinate system in which the boundaries of the wedge lie in a co-ordinate surface. This suggestion was developed in a companion paper [1]. The wave equation can be separated only if the boundaries are ideally reflecting (rigid or soft). Two solutions were proposed in reference [1] for absorbing boundaries. In the first solution the sound field is composed of “ideal modes” (modes in a wedge with ideally reflecting boundaries); the boundary condition at the absorbing boundary then leads to a system of equations for the mode amplitudes. The problem with this method lies in the fact that there is no radial orthogonality of the ideal modes so that the precision of the field synthesis by ideal modes is doubtful. In the second method in reference [1] one defines “fictitious modes” which satisfy the boundary conditions at the flanks exactly and which are based on hypergeometric functions as radial functions, but which produce a “rest” in the wave equation. It was described how this rest can be minimized; this procedure leads to slow numerical integrations. In the present paper, the wedge is subdivided into duct sections with parallel walls (the boundary is stepped); the fields in the sections are composed of duct modes (modes in a straight lined duct); the mode amplitudes are determined from the boundary conditions at the section limits. The advantages of the present method are (analytically) the duct modes are orthogonal across the sections, so the mode amplitudes can be determined with the usual precision of a modal analysis, and (numerically) no numerical integrations are needed.

  17. Large scale test of wedge shaped micro strip gas counters

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Atz, S.; Aulchenko, V.; Bachmann, S.; Baiboussinov, B.; Barthe, S.; Beaumont, W.; Beckers, T.; Beissel, F.; Benhammou, Y.; Bergdolt, A.M.; Bernier, K.; Bluem, P.; Bondar, A.; Bouhali, O.; Boulogne, I.; Bozzo, M.; Brom, J.M.; Camps, C.; Chorowicz, V.; Coffin, J.; Commichau, V.; Contardo, D.; Croix, J.; Troy, J. de; Drouhin, F.; Eberle, H.; Fluegge, G.; Fontaine, J.-C.; Geist, W.; Goerlach, U.; Gundlfinger, K.; Hangarter, K.; Haroutunian, R.; Helleboid, J.M.; Henkes, Th.; Hoffer, M.; Hoffman, C.; Huss, D.; Ischebeck, R.; Jeanneau, F.; Juillot, P.; Junghans, S.; Kapp, M.R.; Kaercher, K.; Knoblauch, D.; Kraeber, M.; Krauth, M.; Kremp, J.; Lounis, A.; Luebelsmeyer, K.; Maazouzi, C.; Macke, D.; Metri, R.; Mirabito, L.; Mueller, Th.; Nagaslaev, V.; Neuberger, D.; Nowack, A.; Pallares, A.; Pandoulas, D.; Petertill, M.; Pooth, O.; Racca, C.; Ripp, I.; Ruoff, E.; Sauer, A.; Schmitz, P.; Schulte, R.; Schultz von Dratzig, A.; Schunk, J.P.; Schuster, G.; Schwaller, B.; Shektman, L.; Siedling, R.; Sigward, M.H.; Simonis, H.J.; Smadja, G.; Stefanescu, J.; Szczesny, H.; Tatarinov, A.; Thuemmel, W.H.; Tissot, S.; Titov, V.; Todorov, T.; Tonutti, M.; Udo, F.; Velde, C. Vander. E-mail: vandervelde@hep.iihe.ac.be; Doninck, W. van; Dyck, Ch. van; Vanlaer, P.; Lancker, L. van; Verdini, P.G.; Weseler, S.; Wittmer, B.; Wortmann, R.; Zghiche, A.; Zhukov, V

    1999-11-01

    In order to check the system aspects of the forward-backward MSGC tracker designed for the future CMS experiment at LHC, 38 trapezoidal MSGC counters assembled in six multi-substrates detector modules were built and exposed to a muon beam at the CERN SPS. Results on the gain uniformity along the wedge-shaped strip pattern and across the detector modules are shown together with measurements of the detection efficiency and the spatial resolution.

  18. Large scale test of wedge shaped micro strip gas counters

    CERN Document Server

    Ackermann, M; Aulchenko, V M; Bachmann, S; Baibusinov, B O; Barthe, S; Beaumont, W; Beckers, T; Beissel, F; Benhammou, Ya; Bergdolt, A M; Bernier, K; Blüm, H P; Bondar, A E; Bouhali, O; Boulogne, I; Bozzo, M; Brom, J M; Camps, C; Chorowicz, V; Coffin, J P; Commichau, V; Contardo, D; Croix, J; De Troy, J G; Drouhin, F; Eberle, H; Flügge, G; Fontaine, J C; Geist, Walter M; Goerlach, U; Gundlfinger, K; Hangarter, K; Haroutunian, R; Helleboid, J M; Henkes, T; Hoffer, M; Hoffmann, C; Huss, D; Ischebeck, R; Jeanneau, F; Juillot, P; Junghans, S; Kapp, M R; Kärcher, K; Knoblauch, D; Kräber, M H; Krauth, M; Kremp, J; Lounis, A; Lübelsmeyer, K; Maazouzi, C; Macke, D; Metri, R; Mirabito, L; Müller, T; Nagaslaev, V; Neuberger, D; Nowak, A; Pallarès, A; Pandoulas, D; Petertill, M; Pooth, O; Racca, C; Ripp, I; Ruoff, E; Sauer, A; Schmitz, P; Schulte, R; Schultz von Dratzig, A; Schunk, J P; Schuster, G; Schwaller, B; Shekhtman, L I; Siedling, R; Sigward, M H; Simonis, H J; Smadja, G; Stefanescu, J; Szczesny, H; Tatarinov, A A; Thümmel, W H; Tissot, S; Titov, V; Todorov, T; Tonutti, M; Udo, Fred; Van der Velde, C; Van Doninck, W K; Van Dyck, C; Vanlaer, P; Van Lancker, L; Verdini, P G; Weseler, S; Wittmer, B; Wortmann, R; Zghiche, A; Zhukov, V

    1999-01-01

    In order to check the system aspects of the forward-backward MSGC tracker designed for the future CMS experiment at LHC, 38 trapezoidal MSGC counters assembled in six multi-substrates detector modules were built and exposed to a muon beam at the CERN SPS. Results on the gain uniformity along the wedge-shaped strip pattern and across the detector modules are shown together with measurements of the detection efficiency and the spatial resolution. (8 refs).

  19. DNS of compressible turbulent boundary layer over a blunt wedge

    Institute of Scientific and Technical Information of China (English)

    LI Xinliang; FU Dexun; MA Yanwan

    2005-01-01

    Direct numerical simulation of spatially evolving compressible boundary layer over a blunt wedge is performed in this paper. The free-stream Mach number is 6 and the disturbance source produced by wall blowing and suction is located downstream of the sound-speed point. Statistics are studied and compared with the results in incompressible flat-plate boundary layer. The mean pressure gradient effects on the vortex structure are studied.

  20. Opening- and Closing-Wedge Distal Femoral Osteotomy

    Science.gov (United States)

    Chahla, Jorge; Mitchell, Justin J.; Liechti, Daniel J.; Moatshe, Gilbert; Menge, Travis J.; Dean, Chase S.; LaPrade, Robert F.

    2016-01-01

    Background: Lateral compartment osteoarthritis of the knee can be a challenging pathology in the younger, active population due to limited treatment options and high patient expectations. Distal femoral osteotomy (DFO) has been reported to be a potential treatment option. Purpose: To perform a systematic review on the survival, outcomes, and complications of DFO for treatment of genu valgum with concomitant lateral compartment osteoarthritis of the knee. Study Design: Systematic review; Level of evidence, 4. Methods: A systematic review of the literature was performed using the Cochrane Database of Systematic Reviews, the Cochrane Central Registry of Controlled Trials, PubMed, and MEDLINE from 1980 to present. Inclusion criteria were as follows: outcomes of opening- and closing-wedge DFOs performed for treatment of genu valgum with concomitant lateral compartment osteoarthritis of the knee, English language, minimum 2-year follow-up, and human studies. Data abstracted from the selected studies included type of osteotomy (opening vs closing), survival rate, patient-reported and radiographic outcomes, and complications. Results: Fourteen studies met the inclusion criteria and were considered for the review. A total of 9 closing-wedge and 5 opening-wedge DFO studies were included. All were retrospective studies and reported good to excellent patient-reported outcomes after DFO. Survival decreased with increasing time from surgery, with 1 study reporting a 100% survival rate at 6.5 years, compared with 21.5% at 20 years in another study. A low rate of complications was reported throughout the review. Conclusion: Highly heterogeneous literature exists for both opening- and closing-wedge DFOs for the treatment of isolated lateral compartment osteoarthritis with valgus malalignment. A mean survival rate of 80% at 10-year follow-up was reported, supporting that this procedure can be a viable treatment option to delay or reduce the need for joint arthroplasty. A low

  1. Wedge-local quantum fields on a nonconstant noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Much, A. [Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig (Germany) and Institute for Theoretical Physics, University of Leipzig, 04009 Leipzig (Germany)

    2012-08-15

    Within the framework of warped convolutions we deform the massless free scalar field. The deformation is performed by using the generators of the special conformal transformations. The investigation shows that the deformed field turns out to be wedge-local. Furthermore, it is shown that the spacetime induced by the deformation with the special conformal operators is nonconstant noncommutative. The noncommutativity is obtained by calculating the deformed commutator of the coordinates.

  2. Extremely large fractionation of Li isotopes in a chromitite-bearing mantle sequence

    Science.gov (United States)

    Su, Ben-Xun; Zhou, Mei-Fu; Robinson, Paul T.

    2016-01-01

    We report Li isotopic compositions of olivine from the mantle sequence of the Luobusa ophiolite, southern Tibet. The olivine in the Luobusa ophiolite has Li concentrations from ~0.1 to 0.9 ppm and a broad range of δ7Li (+14 to −20‰). An inverse correlation of Li concentration and δ7Li in olivine from harzburgite suggests recent diffusive ingress of Li into the rock. Olivine from dunite enveloping podiform chromitites shows positive δ7Li values higher than those of MORB, whereas olivine from the chromitite has negative δ7Li values. Such variations are difficult to reconcile by diffusive fractionation and are thought to record the nature of the magma sources. Our results clearly indicate that the Luobusa chromitites formed from magmas with light Li isotopic compositions and that the dunites are products of melt-rock interaction. The isotopically light magmas originated by partial melting of a subducted slab after high degrees of dehydration and then penetrated the overlying mantle wedge. This study provides evidence for Li isotope heterogeneity in the mantle that resulted from subduction of a recycled oceanic component. PMID:26927333

  3. Deep-focus earthquakes and recycling of water into the earth's mantle

    Science.gov (United States)

    Meade, Charles; Jeanloz, Raymond

    1991-01-01

    For more than 50 years, observations of earthquakes to depths of 100 to 650 kilometers inside earth have been enigmatic: at these depths, rocks are expected to deform by ductile flow rather than brittle fracturing or frictional sliding on fault surfaces. Laboratory experiments and detailed calculations of the pressures and temperatures in seismically active subduction zones indicate that this deep-focus seismicity could originate from dehydration and high-pressure structural instabilities occurring in the hydrated part of the lithosphere that sinks into the upper mantle. Thus, seismologists may be mapping the recirculation of water from the oceans back into the deep interior of the planet.

  4. Deeper Subduction Zone Melting Explains Enrichment of Upper Mantle and Resolves Dehydration Paradox

    Science.gov (United States)

    Dixon, Jacqueline; Bindeman, Ilya; Kingsley, Richard

    2017-04-01

    We present new volatile and stable isotope data on oceanic basaltic glasses with a range of enriched compositions. Basalt compositions studied here can be modeled by mixing between depleted mantle and various enriched (EM) and prevalent (PREMA) mantle components. We develop a multi-stage metasomatic and melting model for the origin of the enriched components, extending the subduction factory concept to involve melting of different components at different depths, down to the mantle transition zone (660 km), with slab temperature a key variable. EM components are heterogeneous, ranging from wet and heavy (Arctic Ridges) to dry and light (East Pacific Rise), and are derived from the subducted slab at depths of 150 to 250 km by addition of paradox," refering to the following conundrum. The enriched "prevalent mantle" (PREMA) end-member in mid-oceanic ridge and ocean island basalts requires involvement of a mostly dehydrated slab component to explain trace element ratios and radiogenic isotopic compositions, but a fully hydrated slab component to explain stable isotope compositions. In our model, thermal parameters of slabs control the timing and composition of subduction-derived components. This includes deep release of fluids from subcrustal hydrous phases that may rehydrate previously dehydrated slab, resolving the paradox.

  5. On the acoustic wedge design and simulation of anechoic chamber

    Science.gov (United States)

    Jiang, Changyong; Zhang, Shangyu; Huang, Lixi

    2016-10-01

    This study proposes an alternative to the classic wedge design for anechoic chambers, which is the uniform-then-gradient, flat-wall (UGFW) structure. The working mechanisms of the proposed structure and the traditional wedge are analyzed. It is found that their absorption patterns are different. The parameters of both structures are optimized for achieving minimum absorber depth, under the condition of absorbing 99% of normal incident sound energy. It is found that, the UGFW structure achieves a smaller total depth for the cut-off frequencies ranging from 100 Hz to 250 Hz. This paper also proposes a modification for the complex source image (CSI) model for the empirical simulation of anechoic chambers, originally proposed by Bonfiglio et al. [J. Acoust. Soc. Am. 134 (1), 285-291 (2013)]. The modified CSI model considers the non-locally reactive effect of absorbers at oblique incidence, and the improvement is verified by a full, finite-element simulation of a small chamber. With the modified CSI model, the performance of both decorations with the optimized parameters in a large chamber is simulated. The simulation results are analyzed and checked against the tolerance of 1.5 dB deviation from the inverse square law, stipulated in the ISO standard 3745(2003). In terms of the total decoration depth and anechoic chamber performance, the UGFW structure is better than the classic wedge design.

  6. Wave dynamic processes in cellular detonation reflection from wedges

    Institute of Scientific and Technical Information of China (English)

    Zongmin Hu; Zonglin Jiang

    2007-01-01

    When the cell width of the incident deto-nation wave (IDW) is comparable to or larger than theMach stem height,self-similarity will fail during IDWreflection from a wedge surface.In this paper,the det-onation reflection from wedges is investigated for thewave dynamic processes occurring in the wave front,including transverse shock motion and detonation cellvariations behind the Mach stem.A detailed reactionmodel is implemented to simulate two-dimensional cel-lular detonations in stoichiometric mixtures of H2/O2diluted by Argon.The numerical results show that thetransverse waves,which cross the triple point trajec-tory of Mach reflection,travel along the Mach stem andreflect back from the wedge surface,control the size ofthe cells in the region swept by the Mach stem.It is theenergy carried by these transverse waves that sustainsthe triple-wave-collision with a higher frequency withinthe over-driven Mach stem.In some cases,local wavedynamic processes and wave structures play a dominantrole in determining the pattern of cellular record,lead-ing to the fact that the cellular patterns after the Machstem exhibit some peculiar modes.

  7. Radioactivity released from burning gas lantern mantles.

    Science.gov (United States)

    Luetzelschwab, J W; Googins, S W

    1984-04-01

    Gas lantern mantles contain thorium to produce incandescence when lantern fuel is burned on the mantle. Although only thorium is initially present on the mantle, the thorium daughters build up, some over a period of weeks and some over a period of years, and significant quantities of these daughters are present when the mantle is used. Some of these daughters are released when the lantern fuel is burned on the mantle. The amounts of radioactivity released during burning is studied by measuring the gamma radiation emitted by the daughters. Results of this study show that some of the radium (224Ra and 228Ra) and more than half the 212Pb and 212Bi is released during the first hour of a burn. The actual amounts release depend on the age of the mantle.

  8. Well log characterization of natural gas hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2011-01-01

    In the last 25 years we have seen significant advancements in the use of downhole well logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From an early start of using wireline electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells drilled in Arctic permafrost environments to today where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. The most established and well known use of downhole log data in gas hydrate research is the use of electrical resistivity and acoustic velocity data (both compressional- and shear-wave data) to make estimates of gas hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. New downhole logging tools designed to make directionally oriented acoustic and propagation resistivity log measurements have provided the data needed to analyze the acoustic and electrical anisotropic properties of both highly inter-bedded and fracture dominated gas hydrate reservoirs. Advancements in nuclear-magnetic-resonance (NMR) logging and wireline formation testing have also allowed for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids (i.e., free-water along with clay and capillary bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas hydrate reservoir properties (i.e., permeabilities) needed to accurately predict gas production rates for various gas hydrate

  9. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn

    2009-11-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  10. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, D.D.; Martin, A.I.; Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces. Copyright 2009 by the American Geophysical Union.

  11. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments

    Science.gov (United States)

    Mahabadi, Nariman; Zheng, Xianglei; Jang, Jaewon

    2016-05-01

    The experimental measurement of water retention curve in hydrate-bearing sediments is critically important to understand the behavior of hydrate dissociation and gas production. In this study, tetrahydrofuran (THF) is selected as hydrate former. The pore habit of THF hydrates is investigated by visual observation in a transparent micromodel. It is confirmed that THF hydrates are not wetting phase on the quartz surface of the micromodel and occupy either an entire pore or part of pore space resulting in change in pore size distribution. And the measurement of water retention curves in THF hydrate-bearing sediments with hydrate saturation ranging from Sh = 0 to Sh = 0.7 is conducted for excess water condition. The experimental results show that the gas entry pressure and the capillary pressure increase with increasing hydrate saturation. Based on the experimental results, fitting parameters for van Genuchten equation are suggested for different hydrate saturation conditions.

  12. Thermal Stratification in Vertical Mantle Tanks

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2001-01-01

    It is well known that it is important to have a high degree of thermal stratification in the hot water storage tank to achieve a high thermal performance of SDHW systems. This study is concentrated on thermal stratification in vertical mantle tanks. Experiments based on typical operation conditions...... are carried out to investigate how the thermal stratification is affected by different placements of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the inner tank is analysed by CFD-simulations. Furthermore, the flow pattern in the vertical mantle...... tank is investigated....

  13. Robustness of oscillatory α2 dynamos in spherical wedges

    Science.gov (United States)

    Cole, E.; Brandenburg, A.; Käpylä, P. J.; Käpylä, M. J.

    2016-10-01

    Context. Large-scale dynamo simulations are sometimes confined to spherical wedge geometries by imposing artificial boundary conditions at high latitudes. This may lead to spatio-temporal behaviours that are not representative of those in full spherical shells. Aims: We study the connection between spherical wedge and full spherical shell geometries using simple mean-field dynamos. Methods: We solve the equations for one-dimensional time-dependent α2 and α2Ω mean-field dynamos with only latitudinal extent to examine the effects of varying the polar angle θ0 between the latitudinal boundaries and the poles in spherical coordinates. Results: In the case of constant α and ηt profiles, we find oscillatory solutions only with the commonly used perfect conductor boundary condition in a wedge geometry, while for full spheres all boundary conditions produce stationary solutions, indicating that perfect conductor conditions lead to unphysical solutions in such a wedge setup. To search for configurations in which this problem can be alleviated we choose a profile of the turbulent magnetic diffusivity that decreases toward the poles, corresponding to high conductivity there. Oscillatory solutions are now achieved with models extending to the poles, but the magnetic field is strongly concentrated near the poles and the oscillation period is very long. By changing both the turbulent magnetic diffusivity and α profiles so that both effects are more concentrated toward the equator, we see oscillatory dynamos with equatorward drift, shorter cycles, and magnetic fields distributed over a wider range of latitudes. Those profiles thus remove the sensitive and unphysical dependence on θ0. When introducing radial shear, we again see oscillatory dynamos, and the direction of drift follows the Parker-Yoshimura rule. Conclusions: A reduced α effect near the poles with a turbulent diffusivity concentrated toward the equator yields oscillatory dynamos with equatorward migration and

  14. Chronology and palaeoenvironmental implications of the ice-wedge pseudomorphs and composite-wedge casts on the Magdalen Islands (eastern Canada)

    DEFF Research Database (Denmark)

    Remillard, A.M.; Hetu, B.; Bernatchez, P.

    2015-01-01

    The Magdalen Islands are a valuable terrestrial record, evidencing the complex glacial and periglacial history of the Gulf of St. Lawrence. Thirteen structures interpreted as ice-wedge pseudomorphs or composite-wedge casts were observed at four sites on the southern Magdalen Islands and testify...

  15. Diamond growth in mantle fluids

    Science.gov (United States)

    Bureau, Hélène; Frost, Daniel J.; Bolfan-Casanova, Nathalie; Leroy, Clémence; Esteve, Imène; Cordier, Patrick

    2016-11-01

    In the upper mantle, diamonds can potentially grow from various forms of media (solid, gas, fluid) with a range of compositions (e.g. graphite, C-O-H fluids, silicate or carbonate melts). Inclusions trapped in diamonds are one of the few diagnostic tools that can constrain diamond growth conditions in the Earth's mantle. In this study, inclusion-bearing diamonds have been synthesized to understand the growth conditions of natural diamonds in the upper mantle. Diamonds containing syngenetic inclusions were synthesized in multi-anvil presses employing starting mixtures of carbonates, and silicate compositions in the presence of pure water and saline fluids (H2O-NaCl). Experiments were performed at conditions compatible with the Earth's geotherm (7 GPa, 1300-1400 °C). Results show that within the timescale of the experiments (6 to 30 h) diamond growth occurs if water and carbonates are present in the fluid phase. Water promotes faster diamond growth (up to 14 mm/year at 1400 °C, 7 GPa, 10 g/l NaCl), which is favorable to the inclusion trapping process. At 7 GPa, temperature and fluid composition are the main factors controlling diamond growth. In these experiments, diamonds grew in the presence of two fluids: an aqueous fluid and a hydrous silicate melt. The carbon source for diamond growth must be carbonate (CO32) dissolved in the melt or carbon dioxide species in the aqueous fluid (CO2aq). The presence of NaCl affects the growth kinetics but is not a prerequisite for inclusion-bearing diamond formation. The presence of small discrete or isolated volumes of water-rich fluids is necessary to grow inclusion-bearing peridotitic, eclogitic, fibrous, cloudy and coated diamonds, and may also be involved in the growth of ultradeep, ultrahigh-pressure metamorphic diamonds.

  16. Effects of Contrasting Nazca Slab Subduction Angles on Mantle Flow: Results From Three-Dimensional Numerical Models

    Science.gov (United States)

    Wild, S. C.; Georgen, J. E.

    2012-12-01

    In the southern Andes, the downgoing Nazca plate has adjacent zones with slab dip angles of 10° and 30°. To better understand the nature of mantle flow and plate deformation across the transition region between the juxtaposed angles, we calculate a steady-state, three-dimensional finite element numerical model. The overall three-dimensional model domain contains a rigid overlying plate, two subducting slabs (with dips of 10° and 30°), and a mantle wedge with a geometry that changes in the trench-parallel direction. The model space is generated by using two-dimensional solutions as boundary conditions for the trench-perpendicular "endcaps" of the numerical domain. Models solve the conservation equations of mass, momentum, and energy, neglecting heat production and thermal buoyancy and assuming isoviscous mantle flow. The sensitivity of the model to overriding plate thickness, coupling between the downgoing and overriding plates in the wedge corner region, and convergence velocity is also investigated. Temperature solutions from the three-dimensional models are used in calculations to delineate the brittle and ductile zones of the model domain. Models predict a significant amount of trench-parallel flow, as a result of the juxtaposition of the two slab angles. Also, the uppermost portion of the model space shows a continuous brittle section for trench-perpendicular distances of up to ~240 km, implying that the formation of a slab tear is relatively unlikely for the conditions and parameters simulated in this investigation. Future work will focus on different treatments of mantle viscosity and examining the sensitivity of the three-dimensional model to the selection of slab dip angle.

  17. Mantle plumes and continental tectonics.

    Science.gov (United States)

    Hill, R I; Campbell, I H; Davies, G F; Griffiths, R W

    1992-04-10

    Mantle plumes and plate tectonics, the result of two distinct modes of convection within the Earth, operate largely independently. Although plumes are secondary in terms of heat transport, they have probably played an important role in continental geology. A new plume starts with a large spherical head that can cause uplift and flood basalt volcanism, and may be responsible for regional-scale metamorphism or crustal melting and varying amounts of crustal extension. Plume heads are followed by narrow tails that give rise to the familiar hot-spot tracks. The cumulative effect of processes associated with tail volcanism may also significantly affect continental crust.

  18. Assessment of computerized treatment planning system accuracy in calculating wedge factors of physical wedged fields for 6 MV photon beams.

    Science.gov (United States)

    Muhammad, Wazir; Maqbool, Muhammad; Shahid, Muhammad; Hussain, Amjad; Tahir, Sajjad; Matiullah; Rooh, Gul; Ahmad, Tanveer; Lee, Sang Hoon

    2011-07-01

    Wedge filters are commonly used in external beam radiotherapy to achieve a uniform dose distribution within the target volume. The main objective of this study was to investigate the accuracy of the beam modifier algorithm of Theraplan plus (TPP version 3.8) treatment planning system and to confirm that either the beam hardening, beam softening and attenuation coefficients along with wedge geometry and measured wedge factor at single depth and multiple fields sizes can be the replacement of wedged profile and wedged cross-sectional data or not. In this regard the effect of beam hardening and beam softening was studied with physical wedges for 6 MV photons. The Normalized Wedge Factors (NWFs) were measured experimentally as well as calculated with the Theraplan plus, as a function of depth and field size in a water phantom for 15°, 30°, 45°, and 60° wedge filters. The beam hardening and softening was determined experimentally by deriving the required coefficients for all wedge angles. The TPP version 3.8 requires wedge transmission factor at single depth and multiple field sizes. Without incorporating the hardening and softening coefficients the percent difference between measured and calculated NFWs was as high as 7%. After the introduction of these parameters into the algorithm, the agreement between measured and TPP (V 3.8) calculated NWFs were improved to within 2 percent for various depths. Similar improvement was observed in TPP version 3.8 while calculating NWFs for various field sizes when the required coefficients were adjusted. In conclusion, the dose calculation algorithm of TPP version 3.8 showed good accuracy for a 6 MV photon beam provided beam hardening and softening parameters are taken into account. From the results, it is also concluded that, the beam hardening, beam softening and attenuation coefficients along with wedge geometry and measured wedge factor at single depth and multiple fields sizes can be the replacement of wedged profile and

  19. Synthesis of hydrated lutetium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Song Liu [South China Univ. of Technology, Dept. of Applied Chemistry, Guangdong (China); Rong-jun Ma [Changsha Research Institute of Minig and Metallurgy, Hunan (China)

    1997-09-01

    Crystalline lutetium carbonate was synthesized for the corresponding chloride using ammonium bicarbonate as precipitant. The chemical analyses suggest that the synthesized lutetium carbonate is a hydrated basic carbonate or oxycarbonate. The X-ray powder diffraction data are presented. The IR data for the compound show the presence of two different carbonate groups. There is no stable intermediate carbonate in the process of thermal decomposition of the lutetium carbonate. (au) 15 refs.

  20. Observation of wedge waves and their mode transformation by laser ultrasonic technique

    Institute of Scientific and Technical Information of China (English)

    Jing Jia; Zhonghua Shen; Lijuan Wang; Ling Yuan

    2011-01-01

    Wedge waves (WWs) in wedges, including their dispersion characteristics and mode transformation, are investigated using the laser ultrasound technique. Pulsed laser excitation and optical deflection beam method for detection are used to record WWs. Numerous WWs are detected by scanning the excitation laser along the wedge tip. Dispersions of WWs are obtained by using the two-dimensional (2D) Fourier transformation method, and different WW orders are revealed on the wedges. Mode transformation is determined by fixing the distance between the excitation and detection position, as well as by scanning the samples along the normal direction of the wedge tip.%@@ Wedge waves (WWs) in wedges, including their dispersion characteristics and mode transformation, are investigated using the laser ultrasound technique. Pulsed laser excitation and optical deflection beam method for detection are used to record WWs. Numerous WWs are detected by scanning the excitation laser along the wedge tip. Dispersions of WWs are obtained by using the two-dimensional (2D) Fourier transformation method, and different WW orders are revealed on the wedges. Mode transformation is determined by fixing the distance between the excitation and detection position, as well as by scanning the samples along the normal direction of the wedge tip.

  1. Crystallite size distributions of marine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Klapp, S.A.; Bohrmann, G.; Abegg, F. [Bremen Univ., Bremen (Germany). Research Center of Ocean Margins; Hemes, S.; Klein, H.; Kuhs, W.F. [Gottingen Univ., Gottingen (Germany). Dept. of Crystallography

    2008-07-01

    Experimental studies were conducted to determine the crystallite size distributions of natural gas hydrate samples retrieved from the Gulf of Mexico, the Black Sea, and a hydrate ridge located near offshore Oregon. Synchrotron radiation technology was used to provide the high photon fluxes and high penetration depths needed to accurately analyze the bulk sediment samples. A new beam collimation diffraction technique was used to measure gas hydrate crystallite sizes. The analyses showed that gas hydrate crystals were globular in shape. Mean crystallite sizes ranged from 200 to 400 {mu}m for hydrate samples taken from the sea floor. Larger grain sizes in the hydrate ridge samples suggested differences in hydrate formation ages or processes. A comparison with laboratory-produced methane hydrate samples showed half a lognormal curve with a mean value of 40{mu}m. Results of the study showed that a cautious approach must be adopted when transposing crystallite-size sensitive physical data from laboratory-made gas hydrates to natural settings. It was concluded that crystallite size information may also be used to resolve the formation ages of gas hydrates when formation processes and conditions are constrained. 48 refs., 1 tab., 9 figs.

  2. IMPORTANCE OF HYDRATION IN SPORTS

    Directory of Open Access Journals (Sweden)

    Goran Vasić

    2008-08-01

    Full Text Available Importance of hydration is detrmined by importance of functions of water in the human organism: i.e. regulation of body temperature, transport, excretion of waste materials through urine, digestion of food which is facilititated by saliva and gastric juices, maintenance of flexibility of organs and tissues About 60 % body mass of an adult person (males: 61 %, females: 54 % is made up of water. Water content of a newly born baby reaches 77 %, and it is up to 50 % in adults. It is very important for sportsmen to provide adequate hydration during and after the time of bodily activities. A symptom of water shortage is thirst. However, thirst is a late response of an organism and it occurs when dehydration has already taken place. Minimum in take of fluids in humans should range between one-and-half to two liters. It has been known for a long time that there is no success in sport without proper hydration in a sportsman.

  3. Dynamics of Mantle Circulation Associated with Slab Window Formation: Insights from 3D Laboratory Models

    Science.gov (United States)

    Guillaume, B.; Funiciello, F.; Moroni, M.; Faccenna, C.; Martinod, J.

    2009-12-01

    Slab window can form either by the intersection of a spreading ridge with a subduction zone or because of internal deformation of the slab that leads to its disruption. The main consequences of this phenomenon are the modifications of the physical, chemical and thermal conditions in the backarc mantle that in turn affect the tectonic and magmatic evolution of the overriding plate. We performed laboratory models of a two-layer linear viscous slab (silicone putty)-upper mantle (glucose syrup) system to quantitatively investigate the pattern of mantle circulation within the slab window (using Feature Tracking image analysis technique) and its influence on the kinematics of the system. Two different geometries have been tested considering a window located (a) at slab edges or (b) within the slab. Kinematic consequences of slab window have been explored to understand the dynamics of the mantle-slab interaction. Configuration (a) implies a reduction of the slab width (W) during subduction and is characterized by toroidal fluxes around the slab edges. The abrupt opening of lateral slab windows produces an acceleration of the trench retreat and subduction velocity, such as 40% for a three-fold width reduction. We interpret this behavior as mostly due to the decrease in the toroidal flow inside subduction windows, scaling with W2. Configuration (b) has been designed to explore the pattern of mantle flow within the window in the case of a laterally constrained subduction system. Slab window, which had a width (Ww) fixed to 15 % of the slab width, opened in the trench-perpendicular direction. It produced the formation of two toroidal mantle cells, centered on the slab midpoint and laterally growing as the slab window enlarged. Particles extruded through the slab window did not mix with particles located in the mantle wedge, the boundary between both reaching distances from the trench up to 3×Ww in the trench-perpendicular direction, and up to 1.5×Ww from the window edge in

  4. Long Indian Slab in the Mantle Transition Zone Under Eastern Tibet: Evidence from Teleseismic Tomography

    Science.gov (United States)

    Lei, J.; Zhao, D.; Zha, X.

    2014-12-01

    We present a new 3-D P-wave velocity model of the upper mantle under eastern Tibet determined from 113,831 high-quality teleseismic arrival-time data. Our data are hand-picked from seismograms of 784 teleseismic events (30o-90o) with magnitudes of 5.2 or greater. These events were recorded by 21 portable seismic stations deployed in Yunnan during April 2010 to July 2011 and 259 permanent stations of Chinese provincial seismic networks during September 2008 to December 2011 in the study region. Our results provide new insights into the mantle structure and dynamics of eastern Tibet. High-velocity (high-V) anomalies are revealed down to 200 km depth under stable cratonic regions, such as Sichuan basin, Ordos and Alashan blocks. Prominent low-velocity (low-V) anomalies are revealed in the upper mantle under the Kunlun-Qinling fold zone, Songpan-Ganzi, Qiangtang, Lahsa, and Chuan-Dian diamond blocks, suggesting that the eastward moving low-V materials are obstructed by Sichuan basin, Ordos and Alashan blocks, and they could be extruded through the Qinling fold zone and the Chuan-Dian block to eastern China. In addition, the extent and thickness of these low-V anomalies are well correlated with the surface topography, suggesting that uplift of eastern Tibet is closely related to the low-V anomalies which may reflect hot materials and have strong buoyancy. In the mantle transition zone, broad high-V anomalies are visible from the Burma arc northward to the Kunlun fault and eastward to the Xiaojiang fault, which extend for a total of approximately 700 km. The high-V anomalies are connected upward to the Wadati-Benioff seismic zone beneath the Burma arc. These results suggest that the Indian slab has subducted horizontally for a long distance in the mantle transition zone after it descended into the mantle, and its deep dehydration has contributed to forming the low-V anomalies in the big mantle wedge above the slab. Our present results shed new light on the formation and

  5. The origin of high-Mg magmas in Mt Shasta and Medicine Lake volcanoes, Cascade Arc (California): higher and lower than mantle oxygen isotope signatures attributed to current and past subduction

    Science.gov (United States)

    Martin, E.; Bindeman, I.; Grove, T. L.

    2011-11-01

    We report the oxygen isotope composition of olivine and orthopyroxene phenocrysts in lavas from the main magma types at Mt Shasta and Medicine Lake Volcanoes: primitive high-alumina olivine tholeiite (HAOT), basaltic andesites (BA), primitive magnesian andesites (PMA), and dacites. The most primitive HAOT (MgO > 9 wt%) from Mt. Shasta has olivine δ18O (δ18OOl) values of 5.9-6.1‰, which are about 1‰ higher than those observed in olivine from normal mantle-derived magmas. In contrast, HAOT lavas from Medicine Lake have δ18OOl values ranging from 4.7 to 5.5‰, which are similar to or lower than values for olivine in equilibrium with mantle-derived magmas. Other magma types from both volcanoes show intermediate δ18OOl values. The oxygen isotope composition of the most magnesian lavas cannot be explained by crustal contamination and the trace element composition of olivine phenocrysts precludes a pyroxenitic mantle source. Therefore, the high and variable δ18OOl signature of the most magnesian samples studied (HAOT and BA) comes from the peridotitic mantle wedge itself. As HAOT magma is generated by anhydrous adiabatic partial melting of the shallow mantle, its 1.4‰ range in δ18OOl reflects a heterogeneous composition of the shallow mantle source that has been influenced by subduction fluids and/or melts sometime in the past. Magmas generated in the mantle wedge by flux melting due to modern subduction fluids, as exemplified by BA and probably PMA, display more homogeneous composition with only 0.5‰ variation. The high-δ18O values observed in magnesian lavas, and principally in the HAOT, are difficult to explain by a single-stage flux-melting process in the mantle wedge above the modern subduction zone and require a mantle source enriched in 18O. It is here explained by flow of older, pre-enriched portions of the mantle through the slab window beneath the South Cascades.

  6. A case for mantle plumes

    Institute of Scientific and Technical Information of China (English)

    Geoffrey F. Davies

    2005-01-01

    The existence of at least several plumes in the Earth's mantle can be inferred with few assumptions from well-established observations. As well, thermal mantle plumes can be predicted from well-established and quantified fluid dynamics and a plausible assumption about the Earth's early thermal state. Some additional important observations, especially of flood basalts and rift-related magmatism, have been shown to be plausibly consistent with the physical theory. Recent claims to have detected plumes using seismic tomography may comprise the most direct evidence for plumes, but plume tails are likely to be difficult to resolve definitively and the claims need to be well tested. Although significant questions remain about its viability, the plume hypothesis thus seems to be well worth continued investigation. Nevertheless there are many non-plate-related magmatic phenomena whose association with plumes is unclear or unlikely. Compositional buoyancy has recently been shown potentially to substantially complicate the dynamics of plumes, and this may lead to explanations for a wider range of phenomena, including "headless" hotspot tracks, than purely thermal plumes.

  7. Study of Formation Mechanisms of Gas Hydrate

    Science.gov (United States)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  8. SEISMIC STUDIES OF MARINE GAS HYDRATES

    Institute of Scientific and Technical Information of China (English)

    SONG Haibin

    2003-01-01

    We give a brief introduction of developments of seismic methods in the studies of marine gas hydrates. Then we give an example of seismic data processing for BSRs in western Nankai accretionary prism, a typical gas hydrate distribution region. Seismic data processing is proved to be important to obtain better images of BSRs distribution. Studies of velocity structure of hydrated sediments are useful for better understanding the distribution of gas hydrates. Using full waveform inversion, we successfully derived high-resolution velocity model of a double BSR in eastern Nankai Trough area. Recent survey and research show that gas hydrates occur in the marine sediments of the South China Sea and East China Sea.But we would like to say seismic researches on gas hydrate in China are very preliminary.

  9. Development of Alaskan gas hydrate resources

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  10. Numerical modeling of mantle plume diffusion

    Science.gov (United States)

    Krupsky, D.; Ismail-Zadeh, A.

    2004-12-01

    To clarify the influence of the heat diffusion on the mantle plume evolution, we develop a two-dimensional numerical model of the plume diffusion and relevant efficient numerical algorithm and code to compute the model. The numerical approach is based on the finite-difference method and modified splitting algorithm. We consider both von Neumann and Direchlet conditions at the model boundaries. The thermal diffusivity depends on pressure in the model. Our results show that the plume is disappearing from the bottom up - the plume tail at first and its head later - because of the mantle plume geometry (a thin tail and wide head) and higher heat conductivity in the lower mantle. We study also an effect of a lateral mantle flow associated with the plate motion on the distortion of the diffusing mantle plume. A number of mantle plumes recently identified by seismic tomography seem to disappear in the mid-mantle. We explain this disappearance as the effect of heat diffusion on the evolution of mantle plume.

  11. Deep Mantle Seismic Modeling and Imaging

    Science.gov (United States)

    Lay, Thorne; Garnero, Edward J.

    2011-05-01

    Detailed seismic modeling and imaging of Earth's deep interior is providing key information about lower-mantle structures and processes, including heat flow across the core-mantle boundary, the configuration of mantle upwellings and downwellings, phase equilibria and transport properties of deep mantle materials, and mechanisms of core-mantle coupling. Multichannel seismic wave analysis methods that provide the highest-resolution deep mantle structural information include network waveform modeling and stacking, array processing, and 3D migrations of P- and S-wave seismograms. These methods detect and identify weak signals from structures that cannot be resolved by global seismic tomography. Some methods are adapted from oil exploration seismology, but all are constrained by the source and receiver distributions, long travel paths, and strong attenuation experienced by seismic waves that penetrate to the deep mantle. Large- and small-scale structures, with velocity variations ranging from a fraction of a percent to tens of percent, have been detected and are guiding geophysicists to new perspectives of thermochemical mantle convection and evolution.

  12. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has a charact...

  13. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  14. Heat transfer correlations in mantle tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Knudsen, Søren

    2005-01-01

    Small solar domestic hot water systems are best designed as low flow systems based on vertical mantle tanks. Theoretical investigations of the heat transfer in differently designed vertical mantle tanks during different operation conditions have been carried out. The investigations are based...... of the inner hot water tank and the domestic water in all levels of the tank. The heat transfer analysis showed that the heat transfer near the mantle inlet port between the solar collector fluid in the mantle and the walls surrounding the mantle is in the mixed convection regime, and as the distance from...... the inlet increases, natural convection starts to dominate. The heat transfer between the wall of the inner hot water tank and the domestic water is governed by natural convection. The results of the CFD-calculations are used to determine improved heat transfer correlations based on dimensionless analysis...

  15. Viscosity jump in Earth's mid-mantle.

    Science.gov (United States)

    Rudolph, Maxwell L; Lekić, Vedran; Lithgow-Bertelloni, Carolina

    2015-12-11

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle plumes, settling of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Based on a reanalysis of the long-wavelength nonhydrostatic geoid, we infer viscous layering of the mantle using a method that allows us to avoid a priori assumptions about its variation with depth. We detect an increase in viscosity at 800- to 1200-kilometers depth, far greater than the depth of the mineral phase transformations that define the mantle transition zone. The viscosity increase is coincident in depth with regions where seismic tomography has imaged slab stagnation, plume deflection, and changes in large-scale structure and offers a simple explanation of these phenomena.

  16. Modes of continental extension in a crustal wedge

    KAUST Repository

    Wu, Guangliang

    2015-07-01

    © 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  17. Modes of continental extension in a crustal wedge

    Science.gov (United States)

    Wu, Guangliang; Lavier, Luc L.; Choi, Eunseo

    2015-07-01

    We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  18. The Oxidation State of Terrestrial Basalts and its Link with the Mantle

    Science.gov (United States)

    Mallmann, G.; O'Neill, H. S.; Berry, A. J.; Norman, M. D.; Eggins, S. M.; Kamenetsky, V.; Turner, S.; Smith, I. E.; Ballhaus, C.

    2011-12-01

    The prevailing paradigm is that the Earth's mantle is both laterally and vertically heterogeneous in regards to its oxidation state. This view has been motivated by the observation that, on average, primitive island arc basalts (IAB) preserve Fe3+/Fe2+ higher than ocean island (OIB) and, particularly, mid-ocean ridge basalts (MORB), and reinforced by the higher oxygen fugacities (fO2) determined in lithospheric (mantle wedge) arc peridotites. fO2 measurements in peridotites equilibrated over a range of pressures have also led to the notion that the mantle becomes more reduced with depth. V and Sc behave very similarly during partial melting of the mantle, but while V is redox-sensitive Sc is not. Their ratio in basalts has therefore a memory of the redox conditions during partial melting. Within the many assumptions involved in forward trace-element modeling, the bulk-rock V/Sc of MORBs, OIBs and IABs indicate that the partial melting events responsible for their genesis occurred at a relatively narrow range of fO2s between QFM and QFM-1. V olivine-liquid partition coefficients are also sensitive to oxidation state (normalization to Sc is useful to minimize the effect of variables other than fO2), and the values determined between olivine phenocrysts (Fo76-90) and quenched basaltic melts suggest that, at the time of olivine crystallization, terrestrial basalts have already oxidized about 1 log fO2 unit (IABs even more so, approximately 2 log fO2 units). The results reveal no statistically significant distinction between the oxidation states of MORBs and OIBs. This has been confirmed by Fe3+/Fe2+ determined by XANES.

  19. A rare tumoral combination, synchronous lung adenocarcinoma and mantle cell lymphoma of the pleura

    Directory of Open Access Journals (Sweden)

    Foroulis Christophoros N

    2008-12-01

    Full Text Available Abstract Background Coexistence of adenocarcinoma and mantle cell lymphoma in the same or different anatomical sites is extremely rare. We present a case of incidental discovery of primary lung adenocarcinoma and mantle cell lymphoma involving the pleura, during an axillary thoracotomy performed for a benign condition. Case presentation A 73-year old male underwent bullectomy and apical pleurectomy for persistent pneumothorax. A bulla of the lung apex was resected en bloc with a scar-like lesion of the lung, which was located in proximity with the bulla origin, by a wide wedge resection. Histologic examination of the stripped-off parietal pleura and of the bullectomy specimen revealed the synchronous occurrence of two distinct neoplasms, a lymphoma infiltrating the pleura and a primary, early lung adenocarcinoma. Immunohistochemical and fluorescence in situ hybridization assays were performed. The morphologic, immunophenotypic and genetic findings supported the diagnosis of primary lung adenocarcinoma (papillary subtype coexisting with a non-Hodgkin, B-cell lineage, mantle cell lymphoma involving both, visceral and parietal pleura and without mediastinal lymph node involvement. The neoplastic lymphoid cells showed the characteristic immunophenotype of mantle cell lymphoma and the translocation t(11;14. The patient received 6 cycles of chemotherapy, while pulmonary function tests precluded further pulmonary parenchyma resection (lobectomy for his adenocarcinoma. The patient is alive and without clinical and radiological findings of local recurrence or distant relapse from both tumors 14 months later. Conclusion This is the first reported case of a rare tumoral combination involving simultaneously lung and pleura, emphasizing at the incidental discovery of the two coexisting neoplasms during a procedure performed for a benign condition. Any tissue specimen resected during operations performed for non-tumoral conditions should be routinely sent for

  20. Upper mantle structure of the Pacific and Philippine Sea plates revealed by seafloor seismic array observations

    Science.gov (United States)

    Isse, Takehi; Shiobara, Hajime; Suetsugu, Daisuke; Sugioka, Hiroko; Ito, Aki

    2016-04-01

    Seismic tomography studies have revealed the structure and dynamics of Earth's interior since the 1980s. However, the spatial resolution of the oceanic region is not good enough caused by sparse distribution of the seismic stations. The observations with broadband ocean-bottom seismographs (BBOBSs) since the 2000s enabled us to obtain seismic tomography models with higher spatial resolution. Our Japanese BBOBS group deployed more than 100 BBOBSs in the Pacific Ocean and obtained a high-resolution (300-500 km) three-dimensional shear wave velocity structure in the upper mantle beneath northwestern and south Pacific Ocean by using surface wave tomography technique. In the northwestern Pacific Ocean, where the Pacific plate subducts beneath the Philippine Sea plate, we found that the shear wave structure in the Philippine sea plate is well correlated with the seafloor age in the upper 120 km, three separate slow anomalies in the mantle wedge at depth shallower than 100 km beneath the Izu-Bonin-Mariana arc, which have a close relationship with the three groups of frontal and rear arc volcanoes having distinct Sr, Nd, and Pb isotope ratios, and that the Philippine Sea plate, which is a single plate, shows very large lateral variations in azimuthal and radial anisotropies compared with the Pacific plate. In the South Pacific Ocean, where midplate hotspots are concentrated, we found that the localized slow anomalies are found near hotspots in the upper mantle, estimated thickness of the lithosphere is about 90 km in average and is thinned by ~20 km in the vicinity of hotspots, which may represent thermal erosion due to mantle plumes.

  1. Prediction of Refrigerant Gas Hydrates Formation Conditions

    Institute of Scientific and Technical Information of China (English)

    Deqing Liang; Ruzhu Wang; Kaihua Guo; Shuanshi Fan

    2001-01-01

    A fugacity model was developed for prediction of mixed refrigerant gas hydrates formation conditions based on the molecule congregation and solution theories. In this model, g as hydrates were regarded as non-ideal solid solution composed of water groups and guest molecules, and the expressions of fugacity of guest molecules in hydrate phase was proposed accordingly. It has been shown that the developed model can indicate successfully the effect of guest-guest molecule interaction. The results showed that the model can describe better the characteristics of phase equilibrium of mixed refrigerant gas hydrates and predictions are in good agreement with experimental data.

  2. Desalination utilizing clathrate hydrates (LDRD final report).

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy (Sandia National Laboratories, Albuquerque, NM); Greathouse, Jeffery A. (Sandia National Laboratories, Albuquerque, NM); Majzoub, Eric H. (University of Missouri, Columbia, MO)

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations

  3. Heat conduction problem of an evaporating liquid wedge

    Directory of Open Access Journals (Sweden)

    Tomas Barta

    2015-02-01

    Full Text Available We consider the stationary heat transfer near the contact line of an evaporating liquid wedge surrounded by the atmosphere of its pure vapor. In a simplified setting, the problem reduces to the Laplace equation in a half circle, subject to a non-homogeneous and singular boundary condition. By classical tools (conformal mapping, Green's function, we reformulate the problem as an integral equation for the unknown Neumann boundary condition in the setting of appropriate fractional Sobolev and weighted space. The unique solvability is then obtained by means of the Fredholm theorem.

  4. Interpretation and inverse analysis of the wedge splitting test

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Stang, Henrik

    2002-01-01

    Determination of the stress-crack opening relationship, s(w) a material parameter in the fictitious crack model by Hillerborg has proven to be problematic and is still not a simple task to perform. However, this paper demonstrates that the cracked non-linear hinge model by Olesen may be applied...... to the wedge splitting test and that it is well suited for the interpretation of test results in terms of s(w). A fine agreement between the hinge and FEM-models has been found. It has also been found that the test and the hinge model form a solid basis for inverse analysis. The paper also discusses possible...

  5. Inverse analysis of the wedge-splitting test

    DEFF Research Database (Denmark)

    Skocek, Jan; Stang, Henrik

    2008-01-01

    The amount of information which it is possible to retrieve from the wedge-splitting test is investigated. Inverse analysis is undertaken based on the analytical hinge model for various multi-linear softening curves. This showed that the commonly used bi-linear softening curve can be replaced...... by an tip to quad-linear curve, which is reflected by increased accuracy of the test simulation. Furthermore it was demonstrated that the next refinement of the softening curve leads to convergence problems due to problems with local minima. Finally, the semi-analytically obtained results are verified using...

  6. Electric monopoles in generalised B\\wedge F theories

    CERN Document Server

    Temple-Raston, M

    1996-01-01

    A tensor product generalisation of B\\wedge F theories is proposed to give a Bogomol'nyi structure. Non-singular, stable, finite-energy particle-like solutions to the Bogomol'nyi equations are studied. Unlike Yang-Mills(-Higgs) theory, the Bogomol'nyi structure does not appear as a perfect square in the Lagrangian. Consequently, the Bogomol'nyi energy can be obtained in more than one way. The added flexibility permits electric monopole solutions to the field equations.

  7. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  8. The effect of shoe design and lateral wedging on knee loading

    DEFF Research Database (Denmark)

    Mølgaard, Carsten; Kersting, Uwe G.

    -dimensional gait analysis. Barefoot walking, walking in a running shoe, an Oxford-type leather shoe, and a rocker shoe were analyzed. The shoes were tested both with and without a 10-degree full length laterally wedged insole. Results: Similar, significant reductions in the peak knee adduction moment with lateral...... wedges were observed in all three types of shoes. However, differences between shoe design were of similar magnitude as the effect of laterally wedged insoles. Only marginal changes in muscle activity for lateral hamstrings during barefoot toe-out walking and gastrocnemius when using the Oxford wedged...

  9. Modified retro-tubercle opening-wedge versus conventional high tibial osteotomy.

    Science.gov (United States)

    Keyhani, Sohrab; Abbasian, Mohammad Reza; Kazemi, Seyed Morteza; Esmailiejah, Ali Akbar; Seyed Hosseinzadeh, Hamid Reza; Shahi, Alisina; Shahi, Ali Sina; Firouzi, Farzad

    2011-01-01

    Despite the fact that common surgical techniques for the treatment of genu varum usually correct the malalignment in the affected knee, these methods have significant complications and cause problems in the long term. Retro-tubercle opening-wedge high tibial osteotomy is among the newer techniques for the treatment of genu varum. The goal of this study was to compare the results of retro-tubercle opening-wedge high tibial osteotomy with those of medial opening-wedge osteotomy. In a randomized, controlled trial, 72 patients with varus knees who were scheduled for surgery were assigned into either the retro-tubercle opening-wedge high tibial osteotomy (n=34) or medial opening-wedge osteotomy groups (n=38). Groups were matched for age and sex. The position of the patella was compared with respect to the tuberosity and the upper tibial slope pre- and postoperatively. Patients were followed for an average of 13 months (range, 10-21 months). In the retro-tubercle opening-wedge high tibial osteotomy group, the length of the patellar tendon did not significantly differ pre- and postoperatively (P≥.5); however, in the medial opening-wedge osteotomy group, a statistically significant shortening was noted in patellar tendon postoperatively (P≤.05). Similarly, the tibial plateau inclination showed a statistically significant difference postoperatively in the medial opening-wedge osteotomy group, while the difference in the retro-tubercle opening-wedge high tibial osteotomy group did not reach statistical significance.

  10. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Volkov, V.S.; Nielsen, Rasmus Bundgaard

    2008-01-01

    . Using scanning near-field optical imaging at the wavelengths in the range of 1.43 - 1.52 µm, we demonstrate low-loss (propagation length ~ 120 µm) and well-confined (mode width ≅ 1.3 µm) wedge plasmon-polariton guiding along triangular 6-µm-high and 70.5°- angle gold wedges. Experimental observations......We report on subwavelength plasmon-polariton guiding by triangular metal wedges at telecom wavelengths. A high-quality fabrication procedure for making gold wedge waveguides, which is also mass- production compatible offering large-scale parallel fabrication of plasmonic components, is developed...

  11. Mantle phase changes and deep-earthquake faulting in subducting lithosphere.

    Science.gov (United States)

    Kirby, S H; Durham, W B; Stern, L A

    1991-04-12

    Inclined zones of earthquakes are the primary expression of lithosphere subduction. A distinct deep population of subduction-zone earthquakes occurs at depths of 350 to 690 kilometers. At those depths ordinary brittle fracture and frictional sliding, the faulting processes of shallow earthquakes, are not expected. A fresh understanding of these deep earthquakes comes from developments in several areas of experimental and theoretical geophysics, including the discovery and characterization of transformational faulting, a shear instability connected with localized phase transformations under nonhydrostatic stress. These developments support the hypothesis that deep earthquakes represent transformational faulting in a wedge of olivine-rich peridotite that is likely to persist metastably in coldest plate interiors to depths as great as 690 km. Predictions based on this deep structure of mantle phase changes are consistent with the global depth distribution of deep earthquakes, the maximum depths of earthquakes in individual subductions zones, and key source characteristics of deep events.

  12. Decollement controls on pro versus retro wedge deformation in mountain belts

    Science.gov (United States)

    Grool, Arjan; Huismans, Ritske S.; Ford, Mary

    2017-04-01

    Doubly vergent orogens have a pro-wedge (lower plate) and a retro-wedge (upper plate). Most shortening is accommodated on the pro-wedge while retro-wedge shortening is typically limited. For example, the Eastern Pyrenees have experienced about 145 km of convergence, of which about 125 km (86%) was accommodated in the pro-wedge and about 20 km (14%) in the retro-wedge. Strain partitioning between pro- and retro-wedge is influenced by several factors, some of which have been identified in past work: Extensional inheritance and syn-orogenic sedimentation can help to increase the percentage of total shortening accommodated in the retro-wedge while erosion promotes pro-wedge shortening. We use high-resolution 2D numerical models to investigate factors that control pro- versus retro-wedge shortening. For a total convergence similar to the Eastern Pyrenees, our models predict that variations in extensional inheritance and syn-orogenic sedimentation will result in a maximum of 10% of total shortening being accommodated in the retro-wedge. Here, we investigate the role of 1) the rheology and 2) distribution of a decollement layer. Our models show that: 1) Decollement rheology has a first order control on strain distribution between the pro- and the retro-wedge. After 145 km of total convergence, a model with a weak frictional (φ=2, shale-like) decollement will only accommodate 9% of total shortening in the retro-wedge. In contrast in models with a weak viscous (μ=1018, salt-like) decollement retro-wedge shortening amounts to 18% and a stronger, but still weak, viscous decollement (μ=1019) leads to 21%. 2) Décollement distribution influences the timing of the first outward propagation of thick-skinned deformation in the retro-wedge. In the Eastern Pyrenees, thick-skinned deformation propagated out into the retro-wedge within 145 km of total convergence. In models with a decollement on both sides of the orogen this only occurred after 240 km. If, as in the Eastern

  13. Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition

    Science.gov (United States)

    Hyndman, Roy D; McCrory, Patricia A.; Wech, Aaron; Kao, Han; Ague, Jay j

    2015-01-01

    In this study we first summarize the constraints that on the Cascadia subduction thrust, there is a 70 km gap downdip between the megathrust seismogenic zone and the Episodic Tremor and Slip (ETS) that lies further landward; there is not a continuous transition from unstable to conditionally stable sliding. Seismic rupture occurs mainly offshore for this hot subduction zone. ETS lies onshore. We then suggest what does control the downdip position of ETS. We conclude that fluids from dehydration of the downgoing plate, focused to rise above the fore-arc mantle corner, are responsible for ETS. There is a remarkable correspondence between the position of ETS and this corner along the whole margin. Hydrated mineral assemblages in the subducting oceanic crust and uppermost mantle are dehydrated with downdip increasing temperature, and seismic tomography data indicate that these fluids have strongly serpentinized the overlying fore-arc mantle. Laboratory data show that such fore-arc mantle serpentinite has low permeability and likely blocks vertical expulsion and restricts flow updip within the underlying permeable oceanic crust and subduction shear zone. At the fore-arc mantle corner these fluids are released upward into the more permeable overlying fore-arc crust. An indication of this fluid flux comes from low Poisson's Ratios (and Vp/Vs) found above the corner that may be explained by a concentration of quartz which has exceptionally low Poisson's Ratio. The rising fluids should be silica saturated and precipitate quartz with decreasing temperature and pressure as they rise above the corner.

  14. Hydration in soccer: a review

    Directory of Open Access Journals (Sweden)

    Monteiro Cristiano Ralo

    2003-01-01

    Full Text Available Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. The rates that carbohydrate and water are absorbed by the organism are limited by the rates of gastric emptying and intestinal absorption. The composition of drinks offered to the players should be influenced by the relative importance of the need of supplying carbohydrates or water; it should be remembered that the depletion of carbohydrate can result in fatigue and decrease of performance, but it is not usually a life-threatening condition. The addition of carbohydrate in these drinks increases the concentrations of blood glucose, increases the use of external fuel through the increase of the glucose oxidation in the muscles and it spares muscle glycogen. So, the ingestion of carbohydrate before and during the exercise can delay the emergence of fatigue and increase the players' performance. Several tactics can be used to avoid dehydration, like hyperhydration before exercise and player's acclimatization. The ideal situation to restore the player's fluid losses is between the sessions of exercises. Since soccer is a sport with quite peculiar characteristics related to hydration, the players should be concerned and educated about the importance of fluid ingestion before, during and after the exercise.

  15. Hydration behaviour of polyhydroxylated fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Zavala, J G [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de Los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon S/N, 47460 Jalisco (Mexico); Barajas-Barraza, R E [Departamento de Matematicas y Fisica, Instituto Tecnologico y de Estudios Superiores de Occidente, Periferico Sur, Manuel Gomez MorIn No 8585, 45604 Jalisco (Mexico); Padilla-Osuna, I; Guirado-Lopez, R A, E-mail: jgrz@culagos.udg.mx, E-mail: ebarajas@iteso.mx, E-mail: ismael@ifisica.uaslp.mx, E-mail: guirado@ifisica.uaslp.mx [Instituto de Fisica ' Manuel Sandoval Vallarta' , Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi (Mexico)

    2011-10-28

    We have performed semi-empirical as well as density functional theory calculations in order to analyse the hydration properties of both bare C{sub 60} and highly hydroxylated C{sub 60}(OH){sub 26} fullerenes. In all of our calculations, a total of 42 and 98 water molecules are always surrounding our here-considered carbon nanostructures. We found different wetting properties as a function of the chemical composition and structure of the OH-molecular over-layer covering the fullerene surface. In the case of bare C{sub 60}, water adsorption reveals that the H{sub 2}O species are not uniformly arranged around the carbon network but rather forms water droplets of different sizes, clearly revealing the hydrophobic nature of the C{sub 60} structure. In contrast, in the polyhydroxylated C{sub 60}(OH){sub 26} fullerenes, the degree of wetting is strongly influenced by the precise location of the hydroxyl groups. We found that different adsorbed configurations for the OH-molecular coating can lead to the formation of partially hydrated or completely covered C{sub 60}(OH){sub 26} compounds, a result that could be used to synthesize fullerene materials with different degrees of wettability. By comparing the relative stability of our hydroxylated structures in both bare and hydrated conditions we obtain that the energy ordering of the C{sub 60}(OH){sub 26} isomers can change in the presence of water. The radial distribution function of our hydrated fullerenes reveals that water near these kinds of surfaces is densely packed. In fact, by counting the number of H{sub 2}O molecules which are adsorbed, by means of hydrogen bonds, to the surface of our more stable C{sub 60}(OH){sub 26} isomer, we found that it varies in the range of 5-10, in good agreement with experiments. Finally, by comparing the calculated optical absorption spectra of various C{sub 60}(OH){sub 26} structures in the presence and absence of water molecules, we note that only slight variations in the position and

  16. Protein dynamics: hydration and cavities

    Directory of Open Access Journals (Sweden)

    K. Heremans

    2005-08-01

    Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.

  17. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  18. Dying Flow Bursts as Generators of the Substorm Current Wedge

    Science.gov (United States)

    Haerendel, Gerhard

    2016-07-01

    Many theories or conjectures exist on the driver of the substorm current wedge, e.g. rerouting of the tail current, current disruption, flow braking, vortex formation, and current sheet collapse. Magnitude, spatial scale, and temporal development of the related magnetic perturbations suggest that the generator is related to the interaction of the flow bursts with the dipolar magnetosphere after onset of reconnection in the near-Earth tail. The question remains whether it is the flow energy that feeds the wedge current or the internal energy of the arriving plasma. In this presentation I argue for the latter. The current generation is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the preceding layer of high-beta plasma after flow braking. The generator current is the grad-B current at the outer boundary of the compressed high-beta plasma layers. It needs the sequential arrival of several flow bursts to account for duration and magnitude of the ionospheric closure current.

  19. Relation of the auroral substorm to the substorm current wedge

    Science.gov (United States)

    McPherron, Robert L.; Chu, Xiangning

    2016-12-01

    The auroral substorm is an organized sequence of events seen in the aurora near midnight. It is a manifestation of the magnetospheric substorm which is a disturbance of the magnetosphere brought about by the solar wind transfer of magnetic flux from the dayside to the tail lobes and its return through the plasma sheet to the dayside. The most dramatic feature of the auroral substorm is the sudden brightening and poleward expansion of the aurora. Intimately associated with this expansion is a westward electrical current flowing across the bulge of expanding aurora. This current is fed by a downward field-aligned current (FAC) at its eastern edge and an upward current at its western edge. This current system is called the substorm current wedge (SCW). The SCW forms within a minute of auroral expansion. FAC are created by pressure gradients and field line bending from shears in plasma flow. Both of these are the result of pileup and diversion of plasma flows in the near-earth plasma sheet. The origins of these flows are reconnection sites further back in the tail. The auroral expansion can be explained by a combination of a change in field line mapping caused by the substorm current wedge and a tailward growth of the outer edge of the pileup region. We illustrate this scenario with a complex substorm and discuss some of the problems associated with this interpretation.

  20. An automated optical wedge calibrator for Dobson ozone spectrophotometers

    Science.gov (United States)

    Evans, R. D.; Komhyr, W. D.; Grass, R. D.

    1994-01-01

    The Dobson ozone spectrophotometer measures the difference of intensity between selected wavelengths in the ultraviolet. The method uses an optical attenuator (the 'Wedge') in this measurement. The knowledge of the relationship of the wedge position to the attenuation is critical to the correct calculation of ozone from the measurement. The procedure to determine this relationship is time-consuming, and requires a highly skilled person to perform it correctly. The relationship has been found to change with time. For reliable ozone values, the procedure should be done on a Dobson instrument at regular intervals. Due to the skill and time necessary to perform this procedure, many instruments have gone as long as 15 years between procedures. This article describes an apparatus that performs the procedure under computer control, and is adaptable to the majority of existing Dobson instruments. Part of the apparatus is usable for normal operation of the Dobson instrument, and would allow computer collection of the data and real-time ozone measurements.

  1. Upper and mid mantle fabric developing during subduction-induced mantle flow

    Science.gov (United States)

    Faccenda, Manuele

    2013-04-01

    Subduction zones are convergent margins where the rigid lithosphere sinks into the Earth's mantle inducing complex 3D flow patterns. Seismic anisotropy generated by strain-induced lattice/crystal preferred orientation (LPO/CPO) of intrinsically anisotropic minerals is commonly used to study flow in the mantle and its relations with plate motions. We computed the seismic anisotropy of the upper and mid mantle due to strain-induced LPO in 3D mechanical models of dynamic subduction by using, respectively, D-Rex and Underworld. Subsequently, FSTRACK was used to compute seismogram synthetics and SKS splitting patterns. Strong anisotropy develops in the upper mantle, while weak or null seismic anisotropy is formed in the upper transition zone/lower mantle and lower transition zone, respectively. The distribution of the fabric in the mantle depends on the distribution and amount of the deformation, and not on the rate at which the slab subducts. The SKS splitting patterns are controlled by the anisotropy in the upper mantle because SKS waves are more sensitive to the anisotropy in the shallowest layers. Horizontally propagating shear waves in the mid mantle originating from local earthquakes are characterized by significant splitting that is mostly due to the fabric in the uppermost lower mantle. We discuss the implications of our results for real subduction settings like Tonga, where a discrete amount of observations have been collected in the past 10 years on the anisotropy in the upper and mid mantle.

  2. Bivergent thrust wedges surrounding oceanic island arcs: Insight from observations and sandbox models of the northeastern caribbean plate

    Science.gov (United States)

    ten Brink, U.S.; Marshak, S.; Granja, Bruna J. L.

    2009-01-01

    At several localities around the world, thrust belts have developed on both sides of oceanic island arcs (e.g., Java-Timor, Panama, Vanuatu, and the northeastern Caribbean). In these localities, the overall vergence of the backarc thrust belt is opposite to that of the forearc thrust belt. For example, in the northeastern Caribbean, a north-verging accretionary prism lies to the north of the Eastern Greater Antilles arc (Hispaniola and Puerto Rico), whereas a south-verging thrust belt called the Muertos thrust belt lies to the south. Researchers have attributed such bivergent geometry to several processes, including: reversal of subduction polarity; subduction-driven mantle flow; stress transmission across the arc; gravitational spreading of the arc; and magmatic inflation within the arc. New observations of deformational features in the Muertos thrust belt and of fault geometries produced in sandbox kinematic models, along with examination of published studies of island arcs, lead to the conclusion that the bivergence of thrusting in island arcs can develop without reversal of subduction polarity, without subarc mantle flow, and without magmatic inflation. We suggest that the Eastern Greater Antilles arc and comparable arcs are simply crustalscale bivergent (or "doubly vergent") thrust wedges formed during unidirectional subduction. Sandbox kinematic modeling suggests, in addition, that a broad retrowedge containing an imbricate fan of thrusts develops only where the arc behaves relatively rigidly. In such cases, the arc acts as a backstop that transmits compressive stress into the backarc region. Further, modeling shows that when arcs behave as rigid blocks, the strike-slip component of oblique convergence is accommodated entirely within the prowedge and the arc-the retrowedge hosts only dip-slip faulting ("frontal thrusting"). The existence of large retrowedges and the distribution of faulting in an island arc may, therefore, be evidence that the arc is

  3. Mantle flow and deformation of subducting slab at the junction of Tohoku-Kurile arc

    Science.gov (United States)

    Morishige, M.; Honda, S.

    2012-12-01

    Geophysical studies of the plate junction reveal possible evidence of the presence of 3D mantle flow and deformation of subducting slabs. The junction of the Tohoku-Kurile is one of the best studied junctions in the world. The Pacific plate subducts under the North American plate in a direction almost perpendicular to Japan trench, while it subducts obliquely along the Kurile arc. Analysis of seismic anisotropy in this region shows the trench-normal fast polarization direction of S-wave splitting in the back arc even where the oblique subduction occurs. The angle of subduction varies along the strike of the trench, that is, it is smallest near the plate junction and becomes large beneath Kurile arc. There is also an important distinction in the slab behavior. The slab beneath Tohoku stagnates in the transition zone, whereas the slab beneath the Kurile arc penetrates into the lower mantle. In this presentation, we show the dynamic effects of the junction using a numerical model of mantle convection with a realistic curved shape of the trench in spherical geometry. The model is set so that it becomes similar to the geometry of the surface plate boundary in the Tohoku-Kurile arc. In order to enable one-sided subduction, the velocities are imposed both on the surface and in the small 3D boundary region around the trench. We obtain 3D flow in the mantle wedge which is consistent with the observation of seismic anisotropy including the oblique subduction zone. The flow and hence the fast polarization direction in the subslab mantle is almost 2D. We also find that the angle of subduction varies along-strike, which agrees with the observations. This variation can be explained by a torque balance acting on subducting slabs in the case of oblique subduction. This along-arc variation of the angle of subduction partly contributes to the different behavior of slab stagnation in the Tohoku-Kurile arc. Our results show that the shape of the trench is an important factor which

  4. Construction of mantle sequence beneath Yubileynaya kimberlite pipe.

    Science.gov (United States)

    Ashchepkov, I. V.; Vladykin, N. V.; Logvinova, A. M.; Zinchuk, N. N.; Khmelnikova, O. S.; Palessky, S. V.; Nikolaeva, I. V.

    2003-04-01

    . Lower metasomatically modified units possibly are associated with each episode(3)of subduction mantle wedges and lithospheric keel coupling accompanied by hydrous melting and melt percolation. High degree of metasomatism is in accord with high serpentinization degree of kimberlites. Amount of layers in mantle columns of Yubileynaya and Udachnaya pipes are close but the later contain more eclogites and less metasomatized peridotites. The Ni -rich chromite and olivine inclusions in diamonds agree with essentially peridotitic mantle keel composition. TRE determined by LAM ICP MS for the CPx reveal extremely high LREE, Rb, Ba, U, Th. More shallow CPx became lower in (La/Yb)n as well as amphiboles. Cr rich garnets have low TRE also enrihmant in U, Th concentration while more shallow ones became more (H)REE and rarely MREE rich. Chromites are W shaped in REE patterns and have no essential PGE. Ilmenites do not show very strong enrichments in REE, jyky strong HFSE peaks. Geochemistry of mantleminerals was likely influenced by Phl decomposition and remelting of continental sediments Supported by RBRF grants 99-05-65688; 00-05-65288.

  5. Constraints from fluid inclusions in mantle minerals on the composition of subduction-zone fluids

    Science.gov (United States)

    Schiano, P.; Provost, A.; Cluzel, N.

    2013-12-01

    Slab-derived fluids are thought to enrich the mantle wedge in water and trace elements, and this metasomatized mantle region becomes the source of island arc basalts. Much of the evidence for this model has been derived indirectly through the study of the composition of the end-products, the lavas, and there have only been a few direct studies of the metasomatism of the mantle rocks from these regions. Therefore important aspects of the model have remained somewhat hypothetical. In particular, there are different viewpoints on the nature of subduction fluids, their trace element compositions and their pathways in the slab and overlying mantle. The whole debate is also hampered by the limited memory that high-pressure metamorphic rocks preserve of their subduction history, due to retrograde overprinting during exhumation, and by uncertainties in reproducing the conditions of subduction during experiments. Here we identify trapped pristine samples of the fluid phase percolating through the mantle wedge beneath island arcs, by examining fluid inclusions trapped within spinel-harzburgite xenoliths in an arc-front volcano (Batan island, Luzon arc). The xenoliths correspond to previously metasomatized mantle fragments incorporated in the lavas during ascent. Cl-bearing H2O-rich fluid inclusions occur within both primary (ol, opx) and late metasomatic minerals (e.g., cpx, phlogopite, amphibole). They were formed by the addition of aqueous fluids or by separation of aqueous fluids from H2O-saturated melt inclusions, as suggested by the occurrence of composite inclusions consisting of silicate glass and H2O (liq+vap). The associated silicate melt inclusions were previously shown to display silica-rich compositions that are consistent with slab-derived melts [1] or melts of metasomatized mantle peridotites [2]. In situ Raman spectroscopy reveals that at room temperature, the fluid inclusions are composed mainly of H2O, H2S and HS- and contain also sulphur (S6) and Mg

  6. Primitive magmas at five Cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle

    Science.gov (United States)

    Bacon, C.R.; Bruggman, P.E.; Christiansen, R.L.; Clynne, M.A.; Donnelly-Nolan, J. M.; Hildreth, W.

    1997-01-01

    ; and OIB-source-like domains. Lavas with arc and intraplate (OIB) geochemical signatures were erupted close to HAOT, and many lavas are blends of two or more magma types. Pre-eruptive H2O contents of HAOT, coupled with phase-equilibrium studies, suggest that these magmas were relatively dry and last equilibrated in the mantle wedge at temperatures of ???1300??C and depths of ???40 km, virtually at the base of the crust. Arc basalt and basaltic andesite represent greater extents of melting than HAOT, presumably in the same general thermal regime but at somewhat lower mantle separation temperatures, of domains of sub-arc mantle that have been enriched by a hydrous subduction component derived from the young, relatively hot Juan de Fuca plate. The primitive magmas originated by partial melting in response to adiabatic upwelling within the mantle wedge. Tectonic extension in this part of the Cascade arc, one characterized by slow oblique convergence, contributes to mantle upwelling and facilitates eruption of primitive magmas.

  7. Dynamics of a photoexcited hydrated electron

    NARCIS (Netherlands)

    Pshenichnikov, M.S.; Baltuška, A.; Wiersma, D.A.; Kärtner, F.X.

    2004-01-01

    Combining photon-echo and frequency-resolved pump-probe techniques with extremely short laser pulses that consist of only few optical cycles, we investigate the dynamics of the equilibrated hydrated electron. The pure dephasing time of the hydrated electron deduced from the photon-echo measurements

  8. Gas hydrate inhibition of drilling fluid additives

    Energy Technology Data Exchange (ETDEWEB)

    Xiaolan, L.; Baojiang, S.; Shaoran, R. [China Univ. of Petroleum, Dongying (China). Inst. of Petroleum Engineering

    2008-07-01

    Gas hydrates that form during offshore well drilling can have adverse impacts on well operational safety. The hydrates typically form in the risers and the annulus between the casing and the drillstring, and can stop the circulation of drilling fluids. In this study, experiments were conducted to measure the effect of drilling fluid additives on hydrate inhibition. Polyalcohols, well-stability control agents, lubricating agents, and polymeric materials were investigated in a stirred tank reactor at temperatures ranging from -10 degree C to 60 degrees C. Pressure, temperature, and torque were used to detect onset points of hydrate formation and dissociation. The inhibitive effect of the additives on hydrate formation was quantified. Phase boundary shifts were measured in terms of temperature difference or sub-cooling gained when chemicals were added to pure water. Results showed that the multiple hydroxyl groups in polyalcohol chemicals significantly inhibited hydrate formation. Polymeric and polyacrylamide materials had only a small impact on hydrate formation, while sulfonated methyl tannins were found to increase hydrate formation. 6 refs., 1 tab., 4 figs.

  9. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert;

    2010-01-01

    Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells. In...

  10. A new geotechnical gas hydrates research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates encapsulate natural gas molecules in a very compact form, as ice-like compounds composed of water molecules. Permafrost environments and offshore areas contain vast quantities of gas hydrates within soil and rock. This paper describes the role played by gas hydrates in submarine slope instability, their potential as a sustainable energy source, and their effects on global climate change. A new state-of-the-art laboratory located at the University of Calgary, which was developed to study the geomechanical behaviour of gas hydrate-sediment mixtures, was also presented. A specialized high pressure low temperature triaxial apparatus capable of performing a suite of tests on gas hydrate-sediment mixtures is housed in this laboratory. Extensive renovations were required in order to enable the use of methane gas to simulate natural hydrate formation conditions. The laboratory is specifically designed to examine the properties and behaviour of reconstituted gas hydrate-sediment mixtures and natural gas hydrate core samples. 26 refs., 9 figs.

  11. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  12. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  13. Primary magmas and mantle temperatures through time

    Science.gov (United States)

    Ganne, Jérôme; Feng, Xiaojun

    2017-03-01

    Chemical composition of mafic magmas is a critical indicator of physicochemical conditions, such as pressure, temperature, and fluid availability, accompanying melt production in the mantle and its evolution in the continental or oceanic lithosphere. Recovering this information has fundamental implications in constraining the thermal state of the mantle and the physics of mantle convection throughout the Earth's history. Here a statistical approach is applied to a geochemical database of about 22,000 samples from the mafic magma record. Potential temperatures (Tps) of the mantle derived from this database, assuming melting by adiabatic decompression and a Ti-dependent (Fe2O3/TiO2 = 0.5) or constant redox condition (Fe2+/∑Fe = 0.9 or 0.8) in the magmatic source, are thought to be representative of different thermal "horizons" (or thermal heterogeneities) in the ambient mantle, ranging in depth from a shallow sublithospheric mantle (Tp minima) to a lower thermal boundary layer (Tp maxima). The difference of temperature (ΔTp) observed between Tp maxima and minima did not change significantly with time (˜170°C). Conversely, a progressive but limited cooling of ˜150°C is proposed since ˜2.5 Gyr for the Earth's ambient mantle, which falls in the lower limit proposed by Herzberg et al. [2010] (˜150-250°C hotter than today). Cooling of the ambient mantle after 2.5 Ga is preceded by a high-temperature plateau evolution and a transition from dominant plumes to a plate tectonics geodynamic regime, suggesting that subductions stabilized temperatures in the Archaean mantle that was in warming mode at that time.abstract type="synopsis">Plain Language SummaryThe Earth's upper mantle constitutes a major interface between inner and outer envelops of the planet. We explore at high resolution its thermal state evolution (potential temperature of the ambient mantle, Tp) in depth and time using a multi-dimensional database of mafic lavas chemistry (>22,000 samples formed in

  14. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  15. Duality in nonlinear B$\\wedge$F models equivalence between self-dual and topologically massive Born-Infeld B$\\wedge$F models

    CERN Document Server

    Menezes, R; Ribeiro, R F; Wotzasek, C

    2002-01-01

    We study the dual equivalence between the nonlinear generalization of the self-dual ($NSD_{B\\wedge F}$) and the topologically massive $B\\wedge F$ models with particular emphasis on the nonlinear electrodynamics proposed by Born and Infeld. This is done through a dynamical gauge embedding of the nonlinear self-dual model yielding to a gauge invariant and dynamically equivalent theory. We clearly show that nonpolinomial $NSD_{B\\wedge F}$ models can be mapped, through a properly defined duality transformation, into $TM_{B\\wedge F}$ actions. The general result obtained is then particularized for a number of examples, including the Born-Infeld-BF (BIBF) model that has experienced a revival in the recent literature.

  16. Phase mixing induced by granular fluid pump during mantle strain localization

    Science.gov (United States)

    Précigout, Jacques; Prigent, Cécile; Palasse, Laurie; Pochon, Anthony

    2014-05-01

    Mantle viscous strain localization is often attributed to feedbacks between grain boundary sliding (GBS) and phase mixing, as GBS could promote mixing through grain switching, and phase mixing would enhance grain-size-sensitive granular flow through grain boundary pinning. However, although GBS and phase mixing are intimately related, recent data show that GBS alone cannot end-up with randomly mixed phases. Here we show natural observations of an ultramylonitic shear zone from the Ronda peridotite (Spain) where both GBS and phase mixing occur. Microprobe analyses and coupled EDX/EBSD data first document enrichment in pyroxenes and amphibole concomitant with both phase mixing and complete randomization of the olivine fabric in fine-grained layers (5-20 microns) where strain has been localized. Both the fabric randomization and some microstructural observations indicate that these layers mostly deformed by granular flow, i.e., by GBS. Based on petrological pseudo-sections, we also show that phase enrichment does not result from metamorphic reaction, but instead from dissolution-precipitation phenomena. Finally, we document in adjacent areas a change of olivine fabric geometry that highlights syn-tectonic water draining towards fine-grained layers. While olivine fabric switches from E-type (moderately hydrated fabric) to C-type (highly hydrated fabric) towards fine-grained layers, it changes from E-type to D-type (highly hydrated fabric) in coarse-grained bands between E/C-type layers. Altogether, our findings suggest that water converges as a result of GBS-induced creep cavitation and subsequent granular fluid pump in fine-grained layers. We propose that phase mixing originates here from such a creep cavitation through dissolution-precipitation of secondary phases in newly formed cavities, giving rise to a key process for the relationships between GBS and phase mixing, and hence, for the origin of viscous strain localization in the upper mantle.

  17. Compound Natural Gas Hydrate: A Natural System for Separation of Hydrate-Forming Gases

    Science.gov (United States)

    Max, M. D.; Osegovic, J. P.

    2007-12-01

    Natural processes that separate materials from a mixture may exert a major influence on the development of the atmospheres and surfaces of planets, moons, and other planetary bodies. Natural distillation and gravity separation, amongst others, are well known means of differentiating materials through liquid-gas partitioning. One of the least known attributes of clathrate (gas) hydrates is their potential effect on the evolution of planetary system oceans and atmospheres. Gas hydrates separate gases from mixtures of gases by concentrating preferred hydrate-forming materials (HFM) guests within the water-molecule cage structure of crystalline hydrate. Different HFMs have very different fields of stability. When multiple hydrate formers are present, a preference series based on their selective uptake exists. Compound hydrate, which is formed from two or more species of HFM, extract preferred HFM from a mixture in very different proportions to their relative percentages of the original mixture. These compound hydrates can have different formation and dissociation conditions depending on the evolution of the environment. That is, the phase boundary of the compound hydrate that is required for dissociation lies along a lower pressure - higher temperature course. Compound hydrates respond to variations in temperature, pressure, and HFM composition. On Earth, the primary naturally occurring hydrate of interest to global climate modeling is methane hydrate. Oceanic hydrate on Earth is the largest store of carbon in the biosphere that is immediately reactive to environmental change, and is capable of releasing large amounts of methane into the atmosphere over a short geological time span. Hydrate formation is essentially metastable and is very sensitive to environmental change and to gas flux. Where natural variations in temperature and pressure varies so that hydrate will form and dissociate in some cyclical manner, such as in oceans where sea level is capable of rising and

  18. Overview on Hydrate Coring, Handling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  19. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  20. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-07-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  1. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  2. Three and two-dimensional electrical conductivity of the mantle near the Chile-Argentina Nazca Flat Slab: insights into slab behavior

    Science.gov (United States)

    Burd, A. I.; Booker, J. R.; Mackie, R. L.; Pomposiello, C.; Favetto, A.; Larsen, J. C.

    2010-12-01

    Near 31.5°S, the subducted Nazca slab beneath Chile and western Argentina levels out near 100 km depth and does not roll over to plunge steeply into the mantle for several hundred km to the east. This flat slab prevents formation of an asthenospheric wedge under the Andes and consequently there are no active volcanoes. To the south this slab returns to a dip of ~30°, an asthenospheric wedge forms and there are active volcanoes south of 33.3°S in the Andean Southern Volcanic Zone (SVZ). The prevailing view is that the Nazca slab is warped continuously between its flat and dipping segments. Over the last decade, we have collected 83 magnetotelluric (MT) sites that form an array in Argentina from 60° - 70°W and 31.5° - 34°S. 18 sites extend this coverage along a profile near 31.5°S past where the flat slab plunges into the lower mantle. These data were initially collected as linear profiles. Eventually it became clear that the structure at mantle depth was 3D. The site geometry was thus expanded to its current 2D array. The final sites in this array were collected in late 2009. While each year’s data set was originally internally consistent, preparation of the complete data set required recalculation of the impedance tensor at each site so that all data are compatible and comparable. MT impedance tensor data (including vertical to horizontal magnetic field transfer functions) are being inverted for smoothest log conductivity using a 3D non-linear conjugate gradient (NLCG) algorithm. Initial results of this 3D study will be presented. Several conclusions have already emerged from 2D interpretations of subsets of the data. There is an asthenospheric wedge east of the flat slab. Its top at 100 km is probably at the base of the lithosphere through which it has not penetrated, presumably because of compressive stresses. This wedge is horizontally thin and is bounded to the east by the root of the Rio de la Plata Craton and to the west by the plunging slab. It

  3. Spatial and temporal distribution of deformation at the front of the Andean orogenic wedge in Bolivia and implications for incremental wedge evolution

    Science.gov (United States)

    Weiss, J. R.; Brooks, B. A.; Vergani, G.; Arrowsmith, R.

    2012-12-01

    There is no consensus regarding how orogenic wedges accommodate deformation over seismo-tectonic timescales. Results from the Himalaya and Taiwan suggest differing mechanisms including localized deformation along a single wedge-front structure and distributed shortening across multiple structures respectively. Here we provide the first detailed constraints on the distribution and timing of deformation at the front of the Andean orogenic wedge using industry acquired seismic reflection data from the ~500-km-long thin-skinned fold-and-thrust belt of the Bolivian Subandes (BSA). Almost no information exists on the recent history of BSA wedge-front deformation despite the presence of multiple ~10-m-high topographic scarps on Holocene surfaces and a recent analysis of the GPS-derived velocity field, which suggests the frontal Mandeyapecua thrust fault system (MTFS) is capable of >Mw 8 earthquakes. We use stratigraphic relationships across fault-related folds to depict the onset of deformation for the complete suite of structures comprising the MTFS. For each structure we determine the uncertainty in timing using an envelope of seismic velocity models from ~70 well-logs and published Quaternary sedimentation rates for the region. We further explore fault geometry and fault slip parameters associated with the displacement field of seismic reflection horizons using elastic dislocation theory. Our analyses reveal the presence of at least eight distinct fault segments comprising the MTFS, including previously unrecognized subsurface thrust faults that have been active since ~1 Ma. Shortening rates are generally higher across the younger, northern portion of the fault system but across-strike, in a ~50-km-wide zone from west to east, no distinct pattern of deformation migration exists. We estimate the percentage of whole-wedge deformation accommodated by wedge-front structures using our new fault slip rates combined with the wedge-loading rate of ~10 mm/yr and place our

  4. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle...

  5. Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution

    Science.gov (United States)

    Foley, Bradford J.; Driscoll, Peter E.

    2016-05-01

    Earth's climate, mantle, and core interact over geologic time scales. Climate influences whether plate tectonics can take place on a planet, with cool climates being favorable for plate tectonics because they enhance stresses in the lithosphere, suppress plate boundary annealing, and promote hydration and weakening of the lithosphere. Plate tectonics plays a vital role in the long-term carbon cycle, which helps to maintain a temperate climate. Plate tectonics provides long-term cooling of the core, which is vital for generating a magnetic field, and the magnetic field is capable of shielding atmospheric volatiles from the solar wind. Coupling between climate, mantle, and core can potentially explain the divergent evolution of Earth and Venus. As Venus lies too close to the sun for liquid water to exist, there is no long-term carbon cycle and thus an extremely hot climate. Therefore, plate tectonics cannot operate and a long-lived core dynamo cannot be sustained due to insufficient core cooling. On planets within the habitable zone where liquid water is possible, a wide range of evolutionary scenarios can take place depending on initial atmospheric composition, bulk volatile content, or the timing of when plate tectonics initiates, among other factors. Many of these evolutionary trajectories would render the planet uninhabitable. However, there is still significant uncertainty over the nature of the coupling between climate, mantle, and core. Future work is needed to constrain potential evolutionary scenarios and the likelihood of an Earth-like evolution.

  6. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry

    OpenAIRE

    De Hoog, Cees-Jan; Gall, Louise; Cornell, David H.

    2010-01-01

    Trace-element compositions of olivine from 75 mantle rocks of diverse origin, including xenoliths from kimberlites, basaltic lavas and orogenic peridotites, were determined by laser ablation ICP-MS to study systematic variations between mantle lithologies, partitioning mechanisms in olivine and their potential for geothermobarometry and unravelling mantle processes. Samples were selected to cover a wide range of forsterite contents (89.1-93.4), equilibration temperatures and pressures (750-14...

  7. First direct dating of Late Pleistocene ice-wedges by AMS

    NARCIS (Netherlands)

    Vasil'chuk, YK; van der Plicht, J; Jungner, H; Sonninen, E; Vasil'chuk, AC; Vasil'chuk, Yurij K.; Vasil'chuk, Alla C.

    2000-01-01

    We present the first direct dating by C-14-accelerator mass spectrometry of three Late Pleistocene syngenetic ice-wedges from the Seyaha cross-section. They are representative of permafrost with multistage ice-wedges from the North of Western Siberia. The most important result is the clear vertical

  8. Revisit the classical Newmark displacement method for earthquake-induced wedge slide

    Science.gov (United States)

    Yang, Che-Ming; Cheng, Hui-Yun; Wu, Wen-Jie; Hsu, Chang-Hsuan; Dong, Jia-Jyun; Lee, Chyi-Tyi

    2016-04-01

    Newmark displacement method has been widely used to study the earthquake-induced landslides and adopted to explore the initiation and kinematics of catastrophic planar failure in recent years. However, surprisingly few researchers utilize the Newmark displacement method to study the earthquake-induced wedge slide. The classical Newmark displacement method for earthquake-induced wedge sliding assumed the wedge is rigid and the vertical acceleration, as well as the horizontal acceleration perpendicular to the sliding direction, is neglected. Moreover, the friction coefficients on the weak planes are assumed as unchanged during sliding. The purpose of this study is to test the reasonableness of the aforementioned assumptions. This study uses Newmark displacement method incorporating the rigid wedge method (RWM) and maximum shear stress method (MSSM) to evaluate the influence of wedge deformation. We design the geometry of the wedge and input the synthetic seismicity to trigger the wedge slide. The influence for neglecting the vertical and horizontal (perpendicular to the sliding direction) accelerations is also assessed. Besides, this research incorporates the velocity-displacement dependent friction law in the analysis to evaluate the influence of constant friction coefficient assumption. Result of this study illustrated that the aforementioned assumptions have significant effects on the calculated permeant displacement, moving speed, and failure initiation. To conclude, this study provides new insights on the initiation and kinematics of an earthquake induced wedge slide.

  9. Enhancement of linear and second-order hyperpolarizabilities in wedge-shaped nanostructures

    Science.gov (United States)

    Jayabalan, J.; Singh, Manoranjan P.; Rustagi, K. C.

    2003-08-01

    Analytical solutions for the wave functions for free electrons inside a wedge-shaped quantum dot are reported. For silver wedge-shaped quantum dots, linear and second-order hyperpolarizabilities are calculated for various apex angles. It is found that linear and nonlinear hyperpolarizabilities both increase with decreasing apex angle.

  10. Duwamish Waterways Navigation Improvement Study: Analysis of Impacts on Water Quality and Salt Wedge Characteristics.

    Science.gov (United States)

    1981-02-01

    dissolved oxygen consumption in the saltwater wedge is emphasized. A section has also been prepared discussing sediment transport in the estuary...biomass produced and sedimented 23 1,000 800 00 0 400 Xi. . *-*’* 200 ox- :~. ---0 - .....’ ~ ’J FIGURE 6 Annual Dissolved Oxygen Consumption in the wedge

  11. Reflection of a converging cylindrical shock wave segment by a straight wedge

    Science.gov (United States)

    Gray, B.; Skews, B.

    2017-01-01

    As a converging cylindrical shock wave propagates over a wedge, the shock wave accelerates and the angle between the shock wave and the wedge decreases. This causes the conditions at the reflection point to move from what would be the irregular reflection domain for a straight shock wave into the regular reflection domain. This paper covers a largely qualitative study of the reflection of converging shock wave segments with Mach numbers between 1.2 and 2.1 by wedges inclined at angles between 15° and 60° from experimental and numerical results. The sonic condition conventionally used for predicting the type of reflection of straight shock waves was found to also be suitable for predicting the initial reflection of a curved shock wave. Initially regular reflections persisted until the shock was completely reflected by the wedge, whereas the triple point of initially irregular reflections was observed to return to the wedge surface, forming transitioned regular reflection. After the incident shock wave was completely reflected by the wedge, a shock wave focusing mechanism was observed to amplify the pressure on the surface of the wedge by a factor of up to 100 for low wedge angles.

  12. A quantum hybrid with a thin antenna at the vertex of a wedge

    Science.gov (United States)

    Carlone, Raffaele; Posilicano, Andrea

    2017-03-01

    We study the spectrum, resonances and scattering matrix of a quantum Hamiltonian on a "hybrid surface" consisting of a half-line attached by its endpoint to the vertex of a concave planar wedge. At the boundary of the wedge, outside the vertex, homogeneous Dirichlet conditions are imposed. The system is tunable by varying the measure of the angle at the vertex.

  13. Immediate and 1 week effects of laterally wedge insoles on gait biomechanics in healthy females.

    Science.gov (United States)

    Weinhandl, Joshua T; Sudheimer, Sarah E; Van Lunen, Bonnie L; Stewart, Kimberly; Hoch, Matthew C

    2016-03-01

    It is estimated that approximately 45% of the U.S. population will develop knee osteoarthritis, a disease that creates significant economic burdens in both direct and indirect costs. Laterally wedged insoles have been frequently recommended to reduce knee abduction moments and to manage knee osteoarthritis. However, it remains unknown whether the lateral wedge will reduce knee abduction moments over a prolonged period of time. Thus, the purposes of this study were to (1) examine the immediate effects of a laterally wedged insole in individuals normally aligned knees and (2) determine prolonged effects after the insole was worn for 1 week. Gait analysis was performed on ten women with and without a laterally wedged insole. After participants wore the wedges for a week, a second gait analysis was performed with and without the insole. The wedged insole did not affect peak knee abduction moment, although there was a significant increase in knee abduction angular impulse after wearing the insoles for 1 week. Furthermore, there was a significant increase in vertical ground reaction force at the instance of peak knee abduction moment with the wedges. While the laterally wedged insole used in the current study did not alter knee abduction moments as expected, other studies have shown alterations. Future studies should also examine a longer acclimation period, the influence of gait speed, and the effect of different shoe types with the insole.

  14. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology

    Science.gov (United States)

    Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.; Fedorov, Alexander N.; Frost, Gerald V.; Grosse, Guido; Hinzman, Larry D.; Iijma, Yoshihiro; Jorgenson, Janet C.; Matveyeva, Nadya; Necsoiu, Marius; Raynolds, Martha K.; Romanovsky, Vladimir E.; Schulla, Jörg; Tape, Ken D.; Walker, Donald A.; Wilson, Cathy J.; Yabuki, Hironori; Zona, Donatella

    2016-04-01

    Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions.

  15. Comparison of dosimetric characteristics of Siemens virtual and physical wedges for ONCOR linear accelerator

    Directory of Open Access Journals (Sweden)

    Attalla Ehab

    2010-01-01

    Full Text Available Dosimetric properties of virtual wedge (VW and physical wedge (PW in 6- and 10-MV photon beams from a Siemens ONCOR linear accelerator, including wedge factors, depth doses, dose profiles, peripheral doses, are compared. While there is a great difference in absolute values of wedge factors, VW factors (VWFs and PW factors (PWFs have a similar trend as a function of field size. PWFs have stronger depth dependence than VWF due to beam hardening in PW fields. VW dose profiles in the wedge direction, in general, match very well with those of PW, except in the toe area of large wedge angles with large field sizes. Dose profiles in the nonwedge direction show a significant reduction in PW fields due to off-axis beam softening and oblique filtration. PW fields have significantly higher peripheral doses than open and VW fields. VW fields have similar surface doses as the open fields, while PW fields have lower surface doses. Surface doses for both VW and PW increase with field size and slightly with wedge angle. For VW fields with wedge angles 45° and less, the initial gap up to 3 cm is dosimetrically acceptable when compared to dose profiles of PW. VW fields in general use less monitor units than PW fields.

  16. Modelling the interplate domain in thermo-mechanical simulations of subduction: Critical effects of resolution and rheology, and consequences on wet mantle melting

    Science.gov (United States)

    Arcay, Diane

    2017-08-01

    The present study aims at better deciphering the different mechanisms involved in the functioning of the subduction interplate. A 2D thermo-mechanical model is used to simulate a subduction channel, made of oceanic crust, free to evolve. Convergence at constant rate is imposed under a 100 km thick upper plate. Pseudo-brittle and non-Newtonian behaviours are modelled. The influence of the subduction channel strength, parameterized by the difference in activation energy between crust and mantle (ΔEa) is investigated to examine in detail the variations in depth of the subduction plane down-dip extent, zcoup . First, simulations show that numerical resolution may be responsible for an artificial and significant shallowing of zcoup if the weak crustal layer is not correctly resolved. Second, if the age of the subducting plate is 100 Myr, subduction occurs for any ΔEa . The stiffer the crust is, that is, the lower ΔEa is, the shallower zcoup is (60 km depth if ΔEa = 20 kJ/mol) and the hotter the fore-arc base is. Conversely, imposing a very weak subduction channel (ΔEa > 135 J/mol) leads there to an extreme mantle wedge cooling and inhibits mantle melting in wet conditions. Partial kinematic coupling at the fore-arc base occurs if ΔEa = 145 kJ/mol. If the incoming plate is 20 Myr old, subduction can occur under the conditions that the crust is either stiff and denser than the mantle, or weak and buoyant. In the latter condition, cold crust plumes rise from the subduction channel and ascend through the upper lithosphere, triggering (1) partial kinematic coupling under the fore-arc, (2) fore-arc lithosphere cooling, and (3) partial or complete hindrance of wet mantle melting. zcoup then ranges from 50 to more than 250 km depth and is time-dependent if crust plumes form. Finally, subduction plane dynamics is intimately linked to the regime of subduction-induced corner flow. Two different intervals of ΔEa are underlined: 80-120 kJ/mol to reproduce the range of slab

  17. Investigation of a Wedge Adhesion Test for Edge Seals

    Energy Technology Data Exchange (ETDEWEB)

    Kempe, Michael; Wohlgemuth, John; Miller, David; Postak, Lori; Booth, Dennis; Phillips, Nancy

    2016-09-26

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adapting the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be

  18. Investigation of a wedge adhesion test for edge seals

    Science.gov (United States)

    Kempe, Michael; Wohlgemuth, John; Miller, David; Postak, Lori; Booth, Dennis; Phillips, Nancy

    2016-09-01

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adapting the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be

  19. Coupled Petrological and Geodynamic Models of Mantle Flow in Subduction Zones; the Importance of Chlorite in the Emergence of a Low-Viscosity Channel

    Science.gov (United States)

    Smith, P. M.; Baker, L. J.; Asimow, P. D.; Gurnis, M. C.

    2007-12-01

    Seismic velocity and attenuation studies have shown that 5-20 km thick low velocity layers exist above seismically fast slabs and are associated with broad zones of high attenuation in many subduction zones. These observations are generally interpreted as formation of hydrous phases by dehydration of the slab, although the impact of water in nominally anhydrous minerals (NAM) on seismic wave propagation is largely unknown. Recent petrological experiments on hydrous peridotite at subduction zone conditions suggest that chlorite will be stable adjacent to the subducting slab in sufficient quantities to be a significant water sink. We use a scheme that couples a petrological model (pHMELTS) with a 2-D thermal and variable viscosity flow model (ConMan) to model energy and mass transfer within a subduction zone. By varying input parameters including the convergence rate and slab dip we have developed models for cases in the Costa-Rica and Izu- Bonin-Marianas arc systems and are able to predict major and trace element compositions of primary melts, as well as geophysical observables, such as the topography and geoid. We find that the emergence of a slab- adjacent low-viscosity channel (LVC) is a natural consequence of the thermal and chemical controls on mantle dynamics and feedback between them. In our earlier models, as the LVC is dragged downwards by the subducting slab, hornblende breaks down at about 2.5 GPa and other hydrous phases such as serpentine are secondary in importance to the NAM water reservoir. The spatial limit of the LVC is the water-saturated solidus of the hydrated peridotite; the LVC thickens as the peridotite is progressively depleted by melting and the solidus migrates into the warmer wedge, despite water replenishment at depth. pHMELTS is a hybrid of the pMELTS model of Ghiorso and co-workers and includes amphiboles, serpentines and micas. Chlorite was lacking but we have recently rectified this omission. Following De Capitani and co- workers, we

  20. Three-dimensional P wave attenuation and velocity upper mantle tomography of the southern Apennines-Calabrian Arc subduction zone

    Science.gov (United States)

    Monna, Stephen; Dahm, Torsten

    2009-06-01

    We propose a 3-D crust-upper mantle seismic attenuation (QP) model of the southern Apennines-Calabrian Arc subduction zone together with a 3-D velocity (VP) model. The QP model is calculated from relative t* using the spectral ratio method and the VP from traveltime data. The final data set used for the inversion of the VP model consists of 2400 traveltime arrivals recorded by 34 short-period stations that are part of the Italian National Seismic Network, and for the QP model, 2178 Pn phases recorded by a subset of 32 stations. Traveltimes and waveforms come from 272 intermediate-depth Calabrian slab events. This 3-D model of attenuation, together with the 3-D velocity model, improves our knowledge of the slab/mantle wedge structure and can be a starting point in determining the physical state of the asthenosphere (i.e., its temperature, the presence of melt and/or fluids) and its relation to volcanism found in the study area. Main features of the QP and VP models show that the mantle wedge/slab, in particular, the area of highest attenuation, is located in a volume underlying the Marsili Basin. The existence and shape of this main low-QP (and low-VP) anomaly points to slab dehydration and fluid/material flow, a process that may explain the strong geochemical affinities between the subduction-related magmas from Stromboli and Vesuvius. Other interesting features in the models are strong lateral variations in QP and VP that are put in relation with known important tectonic structures and volcanic centers in the area.

  1. Thermoconvective waves in the earth's mantle

    Science.gov (United States)

    Birger, B. I.

    1980-06-01

    The thermoconvective instability of the Earth's mantle is analysed. The mantle is modelled as an infinite horizontal layer with a free upper surface, heated from below. The creep in the mantle is supposed to be transient when strains are small. This transient creep is described by Lomnitz's law modified by Jeffreys (1958a). It is shown that disturbances, in the form of thermoconvective waves with a period of 10 8 - 10 9y and wavelength of the order 10 3 km, can propagate through the mantle without attenuation. These waves induce oscillations of the Earth's surface. The pattern of flows differs greatly from that suggested by plate tectonics. An attempt is made to give a new explanation for the linear magnetic anomalies over oceanic ridges.

  2. Can mantle convection be self-regulated?

    Science.gov (United States)

    Korenaga, Jun

    2016-08-01

    The notion of self-regulating mantle convection, in which heat loss from the surface is constantly adjusted to follow internal radiogenic heat production, has been popular for the past six decades since Urey first advocated the idea. Thanks to its intuitive appeal, this notion has pervaded the solid earth sciences in various forms, but approach to a self-regulating state critically depends on the relation between the thermal adjustment rate and mantle temperature. I show that, if the effect of mantle melting on viscosity is taken into account, the adjustment rate cannot be sufficiently high to achieve self-regulation, regardless of the style of mantle convection. The evolution of terrestrial planets is thus likely to be far from thermal equilibrium and be sensitive to the peculiarities of their formation histories. Chance factors in planetary formation are suggested to become more important for the evolution of planets that are more massive than Earth.

  3. How mantle slabs drive plate tectonics.

    Science.gov (United States)

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-04

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.

  4. MODELLING MANTLE TANKS FOR SDHW SYSTEMS USING PIV AND CFD

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, Masud

    1999-01-01

    Characteristics of vertical mantle heat exchanger tanks for SDHW systems have been investigated experimentally and theoretically using particle image velocimetry (PIV) and CFD modelling. A glass model of a mantle heat exchanger tank was constructed so that the flow distribution in the mantle could...... be studied using the PIV test facility. Two transient three-dimensional CFD-models of the glass model mantle tank were developed using the CFD-programmes CFX and FLUENT.The experimental results illustrate that the mantle flow structure in the mantle is complicated and the distribution of flow in the mantle...

  5. Comparisons between radioactive and non-radioactive gas lantern mantles.

    Science.gov (United States)

    Furuta, E; Yoshizawa, Y; Aburai, T

    2000-12-01

    Gas lantern mantles containing radioactive thorium have been used for more than 100 years. Although thorium was once believed to be indispensable for giving a bright light, non-radioactive mantles are now available. From the radioactivities of the daughter nuclides, we estimated the levels of radioactivity of 232Th and 228Th in 11 mantles. The mantles contained various levels of radioactivity from background levels to 1410 +/- 140 Bq. Our finding that radioactive and non-radioactive mantles are equally bright suggests that there is no advantage in using radioactive mantles. A remaining problem is that gas lantern mantles are sold without any information about radioactivity.

  6. Experimental Study of Natural Gas Storage in Hydrates

    Institute of Scientific and Technical Information of China (English)

    孙志高; 王如竹; 郭开华; 樊栓狮

    2004-01-01

    Hydrate formation rate plays an important role in the making of hydrates for natural gas storage. The effect of sodium dodecyl sulfate (SDS), alkyl polysaccharide glycoside (APG) and cyclopentane (CP) on natural gas hydrate formation rate, induction time and storage capacity was studied. Micellar surfactant solutions were found to increase hydrate formation rate in a quiescent system and improve hydrate formation rate and natural gas storage capacity. The process of hydrate formation includes two stages with surfactant presence. Hydrate forms quickly in the first stage, and then the formation rate is slowed down. Surfactants (SDS or APG) reduce the induction time of hydrate formation. The effect of an anionic surfactant (SDS) on gas storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduces the induction time of hydrate formation, but can not improve the natural gas storage capacity in hydrates.

  7. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics

    Science.gov (United States)

    Harrison, Lauren N.; Weis, Dominique; Garcia, Michael O.

    2017-04-01

    Oceanic island basalts sample mantle reservoirs that are isotopically and compositionally heterogeneous. The Hawaiian-Emperor chain represents ∼85 Myr of volcanism supplied by a deep mantle plume. Two geographically and geochemically delineated trends, Kea and Loa, are well documented within the Hawaiian Islands. Enriched Loa compositions originate from subduction recycled or primordial material stored in deep mantle reservoirs such as the large low shear velocity province (LLSVP) below Hawai'i. Loa compositions have not been observed along the Emperor Seamounts (>50 Ma), whereas lavas on the Hawaiian Islands (chain and the Hawaiian Islands record the geochemical evolution of the Hawaiian mantle plume over a time period when many geophysical parameters (volcanic propagation rate, magmatic flux, mantle potential temperature) increased significantly. Along the NWHR, the Loa geochemical component appears ephemerally, which we link to the sampling of different lower mantle compositional domains by the Hawaiian mantle plume. The plume initially sampled only the deep Pacific mantle (Kea component) from outside the LLSVP during the formation of the Emperor Seamounts. Southward migration and anchoring of the plume on the LLSVP led to entrainment of increasing amounts of LLSVP material (Loa component) along the NWHR as documented by an increase in 208Pb*/206Pb* with decreasing age. The correlation between 208Pb*/206Pb* and magmatic flux suggests source composition affects the magmatic flux, and explains why the Hawaiian mantle plume has dramatically strengthened through time.

  8. Methane Recovery from Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  9. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  10. The effect of shoe design and lateral wedging on knee loading

    DEFF Research Database (Denmark)

    Mølgaard, Carsten; Kersting, Uwe G.

    The increasing number of patients with developing osteoarthritis is accompanied by a growing scientific interest in non-operative early treatment strategies. It is generally believed that laterally wedged insoles can change the distribution of the knee loading, but the importance of footwear design......-dimensional gait analysis. Barefoot walking, walking in a running shoe, an Oxford-type leather shoe, and a rocker shoe were analyzed. The shoes were tested both with and without a 10-degree full length laterally wedged insole. Results: Similar, significant reductions in the peak knee adduction moment with lateral...... wedges were observed in all three types of shoes. However, differences between shoe design were of similar magnitude as the effect of laterally wedged insoles. Only marginal changes in muscle activity for lateral hamstrings during barefoot toe-out walking and gastrocnemius when using the Oxford wedged...

  11. Bonding mechanism of ultrasonic wedge bonding of copper wire on Au/Ni/Cu substrate

    Institute of Scientific and Technical Information of China (English)

    TIAN Yan-hong; WANG Chun-qing; Y. Norman ZHOU

    2008-01-01

    The ultrasonic wedge bonding with d25 μm copper wire was achieved on Au/Ni plated Cu substrate at ambient temperature. Ultrasonic wedge bonding mechanism was investigated by using SEM/EDX, pull test, shear test and microhardness test. The results show that the thinning of the Au layer occurs directly below the center of the bonding tool with the bonding power increasing. The interdiffusion between copper wire and Au metallization during the wedge bonding is assumed negligible, and the wedge bonding is achieved by wear action induced by ultrasonic vibration. The ultrasonic power contributes to enhance the deformation of copper wire due to ultrasonic softening effect which is then followed by the strain hardening of the copper wedge bonding.

  12. Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation

    Science.gov (United States)

    Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.

    2013-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  13. Two-dimensional electronic spectroscopy with birefringent wedges

    Energy Technology Data Exchange (ETDEWEB)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  14. Subduction and volatile recycling in Earth's mantle

    Science.gov (United States)

    King, S. D.; Ita, J. J.; Staudigel, H.

    1994-01-01

    The subduction of water and other volatiles into the mantle from oceanic sediments and altered oceanic crust is the major source of volatile recycling in the mantle. Until now, the geotherms that have been used to estimate the amount of volatiles that are recycled at subduction zones have been produced using the hypothesis that the slab is rigid and undergoes no internal deformation. On the other hand, most fluid dynamical mantle flow calculations assume that the slab has no greater strength than the surrounding mantle. Both of these views are inconsistent with laboratory work on the deformation of mantle minerals at high pressures. We consider the effects of the strength of the slab using two-dimensional calculations of a slab-like thermal downwelling with an endothermic phase change. Because the rheology and composition of subducting slabs are uncertain, we consider a range of Clapeyron slopes which bound current laboratory estimates of the spinel to perovskite plus magnesiowustite phase transition and simple temperature-dependent rheologies based on an Arrhenius law diffusion mechanism. In uniform viscosity convection models, subducted material piles up above the phase change until the pile becomes gravitationally unstable and sinks into the lower mantle (the avalanche). Strong slabs moderate the 'catastrophic' effects of the instabilities seen in many constant-viscosity convection calculations; however, even in the strongest slabs we consider, there is some retardation of the slab descent due to the presence of the phase change.

  15. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  16. Isolating active orogenic wedge deformation in the southern Subandes of Bolivia

    Science.gov (United States)

    Weiss, Jonathan R.; Brooks, Benjamin A.; Foster, James H.; Bevis, Michael; Echalar, Arturo; Caccamise, Dana; Heck, Jacob; Kendrick, Eric; Ahlgren, Kevin; Raleigh, David; Smalley, Robert; Vergani, Gustavo

    2016-08-01

    A new GPS-derived surface velocity field for the central Andean backarc permits an assessment of orogenic wedge deformation across the southern Subandes of Bolivia, where recent studies suggest that great earthquakes (>Mw 8) are possible. We find that the backarc is not isolated from the main plate boundary seismic cycle. Rather, signals from subduction zone earthquakes contaminate the velocity field at distances greater than 800 km from the Chile trench. Two new wedge-crossing velocity profiles, corrected for seasonal and earthquake affects, reveal distinct regions that reflect (1) locking of the main plate boundary across the high Andes, (2) the location of and loading rate at the back of orogenic wedge, and (3) an east flank velocity gradient indicative of décollement locking beneath the Subandes. Modeling of the Subandean portions of the profiles indicates along-strike variations in the décollement locked width (WL) and wedge loading rate; the northern wedge décollement has a WL of ~100 km while accumulating slip at a rate of ~14 mm/yr, whereas the southern wedge has a WL of ~61 km and a slip rate of ~7 mm/yr. When compared to Quaternary estimates of geologic shortening and evidence for Holocene internal wedge deformation, the new GPS-derived wedge loading rates may indicate that the southern wedge is experiencing a phase of thickening via reactivation of preexisting internal structures. In contrast, we suspect that the northern wedge is undergoing an accretion or widening phase primarily via slip on relatively young thrust-front faults.

  17. The use of sternal wedge osteotomy in pectus surgery: when is it necessary?

    Science.gov (United States)

    Kara, Murat; Gundogdu, Ahmet Gokhan; Kadioglu, Salih Zeki; Cayirci, Ertug Can; Taskin, Necati

    2016-09-01

    The Ravitch procedure is a well-established surgical procedure for correction of chest wall deformities. Sternal wedge osteotomy is an important part of this procedure. We studied the incidence of wedge osteotomy with respect to the type of chest wall deformity in patients undergoing surgical correction with the use of a recently developed chest wall stabilization system. A total of 47 patients, 39 (83%) male and 8 (17%) female with a mean age of 14.9 ± 2.1 years, underwent the Ravitch procedure. Twenty-four (51.1%) had pectus carinatum, 19 (40.4%) had pectus excavatum, and 4 (8.5%) had pectus arcuatum. A conventional or oblique sternal wedge osteotomy was performed as indicated, followed by chest wall stabilization using the MedXpert system. Of the 47 patients, 27 (57.4%) had a sternal wedge osteotomy. All cases of pectus arcuatum and redo cases underwent sternal wedge osteotomy. Pectus excavatum cases tended to have a greater incidence of wedge osteotomy compared to pectus carinatum cases (68.4% vs. 41.7%, p = 0.052). Patients with more resected ribs had a greater rate of wedge osteotomy (63.4%) compared to those with fewer resected ribs (16.7%, p = 0.043). A sternal wedge osteotomy is more commonly performed in patients with pectus excavatum compared to those with pectus carinatum. All redo and pectus arcuatum cases need a wedge osteotomy for proper correction. Wedge osteotomy is very likely in more aggressive corrections with more rib resections. © The Author(s) 2016.

  18. Archimedean Proof of the Physical Impossibility of Earth Mantle Convection

    CERN Document Server

    Herndon, J Marvin

    2010-01-01

    Eight decades ago, Arthur Holmes introducted the idea of mantle convection as a mechanism for continental drift. Five decades ago, continental drift was modified to become plate tectonics theory, which included mantle convection as an absolutely critical component. Using the submarine design and operation concept of "neutral buoyancy", which follows from Archimedes' discoveries, the concept of mantle convection is proven to be incorrect, concomitantly refuting plate tectonics, refuting all mantle convection models, and refuting all models that depend upon mantle convection.

  19. Heterogeneous stress state of island arc crust in northeastern Japan affected by hot mantle fingers

    Science.gov (United States)

    Shibazaki, Bunichiro; Okada, Tomomi; Muto, Jun; Matsumoto, Takumi; Yoshida, Takeyoshi; Yoshida, Keisuke

    2016-04-01

    By considering a thermal structure based on dense geothermal observations, we model the stress state of the crust beneath the northeastern Japan island arc under a compressional tectonic regime using a finite element method with viscoelasticity and elastoplasticity. We consider a three-layer structure (upper crust, lower crust, and uppermost mantle) to define flow properties. Numerical results show that the brittle-viscous transition becomes shallower beneath the Ou Backbone Range compared with areas near the margins of the Pacific Ocean and the Japan Sea. Moreover, several elongate regions with a shallow brittle-viscous transition are oriented transverse to the arc, and these regions correspond to hot fingers (i.e., high-temperature regions in the mantle wedge). The stress level is low in these regions due to viscous deformation. Areas of seismicity roughly correspond to zones of stress accumulation where many intraplate earthquakes occur. Our model produces regions with high uplift rates that largely coincide with regions of high elevation (e.g., the Ou Backbone Range). The stress state, fault development, and uplift around the Ou Backbone Range can all be explained by our model. The results also suggest the existence of low-viscosity regions corresponding to hot fingers in the island arc crust. These low-viscosity regions have possibly affected viscous relaxation processes following the 2011 Tohoku-oki earthquake.

  20. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  1. Prospecting for marine gas hydrate resources

    Science.gov (United States)

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.

    2016-01-01

    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  2. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  3. Gas hydrate dissociation structures in submarine slopes

    Energy Technology Data Exchange (ETDEWEB)

    Gidley, I.; Grozic, J.L.H. [Calgary Univ., AB (Canada). Dept. of Civil Engineering

    2008-07-01

    Studies have suggested that gas hydrates may play a role in submarine slope failures. However, the mechanics surrounding such failures are poorly understood. This paper discussed experimental tests conducted on a small-scale physical model of submarine soils with hydrate inclusions. The laboratory tests investigated the effects of slope angle and depth of burial of the hydrate on gas escape structures and slope stability. Laponite was used to model the soils due to its ability to swell and produce a clear, colorless thixotropic gel when dispersed in water. An R-11 refrigerant was used to form hydrate layers and nodules. The aim of the experiment was to investigate the path of the fluid escape structures and the development of a subsequent slip plane caused by the dissociation of the R-11 hydrates. Slope angles of 5, 10, and 15 degrees were examined. Slopes were examined using high-resolution, high-speed imaging techniques. Hydrate placement and slope inclinations were varied in order to obtain stability data. Results of the study showed that slope angle influenced the direction of travel of the escaping gas, and that the depth of burial affected sensitivity to slope angle. Theoretical models developed from the experimental data have accurately mapped deformations and stress states during testing. Further research is being conducted to investigate the influence of the size, shape, and placement of the hydrates. 30 refs., 15 figs.

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  5. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  6. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-04-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  7. Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 10, Basin analysis, formation and stability of gas hydrates of the Aleutian Trench and the Bering Sea

    Energy Technology Data Exchange (ETDEWEB)

    Krason, J.; Ciesnik, M.

    1987-01-01

    Four major areas with inferred gas hydrates are the subject of this study. Two of these areas, the Navarin and the Norton Basins, are located within the Bering Sea shelf, whereas the remaining areas of the Atka Basin in the central Aleutian Trench system and the eastern Aleutian Trench represent a huge region of the Aleutian Trench-Arc system. All four areas are geologically diverse and complex. Particularly the structural features of the accretionary wedge north of the Aleutian Trench still remain the subjects of scientific debates. Prior to this study, suggested presence of the gas hydrates in the four areas was based on seismic evidence, i.e., presence of bottom simulating reflectors (BSRs). Although the disclosure of the BSRs is often difficult, particularly under the structural conditions of the Navarin and Norton basins, it can be concluded that the identified BSRs are mostly represented by relatively weak and discontinuous reflectors. Under thermal and pressure conditions favorable for gas hydrate formation, the relative scarcity of the BSRs can be attributed to insufficient gas supply to the potential gas hydrate zone. Hydrocarbon gas in sediment may have biogenic, thermogenic or mixed origin. In the four studied areas, basin analysis revealed limited biogenic hydrocarbon generation. The migration of the thermogenically derived gases is probably diminished considerably due to the widespread diagenetic processes in diatomaceous strata. The latter processes resulted in the formation of the diagenetic horizons. The identified gas hydrate-related BSRs seem to be located in the areas of increased biogenic methanogenesis and faults acting as the pathways for thermogenic hydrocarbons.

  8. Vertebral body or intervertebral disc wedging: which contributes more to thoracolumbar kyphosis in ankylosing spondylitis patients?

    Science.gov (United States)

    Liu, Hao; Qian, Bang-Ping; Qiu, Yong; Wang, Yan; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang

    2016-01-01

    Abstract Both vertebral body wedging and disc wedging are found in ankylosing spondylitis (AS) patients with thoracolumbar kyphosis. However, their relative contribution to thoracolumbar kyphosis is not fully understood. The objective of this study was to compare different contributions of vertebral and disc wedging to the thoracolumbar kyphosis in AS patients, and to analyze the relationship between the apical vertebral wedging angle and thoracolumbar kyphosis. From October 2009 to October 2013, a total of 59 consecutive AS patients with thoracolumbar kyphosis with a mean age of 38.1 years were recruited in this study. Based on global kyphosis (GK), 26 patients with GK < 70° were assigned to group A, and the other 33 patients with GK ≥ 70° were included in group B. Each GK was divided into disc wedge angles and vertebral wedge angles. The wedging angle of each disc and vertebra comprising the thoracolumbar kyphosis was measured, and the proportion of the wedging angle to the GK was calculated accordingly. Intergroup and intragroup comparisons were subsequently performed to investigate the different contributions of disc and vertebra to the GK. The correlation between the apical vertebral wedging angle and GK was calculated by Pearson correlation analysis. The duration of disease and sex were also recorded in this study. With respect to the mean disease duration, significant difference was observed between the two groups (P < 0.01). The wedging angle and wedging percentage of discs were significantly higher than those of vertebrae in group A (34.8° ± 2.5° vs 26.7° ± 2.7°, P < 0.01 and 56.6% vs 43.4%, P < 0.01), whereas disc wedging and disc wedging percentage were significantly lower than vertebrae in group B (37.6° ± 7.0° vs 50.1° ± 5.1°, P < 0.01 and 42.7% vs 57.3%, P < 0.01). The wedging of vertebrae was significantly higher in group B than in group A (50.1° ± 5.1° vs 26.7° ± 2.7°, P < 0

  9. The fate of gas hydrates in the Barents Sea and Kara Sea region

    Science.gov (United States)

    Klitzke, Peter; Scheck-Wenderoth, Magdalena; Schicks, Judith; Luzi-Helbing, Manja; Cacace, Mauro; Jacquey, Antoine; Sippel, Judith; Faleide, Jan Inge

    2016-04-01

    The Barents Sea and Kara Sea are located in the European Arctic. Recent seismic lines indicate the presence of gas hydrates in the Barents Sea and Kara Sea region. Natural gas hydrates contain huge amounts of methane. Their stability is mainly sensitive to pressure and temperature conditions which make them susceptible for climate change. When not stable, large volumes of methane will be released in the water column and - depending on the water depth - may also be released into the atmosphere. Therefore, studying the evolution in time and space of the gas hydrates stability zone in the Barents Sea region is of interest for both environmental impact and energy production. In this study, we assess the gas hydrate inventory of the Barents Sea and Kara Sea under the light of increasing ocean bottom temperatures in the next 200 years. Thereby, we make use of an existing 3D structural and thermal model which resolves five sedimentary units, the crystalline crust and the lithospheric mantle. The sedimentary units are characterised by the prevailing lithology and porosity including effects of post-depositional erosion which strongly affect the local geothermal gradient. Governing equations for the conductive 3D thermal field and momentum balance have been integrated in a massively parallel finite-element-method based framework (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly on unstructured meshes. First we calculate the present-day steady-state 3D thermal field. Subsequently, we use the latter as initial condition to calculate the transient 3D thermal field for the next 200 years considering an ocean temperature model as upper boundary. Temperature and load distributions are then used to calculate the thickness of the gas hydrate stability zone for each time step. The results show that the gas hydrate stability zone strongly varies in the region due to the local geothermal gradient changes. The latter

  10. Proton percolation on hydrated lysozyme powders

    OpenAIRE

    Careri, G; Giansanti, A; Rupley, John A.

    1986-01-01

    The framework of percolation theory is used to analyze the hydration dependence of the capacitance measured for protein samples of pH 3-10, at frequencies from 10 kHz to 4 MHz. For all samples there is a critical value of the hydration at which the capacitance sharply increases with increase in hydration level. The threshold hc = 0.15 g of water per g of protein is independent of pH below pH 9 and shows no solvent deuterium isotope effect. The fractional coverage of the surface at hc is in cl...

  11. Teaching machines to find mantle composition

    Science.gov (United States)

    Atkins, Suzanne; Tackley, Paul; Trampert, Jeannot; Valentine, Andrew

    2017-04-01

    The composition of the mantle affects many geodynamical processes by altering factors such as the density, the location of phase changes, and melting temperature. The inferences we make about mantle composition also determine how we interpret the changes in velocity, reflections, attenuation and scattering seen by seismologists. However, the bulk composition of the mantle is very poorly constrained. Inferences are made from meteorite samples, rock samples from the Earth and inferences made from geophysical data. All of these approaches require significant assumptions and the inferences made are subject to large uncertainties. Here we present a new method for inferring mantle composition, based on pattern recognition machine learning, which uses large scale in situ observations of the mantle to make fully probabilistic inferences of composition for convection simulations. Our method has an advantage over other petrological approaches because we use large scale geophysical observations. This means that we average over much greater length scales and do not need to rely on extrapolating from localised samples of the mantle or planetary disk. Another major advantage of our method is that it is fully probabilistic. This allows us to include all of the uncertainties inherent in the inference process, giving us far more information about the reliability of the result than other methods. Finally our method includes the impact of composition on mantle convection. This allows us to make much more precise inferences from geophysical data than other geophysical approaches, which attempt to invert one observation with no consideration of the relationship between convection and composition. We use a sampling based inversion method, using hundreds of convection simulations run using StagYY with self consistent mineral physics properties calculated using the PerpleX package. The observations from these simulations are used to train a neural network to make a probabilistic inference

  12. Shear wave splitting and subcontinental mantle deformation

    Science.gov (United States)

    Silver, Paul G.; Chan, W. Winston

    1991-09-01

    We have made measurements of shear wave splitting in the phases SKS and SKKS at 21 broadband stations in North America, South America, Europe, Asia, and Africa. Measurements are made using a retrieval scheme that yields the azimuth of the fast polarization direction ϕ and delay time δt of the split shear wave plus uncertainties. Detectable anisotropy was found at most stations, suggesting that it is a general feature of the subcontinental mantle. Delay times range from 0.65 s to 1.70 s and average about 1 s. Somewhat surprisingly, the largest delay time is found in the 2.7 b.y.-old Western Superior Province of the Canadian Shield. The splitting observations are interpreted in terms of the strain-induced lattice preferred orientation of mantle minerals, especially olivine. We consider three hypotheses concerning the origin of the continental anisotropy: (1) strain associated with absolute plate motion, as in the oceanic upper mantle, (2) crustal stress, and (3) the past and present internal deformation of the subcontinental upper mantle by tectonic episodes. It is found that the last hypothesis is the most successful, namely that the most recent significant episode of internal deformation appears to be the best predictor of ϕ. For stable continental regions, this is interpreted as "fossil" anisotropy, whereas for presently active regions, such as Alaska, the anisotropy reflects present-day tectonic activity. In the stable portion of North America there is a good correlation between delay time and lithospheric thickness; this is consistent with the anisotropy being localized in the subcontinental lithosphere and suggests that intrinsic anisotropy is approximately constant. The acceptance of this hypothesis has several implications for subcontinental mantle deformation. First, it argues for coherent deformation of the continental lithosphere (crust and mantle) during orogenies. This implies that the anisotropic portion of the lithosphere was present since the

  13. Mechanism of bone incorporation of beta-TCP bone substitute in open wedge tibial osteotomy in patients.

    NARCIS (Netherlands)

    Gaasbeek, R.D.A.; Toonen, H.G.; Heerwaarden, R.J. van; Buma, P.

    2005-01-01

    A histological study was performed of bone biopsies from 16 patients (17 biopsies) treated with open wedge high tibial osteotomies for medial knee osteoarthritis. The open wedge osteotomies were filled with a wedge of osteoconductive beta tricalcium phosphate (beta-TCP) ceramic bone replacement. At

  14. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  15. Effect of Some Admixtures on the Hydration of Silica Fume and Hydrated Lime

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of sodium salt of naphthalene formaldehyde sulfonic acid and stearic acid on the hydration of silica fume and Ca(0H)2 have been investigated. The hydration was carried out at 60℃ and W/S ratio of 4 for various time intervals namely, 1, 3, 7 and 28 days and in the presence of 0.2% and 5% superplasticizer and stearic acid. The results of the hydration kinetics show that both admixtures accelerate the hydration reaction of silica fume and calcium hydroxide during the first 7 days. Whereas, after 28 days hydration there is no significant effect. Generally, most of free calcium hydroxide seems to be consumed after 28 days. In addition, the phase composition as well as the microstructure of the formed hydrates was examined by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) respectively.

  16. Crust and upper-mantle seismic anisotropy variations from the coast to inland in central and Southern Mexico

    Science.gov (United States)

    Castellanos, Jorge; Pérez-Campos, Xyoli; Valenzuela, Raúl; Husker, Allen; Ferrari, Luca

    2017-07-01

    Subduction zones are among the most dynamic tectonic environments on Earth. Deformation mechanisms of various scales produce networks of oriented structures and faulting systems that result in a highly anisotropic medium for seismic wave propagation. In this study, we combine shear wave splitting inferred from receiver functions and the results from a previous SKS-wave study to quantify and constrain the vertically averaged shear wave splitting at different depths along the 100-station MesoAmerican Subduction Experiment array. This produces a transect that runs perpendicular to the trench across the flat slab portion of the subduction zone below central and southern Mexico. Strong anisotropy in the continental crust is found below the Trans-Mexican Volcanic Belt (TMVB) and above the source region of slow-slip events. We interpret this as the result of fluid/melt ascent. The upper oceanic crust and the overlying low-velocity zone exhibit highly complex anisotropy, while the oceanic lower crust is relatively homogeneous. Regions of strong oceanic crust anisotropy correlate with previously found low Vp/Vs regions, indicating that the relatively high Vs is an anisotropic effect. Upper-mantle anisotropy in the southern part of the array is in trench-perpendicular direction, consistent with the alignment of type-A olivine and with entrained subslab flow. The fast polarization direction of mantle anisotropy changes to N-S in the north, likely reflecting mantle wedge corner flow perpendicular to the TMVB.

  17. Mantle strength of the San Andreas fault system and the role of mantle-crust feedbacks

    NARCIS (Netherlands)

    Chatzaras, V.; Tikoff, B.; Newman, J.; Withers, A.C.; Drury, M.R.

    2015-01-01

    In lithospheric-scale strike-slip fault zones, upper crustal strength is well constrained from borehole observations and fault rock deformation experiments, but mantle strength is less well known. Using peridotite xenoliths, we show that the upper mantle below the San Andreas fault system (Californi

  18. The redox budget of crust-derived fluid phases at the slab-mantle interface

    Science.gov (United States)

    Malaspina, N.; Langenhorst, F.; Tumiati, S.; Campione, M.; Frezzotti, M. L.; Poli, S.

    2017-07-01

    excess of oxygen (nO2) is the same (10 mol m-3). The oxygen mass balance of the crust-derived fluids (multiphase inclusions) also indicates that the fluid precipitates are more oxidised than the host rock, reaching up to 400 mol m-3 of nO2. This suggests that even after their interaction with the metasomatic orthopyroxenites, the residual fluid phases could be potentially carrier of oxidised components when it escapes the slab-mantle interface. Because of this gradient in nO2, a metasomatic front develops from the oxidised slab to the overlying lithospheric mantle wedge passing through a transitional layer of hybrid rocks at the slab-mantle interface.

  19. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204

    Science.gov (United States)

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.

    2004-01-01

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally <2% of the pore space, although this estimate may increase by a factor of 2 when patchy zones of locally higher gas hydrate content are included in the calculation. These patchy zones are structurally and stratigraphically controlled, contain up to 20% hydrate in the pore space when averaged over zones ???10 m thick, and may occur in up to ???20% of the region imaged by 3D seismic data. This heterogeneous gas hydrate distribution is an important constraint on models of gas hydrate formation in marine sediments and the response of the sediments to tectonic and environmental change. ?? 2004 Published by Elsevier B.V.

  20. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  1. Variable Water Concentrations in the Asthenospheric and Lithospheric Mantle Underneath the Eastern United States

    Science.gov (United States)

    Soles, B.; Brennan, G. W.; Johnson, E. A.; Mazza, S. E.; Gazel, E.

    2014-12-01

    An Eocene (47-48 Ma) volcanic swarm in NW Virginia represents the youngest episode of volcanism in the Eastern US, possibly initiated by delamination of lithospheric mantle (Mazza 2014). The Eocene swarm is located along the MAGIC seismic array (Crampton 2013). The phenocrysts and mantle xenocrysts within these volcanic rocks are the most direct constraints on the water content of the mantle in this region and will aid interpretation of geophysical data. In this study, we measured structural hydroxyl concentrations, [OH], in clinopyroxene (cpx) and olivine (ol) xenocrysts and cpx phenocrysts from three basaltic intrusions: Mole Hill, a volcanic neck, Trimble Knob, a diatreme, and Rt.631, a dike. Polarized FTIR spectra were obtained at JMU and the Smithsonian Institution. Mineral compositions were obtained on the electron microprobe at the USGS, Reston. The cpx xenocrysts show hydration profiles, whereas cpx phenocrysts have flat or dehydration profiles. Cpx xenocryst cores contain [OH]=25-300 ppm H2O and ol xenocrysts have [OH]6 wt% at Trimble Knob. P and T were calculated using equilibrium exchange reactions from Putirka (2008). Xenocryst rims from Mole Hill have P=13.7±1.7 kbar and T=1287±24°C, and cpx phenocrysts from the Rt.631 dike record similar conditions of P=16.1±2.8 kbar and T=1339±37°C. A cpx phenocryst from Trimble Knob has P=23.8±4.0 kbar and T=1143±124°C. We interpret our data to indicate a dry lithospheric mantle as represented by the cpx and ol xenocrysts, underplated by a wet layer at the lithosphere-asthenosphere boundary produced by fractional crystallization of magma generated deeper in the asthenosphere, as represented by the cpx phenocrysts.

  2. A Hydrate Database: Vital to the Technical Community

    Directory of Open Access Journals (Sweden)

    D Sloan

    2007-06-01

    Full Text Available Natural gas hydrates may contain more energy than all the combined other fossil fuels, causing hydrates to be a potentially vital aspect of both energy and climate change. This article is an overview of the motivation, history, and future of hydrate data management using a CODATA vehicle to connect international hydrate databases. The basis is an introduction to the Gas Hydrate Markup Language (GHML to connect various hydrate databases. The accompanying four articles on laboratory hydrate data by Smith et al., on field hydrate data by L?wner et al., on hydrate modeling by Wang et al., and on construction of a Chinese gas hydrate system by Xiao et al. provide details of GHML in their respective areas.

  3. Verification of Varian Enhanced Dynamic Wedge implementation in masterplan treatment planning system.

    Science.gov (United States)

    Pasquino, Massimo; Casanova Borca, Valeria; Tofani, Santi; Ozzello, Franca

    2009-04-22

    This paper investigates the accuracy of the two available calculation algorithms of the Oncentra MasterPlan three-dimensional treatment planning system (TPS)-- the pencil beam method and collapsed-cone convolution--in modeling the Varian enhanced dynamic wedge (EDW). Measurements were carried out for a dual high energy (6-15 MV) Varian DHX-S linear accelerator using ionization chambers for beam axis measurements (wedge factors and depth doses), film dosimetry for off-axis dose profiles measurements, and a diode matrix detector for two dimensional absolute dose distributions. Using both calculation algorithms, different configuration of symmetric and asymmetric fields varying the wedge's angle were tested. Accuracy of the treatment planning system was evaluated in terms of percentage differences between measured and calculated values for wedge factors, depth doses, and profiles. As far as the absolute dose distribution was concerned, the gamma index method (Low et al.) was used with 3% and 3 mm as acceptance criteria for dose difference and distance-to-agreement, respectively. Wedge factors and percentage depth doses were within 1% deviation between calculated and measured values. The comparison of measured and calculated dose profiles shows that the Van Dyk's acceptance criteria (Van Dyk et al.) are generally met; a disagreement can be noted for large wedge angles and field size limited to the low dose-low gradient region only. The 2D absolute dose distribution analysis confirms the good accuracy of the two calculation algorithms in modeling the enhanced dynamic wedge.

  4. Biomechanical effects of lateral and medial wedge insoles on unilateral weight bearing.

    Science.gov (United States)

    Sawada, Tomonori; Kito, Nobuhiro; Yukimune, Masaki; Tokuda, Kazuki; Tanimoto, Kenji; Anan, Masaya; Takahashi, Makoto; Shinkoda, Koichi

    2016-01-01

    [Purpose] Lateral wedge insoles reduce the peak external knee adduction moment and are advocated for patients with knee osteoarthritis. However, some patients demonstrate adverse biomechanical effects with treatment. In this study, we examined the immediate effects of lateral and medial wedge insoles under unilateral weight bearing. [Subjects and Methods] Thirty healthy young adults participated in this study. The subjects were assessed by using the foot posture index, and were divided into three groups: normal foot, pronated foot, and supinated foot groups. The knee adduction moment and knee-ground reaction force lever arm under the studied conditions were measured by using a three-dimensional motion capture system and force plates. [Results] In the normal and pronated groups, the change in knee adduction moment significantly decreased under the lateral wedge insole condition compared with the medial wedge insole condition. In the normal group, the change in the knee-ground reaction force lever arm also significantly decreased under the lateral wedge insole condition than under the medial wedge insole condition. [Conclusion] Lateral wedge insoles significantly reduced the knee adduction moment and knee-ground reaction force lever arm during unilateral weight bearing in subjects with normal feet, and the biomechanical effects varied according to individual foot alignment.

  5. Structural features of a potential gas hydrate area in the Pointer Ridge off southwest Taiwan

    Science.gov (United States)

    Wang, Hsueh-Fen; Hsu, Shu-Kun; Tsai, Ching-Hui; Chen, Song-Chuen; Liu, Char-Shine; Lin, Hsiao-Shan

    2015-04-01

    The offshore area of the southwest Taiwan is located in the oblique convergence zone between the northern continental margin of South China Sea and the Manila accretionary wedge. To the west of the deformation front offshore southwestern Taiwan, the Pointer Ridge is located in the passive South China Sea continental margin. The continental margin is compose of extensional horst-and-graben structures. There are numerous submarine channels and linear ridge, formed due to the submarine erosion across the continental slope region. According to geophysical research off SW Taiwan, abundant gas hydrate may exist. In this study, our purpose is to understand the relationship between the near-seafloor structures of the Pointer Ridge and the gas hydrate formation off SW Taiwan. The data we used include multi-beam echo sounder (MBES), side-scan sonar (SSS), sub-bottom profiler (SBP) and the multi-channel reflection seismic (MCS) data. Our results show the pockmark and gas seepage structures mainly appear in the place where the gradient of the BSR thickness is maximum. Those sites contain authigenic carbonate signature shown in the sub-bottom profiler. We also observe several folds and faults structures in this extensional background; however, these compressional features need further studies.

  6. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  7. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a drilling hazard by the oil and gas industry for years. Drilling engineers working in Russia, Canada and the USA have documented numerous problems, including drilling kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates as a potential energy source agree that the resource potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained from physical samples taken from actual hydrate-bearing rocks. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The project team drilled and continuously cored the Hot Ice No. 1 well on Anadarko-leased acreage beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and used for determining physical characteristics of hydrates and surrounding rock. After the well was logged, a 3D vertical seismic profile (VSP) was recorded to calibrate the shallow geologic section with seismic data and to investigate techniques to better resolve lateral subsurface variations of potential hydrate-bearing strata. Paulsson Geophysical Services, Inc. deployed their 80 level 3C clamped borehole seismic receiver array in the wellbore to record samples every 25 ft. Seismic vibrators were successively positioned at 1185 different surface positions in a circular pattern around the wellbore. This technique generated a 3D image of the subsurface. Correlations were

  9. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  10. Polyethylene oxide hydration in grafted layers

    Science.gov (United States)

    Dormidontova, Elena; Wang, Zilu

    Hydration of water soluble polymers is one of the key-factors defining their conformation and properties, similar to biopolymers. Polyethylene oxide (PEO) is one of the most important biomedical-applications polymers and is known for its reverse temperature solubility due to hydrogen bonding with water. As in many practical applications PEO chains are grafted to surfaces, e.g. of nanoparticles or planar surfaces, it is important to understand PEO hydration in such grafted layers. Using atomistic molecular dynamic simulations we investigate the details of molecular conformation and hydration of PEO end-grafted to gold surfaces. We analyze polymer and water density distribution as a function of distance from the surface for different grafting densities. Based on a detailed analysis of hydrogen bonding between polymer and water in grafted PEO layers, we will discuss the extent of PEO hydration and its implication for polymer conformation, mobility and layer properties. This research is supported by NSF (DMR-1410928).

  11. Formulating formation mechanism of natural gas hydrates.

    Science.gov (United States)

    Palodkar, Avinash V; Jana, Amiya K

    2017-07-25

    A large amount of energy, perhaps twice the total amount of all other hydrocarbon reserves combined, is trapped within gas hydrate deposits. Despite emerging as a potential energy source for the world over the next several hundred years and one of the key factors in causing future climate change, gas hydrate is poorly known in terms of its formation mechanism. To address this issue, a mathematical formulation is proposed in the form of a model to represent the physical insight into the process of hydrate growth that occurs on the surface and in the irregular nanometer-sized pores of the distributed porous particles. To evaluate the versatility of this rigorous model, the experimental data is used for methane (CH4) and carbon dioxide (CO2) hydrates grown in different porous media with a wide range of considerations.

  12. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  13. Quantifying hydrate formation and kinetic inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, E.D.; Subramanian, S.; Matthews, P.N.; Lederhos, J.P.; Khokhar, A.A. [Colorado School of Mines, Golden, CO (United States). Center for Hydrate Research

    1998-08-01

    In the Prausnitz tradition, molecular and macroscopic evidence of hydrate formation and kinetic inhibition is presented. On the microscopic level, the first Raman spectra are presented for the formation of both uninhibited and inhibited methane hydrates with time. This method has the potential to provide a microscopic-based kinetics model. Three macroscopic aspects of natural gas hydrate kinetic inhibition are also reported: (1) The effect of hydrate dissociation residual structures was measured, which has application in decreasing the time required for subsequent formation. (2) The performance of a kinetic inhibitor (poly(N-vinylcaprolactam) or PVCap) was measured and correlated as a function of PVCap molecular weight and concentrations of PVCap, methanol, and salt in the aqueous phase. (3) Long-duration test results indicated that the use of PVCap can prevent pipeline blockage for a time exceeding the aqueous phase residence time in some gas pipelines.

  14. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  15. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2004-11-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained

  16. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained

  17. Experimental Dissociation of Methane Hydrates Through Depressurization

    Science.gov (United States)

    Borgfeldt, T.; Flemings, P. B.; Meyer, D.; You, K.

    2015-12-01

    We dissociated methane hydrates by stepwise depressurization. The initial hydrates were formed by injecting gas into a cylindrical sample of brine-saturated, coarse-grained sand at hydrate-stable conditions with the intention of reaching three-phase equilibrium. The sample was initially at 1°C with a pore pressure of 1775 psi and a salinity of 7 wt. % NaBr. The depressurization setup consisted of one pump filled with tap water attached to the confining fluid port and a second pump attached to the inlet port where the methane was injected. Depressurization was conducted over sixteen hours at a constant temperature of 1°C. The pore pressure was stepwise reduced from 1775 psi to atmospheric pressure by pulling known volumes of gas from the sample. After each extraction, we recorded the instantaneous and equilibrium pore pressure. 0.503 moles of methane were removed from the sample. The pore pressure decreased smoothly and nonlinearly with the cumulative gas withdrawn from the sample. We interpret that hydrate began to dissociate immediately with depressurization, and it continued to dissociate when the pressure decreased below the three-phase pressure for 1°C and 0 wt. % salinity. Two breaks in slope in the pressure vs. mass extracted data are bounded by smooth, nonlinear curves with differing slopes on either side. We attribute the breaks to dissociation of three zones of hydrate concentration. We created a box model to simulate the experimental behavior. For a 10% initial gas saturation (estimated from the hydrate formation experiment and based on mass conservation), an initial hydrate saturation of 55% is required to match the total methane extracted from the sample. Future experiments will be conducted over a longer timespan while monitoring hydrate dissociation with CT imaging throughout the process.

  18. Hydration of polyethylene glycol-grafted liposomes.

    OpenAIRE

    Tirosh, O; Barenholz, Y.; Katzhendler, J; Priev, A

    1998-01-01

    This study aimed to characterize the effect of polyethylene glycol of 2000 molecular weight (PEG2000) attached to a dialkylphosphatidic acid (dihexadecylphosphatidyl (DHP)-PEG2000) on the hydration and thermodynamic stability of lipid assemblies. Differential scanning calorimetry, densitometry, and ultrasound velocity and absorption measurements were used for thermodynamic and hydrational characterization. Using a differential scanning calorimetry technique we showed that each molecule of PEG...

  19. Exploitation of subsea gas hydrate reservoirs

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  20. Preservation of methane hydrate at 1 atm

    Science.gov (United States)

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2001-01-01

    A "pressure-release" method that enables reproducible bulk preservation of pure, porous, methane hydrate at conditions 50 to 75 K above its equilibrium T (193 K) at 1 atm is refined. The amount of hydrate preserved by this method appears to be greatly in excess of that reported in the previous citations, and is likely the result of a mechanism different from ice shielding.

  1. Melting and Crystallization at Core Mantle Boundary

    Science.gov (United States)

    Fiquet, G.; Pradhan, G. K.; Siebert, J.; Auzende, A. L.; Morard, G.; Antonangeli, D.; Garbarino, G.

    2015-12-01

    Early crystallization of magma oceans may generate original compositional heterogeneities in the mantle. Dense basal melts may also be trapped in the lowermost mantle and explain mantle regions with ultralow seismic velocities (ULVZs) near the core-mantle boundary [1]. To test this hypothesis, we first constructed the solidus curve of a natural peridotite between 36 and 140 gigapascals using laser-heated diamond anvil cells. In our experiments, melting at core-mantle boundary pressures occurs around 4100 ± 150 K, which is a value that can match estimated mantle geotherms. Similar results were found for a chondritic mantle [2] whereas much lower pyrolitic melting temperatures were recently proposed from textural and chemical characterizations of quenched samples [3]. We also investigated the melting properties of natural mid ocean ridge basalt (MORB) up to core-mantle boundary (CMB) pressures. At CMB pressure (135 GPa), we obtain a MORB solidus temperature of 3950 ±150 K. If our solidus temperatures are in good agreement with recent results proposed for a similar composition [4], the textural and chemical characterizations of our recovered samples made by analytical transmission electron microscope indicate that CaSiO3 perovskite (CaPv) is the liquidus phase in the entire pressure range up to CMB. The partial melt composition is enriched in FeO, which suggests that such partial melts could be gravitationnally stable at the core mantle boundary. Our observations are tested against calculations made using a self-consistent thermodynamic database for the MgO-FeO-SiO2 system from 20 GPa to 140 GPa [5]. These observations and calculations provide a first step towards a consistent thermodynamic modelling of the crystallization sequence of the magma ocean, which shows that the existence of a dense iron rich and fusible layer above the CMB at the end of the crystallization is plausible [5], which is in contradiction with the conclusions drawn in [4]. [1] Williams

  2. Mantle Dynamics of Australia-Banda Arc Collision as Inferred from Shear Wave Splitting Analysis of Teleseismic and Local Slab Events

    Science.gov (United States)

    Harris, C. W.; Miller, M. S.; O'Driscoll, L.; Porritt, R. W.; Roosmawati, N.; Widiyantoro, S.

    2015-12-01

    Arc-continent collision is an important factor in continent building, orogensis, and ocean closure, yet the details associated with it are not fully understood. East-Timor and the Nusa Tenggara Timur region of Indonesia provide a unique setting to study a young arc-continent collision (~8 Ma) and incipient orogenesis. The NSF funded Banda Arc project affords a rare opportunity to investigate unconstrained processes such as active continental subduction and slab rupture beneath a regional deployment of broadband seismometers. We use data from 35 broadband sensors to analyze seismic anisotropy through measuring shear wave splitting. These stations span the roughly east-west transition from normal oceanic subduction at the Sunda Arc to collision at the Banda Arc, and cross areas associated with back-arc thrusting, arc volcanism, extinct volcanism and a rapidly exhuming forearc. Thirty of the sensors used in the analysis are temporary stations installed by our research team in 2014 and will remain in the field until 2016 or later. The remaining stations are part of the open-access GFZ GEOFON global seismic network. We present preliminary shear wave splitting results for teleseismic (*KS core phases) and local (direct S phase) arrivals in order to inspect the sub-slab mantle and the supra-slab mantle wedge for anisotropic patterns related to olivine flow fabric. These results can be used to assess regional strain linked to ongoing collision and may elucidate any slab tearing that has resulted from the (partial) subduction of buoyant continental material of Australian affinity. Presently, we observe a trend of primarily trench-parallel sub-slab fast polarization directions and perhaps more complicated anisotropy in the mantle wedge. Relative to the trench, there appears to be more spatial variation in fast axis orientation for direct arrivals than teleseismic phases. We discuss how the interpretation of our initial results provides insight into the mantle dynamics of the

  3. The role of solid-solid phase transitions in mantle convection

    Science.gov (United States)

    Faccenda, Manuele; Dal Zilio, Luca

    2017-01-01

    , Ringwoodite, pyroxene and pyrope garnet in the transition zone and uppermost lower mantle produces positive buoyancy forces that decrease the subduction velocity and may lead to slab stagnation in the transition zone. The presence of deep metastable portions is still debated, and should not be associated a-priori with a completely dry slab as field observations suggest that heterogeneously hydrated oceanic plates could contain metastable dry portions surrounded by transformed wet rocks.

  4. Measured Two-Dimensional Ice-Wedge Polygon Thermal Dynamics

    Science.gov (United States)

    Cable, William; Romanovsky, Vladimir; Busey, Robert

    2016-04-01

    Ice-wedge polygons are perhaps the most dominant permafrost related features in the arctic landscape. The microtopography of these features, that includes rims, troughs, and high and low polygon centers, alters the local hydrology, as water tends to collect in the low areas. During winter, wind redistribution of snow leads to an increased snowpack depth in the low areas, while the slightly higher areas often have very thin snow cover, leading to differences across the landscape in vegetation communities and soil moisture between higher and lower areas. These differences in local surface conditions lead to spatial variability of the ground thermal regime in the different microtopographic areas and between different types of ice-wedge polygons. To study these features in depth, we established temperature transects across four different types of ice-wedge polygons near Barrow, Alaska. The transects were composed of five vertical array thermistor probes (VATP) beginning in the center of each polygon and extending through the trough to the rim of the adjacent polygon. Each VATP had 16 thermistors from the surface to a depth of 1.5 m. In addition to these 80 subsurface temperature measurement points per polygon, soil moisture, thermal conductivity, heat flux, and snow depth were all measured in multiple locations for each polygon. Above ground, a full suite of micrometeorological instrumentation was present at each polygon. Data from these sites has been collected continuously for the last three years. We found snow cover, timing and depth, and active layer soil moisture to be major controlling factors in the observed thermal regimes. In troughs and in the centers of low-center polygons, the combined effect of typically saturated soils and increased snow accumulation resulted in the highest mean annual ground temperatures (MAGT). Additionally, these areas were the last part of the polygon to refreeze during the winter. However, increased active layer thickness was not

  5. Ferrous iron partitioning in the lower mantle

    Science.gov (United States)

    Muir, Joshua M. R.; Brodholt, John P.

    2016-08-01

    We used density functional theory (DFT) to examine the partitioning of ferrous iron between periclase and bridgmanite under lower mantle conditions. To study the effects of the three major variables - pressure, temperature and concentration - these have been varied from 0 to 150 GPa, from 1000 to 4000 K and from 0 to 100% total iron content. We find that increasing temperature increases KD, increasing iron concentration decreases KD, while pressure can both increase and decrease KD. We find that KD decreases slowly from about 0.32 to 0.06 with depth under lower mantle conditions. We also find that KD increases sharply to 0.15 in the very lowermost mantle due to the strong temperature increases near the CMB. Spin transitions have a large effect on the activity of ferropericlase which causes KD to vary with pressure in a peak-like fashion. Despite the apparently large changes in KD through the mantle, this actually results in relatively small changes in total iron content in the two phases, with XFefp ranging from about 0.20 to 0.35, before decreasing again to about 0.28 at the CMB, and XFebd has a pretty constant value of about 0.04-0.07 throughout the lower mantle. For the very high Fe concentrations suggested for ULVZs, Fe partitions very strongly into ferropericlase.

  6. Surfactant effects on SF6 hydrate formation.

    Science.gov (United States)

    Lee, Bo Ram; Lee, Ju Dong; Lee, Hyun Ju; Ryu, Young Bok; Lee, Man Sig; Kim, Young Seok; Englezos, Peter; Kim, Myung Hyun; Kim, Yang Do

    2009-03-01

    Sulfur hexafluoride (SF(6)) has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate or collect it from waste gas streams. One separation method is through hydrate crystal formation. In this study, SF(6) hydrate was formed in aqueous surfactant solutions of 0.00, 0.01, 0.05, 0.15 and 0.20 wt% to investigate the effects of surfactants on the hydrate formation rates. Three surfactants, Tween 20 (Tween), sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS), were tested in a semi-batch stirred vessel at the constant temperature and pressures of 276.2 K and 0.78 MPa, respectively. All surfactants showed kinetic promoter behavior for SF(6) hydrate formation. It was also found that SF(6) hydrate formation proceeded in two stages with the second stage being the most rapid. In situ Raman spectroscopy analysis revealed that the increased gas consumption rate with the addition of surfactant was possibly due to the increased gas filling rate in the hydrate cavity.

  7. First results from the NEAREST-SEIS deep seismic cruise across the Gulf of Cadiz accretionary wedge

    Science.gov (United States)

    Gailler, A.; Gutscher, M.-A.; Graindorge, D.; Sallarès, V.; Bartolome, R.; Gracia, E.

    2009-04-01

    intervals. 19 ocean bottom seismometers (OBS) from Ifremer and the University of Brest and 17 OBS from UTM-CSIC, Barcelona were on board. The longer profile was shot NW-SE in the western part of the Gulf, crossing from Tagus plain to Seine abyssal plain (profile 1, 29 OBS deployments). The shorter one was a line roughly perpendicular to the South Portuguese margin (inner part of the Gulf), crossing from Portimao Canyon, the frontal portion of the accretionary wedge frontal, where the sedimentary cover is still relatively thin (profile 2, tending NNE-SSW). Here we focus on profile 2, the main purpose being to determine an accurate location of the transition between continental and oceanic crust. 15 OBS were deployed along this line with a ~7 nm spacing, and it was extended on land by landstations (Portuguese side). Most of the wide-angle data were of good quality, despite the rapid decrease of the amplitude arrivals with increasing offset, due to the combination of a lack of source energy and the particular nature of material constituting the accretionary wedge. The following processing was applied to all sections: deconvolution, 4-16 Hz Butterworth filter, equalization. The data generally show clear sedimentary refracted phases, deeper intracrustal phases, some arrivals refracted in the upper mantle and reflections at the boundary between the crust and the mantle (PmP). A first modelling of the corresponding data is performed using a joint refraction/reflection traveltime tomography approach (1st arrivals and PmP phase are inverted jointly), following a Monte-Carlo type analysis to avoid the dependency on the starting model and provide velocity uncertainties. A checkerboard test is also computed to estimate the resolvability of the different parts of the resulting model. Information given by coincident MCS data (profile SWIM-01; SWIM experiment, 2006) is used to discuss and validate our velocity reconstructions. The wide-angle velocity model obtained along profile 2 images

  8. Density and P-wave velocity structure beneath the Paraná Magmatic Province: Refertilization of an ancient lithospheric mantle

    Science.gov (United States)

    Chaves, Carlos; Ussami, Naomi; Ritsema, Jeroen

    2016-08-01

    We estimate density and P-wave velocity perturbations in the mantle beneath the southeastern South America plate from geoid anomalies and P-wave traveltime residuals to constrain the structure of the lithosphere underneath the Paraná Magmatic Province (PMP) and conterminous geological provinces. Our analysis shows a consistent correlation between density and velocity anomalies. The P-wave speed and density are 1% and 15 kg/m3 lower, respectively, in the upper mantle under the Late Cretaceous to Cenozoic alkaline provinces, except beneath the Goiás Alkaline Province (GAP), where density (+20 kg/m3) and velocity (+0.5%) are relatively high. Underneath the PMP, the density is higher by about 50 kg/m3 in the north and 25 kg/m3 in the south, to a depth of 250 - 300 km. These values correlate with high-velocity perturbations of +0.5% and +0.3%, respectively. Profiles of density perturbation versus depth in the upper mantle are different for the PMP and the adjacent Archean São Francisco (SFC) and Amazonian (AC) cratons. The Paleoproterozoic PMP basement has a high-density root. The density is relatively low in the SFC and AC lithospheres. A reduction of density is a typical characteristic of chemically depleted Archean cratons. A more fertile Proterozoic and Phanerozoic subcontinental lithospheric mantle has a higher density, as deduced from density estimates of mantle xenoliths of different ages and composition. In conjunction with Re-Os isotopic studies of the PMP basalts, chemical and isotopic analyses of peridodite xenoliths from the GAP in the northern PMP, and electromagnetic induction experiments of the PMP lithosphere, our density and P-wave speed models suggest that the densification of the PMP lithosphere and flood basalt generation are related to mantle refertilization. Metasomatic refertilization resulted from the introduction of asthenospheric components from the mantle wedge above Proterozoic subduction zones, which surrounded the Paraná lithosphere

  9. In Situ Raman Analyses of Natural Gas and Gas Hydrates at Hydrate Ridge, Oregon

    Science.gov (United States)

    Peltzer, E. T.; White, S. N.; Dunk, R. M.; Brewer, P. G.; Sherman, A. D.; Schmidt, K.; Hester, K. C.; Sloan, E. D.

    2004-12-01

    During a July 2004 cruise to Hydrate Ridge, Oregon, MBARI's sea-going laser Raman spectrometer was used to obtain in situ Raman spectra of natural gas hydrates and natural gas venting from the seafloor. This was the first in situ analysis of gas hydrates on the seafloor. The hydrate spectra were compared to laboratory analyses performed at the Center for Hydrate Research, Colorado School of Mines. The natural gas spectra were compared to MBARI gas chromatography (GC) analyses of gas samples collected at the same site. DORISS (Deep Ocean Raman In Situ Spectrometer) is a laboratory model laser Raman spectrometer from Kaiser Optical Systems, Inc modified at MBARI for deployment in the deep ocean. It has been successfully deployed to depths as great as 3600 m. Different sampling optics provide flexibility in adapting the instrument to a particular target of interest. An immersion optic was used to analyze natural gas venting from the seafloor at South Hydrate Ridge ( ˜780 m depth). An open-bottomed cube was placed over the vent to collect the gas. The immersion optic penetrated the side of the cube as did a small heater used to dissociate any hydrate formed during sample collection. To analyze solid hydrates at both South and North Hydrate Ridge ( ˜590 m depth), chunks of hydrate were excavated from the seafloor and collected in a glass cylinder with a mesh top. A stand-off optic was used to analyze the hydrate inside the cylinder. Due to the partial opacity of the hydrate and the small focal volume of the sampling optic, a precision underwater positioner (PUP) was used to focus the laser spot onto the hydrate. PUP is a stand-alone system with three degrees-of-freedom, capable of moving the DORISS probe head with a precision of 0.1 mm. In situ Raman analyses of the gas indicate that it is primarily methane. This is verified by GC analyses of samples collected from the same site. Other minor constituents (such as CO2 and higher hydrocarbons) are present but may be in

  10. Constraints From the Rock Record, and Complementary Speculation, on Subduction and the Evolution of the Mantle

    Science.gov (United States)

    Kelemen, P.

    2006-12-01

    As time permits, I will cover some of the following: (1) What crustal components are subducted for long term recycling? (a) Revisiting an old approach, relatively new constraints on the "subduction component" in arc magmas can be derived from comparison of primitive MORB with a compilation of primitive arc lavas (Kelemen et al., ToG 03). These provide quantitative estimates for the composition of the "arc residue" in subducting oceanic crust and sediment. (b) It may be that substantial recycling in subduction settings is from the hanging wall, via subdution erosion (von Huene & Scholl, Rev Geophys 91) and "delamination" (Herzberg et al CMP 83; Kay & Kay GCA 88; Arndt & Goldstein T'phys 89). (c) Subducting sediment may migrate into the mantle wedge via buoyancy (Kelemen et al., ToG 03; Gerya & Yuen EPSL 03). (d) New ICPMS data are available on trace element characteristics of arc (Kelemen et al., ToG 03; Greene et al J Pet 06) and oceanic lower crust (not published, sorry!). I will illustrate evolution of radiogenic parent-daughter ratios as constrained by these data. (2) Where do residual peridotites go during subduction? I see three interesting possibilities. (a) Highly depleted cratonic mantle peridotites formed as relatively shallow residues (Bernstein et al EPSL 98), were carried to greater depth to form metamorphic garnet (Kelemen et al EPSL 98), and then were imbricated or rose buoyantly to become a long-lasting part of the cratonic mantle (Oxburgh & Parmentier, JGSL 77), where they have been affected by Arc(hean) processes (Kelemen et al EPSL 98). High light REE contents as well as measured high H2O in cratonic mantle indicate that it is not dry and viscous, so its long term stability is not well understood. There is insufficient work on how compositional buoyancy of highly depleted residues affects cratonic mantle stability. (b) Perhaps some cold, dry residues remain for long periods in the lower mantle. Trace element data suggest that some ubiquitous

  11. Analysis of distribution rule of surface stress on cross wedge rolling contact zone by finite element method

    Science.gov (United States)

    Shu, Xuedao; Li, Lianpeng; Hu, Zhenghuan

    2005-12-01

    Contact surface of cross-wedge rolling is a complicated space surface and distribution rule of contact surface stress is very complicated. So far, its analyzed result was still based on slippery line method. Designing mould and actual production mainly depend on experiential factor. Application and development of cross-wedge rolling was baffled seriously. Based on the forming characteristics of cross-wedge rolling with flat wedge-shape, the ANSYS/DYNA software was developed secondly on the basis of itself, and the corresponding command program was compiled. Rolling process of cross-wedge rolling with flat wedge-shape was simulated successfully. Through simulation, space surface shape of contact surface was achieved, and distribution rule of contact surface stress was analyzed detailed and obtained. The results provide important theoretical foundation for avoiding appearing bug on surface of rolled part, instructing to design cross-wedge mould and confirming force and energy parameter.

  12. Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen

    Science.gov (United States)

    Gu, Tingting; Li, Mingming; McCammon, Catherine; Lee, Kanani K. M.

    2016-09-01

    The mantle comprises nearly three-quarters of Earth's volume and through convection connects the deep interior with the lithosphere and atmosphere. The composition of the mantle determines volcanic emissions, which are intimately linked to evolution of the primitive atmosphere. Fundamental questions remain on how and when the proto-Earth mantle became oxidized, and whether redox state is homogeneous or developed large-scale structures. Here we present experiments in which we subjected two synthetic samples of nearly identical composition that are representative of the lower mantle (enstatite chondrite), but synthesized under different oxygen fugacities, to pressures and temperatures up to 90 GPa and 2,400 K. In addition to the mineral bridgmanite, compression of the more reduced material also produced Al2O3 as a separate phase, and the resulting assemblage is about 1 to 1.5% denser than in experiments with the more oxidized material. Our geodynamic simulations suggest that such a density difference can cause a rapid ascent and accumulation of oxidized material in the upper mantle, with descent of the denser reduced material to the core-mantle boundary. We suggest that the resulting heterogeneous redox conditions in Earth's interior can contribute to the large low-shear velocity provinces in the lower mantle and the evolution of atmospheric oxygen.

  13. Post-orogenic shoshonitic magmas of the Yzerfontein pluton, South Africa: the `smoking gun' of mantle melting and crustal growth during Cape granite genesis?

    Science.gov (United States)

    Clemens, J. D.; Buick, I. S.; Frei, D.; Lana, C.; Villaros, A.

    2017-09-01

    The post-orogenic Yzerfontein pluton, in the Saldania Belt of South Africa was constructed through numerous injections of shoshonitic magmas. Most magma compositions are adequately modelled as products of fractionation, but the monzogranites and syenogranites may have a separate origin. A separate high-Mg mafic series has a less radiogenic mantle source. Fine-grained magmatic enclaves in the intermediate shoshonitic rocks are autoliths. The pluton was emplaced between 533 ± 3 and 537 ± 3 Ma (LA-SF-ICP-MS U-Pb zircon), essentially synchronously with many granitic magmas of the Cape Granite Suite (CGS). Yzerfontein may represent a high-level expression of the mantle heat source that initiated partial melting of the local crust and produced the CGS granitic magmas, late in the Saldanian Orogeny. However, magma mixing is not evident at emplacement level and there are no magmatic kinships with the I-type granitic rocks of the CGS. The mantle wedge is inferred to have been enriched during subduction along the active continental margin. In the late- to post-orogenic phase, the enriched mantle partially melted to produce heterogeneous magma batches, exemplified by those that formed the Yzerfontein pluton, which was further hybridised through minor assimilation of crustal materials. Like Yzerfontein, the small volumes of mafic rocks associated with many batholiths, worldwide, are probably also low-volume, high-level expressions of crustal growth through the emplacement of major amounts of mafic magma into the deep crust.

  14. One-way successive plate cross wedge rolling machine

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In our last paper(Sci China Ser E-Tech Sci,2009,52(11):3117-3121) we designed the precision forming machine with rolling plate CWR(cross wedge rolling).This kind of machine colligates the advantages of high rigidity and small floor space for roller CWR machine and those of simple die manufacture and high precision for plate CWR machine.At the same time,it abandons the shortcomings of complex die manufacture and poor precision for roller CWR machine,and those of poor rigidity and large floor space for plate CWR machine.During rolling,the upper and lower rolling plates of the machine make reciprocating slide toward or away from each other,so the inertial forces should be overcome,which will cause great energy loss,besides,large floor space is needed when the rolled workpiece is large.In order to solve the above problems,this paper presents the one-way successive plate CWR machine,whose rolling plates need not make reciprocating slide.Hence,it has high energy utilization efficiency and production efficiency.Furthermore,the roll scale can be removed automatically.In particular,the machine can produce large axisymmetrical workpieces.

  15. Sinking, wedging, spreading - viscous spreading on a layer of fluid

    Science.gov (United States)

    Bergemann, Nico; Juel, Anne; Heil, Matthias

    2016-11-01

    We study the axisymmetric spreading of a sessile drop on a pre-existing layer of the same fluid in a regime where the drop is sufficiently large so that the spreading is driven by gravity while capillary and inertial effects are negligible. Experiments performed with 5 ml drops and layer thicknesses in the range 0.1 mm drop evolves as R tn , where the spreading exponent n increases with the layer thickness h. Numerical simulations, based on the axisymmetric free-surface Navier-Stokes equations, reveal three distinct spreading regimes depending on the layer thickness. For thick layers the drop sinks into the layer, accompanied by significant flow in the layer. By contrast, for thin layers the layer ahead of the propagating front is at rest and the spreading behaviour resembles that of a gravity-driven drop spreading on a dry substrate. In the intermediate regime the spreading is characterised by an advancing wedge, which is sustained by fluid flow from the drop into the layer.

  16. Precision forming machine with rolling plate cross wedge rolling

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Roller cross wedge rolling(CWR)machines have high rigidity, but sector dies are difficult to process. Plate CWR machines have low rigidity and need large floor space, but plate dies are easy to process. Neither roller CWR machine nor plate CWR machine can produce larger workpieces. Based on the above conclusions, this paper presents the mechanical principle of the precision forming machine with rolling plate CWR. Then, its design principle and machine construction are presented. There are a top press roller above the upper sliding plate and a bottom press roller under the lower sliding plate. The press rollers make rolling contact with the sliding plates. The plate dies are mounted on the upper and lower sliding plates, respectively. Furthermore, the axes of both press rollers and centerline of work-piece always keep in the identical vertical plane during forming process. These make the machine retain advantages of high rigidity for roller CWR machine and simpleness of manufacturing dies for plate CWR machine, and abandon defects of poor rigidity for plate CWR machine and difficulty of manufac-turing dies for roller CWR machine. Moreover, the machine can produce larger workpieces.

  17. Lateral closed wedge osteotomy for cubitus varus deformity

    Directory of Open Access Journals (Sweden)

    Srivastava Amit

    2008-01-01

    Full Text Available Background: Lateral closed wedge (LCW osteotomy is a commonly accepted method for the correction of the cubitus varus deformity. The fixation of osteotomy is required to prevent loss of correction achieved. The fixation of the osteotomy by the two screw and figure of eight wire is not stable enough to maintain the correction achieved during surgery. In this prospective study we supplemented the fixation by Kirschner′s (K- wires for stable fixation and evaluated the results. Materials and Methods: Twenty-one cases of the cubitus varus deformity following supracondylar fractures of the humerus were operated by LCW osteotomy during February 2001 to June 2006. The mean age of the patients at the time of corrective surgery was 8.5 years (range 6.6-14 years. The osteotomy was fixed by two screws with figure of eight tension band wire between them and the fixation was supplemented by passing two to three K-wires from the lateral condyle engaging the proximal medial cortex through the osteotomy site. Result: The mean follow-up period was 2.5 years (range seven months to 3.4 years. The results were assessed as per Morrey criteria. Eighteen cases showed excellent results and three cases showed good results. Two cases had superficial pin tract infection. Conclusion: The additional fixation by K wires controls rotational forces effectively besides angulation and translation forces and maintains the correction achieved peroperatively.

  18. Precision forming machine with rolling plate cross wedge rolling

    Institute of Scientific and Technical Information of China (English)

    SONG YuQuan; LI ZhiGang; WANG MingHui; GUAN XiaoFang

    2009-01-01

    Roller cross wedge rolling (CWR) machines have high rigidity, but sector dies are difficult to process.Plate CWR machines have low rigidity and need large floor space, but plate dies are easy to process.Neither roller CWR machine nor plate CWR machine can produce larger workpieces.Based on the above conclusions, this paper presents the mechanical principle of the precision forming machine with rolling plate CWR.Then, its design principle and machine construction are presented.There are a top press roller above the upper sliding plate and a bottom press roller under the lower sliding plate.The press rollers make rolling contact with the sliding plates.The plate dies are mounted on the upper and lower sliding plates, respectively.Furthermore, the axes of both press rollers and centerline of work-piece always keep in the identical vertical plane during forming process.These make the machine re-tain advantages of high rigidity for roller CWR machine and simpleness of manufacturing dies for plate CWR machine, and abandon defects of poor rigidity for plate CWR machine and difficulty of manufac-turing dies for roller CWR machine.Moreover, the machine can produce larger workpieces.

  19. Influence of intermolecular forces at critical-point wedge filling.

    Science.gov (United States)

    Malijevský, Alexandr; Parry, Andrew O

    2016-04-01

    We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.

  20. Influence of intermolecular forces at critical-point wedge filling

    Science.gov (United States)

    Malijevský, Alexandr; Parry, Andrew O.

    2016-04-01

    We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.

  1. Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media.

    Science.gov (United States)

    Baldwin, Bernard A; Stevens, Jim; Howard, James J; Graue, Arne; Kvamme, Bjorn; Aspenes, Erick; Ersland, Geir; Husebø, Jarle; Zornes, David R

    2009-06-01

    Magnetic resonance imaging was used to monitor and quantify methane hydrate formation and exchange in porous media. Conversion of methane hydrate to carbon dioxide hydrate, when exposed to liquid carbon dioxide at 8.27 MPa and approximately 4 degrees C, was experimentally demonstrated with MRI data and verified by mass balance calculations of consumed volumes of gases and liquids. No detectable dissociation of the hydrate was measured during the exchange process.

  2. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  3. Solid state tungsten oxide hydrate/tin oxide hydrate electrochromic device prepared by electrochemical reactions

    Science.gov (United States)

    Nishiyama, Kentaro; Matsuo, Ryo; Sasano, Junji; Yokoyama, Seiji; Izaki, Masanobu

    2017-03-01

    The solid state electrochromic device composed of tungsten oxide hydrate (WO3(H2O)0.33) and tin oxide hydrate (Sn(O,OH)) has been constructed by anodic deposition of WO3(H2O)0.33 and Sn(O,OH) layers and showed the color change from clear to blue by applying voltage through an Au electrode.

  4. Kinetic studies of gas hydrate formation with low-dosage hydrate inhibitors

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Pipeline blockage by gas hydrates is a serious problem in the petroleum industry.Low-dosage inhibitors have been developed for its cost-effective and environmentally acceptable characteristics.In a 1.072-L reactor with methane,ethane and propane gas mixture under the pressure of about 8.5 MPa at 4 °C,hydrate formation was investigated with low-dosage hydrate inhibitors PVP and GHI1,the change of the compressibility factor and gas composition in the gas phase was analyzed,the gas contents in hydrates were compared with PVP and GHI1 added,and the inhibition mechanism of GHI1 was discussed.The results show that PVP and GHI1 could effectively inhibit the growth of gas hydrates but not nucleation.Under the experimental condition with PVP added,methane and ethane occupied the small cavities of the hydrate crystal unit and the ability of ethane entering into hydrate cavities was weaker than that of methane.GHI1 could effectively inhibit molecules which could more readily form hydrates.The ether and hydroxy group of diethylene glycol monobutyl ether have the responsibility for stronger inhibition ability of GHI1 than PVP.

  5. Experimental and Numerical Procedures of a Sonar Platform with a Sound Absorption Wedge

    Institute of Scientific and Technical Information of China (English)

    Danzhu Yu; Xiongliang Yao; Shaoshi Dai

    2011-01-01

    Experiments involving a sonar platform with a sound absorption wedge were carried out for the purpose of obtaining the low frequency acoustic characteristics.Acoustic characteristics of a sonar platform model with a sound absorption wedge were measured,and the effects of different wedge laid areas on platform acoustic characteristic were tested.Vibration acceleration and self-noise caused by model vibration were measured in four conditions:0%,36%,60%,and 100% of wedge laid area when the sonar platform was under a single frequency excitation force.An experiment was performed to validate a corresponding numerical calculation.The numerical vibration characteristics of platform area were calculated by the finite element method,and self-noise caused by the vibration in it was predicted by an experiential formula.The conclusions prov