WorldWideScience

Sample records for hydrated europiumiii ions

  1. Quenching of the excited state of hydrated Europium(III) ions by electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, K.

    1993-08-01

    This thesis explores the oxidation-reduction chemistry of the excited state of Eu(III) ions, *Eu{sub aq}{sup 3+}, in aqueous solutions. Evidence is presented for the quenching of *Eu{sup 3+} by reductive electron transfer. It is concluded that *Eu{sup 3+} is not a strong energy transfer reagent. The reactivity of *Eu{sub aq}{sup 3+} is compared with that of *UO{sub 2}{sup 2+}.

  2. Studying the sorption properties of a clinoptilolite-containing tuff with respect to europium(III) ions

    Science.gov (United States)

    Kozhevnikova, N. M.

    2014-03-01

    The kinetic laws of sorption of europium(III) ions from sulfate solutions by a clinoptilolite-containing tuff are studied. The kinetic parameters of sorption process are determined and absorption isotherms are constructed for europium ions. It is found that both external and internal diffusion are rate-limiting steps, and europium is completely extracted from dilute solutions (<0.0025 m).

  3. Hydration of highly charged ions.

    Science.gov (United States)

    Hofer, Thomas S; Weiss, Alexander K H; Randolf, Bernhard R; Rode, Bernd M

    2011-08-01

    Based on a series of ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulations, the broad spectrum of structural and dynamical properties of hydrates of trivalent and tetravalent ions is presented, ranging from extreme inertness to immediate hydrolysis. Main group and transition metal ions representative for different parts of the periodic system are treated, as are 2 threefold negatively charged anions. The results show that simple predictions of the properties of the hydrates appear impossible and that an accurate quantum mechanical simulation in cooperation with sophisticated experimental investigations seems the only way to obtain conclusive results.

  4. The addition of a second lanthanide ion to increase the luminescence of europium(III) macrocyclic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bromm, A.J. Jr.; Vallarino, L.M. [Virginia Commonwealth Univ., Richmond, VA (United States). Dept. of Chemistry; Leif, R.C. [Newport Instruments, San Diego, CA (United States); Quagliano, J.R. [Los Alamos National Lab., NM (United States)

    1998-12-29

    At present, the microscopic visualization of luminescent labels containing lanthanide(III) ions, primarily europium(III), as light-emitting centers is best performed with time-gated instrumentation, which by virtually eliminating the background fluorescence results in an improved signal to noise ratio. However, the use of the europium(III) macrocycle, Quantum Dye{trademark}, in conjunction with the strong luminescence enhancing effect (cofluorescence) of yttrium(III) or gadolinium(III), can eliminate the need for such specialized instrumentation. In the presence of Gd(III), the luminescence of the Eu(III)-macrocycles can be conveniently observed with conventional fluorescence instrumentation at previously unattainable low levels. The Eu(III) {sup 5}D{sub 0} {r_arrow} {sup 7}F{sub 2} emission of the Eu(III)-macrocycles was observed as an extremely sharp band with a maximum at 619 nm and a clearly resolved characteristic pattern. At very low Eu(III)-macrocycle concentrations, another sharp emission was detected at 614 nm, arising from traces of Eu(III) present in even the purest commercially available gadolinium products. Discrimination of the resolved emissions of the Eu(III)-macrocycle and Eu(III) contaminant should provide a means to further lower the limit of detection of the Eu(III)-macrocycle.

  5. Chemiluminescence determination of tetracyclines using Fenton system in the presence europium(III) ions.

    Science.gov (United States)

    Kaczmarek, Malgorzata; Lis, Stefan

    2009-04-20

    A new simple chemiluminescent method for the determination of chlortetracycline (Chlor-TC), oxytetracycline (Oxy-TC) and doxycycline (Doxy-TC) is described. This method is based on the europium(III) emission as a result of the energy transfer process from the excited product of the tetracyclines oxidation to the uncomplexed Eu(III). Under the optimum conditions, calibration graphs were obtained for 4x10(-7) to 2x10(-5) mol L(-1) of Chlor-TC; 2x10(-7) to 2x10(-5) mol L(-1) of Oxy-TC and 1x10(-7) to 3x10(-5) mol L(-1) of Doxy-TC. The method was successfully applied to the determination of these drugs in pharmaceutical and veterinary formulation and honey.

  6. Chemiluminescence determination of tetracyclines using Fenton system in the presence europium(III) ions

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Malgorzata [Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60 - 780 Poznan (Poland); Lis, Stefan, E-mail: blis@amu.edu.pl [Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60 - 780 Poznan (Poland)

    2009-04-20

    A new simple chemiluminescent method for the determination of chlortetracycline (Chlor-TC), oxytetracycline (Oxy-TC) and doxycycline (Doxy-TC) is described. This method is based on the europium(III) emission as a result of the energy transfer process from the excited product of the tetracyclines oxidation to the uncomplexed Eu(III). Under the optimum conditions, calibration graphs were obtained for 4 x 10{sup -7} to 2 x 10{sup -5} mol L{sup -1} of Chlor-TC; 2 x 10{sup -7} to 2 x 10{sup -5} mol L{sup -1} of Oxy-TC and 1 x 10{sup -7} to 3 x 10{sup -5} mol L{sup -1} of Doxy-TC. The method was successfully applied to the determination of these drugs in pharmaceutical and veterinary formulation and honey.

  7. Predicting hydration energies for multivalent ions

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Stipp, Susan Louise Svane

    2014-01-01

    (TZVP) level. Agreement with experimental data for monovalent and divalent ions is good and shows no significant systematic errors. Predictions are noticeably better than with standard COSMO. The agreement with experimental data for trivalent and tetravalent ions is slightly worse and shows systematic...... errors. Our results indicate that quantum chemical calculations combined with COSMO-RS solvent treatment is a reliable method for treating multivalent ions in solution, provided one hydration shell of explicit water molecules is included for metal cations. The accuracy is not high enough to allow...... absolute predictions of hydration energies but could be used to investigate trends for several ions, thanks to the low computational cost, in particular for ligand exchange reactions....

  8. Octa-coordination and the hydrated Ba2+(aq) ion

    CERN Document Server

    Chaudhari, Mangesh I; Rempe, Susan B

    2014-01-01

    The hydration structure of Ba^{2+} ion is important for understanding blocking mechanisms in potassium ion channels. Here, we combine statistical mechanical theory, ab initio molecular dynamics simulations, and electronic structure methods to calculate the hydration free energy and local hydration structure of Ba^{2+}(aq). The predicted hydration free energy (-302.9$\\pm$0.7 kcal/mol) matches the experimental value (-302.56 kcal/mol) when the fully occupied and exclusive inner solvation shell is treated. In the local environment defined by the inner and first shell of hydrating waters, Ba^{2+} is directly coordinated by eight (8) waters. Octa-coordination resembles the structure of Ba^{2+} and K^+ bound in potassium ion channels, but differs from the local hydration structure of K^+(aq) determined earlier.

  9. Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size.

    Science.gov (United States)

    Parsons, Drew F; Boström, Mathias; Lo Nostro, Pierandrea; Ninham, Barry W

    2011-07-21

    The classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloids, and corresponding theories of electrolytes, are unable to explain ion specific forces between colloidal particles quantitatively. The same is true generally, for surfactant aggregates, lipids, proteins, for zeta and membrane potentials and in adsorption phenomena. Even with fitting parameters the theory is not predictive. The classical theories of interactions begin with continuum solvent electrostatic (double layer) forces. Extensions to include surface hydration are taken care of with concepts like inner and outer Helmholtz planes, and "dressed" ion sizes. The opposing quantum mechanical attractive forces (variously termed van der Waals, Hamaker, Lifshitz, dispersion, nonelectrostatic forces) are treated separately from electrostatic forces. The ansatz that separates electrostatic and quantum forces can be shown to be thermodynamically inconsistent. Hofmeister or specific ion effects usually show up above ≈10(-2) molar salt. Parameters to accommodate these in terms of hydration and ion size had to be invoked, specific to each case. Ionic dispersion forces, between ions and solvent, for ion-ion and ion-surface interactions are not explicit in classical theories that use "effective" potentials. It can be shown that the missing ionic quantum fluctuation forces have a large role to play in specific ion effects, and in hydration. In a consistent predictive theory they have to be included at the same level as the nonlinear electrostatic forces that form the skeletal framework of standard theory. This poses a challenge. The challenges go further than academic theory and have implications for the interpretation and meaning of concepts like pH, buffers and membrane potentials, and for their experimental interpretation. In this article we overview recent quantitative developments in our evolving understanding of the theoretical origins of specific ion, or Hofmeister effects. These are demonstrated

  10. Highly selective and sensitive detection of metal ions and nitroaromatic compounds by an anionic europium(iii) coordination polymer.

    Science.gov (United States)

    Feyisa Bogale, Raji; Ye, Junwei; Sun, Yuan; Sun, Tongxin; Zhang, Siqi; Rauf, Abdul; Hang, Cheng; Tian, Peng; Ning, Guiling

    2016-07-01

    A luminescent Eu(iii)-based coordination polymer, {[Eu(H2O)5(BTEC)][H(C5H6N2)]·3H2O} () has been synthesized under hydrothermal conditions using 1,2,4,5-benzenetetracarboxylic acid (H4BTEC) as a linker. Compound possesses an anionic zig-zag chain constructed from the BTEC ligands and [EuO4(H2O)5] nodes. The protonated 4-aminopyridine groups as guests are located between chains. exhibits the characteristic sharp emission bands of Eu(3+) at 578, 593, 615, 652 and 693 nm upon excitation at 290 nm. The strong emission of could be quenched effectively by trace amounts of Fe(3+) ions even in the presence of other metal ions including Al(3+), Ca(2+), Cd(2+), Co(2+), Cr(3+), Cu(2+), Fe(2+), K(+), Mg(2+), Mn(2+), Pd(2+) and Zn(2+). Similarly, also exhibits superior selectivity and sensitivity towards 4-nitrophenol (4-NP) compared with other competing interfering analytes, such as 2,4,6-trinitrophenol, 2,6-dinitrotolune, 4-nitrotoluene, nitrobenzene, 1,3-dinitrobenzene, o-xylene, nitromethane, nitropropane, phenol, 4-bromophenol and bromobenzene, through a fluorescence quenching mechanism. The possible fluorescence quenching mechanisms are discussed. Moreover, could be used as a visual fluorescent test paper for selectively detecting trace amounts of Fe(3+) and 4-NP.

  11. Hydration and Ion Binding of the Osmolyte Ectoine.

    Science.gov (United States)

    Eiberweiser, Andreas; Nazet, Andreas; Kruchinin, Sergey E; Fedotova, Marina V; Buchner, Richard

    2015-12-10

    Ectoine is a widespread osmolyte enabling halophilic bacteria to withstand high osmotic stress that has many potential applications ranging from cosmetics to its use as a therapeutic agent. In this contribution, combining experiment and theory, the hydration and ion-binding of this zwitterionic compound was studied to gain information on the functioning of ectoine in particular and of osmolytes in general. Dielectric relaxation spectroscopy was used to determine the effective hydration number of ectoine and its effective dipole moment in aqueous solutions with and without added NaCl. The obtained experimental data were compared with structural results from 1D-RISM and 3D-RISM calculations. It was found that ectoine is strongly hydrated, even in the presence of high salt concentrations. Upon addition of NaCl, ions are bound to ectoine but the formed complexes are not very stable. Interestingly, this osmolyte strongly rises the static relative permittivity of its solutions, shielding thus effectively long-range Coulomb interactions among ions in ectoine-containing solutions. We believe that via this effect, which should be common to all zwitterionic osmolytes, ectoine protects against excessive ions within the cell in addition to its strong osmotic activity protecting against ions outside.

  12. Properties of Hydrated Alkali Metals Aimed at the Ion Channel Selectivity

    Institute of Scientific and Technical Information of China (English)

    AN Hai-Long; LIU Yu-Zhi; ZHANG Su-Hua; ZHAN Yong; ZHANG Hai-Lin

    2008-01-01

    The hydration structure properties of different alkali metal ions with eight water molecules and potassium ions with different numbers of water molecules are studied using the mixed density functional theory, B3LYP, with 6-311G basis set. The hydration structures are obtained from structure optimization and the optimum numbers of water molecules in the innermost hydration shell for the alkali metal ions are found. Some useful information about the ion channel selectivity is presented.

  13. Hydration study of ordinary portland cement in the presence of zinc ions

    Directory of Open Access Journals (Sweden)

    Monica Adriana Trezza

    2007-12-01

    Full Text Available Hydration products of Portland cement pastes, hydrated in water and in the presence of zinc ions were studied comparatively at different ages. Hydration products were studied by X ray diffractions (XRD and infrared spectroscopy (IR. Although IR is not frequently used in cement chemistry, it evidenced a new phase Ca(Zn(OH32. 2H2O formed during cement hydration in the presence of zinc. The significant retardation of early cement hydration in the presence of zinc is assessed in detail by differential calorimetry as a complement to the study carried out by IR and XRD, providing evidence that permits to evaluate the kinetic of the early hydration.

  14. Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Europium(III) DO3A as a Bimodal Imaging Probe.

    Science.gov (United States)

    Carron, Sophie; Bloemen, Maarten; Vander Elst, Luce; Laurent, Sophie; Verbiest, Thierry; Parac-Vogt, Tatjana N

    2016-03-18

    A new prototype consisting of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles decorated with europium(III) ions encapsulated in a DO3A organic scaffold was designed as a platform for further development of bimodal contrast agents for MRI and optical imaging. The USPIO nanoparticles act as negative MRI contrast agents, whereas the europium(III) ion is a luminophore that is suitable for use in optical imaging detection. The functionalized USPIO nanoparticles were characterized by TEM, DLS, XRD, FTIR, and TXRF analysis, and a full investigation of the relaxometric and optical properties was conducted. The typical luminescence emission of europium(III) was observed and the main red emission wavelength was found at 614 nm. The relaxometric study of these ultrasmall nanoparticles showed r2 values of 114.8 mM(-1) Fes(-1) at 60 MHz, which is nearly double the r2 relaxivity of Sinerem(®).

  15. Luminescence properties of compounds of europium(III) with quinaldic acid and phosphor-containing neutral ligands

    Science.gov (United States)

    Kalinovskaya, I. V.

    2016-06-01

    Luminescent complex mixed-ligand compounds of europium(III) with quinaldic acid and phosphor- containing neutral ligands have been obtained. Their composition and structure have been determined. The thermal and spectral-luminescent properties of the obtained complex mixed-ligand compounds of europium( III) have been studied. It is shown that, during thermolysis, a water molecule and neutral ligand are detached in two stages with endothermic effects. It is established that quinaldinate ion is coordinated to europium(III) ion in a bidentate fashion. The Stark structure of the 5 D 0-7 F j ( j = 0, 1, 2) transitions in low-temperature luminescence spectra of complex compounds of europium(III) has been analyzed.

  16. Hydration Repulsion between Carbohydrate Surfaces Mediated by Temperature and Specific Ions

    Science.gov (United States)

    Chen, Hsieh; Cox, Jason R.; Ow, Hooisweng; Shi, Rena; Panagiotopoulos, Athanassios Z.

    2016-06-01

    Stabilizing colloids or nanoparticles in solution involves a fine balance between surface charges, steric repulsion of coating molecules, and hydration forces against van der Waals attractions. At high temperature and electrolyte concentrations, the colloidal stability of suspensions usually decreases rapidly. Here, we report a new experimental and simulation discovery that the polysaccharide (dextran) coated nanoparticles show ion-specific colloidal stability at high temperature, where we observed enhanced colloidal stability of nanoparticles in CaCl2 solution but rapid nanoparticle-nanoparticle aggregation in MgCl2 solution. The microscopic mechanism was unveiled in atomistic simulations. The presence of surface bound Ca2+ ions increases the carbohydrate hydration and induces strongly polarized repulsive water structures beyond at least three hydration shells which is farther-reaching than previously assumed. We believe leveraging the binding of strongly hydrated ions to macromolecular surfaces represents a new paradigm in achieving absolute hydration and colloidal stability for a variety of materials, particularly under extreme conditions.

  17. Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance.

    Science.gov (United States)

    Lórenz-Fonfría, Víctor A; Bamann, Christian; Resler, Tom; Schlesinger, Ramona; Bamberg, Ernst; Heberle, Joachim

    2015-10-27

    The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(-) and 1,648(+) cm(-1). These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 μs (30%) and 200 μs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance.

  18. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    . The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS...

  19. Polarographic determination of europium(III) with 3-hydroxypyridine-2-thiol

    Energy Technology Data Exchange (ETDEWEB)

    Sindhu, R.S.; Katyal, M.; Puri, B.K.

    1987-11-20

    The polarographic behavior of europium(III) has been studied in 3-hydroxypyridine-2-thiol (HPT) as the supporting electrolyte. The polarographic wave in this electrolyte is diffusion controlled, quasi-reversible, and well defined, and there is no need of a maximum suppressor. The interference of various ions has been studied in detail, and this method has been utilized for the quantitative determination of europium in various synthetic samples

  20. Adsorption of hydrated hydroxide and hydronium ions on Ag(1 1 1). A quantum mechanical investigation

    Science.gov (United States)

    Patrito, E. M.; Paredes-Olivera, P.

    2003-03-01

    In this paper we have studied comparatively the adsorption of hydroxide and hydronium ions, extending our previous study on hydronium adsorption [J. Phys. Chem. B. 105 (2001) 7227] and emphasizing the adsorption of hydroxide. The calculations were performed on the 111 surface of silver using ab initio quantum mechanical methods (Hartree-Fock+Moller-Plesset second order perturbation theory). The adsorption was investigated for the bare and the hydrated ions (up to three water molecules). Binding energies, equilibrium structures and charge transfer processes were investigated. While the successive hydration of hydronium detaches the ion from the surface, the hydrated hydroxide anion remains specifically adsorbed. Charge transfer processes between the adsorbates and the surface were studied using electron density difference plots and effective charges obtained from Mulliken populations and from surface-dipole moment curves. The energetics of the surface reactions leading to the formation of the hydrated hydronium and hydroxide ions from the bare adsorbed ions and water molecules was also investigated. Both reactions are exothermic mainly due to the formation of strong hydrogen bonds. The effect of an external homogeneous electric field perpendicular to the surface on different adsorbate properties was investigated for the bare and hydrated hydroxide ion in order to model the environment of the electrical double layer. The electric field affects the orientation of the water molecules on the surface and the hydroxide surface distance.

  1. Alteration of gas phase ion polarizabilities upon hydration in high dielectric liquids.

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T

    2013-07-28

    We investigate the modification of gas phase ion polarizabilities upon solvation in polar solvents and ionic liquids. To this aim, we develop a classical electrostatic theory of charged liquids composed of solvent molecules modeled as finite size dipoles, and embedding polarizable ions that consist of Drude oscillators. In qualitative agreement with ab initio calculations of polar solvents and ionic liquids, the hydration energy of a polarizable ion in both types of dielectric liquid is shown to favor the expansion of its electronic cloud. Namely, the ion carrying no dipole moment in the gas phase acquires a dipole moment in the liquid environment, but its electron cloud also reaches an enhanced rigidity. We find that the overall effect is an increase of the gas phase polarizability upon hydration. In the specific case of ionic liquids, it is shown that this hydration process is driven by a collective solvation mechanism where the dipole moment of a polarizable ion induced by its interaction with surrounding ions self-consistently adds to the polarization of the liquid, thereby amplifying the dielectric permittivity of the medium in a substantial way. We propose this self-consistent hydration as the underlying mechanism behind the high dielectric permittivities of ionic liquids composed of small charges with negligible gas phase dipole moment. Hydration being a correlation effect, the emerging picture indicates that electrostatic correlations cannot be neglected in polarizable liquids.

  2. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    , and a secondary (or outer) solvation shell, consisting of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior...... of the number of M+ ions entering the film, and therefore the inserted M+ mass. The mass of the water molecules can then be calculated as a difference. The values determined this way may be called membrane hydration numbers. The results yield the following membrane hydration numbers: Li+: 5.3-5.5; Na+ 4...... membrane....

  3. Alteration of gas phase ion polarizabilities upon hydration in high dielectric liquids

    OpenAIRE

    2013-01-01

    We investigate the modification of gas phase ion polarizabilities upon solvation in polar solvents and ionic liquids. To this aim, we develop a classical electrostatic theory of charged liquids composed of solvent molecules modeled as finite size dipoles, and embedding polarizable ions that consist of Drude oscillators. In qualitative agreement with ab-initio calculations of polar solvents and ionic liquids, the hydration energy of a polarizable ion in both type of dielectric liquid is shown ...

  4. Molecular mechanisms of decomposition of hydrated Na+Cl- ion pairs under planar nanopore conditions

    Science.gov (United States)

    Shevkunov, S. V.

    2017-02-01

    The decomposition of Na+Cl- ion pairs under the conditions of a nanoscopic planar pore with structureless walls in a material contact with water vapor at 298 K is simulated by Monte Carlo method. The transition from the state of a contact ion pair (CIP) to the state of solvent-separated ion pair (SSIP) is shown to occur as a result of an increase in the vapor pressure over a pore after exceeding the threshold number of molecules in a hydrate shell. It is found that the planar form of a molecular cluster under the conditions of a narrow pore does not level an abrupt structural transition and the formation of hydrogen bonds in the hydrate shell starts after three molecules are added. The hydrogen bond length under pore conditions is found to be resistant to variations in the hydrate shell size and coincides with that in water under normal conditions.

  5. Adsorption of sodium ions and hydrated sodium ions on a hydrophobic graphite surface via cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    Shi Guo-Sheng; Wang Zhi-Gang; Zhao Ji-Jun; Hu Jun; Fang Hai-Ping

    2011-01-01

    Using density functional theory computation, we show that sodium ions and hydrated sodium ions can be strongly adsorbed onto a hydrophobic graphite surface via cation-π interactions. The key to this cation-π interaction is the coupling of the delocalized π states of graphite and the empty orbitals of sodium ions. This finding implies that the property of the graphite surface is extremely dependent on the existence of the ions on the surface, suggesting that the hydrophobic property of the graphite surface may be affected by the existence of the sodium ions.

  6. Computer simulations of aqua metal ions for accurate reproduction of hydration free energies and structures

    Science.gov (United States)

    Li, Xin; Tu, Yaoquan; Tian, He; Ågren, Hans

    2010-03-01

    Metal ions play essential roles in biological processes and have attracted much attention in both experimental and theoretical fields. By using the molecular dynamics simulation technology, we here present a fitting-refining procedure for deriving Lennard-Jones parameters of aqua metal ions toward the ultimate goal of accurately reproducing the experimentally observed hydration free energies and structures. The polarizable SWM4-DP water model {proposed by Lamoureux et al. [J. Chem. Phys. 119, 5185 (2003)]} is used to properly describe the polarization effects of water molecules that interact with the ions. The Lennard-Jones parameters of the metal ions are first obtained by fitting the quantum mechanical potential energies of the hexahydrated complex and are subsequently refined through comparison between the calculated and experimentally measured hydration free energies and structures. In general, the derived Lennard-Jones parameters for the metal ions are found to reproduce hydration free energies accurately and to predict hydration structures that are in good agreement with experimental observations. Dynamical properties are also well reproduced by the derived Lennard-Jones parameters.

  7. Coordination variation of hydrated Cu2+/Br1- ions traversing the interfacial water in mesopores

    Science.gov (United States)

    Wang, Q.; Huang, X. F.; Li, C. X.; Pan, L. Q.; Wu, Z. H.; Hu, T. D.; Jiang, Z.; Huang, Y. Y.; Cao, Z. X.; Sun, G.; Lu, K. Q.

    2012-06-01

    Resolution of the atomistic and electronic details about the coordination structure variation of hydrated ions in the interfacial water is still a tough challenge, which is, however, essentially important for the understanding of ion adsorption, permeation and other similar processes in aqueous solutions. Here we report the tracing of coordination structure variation for hydrated Cu2+/Br1- ions traversing the interfacial water in Vycor mesopores (ϕ = 7.6 nm) by employing both X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopies. By controlled desorption/adsorption of water, the filling fraction of the mesopores, thus the water layer thickness, can be adjusted, which in turn effects the variation of coordination structure of the ions therein. It is found that both Cu2+ and Br1- ions prefer staying exclusively in the core water, and in this circumstance no ion pairs have been detected in the solution of concentrations up to 1.0 M. Following capillary decondensation occurring at a filling fraction of ˜35% which corresponds to a water layer of about three monolayers, Br1- ions begin immediately to reconstruct their first coordination shell, characterized by ionic dehydration, shrinkage of ion-water bond length, and formation of ion pairs. In contrast, Cu2+ ions can retain a bulk-like coordination structure till being driven to bond directly to the pore surface when the filling fraction is below 20%. At the final stage of dehydration via thermal vacuum treatment at 110°C, Cu2+ ions can be completely reduced to the Cu1+ state, and recover at room temperature only when the filling fraction is above 14%. These results may be inspirable for the investigation of similar problems concerning hydrated ions in water solution under different confining conditions.

  8. Coordination variation of hydrated Cu2+/Br1− ions traversing the interfacial water in mesopores

    Directory of Open Access Journals (Sweden)

    Q. Wang

    2012-06-01

    Full Text Available Resolution of the atomistic and electronic details about the coordination structure variation of hydrated ions in the interfacial water is still a tough challenge, which is, however, essentially important for the understanding of ion adsorption, permeation and other similar processes in aqueous solutions. Here we report the tracing of coordination structure variation for hydrated Cu2+/Br1- ions traversing the interfacial water in Vycor mesopores (ϕ = 7.6 nm by employing both X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopies. By controlled desorption/adsorption of water, the filling fraction of the mesopores, thus the water layer thickness, can be adjusted, which in turn effects the variation of coordination structure of the ions therein. It is found that both Cu2+ and Br1- ions prefer staying exclusively in the core water, and in this circumstance no ion pairs have been detected in the solution of concentrations up to 1.0 M. Following capillary decondensation occurring at a filling fraction of ∼35% which corresponds to a water layer of about three monolayers, Br1- ions begin immediately to reconstruct their first coordination shell, characterized by ionic dehydration, shrinkage of ion-water bond length, and formation of ion pairs. In contrast, Cu2+ ions can retain a bulk-like coordination structure till being driven to bond directly to the pore surface when the filling fraction is below 20%. At the final stage of dehydration via thermal vacuum treatment at 110°C, Cu2+ ions can be completely reduced to the Cu1+ state, and recover at room temperature only when the filling fraction is above 14%. These results may be inspirable for the investigation of similar problems concerning hydrated ions in water solution under different confining conditions.

  9. Unfolding of Hydrated Alkyl Diammonium Cations Revealed by Cryogenic Ion Mobility-Mass Spectrometry.

    Science.gov (United States)

    Servage, Kelly A; Fort, Kyle L; Silveira, Joshua A; Shi, Liuqing; Clemmer, David E; Russell, David H

    2015-07-22

    Hydration of the ammonium ion plays a key role in determining the biomolecular structure as well as local structure of water in aqueous environments. Experimental data obtained by cryogenic ion mobility-mass spectrometry (cryo-IM-MS) show that dehydration of alkyl diammonium cations induces a distinct unfolding transition at a critical number of water molecules, n = 21 to 23, n = 24 to 26, and n = 27 to 29, for 1,7-diaminoheptane, 1,8-diaminooctane, and 1,10-diaminodecane, respectively. Results are also presented that reveal compelling evidence for unique structural transitions of hydrated ammonium ions associated with the development of the hydrogen-bond network around individual charged groups. The ability to track the evolution of structure upon stepwise dehydration provides direct insight into the intricate interplay between solvent-molecule interactions that are responsible for defining conformations. Such insights are potentially valuable in understanding how ammonium ion solvation influences conformation(s) of larger biomolecules.

  10. Solvated Positron Chemistry. The Reaction of Hydrated Positrons with Chloride Ions

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Shantarovich, V. P.

    1974-01-01

    The reaction of hydrated positrons (caq+ with cloride ions in aqueous solutions has been studied by means of positron annihilation angular correlation measurements. A rate constant of k = (2.5 ± 0.5) × 1010 M−1 s−1 was found. Probably the reacting positrons annihilated from an e+ Cl− bound state...

  11. Effects of Halogen Ions on Phase Equilibrium of Methane Hydrate in Porous Media

    Science.gov (United States)

    Yang, Mingjun; Song, Yongchen; Liu, Yu; Lam, Wei-Haur; Li, Qingping; Yu, Xichong

    2012-05-01

    The influences of halogen ions extracted from sodium fluoride, sodium chloride, sodium bromide, and sodium iodide and their concentrations on methane hydrate phase equilibrium conditions in porous media were investigated experimentally using an orthogonal test method at a pressure of 8 MPa. The experimental results showed that the equilibrium temperature of methane hydrate decreased when halogen ions were added. The equilibrium temperature decreased with the increase of halogen ion concentrations. The influence of the sources of the halogens ion to the methane hydrate equilibrium temperature were insensitive according to variance analysis, which could be explained by about the same mean ionic activity coefficient (a dimensionless coefficient relates the activity to a measured concentration) of sodium fluoride, sodium chloride, sodium bromide, and sodium iodide. The experimental measurements were also in close agreement with the thermodynamic model of Song et al. (J. Nat. Gas Chem. 19, 241 (2010)), in which the mechanical equilibrium of force between the interfaces in a hydrate-liquid-vapor system was considered.

  12. Asymmetric hydration structure around calcium ion restricted in micropores fabricated in activated carbons

    Science.gov (United States)

    Ohkubo, Takahiro; Kusudo, Tomoko; Kuroda, Yasushige

    2016-11-01

    The adsorbed phase and hydration structure of an aqueous solution of Ca(NO3)2 restricted in micropores fabricated in activated carbons (ACs) having different average pore widths (0.63 and 1.1 nm) were investigated with the analysis of adsorption isotherms and x-ray absorption fine structure (XAFS) spectra on Ca K-edge. The adsorbed density of Ca2+ per unit micropore volume in the narrower pore was higher than in the wider pore, while the adsorbed amount per unit mass of carbon with the narrower pore was half of the amount of ACs with the larger pore. On the other hand, variations in the bands assigned to double-electron (KM I) and 1s  →  3d excitations in XAFS spectra demonstrate the formation of a distorted hydration cluster around Ca2+ in the micropore, although the structural parameters of hydrated Ca2+ in the micropores were almost consistent with the bulk aqueous solution, as revealed by the analysis of extended XAFS (EXAFS) spectra. In contrast to the hydration structure of monovalent ions such as Rb+, which generally presents a dehydrated structure in smaller than 1 nm micropores in ACs, the present study clearly explains that the non-spherically-symmetric structure of hydrated Ca2+ restricted in carbon micropores whose sizes are around 1 nm is experimentally revealed where any dehydration phenomena from the first hydration shell around Ca2+ could not be observed.

  13. Hydration of the cyanide ion: an ab initio quantum mechanical charge field molecular dynamics study.

    Science.gov (United States)

    Moin, Syed Tarique; Hofer, Thomas S

    2014-12-21

    This paper presents an ab initio quantum mechanical charge field molecular dynamics simulation study of the cyanide anion (CN(-)) in aqueous solution where hydrogen bond formation plays a dominant role in the hydration process. Preferential orientation of water hydrogens compared to oxygen atoms was quantified in terms of radial, angular as well as coordination number distributions. All structural results indicate that the water hydrogens are attracted towards CN(-) atoms, thus contributing to the formation of the hydration layer. Moreover, a clear picture of the local arrangement of water molecules around the ellipsoidal CN(-) ion is provided via angular-radial distribution and spatial distribution functions. Apart from the structural analysis, the evaluation of water dynamics in terms of ligand mean residence times and H-bond correlation functions indicates the weak structure making capacity of the CN(-) ion. The similar values of H-bond lifetimes obtained for the NHwat and CHwat bonds indicate an isokinetic behaviour of these H-bonds, since there is a very small difference in the magnitude of the lifetimes. On the other hand, the H-bond lifetimes between water molecules of the hydration shell, and between solute and solvent evidence the slightly stable hydration of the CN(-). Overall, the H-bonding dominates in the hydration process of the cyanide anion enabling it to become soluble in the aqueous environment associated to chemical and biological processes.

  14. Interaction of Simple Ions with Water: Theoretical Models for the Study of Ion Hydration

    Science.gov (United States)

    Gancheff, Jorge S.; Kremer, Carlos; Ventura, Oscar N.

    2009-01-01

    A computational experiment aimed to create and systematically analyze models of simple cation hydrates is presented. The changes in the structure (bond distances and angles) and the electronic density distribution of the solvent and the thermodynamic parameters of the hydration process are calculated and compared with the experimental data. The…

  15. Capture CO2 from Ambient Air Using Nanoconfined Ion Hydration.

    Science.gov (United States)

    Shi, Xiaoyang; Xiao, Hang; Lackner, Klaus S; Chen, Xi

    2016-03-14

    Water confined in nanoscopic pores is essential in determining the energetics of many physical and chemical systems. Herein, we report a recently discovered unconventional, reversible chemical reaction driven by water quantities in nanopores. The reduction of the number of water molecules present in the pore space promotes the hydrolysis of CO3(2-) to HCO3(-) and OH(-). This phenomenon led to a nano-structured CO2 sorbent that binds CO2 spontaneously in ambient air when the surrounding is dry, while releasing it when exposed to moisture. The underlying mechanism is elucidated theoretically by computational modeling and verified by experiments. The free energy of CO3 (2-) hydrolysis in nanopores reduces with a decrease of water availability. This promotes the formation of OH(-), which has a high affinity to CO2 . The effect is not limited to carbonate/bicarbonate, but is extendable to a series of ions. Humidity-driven sorption opens a new approach to gas separation technology.

  16. Hydration of magnesia cubes: a helium ion microscopy study

    Directory of Open Access Journals (Sweden)

    Ruth Schwaiger

    2016-02-01

    Full Text Available Physisorbed water originating from exposure to the ambient can have a strong impact on the structure and chemistry of oxide nanomaterials. The effect can be particularly pronounced when these oxides are in physical contact with a solid substrate such as the ones used for immobilization to perform electron or ion microscopy imaging. We used helium ion microscopy (HIM and investigated morphological changes of vapor-phase-grown MgO cubes after vacuum annealing and pressing into foils of soft and high purity indium. The indium foils were either used as obtained or, for reference, subjected to vacuum drying. After four days of storage in the vacuum chamber of the microscope and at a base pressure of p −7 mbar, we observed on these cubic particles the attack of residual physisorbed water molecules from the indium substrate. As a result, thin magnesium hydroxide layers spontaneously grew, giving rise to characteristic volume expansion effects, which depended on the size of the particles. Rounding of the originally sharp cube edges leads to a significant loss of the morphological definition specific to the MgO cubes. Comparison of different regions within one sample before and after exposure to liquid water reveals different transformation processes, such as the formation of Mg(OH2 shells that act as diffusion barriers for MgO dissolution or the evolution of brucite nanosheets organized in characteristic flower-like microstructures. The findings underline the significant metastability of nanomaterials under both ambient and high-vacuum conditions and show the dramatic effect of ubiquitous water films during storage and characterization of oxide nanomaterials.

  17. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    Science.gov (United States)

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  18. A hydrated ion model of [UO2] 2 + in water: Structure, dynamics, and spectroscopy from classical molecular dynamics

    Science.gov (United States)

    Pérez-Conesa, Sergio; Torrico, Francisco; Martínez, José M.; Pappalardo, Rafael R.; Sánchez Marcos, Enrique

    2016-12-01

    A new ab initio interaction potential based on the hydrated ion concept has been developed to obtain the structure, energetics, and dynamics of the hydration of uranyl in aqueous solution. It is the first force field that explicitly parameterizes the interaction of the uranyl hydrate with bulk water molecules to accurately define the second-shell behavior. The [UO2(H2O)5 ] 2 + presents a first hydration shell U-O average distance of 2.46 Å and a second hydration shell peak at 4.61 Å corresponding to 22 molecules using a coordination number definition based on a multisite solute cavity. The second shell solvent molecules have longer mean residence times than those corresponding to the divalent monatomic cations. The axial regions are relatively de-populated, lacking direct hydrogen bonding to apical oxygens. Angle-solved radial distribution functions as well as the spatial distribution functions show a strong anisotropy in the ion hydration. The [UO2(H2O)5 ] 2 + solvent structure may be regarded as a combination of a conventional second hydration shell in the equatorial and bridge regions, and a clathrate-like low density region in the axial region. Translational diffusion coefficient, hydration enthalpy, power spectra of the main vibrational modes, and the EXAFS spectrum simulated from molecular dynamics trajectories agree fairly well with the experiment.

  19. Advances in obsidian hydration dating by secondary ion mass spectrometry: World examples

    Energy Technology Data Exchange (ETDEWEB)

    Liritzis, I. [University of the Aegean, Dept. of Mediterranean Studies, Laboratory of Archaeometry, 1 Demokratias Ave., Rhodes 85100 (Greece)], E-mail: liritzis@rhodes.aegean.gr; Laskaris, N. [University of the Aegean, Dept. of Mediterranean Studies, Laboratory of Archaeometry, 1 Demokratias Ave., Rhodes 85100 (Greece)

    2009-01-15

    Since 1960 the potential of obsidian as a chronometer in archaeology has been subjected to several drawbacks and studies. While economical, simple and fast, obsidian hydration dating today is generally unreliable. A novel approach towards obsidian hydration dating, named SIMS-SS, has recently been initiated based on modelling the hydrogen profile acquired by secondary ion mass spectrometry (SIMS), following Fick's diffusion law, and the rationale of surface saturation (SS) with water molecules. The new nuclear method is presented with significant refinement regarding numerical calculation of age parameters, the suitability criteria of the sampling area and the spectral shape of the concentration dependant H{sup +} profile. A reappraisal is applied to thirteen obsidian specimens from all over the world ranging some 100's to 30,000 years old. The results reinforce the precision and reliability of the SIMS-SS method, enhancing its wide applicability.

  20. Carbonation of wollastonite(001) competing hydration: microscopic insights from ion spectroscopy and density functional theory.

    Science.gov (United States)

    Longo, Roberto C; Cho, Kyeongjae; Brüner, Philipp; Welle, Alexander; Gerdes, Andreas; Thissen, Peter

    2015-03-04

    In this paper, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as a model surface of cement and concrete. Total energy calculations based on density functional theory combined with kinetic barrier predictions based on nudge elastic band method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO3(2-)) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (also called early stage hydration) and Ca(2+) ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca(2+) reacts again with CO2 and forms carbonate complexes, ending in a delocalized layer. By means of high-resolution time-of-flight secondary-ion mass spectrometry images, we confirm that hydration can lead to a partially delocalization of Ca(2+) ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by the meaning of low-energy ion-scattering spectroscopy combined with careful discussion about the competing reactions of carbonation vs hydration.

  1. Negative ion photoelectron spectroscopy of the copper-aspartic acid anion and its hydrated complexes

    Science.gov (United States)

    Li, Xiang; Wang, Haopeng; Bowen, Kit H.; Martínez, Ana; Salpin, Jean-Yves; Schermann, Jean-Pierre

    2010-08-01

    Negative ions of copper-aspartic acid Cu(Asp)- and its hydrated complexes have been produced in the gas phase and studied by anion photoelectron spectroscopy. The vertical detachment energies (VDE) of Cu(Asp)- and Cu(Asp)-(H2O)1,2 were determined to be 1.6, 1.95, and 2.20 eV, respectively. The spectral profiles of Cu(Asp)-(H2O)1 and Cu(Asp)-(H2O)2 closely resembled that of Cu(Asp)-, indicating that hydration had not changed the structure of Cu(Asp)- significantly. The successive shifts to higher electron binding energies by the spectra of the hydrated species provided measures of their stepwise solvation energies. Density functional calculations were performed on anionic Cu(Asp)- and on its corresponding neutral. The agreement between the calculated and measured VDE values implied that the structure of the Cu(Asp)- complex originated with a zwitterionic form of aspartic acid in which a copper atom had inserted into the N-H bond.

  2. Structures, Hydration, and Electrical Mobilities of Bisulfate Ion-Sulfuric Acid-Ammonia/Dimethylamine Clusters: A Computational Study.

    Science.gov (United States)

    Tsona, Narcisse T; Henschel, Henning; Bork, Nicolai; Loukonen, Ville; Vehkamäki, Hanna

    2015-09-17

    Despite the well-established role of small molecular clusters in the very first steps of atmospheric particle formation, their thermochemical data are still not completely available due to limitation of the experimental techniques to treat such small clusters. We have investigated the structures and the thermochemistry of stepwise hydration of clusters containing one bisulfate ion, sulfuric acid, base (ammonia or dimethylamine), and water molecules using quantum chemical methods. We found that water facilitates proton transfer from sulfuric acid or the bisulfate ion to the base or water molecules, and depending on the hydration level, the sulfate ion was formed in most of the base-containing clusters. The calculated hydration energies indicate that water binds more strongly to ammonia-containing clusters than to dimethylamine-containing and base-free clusters, which results in a wider hydrate distribution for ammonia-containing clusters. The electrical mobilities of all clusters were calculated using a particle dynamics model. The results indicate that the effect of humidity is negligible on the electrical mobilities of molecular clusters formed in the very first steps of atmospheric particle formation. The combination of the results of this study with those previously published on the hydration of neutral clusters by our group provides a comprehensive set of thermochemical data on neutral and negatively charged clusters containing sulfuric acid, ammonia, or dimethylamine.

  3. Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface

    Directory of Open Access Journals (Sweden)

    Panit Sherdshoopongse

    2005-09-01

    Full Text Available Titanium dioxide was prepared from titanium tetrachloride and diluted ammonia solution at low temperature. The product obtained was characterized by XRD, EDXRF, TGA, DSC, and FT-IR techniques. It was found that the product was in the form of hydrated amorphous titanium dioxide, TiO2·1.6H2O (ha- TiO2. Ha-TiO2 exhibits high BET surface area at 449 m2/g. Adsorptions of metal ions onto the ha-TiO2 surface were investigated in the batch equilibrium experiments, using Mn(II, Fe(III, Cu(II, and Pb(II solutions. The concentrations of metal ions were determined by atomic absorption spectrometer. The adsorption isotherms of all metal ions were studied at pH 7. The adsorption of Mn(II, Cu(II, and Pb(II ions on ha-TiO2 conformed to the Langmuir isotherm while that of Fe(III fit equally well to both Langmuir and Freundlich isotherms.

  4. Water flow in carbon-based nanoporous membranes impacted by interactions between hydrated ions and aromatic rings

    Science.gov (United States)

    Liu, Jian; Shi, Guosheng; Fang, Haiping

    2017-02-01

    Carbon-based nanoporous membranes, such as carbon nanotubes (CNTs), graphene/graphene oxide and graphyne, have shown great potential in water desalination and purification, gas and ion separation, biosensors, and lithium-based batteries, etc. A deep understanding of the interaction between hydrated ions in an aqueous solution and the graphitic surface in systems composed of water, ions and a graphitic surface is essential for applications with carbon-based nanoporous membrane platforms. In this review, we describe the recent progress of the interaction between hydrated ions and aromatic ring structures on the carbon-based surface and its applications in the water flow in a carbon nanotube. We expect that these works can be extended to the understanding of water flow in other nanoporous membranes, such as nanoporous graphene, graphyne and stacked sheets of graphene oxide.

  5. A geometry-based simulation of the hydration of ions and small molecules

    CERN Document Server

    Plumridge, T H

    2001-01-01

    software has been tested with a set of twenty widely varying solutes and has produced results which generally agree with experimental data for structure makers and breakers, and also agrees well with traditional techniques such as molecular dynamics and Monte Carlo techniques. The behaviour of solutes in water is of universal significance, but still not fully understood. This thesis provides details of a new computer simulation technique used to investigate the hydration of ions and small molecules. In contrast to conventional techniques such as molecular dynamics, this is a purely geometric method involving no forcefield or energy terms. Molecules of interest are modelled using crystallographic data to ensure that the structures are accurate. Water molecules are added randomly at any hydrogen bonding site in chains. At each addition the chain is rotated through all available space testing for the possibility of ring formation. The constraints used by the program to decide whether a ring should be conserved, ...

  6. Immobilization of Co (Ⅱ) Ions in Cement Pastes and Their Effects on the Hydration Characteristics

    Institute of Scientific and Technical Information of China (English)

    Eisa Hekal; Essam Kishar; Wafaa Hegazi; Maha Mohamed

    2011-01-01

    The immobilization of Co (Ⅱ) in various cement matrices was investigated by using the solidification/stabilization (S/S) technique. The different cement pastes used in this study were ordinary Portland cement in absence and presence of water reducing- and water repelling-admixtures as well as blended cement with kaolin. Two ratios of Co (Ⅱ) were used (0.5% and 1.0% by weight of the solid binder). The hydration characteristics of the used cement pastes were tested uia the determination of the combined water content, phase composition and compressive strength at different time intervals up to 180 d. The degree of immobilization of the added heavy metal ions was evaluated by determining the leached ion concentration after time intervals extended up to 180 d. The leachability experiments were carried out by using two modes: the static and the semi-dynamic leaching processes. It was noticed that the concentration of the leached Co2+ ions in the static mode of leachability was lower than the solubility of its hydroxide in all the investigated cement pastes.

  7. Enhancement of the photocatalytic activity of europium(III) oxide by the deposition of gold for the removal of atrazine

    Energy Technology Data Exchange (ETDEWEB)

    Aazam, E.S., E-mail: eaazam@yahoo.com

    2016-07-05

    Europium(III) oxide nanoparticles were prepared using a hydrothermal method. Gold was deposited by a photo-assisted deposition method. Europium(III) oxide and gold deposited europium(III) oxide were characterized using different techniques. The results demonstrated that gold was present as a metallic gold, and it was well-dispersed on the europium(III) oxide surface. The photocatalytic activity of europium(III) oxide and gold deposited europium(III) oxide was measured by the degradation of atrazine using visible light irradiation. The photocatalytic activity of gold deposited europium(III) oxide is higher than that of europium(III) oxide. This finding can be attributed to the synergic effect between europium(III) oxide and gold. Moreover, the results revealed that an increase in the weight percent of gold increases the photocatalytic activity of europium(III) oxide, and the most active photocatalyst is 0.20 wt % gold deposited europium(III) oxide. The photocatalyst of 0.20 wt % gold deposited europium(III) oxide has high photocatalytic stability and can be reused five times without a decrease in photocatalytic activity. - Highlights: • Au/Eu{sub 2}O{sub 3} nanocomposites were used for photocatalytic degradation of atrazine under visible light. • Photocatalytic degradation of atrazine under visible light was dependent on wt % of Au. • Catalyst re-use revealed the present photocatalyst remain effective and active after five cycles.

  8. Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field.

    Science.gov (United States)

    Lamoureux, Guillaume; Roux, Benoît

    2006-02-23

    A polarizable potential function for the hydration of alkali and halide ions is developed on the basis of the recent SWM4-DP water model [Lamoureux, G.; MacKerell, A. D., Jr.; Roux, B. J. Chem. Phys. 2003, 119, 5185]. Induced polarization is incorporated using classical Drude oscillators that are treated as auxiliary dynamical degrees of freedom. The ions are represented as polarizable Lennard-Jones centers, whose parameters are optimized to reproduce the binding energies of gas-phase monohydrates and the hydration free energies in the bulk liquid. Systematic exploration of the parameters shows that the monohydrate binding energies can be consistent with a unique hydration free energy scale if the computed hydration free energies incorporate the contribution from the air/water interfacial electrostatic potential (-540 mV for SWM4-DP). The final model, which can satisfyingly reproduce both gas and bulk-phase properties, corresponds to an absolute scale in which the intrinsic hydration free energy of the proton is -247 kcal/mol.

  9. A europium(III) organic ternary complex applied in fabrication of near UV-based white light-emitting diodes

    Science.gov (United States)

    Wang, H.; He, P.; Liu, S.; Shi, J.; Gong, M.

    2009-10-01

    A β-diketone, 2-acetylfluorene-4,4,4-trifluorobutane-1,3-dione (HAFTFBD), and its three europium(III) complexes, Eu(AFTFBD)3ṡ2H2O, Eu(AFTFBD)3(TPPO)2 and Eu(AFTFBD)3phen, were designed and synthesized, where TPPO was triphenylphosphine oxide and phen was 1,10-phenanthroline. The complexes were characterized by IR, UV-visible, photoluminescence (PL) spectroscopy and thermogravimetric analysis (TGA). The results show that the Eu(III) complexes exhibit a high thermal stability,and wide and strong excitation bands when monitored at 613 nm. Excited by ˜395 nm near UV light, the complexes emitted strong and characteristic red light due to f- f transitions of the central Eu3+ ion, and no emission from the ligands was found. The photoluminescence mechanism of the europium(III) complexes was investigated and proposed as a ligand-sensitized luminescence process. Among the three europium(III) complexes, Eu(AFTFBD)3phen exhibits the highest thermal stability and the most excellent photoluminescence properties. A bright red light-emitting diode was fabricated by coating the Eu(AFTFBD)3phen complex onto an ˜395 nm-emitting InGaN chip, and the LED showed appropriate CIE chromaticity coordinates ( x=0.66, y=0.33). A white LED with CIE chromaticity coordinates ( x=0.32, y=0.32) was prepared with Eu(AFTFBD)3phen as red phosphor, indicating that Eu(AFTFBD)3phen can be applied as a red component for fabrication of near ultraviolet-based white light-emitting diodes.

  10. A coordination chemistry study of hydrated and solvated cationic vanadium ions in oxidation states +III, +IV, and +V in solution and solid state

    OpenAIRE

    Krakowiak, Joanna; Lundberg, Daniel; Persson, Ingmar

    2012-01-01

    The coordination chemistry of hydrated and solvated vanadium(III), oxovanadium(IV), and dioxovanadium(V) ions in the oxygen donor solvents water, dimethylsulfoxide (dmso) and N,N′-dimethylpropyleneurea (dmpu) has been studied in solution by EXAFS and large angle X-ray scattering (LAXS) and in solid state by single crystal X-ray diffraction and EXAFS. The hydrated vanadium(III) ion has a regular octahedral configuration with a mean V-O bond distance of 1.99 Å. In the hydrated and dimethylsulfo...

  11. Pulsed laser positive ion desorption from a model hydrated inorganic crystal (CaHPO 4·2H 2O) at 248 nm

    Science.gov (United States)

    Dawes, M. L.; Langford, S. C.; Dickinson, J. T.

    1998-05-01

    We examine the laser-induced positive ion emission of a typical, wide band gap, hydrated inorganic single crystal, CaHPO 4·2H 2O (brushite), at 248 nm (KrF excimer) in vacuum. As-grown brushite is quite resistant to laser damage and yields little ion emission at fluences below 1 J/cm 2. In the presence of surface damage by abrasion or heating-induced transformations, intense laser-induced ion emission appears at lower fluences. The ion energy and fluence dependence are consistent with a defect mediated, multiple photon emission mechanism. In particular, the transport of hydrated Ca + to the surface, followed by adsorption at anion defects (and removal of water by evaporation), can provide an ideal environment for ion emission. The implications with regard to the UV laser ablation of hydrated environmental and biological minerals are discussed.

  12. Effect of bound state of water on hydronium ion mobility in hydrated Nafion using molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mabuchi, Takuya, E-mail: mabuchi@nanoint.ifs.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Tokumasu, Takashi [Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8577 (Japan)

    2014-09-14

    We have performed a detailed analysis of the structural properties of the sulfonate groups in terms of isolated and overlapped solvation shells in the nanostructure of hydrated Nafion membrane using classical molecular dynamics simulations. Our simulations have demonstrated the correlation between the two different areas in bound water region, i.e., the first solvation shell, and the vehicular transport of hydronium ions at different water contents. We have employed a model of the Nafion membrane using the improved force field, which is newly modified and validated by comparing the density and water diffusivity with those obtained experimentally. The first solvation shells were classified into the two types, the isolated area and the overlapped area. The mean residence times of solvent molecules explicitly showed the different behaviors in each of those areas in terms of the vehicular transport of protons: the diffusivity of classical hydronium ions in the overlapped area dominates their total diffusion at lower water contents while that in the isolated area dominates for their diffusion at higher water contents. The results provided insights into the importance role of those areas in the solvation shells for the diffusivity of vehicular transport of hydronium ions in hydrated Nafion membrane.

  13. Influence des ions sur le pouvoir hydratant de l'ure e: e tude sur peau de porc ex vivo.

    Science.gov (United States)

    Dupuis, L; Manfait, M; Serpier, H; Capon, F; Kalis, B

    1997-02-01

    This study deals with the influence of ions (NaCl and MgSO4) in a W/O emulsion containing 10% urea. Moisturization kinetics are assessed by corneometry on pig skin ex vivo. The formula's influence on urea penetration is measured by infrared spectrometry with an ATR device and the stripping method. Corneometry and spectroscopy were chosen to record simultaneously the hydratation levels and urea localization into superficial cell layers. Urea crystallization after evaporation of emulsions and aqueous solutions is described. Results show that urea does not hydrate nor penetrate when applied to the skin through an aqueous gel. In a W/O emulsion, sodium chloride increases the ability of urea to moisturize without improving penetration. In vitro urea crystallization is disturbed by sodium chloride or magnesium sulphate for solutions and emulsions. This stabilization by ions is correlated with good moisturization values. The stabilization of urea in the solute state provided by ions increases its water epidermal binding capacity without enhancing penetration.

  14. Coordination Chemistry of Europium(III) Ion Towards Acylpyrazolone Ligands.

    Science.gov (United States)

    Atanassova, Maria; Kurteva, Vanya; Billard, Isabelle

    2015-01-01

    Two Eu(III) complexes were synthesized using 4-acylpyrazolone ligands: 3-methyl-4-(4-methylbenzoyl)-1-phenyl-pyrazol-5-one (HPMMBP) and 3-methyl-1-phenyl-4-(4-phenylbenzoyl)-pyrazol-5-one (HPPMBP). The composition of the obtained solid complexes was determined as Eu(PMMBP)3·C2H5OH and Eu(PPMBP)3·3H2O based on elemental analysis and was further studied by IR, NMR and TG-TSC data. The lanthanoid complexation in solid state and in solution during liquid-liquid extraction (molecular diluent and ionic liquid) is discussed.

  15. Normal mode gating motions of a ligand-gated ion channel persist in a fully hydrated lipid bilayer model.

    Science.gov (United States)

    Bertaccini, Edward J; Trudell, James R; Lindahl, Erik

    2010-08-18

    We have previously used molecular modeling and normal-mode analyses combined with experimental data to visualize a plausible model of a transmembrane ligand-gated ion channel. We also postulated how the gating motion of the channel may be affected by the presence of various ligands, especially anesthetics. As is typical for normal-mode analyses, those studies were performed in vacuo to reduce the computational complexity of the problem. While such calculations constitute an efficient way to model the large scale structural flexibility of transmembrane proteins, they can be criticized for neglecting the effects of an explicit phospholipid bilayer or hydrated environment. Here, we show the successful calculation of normal-mode motions for our model of a glycine α-1 receptor, now suspended in a fully hydrated lipid bilayer. Despite the almost uniform atomic density, the introduction of water and lipid does not grossly distort the overall gating motion. Normal-mode analysis revealed that even a fully immersed glycine α-1 receptor continues to demonstrate an iris-like channel gating motion as a low-frequency, high-amplitude natural harmonic vibration consistent with channel gating. Furthermore, the introduction of periodic boundary conditions allows the examination of simultaneous harmonic vibrations of lipid in synchrony with the protein gating motions that are compatible with reasonable lipid bilayer perturbations. While these perturbations tend to influence the overall protein motion, this work provides continued support for the iris-like motion model that characterizes gating within the family of ligand-gated ion channels.

  16. Effects of electronic structure on the hydration of PbNO3(+) and SrNO3(+) ion pairs.

    Science.gov (United States)

    Cooper, Richard J; Heiles, Sven; Williams, Evan R

    2015-06-28

    Hydration of PbNO3(+) and SrNO3(+) with up to 30 water molecules was investigated with infrared photodissociation (IRPD) spectroscopy and with theory. These ions are the same size, yet the IRPD spectra of these ion pairs for n = 2-8 are significantly different. Bands in the bonded O-H region (∼3000-3550 cm(-1)) indicate that the onset of a second hydration shell begins at n = 5 for PbNO3(+) and n = 6 for SrNO3(+). Spectra for [PbNO3](+)(H2O)2-5 and [SrNO3](+)(H2O)3-6 indicate that the structures of clusters with Pb(ii) are hemidirected with a void in the coordinate sphere. A natural bond orbital analysis of [PbNO3](+)(H2O)5 indicates that the anisotropic solvation of the ion is due to a region of asymmetric electron density on Pb(ii) that can be explained by charge transfer from the nitrate and water ligands into unoccupied p-orbitals on Pb(ii). There are differences in the IRPD spectra of PbNO3(+) and SrNO3(+) with up to 25 water molecules attached. IR intensity in the bonded O-H region is blue-shifted by ∼50 cm(-1) in nanodrops containing SrNO3(+) compared to those containing PbNO3(+), indicative of a greater perturbation of the water H-bond network by strontium. The free O-H stretches of surface water molecules in nanodrops containing 10, 15, 20, and 25 water molecules are red-shifted by ∼3-8 cm(-1) for PbNO3(+) compared to those for SrNO3(+), consistent with more charge transfer between water molecules and Pb(ii). These results demonstrate that the different electronic structure of these ions significantly influences how they are solvated.

  17. Structure and water exchange dynamics of hydrated oxo halo ions in aqueous solution using QMCF MD simulation, large angle X-ray scattering and EXAFS

    Science.gov (United States)

    Eklund, Lars; Hofer, Tomas S.

    2014-01-01

    Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) has been applied in conjunction with experimental large angle X-ray scattering (LAXS) and EXAFS measurements to study structure and dynamics of the hydrated oxo chloro anions chlorite, ClO2−, chlorate, ClO3−, and perchlorate, ClO4−. In addition, the structures of the hydrated hypochlorite, ClO−, bromate, BrO3−, iodate, IO3− and metaperiodate, IO4−, ions have been determined in aqueous solution by means of LAXS. The structures of the bromate, metaperiodate, and orthoperiodate, H2IO63−, ions have been determined by EXAFS as solid sodium salts and in aqueous solution as well. The results show clearly that the only form of periodate present in aqueous solution is metaperiodate. The Cl-O bond distances in the hydrated oxo chloro anions as determined by LAXS and obtained in the QMCF MD simulations are in excellent agreement, being 0.01–0.02 Å longer than in solid anhydrous salts due to hydration through hydrogen bonding to water molecules. The oxo halo anions, all with unit negative charge, have low charge density making them typical structure breakers, thus the hydrogen bonds formed to the hydrating water molecules are weaker and more short-lived than those between water molecules in pure water. The water exchange mechanism of the oxo chloro anions resembles those of the oxo sulfur anions with a direct exchange at the oxygen atoms for perchlorate and sulfate. The water exchange rate for the perchlorate ion is significantly faster, τ0.5=1.4 ps, compared to the hydrated sulfate ion and pure water, τ0.5=2.6 and 1.7 ps, respectively. The angular radial distribution functions show that the chlorate and sulfite ions have a more complex water exchange mechanism. As the chlorite and chlorate ions are more weakly hydrated than the sulfite ion the spatial occupancy is less well-defined and it is not possible to follow any well-defined migration pattern as it is difficult to

  18. Some theoretical considerations concerning ion hydration in the case of ion transfer between water and 1,2-dichloroethane

    CERN Document Server

    Sánchez, C; Baruzzi, A M; Leiva, E P M

    1997-01-01

    Some aspects of direct ion transfer across the water/1,2-dichloroethane are analyzed using a very simple model based on thermodynamic considerations. It was concluded that ion solvation by water molecules may occur in some particular cases in the organic phase, delivering an important contribution to the Gibbs free energy of ion transfer between the aqueous and the organic phase. In general terms, this particular type of transfer should be favored in the case of highly charged small ions at interfaces with a relatively low surface tension and a large difference between the reciprocal of the corresponding dielectric constants.

  19. SOLVENT EFFECTS ON THE HYDRATION OF CYCLOHEXENE CATALYZED BY A STRONG ACID ION-EXCHANGE RESIN .3. EFFECT OF SULFOLANE ON THE EQUILIBRIUM CONVERSION

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1992-01-01

    The liquid-phase hydration of cyclohexene, a pseudo-first-order reversible reaction catalyzed by a strong acid ion-exchange resin, was investigated in solvent mixtures of water and sulfolane. Macroporous Amberlite XE 307 was used because of its superior catalytic activity. Chemical equilibrium conve

  20. Nitriles as directionally tolerant hydrogen bond acceptors: IR-UV ion depletion spectroscopy of benzenepropanenitrile and its hydrate clusters

    Science.gov (United States)

    Robertson, Patrick A.; Lobo, Isabella A.; Wilson, David J. D.; Robertson, Evan G.

    2016-09-01

    Benzenepropanenitrile (BPN) and its hydrate clusters are studied by R2PI and IR-UV ion-depletion spectroscopy in the CH/OH stretch regions, aided by theoretical calculations. A single water molecule binds to the terminal nitrile 'lone-pair' of the anti-BPN host, but there is also evidence for a side-type structure with OH donating to the nitrile π-electrons. In the gauche-BPN cluster, water is located at an intermediate angle that facilitates O⋯HC(ortho) interaction. A wide range of attachment angles is possible, as the intrinsic preference for linear hydrogen bonding is mediated by additional CH⋯O interactions that depend on molecular geometry near the nitrile group.

  1. QUANTUM MECHANICAL STUDY OF THE COMPETITIVE HYDRATION BETWEEN PROTONATED QUINAZOLINE AND LI+, NA+, AND CA2+ IONS

    Science.gov (United States)

    Hydration reactions are fundamental to many biological functions and environmental processes. The energetics of hydration of inorganic and organic chemical species influences their fate and transport behavior in the environment. In this study, gas-phase quantum mechanical calcula...

  2. Speciation of organic-soluble europium(III) α1-Wells-Dawson complexes.

    Science.gov (United States)

    Burton-Pye, Benjamin P; Francesconi, Lynn C

    2011-05-07

    In this contribution, we provide a comprehensive understanding of the speciation of the Eu(III) complex of the lacunary Wells-Dawson isomer, α1-[P(2)W(17)O(61)](10-) in organic media. The Wells-Dawson polyoxometalate, α1-[P(2)W(17)O(61)](10-) (abbreviated as α1) forms well-defined complexes with europium(III) (and other lanthanide(III)) ions in aqueous solution of predominantly 1 : 1 stoichiometries. The 8-coordinate Eu(III) ion is bound to 4 basic terminal oxygens (O(α1)) and four water molecules (O(H(2)O)) that complete the coordination sphere. Tetra-n-butylammonium (TBA) cations are employed to render the [(H(2)O)(4)Eu(α1-P(2)W(17)O(61))](7-) (Eu-α1) complex soluble in acetonitrile. Europium(III) provides the unique opportunity to employ luminescence spectroscopy and multinuclear NMR to probe the coordination environment. We interrogate the innermost coordination sphere of the Eu(III) ion in acetonitrile solution and in MeCN/H(2)O mixtures. We provide evidence toward the fractional displacement and coordination of acetonitrile within the TBA salts, that is consistent with recent EXAFS data. (31)P NMR and Stern-Volmer quenching studies suggest that dimerization to the 2 : 2 species is negligible in acetonitrile and MeCN-H(2)O mixtures. The decreasing transition energy in the excitation spectroscopy of the TBA-Eu-α1 analog upon dilution is consistent with a nephelauxetic effect, which is attributed to a slight increase in covalency upon replacement of water with acetonitrile. Determination of the number of bound waters (q) is also consistent with acetonitrile-water exchange. The reactivity of the 1 : 1 TBA-Eu-α1 with heterocyclic aromatic amines (1,10-phenanthroline, phen, and 2,2' bipyridine, bipy) in MeCN was probed by titrations monitoring the Eu(III) emission upon sensitization by the "antenna ligands". Binding constants for the products 1 : 1 TBA(x-y)H(y)[(Phen)(H(2)O)(2)Eu(α1-P(2)W(17)O(61))] and 1 : 2 TBA(x-y)H(y)[(Phen)(2)Eu(α1-P(2)W(17)O(61

  3. Assessing the accuracy of approximate treatments of ion hydration based on primitive quasichemical theory

    Science.gov (United States)

    Roux, Benoît; Yu, Haibo

    2010-06-01

    Quasichemical theory (QCT) provides a framework that can be used to partition the influence of the solvent surrounding an ion into near and distant contributions. Within QCT, the solvation properties of the ion are expressed as a sum of configurational integrals comprising only the ion and a small number of solvent molecules. QCT adopts a particularly simple form if it is assumed that the clusters undergo only small thermal fluctuations around a well-defined energy minimum and are affected exclusively in a mean-field sense by the surrounding bulk solvent. The fluctuations can then be integrated out via a simple vibrational analysis, leading to a closed-form expression for the solvation free energy of the ion. This constitutes the primitive form of quasichemical theory (pQCT), which is an approximate mathematical formulation aimed at reproducing the results from the full many-body configurational averages of statistical mechanics. While the results from pQCT from previous applications are reasonable, the accuracy of the approach has not been fully characterized and its range of validity remains unclear. Here, a direct test of pQCT for a set of ion models is carried out by comparing with the results of free energy simulations with explicit solvent. The influence of the distant surrounding bulk on the cluster comprising the ion and the nearest solvent molecule is treated both with a continuum dielectric approximation and with free energy perturbation molecular dynamics simulations with explicit solvent. The analysis shows that pQCT can provide an accurate framework in the case of a small cation such as Li+. However, the approximation encounters increasing difficulties when applied to larger cations such as Na+, and particularly for K+. This suggests that results from pQCT should be interpreted with caution when comparing ions of different sizes.

  4. Origins of hydration lubrication.

    Science.gov (United States)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-14

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  5. An europium(III) diglycolamide complex: insights into the coordination chemistry of lanthanides in solvent extraction.

    Science.gov (United States)

    Antonio, Mark R; McAlister, Daniel R; Horwitz, E Philip

    2015-01-14

    The synthesis, stoichiometry, and structural characterization of a homoleptic, cationic europium(III) complex with three neutral tetraalkyldiglycolamide ligands are reported. The tri(bismuth tetrachloride)tris(N,N,N',N'-tetra-n-octyldiglycolamide)Eu salt, [Eu(TODGA)3][(BiCl4)3] obtained from methanol was examined by Eu L3-edge X-ray absorption spectroscopy (XAS) to reveal an inner-sphere coordination of Eu(3+) that arises from 9 O atoms and two next-nearest coordination spheres that arise from 6 carbon atoms each. A structural model is proposed in which each TODGA ligand with its O=Ca-Cb-O-Cb-Ca=O backbone acts as a tridentate O donor, where the two carbonyl O atoms and the one ether O atom bond to Eu(3+). Given the structural rigidity of the tridentate coordination motif in [Eu(TODGA)3](3+) with six 5-membered chelate rings, the six Eu-Ca and six Eu-Cb interactions are readily resolved in the EXAFS (extended X-ray absorption fine structure) spectrum. The three charge balancing [BiCl4](-) anions are beyond the cationic [Eu(TODGA)3](3+) cluster in an outer sphere environment that is too distant to be detected by XAS. Despite their sizeable length and propensity for entanglement, the four n-octyl groups of each TODGA (for a total of twelve) do not perturb the Eu(3+) coordination environment over that seen from previously reported single-crystal structures of tripositive lanthanide (Ln(3+)) complexes with tetraalkyldiglycolamide ligands (of the same 1:3 metal-to-ligand ratio stoichiometry) but having shorter i-propyl and i-butyl groups. The present results set the foundation for understanding advanced solvent extraction processes for the separation of the minor, tripositive actinides (Am, Cm) from the Ln(3+) ions in terms of the local structure of Eu(3+) in a solid state coordination complex with TODGA.

  6. THE HYDRATION OF AN ION-LEACHABLE GLASS USED IN GLASS-IONOMER CEMENTS

    Directory of Open Access Journals (Sweden)

    Jacek Klos

    2016-07-01

    Full Text Available A study is reported in which the interaction between a typical ionomer glass and water was evaluation in order to evaluate the importance of hydration in the setting of glass-ionomer cements. Glass G338 was mixed with water and the slurries were allowed to harden in metal moulds to create cylindrical specimens 6 mm high x 4 mm diameter. Samples of these specimens were found to disintegrate when placed in water. Following hardening at 37 °C for 1 hour in the moulds, one series of specimens was stored at 95% RH for 23 h, 1 week and 4 weeks, and the other stored for the same lengths of time, but sealed in the moulds. Raman spectra were recorded for glass G338 and glass-water blends stored for 24 hours and 4 weeks. The cylindrical specimens were found to have a degree of structural integrity, but proved to be extremely weak in compression (all specimens of whatever age up to 4 weeks having strengths of less that 1 MPa. Specimens lost mass on storage at 95% RH. Raman spectra showed no additional bands due to glass-water interactions compared with the dry glass itself, and changes in intensity were difficult to interpret, due to Fermi resonance in the regions of interest. It is concluded that binding in these specimens is due to hydrogen bonding between layers of water adsorbed onto glass powder surfaces.

  7. Influence of hydration on ion-biomolecule interactions: M(+)(indole)(H2O)(n) (M = Na, K; n = 3-6).

    Science.gov (United States)

    Ke, Haochen; Lisy, James M

    2015-10-14

    The indole functional group can be found in many biologically relevant molecules, such as neurotransmitters, pineal hormones and medicines. Indole has been used as a tractable model to study the hydration structures of biomolecules as well as the interplay of non-covalent interactions within ion-biomolecule-water complexes, which largely determine their structure and dynamics. With three potential binding sites: above the six- or five-member ring, and the N-H group, the competition between π and hydrogen bond interactions involves multiple locations. Electrostatic interactions from monovalent cations are in direct competition with hydrogen bonding interactions, as structural configurations involving both direct cation-indole interactions and cation-water-indole bridging interactions were observed. The different charge densities of Na(+) and K(+) give rise to different structural conformers at the same level of hydration. Infrared spectra with parallel hybrid functional-based calculations and Gibbs free energy calculations revealed rich structural insights into the Na(+)/K(+)(indole)(H2O)3-6 cluster ion complexes. Isotopic (H/D) analyses were applied to decouple the spectral features originating from the OH and NH stretches. Results showed no evidence of direct interaction between water and the NH group of indole (via a σ-hydrogen bond) at current levels of hydration with the incorporation of cations. Hydrogen bonding to a π-system, however, was ubiquitous at hydration levels between two and five.

  8. Near-Quantitative Agreement of Model-Free DFT-MD Predictions with XAFS Observations of the Hydration Structure of Highly Charged Transition-Metal Ions.

    Science.gov (United States)

    Fulton, John L; Bylaska, Eric J; Bogatko, Stuart; Balasubramanian, Mahalingam; Cauët, Emilie; Schenter, Gregory K; Weare, John H

    2012-09-20

    First-principles dynamics simulations (DFT, PBE96, and PBE0) and electron scattering calculations (FEFF9) provide near-quantitative agreement with new and existing XAFS measurements for a series of transition-metal ions interacting with their hydration shells via complex mechanisms (high spin, covalency, charge transfer, etc.). This analysis does not require either the development of empirical interparticle interaction potentials or structural models of hydration. However, it provides consistent parameter-free analysis and improved agreement with the higher-R scattering region (first- and second-shell structure, symmetry, dynamic disorder, and multiple scattering) for this comprehensive series of ions. DFT+GGA MD methods provide a high level of agreement. However, improvements are observed when exact exchange is included. Higher accuracy in the pseudopotential description of the atomic potential, including core polarization and reducing core radii, was necessary for very detailed agreement. The first-principles nature of this approach supports its application to more complex systems.

  9. The elimination of corrosiveness of hydrated ethanol by using ion exchange resin; Eliminador da corrosividade do alcool etilico hidratado combustivel pelo tratamento com resinas de troca ionica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Aurelio N. de; Tanaka, Deniol K. [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    1986-12-31

    Based on ion exchange principles and the chemical analysis of regularly produced hydrated alcohol and considering corrosion problems found when this alcohol is used as fuel, the use of ion exchange resins is proposed to purify hydrated alcohol and hence eliminate corrosiveness. This alternative takes advantage of high efficiency with significantly low cost compared to other alternatives or to surface treatments required as function of the aggressive characteristics of fuel. Available preliminary results shows a modification in the aggressive characteristics of alcohol fuel as well as the possibility to obtain adequate physico-chemical properties of final product and the ability to standardize products from different sources or regions. Additional research work and follow up from vehicles testings with treated alcohol were done and they confirm presented results. 12 figs., 6 tabs.

  10. Associations of Europium(III) with gram-negative bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, T.; Ohnuki, T. [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Kimura, T. [Department of Materials Science, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Takahashi, Y. [Department of Earth and Planetary Systems Science, Hiroshima University, Hiroshima 739- 8526 (Japan); Francis, A.J. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2005-07-01

    Full text of publication follows: Migration of radionuclides in the environment is greatly affected by bacteria. Gram-negative bacteria are ubiquitous in the environment and can preferentially bind radionuclides because of the presence of the cell envelop consisting of two membrane bilayers with an intervening thin peptidoglycan layer, where carboxyl and phosphate functional groups are mainly involved in metal cation adsorption. In this study, we investigated the association of Eu(III) with four Gram-negative bacteria Pseudomonas fluorescens, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans. Europium(III) is a good analogue of Am(III) and Cm(III). The association of Eu(III) with the bacteria were determined by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The kinetics study showed that the Eu(III) adsorption on the bacteria proceeded rapidly. The Eu(III) adsorption on P. fluorescens at pH 3, A. faecalis and P. denitrificans at pHs 3, 4, and 5, and S. putrefaciens at pHs 4 and 5 reached a maximum within 5 minutes after contact. For P. denitrificans, the percent adsorption of Eu(III) decreased after the maximum percent adsorption was attained, which suggests the existence of exudates with an affinity with Eu(III). TRLFS showed that the coordination of Eu(III) on these bacteria is multi-dentate through an inner-spherical process. The ligand field of Eu(III) on P. denitrificans was as strong as the ones observed for halo-philic microorganisms, while that of P. fluorescens, A. faecalis, and S. putrefaciens was the typical one observed for non-halo-philic microorganisms. The coordination environment of Eu(III) on the bacteria differed from each other, though they are categorized as Gram-negative bacteria with the similar cell wall components. (authors)

  11. Surfactants at Single-Walled Carbon Nanotube-Water Interface: Physics of Surfactants, Counter-Ions, and Hydration Shell

    Science.gov (United States)

    Khare, Ketan S.; Phelan, Frederick R., Jr.

    Specialized applications of single-walled carbon nanotubes (SWCNTs) require an efficient and reliable method to sort these materials into monodisperse fractions with respect to their defining metrics (chirality, length, etc.) while retaining their physical and chemical integrity. A popular method to achieve this goal is to use surfactants that individually disperse SWCNTs in water and then to separate the resulting colloidal mixture into fractions that are enriched in monodisperse SWCNTs. Recently, experiments at NIST have shown that subtle point mutations of chemical groups in bile salt surfactants have a large impact on the hydrodynamic properties of SWCNT-surfactant complexes during ultracentrifugation. These results provide strong motivation for understanding the rich physics underlying the assembly of surfactants around SWCNTs, the structure and dynamics of counter ions around the resulting complex, and propagation of these effects into the first hydration shell. Here, all-atom molecular dynamics simulations are used to investigate the thermodynamics of SWCNT-bile salt surfactant complexes in water with an emphasis on the buoyant characteristics of the SWCNT-surfactant complexes. Simulation results will be presented along with a comparison with experimental data. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

  12. Controls of ionic strength and macromolecule chemistry on calcite nucleation: Salinity and ion hydration as levers for regulating biomineralization

    Science.gov (United States)

    Dove, P. M.; Giuffre, A. J.; Mergelsberg, S. T.; Han, N.; De Yoreo, J. J.

    2016-12-01

    Organisms form shells and skeletons with remarkable fidelity by controlling the timing and placement of the minerals that nucleate and subsequently grow. An extensive effort has identified features of the organic matrix that regulate this process. Recent measurements from our group show the energy barrier to nucleation onto polysaccharide (PS) substrates is dependent upon hydrophilicity through functional group chemistry and suggest that free energy of the macromolecule-liquid interface influences where and when mineral nucleation occurs (Giuffre et al., 2013, PNAS). The importance of interfacial free energy in regulating nucleation raises the question of whether local changes in salinity or electrolyte composition can be tuned to further modulate the onset of calcite nucleation. Using alginate (negatively charged by carboxyl groups) and chitosan (small positive charge by amine groups), the rate of calcite nucleation was measured at controlled supersaturations and pH as a function of NaCl concentration (65-600 mM). Analyses of the data show the thermodynamic barrier to calcite nucleation onto both types of PS increases with ionic strength. The evidence suggests this effect arises from an increasing concentration of solvated ions at the PS-water interface while also increasing the hydrophilic character of that interface; thus decreasing the substrate-liquid interfacial free energy. To test this explanation, a second group of nucleation experiments used a suite of electrolytes (alkali chlorides for alginate and sodium halides for chitosan) while holding ionic strength constant. Indeed, the nucleation barriers for calcite formation are electrolyte-specific and correlated with the hydration free energy of the ion. This suggests solvated electrolyte ions indirectly regulate calcite nucleation onto substrates through their competition with the substrate for water thereby influencing net interfacial free energy. These effects are consistent with the long

  13. Highly luminescent pure-red-emitting fluorinated β-diketonate europium(III) complex for full solution-processed OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Joao P. [CEMDRX, Physics Department, Universidade de Coimbra, Rua Larga, Coimbra P-3004-516 (Portugal); Serviço de Medicina Nuclear, SESARAM E.P.E., Avenida Luís de Camões 57, Funchal 9004-514, Madeira (Portugal); Martín-Ramos, Pablo [CEMDRX, Physics Department, Universidade de Coimbra, Rua Larga, Coimbra P-3004-516 (Portugal); Higher Technical School of Telecommunications Engineering, Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén 15, Valladolid 47011 (Spain); Coya, Carmen, E-mail: carmen.coya@urjc.es [Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid 28933 (Spain); Silva, Manuela Ramos [CEMDRX, Physics Department, Universidade de Coimbra, Rua Larga, Coimbra P-3004-516 (Portugal); Eusebio, M. Ermelinda S. [Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra P-3004-535 (Portugal); Andrés, Alicia de [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid 28049 (Spain); Álvarez, Ángel L. [Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid 28933 (Spain); Martín-Gil, Jesús [Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, Palencia 34004 (Spain)

    2015-03-15

    Current manufacturing technologies for OLEDs involve the use of expensive high vacuum techniques and call for thermal stability requirements which are not fulfilled by many materials. These problems disappear when the OLED films are deposited directly from solution. In this study, we have designed, synthesized and characterized a novel octacoordinated complex, Tris(1-(4-chlorophenyl)-4,4,4-trifluoro-1, 3-butanedionate)mono(bathophenanthroline) europium(III), to be used as a “complex-only” emissive layer in wet-processed OLEDs. Upon excitation in the UV region, very efficient energy transfer from the ligands to Eu{sup 3+} takes place, giving rise to intense red emission with very high monochromaticity (R=19), both in powder and as a thin film. The decay times of 754 µs (powder) and 620 µs (thin film) are comparable to those of the most efficient Eu{sup 3+} β-diketonate complexes reported to date. The same energy transfer leading to saturated red and narrow emission is also observed in the OLED device (glass/ITO/PEDOT:PSS/[Eu(cbtfa){sub 3}(bath)]/Ca/Al) when biased at >5.2 V. Its high quantum efficiency (∼60%), good thermal stability up to 200 °C and adequate thin film forming properties make this material a promising chromophore for cost-effective OLEDs. - Highlights: • A highly fluorinated europium(III) octacoordinated complex, [Eu(cbtfa)3(bath)], has been synthesized and its structure elucidated by single crystal X-ray diffraction. • The chosen coordination environment is well-suited for sensitizing the luminescence of the Eu{sup 3+} ion, achieving very efficient energy transfer from the organic ligands (excited in the UV region) to the rare earth ion, leading to highly efficient (Q∼60% in crystalline powder and Q∼50% in thin film) and saturated red photoluminescence. • The material has also been integrated into a single active layer, full solution-processed OLED, with ITO/PEDOT:PSS/[Eu(cbtfa)3(bath)]/ Ca/Al structure.

  14. A coordination chemistry study of hydrated and solvated cationic vanadium ions in oxidation states +III, +IV, and +V in solution and solid state.

    Science.gov (United States)

    Krakowiak, Joanna; Lundberg, Daniel; Persson, Ingmar

    2012-09-17

    The coordination chemistry of hydrated and solvated vanadium(III), oxovanadium(IV), and dioxovanadium(V) ions in the oxygen-donor solvents water, dimethyl sulfoxide (DMSO), and N,N'-dimethylpropyleneurea (DMPU) has been studied in solution by extended X-ray absorption fine structure (EXAFS) and large-angle X-ray scattering (LAXS) and in the solid state by single-crystal X-ray diffraction and EXAFS. The hydrated vanadium(III) ion has a regular octahedral configuration with a mean V-O bond distance of 1.99 Å. In the hydrated and DMSO-solvated oxovanadium(IV) ions, vanadium binds strongly to an oxo group at ca. 1.6 Å. The solvent molecule trans to the oxo group is very weakly bound, at ca. 2.2 Å, while the remaining four solvent molecules, with a mean V-O bond distance of 2.0 Å, form a plane slightly below the vanadium atom; the mean O═V-O(perp) bond angle is ca. 98°. In the DMPU-solvated oxovanadium(IV) ion, the space-demanding properties of the DMPU molecule leave no solvent molecule in the trans position to the oxo group, which reduces the coordination number to 5. The O═V-O bond angle is consequently much larger, 107°, and the mean V═O and V-O bond distances decrease to 1.58 and 1.97 Å, respectively. The hydrated and DMSO-solvated dioxovanadium(V) ions display a very distorted octahedral configuration with the oxo groups in the cis position with a mean V═O bond distance of 1.6 Å and a O═V═O bond angle of ca. 105°. The solvent molecules trans to the oxo groups are weakly bound, at ca. 2.2 Å, while the remaining two have bond distances of 2.02 Å. The experimental studies of the coordination chemistry of hydrated and solvated vanadium(III,IV,V) ions are complemented by summarizing previously reported crystal structures to yield a comprehensive description of the coordination chemistry of vanadium with oxygen-donor ligands.

  15. Hydration and ion pair formation in common aqueous La(III) salt solutions--a Raman scattering and DFT study.

    Science.gov (United States)

    Rudolph, Wolfram W; Irmer, Gert

    2015-01-01

    Raman spectra of aqueous lanthanum perchlorate, triflate (trifluorosulfonate), chloride and nitrate solutions were measured over a broad concentration (0.121-3.050 mol L(-1)) range at room temperature (23 °C). A very weak mode at 343 cm(-1) with a full width at half height at 49 cm(-1) in the isotropic spectrum suggests that the nona-aqua La(III) ion is thermodynamically stable in dilute perchlorate solutions (∼0.2 mol L(-1)) while in concentrated perchlorate solutions outer-sphere ion pairs and contact ion pairs are formed. The La(3+) nona-hydrate was also detected in a 1.2 mol L(-1) La(CF3SO3)3(aq). In lanthanum chloride solutions chloro-complex formation was detected over the measured concentration range from 0.5-3.050 mol L(-1). The chloro-complexes in LaCl3(aq) are fairly weak and disappear with dilution. At a concentration complexes disappeared. In LaCl3 solutions, with additional HCl, a series of chloro-complexes of the type [La(OH2)(9-n)Cln](+3-n) (n = 1-3) were formed. The La(NO3)3(aq) spectra were compared with a spectrum of a 0.409 mol L(-1) NaNO3(aq) and it was concluded that in La(NO3)3(aq) over the concentration range from 0.121-1.844 mol L(-1), nitrato-complexes, [La(OH2)(9-n)(NO3)n](+3-n) (n = 1, 2) were formed. These nitrato-complexes are quite weak and disappear with dilution La(OH2)9](3+) with the polarizable dielectric continuum are in good agreement with data from recent structural experimental measurements and high quality simulations. The DFT frequency of the La-O stretching mode at 328.2 cm(-1), is only slightly smaller than the experimental one.

  16. Specific chiral sensing of amino acids using induced circularly polarized luminescence of bis(diimine)dicarboxylic acid europium(III) complexes.

    Science.gov (United States)

    Okutani, Kazuhiro; Nozaki, Koichi; Iwamura, Munetaka

    2014-06-02

    The circularly polarized luminescence (CPL) from [Eu(pda)2](-) (pda = 1,10-phenanthroline-2,9-dicarboxylic acid) and [Eu(bda)2](-) (bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) in aqueous solutions containing various amino acids was investigated. The europium(III) complexes exhibited bright-red luminescence assignable to the f-f transition of the Eu(III) ion when irradiated with UV light. Although the luminescence was not circularly polarized in the solid state or in aqueous solutions, in accordance with the achiral crystal structure, the complexes exhibited detectable induced CPL (iCPL) in aqueous solutions containing chiral amino acids. In the presence of L-pyrrolidonecarboxylic acid, both [Eu(pda)2](-) and [Eu(bda)2](-) showed similar iCPL intensity (glum ∼ 0.03 for the (5)D0 → (7)F1 transition at 1 mol·dm(-3) of the amino acid). On the other hand, in the presence of L-histidine or L-arginine, [Eu(pda)2](-) exhibited intense CPL (glum ∼ 0.08 for the (5)D0 → (7)F1 transition at 0.10 mol·dm(-3) of the amino acid), whereas quite weak CPL was observed for [Eu(bda)2](-) under the same conditions (glum amino acids, [Eu(pda)2](-) was found to be a good chiral CPL probe with high sensitivity (about 10(-2) mol·dm(-3)) and high selectivity for L-histidine at pH 3 and for L-arginine at pH 7. The mechanism of iCPL was evaluated by analysis of the fine structures in the luminescence spectra and the amino acid concentration dependence of glum. For the [Eu(pda)2](-)-histidine/arginine systems, the europium(III) complexes possess coordination structures similar to that in the crystal with slight distortion to form a chiral structure due to specific interaction with two zwitterionic amino acids. This mechanism was in stark contrast to that of the europium(III) complex-pyrrolidonecarboxylic acid system in which one amino acid coordinates to the Eu(III) ion to yield an achiral coordination structure.

  17. Complexation of europium(III) with the zwitterionic form of amino acids studied with ultraviolet-visible and time-resolved laser-induced fluorescence spectroscopy.

    Science.gov (United States)

    Heller, Anne; Rönitz, Olivia; Barkleit, Astrid; Bernhard, Gert; Ackermann, Jörg-Uwe

    2010-08-01

    The complex formation of europium(III) with the zwitterionic form of amino acids (alanine, phenylalanine, and threonine) has been studied in aqueous solution. Measurements were performed at I = 0.1 M (NaCl/NaClO(4)), room temperature, and trace metal concentrations in the range of pH 2 to 8 using ultraviolet-visible (UV-Vis) and time-resolved laser-induced fluorescence spectroscopy (TRLFS). While complexation leads to a significant luminescence enhancement in the emission spectrum of the metal ion, absorption in the UV-Vis spectrum of the amino acid (AA) decreases. As zwitterionic species (AAH), all three ligands form weak complexes with 1:1 stoichiometry and a general formula of EuAAH(3+) with the metal. The complex stability constants were determined to be log K approximately 1 for all complexes, indicating the negligible contribution of the amino acid side chain to the complex formation reaction.

  18. Europium(iii) complex-functionalized magnetic nanoparticle as a chemosensor for ultrasensitive detection and removal of copper(ii) from aqueous solution

    Science.gov (United States)

    Liu, Jing; Zuo, Wei; Zhang, Wei; Liu, Jian; Wang, Zhiyi; Yang, Zhengyin; Wang, Baodui

    2014-09-01

    Ultrasensitive, accurate detection and separation of heavy metal ions is very important in environmental monitoring and biological detection. In this paper, a highly sensitive and specific detection method for Cu2+ based on the fluorescence quenching of a europium(iii) hybrid magnetic nanoprobe is presented. This nanoprobe can detect Cu2+ over a wide pH range (5.0-10.0) with a detection limit as low as 0.1 nM and it can be used for detecting Cu2+ in living cells. After the magnetic separation, the Cu2+ concentration decreased to 1.18 ppm, which is less than the US EPA drinking water standard (1.3 ppm), and more than 70% Cu2+ could be removed when the amount of nanocomposite 1 reached 1 mg.Ultrasensitive, accurate detection and separation of heavy metal ions is very important in environmental monitoring and biological detection. In this paper, a highly sensitive and specific detection method for Cu2+ based on the fluorescence quenching of a europium(iii) hybrid magnetic nanoprobe is presented. This nanoprobe can detect Cu2+ over a wide pH range (5.0-10.0) with a detection limit as low as 0.1 nM and it can be used for detecting Cu2+ in living cells. After the magnetic separation, the Cu2+ concentration decreased to 1.18 ppm, which is less than the US EPA drinking water standard (1.3 ppm), and more than 70% Cu2+ could be removed when the amount of nanocomposite 1 reached 1 mg. Electronic supplementary information (ESI) available: Scheme S1, Fig. S1-S10, Tables S1-S4. See DOI: 10.1039/c4nr03454f

  19. Water in the hydration shell of halide ions has significantly reduced Fermi resonance and moderately enhanced Raman cross section in the OH stretch regions.

    Science.gov (United States)

    Ahmed, Mohammed; Singh, Ajay K; Mondal, Jahur A; Sarkar, Sisir K

    2013-08-22

    Water in the presence of electrolytes plays an important role in biological and industrial processes. The properties of water, such as the intermolecular coupling, Fermi resonance (FR), hydrogen-bonding, and Raman cross section were investigated by measuring the Raman spectra in the OD and OH stretch regions in presence of alkali halides (NaX; X = F, Cl, Br, I). It is observed that the changes in spectral characteristics by the addition of NaX in D2O are similar to those obtained by the addition of H2O in D2O. The spectral width decreases significantly by the addition of NaX in D2O (H2O) than that in the isotopically diluted water. Quantitative estimation, on the basis of integrated Raman intensity, revealed that the relative Raman cross section, σ(H)/σ(b) (σ(H) and σ(b) are the average Raman cross section of water in the first hydration shell of X(-) and in bulk, respectively), in D2O and H2O is higher than those in the respective isotopically diluted water. These results suggest that water in the hydration shell has reduced FR and intermolecular coupling compared to those in bulk. In the isotopically diluted water, the relative Raman cross section increases with increase in size of the halide ions (σ(H)/σ(b) = 0.6, 1.1, 1.5, and 1.9 for F(-), Cl(-), Br(-), and I(-), respectively), which is assignable to the enhancement of Raman cross section by charge transfer from halide ions to the hydrating water. Nevertheless, the experimentally determined σ(H)/σ(b) is lower than the calculated values obtained on the basis of the energy of the charge transfer state of water. The weak enhancement of σ(H)/σ(b) signifies that the charge transfer transition in the hydration shell of halide ions causes little change in the OD (OH) bond lengths of hydrating water.

  20. Synthesis and characterization of nanostructured europium(III) complexes containing gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khuyen, Hoang Thi, E-mail: khuyenht@ims.vast.ac.vn [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Thu, Phung Thi; Huong, Tran Thu; Tung, Do Khanh; Binh, Nguyen Thanh [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Strek, Wieslaw [Institute of Low Temperature and Structure Research, PAS, Okólna 2, Wroclaw 50-422 (Poland); Minh, Le Quoc [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Faculty of Engineering Physics and Nanotechnology, University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Anh, Tran Kim [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2015-10-15

    The nanostructured particles of europium(III) complexes with tri-n-octyl phosphineoxide (TOPO) and naphthoyl trifluoroacetone (NTA) ligands containing gold nanoparticles (GNPs) were successfully prepared by using the modified Stöber method. Their morphologies and optical properties were investigated. The results show that they are stable in aqueous solution. The TEM image indicates that the average diameter of nanoparticles of europium(III) complexes containing GNPs is about 115 nm. Monosize nanospheres containing GNPs of 18 nm were produced. The nanostructured luminescent complexes of europium(III) integrated with plasmon structure of GNPs exhibit efficient luminescence properties. - Highlights: • By using the simple modified Stöber method, we firstly report the nanosynthesis of europium chelate with tri-n-octylphosphineoxide (TOPO) and naphthoyl trifluoroacetone (NTA) ligands integrated gold nanoparticles (GNPs). • This material shows a strong emission at λ{sub max}=614 nm and possesses a broad absorption band from near UV light to visible light that permits a development of visible light sensitized europium complexes for biosensor and bioimaging. • At the excitation wavelength λ{sub exc}=470 nm, enhancement of emission intensity of nanostructured europium complexes was observed due to their integration with plasmon structure of GNPs.

  1. Collecting high-order interactions in an effective pairwise intermolecular potential using the hydrated ion concept: The hydration of Cf{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Galbis, Elsa; Pappalardo, Rafael R.; Marcos, Enrique Sánchez, E-mail: sanchez@us.es [Departmento de Química Física, Universidad de Sevilla, 41012 Seville (Spain); Hernández-Cobos, Jorge [Instituto de Ciencias Físicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca (Mexico)

    2014-06-07

    This work proposes a new methodology to build interaction potentials between a highly charged metal cation and water molecules. These potentials, which can be used in classical computer simulations, have been fitted to reproduce quantum mechanical interaction energies (MP2 and BP86) for a wide range of [M(H{sub 2}O){sub n}]{sup m+}(H{sub 2}O){sub ℓ} clusters (n going from 6 to 10 and ℓ from 0 to 18). A flexible and polarizable water shell model (Mobile Charge Density of Harmonic Oscillator) has been coupled to the cation-water potential. The simultaneous consideration of poly-hydrated clusters and the polarizability of the interacting particles allows the inclusion of the most important many-body effects in the new polarizable potential. Applications have been centered on the californium, Cf(III) the heaviest actinoid experimentally studied in solution. Two different strategies to select a set of about 2000 structures which are used for the potential building were checked. Monte Carlo simulations of Cf(III)+500 H{sub 2}O for three of the intermolecular potentials predict an aquaion structure with coordination number close to 8 and average R{sub Cf−−O} in the range 2.43–2.48 Å, whereas the fourth one is closer to 9 with R{sub Cf−−O} = 2.54 Å. Simulated EXAFS spectra derived from the structural Monte Carlo distribution compares fairly well with the available experimental spectrum for the simulations bearing 8 water molecules. An angular distribution similar to that of a square antiprism is found for the octa-coordination.

  2. The structures of CyMe4-BTBP complexes of americium(iii) and europium(iii) in solvents used in solvent extraction, explaining their separation properties.

    Science.gov (United States)

    Ekberg, Christian; Löfström-Engdahl, Elin; Aneheim, Emma; Foreman, Mark R StJ; Geist, Andreas; Lundberg, Daniel; Denecke, Melissa; Persson, Ingmar

    2015-11-14

    Separation of trivalent actinoid (An(iii)) and lanthanoid (Ln(iii)) ions is extremely challenging due to their similar ionic radii and chemical properties. Poly-aromatic nitrogen compounds acting as tetradentate chelating ligands to the metal ions in the extraction, have the ability to sufficiently separate An(iii) from Ln(iii). One of these compounds, 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzol[1,2,4]triazin-3-yl)[2,2]bipyridine, CyMe4-BTBP, has proven to be resistant towards acidic environments and strong radiation from radioactive decomposition. EXAFS studies of the dicomplexes of CyMe4-BTBP with americium(iii) and europium(iii) in nitrobenzene, cyclohexanone, 1-hexanol, 1-octanol and malonamide (DMDOHEMA) in 1-octanol have been carried out to get a deeper understanding of the parameters responsible for the separation. The predominating complexes independent of solvent used are [Am(CyMe4-BTBP)2(NO3)](2+) and [Eu(CyMe4-BTBP)2](3+), respectively, which are present as outer-sphere ion-pairs with nitrate ions in the studied solvents with low relative permittivity. The presence of a nitrate ion in the first coordination sphere of the americium(iii) complex compensates the charge density of the complex considerably in comparison when only outer-sphere ion-pairs are formed as for the [Eu(CyMe4-BTBP)2](3+) complex. The stability and solubility of a complex in a solvent with low relative permittivity increase with decreasing charge density. The [Am(CyMe4-BTBP)2(NO3)](2+) complex will therefore be increasingly soluble and stabilized over the [Eu(CyMe4-BTBP)2](3+) complex in solvents with decreasing relative permittivity of the solvent. The separation of americium(iii) from europium(iii) with CyMe4-BTBP as extraction agent will increase with decreasing relative permittivity of the solvent, and thereby also with decreasing solubility of CyMe4-BTBP. The choice of solvent is therefore a balance of a high separation factor and sufficient solubility of the CyMe4-BTBP

  3. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xin; Szymanski, Craig J.; Wang, Zhaoying; Zhou, Yufan; Ma, Xiang; Yu, Jiachao; Evans, James E.; Orr, Galya; Liu, Songqin; Zhu, Zihua; Yu, Xiao-Ying

    2016-05-15

    Chemical imaging of single cells is important in capturing biological dynamics. Single cell correlative imaging is realized between structured illumination microscopy (SIM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) using System for Analysis at the Liquid Vacuum Interface (SALVI), a multimodal microreactor. SIM characterized cells and guided subsequent ToF-SIMS analysis. Dynamic ToF-SIMS provided time- and space-resolved cell molecular mapping. Lipid fragments were identified in the hydrated cell membrane. Principal component analysis was used to elucidate chemical component differences among mouse lung cells that uptake zinc oxide nanoparticles. Our results provided submicron chemical spatial mapping for investigations of cell dynamics at the molecular level.

  4. Copper Silicate Hydrate Hollow Spheres Constructed by Nanotubes Encapsulated in Reduced Graphene Oxide as Long-Life Lithium-Ion Battery Anode.

    Science.gov (United States)

    Wei, Xiujuan; Tang, Chunjuan; Wang, Xuanpeng; Zhou, Liang; Wei, Qiulong; Yan, Mengyu; Sheng, Jinzhi; Hu, Ping; Wang, Bolun; Mai, Liqiang

    2015-12-09

    Hierarchical copper silicate hydrate hollow spheres-reduced graphene oxide (RGO) composite is successfully fabricated by a facile hydrothermal method using silica as in situ sacrificing template. The electrochemical performance of the composite as lithium-ion battery anode was studied for the first time. Benefiting from the synergistic effect of the hierarchical hollow structure and conductive RGO matrix, the composite exhibits excellent long-life performance and rate capability. A capacity of 890 mAh/g is achieved after 200 cycles at 200 mA/g and a capacity of 429 mAh/g is retained after 800 cycles at 1000 mA/g. The results indicate that the strategy of combining hierarchical hollow structures with conductive RGO holds the potential in addressing the volume expansion issue of high capacity anode materials.

  5. OFF-ON-OFF Dual Emission at Visible and UV Wavelengths from Carbazole Functionalized β-Diketonate Europium(III) Complex.

    Science.gov (United States)

    Imai, Yuki; Kawai, Tsuyoshi; Yuasa, Junpei

    2016-06-23

    This work demonstrates dual emission "OFF-ON-OFF" switching at visible and UV wavelengths of a carbazole functionalized β-diketone (LH) by a simple change of a europium(III) ion (Eu(3+)) concentration in the submicromolar concentration range. In the presence of 0.25 equiv of Eu(3+) (5 μM), LH forms a luminescent 4:1 complex ([Eu(3+)(L(-))4](-)) exhibiting dual emission at 357 and 613 nm resulting from the local excitation of the carbazole ring and ligand-sensitized luminescence from the Eu(3+)-β-diketonate unit, respectively. The 4:1 complex begins to convert into a 2:1 complex ([Eu(3+)(L(-))2](+)) via a 3:1 complex [Eu(3+)(L(-))3] above a molar ratio ([Eu(3+)]/[LH]) of 0.25, which provides the opportunity for binding of solvent methanol molecules to the vacant site of the Eu(3+) ion in the complex ([Eu(3+)(L(-))2(MeOH)n](+)). The OH oscillators of coordinated methanol molecules facilitate the nonradiative pathway of the Eu(3+) emission; hence the emission at 613 nm almost disappears above the 0.50 equivalent of Eu(3+) (11 μM), while the UV emission at 357 nm remains mostly constant over the whole concentration range.

  6. Dielectric saturation of the ion hydration shell and interaction between two double helices of DNA in mono- and multivalent electrolyte solutions: foundations of the epsilon-modified Poisson-Boltzmann theory.

    Science.gov (United States)

    Gavryushov, Sergei

    2007-05-17

    Potentials of mean force between single Na+, Ca2+, and Mg2+ cations and a highly charged spherical macroion in SPC/E water have been determined using molecular dynamics simulations. Results are compared to the electrostatic energy calculations for the primitive polarization model (PPM) of hydrated cations describing the ion hydration shell as a dielectric sphere of low permittivity (Gavryushov, S.; Linse, P. J. Phys. Chem. B 2003, 107, 7135). Parameters of the ion dielectric sphere and radius of the macroion/water dielectric boundary were extracted by means of this comparison to approximate the short-range repulsion of ions near the interface. To explore the counterion distributions around a simplified model of DNA, the obtained PPM parameters for Na+ and Ca2+ have been substituted into the modified Poisson-Boltzmann (MPB) equations derived for the PPM and named the epsilon-MPB (epsilon-MPB) theory. epsilon-MPB results for DNA suggest that such polarization effects are important in the case of 2:1 electrolyte and highly charged macromolecules. The three-dimensional implementation of the epsilon-MPB theory was also applied to calculation of the energies of interaction between two parallel macromolecules of DNA in solutions of NaCl and CaCl2. Being compared to results of MPB calculations without the ion polarization effects, it suggests that the ion hydration shell polarization and inhomogeneous solvent permittivity might be essential factors in the experimentally known hydration forces acting between charged macromolecules and bilayers at separations of less than 20 A between their surfaces.

  7. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    and the role it plays in the global climate and the future of fuels. Russia, Japan, Nigeria, Peru, Chile, Pakistan, Indonesia, Korea, etc are various countries who are perusing the gas hydrates studies as a future resource for fuel. Indian Initiative..., 1993, Free gas at the base of the gas hydrate zone in the vicinity of the Chile Triple junction: Geology, v. 21, pp. 905-908. Borowski, W.S., C.K. Paull, and U. William, III, 1999, Global and local variations of interstitial sulfate gradients...

  8. Magnetic Interactions in the Copper Complex (L-Aspartato)(1,10-phenanthroline)copper(II) Hydrate. An Exchange-Coupled Extended System with Two Dissimilar Copper Ions.

    Science.gov (United States)

    Brondino, Carlos D.; Calvo, Rafael; Atria, Ana María; Spodine, Evgenia; Nascimento, Otaciro R.; Peña, Octavio

    1997-07-02

    We report EPR measurements in single-crystal samples at the microwave frequencies 9.8 and 34.3 GHz and magnetic susceptibility measurements in polycrystalline samples for the ternary complex of copper with aspartic acid and phenanthroline, (L-aspartato)(1,10-phenanthroline)copper(II) hydrate. The crystal lattice of this compound is composed of two dissimilar copper ions identified as Cu(A) and Cu(B), which are in two types of copper chains called A and B, respectively, running parallel to the b crystal axis. The copper ions in the A chains are connected by the aspartic acid molecule, and those in the B chains by a chemical path that involves a carboxylate bridge and a hydrogen bond. Both chains are held together by a complex network of hydrogen bonds and by hydrophobic interactions between aromatic amines. Magnetic susceptibility data indicate a Curie-Weiss behavior in the studied temperature range (2-300 K). The EPR spectra at 9.8 GHz display a single exchange collapsed resonance for any magnetic field orientation, in the so-called strong exchange regime. Those at 34.3 GHz are within the so-called weak exchange regime and display two resonances which belong to each type of copper ion chain. The decoupling of the spectra at 34.3 GHz using a theory based on Anderson's model for the case of two weakly exchange coupled spins S = (1)/(2) allows one to obtain the angular variation of the squares of the g-factor and the peak-to-peak line width of each resonance. This model also allows one to evaluate the exchange parameter |J(AB)/k| = 2.7(6) mK associated with the chemical path connecting dissimilar copper ions. The line width data obtained for each component of the spectra at 34.3 GHz are analyzed in terms of a model based on Kubo and Tomita's theory, to obtain the exchange parameters |J(A)/k| = 0.77(2) K and |J(B)/k| = 1.44(2) K associated with the chemical paths connecting the similar copper ions of types A and B, respectively.

  9. Vibrational echo spectral observables and frequency fluctuations of hydration shell water around a fluoride ion from first principles simulations

    Indian Academy of Sciences (India)

    DEEPAK OJHA; AMALENDU CHANDRA

    2017-07-01

    Aqueous solution of a fluoride ion at 300K is studied using the method of ab initio molecular dynamics simulation. Instantaneous fluctuations in vibrational frequencies of local OD stretch modes of deuterated water are calculated using a time-series analysis of the simulated trajectory. The vibrational spectraldiffusion of OD modes in the first and second solvation shells and also in bulk of the aqueous fluoride ionic solution are studied through calculations of the frequency time correlation function (FTCF), joint probability distributions, slope of three pulse photon echo (S3PE) and two dimensional infrared spectrum (2D-IR). The vibrational spectral dynamics in the first solvation shell shows decay with three components which can be correlated with the dynamics of intact ion-water hydrogen bonds, ion-water hydrogen bond lifetime and the escape dynamics of water molecules from the solvation shell. The vibrational spectral diffusion of OD modes in the second solvation shell and in the bulk show very similar decay behavior. The timescales obtained from FTCF, S3PE and the slope of nodal line (SNL) of 2D-IR are found to be in reasonable agreement with each others.

  10. Study of the action of phosphate ions contained in the mixing water on the hydration of a Portland cement; Etude de l'action des phosphates presents dans l'eau de gachage sur l'hydratation d'un ciment Portland

    Energy Technology Data Exchange (ETDEWEB)

    Benard, Ph

    2005-12-15

    Cementation is considered as the most attractive solution for the conditioning of low and intermediate radioactive wastes. The species contained in these wastes can strongly influence the reactivity of the cement pastes, it is in particular the case of the ortho-phosphate ions which are found in the evaporation concentrates. The aim of our work was to determine the influence of these ions on the hydration and the rheological properties of the cement pastes at early age as well as the mechanical and physical properties on the hardened material. (author)

  11. Obsidian Hydration: A New Paleothermometer

    Energy Technology Data Exchange (ETDEWEB)

    Anovitz, Lawrence {Larry} M [ORNL; Riciputi, Lee R [ORNL; Cole, David R [ORNL; Fayek, Mostafa [ORNL; Elam, J. Michael [University of Tennessee, Knoxville (UTK)

    2006-01-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  12. Obsidian hydration: A new paleothermometer

    Science.gov (United States)

    Anovitz, Lawrence M.; Riciputi, Lee R.; Cole, David R.; Fayek, Mostafa; Elam, J. Michael

    2006-07-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  13. 人工神经网络应用于金属离子水化能的研究%Study on the Hydration Energy of Metal Ions by Using Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    杨兴华; 印春生; 蔡文生; 李伟; 潘忠孝

    2000-01-01

      采用函数连接型神经网络(FLN),以金属离子的电荷、半径、价电子结构、电负性及空价轨道数NE为输入参数,与51种已知金属离子水化能数据进行了定量关联,并用所建立的非线性FLN模型对32种金属离子的未知水化能作出了预报。%  Functional-link net (FLN), a single-layer neural network without the hidden neurons, is employed to estimate and predict the hydration energy of metallic ions, by using a set of atomic structural parameters, such as electric charges (Z), ionic radii (r), electron numbers in the valence layer (f, d, s), principal quantum numbers in the outer-shell (n), electronegativity (XP), and the number of s, p, d empty orbits in valence shell of the metallic ions(NE). The results obtained show a good relationship between the calculated and experimental hydration energy data with a fitting correlation coefficient 0.9995. Hydration energy data of 32 metallic ions lake of experimental data are predicted effectively with the trained FLN.

  14. The investigation of structure and IR spectra for hydrated potassium ion clusters K+(H2O)n=1-16 by density functional theory*

    Science.gov (United States)

    Zhu, Fayan; Zhou, Hongxia; Zhou, Yongquan; Miao, Juntao; Fang, Chunhui; Fang, Yan; Sun, Pengchao; Ge, Haiwen; Liu, Hongyan

    2016-11-01

    The hydration of K+(H2O)n has been widely studied and believe to be important for understanding solvent properties in biological and chemical systems. However, understanding the structure and the spectrum information K+(H2O)n with changing n is limited. Here, we investigated the clusters K+(H2O)n=1-16 and further studied the IR spectrums of the most stable clusters with density functional theory. The configuration, bond length, vibration frequency were given out. It shows that K+(H2O)8(H2O)n, a distorted square antiprism in inner layer, is the main configuration with hydration distance rK - OI 0.296 nm when the hydration number n is bigger than 8. The saturated hydration number is 8 in the first hydration layer and the water molecules of the second hydration sphere have little effect on the inner ones when n> 8. A detailed classification about the hydrated water molecules was made according to the role of acceptor or donor hydrogen bonding in clusters. The vibration frequency of the different kinds of water molecules were also detailly identified. The results are valuable for further determination of the K+(H2O)n clusters in aqueous solutions. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-60529-7

  15. Improved methods for Feynman path integral calculations of vibrational-rotational free energies and application to isotopic fractionation of hydrated chloride ions.

    Science.gov (United States)

    Mielke, Steven L; Truhlar, Donald G

    2009-04-23

    We present two enhancements to our methods for calculating vibrational-rotational free energies by Feynman path integrals, namely, a sequential sectioning scheme for efficiently generating random free-particle paths and a stratified sampling scheme that uses the energy of the path centroids. These improved methods are used with three interaction potentials to calculate equilibrium constants for the fractionation behavior of Cl(-) hydration in the presence of a gas-phase mixture of H(2)O, D(2)O, and HDO. Ion cyclotron resonance experiments indicate that the equilibrium constant, K(eq), for the reaction Cl(H(2)O)(-) + D(2)O right harpoon over left harpoon Cl(D(2)O)(-) + H(2)O is 0.76, whereas the three theoretical predictions are 0.946, 0.979, and 1.20. Similarly, the experimental K(eq) for the Cl(H(2)O)(-) + HDO right harpoon over left harpoon Cl(HDO)(-) + H(2)O reaction is 0.64 as compared to theoretical values of 0.972, 0.998, and 1.10. Although Cl(H(2)O)(-) has a large degree of anharmonicity, K(eq) values calculated with the harmonic oscillator rigid rotator (HORR) approximation agree with the accurate treatment to within better than 2% in all cases. Results of a variety of electronic structure calculations, including coupled cluster and multireference configuration interaction calculations, with either the HORR approximation or with anharmonicity estimated via second-order vibrational perturbation theory, all agree well with the equilibrium constants obtained from the analytical surfaces.

  16. Effect of lead ion on the hydration of compound phosphate based magnesium phosphate cement%铅离子对复合磷酸盐磷酸镁水泥水化硬化特性的影响∗

    Institute of Scientific and Technical Information of China (English)

    石军兵; 赖振宇; 卢忠远; 黄陈程; 廖其龙

    2015-01-01

    In this paper,the effect of lead ion on the hydration of compound phosphate based magnesium phos-phate cement and its leaching properties was studied.The results show that the compressive strength of com-pound phosphate based magnesium phosphate cement decrease with the increase of lead ion content.High con-tent of lead ion has no significant effect on the setting time of magnesium phosphate cement.During the hydra-tion of compound phosphate based magnesium phosphate cement,lead ion has no significant effect on the pH of the system,but the hydration exothermic peak is delayed by lead ion adding.The lead ion also reduced the amount of hydration heat and affected the degree of crystallization of the main hydration products.In the late hydration reaction of composite magnesium phosphate cement,when the content of lead nitrate is 10% or more the obvious Pb2 P2 O7 diffraction peak can be found.The leaching toxicity of lead ion is 43μg/L and it is lower than the national standard.%研究了铅离子对复合磷酸盐磷酸镁水泥水化硬化特性的影响及其在复合磷酸盐磷酸镁水泥中的稳定性。实验结果表明,复合磷酸盐磷酸镁水泥抗压强度随着铅离子掺量的增加而降低,其中硝酸铅掺量达到10%时,复合磷酸盐磷酸镁水泥的各个龄期的抗压强度发生明显下降。铅离子对复合磷酸盐磷酸镁水泥凝结时间没有明显影响。在复合磷酸盐磷酸镁水泥水化过程中,铅离子对水泥体系的 pH 值影响不大,但能够造成水泥水化放热峰出现的时间延迟,水化放热的总量减少并影响主要水化产物的结晶程度。在复合磷酸盐磷酸镁水泥水化反应后期,当硝酸铅掺量达到10%以上时,在水化产物中出现了较为明显的 Pb2 P2 O7的衍射峰。复合磷酸盐磷酸镁水泥固化铅离子的浸出毒性试验结果(43μg/L)远低于国家标准要求(5 mg/L)。

  17. Mutual separation of americium(III) and europium(III) using glycolamic acid and thioglycolamic acid

    Energy Technology Data Exchange (ETDEWEB)

    Suneesh, A.S.; Venkatesan, K.A.; Syamala, K.V.; Antony, M.P.; Vasudeva Rao, P.R. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Fuel Chemistry Div.

    2012-07-01

    The extractants, bis(2-ethylhexyl)diglycolamicacid (HDEHDGA) and bis(2-ethylhexy)thiodiglycolamic acid (HDEHSDGA) were synthesized and characterized by {sup 1}H and {sup 13}C NMR, mass and IR spectroscopy. The extraction behaviour of {sup (152+154})Eu(III) and {sup 241}Am(III) from nitric acid medium by a solution of HDEHDGA (or HDEHSDGA) in n-dodecane (n-DD) was studied for the mutual separation of actinides and lanthanides. The effect of various parameters such as the pH, concentrations of HDEHDGA, HDEHSDGA, sodium nitrate, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) and diethylenetriaminepentaacetic acid (DTPA) on the separation factor (SF) of americium(III) over europium(III) and vice versa was studied, and the conditions needed for the preferential separation were optimised. The results show that HDEHDGA exhibits higher extraction for {sup (152+154)}Eu(III) and HDEHSDGA shows the superior selectivity for {sup 241}Am(III). (orig.)

  18. Europium(III) chelate-dyed nanoparticles as donors in a homogeneous proximity-based immunoassay for estradiol

    Energy Technology Data Exchange (ETDEWEB)

    Kokko, Leena; Sandberg, Kaisa; Loevgren, Timo; Soukka, Tero

    2004-02-09

    Nanoparticles containing thousands of fluorescent europium(III) chelates have a very high specific activity compared to traditional lanthanide chelate labels. It can be assumed that if these particles are used in a homogeneous assay as donors, multiple chelates can excite a single acceptor in turns and the energy transfer to the acceptor is increased. The principle was employed in an immunoassay using luminescent resonance energy transfer from a long lifetime europium(III) chelate-dyed nanoparticle to a short lifetime, near-infrared fluorescent molecule. Due to energy transfer fluorescence lifetime of the sensitised emission was prolonged and fluorescence could be measured using a time-resolved detection. A competitive homogeneous immunoassay for estradiol was created using 92 nm europium(III) chelate-dyed nanoparticle coated with 17{beta}-estradiol specific recombinant antibody Fab fragments as a donor and estradiol conjugated with near-infrared dye AlexaFluor 680 as an acceptor. The density of Fab fragments on the surface of the particle influenced the sensitivity of the immunoassay. The optimal Fab density was reached when the entire surface of the particle participated in the energy transfer, but the areas where the energy was transferred to a single acceptor, did not overlap. We were able to detect estradiol concentrations down to 70 pmol l{sup -1} (3xSD of a standard containing 0 nmol l{sup -1} of E2) using a 96-well platform. In this study we demonstrated that nanoparticles containing lanthanide chelates could be used as efficient donors in homogeneous assays.

  19. Highly specific ''sensing'' of tryptophan by a luminescent europium(III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Stubenrauch, Jan A.; Mevissen, Christian; Schulte, Marie F.; Bochenek, Steffen; Albrecht, Markus [RWTH Univ. Aachen (Germany). Inst. fuer Organische Chemie; Subramanian, Palani S. [Central Salt and Marine Chemicals, Research Institute (CSRI), Gujarat (India)

    2016-07-01

    The europium(III) complex 1-Cl{sub 3} (S,S-2,2{sup '}-(((1,10-phenanthroline-2,9-diyl)bis(methanylylidene))bis (azanylyliden e))bis(3-methylbutanamide)europiumtrichloride) undergoes, only in the presence of the amino acid tryptophan, a change of emission at 615 nm. In the presence of few equivalents of tryptophan, emission of the europium complex is enhanced while it disappears upon addition of large amounts. This behavior can be assigned to displacement of the sensitizing phenanthroline ligand of 1-Cl{sub 2} x Trp in the latter case.

  20. Exceptional Oxygen Sensing Properties of New Blue Light-Excitable Highly Luminescent Europium(III) and Gadolinium(III) Complexes

    OpenAIRE

    Borisov, Sergey M.; Fischer, Roland; Saf, Robert; Klimant, Ingo

    2014-01-01

    New europium(III) and gadolinium(III) complexes bearing 8-hydroxyphenalenone antenna combine efficient absorption in the blue part of the spectrum and strong emission in polymers at room temperature. The Eu(III) complexes show characteristic red luminescence whereas the Gd(III) dyes are strongly phosphorescent. The luminescence quantum yields are about 20% for the Eu(III) complexes and 50% for the Gd(III) dyes. In contrast to most state-of-the-art Eu(III) complexes the new dyes are quenched v...

  1. Clathrate hydrates in nature.

    Science.gov (United States)

    Hester, Keith C; Brewer, Peter G

    2009-01-01

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO2. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves.

  2. Sorption behavior of europium(III) and curium(III) on the cell surfaces of microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, T.; Kimura, T.; Ohnuki, T.; Yoshida, Z. [Advanced Science Research Center, Japan Atomic Energy Research Inst., Ibaraki (Japan); Gillow, J.B.; Francis, A.J. [Environmental Sciences Dept., Brookhaven National Lab., Upton, NY (United States)

    2004-07-01

    We investigated the association of europium(III) and curium(III) with the microorganisms Chlorella vulgaris, Bacillus subtilis, Pseudomonas fluorescens, Halomonas sp., Halobacterium salinarum, and Halobacterium halobium. We determined the kinetics and distribution coefficients (K{sub d}) for Eu(III) and Cm(III) sorption at pH 3-5 by batch experiments, and evaluated the number of water molecules in the inner-sphere (N{sub H{sub 2}O}) and the degree of strength of ligand field (R{sub E/M}) for Eu(III) by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Exudates from C. vulgaris, Halomonas sp., and H. halobium had an affinity for Eu(III) and Cm(III). The log K{sub d} of Eu(III) and Cm(III) showed that their sorption was not fully due to the exchange with three protons on the functional groups on cell surfaces. The halophilic microorganisms (Halomonas sp., Halobacterium salinarum, H. halobium) showed almost no pH dependence in log K{sub d}, indicating that an exchange with Na{sup +} on the functional groups was involved in their sorption. The {delta}N{sub H{sub 2}O} (= 9 - N{sub H{sub 2}O}) for Eu(III) on C. vulgaris was 1-3, while that for the other microorganisms was over 3, demonstrating that the coordination of Eu(III) with C. vulgaris was predominantly an outer-spherical process. The R{sub E/M} for Eu(III) on halophilic microorganisms was 2.5-5, while that for non-halophilic ones was 1-2.5. This finding suggests that the coordination environment of Eu(III) on the halophilic microorganisms is more complicated than that on the other three non-halophilic ones. (orig.)

  3. Characterization of the lanthanum(III) and europium(III) trichloroacetate complexes extracted with 18-crown-6

    Energy Technology Data Exchange (ETDEWEB)

    Imura, H.; Saito, Y.; Ohashi, K. [Ibaraki Univ., Mito (Japan); Meguro, Y.; Yoshida, Z. [Japan Atomic Energy Research Inst., Tokai (Japan); Choppin, G.R. [Florida State Univ., Tallahassee, FL (United States)

    1996-08-01

    Extraction of lanthanide(III) ions with 18-crown-6 (18C6) and trichloroacetate (tca) has been studied. The composition, hydration, and structure of the La(III) and Eu(III) complexes extracted into 1,2-dichloroethane were investigated by using several methods such as the liquid-liquid distribution technique, conductimetry, Karl Fisher titration, laser luminescence spectroscopy, and {sup 1}H NMR. The La(III) complex was found to be a monohydrate, La(tca){sub 3}(18C6)(H{sub 2}O), while that of Eu(III) was a mixture of a monohydrate and a dihydrate, i.e., Eu(tca){sub 3}(18C6)(H{sub 2}O) and Eu(tca){sub 3}(18C6)(H{sub 2}O){sub 2}. The origin of the selectivity by 18C6 which gives much higher extractability of La(III) than of Eu(III) is explained by considering the hydration and probable structure of their complexes. 12 refs., 5 figs., 4 tabs.

  4. Luminescence properties of composites made of a europium(III) complex and electroluminescent polymers with different energy gaps

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Jorge [Instituto de Telecomunicacoes, Av. Rovisco Pais, P-1049-001 Lisbon (Portugal); Charas, Ana [Instituto de Telecomunicacoes, Av. Rovisco Pais, P-1049-001 Lisbon (Portugal); Fernandes, Jose A [Departamento de Quimica and CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Goncalves, Isabel S [Departamento de Quimica and CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Carlos, Luis D [Departamento de Fisica and CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Alcacer, Luis [Instituto de Telecomunicacoes, Av. Rovisco Pais, P-1049-001 Lisbon (Portugal)

    2006-08-21

    We present the optoelectronic properties of composites made of a europium(III) complex, Eu(NTA){sub 3} phen (where NTA=1-(2-naphthoyl)-3,3,3-trifluoroacetonate; phen=1,10-phenantroline), dispersed in three electroluminescent polymers, namely, poly(N-vinylcarbazole), poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-alt-benzothiadiazole). We find that the photo- and electroluminescence (EL) properties of these composites are well rationalized in terms of the relative position of the frontier levels of the host polymers and of the europium complex. We find also that charge recombination at the europium complex sites plays a key role on the EL properties of the composites.

  5. Hydration of Acetylene: A 125th Anniversary

    Science.gov (United States)

    Ponomarev, Dmitry A.; Shevchenko, Sergey M.

    2007-01-01

    The year 2006 is the 125th anniversary of a chemical reaction, the discovery of which by Mikhail Kucherov had a profound effect on the development of industrial chemistry in the 19-20th centuries. This was the hydration of alkynes catalyzed by mercury ions that made possible industrial production of acetaldehyde from acetylene. Historical…

  6. Characterization of the primary hydration shell of the hydroxide ion with H2 tagging vibrational spectroscopy of the OH- ṡ (H2O)n=2,3 and OD- ṡ (D2O)n=2,3 clusters

    Science.gov (United States)

    Gorlova, Olga; DePalma, Joseph W.; Wolke, Conrad T.; Brathwaite, Antonio; Odbadrakh, Tuguldur T.; Jordan, Kenneth D.; McCoy, Anne B.; Johnson, Mark A.

    2016-10-01

    We report the isotope-dependent vibrational predissociation spectra of the H2-tagged OH- ṡ (H2O)n=2,3 clusters, from which we determine the strongly coordination-dependent energies of the fundamentals due to the OH groups bound to the ion and the intramolecular bending modes of the water molecules. The HOH bending fundamental is completely missing in the delocalized OH- ṡ (H2O) binary complex but is recovered upon adding the second water molecule, thereby establishing that the dihydrate behaves as a hydroxide ion solvated by two essentially intact water molecules. The energies of the observed OH stretches are in good agreement with the values predicted by Takahashi and co-workers [Phys. Chem. Chem. Phys. 17, 25505 (2015); 15, 114 (2013)] with a theoretical model that treats the strong anharmonicities at play in this system with explicit coupling between the bound OH groups and the O-O stretching modes on an extended potential energy surface. We highlight a surprising similarity between the spectral signatures of OH- ṡ (H2O)3 and the excess proton analogue, H3O+ ṡ (H2O)3, both of which correspond to completed hydration shells around the proton defect. We discuss the origin of the extreme solvatochromicity displayed by both OH- and H+ in the context of the anomalously large "proton polarizabilities" of the H5O2+ and H3O2- binary complexes.

  7. Airway Hydration and COPD

    Science.gov (United States)

    Ghosh, Arunava; Boucher, R.C.; Tarran, Robert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443

  8. Differential stability of 2'F-ANA*RNA and ANA*RNA hybrid duplexes: roles of structure, pseudohydrogen bonding, hydration, ion uptake and flexibility.

    Science.gov (United States)

    Watts, Jonathan K; Martín-Pintado, Nerea; Gómez-Pinto, Irene; Schwartzentruber, Jeremy; Portella, Guillem; Orozco, Modesto; González, Carlos; Damha, Masad J

    2010-04-01

    Hybrids of RNA with arabinonucleic acids 2'F-ANA and ANA have very similar structures but strikingly different thermal stabilities. We now present a thorough study combining NMR and other biophysical methods together with state-of-the-art theoretical calculations on a fully modified 10-mer hybrid duplex. Comparison between the solution structure of 2'F-ANA*RNA and ANA*RNA hybrids indicates that the increased binding affinity of 2'F-ANA is related to several subtle differences, most importantly a favorable pseudohydrogen bond (2'F-purine H8) which contrasts with unfavorable 2'-OH-nucleobase steric interactions in the case of ANA. While both 2'F-ANA and ANA strands maintained conformations in the southern/eastern sugar pucker range, the 2'F-ANA strand's structure was more compatible with the A-like structure of a hybrid duplex. No dramatic differences are found in terms of relative hydration for the two hybrids, but the ANA*RNA duplex showed lower uptake of counterions than its 2'F-ANA*RNA counterpart. Finally, while the two hybrid duplexes are of similar rigidities, 2'F-ANA single strands may be more suitably preorganized for duplex formation. Thus the dramatically increased stability of 2'F-ANA*RNA and ANA*RNA duplexes is caused by differences in at least four areas, of which structure and pseudohydrogen bonding are the most important.

  9. Hydration Assessment of Athletes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ KEY POINTS · Although there is no scientific consensus for 1 ) howbest to assess the hydration status of athletes, 2)what criteria to use as acceptable outcome measurements, or 3) the best time to apply practical assessment methods, there are methods that can be used toprovide athletes with useful feedback about their hydration status

  10. Multi-species Ionic Diffusion in Concrete with Account to Interaction Between Ions in the Pore Solution and the Cement Hydrates

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2007-01-01

    The penetration and leaching of ionic species in concrete are studied by using a model based on the Nernst-Planck equations. A finite element procedure is used to solve the coupled non-linear governing equations. A numerical example is performed in which the results are compared to measured...... electron probe micro analysis (EPMA) data. A close agreement of the simulated results to measured data is found for the specific studied example. The model includes the ionic species Cl-, Na+, OH-, Ca2+, K+ and SO42- and solid phases with variable composition. From the EPMA measurements the total...... results concerning the multi-species action during chloride penetration. In the model the chemical interaction between ions in solids and in pore solution is assumed governed by simple ion exchange processes only. The drawback using this approach is that the chemical part is lacking important physical...

  11. An efficient 2-linked carbazolyl β-diketonate europium(III) complex as red phosphor applied in LED

    Science.gov (United States)

    He, P.; Wang, H. H.; Liu, S. G.; Shi, J. X.; Gong, M. L.

    2010-06-01

    An efficient 2-linked carbazolyl β-diketonate europium(III) complex Eu(ETFMCTFBD)3phen was designed and synthesized, where ETFMCTFBD was 1-(9-ethyl-7-(trifluoromethyl)-9H-carbazol-2-yl)-4,4,4-trifluorobutane-1,3-dione and phen was 1,10-phenanthroline. Eu(ETFMCTFBD)3phen exhibits high thermal stability and excellent photoluminescence properties. The CIE chromaticity coordinates ( x=0.668, y=0.331) are close to the National Television Standard Committee (NTSC) standard values for red. The lowest triplet energy was measured and suggests the photoluminescence process as a ligand-sensitized luminescence process (antenna effect). A bright red light-emitting diode was fabricated by coating the complex phosphor onto a ˜395 nm-emitting InGaN chip. All the results indicate that Eu(ETFMCTFBD)3phen is a good candidate as a red component in the fabrication of white LEDs with a high color-rendering index.

  12. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  13. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    Science.gov (United States)

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    high calcium ion release early, which was maintained over the 28-day period as opposed to MTA Angelus, which demonstrated low early calcium ion release which increased as the material aged. The mineralogical composition of BioAggregate was different to MTA Angelus. As opposed to MTA Angelus, BioAggregate did not contain aluminium and contained additives such as calcium phosphate and silicon dioxide. As a consequence, BioAggregate reacted more slowly and formation of calcium hydroxide and leaching of calcium ions in solution were not evident as the material aged. The additives in BioAggregate modify the kinetics and the end products of hydration. Although newer generation tricalcium silicate-based materials contain similar constituents to MTA, they do not undergo the same setting reactions, and thus, their clinical performance will not be comparable to that of MTA.

  14. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  15. XPS of fast-frozen hematite colloids in NaCl aqueous solutions: I. Evidence for the formation of multiple layers of hydrated sodium and chloride ions induced by the {001} basal plane

    Energy Technology Data Exchange (ETDEWEB)

    Shchukarev, Andrei; Boily, Jean F.; Felmy, Andrew R.

    2007-12-13

    The influence of the {001} basal plane of hematite on the composition of fast-frozen centrifuged wet pastes of hematite prepared at pH 4 and 9 and at ionic strengths of 0, 10 and 100 mM NaCl was investigated by x-ray photoelectron spectroscopy. Two hematite preparations consisted of micrometer-sized platelets with 42% (HEM-1) and 95% (HEM-8) of the surface terminated by the {001} basal plane. A third preparation of spherical shape with no recognizable crystal plane (HEM-control) was used as a control to these experiments. All hematite samples responded to changes in pH and ionic strength, showing that acid/base reactions of surface hydroxyl groups control the composition of the paste. The HEM-1 and HEM-8 sample exhibited divergent properties at the highest ionic strength (100 mM) with energy loss features in the Na 1s and Cl 2p spectra and an important water content. As the spectra were typical of hydrated Na+ and Cl- ions and that the surface concentrations were unusually large, the HEM-1 and HEM-8 samples are proposed to induce the formation of a three-dimensional distribution of these ions in the paste. The sodium, chloride and water content was also correlated to the fraction of the {001} basal plane present in the sample and provided evidence for an approximate stochiometric Na:Cl:H2O ratio of 1:1:2. The {001} basal plane of hematite is consequently proposeD to be the cause of this feature.

  16. Hydration of Portland cement with additions of calcium sulfoaluminates

    Energy Technology Data Exchange (ETDEWEB)

    Le Saout, Gwenn, E-mail: gwenn.le-saout@mines-ales.fr [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Lothenbach, Barbara [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Hori, Akihiro [DENKA Chemicals GmbH, Wehrhahn-Center, Cantadorstr. 3, D-40211 Duesseldorf (Germany); Higuchi, Takayuki [Denki Kagaku Kogyo Kabushiki Kaisha (DENKA), Omi, Itoigawa, Niigata, 949-0393 (Japan); Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2013-01-15

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  17. Europium(III) interaction with a water-soluble extractant: From speciation to photodestruction

    Energy Technology Data Exchange (ETDEWEB)

    Beitz, J.V.

    1994-08-01

    The first spectroscopic study of metal ion-THFTCA (tetrahydrofuran-1, 2,3,4-tetracarboxylic acid) coordination is reported. Luminescence studies provide evidence for predominance of a complex containing 1 Eu(+3) ion and 2 THFTCA molecules in aqueous processing nuclear waste. Evidence that THFTCA coordinates, at least in part, via carboxylate groups was found in the Eu(3+) {sup 5}D{sub 1} state fluorescence decay rates. Direct photochemical destruction of THFTCA was demonstrated in the study of the influence of uv photolysis on THFTCA solutions; photolysis of THFTCA is promising for minimizing waste during solvent extraction of nuclear waste. Laser-induced fluoresence can provide near-real time monitoring of metal ion coordination in THFTCA solutions and photolysis of THFTCA and its metal ion complexes.

  18. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    Science.gov (United States)

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  19. Wet hydrate dissolution plant

    OpenAIRE

    Stanković Mirjana S.; Kovačević Branimir T.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with capacity of 50,000 t/y was manufactured, at "Zeolite Mira", Mira (VE), Italy, in 1997, for increasing detergent zeolite production from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate ...

  20. Influence des ions lithium et borate sur l'hydratation de ciments sulfo-alumineux : application au conditionnement de résines échangeuses d'ions boratées

    OpenAIRE

    2015-01-01

    In pressurized water reactors, a solution of boric acid, the pH of which is controlled by the addition of lithium hydroxide, is injected in the primary circuit. Boron acts as a neutron moderator and helps controlling the fission reactions. The primary coolant is purified by flowing through columns of ion exchange resins. These resins are periodically renewed and constitute a low-level radioactive waste. In addition to radionuclides, they mainly contain borate and lithium ions. They are curren...

  1. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    Science.gov (United States)

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  2. Theoretical and computational studies of hydrophobic and hydrophilic hydration: Towards a molecular description of the hydration of proteins

    Science.gov (United States)

    Garde, Shekhar

    The unique balance of forces underlying biological processes-such as protein folding, aggregation, molecular recognition, and the formation of biological membranes-owes its origin in large part to the surrounding aqueous medium. A quantitative description of fundamental noncovalent interactions, in particular hydrophobic and electrostatic interactions at molecular- scale separations, requires an accurate description of water structure. Thus, the primary goals of our research are to understand the role of water in mediating interactions between molecules and to incorporate this understanding into molecular theories for calculating water-mediated interactions. We have developed a molecular model of hydrophobic interactions that uses methods of information theory to relate hydrophobic effects to the density fluctuations in liquid water. This model provides a quantitative description of small-molecule hydration thermodynamics, as well as insights into the entropies of unfolding globular proteins. For larger molecular solutes, we relate the inhomogeneous water structure in their vicinity to their hydration thermodynamics. We find that the water structure in the vicinity of nonpolar solutes is only locally sensitive to the molecular details of the solute. Water structures predicted using this observation are used to study the association of two neopentane molecules and the conformational equilibria of n-pentane molecule. We have also studied the hydration of a model molecular ionic solute, a tetramethylammonium ion, over a wide range of charge states of the solute. We find that, although the charge dependence of the ion hydration free energy is quadratic, negative ions are more favorably hydrated compared to positive ions. Moreover, this asymmetry of hydration can be reconciled by considering the differences in water organization surrounding positive and negative ions. We have also developed methods for predicting water structure surrounding molecular ions and relating

  3. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  4. Luminescent Europium(III) Coordination Zippers Linked with Thiophene-Based Bridges.

    Science.gov (United States)

    Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Fushimi, Koji; Seki, Tomohiro; Ito, Hajime; Hasegawa, Yasuchika

    2016-09-19

    Novel Eu(III) coordination polymers [Eu(hfa)3 (dpt)]n (dpt: 2,5-bis(diphenylphosphoryl)thiophene) and [Eu(hfa)3 (dpedot)]n (dpedot: 2,5-bis(diphenylphosphoryl)ethylenedioxythiophene) with hydrogen-bonded zipper structures are reported. The coordination polymers are composed of Eu(III) ions, hexafluoroacetylacetonato ligands, and thiophene-based phosphine oxide bridges. The zig-zag orientation of single polymer chains induced the formation of densely packed coordination structures with multiple intermolecular interactions, resulting in thermal stability above 300 °C. They exhibit a high intrinsic emission quantum yield (ca. 80 %) due to their asymmetrical and low-vibrational coordination structures around Eu(III) ions. Furthermore, the characteristic alternative orientation of substituents also contributes to the dramatically high ligand-to-metal energy transfer efficiencies of up to 80 % in the solid state.

  5. Formation of porous gas hydrates

    CERN Document Server

    Salamatin, Andrey N

    2015-01-01

    Gas hydrates grown at gas-ice interfaces are examined by electron microscopy and found to have a submicron porous texture. Permeability of the intervening hydrate layers provides the connection between the two counterparts (gas and water molecules) of the clathration reaction and makes further hydrate formation possible. The study is focused on phenomenological description of principal stages and rate-limiting processes that control the kinetics of the porous gas hydrate crystal growth from ice powders. Although the detailed physical mechanisms involved in the porous hydrate formation still are not fully understood, the initial stage of hydrate film spreading over the ice surface should be distinguished from the subsequent stage which is presumably limited by the clathration reaction at the ice-hydrate interface and develops after the ice grain coating is finished. The model reveals a time dependence of the reaction degree essentially different from that when the rate-limiting step of the hydrate formation at...

  6. A spectroscopic screening of the chemical speciation of europium(III) in gastrointestinal tract. The intestine

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Claudia; Barkleit, Astrid [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements

    2016-07-01

    To evaluate the health risks of lanthanides (Ln) and radiotoxic actinides (An), investigations into the chemical reactions of these metals in the human gastrointestinal tract are necessary. In order to identify the dominant binding partners (i.e. counter ions and/or ligands) of An/Ln in the gastrointestinal tract, a spectroscopic screening was performed by Time-Resolved Laser-induced Fluorescence Spectroscopy (TRLFS) using artificial digestive juices containing Eu(III), a representative of Ln(III) and An(III). In the intestine, Eu(III) show a strong complexation especially with organic substances of the pancreatic and bile juice like the protein mucin.

  7. Complexation of europium(III) by organic extracts from Callovo-Oxfordian argillites

    Energy Technology Data Exchange (ETDEWEB)

    Brevet, L.; Grasset, L.; Ambles, A. [Univ. de Poitiers, Synthese et Reactivi te des Substances Naturelles, CNRS UMR 6514, 86022 Poitiers (France); Reiller, P.; Claret, F.; Amekraz, B.; Moulin, C. [CEA, CE Saclay, CEA/DEN/DANS/DPC/SECR, Labo ratoire de Speciation des Radionucleides et des Molecules, F-91191 Gif-sur-Yvette (France)

    2007-06-15

    The complexation behaviour of organic extracts obtained after acid alteration of Callovo-Oxfordian argillites toward europium (III) is studied in time resolved laser induced spectrofluorimetry. The presence of fluoride ions in one extract, originated from the dissolution of remaining silicates in HCl/HF, precludes the correct study. Nevertheless, the dialysis of the extract at 500 Da permits to obtain a clearer evolution of the complexation pattern. The fluorescence spectrum and decay are strikingly different the ones obtained on alkaline degradation products of the Callovo-Oxfordian argillite, and resemble more to a small organic molecule pattern.

  8. Efeito do íon comum na reação de hidratação do MgO Common-ion effect on the MgO hydration reaction

    Directory of Open Access Journals (Sweden)

    L. F. Amaral

    2008-03-01

    equilibrium shifting, known as common-ion effect, on the MgO hydration was evaluated adding several additives (MgCl2, MgSO4, CaCl2 e KOH. Among them, the CaCl2 delayed the reaction, whereas KOH showed opposite behavior. MgCl2 and MgSO4 presented similar results and both effects (reaction delay and speed up, depending of their concentration in suspensions. The possible explanation for these behaviors are discussed in this paper. The results were evaluated considering the kinetics and the thermodynamics of the reaction, and the mechanical damages caused in the materials.

  9. [Hydration in clinical practice].

    Science.gov (United States)

    Maristany, Cleofé Pérez-Portabella; Segurola Gurruchaga, Hegoi

    2011-01-01

    Water is an essential foundation for life, having both a regulatory and structural function. The former results from active and passive participation in all metabolic reactions, and its role in conserving and maintaining body temperature. Structurally speaking it is the major contributer to tissue mass, accounting for 60% of the basis of blood plasma, intracellular and intersticial fluid. Water is also part of the primary structures of life such as genetic material or proteins. Therefore, it is necessary that the nurse makes an early assessment of patients water needs to detect if there are signs of electrolyte imbalance. Dehydration can be a very serious problem, especially in children and the elderly. Dehydrations treatment with oral rehydration solution decreases the risk of developing hydration disorders, but even so, it is recommended to follow preventive measures to reduce the incidence and severity of dehydration. The key to having a proper hydration is prevention. Artificial nutrition encompasses the need for precise calculation of water needs in enteral nutrition as parenteral, so the nurse should be part of this process and use the tools for calculating the patient's requirements. All this helps to ensure an optimal nutritional status in patients at risk. Ethical dilemmas are becoming increasingly common in clinical practice. On the subject of artificial nutrition and hydration, there isn't yet any unanimous agreement regarding hydration as a basic care. It is necessary to take decisions in consensus with the health team, always thinking of the best interests of the patient.

  10. A Molecular Dynamic Simulation of Hydrated Proton Transfer in Perfluorosulfonate Ionomer Membranes (Nafion 117

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2015-01-01

    Full Text Available A molecular dynamic model based on Lennard-Jones Potential, the interaction force between two particles, molecular diffusion, and radial distribution function (RDF is presented. The diffusion of the hydrated ion, triggered by both Grotthuss and vehicle mechanisms, is used to study the proton transfer in Nafion 117. The hydrated ion transfer mechanisms and the effects of the temperature, the water content in the membrane, and the electric field on the diffusion of the hydrated ion are analyzed. The molecular dynamic simulation results are in good agreement with those reported in the literature. The modeling results show that when the water content in Nafion 117 is low, H3O+ is the main transfer ion among the different hydrated ions. However, at higher water content, the hydrated ion in the form of H+(H2O2 is the main transfer ion. It is also found that the negatively charged sulfonic acid group as the fortified point facilitates the proton transfer in Nafion 117 better than the free water molecule. The diffusion of the hydrated ion can be improved by increasing the cell temperature, the water content in Nafion, and the electric field intensity.

  11. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates

    Science.gov (United States)

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2008-01-01

    Using an oedometer cell instrumented to measure the evolution of electromagnetic properties, small strain stiffness, and temperature, we conducted consolidation tests on sediments recovered during drilling in the northern Gulf of Mexico at the Atwater Valley and Keathley Canyon sites as part of the 2005 Chevron Joint Industry Project on Methane Hydrates. The tested specimens include both unremolded specimens (as recovered from the original core liner) and remolded sediments both without gas hydrate and with pore fluid exchanged to attain 100% synthetic (tetrahydrofuran) hydrate saturation at any stage of loading. Test results demonstrate the extent to which the electromagnetic and mechanical properties of hydrate-bearing marine sediments are governed by the vertical effective stress, stress history, porosity, hydrate saturation, fabric, ionic concentration of the pore fluid, and temperature. We also show how permittivity and electrical conductivity data can be used to estimate the evolution of hydrate volume fraction during formation. The gradual evolution of geophysical properties during hydrate formation probably reflects the slow increase in ionic concentration in the pore fluid due to ion exclusion in closed systems and the gradual decrease in average pore size in which the hydrate forms. During hydrate formation, the increase in S-wave velocity is delayed with respect to the decrease in permittivity, consistent with hydrate formation on mineral surfaces and subsequent crystal growth toward the pore space. No significant decementation/debonding occurred in 100% THF hydrate-saturated sediments during unloading, hence the probability of sampling hydrate-bearing sediments without disturbing the original sediment fabric is greatest for samples in which the gas hydrate is primarily responsible for maintaining the sediment fabric and for which the time between core retrieval and restoration of in situ effective stress in the laboratory is minimized. In evaluating the

  12. Terminal group effects on the fluorescence spectra of europium(III) nitrate complexes with a family of amide-based 2,3-dihydroxynaphthalene derivatives

    Science.gov (United States)

    Lei, Ke-Wei; Liu, Wei-Sheng

    2006-09-01

    Three ligands 2,2'-[2,3-naphthylenebis(oxy)]-bis( N, N-diethyl(acetamide)) (L a), 2,2'-[2,3-naphthylenebis(oxy)]-bis( N, N-diisopropyl(acetamide)) (L b) and 2,2'-[2,3-naphthylenebis(oxy)]-bis( N, N-dibutyl(acetamide)) (L c) and their europium(III) nitrate complexes were synthesized. The complexes were characterized by elemental analysis, IR, fluorescence spectroscopy and conductivity. The europium atoms are coordinated by O-atoms from C dbnd O, Ar-O-C. With the difference of the ligands, the solid fluorescent intensities of the Eu complexes vary regularly. Some factors that influencing the fluorescent intensity were discussed.

  13. Complexation of lactate with neodymium(III) and europium(III) at variable temperatures: studies by potentiometry, microcalorimetry, optical absorption, and luminescence spectroscopy.

    Science.gov (United States)

    Tian, Guoxin; Martin, Leigh R; Rao, Linfeng

    2010-11-15

    The complexation of neodymium(III) and europium(III) with lactate was studied at variable temperatures by potentiometry, absorption spectrophotometry, luminescence spectroscopy, and microcalorimetry. The stability constants of three successive lactate complexes (ML(2+), ML(2)(+), and ML(3)(aq), where M stands for Nd and Eu and L stands for lactate) at 10, 25, 40, 55, and 70 °C were determined. The enthalpies of complexation at 25 °C were determined by microcalorimetry. Thermodynamic data show that the complexation of trivalent lanthanides (Nd(3+) and Eu(3+)) with lactate is exothermic and the complexation becomes weaker at higher temperatures. Results from optical absorption and luminescence spectroscopy suggest that the complexes are inner-sphere chelate complexes in which the protonated α-hydroxyl group of lactate participates in the complexation.

  14. Experimental and Theoretical Studies on the Structure and Photoluminescent Properties of New Mononuclear and Homodinuclear Europium(III β-Diketonate Complexes

    Directory of Open Access Journals (Sweden)

    João P. Martins

    2015-01-01

    Full Text Available Two novel europium(III complexes, a monomer and a homodimer, with 1-(4-chlorophenyl-4,4,4-trifluoro-1,3-butanedione (Hcbtfa and 5-chloro-1,10-phenanthroline (cphen ligands, formulated as [Eu(cbtfa3(cphen] and [Eu2(cbtfa4(cphen2(CH3O2], have been synthesized. Their structures have been elucidated by X-ray diffraction and their absorption and emission properties have been studied in the solid state. The experimental data has then been used to test the recently released LUMPAC software, a promising tool which can facilitate the design of more efficient lanthanide light-conversion molecular devices by combining ground state geometry, excited state energy, and luminescent properties calculations.

  15. Modeling Hydrates and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Weihua Wang

    2007-06-01

    Full Text Available Natural gas hydrates, as an important potential fuels, flow assurance hazards, and possible factors initiating the submarine geo-hazard and global climate change, have attracted the interest of scientists all over the world. After two centuries of hydrate research, a great amount of scientific data on gas hydrates has been accumulated. Therefore the means to manage, share, and exchange these data have become an urgent task. At present, metadata (Markup Language is recognized as one of the most efficient ways to facilitate data management, storage, integration, exchange, discovery and retrieval. Therefore the CODATA Gas Hydrate Data Task Group proposed and specified Gas Hydrate Markup Language (GHML as an extensible conceptual metadata model to characterize the features of data on gas hydrate. This article introduces the details of modeling portion of GHML.

  16. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  17. A study on gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byoung Jae; Jung, Tae Jin; Sunwoo, Don [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Sufficient documents were reviewed to understand solid components of water and gaseous hydrocarbon known as gas hydrates, which represent an important potential energy resource of the future. The review provides us with valuable information on crystal structures, kinetics, origin and distribution of gas hydrates. In addition, the review increased our knowledge of exploration and development methods of gas hydrates. Large amounts of methane, the principal component of natural gas, in the form of solid gas hydrate are found mainly offshore in outer continental margin sediment and, to a lesser extent, in polar regions commonly associated with permafrost. Natural gas hydrates are stable in some environments where the hydrostatic pressure exerted by overlying water column is sufficient for hydrate formation and stability. The required high pressures generally restrict gas hydrate to sediments beneath water of approximately 400 m. Higher sediment temperatures at greater subbottom depths destabilize gas hydrates. Based on the pressure- temperature condition, the outer continental margin of East Sea where water depth is deep enough to form gas hydrate is considered to have high potential of gas hydrate accumulations. (author). 56 refs., tabs., figs.

  18. Drilling Gas Hydrates on hydrate Ridge, Oregon continental margin

    Science.gov (United States)

    Trehu, A. M.; Bohrmann, G.; Leg 204 Science Party

    2002-12-01

    During Leg 204, we cored and logged 9 sites on the Oregon continental margin to determine the distribution and concentration of gas hydrates in an accretionary ridge and adjacent slope basin, investigate the mechanisms that transport methane and other gases into the gas hydrate stability zone (GHSZ), and obtain constraints on physical properties of hydrates in situ. A 3D seismic survey conducted in 2000 provided images of potential subsurface fluid conduits and indicated the position of the GHSZ throughout the survey region. After coring the first site, we acquired Logging-While-Drilling (LWD) data at all but one site to provide an overview of downhole physical properties. The LWD data confirmed the general position of key seismic stratigraphic horizons and yielded an initial estimate of hydrate concentration through the proxy of in situ electrical resistivity. These records proved to be of great value in planning subsequent coring. The second new hydrate proxy to be tested was infrared thermal imaging of cores on the catwalk as rapidly as possible after retrieval. The thermal images were used to identify hydrate samples and to estimate the distribution and texture of hydrate within the cores. Geochemical analyses of interstitial waters and of headspace and void gases provide additional information on the distribution and concentration of hydrate within the stability zone, the origin and pathway of fluids into and through the GHSZ, and the rates at which gas hydrate is forming. Bio- and lithostratigraphic description of cores, measurement of physical properties, and in situ pressure core sampling and thermal measurements complement the data set, providing ground-truth tests of inferred physical and sedimentological properties. Among the most interesting preliminary results are: 1) that gas hydrates are distributed through a broad depth range within the GHSZ and that different physical and chemical proxies for hydrate distribution and concentration give generally

  19. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  20. P-T stability conditions of methane hydrate in sediment from South China Sea

    Institute of Scientific and Technical Information of China (English)

    Shicai Sun; Yuguang Ye; Changling Liu; Fengkui Xiang; Yah Ma

    2011-01-01

    For reasonable assessment and safe exploitation of marine gas hydrate resource,it is important to determine the stability conditions of gas hydrates in marine sediment.In this paper,the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates,and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method.Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment,under any given pressure,is depressed by approximately -1.4 K relative to the pure water system.This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions.

  1. Gas-phase hydration thermochemistry of sodiated and potassiated nucleic acid bases.

    Science.gov (United States)

    Wincel, Henryk

    2012-09-01

    Hydration reactions of sodiated and potassiated nucleic acid bases (uracil, thymine, cytosine, and adenine) produced by electrospray have been studied in a gas phase using the pulsed ion-beam high-pressure mass spectrometer. The thermochemical properties, ΔH(o)(n), ΔS(o)(n), and ΔG(o)(n), for the hydrated systems were obtained from hydration equilibrium measurement. The structural aspects of the hydrated complexes are discussed in conjunction with available literature data. The correlation between water binding energies in the hydrated complexes and the corresponding metal ion affinities of nucleobases suggests that a significant (if not dominant) amount of the canonical structure of cytosine undergoes tautomerization during electrospray ionization, and the thermochemical values for cationized cytosine probably correspond to a mixture of tautomeric complexes.

  2. Hydration and hydrolysis of thorium(IV) in aqueous solution and the structures of two crystalline thorium(IV) hydrates.

    Science.gov (United States)

    Torapava, Natallia; Persson, Ingmar; Eriksson, Lars; Lundberg, Daniel

    2009-12-21

    Solid octaaqua(kappa(2)O-perchlorato)thorium(IV) perchlorate hydrate, [Th(H(2)O)(8)(ClO(4))](ClO(4))(3).H(2)O, 1, and aquaoxonium hexaaquatris(kappaO-trifluoromethanesulfonato)thorium(IV) trisaquahexakis(kappaO-trifluoromethanesulfonato)thorinate(IV), H(5)O(2)[Th(H(2)O)(6)(OSO(2)CF(3))(3)][Th(H(2)O)(3)(OSO(2)CF(3))(6)], 2, were crystallized from concentrated perchloric and trifluoromethanesulfonic acid solutions, respectively. 1 adopts a severely distorted tricapped trigonal prismatic configuration with an additional oxygen from the perchlorate ion at a longer distance. 2 consists of individual hexaaquatris(kappaO-trifluoromethanesulfonato)thorium(IV) and trisaquahexakis(kappaO-trifluoromethanesulfonato)thorinate(IV) ions and an aquaoxonium ion bridging these two ions through hydrogen bonding. The hydrated thorium(IV) ion is nine-coordinated in aqueous solution as determined by extended X-ray absorption fine structure (EXAFS) and large angle X-ray scattering (LAXS). The LAXS studies also showed a second hydration sphere of about 18 water molecules, and traces of a 3rd hydration sphere. Structural studies in aqueous solution of the hydrolysis products of thorium(IV) have identified three different types of hydrolysis species: a mu(2)O-hydroxo dimer, [Th(2)(OH)(2)(H(2)O)(12)](6+), a mu(2)O-hydroxo tetramer, [Th(4)(OH)(8)(H(2)O)(16)](8+), and a mu(3)O-oxo hexamer, [Th(6)O(8)(H(2)O)(n)](8+). Detailed structures of these three hydrolysis species are given. A compilation of reported solid state structures of actinoid(IV) compounds with oxygen donor ligands show a strong correlation between the An-O bond distance and the coordination number. The earlier reported U-O bond distance in the hydrated uranium(IV) ion in aqueous solution, confirmed in this study, is related to nine-coordination. The hydrated tri- and tetravalent actinoid ions in aqueous solution all seem to be nine-coordinated. The trivalent ions show a significant difference in bond distance to prismatic and

  3. The influence of SO2 and NO2 impurities on CO2 gas hydrate formation and stability.

    Science.gov (United States)

    Beeskow-Strauch, Bettina; Schicks, Judith M; Spangenberg, Erik; Erzinger, Jörg

    2011-04-11

    The sequestration of industrially emitted CO(2) in gas hydrate reservoirs has been recently discussed as an option to reduce atmospheric greenhouse gas. This CO(2) contains, despite much effort to clean it, traces of impurities such as SO(2) and NO(2) . Here, we present results of a pilot study on CO(2) hydrates contaminated with 1% SO(2) or 1% NO(2) and show the impact on hydrate formation and stability. Microscopic observations show similar hydrate formation rates, but an increase in hydrate stability in the presence of SO(2). Laser Raman spectroscopy indicates a strong enrichment of SO(2) in the liquid and hydrate phase and its incorporation in both large and small cages of the hydrate lattice. NO(2) is not verifiable by laser Raman spectroscopy, only the presence of nitrate ions could be confirmed. Differential scanning calorimetry analyses show that hydrate stability and dissociation enthalpy of mixed CO(2)-SO(2) hydrates increase, but that only negligible changes arise in the presence of NO(2) impurities. X-ray diffraction data reveal the formation of sI hydrate in all experiments. The conversion rates of ice+gas to hydrate increase in the presence of SO(2), but decrease in the presence of NO(2). After hydrate dissociation, SO(2) and NO(2) dissolved in water and form strong acids.

  4. Hydration and physical performance.

    Science.gov (United States)

    Murray, Bob

    2007-10-01

    There is a rich scientific literature regarding hydration status and physical function that began in the late 1800s, although the relationship was likely apparent centuries before that. A decrease in body water from normal levels (often referred to as dehydration or hypohydration) provokes changes in cardiovascular, thermoregulatory, metabolic, and central nervous function that become increasingly greater as dehydration worsens. Similarly, performance impairment often reported with modest dehydration (e.g., -2% body mass) is also exacerbated by greater fluid loss. Dehydration during physical activity in the heat provokes greater performance decrements than similar activity in cooler conditions, a difference thought to be due, at least in part, to greater cardiovascular and thermoregulatory strain associated with heat exposure. There is little doubt that performance during prolonged, continuous exercise in the heat is impaired by levels of dehydration >or= -2% body mass, and there is some evidence that lower levels of dehydration can also impair performance even during relatively short-duration, intermittent exercise. Although additional research is needed to more fully understand low-level dehydration's effects on physical performance, one can generalize that when performance is at stake, it is better to be well-hydrated than dehydrated. This generalization holds true in the occupational, military, and sports settings.

  5. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  6. Some thermodynamical aspects of protein hydration water

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Mallamace, Domenico [Dipartimento SASTAS, Università di Messina, I-98166 Messina (Italy); Vasi, Sebastiano [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Vasi, Cirino [CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  7. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  8. Animated molecular dynamics simulations of hydrated caesium-smectite interlayers

    Directory of Open Access Journals (Sweden)

    Sposito Garrison

    2002-09-01

    Full Text Available Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.

  9. Dependence of the osmotic coefficients and average ionic activity coefficients on hydrophobic hydration in solutions

    Science.gov (United States)

    Sergievskii, V. V.; Rudakov, A. M.

    2016-08-01

    The model that considers the nonideality of aqueous solutions of electrolytes with allowance for independent contributions of hydration of ions of various types and electrostatic interactions was substantiated using the cluster ion model. The empirical parameters in the model equations were found to be the hydrophilic and hydrophobic hydration numbers of ions in the standard state and the dispersion of their distribution over the stoichiometric coefficients. A mathematically adequate description of the concentration dependences of the osmotic coefficients and average ion activity coefficients of electrolytes was given for several systems. The difference in the rate of the decrease in the hydrophilic and hydrophobic hydration numbers of ions leads to extremum concentration dependences of the osmotic coefficients, which were determined by other authors from isopiestic data for many electrolytes and did not find explanation.

  10. Investigation on Gas Storage in Methane Hydrate

    Institute of Scientific and Technical Information of China (English)

    Zhigao Sun; Rongsheng Ma; Shuanshi Fan; Kaihua Guo; Ruzhu Wang

    2004-01-01

    The effect of additives (anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactant alkyl polysaccharide glycoside (APG), and liquid hydrocarbon cyclopentane (CP)) on hydrate induction time and formation rate, and storage capacity was studied in this work. Micelle surfactant solutions were found to reduce hydrate induction time, increase methane hydrate formation rate and improve methane storage capacity in hydrates. In the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation were reduced. The critical micelle concentrations of SDS and APG water solutions were found to be 300× 10-6 and 500× 10-6 for methane hydrate formation system respectively. The effect of anionic surfactant (SDS) on methane storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduced hydrate induction time and improved hydrate formation rate, but could not improve methane storage in hydrates.

  11. Controlled Energy Transfer from a Ligand to an Eu(III) Ion: A Unique Strategy To Obtain Bright-White-Light Emission and Its Versatile Applications.

    Science.gov (United States)

    Boddula, Rajamouli; Singh, Kasturi; Giri, Santanab; Vaidyanathan, Sivakumar

    2017-09-05

    A new diphenylamine-functionalized ancillary-ligand-coordinated europium(III) β-diketonate complex showed incomplete photoexcitation energy transfer from a ligand to a Eu(III) ion. A solvatochromism study led to a balancing of the primary colors to obtain single-molecule white-light emission. Thermal-sensing analysis of the europium complex was executed. The europium complex, conjugated with a near-UV-light-emitting diode (395 nm), showed appropriate white-light-emission CIE color coordinates (x = 0.34 and y = 0.33) with a 5152 K correlated color temperature.

  12. Hydrates fighting tools; Des outils de lutte contre les hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-04-01

    Shell Exploration and Production company (SEPCo) is the operator of the 'Popeye' deep offshore field in the Gulf of Mexico. Thanks to the introduction of a low dosing hydrates inhibitor (LDHI) elaborated by Shell Global Solutions, the company has added a 7.5 Gpc extra volume of gas to its recoverable reserves. This new technology avoids the plugging of pipes by hydrates formation. (J.S.)

  13. Luminescent properties of europium ions in CaAl{sub 2}SiO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Lemański, K.; Walerczyk, W.; Dereń, P.J., E-mail: P.Deren@int.pan.wroc.pl

    2016-07-05

    The CaAl{sub 2}SiO{sub 6} aluminosilicate nanocrystals doped with europium(II) and europium(III) ions have been synthesized using the sol–gel method. To obtain Eu{sup 2+} ions, samples were annealed in the reducing atmosphere. The XRD diffractograms, excitation and emission spectra, as well as the decay time profiles were measured and analyzed. Nanocrystals doped with Eu{sup 3+} ions possess sharp emission peaks, which are assigned to the {sup 5}D{sub 0} → {sup 7}F{sub J} transitions, where the most intensive is {sup 5}D{sub 0} → {sup 7}F{sub 2} luminescence. The decay curve of the europium(III) emission is single exponential. The asymmetry factor around the Eu{sup 3+} ions was calculated from the emission spectrum. CaAl{sub 2}SiO{sub 6} nanocrystallites containing Eu{sup 2+} ions possess the broad emission band in the visible range with maximum at 530 nm. Emission decay time of the 0.2% sample is equal 1.7 μs at 300 K and has multi exponential character. - Highlights: • The CaAl{sub 2}SiO{sub 6} nanocrystals doped with Eu were synthesized with the sol–gel method. • The CaAl{sub 2}SiO{sub 6}:Eu{sup 2+} nanocrystals possess the broad emission in the visible region. • Nanocrystals doped with Eu{sup 3+} ions have the sharp emission from the {sup 5}D{sub 0} level.

  14. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  15. Storing natural gas as frozen hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, J.S.; Khokhar, A.A. (Univ. of Trondheim (Norway)); Parlaktuna, M. (Middle East Technical Univ., Ankara (Turkey))

    1994-02-01

    The formation of natural gas hydrates is a well-known problem in the petroleum and natural gas industries. Hydrates are solid materials that form when liquid water and natural gas are brought in contact under pressure. Hydrate formation need not be a problem. On the contrary, it can be an advantage. The volume of hydrates is much less than that of natural gas. At standard conditions, hydrates occupy 150 to 170 times less volume than the corresponding gas. Typically, natural gas hydrates contain 15% gas and 85% water by mass. It follows that hydrates can be used for large-scale storage of natural gas. Benesh proposed using hydrates to improve the load factor of natural gas supply systems. The author suggested that hydrates could be produced by bringing liquid water into contact with natural gas at the appropriate temperature and high pressure. The hydrate then would be stored at a temperature and pressure where it was stable. When gas was needed for the supply system, the hydrate would be melted at low pressure. The stability of a natural gas hydrate during storage at atmospheric pressure and below-freezing temperatures was studied in the laboratory. The gas hydrate was produced in a stirred vessel at 2- to 6-MPa pressure and temperatures from 0 to 20 C. The hydrate was refrigerated and stored in deep freezers at [minus]5, [minus]10, and [minus]18 C for up to 10 days. The natural gas hydrate remained stable when kept frozen at atmospheric pressure.

  16. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  17. Experimental study on geochemical characteristic of methane hydrate formed in porous media

    Institute of Scientific and Technical Information of China (English)

    Qiang Chen; Changling Liu; Yuguang Ye

    2009-01-01

    The natural occurrence of methane hydrates in marine sediments has been intensively studied over the past decades, and geochemical charac-teristic of hydrate is one of the most attractive research fields. In this paper, we discussed the geochemical anomaly during hydrate formation in porous media. By doing so, we also investigated the temperature influence on hydrate formation under isobaric condition. It turns out that sub-cooling is an important factor to dominate hydrate formation. Larger subcooling provides more powerful driving force for hydrate formation. During the geochemical anomaly research, six kinds of ions and the total dissolved salt (TDS) were measured before and after the experiment in different porous media. The result is that all kinds of ionic concentration increased after hydrate formation which can be defined as salting out effect mainly affected by gas consumption. But the variation ratio of different ions is not equal. Ca2+ seems to be the most significantly influenced one, and its variation ratio is up to 80%. Finally, we theoretically made a model to calculate the TDS variation, the result is in good accordance with measured one, especially when gas consumption is large.

  18. [NMF and cosmetology of cutaneous hydration].

    Science.gov (United States)

    Marty, J-P

    2002-01-01

    In the stratum corneum, the water binds to the intracellular hygroscopic and hydrosoluble substances called "natural moisturizing factors" or NMF. These "natural moisturizing factors" contained in the corneocytes are formed during epidermal differentiation and may represent up to 10 p. cent of the corneocyte mass. They are principally amino acids, carboxylic pyrrolidone acid, lactic acid, urea, glucose and mineral ions. Keratinization plays an important part in the formation of NMF that exhibit strong osmotic potential attracting the water molecules. The binding of water to NMF is the static aspect of cutaneous hydration. The second, dynamic, aspect is related to the selective permeability of the stratum corneum and to its lipid barrier properties, the permeability of which depends on the integrity and nature of the inter-corneocyte lipids and their lamellar organization between the cells. In these conditions, hydration cosmetics rely on two concepts that can be isolated or associated: the supply of hydrophilic substances to the stratum corneum, capable of attracting and retaining water (moisturizer) or capable of restoring the barrier in order to restore normal water loss or of protecting it against aggression (occlusive).

  19. Effect of hydrophilic walls on the hydration of sodium cations in planar nanopores

    Science.gov (United States)

    Shevkunov, S. V.

    2016-09-01

    A computer simulation of the structure of Na+ ion hydration shells with sizes in the range of 1 to 100 molecules in a planar model nanopore 0.7 nm wide with structureless hydrophilic walls is performed using the Monte Carlo method at a temperature of 298 K. A detailed model of many-body intermolecular interactions, calibrated with reference to experimental data on the free energy and enthalpy of reactions after gaseous water molecules are added to a hydration shell, is used. It is found that perturbations produced by hydrophilic walls cause the hydration shell to decay into two components that differ in their spatial arrangement and molecular orientational order.

  20. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    OpenAIRE

    Lixin Kuang; Yibing Yu; Yunzhong Tu; Ling Zhang; Fulong Ning; Guosheng Jiang; Tianle Liu

    2011-01-01

    Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na 2 CO 3 , 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% ...

  1. ARE MODELS OF ANION HYDRATION OVERBOUND ? THE SOLVATION OF THE ELECTRON AND CHLORIDE ANION COMPARED

    OpenAIRE

    Sprik, M.

    1991-01-01

    By means of a fully polarizable model for the chloride ion-water interaction we show that the modelling of anion solvation suffers from a similar inconsistency as the current electron-solvent potentials. Either the bulk hydration enthalpies are correct with the first hydration shell overbound, or the potential is adapted to describe the local environment of the solute at the expense of a major loss of solvation enthalpy. It is argued that boundary effects in the simulation are at least partly...

  2. Tetrahydrofuran hydrate decomposition characteristics in porous media

    Science.gov (United States)

    Song, Yongchen; Wang, Pengfei; Wang, Shenglong; Zhao, Jiafei; Yang, Mingjun

    2016-12-01

    Many tetrahydrofuran (THF) hydrate properties are similar to those of gas hydrates. In the present work THF hydrate dissociation in four types of porous media is studied. THF solution was cooled to 275.15 K with formation of the hydrate under ambient pressure, and then it dissociated under ambient conditions. THF hydrate dissociation experiments in each porous medium were conducted three times. Magnetic resonance imaging (MRI) was used to obtain images. Decomposition time, THF hydrate saturation and MRI mean intensity (MI) were measured and analyzed. The experimental results showed that the hydrate decomposition time in BZ-4 and BZ-3 was similar and longer than that in BZ-02. In each dissociation process, the hydrate decomposition time of the second and third cycles was shorter than that of the first cycle in BZ-4, BZ-3, and BZ-02. The relationship between THF hydrate saturation and time is almost linear.

  3. Study of sorption mechanisms of europium(3) and uranium(6) ions on clays : impact of silicates; Etude des mecanismes de retention des ions U(6) et Eu(3) sur les argiles: influence des silicates

    Energy Technology Data Exchange (ETDEWEB)

    Kowal-Fouchard, A

    2002-11-01

    Bentonite clay has been selected as a potential buffer or backfill material in a number of disposal programmes for high level waste. In order to enhance the thermodynamic database of sorption phenomena at the solid-water interface, we have investigated sorption mechanisms of europium(III) and uranium(VI) ions onto montmorillonite and bentonite. Thermodynamic data were obtained for different ions concentrations, different background electrolytes and different ionic strengths. The structural identification of the surface complexes and sorption sites was carried out using two spectroscopies, XPS and TRLIFS, while sorption edges were performed using batch experiments. However, clays are complex minerals and in order to understand these sorption mechanisms we have studied europium(III) and uranium(VI) retention on a silica and an alumina because these solids are often considered as basic components of clays. The comparison of structural results shows that europium ions are significantly sorbed on permanently charged sites of clay until pH 7. But this ion is also sorbed on {identical_to}SiOH and {identical_to}AlOH sites of montmorillonite at pH higher than 6. Uranyl ions sorption on montmorillonite is mainly explained by retention of three complexes on {identical_to}SiOH sites. Moreover, we have shown that nitrate ions and dissolved silicates affect on uranium(VI) sorption mechanisms onto alumina. Nevertheless, uranyl ions sorption on montmorillonite and bentonite only decreases with increasing carbonate concentration. Finally, all the sorption edges were then modeled using these results and a surface complexation model (2 pK and constant capacitance models). (author)

  4. Study of Electron Ionization and Fragmentation of Non-hydrated and Hydrated Tetrahydrofuran Clusters

    Science.gov (United States)

    Neustetter, Michael; Mahmoodi-Darian, Masoomeh; Denifl, Stephan

    2017-03-01

    Mass spectroscopic investigations on tetrahydrofuran (THF, C4H8O), a common model molecule of the DNA-backbone, have been carried out. We irradiated isolated THF and (hydrated) THF clusters with low energy electrons (electron energy 70 eV) in order to study electron ionization and ionic fragmentation. For elucidation of fragmentation pathways, deuterated TDF (C4D8O) was investigated as well. One major observation is that the cluster environment shows overall a protective behavior on THF. However, also new fragmentation channels open in the cluster. In this context, we were able to solve a discrepancy in the literature about the fragment ion peak at mass 55 u in the electron ionization mass spectrum of THF. We ascribe this ion yield to the fragmentation of ionized THF clusters.

  5. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.;

    1999-01-01

    Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...... and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6...

  6. Progress of Gas Hydrate Studies in China

    Institute of Scientific and Technical Information of China (English)

    樊栓狮; 汪集旸

    2006-01-01

    A brief overview is given on the gas hydrate-related research activities carried out by Chinese researchers in the past 15 years. The content involves: (1) Historical review. Introducing the gas hydrate research history in China; (2) Gas hydrate research groups in China. There are nearly 20 groups engaged in gas hydrate research now; (3) Present studies.Including fundamental studies, status of the exploration of natural gas hydrate resources in the South China Sea region, and development of hydrate-based new techniques; (4) Future development.

  7. Hydration of fly ash cement

    Energy Technology Data Exchange (ETDEWEB)

    Etsuo Sakai; Shigeyoshi Miyahara; Shigenari Ohsawa; Seung-Heun Lee; Masaki Daimon [Tokyo Institute of Technology, Tokyo (Japan). Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering

    2005-06-01

    It is necessary to establish the material design system for the utilization of large amounts of fly ash as blended cement instead of disposing of it as a waste. Cement blended with fly ash is also required as a countermeasure to reduce the amount of CO{sub 2} generation. In this study, the influences of the glass content and the basicity of glass phase on the hydration of fly ash cement were clarified and hydration over a long curing time was characterized. Two kinds of fly ash with different glass content, one with 38.2% and another with 76.6%, were used. The hydration ratio of fly ash was increased by increasing the glass content in fly ash in the specimens cured for 270 days. When the glass content of fly ash is low, the basicity of glass phase tends to decrease. Reactivity of fly ash is controlled by the basicity of the glass phase in fly ash during a period from 28 to 270 days. However, at an age of 360 days, the reaction ratios of fly ash show almost identical values with different glass contents. Fly ash also affected the hydration of cement clinker minerals in fly ash cement. While the hydration of alite was accelerated, that of belite was retarded at a late stage.

  8. Comparison of stromal hydration techniques for clear corneal cataract incisions: conventional hydration versus anterior stromal pocket hydration.

    Science.gov (United States)

    Mifflin, Mark D; Kinard, Krista; Neuffer, Marcus C

    2012-06-01

    Anterior stromal pocket hydration was compared with conventional hydration for preventing wound leak after 2.8 mm uniplanar clear corneal incisions (CCIs) in patients having routine cataract surgery. Conventional hydration involves hydration of the lateral walls of the main incision with visible whitening of the stroma. The anterior stromal pocket hydration technique involves creation of an additional supraincisional stromal pocket overlying the main incision, which is then hydrated instead of the main incision. Sixty-six eyes of 48 patients were included in the data analysis with 33 assigned to each study group. The anterior stromal pocket hydration technique was significantly better than conventional hydration in preventing wound leak due to direct pressure on the posterior lip of the incision. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  10. Pore fluid geochemistry from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Torres, M.E.; Collett, T.S.; Rose, K.K.; Sample, J.C.; Agena, W.F.; Rosenbaum, E.J.

    2011-01-01

    The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled and cored from 606.5 to 760.1. m on the North Slope of Alaska, to evaluate the occurrence, distribution and formation of gas hydrate in sediments below the base of the ice-bearing permafrost. Both the dissolved chloride and the isotopic composition of the water co-vary in the gas hydrate-bearing zones, consistent with gas hydrate dissociation during core recovery, and they provide independent indicators to constrain the zone of gas hydrate occurrence. Analyses of chloride and water isotope data indicate that an observed increase in salinity towards the top of the cored section reflects the presence of residual fluids from ion exclusion during ice formation at the base of the permafrost layer. These salinity changes are the main factor controlling major and minor ion distributions in the Mount Elbert Well. The resulting background chloride can be simulated with a one-dimensional diffusion model, and the results suggest that the ion exclusion at the top of the cored section reflects deepening of the permafrost layer following the last glaciation (???100 kyr), consistent with published thermal models. Gas hydrate saturation values estimated from dissolved chloride agree with estimates based on logging data when the gas hydrate occupies more than 20% of the pore space; the correlation is less robust at lower saturation values. The highest gas hydrate concentrations at the Mount Elbert Well are clearly associated with coarse-grained sedimentary sections, as expected from theoretical calculations and field observations in marine and other arctic sediment cores. ?? 2009 Elsevier Ltd.

  11. Europium(III)-doped A2Hf2O7 (A = Y, Gd, Lu) nanoparticles: Influence of annealing temperature, europium(III) concentration and host cation on the luminescent properties

    Science.gov (United States)

    Papan, Jelena; Jovanović, Dragana J.; Vuković, Katarina; Smits, Krisjanis; Đorđević, Vesna; Dramićanin, Miroslav

    2016-11-01

    The detailed analyses of structure and luminescence of europium(III)-doped A2Hf2O7 (A = Y, Gd, Lu) nanoparticles is presented. Samples were prepared by time and cost effective combustion method that utilize polyethylene glycol both as a chelating agent and as a fuel, with different europium(III) concentrations (from 1 to 12 at.%), annealed at temperatures ranging from 800 to 1400 °C, and with alternating A3+ cation in the A2Hf2O7 host. Then, structural variations between materials were analysed by X-ray diffraction and structural refinement, while the changes in the luminescence were assessed from the Judd-Ofelt analyses of emission spectra. Nanoparticles prepared at the lowest temperature (800 °C) had the smallest particle size of ∼6 nm and showed the highest quantum efficiency when doped with 1 and 2 at.% of europium(III). Radiative transition rate and quantum efficiency of emission showed Lu2Hf2O7 > Gd2Hf2O7 > Y2Hf2O7 trend.

  12. Great Market Potential of Hydrazine Hydrate

    Institute of Scientific and Technical Information of China (English)

    Shi Yuying

    2007-01-01

    @@ Stable consumption growth worldwide Hydrazine hydrate is an organic chemical raw material with extensive applications. The world's capacity to produce hydrazine hydrate has reached more than 200 thousand t/atoday (based on 100% hydrazine content).

  13. Uv Photodissociation Spectroscopy of Temperature Controlled Hydrated Phenol Cluster Cation

    Science.gov (United States)

    Kurusu, Itaru; Yagi, Reona; Kasahara, Yasutoshi; Ishikawa, Haruki

    2016-06-01

    Owing to various developments of spectroscopic techniques, microscopic hydration structures of various clusters in the gas phase have been determined so far. The next step for further understanding of the microscopic hydration is to reveal the temperature effect, such as a fluctuation of the hydration structure. Thus, we have been carrying out photodissociation spectroscopy on the hydrated phenol cation clusters, [PhOH(H_2O)_n]^+, trapped in our temperature-variable ion trap. After the last symposium, we succeeded in improving our experimental condition and recorded the UV photodissociation spectra of [PhOH(H_2O)_5]^+ at the trap temperatures of 20, 50, and 100 K. We identified three groups of bands by their temperature dependence in the spectra. Based on the results of the DFT calculations, we estimated the temperature dependence of the relative populations among the isomers. As a results, the isomers were grouped into three groups having different motifs of the hydrogen-bond structures. Comparing the experimental with the theoretical results, we assigned the relation between the band carriers and the hydrogen-bond structure motifs. Details of the discussion will be presented in the paper. H. Ishikawa, T. Nakano, T. Eguchi, T. Shibukawa, K. Fuke, Chem. Phys. Lett. 514, 234 (2011) R. Yagi, Y. Kasahara, H. Ishikawa, WH12, the 70th International Symposium on Molecular Spectroscopy (2015)

  14. Methods to determine hydration states of minerals and cement hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  15. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  16. Molecular Dynamics Modeling of Hydrated Calcium-Silicate-Hydrate (CSH) Cement Molecular Structure

    Science.gov (United States)

    2014-08-30

    properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown...public release; distribution is unlimited. Molecular Dynamics Modeling of Hydrated Calcium-Silicate- Hydrate (CSH) Cement Molecular Structure The views... Cement Molecular Structure Report Title Multi-scale modeling of complex material systems requires starting from fundamental building blocks to

  17. Hydration and Thermal Expansion in Anatase Nanoparticles.

    Science.gov (United States)

    Zhu, He; Li, Qiang; Ren, Yang; Fan, Longlong; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2016-08-01

    A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.

  18. Hydration and Thermal Expansion in Anatase Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, He [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Li, Qiang [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Ren, Yang [Argonne National Laboratory, X-Ray Science Division, Argonne IL 60439 USA; Fan, Longlong [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Chen, Jun [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Deng, Jinxia [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China

    2016-06-06

    A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.

  19. Terahertz sensing of corneal hydration.

    Science.gov (United States)

    Singh, Rahul S; Tewari, Priyamvada; Bourges, Jean Louis; Hubschman, Jean Pierre; Bennett, David B; Taylor, Zachary D; Lee, H; Brown, Elliott R; Grundfest, Warren S; Culjat, Martin O

    2010-01-01

    An indicator of ocular health is the hydrodyanmics of the cornea. Many corneal disorders deteriorate sight as they upset the normal hydrodynamics of the cornea. The mechanisms include the loss of endothelial pump function of corneal dystophies, swelling and immune response of corneal graft rejection, and inflammation and edema, which accompany trauma, burn, and irritation events. Due to high sensitivity to changes of water content in materials, a reflective terahertz (300 GHz and 3 THz) imaging system could be an ideal tool to measure the hydration level of the cornea. This paper presents the application of THz technology to visualize the hydration content across ex vivo porcine corneas. The corneas, with a thickness variation from 470 - 940 µm, were successfully imaged using a reflective pulsed THz imaging system, with a maximum SNR of 50 dB. To our knowledge, no prior studies have reported on the use of THz in measuring hydration in corneal tissues or other ocular tissues. These preliminary findings indicate that THz can be used to accurately sense hydration levels in the cornea using a pulsed, reflective THz imaging system.

  20. Physical properties of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kliner, J.T.R.; Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates are naturally occurring, solid crystalline compounds (clathrates) that encapsulate gas molecules inside the lattices of hydrogen bonded water molecules within a specific temperature-pressure stability zone. Estimates of the total quantity of available methane gas in natural occurring hydrates are based on twice the energy content of known conventional fossil fuels reservoirs. Accurate and reliable in-situ quantification techniques are essential in determining the economic viability of this potential energy yield, which is dependent upon several factors such as sensitivity of the temperature-pressure stability zone, sediment type, porosity, permeability, concentration/abundance of free gas, spatial distribution in pore spaces, specific cage occupancy, and the influence of inhibitors. Various techniques like acoustic P and S waves, time domain reflectometry, and electrical resistance have been used to analyze the quantity and spatial distribution of the gas hydrate samples. These techniques were reviewed and the results obtained in the course of gas hydrate research were presented. 34 refs., 8 figs.

  1. Hydration kinetics of transgenic soybeans

    Directory of Open Access Journals (Sweden)

    Aline Francielle Fracasso

    2015-01-01

    Full Text Available The kinetic and experimental analyses of the hydration process of transgenic soybeans (BRS 225 RR are provided. The importance of the hydration process consists of the grain texture modifications which favor grinding and extraction of soybeans. The soaking isotherms were obtained for four different temperatures. Results showed that temperature affected transgenic soybeans´ hydration rate and time. Moisture content d.b. of the soybeans increased from 0.12 ± 0.01 kg kg-1 to 1.45 ± 0.19 kg kg-1 during 270 min. of process. Two models were used to fit the kinetic curves: an empirical model developed by Peleg (1988 and a phenomenological one, proposed by Omoto et al. (2009. The two models adequately represented the hydration kinetics. Peleg model was applied to the experimental data and the corresponding parameters were obtained and correlated to temperature. The model by Omoto et al. (2009 showed a better statistical fitting. Although Ks was affected by temperature (Ks = 0.38079 exp (-2289.3 T-1, the equilibrium concentration remained practically unchanged.

  2. Tetrahydrofuran-promoted clathrate hydrate phase equilibria of CO{sub 2} in aqueous electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sabil, K.M.; Roman, V.R. [Delft Univ. of Technology, Delft (Netherlands). Physical Chemistry and Molecular Thermodynamics; Witkamp, G.J.; Peters, C.J. [Delft Univ. of Technology, Delft, (Netherlands). Laboratory of Process Equipment, Mechanical, Maritime and Materials Engineering

    2008-07-01

    The phase behavior of a system consisting of carbon dioxide (CO{sub 2}) hydrates is of significant importance for many industrial and natural processes. Carbon dioxide and water are part of natural gas streams and they are also found in oil reservoirs during enhanced oil recovery. Formation of hydrate in these cases may cause problems during production and processing. Alternatively, carbon dioxide hydrate formation may be desirable since it can facilitate separation processes, freezing and refrigeration processes and sequestration of CO{sub 2}. The need for phase equilibrium data of systems, particularly electrolyte solutions containing CO{sub 2} are therefore needed. This paper presented a study that attempted to measure the hydrate equilibrium condition for quaternary system consisting of CO{sub 2}, tetrahydrofuran (THF), an electrolyte and water. The purpose of the study was to examine the competing effect of tetrahydrofuran and an electrolyte on the phase behavior of CO{sub 2} hydrates when both were simultaneously present in a system at hydrate forming condition and to compare the effect of different salts inhibition on tetrahydrofuran-promoted CO{sub 2} hydrate. Six different electrolytes were utilized, including sodium chloride, calcium chloride, magnesium chloride, potassium bromide, sodium fluoride and sodium bromide. It was concluded that the inhibiting effect among the cations increased with increasing charge of the cation and its radius. It was also found that the inhibiting effect of the anions decreased with a decrease on their ion radius. 12 refs., 4 figs.

  3. The Hydration and Carbonation of Tricalcium Aluminate (C3A) in the Presence of Heavy Metals

    Institute of Scientific and Technical Information of China (English)

    CHEN Quanyuan; C. D. Hills; M. Tyrer; I. Slipper

    2005-01-01

    The hydration of tricalcium aluminate (C3A) has a significant effect on the effectiveness of cement-based systems. In addition, the carbonation of hydration products of C3A is particularly important in respect of durability performance. The present work investigates the hydration and carbonation reactions of C3A and the changes induced by the presence of the heavy metal ions such as Zn2+, Pb2+, Cu2+ and Cr3+ by X-ray diffractometry (XRD). During hydration of C3A, gehlenite hydrate, hydrogarnet, calcium monoaluminate (C4AHx) and calcium carboaluminate were detected in C3A pastes except the Zn2+doped paste, where hydrogarnet did not form. The examinations revealed that heavy metals coexisted with gehlenite hydrate, calcium monoaluminate (C4AHx) and calcium carboaluminate, inhibiting the formation of hydrogarnet. Hydrating C3A was liable to be carbonated on exposure to air and carbon dioxide, especially in the presence of heavy metals, resulting in the formation of carboaluminate and/or calcium carbonate. The presence of heavy metals in-fluenced the polymorphism of calcium carbonate,ndicating that heavy metals could co-precipitate with calcium to form a carbonate solid solution.

  4. Synthesis and reversible hydration behavior of the thiosulfate intercalated layered double hydroxide of Zn and Al

    Energy Technology Data Exchange (ETDEWEB)

    Radha, S. [Department of Chemistry, Central College, Bangalore University, Bangalore-560 001 (India); Milius, Wolfgang [Department of Inorganic Chemistry I, University of Bayreuth, Bayreuth (Germany); Breu, Josef, E-mail: josef.breu@uni-bayreuth.de [Department of Inorganic Chemistry I, University of Bayreuth, Bayreuth (Germany); Kamath, P. Vishnu, E-mail: vishnukamath8@hotmail.com [Department of Chemistry, Central College, Bangalore University, Bangalore-560 001 (India)

    2013-08-15

    The thiosulfate-intercalated layered double hydroxide of Zn and Al undergoes reversible hydration with a variation in the relative humidity of the ambient. The hydrated and dehydrated phases, which represent the end members of the hydration cycle, both adopt the structure of the 3R{sub 1} polytype. In the intermediate range of relative humidity values (40–60%), the hydrated and dehydrated phases coexist. The end members of the hydration cycle adopt the structure of the same polytype, and vary only in their basal spacings. This points to the possibility that all the intermediate phases have a kinetic origin. - Graphical abstract: Basal spacing evolution of the thiosulfate ion intercalated [Zn–Al] LDH during one complete hydration–dehydration cycle as a function of relative humidity. Display Omitted - Highlights: • Thiosulfate intercalated [Zn–Al] LDHs were synthesized by co-precipitation. • The LDH exhibits reversible hydration with variation in humidity. • Both the end members of the hydration cycle adopt the same polytype structure. • The interstratified intermediates observed are kinetic in origin.

  5. INFLUENCE OF POZZOLANA ON THE HYDRATION OF C4AF RICH CEMENT IN CHLORIDE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    IRMANTAS BARAUSKAS

    2013-03-01

    Full Text Available This study investigated the influence of natural pozzolana - opoka additive on the hydration of C4AF rich cement and the effects of chloride ions on the hydrates formed. In the samples, 25 % (by weight of the sintered C4AF rich cement and OPC was replaced with pozzolana. The mixtures were hardened for 28 days in water, soaked in a saturated NaCl solution for 3 months at 20°C. It was estimated that under normal conditions, pozzolana additive accelerates the hydration of calcium silicates and initiates the formation of CO32- - AFm in the Brownmillerite rich cement. However, the hydration of Brownmillerite cement with opoka additive is still slower to compare with hydration of Portland cement. Also, opoka decreases total porosity and threshold pore diameter of Brownmillerite cement paste after two days of hydration. After 28 days of hydration threshold pore diameter became smaller even to compare with threshold pore diameter of Portland cement. Opoka additive promotes the formation of Friedel’s salt in Brownmillerite samples treated in saturated NaCl solution, because CO32-–AFm affected by saturated NaCl solution become unstable and takes part in reactions producing Friedel’s salt.

  6. Physical activity, hydration and health

    Directory of Open Access Journals (Sweden)

    Ascensión Marcos

    2014-06-01

    Full Text Available Since the beginning of mankind, man has sought ways to promote and preserve health as well as to prevent disease. Hydration, physical activity and exercise are key factors for enhancing human health. However, either a little dose of them or an excess can be harmful for health maintenance at any age. Water is an essential nutrient for human body and a major key to survival has been to prevent dehydration. However, there is still a general controversy regarding the necessary amount to drink water or other beverages to properly get an adequate level of hydration. In addition, up to now the tools used to measure hydration are controversial. To this end, there are several important groups of variables to take into account such as water balance, hydration biomarkers and total body water. A combination of methods will be the most preferred tool to find out any risk or situation of dehydration at any age range. On the other hand, physical activity and exercise are being demonstrated to promote health, avoiding or reducing health problems, vascular and inflammatory diseases and helping weight management. Therefore, physical activity is also being used as a pill within a therapy to promote health and reduce risk diseases, but as in the case of drugs, dose, intensity, frequency, duration and precautions have to be evaluated and taken into account in order to get the maximum effectiveness and success of a treatment. On the other hand, sedentariness is the opposite concept to physical activity that has been recently recognized as an important factor of lifestyle involved in the obesogenic environment and consequently in the risk of the non-communicable diseases. In view of the literature consulted and taking into account the expertise of the authors, in this review a Decalogue of global recommendations is included to achieve an adequate hydration and physical activity status to avoid overweight/obesity consequences.

  7. On the free energy of ionic hydration

    CERN Document Server

    Hummer, G; García, A E; Hummer, Gerhard; Pratt, Lawrence R.; Garcia, Angel E.

    1995-01-01

    The hydration free energies of ions exhibit an approximately quadratic dependence on the ionic charge, as predicted by the Born model. We analyze this behavior using second-order perturbation theory. This provides effective methods to calculating free energies from equilibrium computer simulations. The average and the fluctuation of the electrostatic potential at charge sites appear as the first coefficients in a Taylor expansion of the free energy of charging. Combining the data from different charge states allows calculation of free-energy profiles as a function of the ionic charge. The first two Taylor coefficients of the free-energy profiles can be computed accurately from equi- librium simulations; but they are affected by a strong system-size dependence. We apply corrections for these finite-size effects by using Ewald lattice sum- mation and adding the self-interactions consistently. Results are presented for a model ion with methane-like Lennard-Jones parameters in SPC water. We find two very closely ...

  8. DNA hydration studied by neutron fiber diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J. [Keele Univ. (United Kingdom)] [and others

    1994-12-31

    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix.

  9. Laser-induced europium(III) luminescence as a probe of the metal ion mediated association of human prothrombin with phospholipid.

    Science.gov (United States)

    Rhee, M J; Horrocks, W D; Kosow, D P

    1982-09-14

    7F0 leads to 5D0 excitation spectroscopy of Eu(III) has been used to investigate the Eu(III) and phospholipid binding properties of human prothrombin. The results indicate that human prothrombin contains four high-affinity Eu(III) binding sites which are distributed into two classes of binding sites. When 4 equiv of Eu(III) is bound to prothrombin, the prothrombin is capable of binding to phospholipid vesicles. The deuterium isotope effect on the lifetime of the Eu(III)-prothrombin complex and the Eu(III)-prothrombin-phospholipid complex was used to determine the number of water molecules coordinated to the Eu(III). In both complexes, each of the Eu(III)'s coordinated to 2.5 +/- 0.5 water molecules. These results indicate that the binding of the Eu(III)-prothrombin complex to the phospholipid does not require the formation of a prothrombin-Eu(III)-phospholipid bridge.

  10. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  11. Handbook of gas hydrate properties and occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  12. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goa...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products......Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...

  13. Quasichemical analysis of the cluster-pair approximation for the thermodynamics of proton hydration

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, Travis [Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Beck, Thomas L. [Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States)

    2014-06-14

    A theoretical analysis of the cluster-pair approximation (CPA) is presented based on the quasichemical theory of solutions. The sought single-ion hydration free energy of the proton includes an interfacial potential contribution by definition. It is shown, however, that the CPA involves an extra-thermodynamic assumption that does not guarantee uniform convergence to a bulk free energy value with increasing cluster size. A numerical test of the CPA is performed using the classical polarizable AMOEBA force field and supporting quantum chemical calculations. The enthalpy and free energy differences are computed for the kosmotropic Na{sup +}/F{sup −} ion pair in water clusters of size n = 5, 25, 105. Additional calculations are performed for the chaotropic Rb{sup +}/I{sup −} ion pair. A small shift in the proton hydration free energy and a larger shift in the hydration enthalpy, relative to the CPA values, are predicted based on the n = 105 simulations. The shifts arise from a combination of sequential hydration and interfacial potential effects. The AMOEBA and quantum chemical results suggest an electrochemical surface potential of water in the range −0.4 to −0.5 V. The physical content of single-ion free energies and implications for ion-water force field development are also discussed.

  14. Dielectric relaxation spectroscopy shows a sparingly hydrated interface and low counterion mobility in triflate micelles.

    Science.gov (United States)

    Lima, Filipe S; Chaimovich, Hernan; Cuccovia, Iolanda M; Buchner, Richard

    2013-08-13

    The properties of ionic micelles are affected by the nature of the counterion. Specific ion effects can be dramatic, inducing even shape and phase changes in micellar solutions, transitions apparently related to micellar hydration and counterion binding at the micellar interface. Thus, determining the hydration and dynamics of ions in micellar systems capable of undergoing such transitions is a crucial step in understanding shape and phase changes. For cationic micelles, such transitions are common with large organic anions as counterions. Interestingly, however, phase separation also occurs for dodecyltrimethylammonium triflate (DTATf) micelles in the presence of sodium triflate (NaTf). Specific ion effects for micellar solutions of dodecyltrimethylammonium chloride (DTAC), bromide (DTAB), methanesulfonate (DTAMs), and triflate (DTATf) were studied with dielectric relaxation spectroscopy (DRS), a technique capable of monitoring hydration and counterion dynamics of micellar aggregates. In comparison to DTAB, DTAC, and DTAMs, DTATf micelles were found to be considerably less hydrated and showed reduced counterion mobility at the micellar interface. The obtained DTATf and DTAMs data support the reported central role of the anion's -CF3 moiety with respect to the properties of DTATf micelles. The reduced hydration observed for DTATf micelles was rationalized in terms of the higher packing of this surfactant compared to that of other DTA-based systems. The decreased mobility of Tf(-) anions condensed at the DTATf interface strongly suggests the insertion of Tf(-) in the micellar interface, which is apparently driven by the strong hydrophobicity of -CF3.

  15. Well log characterization of natural gas hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2011-01-01

    In the last 25 years we have seen significant advancements in the use of downhole well logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From an early start of using wireline electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells drilled in Arctic permafrost environments to today where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. The most established and well known use of downhole log data in gas hydrate research is the use of electrical resistivity and acoustic velocity data (both compressional- and shear-wave data) to make estimates of gas hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. New downhole logging tools designed to make directionally oriented acoustic and propagation resistivity log measurements have provided the data needed to analyze the acoustic and electrical anisotropic properties of both highly inter-bedded and fracture dominated gas hydrate reservoirs. Advancements in nuclear-magnetic-resonance (NMR) logging and wireline formation testing have also allowed for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids (i.e., free-water along with clay and capillary bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas hydrate reservoir properties (i.e., permeabilities) needed to accurately predict gas production rates for various gas hydrate

  16. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn

    2009-11-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  17. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, D.D.; Martin, A.I.; Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces. Copyright 2009 by the American Geophysical Union.

  18. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments

    Science.gov (United States)

    Mahabadi, Nariman; Zheng, Xianglei; Jang, Jaewon

    2016-05-01

    The experimental measurement of water retention curve in hydrate-bearing sediments is critically important to understand the behavior of hydrate dissociation and gas production. In this study, tetrahydrofuran (THF) is selected as hydrate former. The pore habit of THF hydrates is investigated by visual observation in a transparent micromodel. It is confirmed that THF hydrates are not wetting phase on the quartz surface of the micromodel and occupy either an entire pore or part of pore space resulting in change in pore size distribution. And the measurement of water retention curves in THF hydrate-bearing sediments with hydrate saturation ranging from Sh = 0 to Sh = 0.7 is conducted for excess water condition. The experimental results show that the gas entry pressure and the capillary pressure increase with increasing hydrate saturation. Based on the experimental results, fitting parameters for van Genuchten equation are suggested for different hydrate saturation conditions.

  19. Chemical and isotopic characteristics of gas hydrate- and pore-water samples obtained from gas hydrate-bearing sediment cores retrieved from a mud volcano in the Kukuy Canyon, Lake Baikal

    Energy Technology Data Exchange (ETDEWEB)

    Minami, H.; Hachikubo, A.; Krylov, A.; Sakagami, H.; Ohashi, M.; Bai, J.; Kataoka, S.; Yamashita, S.; Takahashi, N.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan); Khlystov, O.; Zemskaya, T.; Grachev, M. [Russian Academy of Sciences, Irkutsk (Russian Federation). Limnological Inst.

    2008-07-01

    This paper provided details of a method developed to obtain gas hydrate water samples from a mud volcano in Lake Baikal, Russia. Chemical and isotopic analyses were conducted to examine the hydrate and pore water samples as well as to evaluate the original water involved in shallow gas hydrate accumulations in the region. Lake sediment core samples were retrieved from the bottom of the lake with gravity corers. A squeezer was used to take pore water samples from the sediments. Hydrate samples were taken from a gas hydrate placed on a polyethylene funnel. Dissolved hydrate water was filtered through a membrane into bottles. Both samples were kept under chilled or liquid nitrogen temperatures. Ion chromatography was used to determine concentrations of anions and hydrogen carbonate ions. Sodium and magnesium concentrations were determined using an inductively coupled plasma atomic emission spectrometer. An absorption spectrometer was used to determine potassium and calcium concentrations, and a mass spectrometer was used to analyze stable isotopes of oxygen and hydrogen. Results of the study suggested that the gas dissolved in pore water and adsorbed on the surfaces of sediment particles was not the original gas from the hydrates retrieved at the mud volcano. Original gas hydrate-forming fluids were chemically different from the pore- and lake-water samples. The oxygen isotopic composition of the gas hydrate water samples correlated well with hydrogen values. It was concluded that ascending fluid and water delivered the gas into the gas stability zone, and is the main gas hydrate-forming fluid in the area of study. 12 refs., 1 fig.

  20. Simulation of an anion in water: effect of ion polarizability

    Science.gov (United States)

    Karim, Omar A.

    1991-10-01

    A polarizable-polar water model is used to study the structure of wate near a chloride ion. A semi-classical description of ion polarizability is included. Significant changes in the solute-solvent distribution functions are observed. When compared with a simulation without ion polarizability, it is found that the hydration number is further decreased when ion polarizability is present.

  1. Synthesis of hydrated lutetium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Song Liu [South China Univ. of Technology, Dept. of Applied Chemistry, Guangdong (China); Rong-jun Ma [Changsha Research Institute of Minig and Metallurgy, Hunan (China)

    1997-09-01

    Crystalline lutetium carbonate was synthesized for the corresponding chloride using ammonium bicarbonate as precipitant. The chemical analyses suggest that the synthesized lutetium carbonate is a hydrated basic carbonate or oxycarbonate. The X-ray powder diffraction data are presented. The IR data for the compound show the presence of two different carbonate groups. There is no stable intermediate carbonate in the process of thermal decomposition of the lutetium carbonate. (au) 15 refs.

  2. Hydration structure of Ti(III and Cr(III: Monte Carlo simulation including three-body corrections

    Directory of Open Access Journals (Sweden)

    Ahmed M. Mohammed

    2003-12-01

    Full Text Available Classical Monte Carlo simulations were performed to investigate the solvation structures of Ti(III and Cr(III ions in water with only ion-water pair interaction potential and by including three-body correction terms. The hydration structures were evaluated in terms of radial distribution functions, coordination numbers and angular distributions. The structural parameters obtained by including three-body correction terms are in good agreement with experimental values proving that many-body effects play a crucial role in the description of the hydration structure of highly charged ions.

  3. Crystallite size distributions of marine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Klapp, S.A.; Bohrmann, G.; Abegg, F. [Bremen Univ., Bremen (Germany). Research Center of Ocean Margins; Hemes, S.; Klein, H.; Kuhs, W.F. [Gottingen Univ., Gottingen (Germany). Dept. of Crystallography

    2008-07-01

    Experimental studies were conducted to determine the crystallite size distributions of natural gas hydrate samples retrieved from the Gulf of Mexico, the Black Sea, and a hydrate ridge located near offshore Oregon. Synchrotron radiation technology was used to provide the high photon fluxes and high penetration depths needed to accurately analyze the bulk sediment samples. A new beam collimation diffraction technique was used to measure gas hydrate crystallite sizes. The analyses showed that gas hydrate crystals were globular in shape. Mean crystallite sizes ranged from 200 to 400 {mu}m for hydrate samples taken from the sea floor. Larger grain sizes in the hydrate ridge samples suggested differences in hydrate formation ages or processes. A comparison with laboratory-produced methane hydrate samples showed half a lognormal curve with a mean value of 40{mu}m. Results of the study showed that a cautious approach must be adopted when transposing crystallite-size sensitive physical data from laboratory-made gas hydrates to natural settings. It was concluded that crystallite size information may also be used to resolve the formation ages of gas hydrates when formation processes and conditions are constrained. 48 refs., 1 tab., 9 figs.

  4. IMPORTANCE OF HYDRATION IN SPORTS

    Directory of Open Access Journals (Sweden)

    Goran Vasić

    2008-08-01

    Full Text Available Importance of hydration is detrmined by importance of functions of water in the human organism: i.e. regulation of body temperature, transport, excretion of waste materials through urine, digestion of food which is facilititated by saliva and gastric juices, maintenance of flexibility of organs and tissues About 60 % body mass of an adult person (males: 61 %, females: 54 % is made up of water. Water content of a newly born baby reaches 77 %, and it is up to 50 % in adults. It is very important for sportsmen to provide adequate hydration during and after the time of bodily activities. A symptom of water shortage is thirst. However, thirst is a late response of an organism and it occurs when dehydration has already taken place. Minimum in take of fluids in humans should range between one-and-half to two liters. It has been known for a long time that there is no success in sport without proper hydration in a sportsman.

  5. Hydroxyapatites and europium(III) doped hydroxyapatites as a carrier of silver nanoparticles and their antimicrobial activity.

    Science.gov (United States)

    Wiglusz, Rafal J; Kedziora, Anna; Lukowiak, Anna; Doroszkiewicz, Wlodzimierz; Strek, Wieslaw

    2012-08-01

    Hydroxyapatites (Ca10(PO4)6(OH)2 and Eu3+:Ca10(PO4)6(OH)2) were synthesized by aqueous synthesis route. Hydroxyapatites were impregnated with silver ions that were subsequently reduced. XRD, TEM, and SAED measurements were used in order to determine the crystal structure and morphology of the final products. The results showed the well crystallized hydroxyapatite grains with diameter of about 35 nm and with silver nanoparticles on their surface. The antimicrobial activity of the nanoparticles against: Staphylococcus aureus ATCC 6538 as model of the Gram-positive bacteria, Escherichia coli ATCC 11229, and Klebsiella pneumoniae ATCC 4352 as model of Gram-negative bacteria, were shown with the best activity against K. pneumoniae. These nanocomposite powders can be a promising antimicrobial agent and a fluorescent material for biodetection due to their optical and bioactive properties.

  6. Study of Formation Mechanisms of Gas Hydrate

    Science.gov (United States)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  7. SEISMIC STUDIES OF MARINE GAS HYDRATES

    Institute of Scientific and Technical Information of China (English)

    SONG Haibin

    2003-01-01

    We give a brief introduction of developments of seismic methods in the studies of marine gas hydrates. Then we give an example of seismic data processing for BSRs in western Nankai accretionary prism, a typical gas hydrate distribution region. Seismic data processing is proved to be important to obtain better images of BSRs distribution. Studies of velocity structure of hydrated sediments are useful for better understanding the distribution of gas hydrates. Using full waveform inversion, we successfully derived high-resolution velocity model of a double BSR in eastern Nankai Trough area. Recent survey and research show that gas hydrates occur in the marine sediments of the South China Sea and East China Sea.But we would like to say seismic researches on gas hydrate in China are very preliminary.

  8. Development of Alaskan gas hydrate resources

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  9. Dual reorientation relaxation routes of water molecules in oxyanion’s hydration shell: A molecular geometry perspective

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wen Jun; Yang, Yi Isaac; Gao, Yi Qin, E-mail: gaoyq@pku.edu.cn [Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 (China)

    2015-12-14

    In this study, we examine how complex ions such as oxyanions influence the dynamic properties of water and whether differences exist between simple halide anions and oxyanions. Nitrate anion is taken as an example to investigate the hydration properties of oxyanions. Reorientation relaxation of its hydration water can occur through two different routes: water can either break its hydrogen bond with the nitrate to form one with another water or switch between two oxygen atoms of the same nitrate. The latter molecular mechanism increases the residence time of oxyanion’s hydration water and thus nitrate anion slows down the translational motion of neighbouring water. But it is also a “structure breaker” in that it accelerates the reorientation relaxation of hydration water. Such a result illustrates that differences do exist between the hydration of oxyanions and simple halide anions as a result of different molecular geometries. Furthermore, the rotation of the nitrate solute is coupled with the hydrogen bond rearrangement of its hydration water. The nitrate anion can either tilt along the axis perpendicularly to the plane or rotate in the plane. We find that the two reorientation relaxation routes of the hydration water lead to different relaxation dynamics in each of the two above movements of the nitrate solute. The current study suggests that molecular geometry could play an important role in solute hydration and dynamics.

  10. ATR-FTIR study of water in Nafion membrane combined with proton conductivity measurements during hydration/dehydration cycle.

    Science.gov (United States)

    Kunimatsu, Keiji; Bae, Byungchan; Miyatake, Kenji; Uchida, Hiroyuki; Watanabe, Masahiro

    2011-04-21

    We have conducted combined time-resolved attenuated total reflection Fourier transform infrared (ATR-FTIR) and proton conductivity measurements of Nafion NRE211 membrane during hydration/dehydration cycles at room temperature. Conductivity change was interpreted in terms of different states of water in the membrane based on its δ(HOH) vibrational spectra. It was found that hydration of a dry membrane leads first to complete dissociation of the sulfonic acid groups to liberate hydrated protons, which are isolated from each other and have δ(HOH) vibrational frequency around 1740 cm(-1). The initial hydration is not accompanied by a significant increase of the proton conductivity. Further hydration gives rise to a rapid increase of the conductivity in proportion to intensity of a new δ(HOH) band around 1630 cm(-1). This was interpreted in terms of formation of channels of weakly hydrogen-bonded water to combine the isolated hydrophilic domains containing hydrated protons and hydrated sulfonate ions produced during the initial stage of hydration. Upon dehydration, proton conductivity drops first very rapidly due to loss of the weakly hydrogen bonded water from the channels to leave hydrophilic domains isolated in the membrane. Dehydration of the protons proceeds very slowly after significant loss of the proton conductivity.

  11. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has a charact...

  12. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  13. Hydrate-based heavy metal separation from aqueous solution

    Science.gov (United States)

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-02-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01-90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b-effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b-effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater.

  14. Temperature influence on lanthanoids (III) hydration from molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Duvail, M.; Vitorge, P.; Spezia, R. [Univ Evry Val Essonne, Lab Analyse and Modelisat Biol and Environm, CNRS, UMR 8587, F-91025 Evry (France); Vitorge, P. [CEA Saclay, Nucl Energy Div, Dept Phys Chem, SECR, LSRM, F-91991 Gif Sur Yvette (France)

    2010-07-01

    We studied temperature dependence of lanthanoid (III) cations hydration by molecular dynamics simulations using explicit polarization. The main effect of the temperature (T) is to increase exchange frequencies between the two main stoichiometries and the proportions of the minor species. Activation energies for self-exchange reaction have a minimum in the middle of the series and the CN values of all Ln{sup 3+} ions tends to a limit 8.5 value at high temperature. Linear variations are found through the series for the Gibbs energies of water exchange reactions being at the origin of the coordination number sigmoidal variation across the series. (authors)

  15. Termination and hydration of forsteritic olivine (0 1 0) surface

    Science.gov (United States)

    Yan, Hongping; Park, Changyong; Ahn, Gun; Hong, Seungbum; Keane, Denis T.; Kenney-Benson, Curtis; Chow, Paul; Xiao, Yuming; Shen, Guoyin

    2014-11-01

    Termination and hydration of the forsteritic (Fo90Fa10) olivine (0 1 0) surface have been investigated with high-resolution specular X-ray reflectivity and Atomic Force Microscopy. The surface was prepared by polishing a naturally grown {0 1 0} face, from which we found the polished surface in acidic (pH 3.5) alumina suspension exhibits regular steps while the basic (pH 9.5) silica polished surface is irregularly roughened, indicating there are two distinguishable mechanochemical processes for the surface dissolution. The quantitative interpretation of the regular steps from the alumina-polished surface suggests that the observed step heights correspond to multiples of crystallographic unit cell. Only this atomically terraced surface is investigated with the high-resolution X-ray reflectivity (HRXR) to determine the surface termination and hydration. The basic silica paste polished surface turned out too rough to measure with X-ray reflectivity. HRXR reveals that the alumina polished olivine (0 1 0) surface in pure water is terminated at a plane including half-occupied metal ion sites (M1), an oxygen vacancy site, and a silicate tetrahedral unit with one of its apices pointing outward with respect to the surface. An ideal termination with the oxygen vacancy would fulfill the stoichiometry of the formula unit; however, in the observation, the vacancy site is filled by an adsorbed water species and about a quarter of the remaining metal ions are further depleted. The terminating plane generates two distinct atomic layers in the laterally averaged electron density profile, on which two highly ordered adsorbed water layers are formed. The first layer formation is likely through the direct interaction with the M1 plane and the second layer is likely through the hydrogen bonding interaction with the first water layer. With this multilayered adsorbed water structure, the surface metal ion is partially hydrated by the vacancy-filling water species and adsorbed water

  16. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Lixin Kuang

    2011-01-01

    Full Text Available Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na2CO3, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from −8 °C to 15 °C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments.

  17. Prediction of Refrigerant Gas Hydrates Formation Conditions

    Institute of Scientific and Technical Information of China (English)

    Deqing Liang; Ruzhu Wang; Kaihua Guo; Shuanshi Fan

    2001-01-01

    A fugacity model was developed for prediction of mixed refrigerant gas hydrates formation conditions based on the molecule congregation and solution theories. In this model, g as hydrates were regarded as non-ideal solid solution composed of water groups and guest molecules, and the expressions of fugacity of guest molecules in hydrate phase was proposed accordingly. It has been shown that the developed model can indicate successfully the effect of guest-guest molecule interaction. The results showed that the model can describe better the characteristics of phase equilibrium of mixed refrigerant gas hydrates and predictions are in good agreement with experimental data.

  18. Desalination utilizing clathrate hydrates (LDRD final report).

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy (Sandia National Laboratories, Albuquerque, NM); Greathouse, Jeffery A. (Sandia National Laboratories, Albuquerque, NM); Majzoub, Eric H. (University of Missouri, Columbia, MO)

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations

  19. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion-protein interactions.

    Science.gov (United States)

    Collins, Kim D

    2012-06-01

    Continuum electrostatics models for ions in water provide apparent long range electrostatic explanations for the forces on ions. However the electro-chemical free energy of solvation of ions resides largely in the first two water layers, which control the interfacial behavior of the ions and require explicit modeling to capture their distinctive behaviors. The resulting short range forces produce such surprising charge density-dependent behaviors as ion adsorption onto nonpolar surfaces, like charge aggregation of ions, and substantial ion pairing preferences, which arise largely from the affinity of specific ions for individual water molecules. Specific ion effects controlled by the local water affinity of the ion show a diagnostic change of sign between strongly hydrated Na(+) and weakly hydrated K(+) and between strongly hydrated F(-) and weakly hydrated Cl(-), in both cases marking the strength of water-water interactions in bulk solution, a critical benchmark missing from continuum electrostatics models.

  20. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  1. Hydration in soccer: a review

    Directory of Open Access Journals (Sweden)

    Monteiro Cristiano Ralo

    2003-01-01

    Full Text Available Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. The rates that carbohydrate and water are absorbed by the organism are limited by the rates of gastric emptying and intestinal absorption. The composition of drinks offered to the players should be influenced by the relative importance of the need of supplying carbohydrates or water; it should be remembered that the depletion of carbohydrate can result in fatigue and decrease of performance, but it is not usually a life-threatening condition. The addition of carbohydrate in these drinks increases the concentrations of blood glucose, increases the use of external fuel through the increase of the glucose oxidation in the muscles and it spares muscle glycogen. So, the ingestion of carbohydrate before and during the exercise can delay the emergence of fatigue and increase the players' performance. Several tactics can be used to avoid dehydration, like hyperhydration before exercise and player's acclimatization. The ideal situation to restore the player's fluid losses is between the sessions of exercises. Since soccer is a sport with quite peculiar characteristics related to hydration, the players should be concerned and educated about the importance of fluid ingestion before, during and after the exercise.

  2. Hydration behaviour of polyhydroxylated fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Zavala, J G [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de Los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon S/N, 47460 Jalisco (Mexico); Barajas-Barraza, R E [Departamento de Matematicas y Fisica, Instituto Tecnologico y de Estudios Superiores de Occidente, Periferico Sur, Manuel Gomez MorIn No 8585, 45604 Jalisco (Mexico); Padilla-Osuna, I; Guirado-Lopez, R A, E-mail: jgrz@culagos.udg.mx, E-mail: ebarajas@iteso.mx, E-mail: ismael@ifisica.uaslp.mx, E-mail: guirado@ifisica.uaslp.mx [Instituto de Fisica ' Manuel Sandoval Vallarta' , Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi (Mexico)

    2011-10-28

    We have performed semi-empirical as well as density functional theory calculations in order to analyse the hydration properties of both bare C{sub 60} and highly hydroxylated C{sub 60}(OH){sub 26} fullerenes. In all of our calculations, a total of 42 and 98 water molecules are always surrounding our here-considered carbon nanostructures. We found different wetting properties as a function of the chemical composition and structure of the OH-molecular over-layer covering the fullerene surface. In the case of bare C{sub 60}, water adsorption reveals that the H{sub 2}O species are not uniformly arranged around the carbon network but rather forms water droplets of different sizes, clearly revealing the hydrophobic nature of the C{sub 60} structure. In contrast, in the polyhydroxylated C{sub 60}(OH){sub 26} fullerenes, the degree of wetting is strongly influenced by the precise location of the hydroxyl groups. We found that different adsorbed configurations for the OH-molecular coating can lead to the formation of partially hydrated or completely covered C{sub 60}(OH){sub 26} compounds, a result that could be used to synthesize fullerene materials with different degrees of wettability. By comparing the relative stability of our hydroxylated structures in both bare and hydrated conditions we obtain that the energy ordering of the C{sub 60}(OH){sub 26} isomers can change in the presence of water. The radial distribution function of our hydrated fullerenes reveals that water near these kinds of surfaces is densely packed. In fact, by counting the number of H{sub 2}O molecules which are adsorbed, by means of hydrogen bonds, to the surface of our more stable C{sub 60}(OH){sub 26} isomer, we found that it varies in the range of 5-10, in good agreement with experiments. Finally, by comparing the calculated optical absorption spectra of various C{sub 60}(OH){sub 26} structures in the presence and absence of water molecules, we note that only slight variations in the position and

  3. Protein dynamics: hydration and cavities

    Directory of Open Access Journals (Sweden)

    K. Heremans

    2005-08-01

    Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.

  4. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  5. Unexpected linear ion trap collision-induced dissociation and Fourier transform ion cyclotron resonance infrared multi-photon dissociation fragmentation of a hydrated C-glycoside of 5-fluorouridine formed by the action of the pseudouridine synthases RluA and TruB.

    Science.gov (United States)

    Miracco, Edward J; Bogdanov, Bogdan; Mueller, Eugene G

    2011-09-30

    As part of the investigation of the pseudouridine synthases, 5-fluorouridine in RNA was employed as a mechanistic probe. The hydrated, rearranged product of 5-fluorouridine was isolated as part of a dinucleotide and found to undergo unusual fragmentation during mass spectrometry, with the facile loss of HNCO from the product pyrimidine ring favored over phosphodiester bond rupture. Although the loss of HNCO from uridine and pseudouridine is well established, the pericyclic process leading to their fragmentation cannot operate with the saturated pyrimidine ring in the product of 5-fluorouridine. Based on the MS(n) results and calculations reported here, a new mechanism relying on the peculiar disposition of the functional groups of the product pyrimidine ring is proposed to account for the unusually facile fragmentation.

  6. Dynamics of a photoexcited hydrated electron

    NARCIS (Netherlands)

    Pshenichnikov, M.S.; Baltuška, A.; Wiersma, D.A.; Kärtner, F.X.

    2004-01-01

    Combining photon-echo and frequency-resolved pump-probe techniques with extremely short laser pulses that consist of only few optical cycles, we investigate the dynamics of the equilibrated hydrated electron. The pure dephasing time of the hydrated electron deduced from the photon-echo measurements

  7. Gas hydrate inhibition of drilling fluid additives

    Energy Technology Data Exchange (ETDEWEB)

    Xiaolan, L.; Baojiang, S.; Shaoran, R. [China Univ. of Petroleum, Dongying (China). Inst. of Petroleum Engineering

    2008-07-01

    Gas hydrates that form during offshore well drilling can have adverse impacts on well operational safety. The hydrates typically form in the risers and the annulus between the casing and the drillstring, and can stop the circulation of drilling fluids. In this study, experiments were conducted to measure the effect of drilling fluid additives on hydrate inhibition. Polyalcohols, well-stability control agents, lubricating agents, and polymeric materials were investigated in a stirred tank reactor at temperatures ranging from -10 degree C to 60 degrees C. Pressure, temperature, and torque were used to detect onset points of hydrate formation and dissociation. The inhibitive effect of the additives on hydrate formation was quantified. Phase boundary shifts were measured in terms of temperature difference or sub-cooling gained when chemicals were added to pure water. Results showed that the multiple hydroxyl groups in polyalcohol chemicals significantly inhibited hydrate formation. Polymeric and polyacrylamide materials had only a small impact on hydrate formation, while sulfonated methyl tannins were found to increase hydrate formation. 6 refs., 1 tab., 4 figs.

  8. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert;

    2010-01-01

    Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells. In...

  9. A new geotechnical gas hydrates research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates encapsulate natural gas molecules in a very compact form, as ice-like compounds composed of water molecules. Permafrost environments and offshore areas contain vast quantities of gas hydrates within soil and rock. This paper describes the role played by gas hydrates in submarine slope instability, their potential as a sustainable energy source, and their effects on global climate change. A new state-of-the-art laboratory located at the University of Calgary, which was developed to study the geomechanical behaviour of gas hydrate-sediment mixtures, was also presented. A specialized high pressure low temperature triaxial apparatus capable of performing a suite of tests on gas hydrate-sediment mixtures is housed in this laboratory. Extensive renovations were required in order to enable the use of methane gas to simulate natural hydrate formation conditions. The laboratory is specifically designed to examine the properties and behaviour of reconstituted gas hydrate-sediment mixtures and natural gas hydrate core samples. 26 refs., 9 figs.

  10. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  11. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  12. Ab initio studies of ionization potentials of hydrated hydroxide and hydronium

    CERN Document Server

    Swartz, Charles W

    2013-01-01

    The ionization potential distributions of hydrated hydroxide and hydronium are computed with many-body approach for electron excitations with configurations generated by {\\it ab initio} molecular dynamics. The experimental features are well reproduced and found to be closely related to the molecular excitations. In the stable configurations, the ionization potential is mainly perturbed by water molecules within the first solvation shell. On the other hand, electron excitation is delocalized on both proton receiving and donating complex during proton transfer, which shifts the excitation energies and broadens the spectra for both hydrated ions.

  13. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  14. Effect of Ions Doping on Calcining and Hydration Properties of High-strength Low-calcium Portland Clinker%离子掺杂对高强低钙硅酸盐水泥熟料煅烧性能的影响

    Institute of Scientific and Technical Information of China (English)

    周双喜; 陈鹏飞; 喻乐华; 邓文武

    2015-01-01

    With view to the new requirements of energy-saving emission reduction and low-carbon economy, the research and development ( R&D ) of low calcium cement has great significance . This paper probes into firing different content belite cement clinkers and proportioning different raw materials, which finds out that the burnability of clinkers can be improved remarkably by ions adopting and the crystal form can be stabilized by adopting B2O3. Using chemical reagent and industrial raw materials, by chemical analysis, XRD (X-ray diffraction), lithofacies analysis and SEM, effects of ions doping on calcining and hydration properties of high strength low calcium portland clinker are discussed in details. Results show that the most suitable temperature of clinkers sintering is 1 350℃, can be in steady existence by adding stabilizers, and fossil has its best morphology under the condition of complete mineral crystallizing cement when the calcination temperature ranges from 1 400℃ to 1 450℃ with w(C2S) being 45% and w(C3S) 30% of the content.%选择几种不同生料进行配方,烧制不同含量硅酸二钙水泥熟料,在煅烧过程中通过阴离子掺杂来研究对熟料易烧性能的影响,并添加稳定剂B2O3使贝利特保持活性较高的晶型;运用XRD、岩相分析、SEM等测试手段,初步探讨了离子掺杂对高强低钙硅酸盐水泥熟料煅烧和水化性能的影响. 主要结论是,最佳的煅烧温度为1 350℃,稳定剂的加入可以促进熟料中的稳定存在;其次,当煅烧温度在1 400~1 450℃,w(C2S)含量在45%、w(C3S)含量30%时,熟料矿物结晶完整,矿物形貌最好,其早龄期的水化产物量也最多.

  15. Compound Natural Gas Hydrate: A Natural System for Separation of Hydrate-Forming Gases

    Science.gov (United States)

    Max, M. D.; Osegovic, J. P.

    2007-12-01

    Natural processes that separate materials from a mixture may exert a major influence on the development of the atmospheres and surfaces of planets, moons, and other planetary bodies. Natural distillation and gravity separation, amongst others, are well known means of differentiating materials through liquid-gas partitioning. One of the least known attributes of clathrate (gas) hydrates is their potential effect on the evolution of planetary system oceans and atmospheres. Gas hydrates separate gases from mixtures of gases by concentrating preferred hydrate-forming materials (HFM) guests within the water-molecule cage structure of crystalline hydrate. Different HFMs have very different fields of stability. When multiple hydrate formers are present, a preference series based on their selective uptake exists. Compound hydrate, which is formed from two or more species of HFM, extract preferred HFM from a mixture in very different proportions to their relative percentages of the original mixture. These compound hydrates can have different formation and dissociation conditions depending on the evolution of the environment. That is, the phase boundary of the compound hydrate that is required for dissociation lies along a lower pressure - higher temperature course. Compound hydrates respond to variations in temperature, pressure, and HFM composition. On Earth, the primary naturally occurring hydrate of interest to global climate modeling is methane hydrate. Oceanic hydrate on Earth is the largest store of carbon in the biosphere that is immediately reactive to environmental change, and is capable of releasing large amounts of methane into the atmosphere over a short geological time span. Hydrate formation is essentially metastable and is very sensitive to environmental change and to gas flux. Where natural variations in temperature and pressure varies so that hydrate will form and dissociate in some cyclical manner, such as in oceans where sea level is capable of rising and

  16. Overview on Hydrate Coring, Handling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  17. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-07-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  19. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  20. Modeling of Cation Binding in Hydrated 2:1 Clay Minerals - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David E.

    2000-09-14

    Hydrated 2:1 clay minerals are high surface area, layered silicates that play a unique role in determining the fate of radionuclides in the environment. This project consisted of developing and implementing computer simulation methods for molecular characterization of the swelling and ion exchange properties of Hydrated 2:1 clay minerals, and the subsequent analysis and theoretical modeling with a view toward improving contaminant transport modeling as well as soil remediation and radionuclide containment strategies. Project results included the (a) development of simulation methods to treat clays under environmentally relevant conditions of variable water vapor pressure; (b) calculation of clay swelling thermodynamics as a function of interlayer ion size and charge (calculated quantities include immersion energies, free energies, and entropies of swelling); and (c) calculation of ion exchange free energies, including contributions from changing interlayer water contents and layer spacing.

  1. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar

    Directory of Open Access Journals (Sweden)

    Gai-Fei Peng

    2014-04-01

    Full Text Available The influence of a chloride-ion adsorption agent (Cl agent in short, composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms.

  2. Experimental Study of Natural Gas Storage in Hydrates

    Institute of Scientific and Technical Information of China (English)

    孙志高; 王如竹; 郭开华; 樊栓狮

    2004-01-01

    Hydrate formation rate plays an important role in the making of hydrates for natural gas storage. The effect of sodium dodecyl sulfate (SDS), alkyl polysaccharide glycoside (APG) and cyclopentane (CP) on natural gas hydrate formation rate, induction time and storage capacity was studied. Micellar surfactant solutions were found to increase hydrate formation rate in a quiescent system and improve hydrate formation rate and natural gas storage capacity. The process of hydrate formation includes two stages with surfactant presence. Hydrate forms quickly in the first stage, and then the formation rate is slowed down. Surfactants (SDS or APG) reduce the induction time of hydrate formation. The effect of an anionic surfactant (SDS) on gas storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduces the induction time of hydrate formation, but can not improve the natural gas storage capacity in hydrates.

  3. Methane Recovery from Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  4. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  5. Anomalous porosity preservation and preferential accumulation of gas hydrate in the Andaman accretionary wedge, NGHP-01 site 17A

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Kelly K.; Johnson, Joel E.; Torres, Marta E.; Hong, WeiLi; Giosan, Liviu; Solomon, E.; Kastner, Miriam; Cawthern, Thomas; Long, Philip E.; Schaef, Herbert T.

    2014-12-01

    In addition to well established properties that control the presence or absence of the hydrate stability zone, such as pressure, temperature, and salinity, additional parameters appear to influence the concentration of gas hydrate in host sediments. The stratigraphic record at Site 17A in the Andaman Sea, eastern Indian Ocean, illustrates the need to better understand the role pore-scale phenomena play in the distribution and presence of marine gas hydrates in a variety of subsurface settings. In this paper we integrate field-generated datasets with newly acquired sedimentology, physical property, imaging and geochemical data with mineral saturation and ion activity products of key mineral phases such as amorphous silica and calcite, to document the presence and nature of secondary precipitates that contributed to anomalous porosity preservation at Site 17A in the Andaman Sea. This study demonstrates the importance of grain-scale subsurface heterogeneities in controlling the occurrence and distribution of concentrated gas hydrate accumulations in marine sediments, and document the importance that increased permeability and enhanced porosity play in supporting gas concentrations sufficient to support gas hydrate formation. The grain scale relationships between porosity, permeability, and gas hydrate saturation documented at Site 17A likely offer insights into what may control the occurrence and distribution of gas hydrate in other sedimentary settings.

  6. Hydration of Biodentine, Theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures.

    Science.gov (United States)

    Camilleri, Josette; Laurent, Patrick; About, Imad

    2014-11-01

    The calcium-releasing ability of pulp-capping materials induces pulp tissue regeneration. Tricalcium silicate-based materials produce calcium hydroxide as a by-product of hydration. Assessment of hydration and calcium ion leaching is usually performed on samples that have been aged in physiological solution for a predetermined period of time. The hydration and activity of the materials in vivo may not be similar to those displayed in vitro because of insufficient fluid available in contact with dentin. The aim of this research was the assessment of hydration of Biodentine, Theracal LC, and a prototype radiopacified tricalcium silicate-based material after pulp capping and to compare it with direct hydration in an aqueous solution. The extent of hydration of Biodentine, Theracal LC, and a prototype radiopacified tricalcium silicate-based material with a similar composition to Biodentine but not incorporating the additives was assessed by scanning electron microscopy and energy dispersive spectroscopy of polished specimens after being allowed to hydrate in Hank's balanced salt solution for 14 days. The extent of hydration was compared with material hydration when used as direct pulp capping materials by using a tooth culture model. Material activity was also assessed by x-ray diffraction analysis to investigate the deposition of calcium hydroxide by the materials, and calcium ion leaching in Hank's balanced salt solution was assessed by ion chromatography. Biodentine and the prototype tricalcium silicate cement hydrated and reaction by-products were deposited in the cement matrix both after pulp capping and when incubated in an aqueous solution. Calcium hydroxide was formed, and calcium ions were leached in solution. Theracal LC hydration was incomplete because of the limited moisture diffusion within the material. Thus, no calcium hydroxide was produced, and a lower calcium ion leaching was recorded. Theracal LC had a heterogeneous structure with large unhydrated

  7. Hydration energies of deprotonated amino acids from gas phase equilibria measurements.

    Science.gov (United States)

    Wincel, Henryk

    2008-08-01

    Singly hydrated clusters of deprotonated amino acids were studied using an electrospray high-pressure mass spectrometer equipped with a pulsed ion-beam reaction chamber. Thermochemical data, DeltaH(o), DeltaS(o), and DeltaG(o), for the hydration reaction [AA - H](-) + H(2)O = [AA - H](-).(H(2)O) were obtained from gas-phase equilibria determinations for AA = Gly, Ala, Val, Pro, Phe, Lys, Met, Trp, Gln, Arg, and Asp. The hydration free-energy changes are found to depend significantly on the side-chain substituents. The water binding energy in [AA - H](-).(H(2)O) increases with the gas-phase acidity of AA. The anionic hydrogen bond strengths in [AA - H](-).(H(2)O) are compared with those of the cationic bonds in the corresponding AAH(+).(H(2)O) systems.

  8. Pentagonal dodecahedron methane hydrate cage and methanol system—An ab initio study

    Indian Academy of Sciences (India)

    Snehanshu Pal; T K Kundu

    2013-03-01

    Density functional theory based studies have been performed to elucidate the role of methanol as an methane hydrate inhibitor. A methane hydrate pentagonal dodecahedron cage’s geometry optimization, natural bond orbital (NBO) analysis, Mullikan charge determination, electrostatic potential evaluation and vibrational frequency calculation with and without the presence of methanol using WB97XD/6-31++G(d,p) have been carried out. Calculated geometrical parameters and interaction energies indicate that methanol destabilizes pentagonal dodecahedron methane hydrate cage (1CH4@512) with and without the presence of sodium ion. NBO analysis and red shift of vibrational frequency reveal that hydrogen bond formation between methanol and water molecules of 1CH4@512 cage is favourable subsequently after breaking its original hydrogen bonded network.

  9. Influence of a Neighboring Charged Group on Hydrophobic Hydration Shell Structure.

    Science.gov (United States)

    Davis, Joel G; Zukowski, Samual R; Rankin, Blake M; Ben-Amotz, Dor

    2015-07-23

    Raman multivariate curve resolution (Raman-MCR), as well as quantum and classical calculations, are used to probe water structural changes in the hydration shells of carboxylic acids and tetraalkyl ammonium ions with various aliphatic chain lengths. The results reveal that water molecules in the hydration shell around the hydrophobic chains undergo a temperature and chain length dependent structural transformation resembling that previously observed in aqueous solutions of n-alcohols. Deprotonation of the carboxylic acid headgroup (at pH ∼ 7) is found to suppress the onset of the hydration-shell structural transformation around the nearest aliphatic methylene group. Tetraalkyl ammonium cations are found to more strongly suppress the water structural transformation, perhaps reflecting the greater intramolecular charge delocalization and suppression of dangling OH defects in water's tetrahedral H-bond network. The observed coupling between ionic and hydrophobic groups, as well as the associated charge asymmetry, may influence the hydrophobicity of proteins and other materials.

  10. Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation

    Science.gov (United States)

    Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.

    2013-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  11. Infrared spectroscopy of weakly bound molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lisa I-Ching

    1988-11-01

    The infrared spectra of a series of hydrated hydronium cluster ions and of protonated ethane ion are presented. A tandem mass spectrometer is ideally suited to obtaining the spectra of such weakly bound molecular ions. Traditional absorption spectroscopy is not feasible in these situations, so the techniques described in this thesis make use of some consequence of photon absorption with higher sensitivity than simply attenuation of laser power. That consequence is dissociation. By first mass selecting the parent ion under study and then mass selecting the fragment ion formed from dissociation, the near unit detection efficiency of ion counting methods has been used to full advantage.

  12. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  13. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  14. Prospecting for marine gas hydrate resources

    Science.gov (United States)

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.

    2016-01-01

    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  15. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  16. Gas hydrate dissociation structures in submarine slopes

    Energy Technology Data Exchange (ETDEWEB)

    Gidley, I.; Grozic, J.L.H. [Calgary Univ., AB (Canada). Dept. of Civil Engineering

    2008-07-01

    Studies have suggested that gas hydrates may play a role in submarine slope failures. However, the mechanics surrounding such failures are poorly understood. This paper discussed experimental tests conducted on a small-scale physical model of submarine soils with hydrate inclusions. The laboratory tests investigated the effects of slope angle and depth of burial of the hydrate on gas escape structures and slope stability. Laponite was used to model the soils due to its ability to swell and produce a clear, colorless thixotropic gel when dispersed in water. An R-11 refrigerant was used to form hydrate layers and nodules. The aim of the experiment was to investigate the path of the fluid escape structures and the development of a subsequent slip plane caused by the dissociation of the R-11 hydrates. Slope angles of 5, 10, and 15 degrees were examined. Slopes were examined using high-resolution, high-speed imaging techniques. Hydrate placement and slope inclinations were varied in order to obtain stability data. Results of the study showed that slope angle influenced the direction of travel of the escaping gas, and that the depth of burial affected sensitivity to slope angle. Theoretical models developed from the experimental data have accurately mapped deformations and stress states during testing. Further research is being conducted to investigate the influence of the size, shape, and placement of the hydrates. 30 refs., 15 figs.

  17. Size and stability of liposomes: a possible role of hydration and osmotic forces.

    Science.gov (United States)

    Sabín, J; Prieto, G; Ruso, J M; Hidalgo-Alvarez, R; Sarmiento, F

    2006-08-01

    Dynamic light scattering and electrophoretic mobility measurements have been used to characterize the size, size distribution and zeta potentials (zeta-potentials) of egg yolk phosphatidylcholine (EYPC) liposomes in the presence of monovalent ions ( Na(+) and K(+)). To study the stability of liposomes the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory has been extended by introducing the hydrated radius of the adsorbed ions onto the liposome surfaces. The decrease of liposome size is explained on the basis of the membrane impermeability to some ions which generate osmotic forces, which leads to evacuate water from liposome inside.

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  19. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  20. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-04-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  1. Proton percolation on hydrated lysozyme powders

    OpenAIRE

    Careri, G; Giansanti, A; Rupley, John A.

    1986-01-01

    The framework of percolation theory is used to analyze the hydration dependence of the capacitance measured for protein samples of pH 3-10, at frequencies from 10 kHz to 4 MHz. For all samples there is a critical value of the hydration at which the capacitance sharply increases with increase in hydration level. The threshold hc = 0.15 g of water per g of protein is independent of pH below pH 9 and shows no solvent deuterium isotope effect. The fractional coverage of the surface at hc is in cl...

  2. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  3. A study of desalination using CO{sub 2} hydrate technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D.; Kim, Y.S. [Korea Inst. of Industrial Technology, Busan (Korea, Republic of); Lee, H.J.; Kim, Y.D. [Pusan National Univ., Busan (Korea, Republic of). School of Materials Science and Engineering

    2008-07-01

    Desalination processes use distillation or reverse osmosis methods to produce drinking water from sea water. However, conventional desalination processes are costly. This paper described a gas hydrate desalination process based on a liquid-to-solid phase change coupled with a physical process designed to separate solids from the remaining liquid phase. The kinetics of carbon dioxide (CO{sub 2}) hydrates in an sodium chloride (NaC1) solution were investigated to show the potential application of the CO{sub 2} hydrate formation and decomposition process for seawater desalination. The apparatus consisted of a reactor and supply vessel with temperature and pressure control systems. The decomposition process was conducted after the solution had been drained from the reactor using a squeeze method. The NaC1 ions were trapped in the cavities built by water molecules as well as on the hydrate surface. Results of the study suggested that additional drain processes are needed to increase the desalination efficiency of seawater. Initial CO{sub 2} hydrate formation rates were higher than rates observed in seawater. It was concluded that the method can be used for seawater desalination as well in other purification processes. 7 refs., 2 tabs., 5 figs.

  4. Equilibrium PT curve of methane hydrates in the presence of AlCl3

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Using an experimental transparent sapphire high-pressure cell, three-phase (methane hydrate + AlCl3 solution + methane) equilibrium conditions of methane hydrates in the aqueous solution containing AlCl3 have been investigated under conditions of temperature from 272.15 to 278.15 K and pressure from 4.040 to 8.382 MPa. It could be clearly verified that AlCl3 is of stronger inhibitive effect than that observed for other electrolytes, such as KCl, CaCl2, at the same mole fraction. The induction time of the methane hydrate formation becomes longer when the water activity decreases with the increase of ion charge numbers. Methane hydrates tend to crystallize more easily with higher concentration (AlCl3 concentration of 18%) than lower one (AlCl3 concentration of 10%) in the same electriclyte solution. An empirical exponential equation is presented to calculate the equilibrium temperature and pressure of methane hydrate stable occurrence, and to correlate the measured data for aqueous AlCl3 solution. The results show that there was infinitely small discrepancy between the theoretical computed values and the data oberserved in actual experiments.

  5. Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands.

    Science.gov (United States)

    Kaasik, Ago; Vohla, Christina; Mõtlep, Riho; Mander, Ulo; Kirsimäe, Kalle

    2008-02-01

    The P-retention in hydrated calcareous ash sediment from oil-shale burning thermal power plants in Estonia was studied. Batch experiments indicate good (up to 65 mg P g(-1)) P-binding capacity of the hydrated oil-shale ash sediment, with a removal effectiveness of 67-85%. The high phosphorus sorption potential of hydrated oil-shale ash is considered to be due to the high content of reactive Ca-minerals, of which ettringite Ca6Al2(SO4)3(OH)12.26H2O and portlandite Ca(OH)2 are the most important. The equilibrium dissolution of ettringite provides free calcium ions that act as stable nuclei for phosphate precipitation. The precipitation mechanism of phosphorus removal in hydrated ash plateau sediment is suggested by Ca-phosphate formation in batch experiments at different P-loadings. Treatment with a P-containing solution causes partial-to-complete dissolution of ettringite and portlandite, and precipitation of Ca-carbonate and Ca-phosphate phases, which was confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM)-EDS studies. Thus, the hydrated oil-shale ash sediment can be considered as a potential filtration material for P removal in constructed wetlands for wastewater treatment.

  6. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    Science.gov (United States)

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density.

  7. Effect of Some Admixtures on the Hydration of Silica Fume and Hydrated Lime

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of sodium salt of naphthalene formaldehyde sulfonic acid and stearic acid on the hydration of silica fume and Ca(0H)2 have been investigated. The hydration was carried out at 60℃ and W/S ratio of 4 for various time intervals namely, 1, 3, 7 and 28 days and in the presence of 0.2% and 5% superplasticizer and stearic acid. The results of the hydration kinetics show that both admixtures accelerate the hydration reaction of silica fume and calcium hydroxide during the first 7 days. Whereas, after 28 days hydration there is no significant effect. Generally, most of free calcium hydroxide seems to be consumed after 28 days. In addition, the phase composition as well as the microstructure of the formed hydrates was examined by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) respectively.

  8. A molecular dynamic study on the dissociation mechanism of SI methane hydrate in inorganic salt aqueous solutions.

    Science.gov (United States)

    Xu, Jiafang; Chen, Zhe; Liu, Jinxiang; Sun, Zening; Wang, Xiaopu; Zhang, Jun

    2017-08-01

    Gas hydrate is not only a potential energy resource, but also almost the biggest challenge in oil/gas flow assurance. Inorganic salts such as NaCl, KCl and CaCl2 are widely used as the thermodynamic inhibitor to reduce the risk caused by hydrate formation. However, the inhibition mechanism is still unclear. Therefore, molecular dynamic (MD) simulation was performed to study the dissociation of structure I (SI) methane hydrate in existence of inorganic salt aqueous solution on a micro-scale. The simulation results showed that, the dissociation became stagnant due to the presence of liquid film formed by the decomposed water molecules, and more inorganic ions could shorten the stagnation-time. The diffusion coefficients of ions and water molecules were the largest in KCl system. The structures of ion/H2O and H2O/H2O were the most compact in hydrate/NaCl system. The ionic ability to decompose hydrate cells followed the sequence of: Ca(2+)>2K(+)>2Cl(-)>2Na(+). Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204

    Science.gov (United States)

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.

    2004-01-01

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally <2% of the pore space, although this estimate may increase by a factor of 2 when patchy zones of locally higher gas hydrate content are included in the calculation. These patchy zones are structurally and stratigraphically controlled, contain up to 20% hydrate in the pore space when averaged over zones ???10 m thick, and may occur in up to ???20% of the region imaged by 3D seismic data. This heterogeneous gas hydrate distribution is an important constraint on models of gas hydrate formation in marine sediments and the response of the sediments to tectonic and environmental change. ?? 2004 Published by Elsevier B.V.

  10. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  11. A Hydrate Database: Vital to the Technical Community

    Directory of Open Access Journals (Sweden)

    D Sloan

    2007-06-01

    Full Text Available Natural gas hydrates may contain more energy than all the combined other fossil fuels, causing hydrates to be a potentially vital aspect of both energy and climate change. This article is an overview of the motivation, history, and future of hydrate data management using a CODATA vehicle to connect international hydrate databases. The basis is an introduction to the Gas Hydrate Markup Language (GHML to connect various hydrate databases. The accompanying four articles on laboratory hydrate data by Smith et al., on field hydrate data by L?wner et al., on hydrate modeling by Wang et al., and on construction of a Chinese gas hydrate system by Xiao et al. provide details of GHML in their respective areas.

  12. XANES Reveals the Flexible Nature of Hydrated Strontium in Aqueous Solution.

    Science.gov (United States)

    D'Angelo, Paola; Migliorati, Valentina; Sessa, Francesco; Mancini, Giordano; Persson, Ingmar

    2016-05-05

    X-ray absorption near-edge structure (XANES) spectroscopy has been used to determine the structure of the hydrated strontium in aqueous solution. The XANES analysis has been carried out using solid [Sr(H2O)8](OH)2 as reference model. Classical and Car-Parrinello molecular dynamics (MD) simulations have been carried out and in the former case two different sets of Lennard-Jones parameters have been used for the Sr(2+) ion. The best performing theoretical approach has been chosen on the basis of the experimental results. XANES spectra have been calculated starting from MD trajectories, without carrying out any minimization of the structural parameters. This procedure allowed us to properly account for thermal and structural fluctuations occurring in the aqueous solution in the analysis of the experimental spectrum. A deconvolution procedure has been applied to the raw absorption data thus increasing the sensitivity of XANES spectroscopy. One of the classical MD simulations has been found to provide a XANES theoretical spectrum in better agreement with the experimental data. An 8-fold hydration complex with a Sr-O distance of 2.60 Å has been found to be compatible with the XANES data, in agreement with previous findings. However, the hydration shells of the strontium ions have been found to have a flexible nature with a fast ligand exchange rate between the first and second hydration shell occurring in the picosecond time scale.

  13. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  14. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  15. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a drilling hazard by the oil and gas industry for years. Drilling engineers working in Russia, Canada and the USA have documented numerous problems, including drilling kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates as a potential energy source agree that the resource potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained from physical samples taken from actual hydrate-bearing rocks. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The project team drilled and continuously cored the Hot Ice No. 1 well on Anadarko-leased acreage beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and used for determining physical characteristics of hydrates and surrounding rock. After the well was logged, a 3D vertical seismic profile (VSP) was recorded to calibrate the shallow geologic section with seismic data and to investigate techniques to better resolve lateral subsurface variations of potential hydrate-bearing strata. Paulsson Geophysical Services, Inc. deployed their 80 level 3C clamped borehole seismic receiver array in the wellbore to record samples every 25 ft. Seismic vibrators were successively positioned at 1185 different surface positions in a circular pattern around the wellbore. This technique generated a 3D image of the subsurface. Correlations were

  16. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  17. Polyethylene oxide hydration in grafted layers

    Science.gov (United States)

    Dormidontova, Elena; Wang, Zilu

    Hydration of water soluble polymers is one of the key-factors defining their conformation and properties, similar to biopolymers. Polyethylene oxide (PEO) is one of the most important biomedical-applications polymers and is known for its reverse temperature solubility due to hydrogen bonding with water. As in many practical applications PEO chains are grafted to surfaces, e.g. of nanoparticles or planar surfaces, it is important to understand PEO hydration in such grafted layers. Using atomistic molecular dynamic simulations we investigate the details of molecular conformation and hydration of PEO end-grafted to gold surfaces. We analyze polymer and water density distribution as a function of distance from the surface for different grafting densities. Based on a detailed analysis of hydrogen bonding between polymer and water in grafted PEO layers, we will discuss the extent of PEO hydration and its implication for polymer conformation, mobility and layer properties. This research is supported by NSF (DMR-1410928).

  18. Formulating formation mechanism of natural gas hydrates.

    Science.gov (United States)

    Palodkar, Avinash V; Jana, Amiya K

    2017-07-25

    A large amount of energy, perhaps twice the total amount of all other hydrocarbon reserves combined, is trapped within gas hydrate deposits. Despite emerging as a potential energy source for the world over the next several hundred years and one of the key factors in causing future climate change, gas hydrate is poorly known in terms of its formation mechanism. To address this issue, a mathematical formulation is proposed in the form of a model to represent the physical insight into the process of hydrate growth that occurs on the surface and in the irregular nanometer-sized pores of the distributed porous particles. To evaluate the versatility of this rigorous model, the experimental data is used for methane (CH4) and carbon dioxide (CO2) hydrates grown in different porous media with a wide range of considerations.

  19. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  20. Quantifying hydrate formation and kinetic inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, E.D.; Subramanian, S.; Matthews, P.N.; Lederhos, J.P.; Khokhar, A.A. [Colorado School of Mines, Golden, CO (United States). Center for Hydrate Research

    1998-08-01

    In the Prausnitz tradition, molecular and macroscopic evidence of hydrate formation and kinetic inhibition is presented. On the microscopic level, the first Raman spectra are presented for the formation of both uninhibited and inhibited methane hydrates with time. This method has the potential to provide a microscopic-based kinetics model. Three macroscopic aspects of natural gas hydrate kinetic inhibition are also reported: (1) The effect of hydrate dissociation residual structures was measured, which has application in decreasing the time required for subsequent formation. (2) The performance of a kinetic inhibitor (poly(N-vinylcaprolactam) or PVCap) was measured and correlated as a function of PVCap molecular weight and concentrations of PVCap, methanol, and salt in the aqueous phase. (3) Long-duration test results indicated that the use of PVCap can prevent pipeline blockage for a time exceeding the aqueous phase residence time in some gas pipelines.

  1. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  2. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2004-11-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained

  3. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained

  4. Experimental Dissociation of Methane Hydrates Through Depressurization

    Science.gov (United States)

    Borgfeldt, T.; Flemings, P. B.; Meyer, D.; You, K.

    2015-12-01

    We dissociated methane hydrates by stepwise depressurization. The initial hydrates were formed by injecting gas into a cylindrical sample of brine-saturated, coarse-grained sand at hydrate-stable conditions with the intention of reaching three-phase equilibrium. The sample was initially at 1°C with a pore pressure of 1775 psi and a salinity of 7 wt. % NaBr. The depressurization setup consisted of one pump filled with tap water attached to the confining fluid port and a second pump attached to the inlet port where the methane was injected. Depressurization was conducted over sixteen hours at a constant temperature of 1°C. The pore pressure was stepwise reduced from 1775 psi to atmospheric pressure by pulling known volumes of gas from the sample. After each extraction, we recorded the instantaneous and equilibrium pore pressure. 0.503 moles of methane were removed from the sample. The pore pressure decreased smoothly and nonlinearly with the cumulative gas withdrawn from the sample. We interpret that hydrate began to dissociate immediately with depressurization, and it continued to dissociate when the pressure decreased below the three-phase pressure for 1°C and 0 wt. % salinity. Two breaks in slope in the pressure vs. mass extracted data are bounded by smooth, nonlinear curves with differing slopes on either side. We attribute the breaks to dissociation of three zones of hydrate concentration. We created a box model to simulate the experimental behavior. For a 10% initial gas saturation (estimated from the hydrate formation experiment and based on mass conservation), an initial hydrate saturation of 55% is required to match the total methane extracted from the sample. Future experiments will be conducted over a longer timespan while monitoring hydrate dissociation with CT imaging throughout the process.

  5. Hydration of polyethylene glycol-grafted liposomes.

    OpenAIRE

    Tirosh, O; Barenholz, Y.; Katzhendler, J; Priev, A

    1998-01-01

    This study aimed to characterize the effect of polyethylene glycol of 2000 molecular weight (PEG2000) attached to a dialkylphosphatidic acid (dihexadecylphosphatidyl (DHP)-PEG2000) on the hydration and thermodynamic stability of lipid assemblies. Differential scanning calorimetry, densitometry, and ultrasound velocity and absorption measurements were used for thermodynamic and hydrational characterization. Using a differential scanning calorimetry technique we showed that each molecule of PEG...

  6. Exploitation of subsea gas hydrate reservoirs

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  7. Preservation of methane hydrate at 1 atm

    Science.gov (United States)

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2001-01-01

    A "pressure-release" method that enables reproducible bulk preservation of pure, porous, methane hydrate at conditions 50 to 75 K above its equilibrium T (193 K) at 1 atm is refined. The amount of hydrate preserved by this method appears to be greatly in excess of that reported in the previous citations, and is likely the result of a mechanism different from ice shielding.

  8. Surfactant effects on SF6 hydrate formation.

    Science.gov (United States)

    Lee, Bo Ram; Lee, Ju Dong; Lee, Hyun Ju; Ryu, Young Bok; Lee, Man Sig; Kim, Young Seok; Englezos, Peter; Kim, Myung Hyun; Kim, Yang Do

    2009-03-01

    Sulfur hexafluoride (SF(6)) has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate or collect it from waste gas streams. One separation method is through hydrate crystal formation. In this study, SF(6) hydrate was formed in aqueous surfactant solutions of 0.00, 0.01, 0.05, 0.15 and 0.20 wt% to investigate the effects of surfactants on the hydrate formation rates. Three surfactants, Tween 20 (Tween), sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS), were tested in a semi-batch stirred vessel at the constant temperature and pressures of 276.2 K and 0.78 MPa, respectively. All surfactants showed kinetic promoter behavior for SF(6) hydrate formation. It was also found that SF(6) hydrate formation proceeded in two stages with the second stage being the most rapid. In situ Raman spectroscopy analysis revealed that the increased gas consumption rate with the addition of surfactant was possibly due to the increased gas filling rate in the hydrate cavity.

  9. Two-dimensional protonic percolation on lightly hydrated purple membrane.

    Science.gov (United States)

    Rupley, J A; Siemankowski, L; Careri, G; Bruni, F

    1988-12-01

    The capacitance and dielectric loss factor were measured for a sample of purple membrane of Halobacterium halobium as a function of hydration level (0.017 to >0.2 g of water/g of membrane) and frequency (10 kHz to 10 MHz). The capacitance and the derived conductivity show explosive growth above a threshold hydration level, h(c) approximately 0.0456. The conductivity shows a deuterium isotope effect, H/(2)H = 1.38, in close agreement with expectation for a protonic process. The level h(c) is frequency independent and shows no deuterium isotope effect. These properties are analogous to those found for lysozyme in a related study. Protonic conduction for the purple membrane can be considered, as for lysozyme, within the framework of a percolation model. The critical exponent, t, which describes the conductivity of a percolative system near the threshold, has the value 1.23. This number is in close agreement with expectation from theory for a two-dimensional percolative process. The dielectric properties of the purple membrane are more complex than those of lysozyme, seen in the value of h(c) and in the frequency and hydration dependence of the loss factor. There appear to be preferred regions of proton conduction. The percolation model is based upon stochastic behavior of a system partially populated with conducting elements. This model suggests that ion transport in membranes and its control can be based on pathways formed of randomly connected conducting elements and that a fixed geometry (a proton wire) is not the only possible basis for a mechanism of conduction.

  10. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores

    Science.gov (United States)

    Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael

    2017-08-01

    During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and

  11. STATE OF WATER SORBED ON ION EXCHANGERS

    Institute of Scientific and Technical Information of China (English)

    VenkataramaniB

    1994-01-01

    Water sorption isotherms available in the literatures of Na+-from of Dowex 50W×4 and×8,BioRex-70,Amberlyst-15,Nafion-117,hydrous titanium oxide,crystalline zirconium phosphate and zinc hexacyanoferrate(Ⅱ),have been analysed by the D′Arcy and Watt equation.Hydration of Na+ in the ion exchangers is the predominant interaction of sorbed water.The correlation between the hydration numbers and those obtained for electrolyte solution is found in this paper.Qualitative implications of the state of sorbed water in the ion exchangers on its various characteristic quantities like selectivity,are briefly discussed.

  12. In Situ Raman Analyses of Natural Gas and Gas Hydrates at Hydrate Ridge, Oregon

    Science.gov (United States)

    Peltzer, E. T.; White, S. N.; Dunk, R. M.; Brewer, P. G.; Sherman, A. D.; Schmidt, K.; Hester, K. C.; Sloan, E. D.

    2004-12-01

    During a July 2004 cruise to Hydrate Ridge, Oregon, MBARI's sea-going laser Raman spectrometer was used to obtain in situ Raman spectra of natural gas hydrates and natural gas venting from the seafloor. This was the first in situ analysis of gas hydrates on the seafloor. The hydrate spectra were compared to laboratory analyses performed at the Center for Hydrate Research, Colorado School of Mines. The natural gas spectra were compared to MBARI gas chromatography (GC) analyses of gas samples collected at the same site. DORISS (Deep Ocean Raman In Situ Spectrometer) is a laboratory model laser Raman spectrometer from Kaiser Optical Systems, Inc modified at MBARI for deployment in the deep ocean. It has been successfully deployed to depths as great as 3600 m. Different sampling optics provide flexibility in adapting the instrument to a particular target of interest. An immersion optic was used to analyze natural gas venting from the seafloor at South Hydrate Ridge ( ˜780 m depth). An open-bottomed cube was placed over the vent to collect the gas. The immersion optic penetrated the side of the cube as did a small heater used to dissociate any hydrate formed during sample collection. To analyze solid hydrates at both South and North Hydrate Ridge ( ˜590 m depth), chunks of hydrate were excavated from the seafloor and collected in a glass cylinder with a mesh top. A stand-off optic was used to analyze the hydrate inside the cylinder. Due to the partial opacity of the hydrate and the small focal volume of the sampling optic, a precision underwater positioner (PUP) was used to focus the laser spot onto the hydrate. PUP is a stand-alone system with three degrees-of-freedom, capable of moving the DORISS probe head with a precision of 0.1 mm. In situ Raman analyses of the gas indicate that it is primarily methane. This is verified by GC analyses of samples collected from the same site. Other minor constituents (such as CO2 and higher hydrocarbons) are present but may be in

  13. Hydration effects on gypsum dissolution revealed by in situ nanoscale atomic force microscopy observations

    Science.gov (United States)

    Burgos-Cara, A.; Putnis, C. V.; Rodriguez-Navarro, C.; Ruiz-Agudo, E.

    2016-04-01

    Recent work has suggested that the rates of mineral dissolution in aqueous solutions are dependent on the kinetics of dehydration of the ions building the crystal. Dehydration kinetics will be ultimately determined by the competition between ion-water and water-water interactions, which can be significantly modified by the presence of background ions in solution. At low ionic strength, the effect of electrolytes on ion-water (electrostatic) interactions will dominate (Kowacz et al., 2007). By performing macroscopic and in situ, microscopic (atomic force microscopy) dissolution experiments, the effect of background electrolytes on the dissolution kinetics of gypsum (CaSO4·2H2O) {0 1 0} cleavage surfaces is tested at constant, low ionic strength (IS = 0.05) and undersaturation (saturation index, SI = -0.045). Dissolution rates are systematically lower in the presence of 1:1 background electrolytes than in an electrolyte-free solution, regardless of the nature of the electrolyte tested. We hypothesize that stabilization of the hydration shell of calcium by the presence of background ions can explain this result, based on the observed correlations in dissolution rates with the ionic surface tension increment of the background ion in solution. Stabilization of the cation hydration shell should favor dissolution. However, in the case of strongly hydrated ions such as Ca2+, this has a direct entropic effect that reduces the overall ΔG of the system, so that dissolution is energetically less favorable. Overall, these results provide new evidence that supports cation dehydration being the rate-controlling step for gypsum dissolution, as proposed for other minerals such as barite, dolomite and calcite.

  14. An Ion Exchange Study of Possible Hydridized 5f Bonding in theActinides

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.M.; Street, Jr., K.; Seaborg, G.T.

    1951-08-28

    A study has been made of the elution behavior of curium(III), americium(III), plutonium(III), actinium(III), plutonium(IV), neptunium(IV), uraniuM(IV), thorium(IV), neptunium(V), plutonium (VI), uranium (VI), lanthanum(III), cerium(III), europium(III), ytterbium(III), ytterium(III), strontium(II), barium(II), radium(II), cesium(I) with 3.2 M, 6.2 M, 9.3 M, and 12.2 M HCl solutions from Dowex-50 cation exchange resin columns. These elutions show that in high concentrations of hydrochloric acid the actinides form complex ions with chloride ion to a much greater extent than the lanthanides. The strengths of the tripositive actinide complex ions apparently go in the order plutonium > americium> curium, although their ionic radii also decrease in this same order. To explain these results, a partial covalent character may be ascribed to the bonding in the transuranium complex ions. It is shown that a reasonable structure for such covalent bonding involves hybridization of the 5f orbitals in the actinide elements.

  15. Internal hydration of a metal-transporting ATPase is controlled by membrane lateral pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Fischermeier, E. [Technische Univ. Dresden (Germany); Pospisil, P. [A.S.C. R., Prague (Czech Republic). J. Heyrovsky Inst. Physical Chemistry; Solioz, M. [Bern Univ. (Switzerland); Sayed, A.; Hof, M.

    2017-07-01

    The active transport of ions across biological mem branes requires their hydration shell to interact with the interior of membrane proteins. However, the influence of the external lipid phase on internal dielectric dynamics is hard to access by experiment. Using the octahelical transmembrane architecture of the copper-transporting P{sub 1B}-type ATPase from Legionella pneumophila (LpCopA) as a model structure, we have established the site-specific labeling of internal cysteines with a polarity-sensitive fluorophore. This enabled dipolar relaxation studies in a solubilized form of the protein and in its lipid-embedded state in nano-discs (NDs). Time-dependent fluorescence shifts revealed the site-specific hydration and dipole mobility around the conserved ion-binding motif. The spatial distribution of both features is shaped significantly and independently of each other by membrane lateral pressure.

  16. Yolk proteolysis and aquaporin-1o play essential roles to regulate fish oocyte hydration during meiosis resumption.

    NARCIS (Netherlands)

    Fabra, M.; Raldua, D.; Bozzo, M.G.; Deen, P.M.T.; Lubzens, E.; Cerda, J.

    2006-01-01

    In marine fish, meiosis resumption is associated with a remarkable hydration of the oocyte, which contributes to the survival and dispersal of eggs and early embryos in the ocean. The accumulation of ions and the increase in free amino acids generated from the cleavage of yolk proteins (YPs) provide

  17. Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media.

    Science.gov (United States)

    Baldwin, Bernard A; Stevens, Jim; Howard, James J; Graue, Arne; Kvamme, Bjorn; Aspenes, Erick; Ersland, Geir; Husebø, Jarle; Zornes, David R

    2009-06-01

    Magnetic resonance imaging was used to monitor and quantify methane hydrate formation and exchange in porous media. Conversion of methane hydrate to carbon dioxide hydrate, when exposed to liquid carbon dioxide at 8.27 MPa and approximately 4 degrees C, was experimentally demonstrated with MRI data and verified by mass balance calculations of consumed volumes of gases and liquids. No detectable dissociation of the hydrate was measured during the exchange process.

  18. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  19. Solid state tungsten oxide hydrate/tin oxide hydrate electrochromic device prepared by electrochemical reactions

    Science.gov (United States)

    Nishiyama, Kentaro; Matsuo, Ryo; Sasano, Junji; Yokoyama, Seiji; Izaki, Masanobu

    2017-03-01

    The solid state electrochromic device composed of tungsten oxide hydrate (WO3(H2O)0.33) and tin oxide hydrate (Sn(O,OH)) has been constructed by anodic deposition of WO3(H2O)0.33 and Sn(O,OH) layers and showed the color change from clear to blue by applying voltage through an Au electrode.

  20. Kinetic studies of gas hydrate formation with low-dosage hydrate inhibitors

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Pipeline blockage by gas hydrates is a serious problem in the petroleum industry.Low-dosage inhibitors have been developed for its cost-effective and environmentally acceptable characteristics.In a 1.072-L reactor with methane,ethane and propane gas mixture under the pressure of about 8.5 MPa at 4 °C,hydrate formation was investigated with low-dosage hydrate inhibitors PVP and GHI1,the change of the compressibility factor and gas composition in the gas phase was analyzed,the gas contents in hydrates were compared with PVP and GHI1 added,and the inhibition mechanism of GHI1 was discussed.The results show that PVP and GHI1 could effectively inhibit the growth of gas hydrates but not nucleation.Under the experimental condition with PVP added,methane and ethane occupied the small cavities of the hydrate crystal unit and the ability of ethane entering into hydrate cavities was weaker than that of methane.GHI1 could effectively inhibit molecules which could more readily form hydrates.The ether and hydroxy group of diethylene glycol monobutyl ether have the responsibility for stronger inhibition ability of GHI1 than PVP.

  1. Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation

    OpenAIRE

    Dzyazko, Yuliya S; Volfkovich, Yurii M; Sosenkin, Valentin E; Nikolskaya, Nadejda F; Gomza, Yurii P

    2014-01-01

    The aim of the work was to elucidate the nature of charge-selective properties of macroporous composite inorganic membranes modified with nanoparticles of hydrated zirconium dioxide. The membranes have been investigated using methods of standard contact porosimetry, potentiometry, electron microscopy and small-angle X-ray scattering. The ion exchanger has been found to deposit inside pores of ceramics. Differential curves of pore volume distribution have been resolved using Lorentz functions;...

  2. Physical chemistry of portland-cement hydrate, radioactive-waste hosts: Final report, January 16, 1987--December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Grutzeck, M.W.

    1989-01-15

    This is a final report summarizing the results of a study of the physical and crystal chemistry of potential hydroxylated radioactive waste hosts compatible with portland cement. Research has focussed on the identification and evaluation of hydrated host phases for four ions: cesium, strontium, iodine and boron. These ions were chosen because they are among the most long lived of the radioactive waste ions as well as the most difficult to immobilize with cement-based materials. Results show that such phases do indeed exist, and that they are excellent host phases for the above ions.

  3. Modification of waste carpet with hydrated ferric oxide for recycling as an adsorbent material to recover phosphate from wastewater

    OpenAIRE

    Collinson, Simon R.; Duplá García, Oscar

    2013-01-01

    The surface of waste wool rich carpet was modified to enable recycling as an adsorbent material to remove pollutants from water and to avoid bulky carpets contributing to landfill. The proteins of the wool fibres in waste carpets adsorbed either copper(II) nitrate or iron(II) ions to form nanoparticles of Hydrated Ferric Oxide (HFO). The copper(II) ions reversibly bound to the wool carpet. The strongest binding of the nanoparticles of HFO occurred after first oxidizing the surface epicuticle ...

  4. Experimental characterization of production behavior accompanying the hydrate reformation in methane hydrate bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.; Kang, J.M.; Nguyen, H.T. [Seoul National Univ., Seoul (Korea, Republic of); Park, C. [Kangwon National Univ., (Korea, Republic of); Lee, J. [Korea Inst., of Geoscience and Mineral Resources (Korea, Republic of)

    2010-07-01

    This study investigated the production behaviour associated with gas hydrate reformation in methane hydrate-bearing sediment by hot-brine injection. A range of different temperature and brine injection rates were used to analyze the pressure and temperature distribution, the gas production behaviour and the movement of the dissociation front. The study showed that hydrate reformation reduces the production rate considerably at an early time. However, gas production increases during the dissociation, near the outlet because the dissociated methane around the inlet is consumed in reforming the hydrate and increases the hydrate saturation around the outlet. Higher temperature also increases the gas production rate and the speed of the dissociation front. 12 refs., 2 tabs., 4 figs.

  5. Authigenic gypsum found in gas hydrate-associated sediments from Hydrate Ridge, the eastern North Pacific

    Institute of Scientific and Technical Information of China (English)

    WANG; Jiasheng; Erwin; Suess; Dirk; Rickert

    2004-01-01

    Characteristic gypsum micro-sphere and granular mass were discovered by binocular microscope in the gas hydrate-associated sediments at cores SO143-221 and SO143/TVG40-2A respectively on Hydrate Ridge of Cascadia margin, the eastern North Pacific. XRD patterns and EPA analyses show both micro-sphere and granular mass of the crystals have the typical peaks and the typical main chemical compositions of gypsum, although their weight percents are slightly less than the others in the non-gas hydrate-associated marine regions. SEM pictures show that the gypsum crystals have clear crystal boundaries, planes, edges and cleavages of gypsum in form either of single crystal or of twin crystals. In view of the fact that there are meanwhile gas hydrate-associated authigenic carbonates and SO42(-rich pore water in the same sediment cores, it could be inferred reasonably that the gypsums formed also authigenically in the gas hydrate-associated environment too, most probably at the interface between the downward advecting sulfate-rich seawater and the below gas hydrate, which spilled calcium during its formation on Hydrate Ridge. The two distinct forms of crystal intergrowth, which are the granular mass of series single gypsum crystals at core SO143/TVG40-2A and the microsphere of gypsum crystals accompanied with detrital components at core SO143-221 respectively, indicate that they precipitated most likely in different interstitial water dynamic environments. So, the distinct authigenic gypsums found in gas hydrate-associated sediments on Hydrate Ridge could also be believed as one of the parameters which could be used to indicate the presence of gas hydrate in an unknown marine sediment cores.

  6. Hydration characteristics of Biodentine and Theracal used as pulp capping materials.

    Science.gov (United States)

    Camilleri, Josette

    2014-07-01

    Investigation of the hydration and characterization of Theracal and Biodentine used for pulp capping. The setting mechanism and characterization of set Biodentine and Theracal after immersion in Hank's balanced salt solution (HBSS) for 28 days was investigated by scanning electron microscopy (SEM) of polished specimens and X-ray diffraction (XRD) analysis. The bioactivity and surface microstructure of cements immersed in HBSS or water was also assessed by similar techniques together with leaching in solution investigated by ion chromatography (IC). Biodentine hydration resulted in the formation of calcium hydroxide which was present in the material matrix and also on the material surface. Theracal was composed of large cement particles which showed some evidence of reaction rims on hydration. The material matrix included a barium zirconate phase as radiopacifier and also a glass phase composed of strontium, silicon and aluminum. This phase could not be detected in XRD analysis. Formation of a calcium phosphate phase was demonstrated on Theracal immersed in HBSS. Both materials leached calcium ions in solution. The presence of a resin matrix modifies the setting mechanism and calcium ion leaching of Theracal. The clinical implications of these findings need to be investigated. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Structure of Co(III and Fe(III transition metal ions in aqueous solution

    Directory of Open Access Journals (Sweden)

    Ahmed M. Mohammed

    2006-06-01

    Full Text Available The hydration structures of Co(III and Fe(III ions have been investigated by Metropolis Monte Carlo (MC simulations using only ion-water pair interaction potentials and by including up to three body correction terms. The hydration structures were evaluated in terms of radial distribution functions, coordination numbers and angular distributions. The structural parameters obtained by including three-body correction terms are in good agreement with experimental values proving that many-body effects play a crucial role in the description of the hydration structure of these highly charged ions.

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  9. Formation mechanism of authigenic gypsum in marine methane hydrate settings: Evidence from the northern South China Sea

    Science.gov (United States)

    Lin, Qi; Wang, Jiasheng; Algeo, Thomas J.; Su, Pibo; Hu, Gaowei

    2016-09-01

    During the last decade, gypsum has been discovered widely in marine methane hydrate-bearing sediments. However, whether this gypsum is an in-situ authigenic precipitate remains controversial. The GMGS2 expedition carried out in 2013 by the Guangzhou Marine Geological Survey (GMGS) in the northern South China Sea provided an excellent opportunity for investigating the formation of authigenic minerals and, in particular, the relationship between gypsum and methane hydrate. In this contribution, we analyzed the morphology and sulfur isotope composition of gypsum and authigenic pyrite as well as the carbon and oxygen isotopic compositions of authigenic carbonate in a drillcore from Site GMGS2-08. These methane-derived carbonates have characteristic carbon and oxygen isotopic compositions (δ13C: -57.9‰ to -27.3‰ VPDB; δ18O: +1.0‰ to +3.8‰ VPDB) related to upward seepage of methane following dissociation of underlying methane hydrates since the Late Pleistocene. Our data suggest that gypsum in the sulfate-methane transition zone (SMTZ) of this core precipitated as in-situ authigenic mineral. Based on its sulfur isotopic composition, the gypsum sulfur is a mixture of sulfate derived from seawater and from partial oxidation of authigenic pyrite. Porewater Ca2+ ions for authigenic gypsum were likely generated from carbonate dissolution through acidification produced by oxidation of authigenic pyrite and ion exclusion during methane hydrate formation. This study thus links the formation mechanism of authigenic gypsum with the oxidation of authigenic pyrite and evolution of underlying methane hydrates. These findings suggest that authigenic gypsum may be a useful proxy for recognition of SMTZs and methane hydrate zones in modern and ancient marine methane hydrate geo-systems.

  10. Experimental Determination of Refractive Index of Gas Hydrates

    DEFF Research Database (Denmark)

    Bylov, Martin; Rasmussen, Peter

    1997-01-01

    The refractive indexes of methane hydrate and natural gas hydrate have been experimentally determined. The refractive indexes were determined in an indirect manner making use of the fact that two non-absorbing materials will have the same refractive index if they cannot be distinguished visually....... For methane hydrate (structure I) the refractive index was found to be 1.346 and for natural gas hydrate (structure II) it was found to be 1.350. The measurements further suggest that the gas hydrate growth rate increases if the water has formed hydrates before. The induction time, on the other hand, seems...

  11. Complex admixtures of clathrate hydrates in a water desalination method

    Science.gov (United States)

    Simmons, Blake A.; Bradshaw, Robert W.; Dedrick, Daniel E.; Anderson, David W.

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  12. Interfacial phenomena in gas hydrate systems.

    Science.gov (United States)

    Aman, Zachary M; Koh, Carolyn A

    2016-03-21

    Gas hydrates are crystalline inclusion compounds, where molecular cages of water trap lighter species under specific thermodynamic conditions. Hydrates play an essential role in global energy systems, as both a hinderance when formed in traditional fuel production and a substantial resource when formed by nature. In both traditional and unconventional fuel production, hydrates share interfaces with a tremendous diversity of materials, including hydrocarbons, aqueous solutions, and inorganic solids. This article presents a state-of-the-art understanding of hydrate interfacial thermodynamics and growth kinetics, and the physiochemical controls that may be exerted on both. Specific attention is paid to the molecular structure and interactions of water, guest molecules, and hetero-molecules (e.g., surfactants) near the interface. Gas hydrate nucleation and growth mechanics are also presented, based on studies using a combination of molecular modeling, vibrational spectroscopy, and X-ray and neutron diffraction. The fundamental physical and chemical knowledge and methods presented in this review may be of value in probing parallel systems of crystal growth in solid inclusion compounds, crystal growth modifiers, emulsion stabilization, and reactive particle flow in solid slurries.

  13. Study on Fluorescent Properties of Europium(III) Ternary Complexes%铕(III)三元配合物荧光性质的研究

    Institute of Scientific and Technical Information of China (English)

    成义祥; 王昀初; 陶中东; 张征林

    2000-01-01

    According to fluorescent spectra of a series of Eu(III) ternary complexes in the three solvents EtOH, DMF and CH3CN, the fluorescence is stronger in the solvent CH3CN than in the solvents EtOH and DMF, and fluorescent intensity is contrary to the affinity of three solvents with rare earth ions. Center ions emit fluorescence mainly by an intramolecular energy transfer from the broad absorbing β-diketonate TTA, BTA or BA to the chelated rare earth ions.

  14. Stability evaluation of hydrate-bearing sediments during thermally-driven hydrate dissociation

    Science.gov (United States)

    Kwon, T.; Cho, G.; Santamarina, J.; Kim, H.; Lee, J.

    2009-12-01

    Hydrate-bearing sediments may destabilize spontaneously as part of geological processes, unavoidably during petroleum drilling/production operations, or intentionally as part of gas extraction from the hydrate itself. In all cases, high pore fluid pressure generation is anticipated during hydrate dissociation. This study examined how thermal changes destabilize gas hydrate-bearing sediments. First, an analytical formulation was derived for predicting fluid pressure evolution in hydrate-bearing sediments subjected to thermal stimulation without mass transfer. The formulation captures the self-preservation behavior, calculates the hydrate and free gas quantities during dissociation, considering effective stress-controlled sediment compressibility and gas solubility in aqueous phase. Pore fluid pressure generation is proportional to the initial hydrate fraction and the sediment bulk stiffness; is inversely proportional to the initial gas fraction and gas solubility; and is limited by changes in effective stress that cause the failure of the sediment. Second, the analytical formulation for hydrate dissociation was incorporated as a user-defined function into a verified finite difference code (FLAC2D). The underlying physical processes of hydrate-bearing sediments, including hydrate dissociation, self-preservation, pore pressure evolution, gas dissolution, and sediment volume expansion, were coupled with the thermal conduction, pore fluid flow, and mechanical response of sediments. We conducted the simulations for a duration of 20 years, assuming a constant-temperature wellbore transferred heat to the surrounding hydrate-bearing sediments, resulting in dissociation of methane hydrate in the well vicinity. The model predicted dissociation-induced excess pore fluid pressures which resulted in a large volume expansion and plastic deformation of the sediments. Furthermore, when the critical stress was reached, localized shear failure of the sediment around the borehole was

  15. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  16. Apparatus investigates geological aspects of gas hydrates

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Dillon, William P.

    1999-01-01

    The US Geological Survey has developed a laboratory research system which allows the study of the creation and dissociation of gas hydrates under deepwater conditions and with different sediment types and pore fluids. The system called GHASTLI (gas hydrate and sediment test laboratory instrument) comprises a pressure chamber which holds a sediment specimen, and which can simulate water depths to 2,500m and different sediment overburden. Seawater and gas flow through a sediment specimen can be precisely controlled and monitored. It can simulate a wide range of geology and processes and help to improve understanding of gas hydrate processes and aid prediction of geohazards, their control and potential use as an energy source. This article describes GHASTLI and how it is able to simulate natural conditions, focusing on fluid volume, acoustic velocity-compressional and shear wave, electric resistance, temperature, pore pressure, shear strength, and permeability.

  17. Simulation of Methane Recovery from Gas Hydrates Combined with Storing Carbon Dioxide as Hydrates

    Directory of Open Access Journals (Sweden)

    Georg Janicki

    2011-01-01

    Full Text Available In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2 from fossil fuel consumption. This idea is supported by the thermodynamics of CO2 and methane (CH4 hydrates and the fact that CO2 hydrates are more stable than CH4 hydrates in a certain P-T range. The potential of producing methane by depressurization and/or by injecting CO2 is numerically studied in the frame of the SUGAR project. Simulations are performed with the commercial code STARS from CMG and the newly developed code HyReS (hydrate reservoir simulator especially designed for hydrate processing in the subsea sediment. HyReS is a nonisothermal multiphase Darcy flow model combined with thermodynamics and rate kinetics suitable for gas hydrate calculations. Two scenarios are considered: the depressurization of an area 1,000 m in diameter and a one/two-well scenario with CO2 injection. Realistic rates for injection and production are estimated, and limitations of these processes are discussed.

  18. Unraveling the Sc(3+) Hydration Geometry: The Strange Case of the Far-Coordinated Water Molecule.

    Science.gov (United States)

    Migliorati, Valentina; D'Angelo, Paola

    2016-07-05

    The hydration structure and dynamics of Sc(3+) in aqueous solution have been investigated using a combined approach based on quantum mechanical (QM) calculations, molecular dynamics (MD) simulations, and extended X-ray absorption fine structure (EXAFS) spectroscopy. An effective Sc-water two-body potential has been generated from QM calculations and then used in the MD simulation of Sc(3+) in water, and the reliability of the entire procedure has been assessed by comparing the theoretical structural results with the EXAFS experimental data. The outstanding outcome of this work is that the Sc(3+) ion forms a well-defined capped square antiprism (SAP) complex in aqueous solution, where the eight water molecules closest to the ion are located at the vertexes of a SAP polyhedron, while the ninth water molecule occupying the capping position is unusually found at a very long distance from the ion. This far-coordinated water molecule possesses a degree of structure comparable with the other first shell molecules surrounding the ion at much shorter distances, and its presence gave us the unique opportunity to easily identify the geometry of the Sc(3+) coordination polyhedron. Despite very strong ion-water interactions, the Sc(3+) hydration shell is very labile, as the far-coordinated ligand allows first shell water molecules to easily exchange their positions both inside the solvation shell and with the rest of the solvent molecules.

  19. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  20. Simulation of subsea gas hydrate exploitation

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2014-05-01

    The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within

  1. GLASS TRANSITION OF HYDRATED WHEAT GLIADIN POWDERS

    Institute of Scientific and Technical Information of China (English)

    Shao-min Sun; Li Zhao; Yi-hu Song; Qiang Zheng

    2011-01-01

    Modulated-temperature differential scanning calorimetric and dynamic mechanical analyses and dielectric spectroscopy were used to investigate the glass transition of hydrated wheat gliadin powders with moisture absorption ranged from 2.30 db% to 18.21 db%. Glass transition temperature (Tg) of dry wheat gliadin was estimated according to the GordonTaylor equation. Structural heterogeneity at high degrees of hydration was revealed in dielectric temperature and frequency spectra. The activation energies (Ea) of the two relaxations were calculated from Arrhenius equation.

  2. Component analysis of the protein hydration entropy

    Science.gov (United States)

    Chong, Song-Ho; Ham, Sihyun

    2012-05-01

    We report the development of an atomic decomposition method of the protein solvation entropy in water, which allows us to understand global change in the solvation entropy in terms of local changes in protein conformation as well as in hydration structure. This method can be implemented via a combined approach based on molecular dynamics simulation and integral-equation theory of liquids. An illustrative application is made to 42-residue amyloid-beta protein in water. We demonstrate how this method enables one to elucidate the molecular origin for the hydration entropy change upon conformational transitions of protein.

  3. Structural Investigations of Portland Cement Components, Hydration, and Effects of Admixtures by Solid-State NMR Spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen Bengaard; Andersen, Morten D.; Jakobsen, Hans Jørgen

    2006-01-01

    Solid-state, magic-angle spinning (MAS) NMR spectroscopy represents a valuable tool for structural investigations on the nanoscale of the most important phases in anhydrous and hydrated Portland cements and of various admixtures. This is primarily due to the fact that the method reflects the first...... in the cement phases. The role of flouride ions is of special interest for mineralized Portland cements and it demonstrated that the location of these anions in anhydrous and hydrated Portland cements can be clarified using 19F MAS or 29Si{19F} CP/MAS NMR despite these cements contain only about 0.2 wt...

  4. Gas hydrate of Lake Baikal: Discovery and varieties

    Science.gov (United States)

    Khlystov, Oleg; De Batist, Marc; Shoji, Hitoshi; Hachikubo, Akihiro; Nishio, Shinya; Naudts, Lieven; Poort, Jeffrey; Khabuev, Andrey; Belousov, Oleg; Manakov, Andrey; Kalmychkov, Gennаdy

    2013-01-01

    This paper summarizes the results of recent gas-hydrate studies in Lake Baikal, the only fresh-water lake in the world containing gas hydrates in its sedimentary infill. We provide a historical overview of the different investigations and discoveries and highlight some recent breakthroughs in our understanding of the Baikal hydrate system. So far, 21 sites of gas hydrate occurrence have been discovered. Gas hydrates are of structures I and II, which are of thermogenic, microbial, and mixed origin. At the 15 sites, gas hydrates were found in mud volcanoes, and the rest six - near gas discharges. Additionally, depending on type of discharge and gas hydrate structure, they were visually different. Investigations using MIR submersibles allowed finding of gas hydrates at the bottom surface of Lake Baikal at the three sites.

  5. The mechanism of the dehydration of alcohols and the hydration of alkenes in acid solution

    Science.gov (United States)

    Vinnik, M. I.; Obraztsov, P. A.

    1990-01-01

    Kinetic data for the hydration of unsaturated compounds, the dehydration of alcohols, and the isotope exchange of the oxygen atom in alcohols and aqueous solutions of strong acids are analysed to establish the detailed mechanisms of these reactions. The catalytic action of the acid is caused not only by its ability to protonate the reactant but also by the possibility of the formation of reactive complexes of the reactant with the acid hydrates or the molecules of the undissociated acids. Equations are presented whereby the influence of the ionising capacity of the medium on the effective rate constants for the reactions indicated can be taken into account quantitatively. The question of the involvement of carbonium ions as reactive intermediates in reactions involving the dehydration of alcohols, the hydration of unsaturated compounds, and the isotope exchange of the oxygen atom in alcohols is examined. Complexes of the reactant with a solvated proton, the acid molecules, and the acid hydrates are the intermediates in these reactions. The relative contributions of the complexes to the effective rate constant depend on the acid concentration in the aqueous solution. The bibliography includes 65 references

  6. In situ molecular imaging of hydrated biofilm in a microfluidic reactor by ToF-SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xin; Yu, Xiao-Ying; Wang, Zhaoying; Yang, Li; Liu, Bingwen; Zhu, Zihua; Tucker, Abigail E.; Chrisler, William B.; Hill, Eric A.; Thevuthasan, Suntharampillai; Lin, Yuehe; Liu, Songqin; Marshall, Matthew J.

    2014-02-26

    The first results of using a novel single channel microfluidic reactor to enable Shewanella biofilm growth and in situ characterization using time-of-flight secondary ion mass spectrometry (ToF-SIMS) in the hydrated environment are presented. The new microfluidic interface allows direct probing of the liquid surface using ToF-SIMS, a vacuum surface technique. The detection window is an aperture of 2 m in diameter on a thin silicon nitride (SiN) membrane and it allows direct detection of the liquid surface. Surface tension of the liquid flowing inside the microchannel holds the liquid within the aperture. ToF-SIMS depth profiling was used to drill through the SiN membrane and the biofilm grown on the substrate. In situ 2D imaging of the biofilm in hydrated state was acquired, providing spatial distribution of the chemical compounds in the biofilm system. This data was compared with a medium filled microfluidic reactor devoid of biofilm and dried biofilm samples deposited on clean silicon wafers. Principle Component Analysis (PCA) was used to investigate these observations. Our results show that imaging biofilms in the hydrated environment using ToF-SIMS is possible using the unique microfluidic reactor. Moreover, characteristic biofilm fatty acids fragments were observed in the hydrated biofilm grown in the microfluidic channel, illustrating the advantage of imaging biofilm in its native environment.

  7. Elucidating water dynamics in MgCl2 hydrates from molecular dynamics simulation

    Science.gov (United States)

    Huinink, Hendrik Pieter; Zahn, Dirk

    2017-07-01

    The water mobility in single crystals of MgCl2 hydrates has been investigated with molecular dynamics. Standard force fields have been benchmarked for molecular dynamics simulations of MgCl2 hydrates. To provide a reliable molecular mechanics model, force fields are selected on their ability to reproduce the structure of MgCl2·6H2O at 300 K. The selected force fields are then tested on their ability to also reproduce the structures of the different hydrates (n = 12, 8, 6, 4, 2, 1) and available thermodynamic data. For the currently best force-field available, constant-temperature, constant-pressure molecular dynamics simulations are preformed to elucidate the mechanisms of hydrate water mobility in perfect single crystals of the tetra- and hexahydrate. Long range water diffusion was not observed; each water molecule remained in the coordination sphere of its original Mg2+ host. However, collective ring-like motions of four water molecules at once within the coordination shell of a Magnesium ion were observed.

  8. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  9. Constraints of gas venting activity for the interstitial water geochemistry at the shallow gas hydrate site, eastern margin of the Japan Sea; results from high resolution time-series fluid sampling by OsmoSampler

    Science.gov (United States)

    Owari, S.; Tomaru, H.; Matsumoto, R.

    2016-12-01

    We have conducted ROV researches in the eastern margin of the Japan Sea where active gas venting and outcropping of gas hydrates were observed near the seafloor and have found the strength and location of venting had changed within a few days. These observations indicate the seafloor environments with the shallow gas hydrate system could have changed for short period compared to a geological time scale. We have applied a long-term osmotic fluid sampling system "OsmoSampler" on the active gas hydrate system for one year in order to document how the gas venting and gas hydrate activity have changed the geochemical environments near the seafloor. All the major ion concentrations in the interstitial water show synchronous increase and decrease repeatedly in three to five days, reflecting the incorporation and release of fresh water in gas hydrates in response to the gas concentration change near the sampling site. Dissolved methane concentration increases rapidly and excessively (over several mM) in the first 40 days corresponding to the active gas venting. The increases of methane concentration are often associated with high ion concentration during high water pressure period, indicating excess gas release from shallow gas pockets. Contrarily, enhanced gas hydrate growth may plug the fluid-gas paths in shallow sediment, reducing gas hydrate formation due to the decrease of methane flux. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

  10. Foam drilling in natural gas hydrate

    Directory of Open Access Journals (Sweden)

    Wei Na

    2015-01-01

    Full Text Available The key problem of foam drilling in natural gas hydrate is prediction of characteristic parameters of bottom hole. The simulation shows that when the well depth increases, the foam mass number reduces and the pressure increases. At the same depth, pressure in drill string is always higher than annulus. The research findings provide theoretical basis for safety control.

  11. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, W.; Brouwers, H.J.H.

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  12. A positron annihilation study of hydrated DNA

    DEFF Research Database (Denmark)

    Warman, J. M.; Eldrup, Morten Mostgaard

    1986-01-01

    Positron annihilation measurements are reported for hydrated DNA as a function of water content and as a function of temperature (20 to -180.degree. C) for samples containing 10 and 50% wt of water. The ortho-positronium mean lifetime and its intensity show distinct variations with the degree...

  13. Hydration of protein–RNA recognition sites

    Science.gov (United States)

    Barik, Amita; Bahadur, Ranjit Prasad

    2014-01-01

    We investigate the role of water molecules in 89 protein–RNA complexes taken from the Protein Data Bank. Those with tRNA and single-stranded RNA are less hydrated than with duplex or ribosomal proteins. Protein–RNA interfaces are hydrated less than protein–DNA interfaces, but more than protein–protein interfaces. Majority of the waters at protein–RNA interfaces makes multiple H-bonds; however, a fraction do not make any. Those making H-bonds have preferences for the polar groups of RNA than its partner protein. The spatial distribution of waters makes interfaces with ribosomal proteins and single-stranded RNA relatively ‘dry’ than interfaces with tRNA and duplex RNA. In contrast to protein–DNA interfaces, mainly due to the presence of the 2′OH, the ribose in protein–RNA interfaces is hydrated more than the phosphate or the bases. The minor groove in protein–RNA interfaces is hydrated more than the major groove, while in protein–DNA interfaces it is reverse. The strands make the highest number of water-mediated H-bonds per unit interface area followed by the helices and the non-regular structures. The preserved waters at protein–RNA interfaces make higher number of H-bonds than the other waters. Preserved waters contribute toward the affinity in protein–RNA recognition and should be carefully treated while engineering protein–RNA interfaces. PMID:25114050

  14. Binding Hydrated Anions with Hydrophobic Pockets.

    Science.gov (United States)

    Sokkalingam, Punidha; Shraberg, Joshua; Rick, Steven W; Gibb, Bruce C

    2016-01-13

    Using a combination of isothermal titration calorimetry and quantum and molecular dynamics calculations, we demonstrate that relatively soft anions have an affinity for hydrophobic concavity. The results are consistent with the anions remaining partially hydrated upon binding, and suggest a novel strategy for anion recognition.

  15. Obsidian Hydration Dating in the Undergraduate Curriculum.

    Science.gov (United States)

    Manche, Emanuel P.; Lakatos, Stephen

    1986-01-01

    Provides an overview of obsidian hydration dating for the instructor by presenting: (1) principles of the method; (2) procedures; (3) applications; and (4) limitations. The theory of the method and one or more laboratory exercises can be easily introduced into the undergraduate geology curriculum. (JN)

  16. Obsidian Hydration Dating in the Undergraduate Curriculum.

    Science.gov (United States)

    Manche, Emanuel P.; Lakatos, Stephen

    1986-01-01

    Provides an overview of obsidian hydration dating for the instructor by presenting: (1) principles of the method; (2) procedures; (3) applications; and (4) limitations. The theory of the method and one or more laboratory exercises can be easily introduced into the undergraduate geology curriculum. (JN)

  17. [Terminal phase hydration, pain and delirium

    DEFF Research Database (Denmark)

    Heick, A.

    2009-01-01

    Hydration of the terminal patient may relieve confusion and complaints of "dry mouth". But it may worsen oedema of the brain, lungs, and extremities, worsen terminal rattling and cause a need for frequent changing of diapers. The decision of whether and how to treat a dying patient with fluids...

  18. Acoustic Determination of Methane Hydrate Disssociation Pressures

    Science.gov (United States)

    2011-07-01

    centered- cubic orientation which forms naturally in deep oceans from biogenic gases. It is worth not- ing that this molecular geometry can trap great...until January 2010. At that time, the hydrates were packed in a dewar with liquid nitrogen and shipped from the storage fa- cility at the Naval Research

  19. Hydration dynamics near a model protein surface

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-09-01

    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces.

  20. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.

    Science.gov (United States)

    Shao, Qing; Huang, Liangliang; Zhou, Jian; Lu, Linghong; Zhang, Luzheng; Lu, Xiaohua; Jiang, Shaoyi; Gubbins, Keith E; Shen, Wenfeng

    2008-04-14

    Molecular dynamics simulations have been performed to investigate the hydration of Li(+), Na(+), K(+), F(-), and Cl(-) inside the carbon nanotubes at temperatures ranging from 298 to 683 K. The structural characteristics of the coordination shells of ions are studied, including the ion-oxygen radial distribution functions, the coordination numbers, and the orientation distributions of the water molecules. Simulation results show that the first coordination shells of the five ions still exist in the nanoscale confinement. Nevertheless, the first coordination shell structures of cations change more significantly than those of anions because of the preferential orientation of the water molecules induced by the carbon nanotube. The first coordination shells of cations are considerably less ordered in the nanotube than in the bulk solution, whereas the change of the first coordination shell structures of the anions is minor. Furthermore, the confinement induces the anomalous behavior of the coordination shells of the ions with temperature. The first coordination shell of K(+) are found to be more ordered as the temperature increases only in the carbon nanotube with the effective diameter of 1.0 nm, implying the enhancement of the ionic hydration with temperature. This is contrary to that in the bulk solution. The coordination shells of the other four ions do not have such behavior in the carbon nanotube with the effective diameter ranging from 0.73 to 1.00 nm. The easier distortion of the coordination shell of K(+) and the match of the shell size and the nanotube size may play roles in this phenomenon. The exchange of water molecules in the first coordination shells of the ions with the solution and the ion diffusion along the axial direction of the nanotube are also investigated. The mobility of the ions and the stability of the coordination shells are greatly affected by the temperature in the nanotube as in the bulk solutions. These results help to understand the

  1. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean

    DEFF Research Database (Denmark)

    Treude, T.; Boetius, A.; Knittel, K.;

    2003-01-01

    At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate-reducing...... bacteria, generates high concentrations of hydrogen sulfide in the surface sediments. The production of sulfide supports chemosynthetic communities that gain energy from sulfide oxidation. Depending on fluid flow, the surface communities are dominated either by the filamentous sulfur bacteria Beggiatoa...

  2. Modeling DNA hydration: comparison of calculated and experimental hydration properties of nuclic acid bases.

    Science.gov (United States)

    Poltev, V I; Malenkov, G G; Gonzalez, E J; Teplukhin, A V; Rein, R; Shibata, M; Miller, J H

    1996-02-01

    Hydration properties of individual nucleic acid bases were calculated and compared with the available experimental data. Three sets of classical potential functions (PF) used in simulations of nucleic acid hydration were juxtaposed: (i) the PF developed by Poltev and Malenkov (PM), (ii) the PF of Weiner and Kollman (WK), which together with Jorgensen's TIP3P water model are widely used in the AMBER program, and (iii) OPLS (optimized potentials for liquid simulations) developed by Jorgensen (J). The global minima of interaction energy of single water molecules with all the natural nucleic acid bases correspond to the formation of two water-base hydrogen bonds (water bridging of two hydrophilic atoms of the base). The energy values of these minima calculated via PM potentials are in somewhat better conformity with mass-spectrometric data than the values calculated via WK PF. OPLS gave much weaker water-base interactions for all compounds considered, thus these PF were not used in further computations. Monte Carlo simulations of the hydration of 9-methyladenine, 1-methyluracil and 1-methylthymine were performed in systems with 400 water molecules and periodic boundary conditions. Results of simulations with PM potentials give better agreement with experimental data on hydration energies than WK PF. Computations with PM PF of the hydration energy of keto and enol tautomers of 9-methylguanine can account for the shift in the tautomeric equilibrium of guanine in aqueous media to a dominance of the keto form in spite of nearly equal intrinsic stability of keto and enol tautomers. The results of guanine hydration computations are discussed in relation to mechanisms of base mispairing errors in nucleic acid biosynthesis. The data presented in this paper along with previous results on simulation of hydration shell structures in DNA duplex grooves provide ample evidence for the advantages of PM PF in studies of nucleic-acid hydration.

  3. Correlation of the structural information obtained for europium-chelate ensembles from gas-phase photoluminescence and ion-mobility spectroscopy with density-functional computations and ligand-field theory.

    Science.gov (United States)

    Greisch, Jean-François; Chmela, Jiří; Harding, Michael E; Wunderlich, Dirk; Schäfer, Bernhard; Ruben, Mario; Klopper, Wim; Schooss, Detlef; Kappes, Manfred M

    2017-02-22

    We report a combined investigation of europium(iii)9-oxo-phenalen-1-one (PLN) coordination complexes, [Eu(PLN)4AE](+) with AE = Mg, Ca, and Sr, using gas-phase photoluminescence, trapped ion-mobility spectrometry and density-functional computations. In order to sort out the structural impact of the alkali earth dications on the photoluminescence spectra, the experimental data are compared to the predicted ligand-field splittings as well as to the collision cross-sections for different isomers of [Eu(PLN)4AE](+). The best fitting interpretation is that one isomer family predominantly contributes to the recorded luminescence. The present work demonstrates the complexity of the coordination patterns of multicenter lanthanoid chelates involved in dynamical equilibria and the pertinence of using isolation techniques to elucidate their photophysical properties.

  4. The effect of sulfate activation on the early age hydration of BFS:PC composite cement

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk; Li, X.; Bai, Y.; Milestone, N.B.

    2015-09-15

    Blast furnace slag/Portland cement composites are routinely used for immobilising intermediate level nuclear wastes in the UK. Using high cement replacement levels reduces hydration exotherm and lowers pH. Although a lower grout pH will be beneficial in reducing the corrosion of certain encapsulated reactive metals such as aluminium, the degree of slag reaction will also be lower which may result in the formation of less hydration products and which in turn may reduce the capacity to immobilise waste ions. Adding neutral salts such as calcium and sodium sulfate to the composite cement can potentially increase slag activation without significantly altering the pH of the cement matrix. Thus the corrosion of any encapsulated metals would not be affected. This paper describes some of the properties of a hydrated 9:1 blast furnace slag:Portland cement matrix containing added sulfates of calcium and sodium. The findings show that all additives caused an increase in the amount of slag that reacted when cured for up to 28 days. This produced more material able to chemically bind waste ions. Activation with gypsum produced the highest rate of slag reaction.

  5. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.

    Science.gov (United States)

    Sepehr, Fatemeh; Paddison, Stephen J

    2015-06-01

    Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane.

  6. Instantaneous, parameter-free methods to define a solute’s hydration shell

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Anupam [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg (Germany); Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Higham, Jonathan [Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN (United Kingdom); School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Henchman, Richard H. [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg (Germany); Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN (United Kingdom); School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2015-12-21

    A range of methods are presented to calculate a solute’s hydration shell from computer simulations of dilute solutions of monatomic ions and noble gas atoms. The methods are designed to be parameter-free and instantaneous so as to make them more general, accurate, and consequently applicable to disordered systems. One method is a modified nearest-neighbor method, another considers solute-water Lennard-Jones overlap followed by hydrogen-bond rearrangement, while three methods compare various combinations of water-solute and water-water forces. The methods are tested on a series of monatomic ions and solutes and compared with the values from cutoffs in the radial distribution function, the nearest-neighbor distribution functions, and the strongest-acceptor hydrogen bond definition for anions. The Lennard-Jones overlap method and one of the force-comparison methods are found to give a hydration shell for cations which is in reasonable agreement with that using a cutoff in the radial distribution function. Further modifications would be required, though, to make them capture the neighboring water molecules of noble-gas solutes if these weakly interacting molecules are considered to constitute the hydration shell.

  7. Direct measurement of methane hydrate composition along the hydrate equilibrium boundary

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2005-01-01

    The composition of methane hydrate, namely nW for CH 4??nWH2O, was directly measured along the hydrate equilibrium boundary under conditions of excess methane gas. Pressure and temperature conditions ranged from 1.9 to 9.7 MPa and 263 to 285 K. Within experimental error, there is no change in hydrate composition with increasing pressure along the equilibrium boundary, but nW may show a slight systematic decrease away from this boundary. A hydrate stoichiometry of n W = 5.81-6.10 H2O describes the entire range of measured values, with an average composition of CH4??5.99(??0.07) H2O along the equilibrium boundary. These results, consistent with previously measured values, are discussed with respect to the widely ranging values obtained by thermodynamic analysis. The relatively constant composition of methane hydrate over the geologically relevant pressure and temperature range investigated suggests that in situ methane hydrate compositions may be estimated with some confidence. ?? 2005 American Chemical Society.

  8. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  9. MORPHOLOGY OF METHANE HYDRATE HOST SEDIMENTS.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; FENG,H.; TOMOV,S.; WINTER,W.J.; EATON,M.; MAHAJAN,D.

    2004-12-01

    Results from simulated experiments in several laboratories show that host sediments influence hydrate formation in accord with known heterogeneity of host sediments at sites of gas hydrate occurrence (1). For example, in Mackenzie Delta, NWT Canada (Mallik 2L-38 well), coarser-grained units (pore-filling model) are found whereas in the Gulf of Mexico, the found hydrate samples do not appear to be lithologically controlled. We have initiated a systematic study of sediments, initially focusing on samples from various depths at a specific site, to establish a correlation with hydrate occurrence (or variations thereof) to establish differences in their microstructure, porosity, and other associated properties. The synchrotron computed microtomography (CMT) set-up at the X-27A tomography beam line at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory was used as a tool to study sediments from Blake Ridge at three sub bottom depths of 0.2, 50, and 667 meters. Results from the tomographic analysis of the deepest sample (667 m) are presented here to illustrate how tomography can be used to obtain new insights into the structures of methane hydrate host sediments. The investigation shows the internal grain/pore space resolution in the microstructure and a 3-D visualization of the connecting pathways obtained following data segmentation into pore space and grains within the sediment sample. The analysis gives the sample porosity, specific surface area, mean particle size, and tortuosity, as well. An earlier report on the experimental program has been given by Mahajan et al. (2).

  10. China's Research on Non-conventional Energy Resources- Gas Hydrate

    Institute of Scientific and Technical Information of China (English)

    Pu Ming; Ma Jianguo

    2002-01-01

    @@ Methane exists in ice-like formations called gas hydrate. Hydrate traps methane molecules inside a cage of frozen water. The magnitude of this previously unknown global storehouse of methane is truly staggering and has raised serious inquiry into the possibility of using methane hydrate as a substitute source of energy for oil and conventional natural gas. According to the estimation by PGC, gas hydrate deposits amount to 7.6 × 1018m3 and contain more than twice as much organic carbon as all the world's coal, oil and non-hydrate natural gas combined.

  11. Characterizing Ni(II) hydration in aqueous solution using DFT and EXAFS.

    Science.gov (United States)

    Liu, H Y; Fang, C H; Fang, Y; Zhou, Y Q; Ge, H W; Zhu, F Y; Sun, P C; Miao, J T

    2016-01-01

    In the present work, a detailed investigation of Ni(II) hydration in water solutions was carried out using density functional theory (DFT) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The hydrated characteristics of [Ni(H2O)n](2+) clusters, such as energy parameters, atomic charge distributions, and bond parameters, were explored using DFT with Becke's three-parameter exchange potential and the Lee-Yang-Parr correlation functional (B3LYP). DFT calculations indicated that the preferred structure of the first hydration shell of Ni(II) generally has a coordination number of six and is almost unaffected by the water molecules in the outer solvation shell, whereas the structure of the second solvation shell varies as the hydration proceeds. EXAFS measurements are reported for aqueous NiSO4 and Ni(NO3)2 solutions and the Ni(NO3)2·6H2O crystal. Analysis of the EXAFS spectra of these three systems using a multiparameter fitting procedure showed that, in each case, the first coordination shell consists of six water molecules with a Ni-O coordination distance of 2.04 Å, and that there is no Ni-S or Ni-N coordination in the first shell. There was no evidence of outer-shell SO4(2-) or NO3(-) ions substituting inner-sphere water molecules in NiSO4 and Ni(NO3)2. The characteristics of Ni(II) hydration obtained from DFT calculations agreed well with those obtained experimentally using EXAFS.

  12. Ionic hydrates, M(p)X(q).nH(2)O: lattice energy and standard enthalpy of formation estimation.

    Science.gov (United States)

    Jenkins, H Donald Brooke; Glasser, Leslie

    2002-08-26

    This paper is one of a series (see: Inorg. Chem. 1999, 38, 3609; J. Am. Chem. Soc. 2000, 122, 632; Inorg. Chem. 2002, 41, 2364) exploring simple approaches for the estimation of lattice energies of ionic materials, avoiding elaborate computation. Knowledge of lattice energy can lead, via thermochemical cycles, to the evaluation of the underlying thermodynamics involving the preparation and subsequent reactions of inorganic materials. A simple and easy to use equation for the estimation of the lattice energy of hydrate salts, U(POT)(M(p)X(q).nH(2)O) (and therefore for solvated salts, M(p)X(q).nS, in general), using either the density or volume of the hydrate, or of another hydrate, or of the parent anhydrous salt or the volumes of the individual ions, is derived from first principles. The equation effectively determines the hydrate lattice energy, U(POT)(M(p)X(q).nH(2)O), from a knowledge of the (estimated) lattice energy, U(POT)(M(p)X(q)), of the parent salt by the addition of ntheta(U) where theta(U)(H(2)O)/kJ mol(-1) = 54.3 and n is the number of water molecules. The average volume of the water molecule of hydration, V(m)(H(2)O)/nm(3) = 0.0245, has been determined from data on a large series of hydrates by plotting hydrate/parent salt volume differences against n. The enthalpy of incorporation of a gaseous water molecule into the structure of an ionic hydrate, [Delta(f)H degrees (M(p)X(q).nH(2)O,s) - Delta(f)H degrees (M(p)X(q),s) - nDelta(f)H degrees (H(2)O,g)], is shown to be a constant, -56.8 kJ (mol of H(2)O)(-1). The physical implications with regard to incorporation of the water into various types of solid-state structures are considered. Examples are given of the use of the derived hydrate lattice energy equation. Standard enthalpies of formation of a number of hydrates are thereby predicted.

  13. Indian National Gas Hydrate Program Expedition 01 report

    Science.gov (United States)

    Collett, Timothy S.; Riedel, M.; Boswell, R.; Presley, J.; Kumar, P.; Sathe, A.; Sethi, A.; Lall, M.; ,

    2015-01-01

    Gas hydrate is a naturally occurring “ice-like” combination of natural gas and water that has the potential to serve as an immense resource of natural gas from the world’s oceans and polar regions. However, gas-hydrate recovery is both a scientific and a technical challenge and much remains to be learned about the geologic, engineering, and economic factors controlling the ultimate energy resource potential of gas hydrate. The amount of natural gas contained in the world’s gas-hydrate accumulations is enormous, but these estimates are speculative and range over three orders of magnitude from about 2,800 to 8,000,000 trillion cubic meters of gas. By comparison, conventional natural gas accumulations (reserves and undiscovered, technically recoverable resources) for the world are estimated at approximately 440 trillion cubic meters. Gas recovery from gas hydrate is hindered because the gas is in a solid form and because gas hydrate commonly occurs in remote Arctic and deep marine environments. Proposed methods of gas recovery from gas hydrate generally deal with disassociating or “melting” in situ gas hydrate by heating the reservoir beyond the temperature of gas-hydrate formation, or decreasing the reservoir pressure below hydrate equilibrium. The pace of energy-related gas hydrate assessment projects has accelerated over the past several years.

  14. Solid state interconversion between anhydrous norfloxacin and its hydrates.

    Science.gov (United States)

    Chongcharoen, Wanchai; Byrn, Stephen R; Sutanthavibul, Narueporn

    2008-01-01

    This work is focused on characterizing and evaluating the solid state interconversion of norfloxacin (NF) hydrates. Four stoichiometric NF hydrates, dihydrate, hemipentahydrate, trihydrate, pentahydrate and a disordered NF state, were generated by various methods and characterized by X-ray powder diffractometry (XRPD), thermal analysis and Karl Fisher titrimetry. XRPD patterns of all NF hydrates exhibited crystalline structures. NF hydrate conversion was studied with respect to mild elevated temperature and various degrees of moisture levels. NF hydrates transformed to anhydrous NF Form A after gentle heating at 60 degrees C for 48 h except dihydrate and trihydrate where mixture in XRPD patterns between anhydrous NF Form A and former structures existed. Desiccation of NF hydrates at 0% RH for 7 days resulted in only partial removal of water molecules from the hydrated structures. The hydrated transitional phase and the disordered NF state were obtained from the incomplete dehydration of NF hydrates after thermal treatment and pentahydrate NF after desiccation, respectively. Anhydrous NF Form A and NF hydrates transformed to pentahydrate NF when exposed to high moisture environment except dihydrate. In conclusion, surrounding moisture levels, temperatures and the duration of exposure strongly influenced the interconversion pathways and stoichiometry of anhydrous NF and its hydrates. (c) 2007 Wiley-Liss, Inc.

  15. Multiple internal reflectance infrared spectra of variably hydrated hemoglobin and myoglobin films: effects of globin hydration on ligand conformer dynamics and reactivity at the heme.

    Science.gov (United States)

    Brown, W E; Sutcliffe, J W; Pulsinelli, P D

    1983-06-07

    Multiple internal reflectance infrared (IR) spectra are reported for variably hydrated films (1.2-0.1 g of H2O/g of protein) of the carbon monoxy and oxy forms of human Hb and sperm whale Mb. The spectra show that even the limited removal of liquid and icelike hydration constraints at the globin surface is sufficient to cause a dramatic, but completely reversible, shift toward a normally minute population of sterically unhindered, linear-perpendicular, Fe-CO conformer modes (nu CO = 1968-1967 cm-1), and the destabilization of distally hindered, tilted (or bent), Fe-CO modes (nu CO = 1951, 1944-1933 cm-1). Corroborative evidence from IR band broadening trends [delta delta nu 1/2 (1968, 1967 cm-1) approximately 2-4 cm-1], corresponding changes in the visible, and H-D exchange kinetics confirm that the shift toward 1968-1967 cm-1 results in a more open distal heme pocket configuration and that it is also accompanied by a buildup of deoxy-like steric hindrance proximal to the heme. Denaturation effects are eliminated as a potential cause of the shifts, as are specific protein-protein, ion-protein, intersubunit, and MIR crystal-film surface interactions. The hydration effect exhibits globin-dependent and ligand-dependent differences, which highlight the intrinsic importance of distal steric effects within the heme pocket and their dynamic coupling with exterior solvent constraints. CO-photodissociation and O2-exchange experiments conducted on rapidly interconverting (coupled and fully hydrated) and noninterconverting (uncoupled and partially hydrated) Fe-CO conformers also suggest that the open linear-perpendicular mode corresponds to a more tightly bound form of CO than the axially distorted Fe-CO species; similar differences are not evident in Fe-O2, which already prefers a bent end-on geometry within the heme pocket. Control IR spectra aimed at monitoring the progressive effects of various denaturants on HbCO further indicate that this same open mode serves as a

  16. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.

    Science.gov (United States)

    Sujith, K S; Ramachandran, C N

    2017-01-12

    Natural gas extraction from gas hydrate sediments by injection of hydrate inhibitors involves the decomposition of hydrates. The evolution of dissolved gas from the hydrate melt is an important step in the extraction process. Using classical molecular dynamics simulations, we study the evolution of dissolved methane from its hydrate melt in the presence of two thermodynamic hydrate inhibitors, NaCl and CH3OH. An increase in the concentration of hydrate inhibitors is found to promote the nucleation of methane nanobubbles in the hydrate melt. Whereas NaCl promotes bubble formation by enhancing the hydrophobic interaction between aqueous CH4 molecules, CH3OH molecules assist bubble formation by stabilizing CH4 bubble nuclei formed in the solution. The CH3OH molecules accumulate around the nuclei leading to a decrease in the surface tension at their interface with water. The nanobubbles formed are found to be highly dynamic with frequent exchange of CH4 molecules between the bubble and the surrounding liquid. A quantitative analysis of the dynamic behavior of the bubble is performed by introducing a unit step function whose value depends on the location of CH4 molecules with respect to the bubble. It is observed that an increase in the concentration of thermodynamic hydrate inhibitors reduces the exchange process, making the bubble less dynamic. It is also found that for a given concentration of the inhibitor, larger bubbles are less dynamic compared to smaller ones. The dependence of the dynamic nature of nanobubbles on bubble size and inhibitor concentration is correlated with the solubility of CH4 and the Laplace pressure within the bubble. The effect of CO2 on the formation of nanobubble in the CH4-CO2 mixed gas hydrate melt in the presence of inhibitors is also examined. The simulations show that the presence of CO2 molecules significantly reduces the induction time for methane nanobubble nucleation. The role of CO2 in the early nucleation of bubble is explained

  17. Removal of methyl orange from aqueous solutions through adsorption by calcium aluminate hydrates.

    Science.gov (United States)

    Zhang, Ping; Wang, Tianqi; Qian, Guangren; Wu, Daishe; Frost, Ray L

    2014-07-15

    Methyl orange (MO) is a kind of anionic dye and widely used in industry. In this study, tricalcium aluminate hydrates (Ca-Al-LDHs) are used as an adsorbent to remove methyl orange (MO) from aqueous solutions. The resulting products were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), thermal analysis (TG-DTA) and scanning electron microscope (SEM). The XRD results indicated that the MO molecules were successfully intercalated into the tricalcium aluminate hydrates, with the basal spacing of Ca-Al-LDH expanding to 2.48 nm. The MIR spectrum for CaAl-MO-LDH shows obvious bands assigned to the N=N, N=H stretching vibrations and S=O, SO3(-) group respectively, which are considered as marks to assess MO(-) ion intercalation into the interlayers of LDH. The overall morphology of CaAl-MO-LDH displayed a "honey-comb" like structure, with the adjacent layers expanded.

  18. Towards a green hydrate inhibitor: imaging antifreeze proteins on clathrates.

    Directory of Open Access Journals (Sweden)

    Raimond Gordienko

    Full Text Available The formation of hydrate plugs in oil and gas pipelines is a serious industrial problem and recently there has been an increased interest in the use of alternative hydrate inhibitors as substitutes for thermodynamic inhibitors like methanol. We show here that antifreeze proteins (AFPs possess the ability to modify structure II (sII tetrahydrofuran (THF hydrate crystal morphologies by adhering to the hydrate surface and inhibiting growth in a similar fashion to the kinetic inhibitor poly-N-vinylpyrrolidone (PVP. The effects of AFPs on the formation and growth rate of high-pressure sII gas mix hydrate demonstrated that AFPs are superior hydrate inhibitors compared to PVP. These results indicate that AFPs may be suitable for the study of new inhibitor systems and represent an important step towards the development of biologically-based hydrate inhibitors.

  19. Water retention curve for hydrate-bearing sediments

    Science.gov (United States)

    Dai, Sheng; Santamarina, J. Carlos

    2013-11-01

    water retention curve plays a central role in numerical algorithms that model hydrate dissociation in sediments. The determination of the water retention curve for hydrate-bearing sediments faces experimental difficulties, and most studies assume constant water retention curves regardless of hydrate saturation. This study employs network model simulation to investigate the water retention curve for hydrate-bearing sediments. Results show that (1) hydrate in pores shifts the curve to higher capillary pressures and the air entry pressure increases as a power function of hydrate saturation; (2) the air entry pressure is lower in sediments with patchy rather than distributed hydrate, with higher pore size variation and pore connectivity or with lower specimen slenderness along the flow direction; and (3) smaller specimens render higher variance in computed water retention curves, especially at high water saturation Sw > 0.7. Results are relevant to other sediment pore processes such as bioclogging and mineral precipitation.

  20. A Wearable Hydration Sensor with Conformal Nanowire Electrodes.

    Science.gov (United States)

    Yao, Shanshan; Myers, Amanda; Malhotra, Abhishek; Lin, Feiyan; Bozkurt, Alper; Muth, John F; Zhu, Yong

    2017-01-27

    A wearable skin hydration sensor in the form of a capacitor is demonstrated based on skin impedance measurement. The capacitor consists of two interdigitated or parallel electrodes that are made of silver nanowires (AgNWs) in a polydimethylsiloxane (PDMS) matrix. The flexible and stretchable nature of the AgNW/PDMS electrode allows conformal contact to the skin. The hydration sensor is insensitive to the external humidity change and is calibrated against a commercial skin hydration system on an artificial skin over a wide hydration range. The hydration sensor is packaged into a flexible wristband, together with a network analyzer chip, a button cell battery, and an ultralow power microprocessor with Bluetooth. In addition, a chest patch consisting of a strain sensor, three electrocardiography electrodes, and a skin hydration sensor is developed for multimodal sensing. The wearable wristband and chest patch may be used for low-cost, wireless, and continuous monitoring of skin hydration and other health parameters.

  1. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  2. The observation of scintillation in a hydrated inorganic compound: CeCl3 6H2O

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, Lynn A [ORNL; Neal, John S [ORNL; Ramey, Joanne Oxendine [ORNL; Chakoumakos, Bryan C [ORNL; Custelcean, Radu [ORNL

    2013-01-01

    We have recently reported the discovery of a new family of rare-earth metal-organic single-crystal scintillators based on Ce3+ as the activator ion. Starting with the CeCl3(CH3OH)4 prototype, this family of scintillators has recently been extended to include complex metal-organic adducts produced by reacting CeCl3 with heavier organics (e.g., isomers of propanol and butanol). Some of these new rare-earth metal-organic materials incorporated waters of hydration in their structures, and the observation of scintillation in these hydrated compounds was an original finding for any solid scintillator. In the present work, we now report what is apparently the initial observation of gamma-ray-excited scintillation in an inorganic hydrated material, namely single-crystal monoclinic CeCl3 6H2O. This observation shows that the mechanisms of the various scintillation energy-transfer processes are not blocked by the presence of waters of hydration in an inorganic material and that the observation of scintillation in other hydrated inorganic compounds is not precluded.

  3. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  4. Hydration index--a better parameter for explaining small molecule hydration in inhibition of ice recrystallization.

    Science.gov (United States)

    Tam, Roger Y; Ferreira, Sandra S; Czechura, Pawel; Chaytor, Jennifer L; Ben, Robert N

    2008-12-24

    Several simple mono- and disaccharides have been assessed for their ability to inhibit ice recrystallization. Two carbohydrates were found to be effective recrystallization inhibitors. D-galactose (1) was the best monosaccharide and D-melibiose (5) was the most active disaccharide. The ability of each carbohydrate to inhibit ice growth was correlated to its respective hydration number reported in the literature. A hydration number reflects the number of tightly bound water molecules to the carbohydrate and is a function of carbohydrate stereochemistry. It was discovered that using the absolute hydration number of a carbohydrate does not allow one to accurately predict its ability to inhibit ice recrystallization. Consequently, we have defined a hydration index in which the hydration number is divided by the molar volume of the carbohydrate. This new parameter not only takes into account the number of water molecules tightly bound to a carbohydrate but also the size or volume of a particular solute and ultimately the concentration of hydrated water molecules. The hydration index of both mono- and disaccharides correlates well with experimentally measured RI activity. C-Linked derivatives of the monosaccharides appear to have RI activity comparable to that of their O-linked saccharides but a more thorough investigation is required. The relationship between carbohydrate concentration and RI activity was shown to be noncolligative and a 0.022 M solution of D-galactose (1) and C-linked galactose derivative (10) inhibited recrystallization as well as a 3% DMSO solution. The carbohydrates examined in this study did not possess any thermal hysteresis activity (selective depression of freezing point relative to melting point) or dynamic ice shaping. As such, we propose that they are inhibiting recrystallization at the interface between bulk water and the quasi liquid layer (a semiordered interface between ice and bulk water) by disrupting the preordering of water.

  5. Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01

    Science.gov (United States)

    Collett, Timothy S.; Boswell, Ray; Cochran, J.R.; Kumar, Pushpendra; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna

    2014-01-01

    The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna-Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna-Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins.

  6. A novel near monochromatic red emissive europium(III) metal-organic framework based on 1,2,4,5-benzenetetracarboxylate: From synthesis to photoluminescence studies

    Science.gov (United States)

    Lahoud, Marcelo G.; Frem, Regina C. G.; Marques, Lippy F.; Arroyos, Guilherme; Brandão, Paula; Ferreira, Rute A. S.; Carlos, Luís D.

    2017-09-01

    This work presents the synthesis, solid state characterization (infrared spectroscopy, thermal analysis (TGA/DTA), powder and single crystal X-ray diffraction) and photoluminescence studies of a new europium metal-organic framework (MOF), [Eu2(Btec)1,5(H2O)]n (Btec4-=1,2,4,5-benzenetetracarboxylate anion). Single crystal X-ray diffraction analysis reveals that the material has a three-dimensional network, with two crystallographically independent Eu(III) ions adopting different coordination geometries. This structure presents one of the Btec4- anions acting as a μ8-bridging linker, with the carboxylate groups in distinct connection to Eu(III) ions, culminating into an unknown coordination mode for the linker. The results of thermogravimetric analyses indicate that the MOF has high thermal stability, with this characteristic being of great interest for the application of these compounds in several fields such as catalysis and photonics. The luminescent properties showed that the Eu(III) ions are a local-spectroscopic probe, with the compound presenting a red emission when excited in the UV spectral region with absolute emission quantum yield values of 0.48 ± 0.05. The thermal dependence on the intensity of the transitions originating from the 7F1 level, especially the 7F1 → 5D1 transition, was studied. These results opens the possibility to test this MOF [Eu2(Btec)1.5(H2O)]n in the field of molecular thermometry.

  7. Ion association in natural brines

    Science.gov (United States)

    Truesdell, A.H.; Jones, B.F.

    1969-01-01

    Natural brines, both surface and subsurface, are highly associated aqueous solutions. Ion complexes in brines may be ion pairs in which the cation remains fully hydrated and the bond between the ions is essentially electrostatic, or coordination complexes in which one or more of the hydration water molecules are replaced by covalent bonds to the anion. Except for Cl-, the major simple ions in natural brines form ion pairs; trace and minor metals in brines form mainly coordination complexes. Limitations of the Debye-Hu??ckel relations for activity coefficients and lack of data on definition and stability of all associated species in concentrated solutions tend to produce underestimates of the degree of ion association, except where the brines contain a very high proportion of Cl-. Data and calculations on closed basin brines of highly varied composition have been coupled with electrode measurements of single-ion activities in an attempt to quantify the degree of ion association. Such data emphasize the role of magnesium complexes. Trace metal contents of closed basin brines are related to complexes formed with major anions. Alkaline sulfo- or chlorocarbonate brines (western Great Basin) carry significant trace metal contents apparently as hydroxides or hydroxy polyions. Neutral high chloride brines (Bonneville Basin) are generally deficient in trace metals. With a knowledge of the thermodynamic properties of a natural water, many possible reactions with other phases (solids, gases, other liquids) may be predicted. A knowledge of these reactions is particularly important in the study of natural brines which may be saturated with many solid phases (silicates, carbonates, sulfates, etc.), which may have a high pH and bring about dissolution of other phases (silica, amphoteric hydroxides, CO2, etc.), and which because of their high density may form relatively stable interfaces with dilute waters. ?? 1969.

  8. Origin and character of gaseous hydrocarbons in the hydrate and non-hydrate charged sediments on the Norway - Svalbard margins

    Energy Technology Data Exchange (ETDEWEB)

    Vaular, Espen Nesheim

    2011-05-15

    Gas incubated in clathrate water-structures, stabilizes the hydrogen bonded substance termed gas hydrate. In the marine environment vast amount of carbon is stored as gas hydrates within the temperature and pressure zone these ice-like structures are stable. Natural gas hydrate mapping and characterization is important basic research that brings about critical knowledge concerning various topics. Natural gas hydrates is a vital part of the carbon cycle, it is a potential energy resource (and thereby a potential climate agent) and it is a potential geo-hazard. One of the goals the GANS initiative aimed at exploring, was the hydrate bearing sediment of the Norway -Svalbard margins, to investigate the character and expansion of natural gas hydrates. Part of the investigation was to define how the gas in the hydrated sediment was produced and where it came from. As a result this thesis addresses the matter of light hydrocarbon characterization and origin in two Norwegian hydrate deposits. On cruises to Vestnesa on the Svalbard margin and to Nyegga in the mid-Norwegian margin, samples of hydrate charged and non-hydrate charged sediments were obtained and analyzed. Through compositional and isotopic analyses the origin of the hydrate bound gas in the fluid escape feature G11 at Nyegga was determined. The hydrate incubated methane is microbial produced as well as parts of the hydrate bound ethane. The compositional analysis in both the Nyegga area and at the Vestnesa Ridge points at thermogenic contributions in the sediment interstitials and pore water. The two hydrate bearing margins show large differences in hydrocarbon content and microbial activity in the pockmarks investigated. The gravity cores from the penetrated pockmark at Vestnesa showed low hydrocarbon content and thus suggest ceased or periodic venting. The fluid flow escape features at Nyegga show large variety of flux rates based on ROV monitoring and headspace analysis of the sediment and pore water. The

  9. A statistical mechanical description of biomolecular hydration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    We present an efficient and accurate theoretical description of the structural hydration of biological macromolecules. The hydration of molecules of almost arbitrary size (tRNA, antibody-antigen complexes, photosynthetic reaction centre) can be studied in solution and in the crystal environment. The biomolecular structure obtained from x-ray crystallography, NMR, or modeling is required as input information. The structural arrangement of water molecules near a biomolecular surface is represented by the local water density analogous to the corresponding electron density in an x-ray diffraction experiment. The water-density distribution is approximated in terms of two- and three-particle correlation functions of solute atoms with water using a potentials-of-mean-force expansion.

  10. Experimental techniques for cement hydration studies

    Directory of Open Access Journals (Sweden)

    Andreas Luttge

    2011-10-01

    Full Text Available Cement hydration kinetics is a complex problem of dissolution, nucleation and growth that is still not well understood, particularly in a quantitative way. While cement systems are unique in certain aspects they are also comparable to natural mineral systems. Therefore, geochemistry and particularly the study of mineral dissolution and growth may be able to provide insight and methods that can be utilized in cement hydration research. Here, we review mainly what is not known or what is currently used and applied in a problematic way. Examples are the typical Avrami approach, the application of Transition State Theory (TST to overall reaction kinetics and the problem of reactive surface area. Finally, we suggest an integrated approach that combines vertical scanning interferometry (VSI with other sophisticated analytical techniques such as atomic force microscopy (AFM and theoretical model calculations based on a stochastic treatment.

  11. Obsidian hydration dating of volcanic events

    Science.gov (United States)

    Friedman, I.; Obradovich, J.

    1981-01-01

    Obsidian hydration dating of volcanic events had been compared with ages of the same events determined by the 14C and KAr methods at several localities. The localities, ranging in age from 1200 to over 1 million yr, include Newberry Craters, Oregon; Coso Hot Springs, California; Salton Sea, California; Yellowstone National Park, Wyoming; and Mineral Range, Utah. In most cases the agreement is quite good. A number of factors including volcanic glass composition and exposuretemperature history must be known in order to relate hydration thickness to age. The effect of composition can be determined from chemical analysis or the refractive index of the glass. Exposure-temperature history requires a number of considerations enumerated in this paper. ?? 1981.

  12. Methane hydrates and contemporary climate change

    Science.gov (United States)

    Ruppel, Carolyn D.

    2011-01-01

    As the evidence for warming climate became better established in the latter part of the 20th century (IPCC 2001), some scientists raised the alarm that large quantities of methane (CH4) might be liberated by widespread destabilization of climate-sensitive gas hydrate deposits trapped in marine and permafrost-associated sediments (Bohannon 2008, Krey et al. 2009, Mascarelli 2009). Even if only a fraction of the liberated CH4 were to reach the atmosphere, the potency of CH4 as a greenhouse gas (GHG) and the persistence of its oxidative product (CO2) heightened concerns that gas hydrate dissociation could represent a slow tipping point (Archer et al. 2009) for Earth's contemporary period of climate change.

  13. Advances in understanding hydration of Portland cement

    Energy Technology Data Exchange (ETDEWEB)

    Scrivener, Karen L., E-mail: Karen.scrivener@epfl.ch [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 (Switzerland); Juilland, Patrick [Sika Technology AG, Zürich (Switzerland); Monteiro, Paulo J.M. [Department of Civil and Environmental Engineering, University of California at Berkeley (United States)

    2015-12-15

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C{sub 3}A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed.

  14. Propane hydrate nucleation: Experimental investigation and correlation

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2008-01-01

    In this work the nucleation kinetics of propane gas hydrate has been investigated experimentally using a stirred batch reactor. The experiments have been performed isothermally recording the pressure as a function of time. Experiments were conducted at different stirring rates, but in the same......) to the aqueous phase was found to reduce the gas dissolution rate slightly. However the induction times were prolonged quite substantially upon addition of PVP.The induction time data were correlated using a newly developed induction time model based on crystallization theory also capable of taking into account...... the presence of additives. In most cases reasonable agreement between the data and the model could be obtained. The results revealed that especially the effective surface energy between propane hydrate and water is likely to change when the stirring rate varies from very high to low. The prolongation...

  15. A Proposed Unified Theory of Hydrated Asteroids

    Science.gov (United States)

    Rivkin, Andrew S.

    2016-10-01

    The last decade has seen tremendous growth in the study of hydrated and hydroxylated minerals (hereafter simply called "hydrated minerals") on asteroids. Several workers have used absorptions in the 3-µm region and a correlated absorption near 0.7 µm to determine not only the presence or absence of these minerals but gain insight into the compositions of asteroid surfaces. Spectra of hundreds of asteroids have been measured and published or presented at meetings, and we are in a position to use these newer datasets to globally assess the patterns and relationships we see, as previously done by Jones et al. (1990) and Takir et al. (2012). There are several points to be addressed by any such assessment. Several different band shapes are seen in the 3-µm region, only one of which is seen in the hydrated meteorites in our collections. However, each of the main 3-µm band shapes is represented among parent bodies of collisional families. There seems to be little correlation in general between asteroid spectral class and 3-µm band shape, save for the Ch meteorites which are overwhelmingly likely to share the same band shape as the CM meteorites. Ceres has an unusual but not unique band shape, which has thus far only been found on the largest asteroids. I will present an outline scenario for the formation and evolution of hydrated asteroids, where aqueous alteration serves to lithify some objects while other objects remain unlithified and still others differentiate and suffer collisional modification. While some details will no doubt be altered to account for better or new information, this scenario is offered as a starting point for discussion.

  16. Bioimpedance in medicine: Measuring hydration influence

    Science.gov (United States)

    Hlubik, J.; Hlubik, P.; Lhotska, L.

    2010-04-01

    The aim of the paper is to present results of our ongoing research focused on the influence of body hydration on the body impedance measurements and also on the influence of the frequency used for the measurement. The question is why to measure human body composition and if these values have beneficial results. First goal of the work deals with a question of measuring human body composition. The performed measurements showed certain influence which must be verified by repeated experiments.

  17. Methane storage in dry water gas hydrates.

    Science.gov (United States)

    Wang, Weixing; Bray, Christopher L; Adams, Dave J; Cooper, Andrew I

    2008-09-03

    Dry water stores 175 v(STP)/v methane at 2.7 MPa and 273.2 K in a hydrate form which is close to the Department of Energy volumetric target for methane storage. Dry water is a silica-stabilized free-flowing powder (95% wt water), and fast methane uptakes were observed (90% saturation uptake in 160 min with no mixing) as a result of the relatively large surface-to-volume ratio of this material.

  18. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)

    2008-07-01

    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.

  19. Hydration process in Portland cement blended with activated coal gangue

    Institute of Scientific and Technical Information of China (English)

    Xian-ping LIU; Pei-ming WANG; Min-ju DING

    2011-01-01

    This paper deals with the hydration of a blend of Portland cement and activated coal gangue in order to determine the relationship between the degree of hydration and compressive strength development.The hydration process was investigated by various means:isothermal calorimetry,thermal analysis,non-cvaporable water measurement,and X-ray diffraction analysis.The results show that the activated coal gangue is a pozzolanic material that contributes to the hydration of the cement blend.The pozzolanic reaction occurs over a period of between 7 and 90 d,consuming portlandite and forming both crystal hydrates and ill-crystallized calcium silicate hydrates.These hydrates are similar to those found in pure Portland cement.The results show that if activated coal gangue is substituted for cement at up to 30% (w/w),it does not significantly affect the final compressive strength of the blend.A long-term compressive strength improvement can in fact be achieved by using activated coal gangue as a supplementary cementing material.The relationship between compressive strength and degree of hydration for both pure Portland cement and blended cement can be described with the same equation.However,the parameters are different since blended cement produces fewer calcium silicate hydrates than pure Portland cement at the same degree of hydration.

  20. Gas Hydrate Growth Kinetics: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Remi-Erempagamo Tariyemienyo Meindinyo

    2016-12-01

    Full Text Available Gas hydrate growth kinetics was studied at a pressure of 90 bars to investigate the effect of temperature, initial water content, stirring rate, and reactor size in stirred semi-batch autoclave reactors. The mixing energy during hydrate growth was estimated by logging the power consumed. The theoretical model by Garcia-Ochoa and Gomez for estimation of the mass transfer parameters in stirred tanks has been used to evaluate the dispersion parameters of the system. The mean bubble size, impeller power input per unit volume, and impeller Reynold’s number/tip velocity were used for analyzing observed trends from the gas hydrate growth data. The growth behavior was analyzed based on the gas consumption and the growth rate per unit initial water content. The results showed that the growth rate strongly depended on the flow pattern in the cell, the gas-liquid mass transfer characteristics, and the mixing efficiency from stirring. Scale-up effects indicate that maintaining the growth rate per unit volume of reactants upon scale-up with geometric similarity does not depend only on gas dispersion in the liquid phase but may rather be a function of the specific thermal conductance, and heat and mass transfer limitations created by the limit to the degree of the liquid phase dispersion is batched and semi-batched stirred tank reactors.

  1. Intermolecular Hydrogen Transfer in Isobutane Hydrate

    Directory of Open Access Journals (Sweden)

    Takeshi Sugahara

    2012-05-01

    Full Text Available Electron spin resonance (ESR spectra of butyl radicals induced with γ-ray irradiation in the simple isobutane (2-methylpropane hydrate (prepared with deuterated water were investigated. Isothermal annealing results of the γ-ray-irradiated isobutane hydrate reveal that the isobutyl radical in a large cage withdraws a hydrogen atom from the isobutane molecule through shared hexagonal-faces of adjacent large cages. During this “hydrogen picking” process, the isobutyl radical is apparently transformed into a tert-butyl radical, while the sum of isobutyl and tert-butyl radicals remains constant. The apparent transformation from isobutyl to tert-butyl radicals is an irreversible first-order reaction and the activation energy was estimated to be 35 ± 3 kJ/mol, which was in agreement with the activation energy (39 ± 5 kJ/mol of hydrogen picking in the γ-ray-irradiated propane hydrate with deuterated water.

  2. The interaction of climate change and methane hydrates

    Science.gov (United States)

    Ruppel, Carolyn D.; Kessler, John D.

    2017-01-01

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.

  3. Emission spectra of the sol-gel glass doped with europium(III) complexes of picolinic acid N-oxide-A new UV-light sensor

    Energy Technology Data Exchange (ETDEWEB)

    Godlewska, P. [Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Engineering and Economics, Lower Silesian University of Economics, Wroclaw (Poland); Macalik, L. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland); Hanuza, J. [Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Engineering and Economics, Lower Silesian University of Economics, Wroclaw (Poland); Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland)], E-mail: j.hanuza@int.pan.wroc.pl

    2008-02-28

    New europium complexes of picolinic acid N-oxides have been synthesised and introduced into sol-gel matrices. Their application as UV-light sensors has been considered. The sequence of the electronic levels for Eu{sup 3+} ions has been determined from the absorption and emission studies and assigned to the respective electron transitions. The lifetimes of the excited states have been detected and analysed. The role of the CT transition inside the picolinic ligand and its influence on the ligand to metal charge transfer (LMCT) have been discussed.

  4. Synthesis, crystal structure, fluorescent and antioxidation properties of cerium(III) and europium(III) complexes with bis(3-methoxysalicylidene)-3-oxapentane-1,5-diamine

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xia; Shi, Xinkui; Xu, Yuling; Shen, Kesheng; Mao, Shanshan; Wu, Huilu [School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Gansu (China)

    2017-03-02

    Two aliphatic ether Schiff base lanthanide complexes (Ln = Eu, Ce) with bis(3-methoxysalicylidene)-3-oxapentane-1,5-diamine (Bod), were synthesized and characterized by physicochemical and spectroscopic methods. [Eu(Bod)(NO{sub 3}){sub 3}] (1) is a discrete mononuclear species and [Ce(Bod)(NO{sub 3}){sub 3}DMF]{sub ∞} (2) exhibits an inorganic coordination polymer. In the two complexes, the metal ions both are ten-coordinated and the geometric structure around the Ln{sup III} atom can be described as distorted hexadecahedron. Under excitation at room temperature, the red shift in the fluorescence band of the ligand in the complexes compared with that of the free ligand can be attributed to coordination of the rare earth ions to the ligand. Moreover, the antioxidant activities of the two complexes were investigated. The results demonstrated that the complexes have better scavenging activity than both the ligand and the usual antioxidants on the hydroxyl and superoxide radicals. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Modeling the Nanophase Structural Dynamics of Phenylated Sulfonated Poly Ether Ether Ketone Ketone (Ph-SPEEKK) Membranes as a Function of Hydration

    Energy Technology Data Exchange (ETDEWEB)

    Lins, Roberto D.; Devanathan, Ramaswami; Dupuis, Michel

    2011-03-03

    Solvated phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) membranes in the presence of hydronium ions were modeled by classical molecular dynamics simulations. The characterization of the nanophase structure and dynamics of such membranes was carried out as a function of the water content lambda, where lambda is the number of water molecules per sulfonate group, for lambda values of 3.5, 6, 11, 25, and 40. Analysis of pair correlation functions supports the experimental observation of membrane swelling upon hydration as well the increase in water and hydronium ion diffusion with increasing lambda. While the average number of hydrogen bonds between hydronium ions and sulfonate groups is dramatically affected by the hydration level, the average lifetime of the hydrogen bonds remains essentially constant. The membrane is found to be relatively rigid and its overall flexibility shows little dependence on water content. Compared to Nafion, water and ion diffusion coefficients are considerably smaller at lower hydration levels and room temperature. However, at higher lambda values of 25 and 40 these coefficients are comparable to those in Nafion at a lambda value of 16. This study also shows that water diffusion in Ph-SPEEKK membranes at low hydration levels can be significantly improved by raising the temperature with important implications for proton conductivity.

  6. Be2+ hydration in concentrated aqueous solutions of BeCl2.

    Science.gov (United States)

    Mason, Philip E; Ansell, Stuart; Neilson, George W; Brady, John W

    2008-02-21

    Neutron diffraction experiments were carried out on concentrated aqueous solutions of beryllium chloride at three concentrations: 1.5, 3, and 6 molal. By working with a specific ("null") mixture of heavy water (D2O) and water (H2O), information on the local structure around Be2+ ions was extracted directly. For all three BeCl2 solutions, the results show that the Be2+ ion has a well-defined 4-fold coordination shell that is dominated by oxygen atoms. There is also a relatively small probability (10-15%) that there are direct contacts between Be2+ and Cl- at a distance of approximately 2.2 angstroms. The oxygen atoms of the highly structured Be2+ first hydration shell are found to be situated at 2.6 angstroms apart, and form a pyramidal structure, in agreement with recent MD simulation results. The Cl- ions have approximately seven oxygen atoms (water molecules) in their hydration shells sited at 3.2 angstroms.

  7. Focus on the Development of Natural Gas Hydrate in China

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2016-05-01

    Full Text Available Natural gas hydrate, also known as combustible ice, and mainly composed of methane, is identified as a potential clean energy for the 21st century. Due to its large reserves, gas hydrate can ease problems caused by energy resource shortage and has gained attention around the world. In this paper, we focus on the exploration and development of gas hydrate as well as discussing its status and future development trend in China and abroad. We then analyze its opportunities and challenges in China from four aspects, resource, technology, economy and policy, with five forces model and Politics Economics Society Technology method. The results show China has abundance gas hydrate resource; however, backward technologies and inadequate investment have seriously hindered the future development of gas hydrate; thus, China should establish relevant cooperation framework and intuitional arrangement to attract more investment as well as breaking through technical difficulties to commercialization gas hydrate as soon as possible.

  8. Methane Production and Carbon Capture by Hydrate Swapping

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas

    2016-01-01

    gas molecules in the structural lattice. In this work, we quantitatively investigate the swapping behavior from injection of pure carbon dioxide and the (CO2 + N2) binary gas mixture through artificial hydrate-bearing sandstone samples by use of a core-flooding experimental apparatus. A total of 13...... of pure carbon dioxide in swapping methane from its hydrate phase; the methane recovery efficiency in brine water systems is enhanced relative to pure water systems. The replenishment of a fresh (CO2 + N2) gas mixture into the vapor phase can be considered as an efficient extraction method because 46...... in small hydrate cages, as long as the equilibrium formation pressure of (CO2 + N2) binary gas hydrate is below that of methane hydrate, even though adding nitrogen to carbon dioxide reduces the thermodynamic driving force for the formation of a new hydrate. When other conditions are similar, the methane...

  9. [Raman spectroscopic investigation of hydrogen storage in nitrogen gas hydrates].

    Science.gov (United States)

    Meng, Qing-guo; Liu, Chang-ling; Ye, Yu-guang; Li, Cheng-feng

    2012-08-01

    Recently, hydrogen storage using clathrate hydrate as a medium has become a hotspot of hydrogen storage research In the present paper, the laser Raman spectroscopy was used to study the hydrogen storage in nitrogen hydrate. The synthetic nitrogen hydrate was reacted with hydrogen gas under relatively mild conditions (e.g., 15 MPa, -18 degrees C). The Raman spectra of the reaction products show that the hydrogen molecules have enclathrated the cavities of the nitrogen hydrate, with multiple hydrogen cage occupancies in the clathrate cavities. The reaction time is an important factor affecting the hydrogen storage in nitrogen hydrate. The experimental results suggest that nitrogen hydrates are expected to be an effective media for hydrogen storage.

  10. Development of Alaskan gas hydrate resources. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  11. STUDY FOR NATURAL GAS HYDRATE CONVERSED FROM ICE

    Institute of Scientific and Technical Information of China (English)

    WANG Shengjie; SHEN Jiandong; HAO Miaoli; LIU Furong

    2003-01-01

    Natural gas hydrates are crystalline clathrate compounds composed of water and gases of small molecular diameters that can be used for storage and transport of natural gas as a novel method. In the paper a series of experiments of aspects and kinetics for hydrate formed from natural gas and ice were carried out on the industrial small scale production apparatus. The experimental results show that formation conditions of hydrate conversed from ice are independent of induction time, and bigger degrees of supersaturation and supercooling improved the driving force and advanced the hydrate formation.Superpressure is also favorable for ice particle conversion to hydrate. In addition, it was found there have an optimal reaction time during hydrate formation.

  12. Dielectric dispersion and protonic conduction in hydrated purple membrane.

    Science.gov (United States)

    Kovács, I; Váró, G

    1988-01-01

    Dielectric dispersion effects were studied in purple membranes of different hydration levels. The capacitance and conductivity were measured over the frequency range of 10(2) Hz to 10(5) Hz. With increase in the hydration level, the conductivity increases sharply above the critical hydration of hc = 0.06 g H2O/g protein. This critical hydration is close to the extent of the first continuous strongly bound water layer and is interpreted as the threshold for percolative proton transfer. The capacitance increases continuously with increasing hydration and a larger increase above the water content of 0.1 g H2O/g protein can be seen only at low frequencies. Maxwell-Wagner relaxation also appears above this hydration, showing the presence of a bulk water phase.

  13. Pore capillary pressure and saturation of methane hydrate bearing sediments

    Institute of Scientific and Technical Information of China (English)

    SUN Shicai; LIU Changling; YE Yuguang; LIU Yufeng

    2014-01-01

    To better understand the relationship between the pore capillary pressure and hydrate saturation in sedi-ments, a new method was proposed. First, the phase equilibria of methane hydrate in fine-grained silica sands were measured. As to the equilibrium data, the pore capillary pressure and saturation of methane hydrate were calculated. The results showed that the phase equilibria of methane hydrates in fine-grained silica sands changed due to the depressed activity of pore water caused by the surface group and negatively charged characteristic of silica particles as well as the capillary pressure in small pores together. The capil-lary pressure increased with the increase of methane hydrate saturation due to the decrease of the available pore space. However, the capillary-saturation relationship could not yet be described quantitatively because of the stochastic habit of hydrate growth.

  14. Poisson-Fermi Model of Single Ion Activities

    CERN Document Server

    Liu, Jinn-Liang

    2015-01-01

    A Poisson-Fermi model is proposed for calculating activity coefficients of single ions in strong electrolyte solutions based on the experimental Born radii and hydration shells of ions in aqueous solutions. The steric effect of water molecules and interstitial voids in the first and second hydration shells play an important role in our model. The screening and polarization effects of water are also included in the model that can thus describe spatial variations of dielectric permittivity, water density, void volume, and ionic concentration. The activity coefficients obtained by the Poisson-Fermi model with only one adjustable parameter are shown to agree with experimental data, which vary nonmonotonically with salt concentrations.

  15. Arguments for a Comprehensive Laboratory Research Subprogram on Hydrocarbon Gas Hydrates and Hydrate-Sediment Aggregates in the 2005-2010 DOE Methane Hydrate R & D Program

    Science.gov (United States)

    Kirby, S. H.

    2005-12-01

    Field observations of natural hydrocarbon clathrate hydrates, including responses to drilling perturbations of hydrates, well logging and analysis of drill core, and field geophysics are, combined with theoretical modeling, justifiably key activities of the authorized 2005-2010 DOE Methane Hydrate Program. It is argued in this presentation that sustained fundamental laboratory research amplifies, extends and verifies results obtained from field and modeling investigations and does so in a cost-effective way. Recent developments of hydrocarbon clathrate hydrate and sediment aggregate synthesis methods, applications of in-situ optical cell, Raman, NMR, x-ray tomography and neutron diffraction techniques, and cryogenic x-ray and SEM methods re-enforce the importance of such lab investigations. Moreover, there are large data gaps for hydrocarbon-hydrate and hydrate-sediment-aggregate properties. We give three examples: 1) All natural hydrocarbon hydrates in sediment core have been altered to varying degrees by their transit, storage, depressurization, and subsequent lab investigations, as are well-log observations during drilling operations. Interpretation of drill core properties and structure and well logs are also typically not unique. Emulations of the pressure-temperature-deformation-time histories of synthetic samples offer a productive way of gaining insight into how natural samples and logging measurements may be compositionally and texturally altered during sampling and handling. 2) Rock physics models indicate that the effects of hydrates on sediment properties depend on the manner in which hydrates articulate with the sediment matrix (their conformation). Most of these models have not been verified by direct testing using hydrocarbon hydrates with conformation checked by optical cell observations or cryogenic SEM. Such tests are needed and technically feasible. 3) Modeling the effects of exchanges of heat, multiphase fluid fluxes, and deformation involve

  16. The characteristics of gas hydrates occurring in natural environment

    Science.gov (United States)

    Lu, H.; Moudrakovski, I.; Udachin, K.; Enright, G.; Ratcliffe, C.; Ripmeester, J.

    2009-12-01

    In the past few years, extensive analyses have been carried out for characterizing the natural gas hydrate samples from Cascadia, offshore Vancouver Island; Mallik, Mackenzie Delta; Mount Elbert, Alaska North Slope; Nankai Trough, offshore Japan; Japan Sea and offshore India. With the results obtained, it is possible to give a general picture of the characteristics of gas hydrates occurring in natural environment. Gas hydrate can occur in sediments of various types, from sands to clay, although it is preferentially enriched in sediments of certain types, for example coarse sands and fine volcanic ash. Most of the gas hydrates in sediments are invisible, occurring in the pores of the sediments, while some hydrates are visible, appearing as massive, nodular, planar, vein-like forms and occurring around the seafloor, in the fractures related to fault systems, or any other large spaces available in sediments. Although methane is the main component of most of the natural gas hydrates, C2 to C7 hydrocarbons have been recognized in hydrates, sometimes even in significant amounts. Shallow marine gas hydrates have been found generally to contain minor amounts of hydrogen sulfide. Gas hydrate samples with complex gas compositions have been found to have heterogeneous distributions in composition, which might reflect changes in the composition of the available gas in the surrounding environment. Depending on the gas compositions, the structure type of a natural gas hydrate can be structure I, II or H. For structure I methane hydrate, the large cages are almost fully occupied by methane molecules, while the small cages are only partly occupied. Methane hydrates occurring in different environments have been identified with almost the same crystallographic parameters.

  17. New Methods for Gas Hydrate Energy and Climate Studies

    Science.gov (United States)

    Ruppel, C. D.; Pohlman, J.; Waite, W. F.; Hunt, A. G.; Stern, L. A.; Casso, M.

    2015-12-01

    Over the past few years, the USGS Gas Hydrates Project has focused on advancements designed to enhance both energy resource and climate-hydrate interaction studies. On the energy side, the USGS now manages the Pressure Core Characterization Tools (PCCTs), which includes the Instrumented Pressure Testing Chamber (IPTC) that we have long maintained. These tools, originally built at Georgia Tech, are being used to analyze hydrate-bearing sediments recovered in pressure cores during gas hydrate drilling programs (e.g., Nankai 2012; India 2015). The USGS is now modifying the PCCTs for use on high-hydrate-saturation and sand-rich sediments and hopes to catalyze third-party tool development (e.g., visualization). The IPTC is also being used for experiments on sediments hosting synthetic methane hydrate, and our scanning electron microscope has recently been enhanced with a new cryo-stage for imaging hydrates. To support climate-hydrate interaction studies, the USGS has been re-assessing the amount of methane hydrate in permafrost-associated settings at high northern latitudes and examined the links between methane carbon emissions and gas hydrate dissociation. One approach relies on the noble gas signature of methane emissions. Hydrate dissociation uniquely releases noble gases partitioned by molecular weight, providing a potential fingerprint for hydrate-sourced methane emissions. In addition, we have linked a DOC analyzer with an IRMS at Woods Hole Oceanographic Institution, allowing rapid and precise measurement of DOC and DIC concentrations and carbon isotopic signatures. The USGS has also refined methods to measure real-time sea-air flux of methane and CO2 using cavity ring-down spectroscopy measurements coupled with other data. Acquiring ~8000 km of data on the Western Arctic, US Atlantic, and Svalbard margins, we have tested the Arctic methane catastrophe hypothesis and the link between seafloor methane emissions and sea-air methane flux.

  18. Preventing Coal and Gas Outburst Using Methane Hydration

    Institute of Scientific and Technical Information of China (English)

    吴强; 何学秋

    2003-01-01

    According to the characteristics of the methane hydrate condensing and accumulating methane, authors put forward a new technique thought way to prevent the accident of coal and gas outburst by urging the methane in the coal seams to form hydrate. The paper analyzes the feasibility of forming the methane hydrate in the coal seam from the several sides, such as, temperature,pressure, and gas components, and the primary trial results indicate the problems should be settled before the industrialization appliance realized.

  19. Effects of salinity on methane gas hydrate system

    Institute of Scientific and Technical Information of China (English)

    YANG; DingHui; XU; WenYue

    2007-01-01

    Using an approximately analytical formation,we extend the steady state model of the pure methane hydrate system to include the salinity based on the dynamic model of the methane hydrate system.The top and bottom boundaries of the methane hydrate stability zone (MHSZ) and the actual methane hydrate zone (MHZ),and the top of free gas occurrence are determined by using numerical methods and the new steady state model developed in this paper.Numerical results show that the MHZ thickness becomes thinner with increasing the salinity,and the stability is lowered and the base of the MHSZ is shifted toward the seafloor in the presence of salts.As a result,the thickness of actual hydrate occurrence becomes thinner compared with that of the pure water case.On the other hand,since lower solubility reduces the amount of gas needed to form methane hydrate,the existence of salts in seawater can actually promote methane gas hydrate formation in the hydrate stability zone.Numerical modeling also demonstrates that for the salt-water case the presence of methane within the field of methane hydrate stability is not sufficient to ensure the occurrence of gas hydrate,which can only form when the methane concentration dissolved in solution with salts exceeds the local methane solubility in salt water and if the methane flux exceeds a critical value corresponding to the rate of diffusive methane transport.In order to maintain gas hydrate or to form methane gas hydrate in marine sediments,a persistent supplied methane probably from biogenic or thermogenic processes,is required to overcome losses due to diffusion and advection.

  20. Hydration behaviour of synthetic saponite at variable relative humidity

    Indian Academy of Sciences (India)

    Karmous Mohamed Salah; Jean Louis Robert

    2011-10-01

    Hydration behaviour of synthetic saponite was examined by X-ray powder diffraction simulation at various relative humidities (RH). The basal spacing of the Ca-saponite increased stepwise with increase in RH. The (00) reflections observed reflect single or dual hydration states of smectite. Quasi-rational, intermediate, or asymmetrical reflections were observed for all XRD patterns and reflecting heterogeneity of the samples, especially along the transition between two hydration states.

  1. Obsidian hydration profiles measured by sputter-induced optical emission.

    Science.gov (United States)

    Tsong, I S; Houser, C A; Yusef, N A; Messier, R F; White, W B; Michels, J W

    1978-07-28

    The variation of concentrations of hydrogen, sodium, potassium, lithium, calcium, magnesium, silicon, and aluminum as a function of depth in the hydration layer of obsidian artifacts has been determined by sputter-induced optical emission. The surface hydration is accompanied by dealkalization, and there is a buildup of alkaline earths, calcium and magnesium in the outermost layers. These results have clarified the phenomena underlying the obsidian hydration dating technique.

  2. Time-Dependent Electrical Properties of Human Nail Upon Hydration In Vivo

    OpenAIRE

    2010-01-01

    The objectives of this study were to investigate the effects of hydration and solution ion concentration on the electrical properties of human nail in vivo and compare these in vivo results with those in vitro. In vivo electrical resistance measurements on the nail were conducted with a three-electrode system in phosphate buffered saline of 0.01–0.6 M. The effect of electric current on nail resistance and possible adverse effects were studied under 1.5- and 9-V iontophoresis in vivo. The elec...

  3. Structural and dynamical aspects of the unsymmetric hydration of Sb(III): an ab initio quantum mechanical charge field molecular dynamics simulation.

    Science.gov (United States)

    Lim, Len Herald V; Bhattacharjee, Anirban; Asam, S Sikander; Hofer, Thomas S; Randolf, Bernhard R; Rode, Bernd M

    2010-03-01

    An ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulation was performed to investigate the behavior of the Sb(3+) ion in aqueous solution. The simulation reveals a significant influence of the residual valence shell electron density on the solvation structure and dynamics of Sb(3+). A strong hemidirectional behavior of the ligand binding pattern is observed for the first hydration shell extending up to the second hydration layer. The apparent domain partitioned structural behavior was probed by solvent reorientational kinetics and three-body distribution functions. The three-dimensional hydration space was conveniently segmented such that domains having different properties were properly resolved. The approach afforded a fair isolation of localized solvent structural and dynamical motifs that Sb(3+) seems to induce to a remarkable degree. Most intriguing is the apparent impact of the lone pair electrons on the second hydration shell, which offers insight into the mechanistic aspects of hydrogen bonding networks in water. Such electronic effects observed in the hydration of Sb(3+) can only be studied by applying a suitable quantum mechanical treatment including first and second hydration shell as provided by the QMCF ansatz.

  4. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate

    Science.gov (United States)

    Yun, T.S.; Santamarina, C.J.; Ruppel, C.

    2007-01-01

    The mechanical behavior of hydrate-bearing sediments subjected to large strains has relevance for the stability of the seafloor and submarine slopes, drilling and coring operations, and the analysis of certain small-strain properties of these sediments (for example, seismic velocities). This study reports on the results of comprehensive axial compression triaxial tests conducted at up to 1 MPa confining pressure on sand, crushed silt, precipitated silt, and clay specimens with closely controlled concentrations of synthetic hydrate. The results show that the stress-strain behavior of hydrate-bearing sediments is a complex function of particle size, confining pressure, and hydrate concentration. The mechanical properties of hydrate-bearing sediments at low hydrate concentration (probably 50% of pore space), the behavior becomes more independent of stress because the hydrates control both stiffness and strength and possibly the dilative tendency of sediments by effectively increasing interparticle coordination, cementing particles together, and filling the pore space. The cementation contribution to the shear strength of hydrate-bearing sediments decreases with increasing specific surface of soil minerals. The lower the effective confining stress, the greater the impact of hydrate formation on normalized strength.

  5. Ethylene Separation via Hydrate Formation in W/O Emulsions

    Directory of Open Access Journals (Sweden)

    Yong Pan

    2015-05-01

    Full Text Available An hybrid absorption-hydration method was adopted to recover C2H4 from C2H4/CH4 binary gas mixtures and the hydrate formation conditions of C2H4/CH4 mixtures was studied experimentally in diesel in water (w/o emulsions. Span 20 at a concentration of 1.0 wt% in the aqueous phase was added to form water in diesel emulsions before hydrate formation and then hydrate in diesel slurry was separated after hydrate formation. The influences of initial gas-liquid volume ratio (53–142, pressure (3.4–5.4 MPa, temperature (274.15–278.15 K, water cuts (10–30 vol%, and the mole fraction of C2H4 in feed gas (13.19–80.44 mol% upon the C2H4 separation efficiency were systematically investigated. The experimental results show that ethylene can be enriched in hydrate slurry phase with high separation factor (S and recovery ratio (R. Most hydrate formation finished in 20 min, after that, the hydrate formation rate became very slow. The conclusion is useful for determining the suitable operation conditions when adopting an absorption-hydration method to separate C2H4/CH4.

  6. Kinetics of hydrate formation using gas bubble suspended in water

    Institute of Scientific and Technical Information of China (English)

    马昌峰; 陈光进; 郭天民

    2002-01-01

    An innovative experimental technique, which was devised to study the effects of temperature and pressure on the rate of hydrate formation at the surface of a gas bubble suspended in a stagnant water phase, was adapted in this work. Under such conditions, the hydrate-growth process is free from dynamic mass transfer factors. The rate of hydrate formation of methane and carbon dioxide has been systematically studied. The measured hydrate-growth data were correlated by using the molar Gibbs free energy as driving force. In the course of the experiments, some interesting surface phenomena were observed.

  7. Continuous production of CO2 hydrate slurry added antifreeze proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, Y.; Ota, M.; Murakami, K. [Tokyo Metropolitan Univ., Tokyo (Japan). Dept. of Mechanical Engineering; Ferdows, M. [Dhaka Univ., Dhaka (Bangladesh). Dept. of Mathematics; Endou, H. [Technova Co. Ltd., Tokyo (Japan). Dept. of Mechanical Engineering

    2008-07-01

    Ocean storage of carbon dioxide (CO{sub 2}) hydrate is possible in deep seas where low temperature and high pressure conditions exist. However, when hydrates are produced in large quantities, they can plug pipelines. The addition of antifreeze proteins (AFPs) can prevent hydrate crystals from forming. The hydrate may then behave like a slurry which can be transported from a production place to a place of storage with minimal pressure loss. This study developed a production method for a CO{sub 2} hydrate slurry and presented the prospect of the inhibition effect for CO{sub 2} hydrate formation by adding AFPs. It revealed the shift in induction time, the formation rate and the torque of the agitator under conditions of AFPs at 0.01 mg/ml. It was concluded that compared to pure water, the induction time for hydrate production increased 244 per cent, the formation rate decreased 76 per cent and the ratio of the torque decreased 48 per cent by adding AFPs. The AFPs rendered the hydrate particles small and well dispersed. It was concluded that type 3 AFPs can effectively inhibit the production of structure s1 type hydrates. 4 refs., 6 figs.

  8. Geomechanical Performance of Hydrate-Bearing Sediment in Offshore Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; Tad Patzek; Jonny Rutqvist; George Moridis; Richard Plumb

    2008-03-31

    The objective of this multi-year, multi-institutional research project was to develop the knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate-bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus was on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. We have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. We also investigated the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. The objective of the UC Berkeley work was to develop a grain-scale model of hydrate-bearing sediments. Hydrate dissociation alters the strength of HBS. In particular, transformation of hydrate clusters into gas and liquid water weakens the skeleton and, simultaneously, reduces the effective stress by increasing the pore pressure. The large-scale objective of the study is evaluation of geomechanical stability of offshore oil and gas production infrastructure. At Lawrence Berkeley National Laboratory (LBNL), we have developed the numerical model TOUGH + Hydrate + FLAC3D to evaluate how the formation and disassociation of hydrates in seafloor sediments affects seafloor stability. Several technical papers were published using results from this model. LBNL also developed laboratory equipment and methods to produce realistic laboratory samples of sediments containing gas hydrates so that mechanical properties could be measured in the laboratory. These properties are required to run TOUGH + Hydrate + FLAC3D to evaluate seafloor stability issues. At Texas A&M University we performed a detailed literature review to determine what gas hydrate formation properties had been measured and reported in the literature. We

  9. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  10. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    form of the dispersion model. The development of hydration varied between the investigated cements; based on the measured data the degree of hydration after 24 h hydration at 20 C varied between 40 and 50%. This should be taken into account when comparing properties of concrete made from the different......Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...

  11. Hydrate control for WAG injection in the Ekofisk field

    Energy Technology Data Exchange (ETDEWEB)

    Lekvam, Knut; Surguchev, Leonid M.; Ekrann, Steinar; Svartaas, Thor Martin; Kelland, Malcolm; Nilsson, Svante; Oevsthus, Jorun; Gjoevikli, Nils B.

    1997-12-31

    The report relates to a hydrate formation project for the Ekofisk field on the Norwegian continental shelf. To remove the possible hydrate formation problems during WAG (Water Alternating Gas) treatment, the following project was conducted to estimate roughly the distance from the injection well that hydrate formation can be prevented by whatever treatment is most appropriate. The first aim was to test experimentally whether selected kinetic hydrate inhibitors could be used, and in which concentrations and quantities. In addition evaluations were done to calculate the required volume of the inhibitor solutions that have to be injected to prevent mixing of uninhibited water and gas. 8 figs., 8 tabs.

  12. Theoretical study of the hydration of atmospheric nucleation precursors with acetic acid.

    Science.gov (United States)

    Zhu, Yu-Peng; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Xu, Kang-Ming; Wen, Hui; Zhang, Wei-Jun; Huang, Wei

    2014-09-11

    While atmosphere is known to contain a significant fraction of organic substance and the effect of acetic acid to stabilize hydrated sulfuric acids is found to be close that of ammonia, the details about the hydration of (CH3COOH)(H2SO4)2 are poorly understood, especially for the larger clusters with more water molecules. We have investigated structural characteristics and thermodynamics of the hydrates using density functional theory (DFT) at PW91PW91/6-311++G(3df,3pd) level. The phenomena of the structural evolution may exist during the early stage of the clusters formation, and we tentatively proposed a calculation path for the Gibbs free energies of the clusters formation via the structural evolution. The results in this study supply a picture of the first deprotonation of sulfuric acids for a system consisting of two sulfuric acid molecules, an acetic acid molecule, and up to three waters at 0 and 298.15 K, respectively. We also replace one of the sulfuric acids with a bisulfate anion in (CH3COOH)(H2SO4)2 to explore the difference of acid dissociation between two series of clusters and interaction of performance in clusters growth between ion-mediated nucleation and organics-enhanced nucleation.

  13. Influence of Hydration Level on Polymer and Water Dynamics in Alkaline Anion Exchange Fuel Cell Membranes

    Science.gov (United States)

    Tarver, Jacob; Kim, Jenny; Tyagi, Madhu; Soles, Christopher; Tsai, Tsung-Han; Coughlin, Bryan

    2015-03-01

    Triblock copolymers based on poly(chloromethylstyrene)-b-poly(ethylene)-b-poly(chloromethylstyrene) can be quaternized to different extents to yield anion exchange membranes for alkaline fuel cells. In the absence of moisture, these membranes demonstrate bilayer lamellar morphology. Upon high levels of hydration, however, in-situ small angle neutron scattering reveals the emergence of higher-order diffraction peaks. This phenomena has previously been observed in analogous diblock copolymer-based membranes and has been attributed to the induction of a multilayer lamellar morphology in which selective striping of water occurs in the center of the ion-rich domain. By conducting humidity-resolved quasielastic neutron scattering (QENS) measurements using deuterated water, we are able to isolate differences in the pico- to nanosecond timescale dynamics of the hydrogenated membrane upon hydration. QENS measurements in the presence of a hydrogenated water source subsequently permit deconvolution and isolation of the translational and rotational dynamics of water as a function of relative humidity, revealing spatial and temporal changes in polymer and water motion at high levels of hydration.

  14. Mössbauer, XRD, and Complex Thermal Analysis of the Hydration of Cement with Fly Ash

    Directory of Open Access Journals (Sweden)

    Vili Lilkov

    2013-01-01

    Full Text Available Hydration of cement with and without fly ash is studied with Mössbauer spectroscopy, XRD, and thermal analysis. Iron in cement is present as Fe3+-ions and occupies two octahedral positions, with close isomer shifts and quadrupole splittings. Iron in fly ash is present as Fe2+ and Fe3+, and the Mössbauer spectra display three doublets—two for Fe3+ in octahedral coordination and one for Fe2+. A third doublet was registered in the hydrating plain cement pastes after the 5th day, due to Fe3+ in tetrahedral coordination in the structure of the newly formed monosulphate aluminate. In cement pastes with fly ash, the doublet of tetrahedral iron is formed earlier because the quantity of ettringite and portlandite is low and more monosulphate crystallizes. No Fe(OH3 phase forms during hydration of C4AF. The fly ash displays pozzolanic properties, which lead to lowering of the portlandite quantity in the cement mixtures and increasing of the high temperature products.

  15. Potential-of-mean-force description of ionic interactions and structural hydration in biomolecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Hummer, G.; Garcia, A.E. [Los Alamos National Lab., NM (United States). Theoretical Biology and Biophysics Group; Soumpasis, D.M. [Max-Planck-Inst for Biophysical Chemistry, Goettingen (Germany). Biocomputation Group

    1994-10-01

    To understand the functioning of living organisms on a molecular level, it is crucial to dissect the intricate interplay of the immense number of biological molecules. Most of the biochemical processes in cells occur in a liquid environment formed mainly by water and ions. This solvent environment plays an important role in biological systems. The potential-of-mean-force (PMF) formalism attempts to describe quantitatively the interactions of the solvent with biological macromolecules on the basis of an approximate statistical-mechanical representation. At its current status of development, it deals with ionic effects on the biomolecular structure and with the structural hydration of biomolecules. The underlying idea of the PMF formalism is to identify the dominant sources of interactions and incorporate these interactions into the theoretical formalism using PMF`s (or particle correlation functions) extracted from bulk-liquid systems. In the following, the authors shall briefly outline the statistical-mechanical foundation of the PMF formalism and introduce the PMF expansion formalism, which is intimately linked to superposition approximations for higher-order particle correlation functions. The authors shall then sketch applications, which describe the effects of the ionic environment on nucleic-acid structure. Finally, the authors shall present the more recent extension of the PMF idea to describe quantitatively the structural hydration of biomolecules. Results for the interface of ice and water and for the hydration of deoxyribonucleic acid (DNA) will be discussed.

  16. Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate

    Directory of Open Access Journals (Sweden)

    Juan Emilio Palomares-Rius

    2016-02-01

    Full Text Available Plant-parasitic nematodes (PPN need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN (Globodera pallida and G. rostochiensis are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium, while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules.

  17. Mechanical behavior of a composite interface: Calcium-silicate-hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Palkovic, Steven D.; Moeini, Sina; Büyüköztürk, Oral, E-mail: obuyuk@mit.edu [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Yip, Sidney [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-07-21

    The generalized stacking fault (GSF) is a conceptual procedure historically used to assess shear behavior of defect-free crystalline structures through molecular dynamics or density functional theory simulations. We apply the GSF technique to the spatially and chemically complex quasi-layered structure of calcium-silicate-hydrates (C-S-H), the fundamental nanoscale binder within cementitious materials. A failure plane is enforced to calculate the shear traction-displacement response along a composite interface containing highly confined water molecules, hydroxyl groups, and calcium ions. GSF simulations are compared with affine (homogeneous) shear simulations, which allow strain to localize naturally in response to the local atomic environment. Comparison of strength and deformation behavior for the two loading methods shows the composite interface controls bulk shear deformation. Both models indicate the maximum shear strength of C-S-H exhibits a normal-stress dependency typical of cohesive-frictional materials. These findings suggest the applicability of GSF techniques to inhomogeneous structures and bonding environments, including other layered systems such as biological materials containing organic and inorganic interfaces.

  18. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Vavpetič, P., E-mail: primoz.vavpetic@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, K. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Jeromel, L. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Ogrinc Potočnik, N. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); FOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Pongrac, P. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Department of Plant Physiology, University of Bayreuth, Universitätstr. 30, 95447 Bayreuth (Germany); Drobne, D.; Pipan Tkalec, Ž.; Novak, S.; Kos, M.; Koren, Š.; Regvar, M. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Pelicon, P. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2015-04-01

    The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on–off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm{sup 2} and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation.

  19. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe

    Science.gov (United States)

    Vavpetič, P.; Vogel-Mikuš, K.; Jeromel, L.; Ogrinc Potočnik, N.; Pongrac, P.; Drobne, D.; Pipan Tkalec, Ž.; Novak, S.; Kos, M.; Koren, Š.; Regvar, M.; Pelicon, P.

    2015-04-01

    The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on-off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm2 and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation.

  20. Life Origination Hydrate Hypothesis (LOH-Hypothesis

    Directory of Open Access Journals (Sweden)

    Victor Ostrovskii

    2012-01-01

    Full Text Available The paper develops the Life Origination Hydrate Hypothesis (LOH-hypothesis, according to which living-matter simplest elements (LMSEs, which are N-bases, riboses, nucleosides, nucleotides, DNA- and RNA-like molecules, amino-acids, and proto-cells repeatedly originated on the basis of thermodynamically controlled, natural, and inevitable processes governed by universal physical and chemical laws from CH4, niters, and phosphates under the Earth's surface or seabed within the crystal cavities of the honeycomb methane-hydrate structure at low temperatures; the chemical processes passed slowly through all successive chemical steps in the direction that is determined by a gradual decrease in the Gibbs free energy of reacting systems. The hypothesis formulation method is based on the thermodynamic directedness of natural movement and consists ofan attempt to mentally backtrack on the progression of nature and thus reveal principal milestones alongits route. The changes in Gibbs free energy are estimated for different steps of the living-matter origination process; special attention is paid to the processes of proto-cell formation. Just the occurrence of the gas-hydrate periodic honeycomb matrix filled with LMSEs almost completely in its final state accounts for size limitation in the DNA functional groups and the nonrandom location of N-bases in the DNA chains. The slowness of the low-temperature chemical transformations and their “thermodynamic front” guide the gross process of living matter origination and its successive steps. It is shown that the hypothesis is thermodynamically justified and testable and that many observed natural phenomena count in its favor.

  1. Proton-bound cluster ions in ion mobility spectrometry.

    Science.gov (United States)

    Ewing, R G; Eiceman, G A; Stone, J A

    1999-10-28

    Gaseous oxygen and nitrogen bases, both singly and as binary mixtures, have been introduced into ion mobility spectrometers to study the appearance of protonated molecules, and proton-bound dimers and trimers. At ambient temperature it was possible to simultaneously observe, following the introduction of molecule A, comparable intensities of peaks ascribable to the reactant ion (H2O)nH+, the protonated molecule AH+ and AH+ H2O, and the symmetrical proton bound dimer A2H+. Mass spectral identification confirmed the identifications and also showed that the majority of the protonated molecules were hydrated and that the proton-bound dimers were hydrated to a much lesser extent. No significant peaks ascribable to proton-bound trimers were obtained no matter how high the sample concentration. Binary mixtures containing molecules A and B, in some cases gave not only the peaks unique to the individual compounds but also peaks due to asymmetrical proton bound dimers AHB+. Such ions were always present in the spectra of mixtures of oxygen bases but were not observed for several mixtures of oxygen and nitrogen bases. The dimers, which were not observable, notable for their low hydrogen bond strengths, must have decomposed in their passage from the ion source to the detector, i.e. in a time less than approximately 5 ms. When the temperature was lowered to -20 degrees C, trimers, both homogeneous and mixed, were observed with mixtures of alcohols. The importance of hydrogen bond energy, and hence operating temperature, in determining the degree of solvation of the ions that will be observed in an ion mobility spectrometer is stressed. The possibility is discussed that a displacement reaction involving ambient water plays a role in the dissociation.

  2. A realistic molecular model of cement hydrates

    OpenAIRE

    PELLENQ, Roland J.-M.; Kushima, Akihiro; Shahsavari, Rouzbeh; Van Vliet, Krystyn J.; Markus J. Buehler; Yip, Sidney; Ulm, Franz-Josef

    2009-01-01

    Despite decades of studies of calcium-silicate-hydrate (C-S-H), the structurally complex binder phase of concrete, the interplay between chemical composition and density remains essentially unexplored. Together these characteristics of C-S-H define and modulate the physical and mechanical properties of this “liquid stone” gel phase. With the recent determination of the calcium/silicon (C/S = 1.7) ratio and the density of the C-S-H particle (2.6 g/cm3) by neutron scattering measurements, there...

  3. The characteristics of gas hydrates recovered from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lu, H.; Lorenson, T.D.; Moudrakovski, I.L.; Ripmeester, J.A.; Collett, T.S.; Hunter, R.B.; Ratcliffe, C.I.

    2011-01-01

    Systematic analyses have been carried out on two gas hydrate-bearing sediment core samples, HYPV4, which was preserved by CH4 gas pressurization, and HYLN7, which was preserved in liquid-nitrogen, recovered from the BPXA-DOE-USGS Mount Elbert Stratigraphic Test Well. Gas hydrate in the studied core samples was found by observation to have developed in sediment pores, and the distribution of hydrate saturation in the cores imply that gas hydrate had experienced stepwise dissociation before it was stabilized by either liquid nitrogen or pressurizing gas. The gas hydrates were determined to be structure Type I hydrate with hydration numbers of approximately 6.1 by instrumentation methods such as powder X-ray diffraction, Raman spectroscopy and solid state 13C NMR. The hydrate gas composition was predominantly methane, and isotopic analysis showed that the methane was of thermogenic origin (mean ??13C=-48.6??? and ??D=-248??? for sample HYLN7). Isotopic analysis of methane from sample HYPV4 revealed secondary hydrate formation from the pressurizing methane gas during storage. ?? 2010 Elsevier Ltd.

  4. Are seafloor pockmarks on the Chatham Rise, New Zealand, linked to CO2 hydrates? Gas hydrate stability considerations.

    Science.gov (United States)

    Pecher, I. A.; Davy, B. W.; Rose, P. S.; Coffin, R. B.

    2015-12-01

    Vast areas of the Chatham Rise east of New Zealand are covered by seafloor pockmarks. Pockmark occurrence appears to be bathymetrically controlled with a band of smaller pockmarks covering areas between 500 and 700 m and large seafloor depressions beneath 800 m water depth. The current depth of the top of methane gas hydrate stability in the ocean is about 500 m and thus, we had proposed that pockmark formation may be linked to methane gas hydrate dissociation during sealevel lowering. However, while seismic profiles show strong indications of fluid flow, geochemical analyses of piston cores do not show any evidence for current or past methane flux. The discovery of Dawsonite, indicative of significant CO2 flux, in a recent petroleum exploration well, together with other circumstantial evidence, has led us to propose that instead of methane hydrate, CO2 hydrate may be linked to pockmark formation. We here present results from CO2 hydrate stability calculations. Assuming water temperature profiles remain unchanged, we predict the upper limit of pockmark occurrence to coincide with the top of CO2 gas hydrate stability during glacial-stage sealevel lowstands. CO2 hydrates may therefore have dissociated during sealevel lowering leading to gas escape and pockmark formation. In contrast to our previous model linking methane hydrate dissociation to pockmark formation, gas hydrates would dissociate beneath a shallow base of CO2 hydrate stability, rather than on the seafloor following upward "grazing" of the top of methane hydrate stability. Intriguingly, at the water depths of the larger seafloor depressions, the base of gas hydrate stability delineates the phase boundary between CO2 hydrates and super-saturated CO2. We caution that because of the high solubility of CO2, dissociation from hydrate to free gas or super-saturated CO2 would imply high concentrations of CO2 and speculate that pockmark formation may be linked to CO2 hydrate dissolution rather than dissociation

  5. Electrical properties of methane hydrate + sediment mixtures: The σ of CH4 Hydrate + Sediment

    Energy Technology Data Exchange (ETDEWEB)

    Du Frane, Wyatt L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stern, Laura A. [U. S. Geological Survey, Menlo Park, CA (United States); Constable, Steven [Scripps Institution of Oceanography, La Jolla, CA (United States); Weitemeyer, Karen A. [Scripps Institution of Oceanography, La Jolla, CA (United States); National Oceanography Centre Southampton (United Kingdom), Univ. of Southampton Waterfront Campus, Southampton (United Kingdom); Smith, Megan M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, Jeffery J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-30

    Knowledge of the electrical properties of multicomponent systems with gas hydrate, sediments, and pore water is needed to help relate electromagnetic (EM) measurements to specific gas hydrate concentration and distribution patterns in nature. We built a pressure cell capable of measuring in situ electrical properties of multicomponent systems such that the effects of individual components and mixing relations can be assessed. We first established the temperature-dependent electrical conductivity (σ) of pure, single-phase methane hydrate to be ~5 orders of magnitude lower than seawater, a substantial contrast that can help differentiate hydrate deposits from significantly more conductive water-saturated sediments in EM field surveys. We report σ measurements of two-component systems in which methane hydrate is mixed with variable amounts of quartz sand or glass beads. Sand by itself has low σ but is found to increase the overall σ of mixtures with well-connected methane hydrate. Alternatively, the overall σ decreases when sand concentrations are high enough to cause gas hydrate to be poorly connected, indicating that hydrate grains provide the primary conduction path. Our measurements suggest that impurities from sand induce chemical interactions and/or doping effects that result in higher electrical conductivity with lower temperature dependence. Finally, these results can be used in the modeling of massive or two-phase gas-hydrate-bearing systems devoid of conductive pore water. Further experiments that include a free water phase are the necessary next steps toward developing complex models relevant to most natural systems.

  6. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhou [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074 (China); College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Tang, Heqing, E-mail: tangheqing@mail.scuec.edu.cn [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074 (China); Wang, Nan, E-mail: nwang83@sina.com [College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhu, Lihua [College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-11-15

    Highlights: • A new reductive method for PFOA defluorination was established by sulfite-mediated photolysis. • The defluorination of PFOA was dependent on sulfite concentration and solution pH. • A defluorination ratio of PFOA as high as 88.5% was achieved after reaction of 24 h. • A few of perfluorinated sulfonates were detected as intermediates during the degradation of PFOA. • A mechanism was proposed for the reductive defluorination of PFOA by hydrated electrons. -- Abstract: A method for reductive degradation of perfluorooctanoic acid (PFOA) was established by using a sulfite/UV process. This process led to a PFOA removal of 100% at about 1 h and a defluorination ratio of 88.5% at reaction time of 24 h under N{sub 2} atmosphere, whereas the use of either UV irradiation or SO{sub 3}{sup 2−} alone induced little defluorination of PFOA under the same conditions. It was confirmed that the reductive defluorination of PFOA was achieved by hydrated electrons being generated from the photo-conversion of SO{sub 3}{sup 2−} as a mediator. Theoretical reaction kinetic analysis demonstrated that the generation of hydrated electrons was promoted by increasing either SO{sub 3}{sup 2−} concentration or solution pH, leading to the acceleration of the PFOA defluorination. Accompanying the reduction of PFOA, a small amount of short-chain perfluorocarboxylic acids, less fluorinated carboxylic acids and perfluorinated alkyl sulfonates were generated, all of which were able to be further degraded with further releasing of fluoride ions. Based on the generation, accumulation and distribution of intermediates, hydrated electrons induced defluorination pathway of PFOA was proposed in a sulfite-mediated UV photochemical system.

  7. Life Origination Hydrate Theory (LOH-Theory) and the explanation of the biological diversification.

    Science.gov (United States)

    Ostrovskii, Victor E; Kadyshevich, Elena A

    2014-12-01

    The Life Origination Hydrate Theory (LOH-Theory) considers the life origination process as a sequence of thermodynamically caused regular and inevitable chemical transformations regulated by universal physical and chemical laws. The LOH-Theory bears on a number of experimental, thermodynamic, observation, and simulation researches. N-bases, riboses, nucleosides, and nucleotides and DNAs and RNAs are formed repeatedly within structural cavities of localizations of underground and underseabed honeycomb CH4-hydrate deposits from CH4 and nitrate and phosphate ions that diffused into the hydrate structures; proto-cells and their agglomerates originated from these DNAs and from the same minerals in the semi-liquid soup after liquation of the hydrate structures. Each localization gave rise to a multitude of different DNAs and living organisms. The species diversity is caused by the spatial and temporal repeatability of the processes of living matter origination under similar but not identical conditions, multiplicity of the DNA forms in each living matter origination event, variations in the parameters of the native medium, intraspecific variations, and interspecific variations. The contribution of the last to the species diversity is, likely, significant for prokaryotes and those eukaryotes that are only at low steps of their biological organization; however, in the light of the LOH-Theory, of available long-term paleontological investigations, and of studies of reproduction of proliferous organisms, we conclude that, in toto, the contribution of interspecific variations to the species diversity was earlier overestimated by some researchers. The reason of this overestimation is that origination of scores of «spores» of different organisms in any one event and multiple reproductions of such events in time and Earth's space were not taken into consideration.

  8. Well log characterization of natural gas-hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2012-01-01

    In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms

  9. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Carolyn Ann [Colorado School of Mines

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  10. Electrochemistry of Europium(III) Chloride in 3 LiCl – NaCl, 3 LiCl – 2 KCl, LiCl – RbCl, and 3 LiCl – 2 CsCl Eutectics at Various Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Schroll, Cynthia A.; Chatterjee, Sayandev; Levitskaia, Tatiana G.; Heineman, William R.; Bryan, Samuel A.

    2017-01-01

    Here we report the effect of changing the eutectic melt composition on the electrochemical properties of europium(III) chloride under pyroprocessing conditions. The number of electrons transferred, redox potentials and diffusion coefficients were determined using various electrochemical and spectroelectrochemical techniques in four different eutectic mixtures (3 LiCl - NaCl, 3 LiCl - 2 KCl, 3 LiCl - RbCl, and 3 LiCl - 2 CsCl) while varying the temperature of the melt. It was determined that Eu3+ undergoes a one electron reduction to Eu2+ in each melt at all temperatures evaluated. Within all the melts a positive shift in the redox potential as well as an increase in the diffusion coefficient for Eu3+ was observed as the temperature increased. Also observed was a positive shift in the redox potential and increase in the diffusion coefficient for Eu3+ as the weighted average of the cationic radii for the melt decreased.

  11. Phthalimides: Supramolecular Interactions in Crystals, Hypersensitive Solution 1H-NMR Dynamics and Energy Transfer to Europium(III and Terbium(III States

    Directory of Open Access Journals (Sweden)

    David J. Williams

    2003-07-01

    Full Text Available Detailed crystal structures and 1H-NMR characteristics of some alkylaminephthalimides, including dendritic polyphthalimides, are reported. These investigations were undertaken in order to obtain a better understanding of the relationship between solid-state supramolecular interactions, their persistence in solution and associated dynamics of magnetically hypersensitive phthalimide aromatic AA'BB'-AA'XX' proton NMR resonances. Some alkylamine phthalimides feature folded molecular geometries, which we attribute to n-π interactions among proximal amine-phthalimide sites; those alkylamine-phthalimides that have no possibility for such interactions feature fully extended phthalimide functionalities. Accordingly, alkylamine phthalimide compounds with folded solid-state geometries feature solvent and temperature dependent hypersensitive AA'BB'-AA'XX' 1H-NMR line profiles, which we attribute to the n-π interactions. Luminescence of Eu3+(5D0 and Tb3+(5D4 states show well defined metal ion environments in their complexes with dendritic phthalimides, as well as relatively weak phthalimide-lanthanide(III interactions.

  12. Europium Luminescence Used for Logic Gate and Ions Sensing with Enoxacin As the Antenna.

    Science.gov (United States)

    Lu, Lixia; Chen, Chuanxia; Zhao, Dan; Sun, Jian; Yang, Xiurong

    2016-01-19

    Luminescent lanthanide ion complexes have received increasing attention because of their unique optical properties. Herein, we discovered that the luminescence of europium(III) (Eu(3+)) could be regulated by Ag(+) and SCN(-) in seconds with enoxacin (ENX) as the antenna. Under given conditions, only the simultaneous introduction of Ag(+) and SCN(-) could remarkably enhance the luminescence intensity of Eu(3+)-ENX complexes. This phenomenon has been exploited to design an "AND" logic gate and specific luminescence turn-on assays for sensitively sensing Ag(+) and SCN(-) for the first time. Furthermore, the addition of S(2-) resulted in efficient luminescence quenching of the Eu(3+)/ENX/Ag(+)/SCN(-) system due to the strong affinity between Ag(+) and S(2-). Thus, a new luminescent sensing platform for S(2-) was established, which exhibited excellent selectivity and high sensitivity. S(2-) could be detected within the concentration range of 100 nM to 12.5 μM with a detection limit of 60 nM. Such sensing system features simplicity, rapidity, and flexibility. Moreover, this proposed Eu(3+)-based luminescent assay could be successfully applied in the real environmental water sample analysis.

  13. Surfactant process for promoting gas hydrate formation and application of the same

    Science.gov (United States)

    Rogers, Rudy E.; Zhong, Yu

    2002-01-01

    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  14. Reaction of disodium cromoglycate with hydrated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, A.J.; Arroyo, C.M.; Cockerham, L.G.

    1988-01-01

    A possible mechanism by which disodium cromoglycate (DSCG) prevents a decrease in regional cerebral blood flow but not hypotension in primates following whole body gamma-irradiation was studied. Several studies have implicated superoxide radicals (O/sub 2//sup -/.) in intestinal and cerebral vascular disorders following ischemia and ionizing radiation, respectively. O/sub 2//sup -/. is formed during radiolysis in the reaction between hydrated electrons (e-aq) and dissolved oxygen. For this reason, the efficiency of DSCG to scavenge e-q and possibly prevent the formation of O/sub 2//sup -/. was studied. Hydrated electrons were produced by photolysis of potassium ferrocyanide solutions. The rate constant, k = 2.92 x 10(10) M-1s-1 for the reaction between e-aq and DSCG was determined in competition experiments using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). This spin trap reacts rapidly with e-aq followed by protonation to yield the ESR observable DMPO-H spin adduct. The results show that DSCG is an efficient e-aq scavenger and may effectively compete with oxygen for e-aq preventing the radiolytic formation of O/sub 2//sup -/..

  15. The impact of hydrate saturation on the mechanical, electrical, and thermal properties of hydrate-bearing sand, silts, and clay

    Energy Technology Data Exchange (ETDEWEB)

    Santamarina, J.C. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering; Ruppel, C. [United States Geological Survey, Woods Hole, MA (United States)

    2008-07-01

    A study was conducted to provide an internally-consistent, systematically-acquired database that could help in evaluating gas hydrate reservoirs. Other objectives were to assist in geomechanical analyses, hazards evaluation and the development of methane hydrate production techniques in sandy lithologies and fine-grained sediments that exist in the northern Gulf of Mexico. An understanding of the physical properties of hydrate-bearing sediments facilitates the interpretation of geophysical field data, borehole and slope stability analyses, and reservoir simulation and production models. This paper reported on the key findings derived from 5 years of laboratory experiments conducted on synthetic samples of sand, silts, or clays subjected to various confining pressures. The samples contained controlled saturations of tetrahydrofuran hydrate formed from the dissolved phase. This internally-consistent data set was used to conduct a comprehensive analysis of the trends in geophysical and geotechnical properties as a function of hydrate saturation, soil characteristics, and other parameters. The experiments emphasized measurements of seismic velocities, electrical conductivity and permittivity, large strain deformation and strength, and thermal conductivity. The impact of hydrate formation technique on the resulting physical properties measurements were discussed. The data set was used to identify systematic effects of sediment characteristics, hydrate concentration, and state of stress. The study showed that the electrical properties of hydrate-bearing sediments are less sensitive to the method used to form hydrate in the laboratory than to hydrate saturation. It was concluded that mechanical properties are strongly influenced by both soil properties and the hydrate loci. Since the thermal conductivity depends on the interaction of several factors, it cannot be readily predicted by volume average formulations. 23 refs., 2 tabs., 9 figs.

  16. Characteristics of shallow gas hydrate in Okhotsk Sea

    Institute of Scientific and Technical Information of China (English)

    LUAN XiWu; JIN YoungKeun; Anatoly OBZHIROV; YUE BaoJing

    2008-01-01

    Multidisciplinary field investigations were carried out in Okhotsk Sea by R/V Akademik M.A. Lavrentyev (LV) of the Russian Academy of Sciences (RAS) in May 2006, supported by funding agencies from Korea, Russia, Japan and China. Geophysical data including echo-sounder, bottom profile, side-scansonar, and gravity core sample were obtained aimed to understand the characteristics and formation mechanism of shallow gas hydrates. Based on the geophysical data, we found that the methane flare detected by echo-sounder was the evidence of free gas in the sediment, while the dome structure detected by side-scan sonar and bottom profile was the root of gas venting. Gas hydrate retrieved from core on top of the dome structure which was interbedded as thin lamination or lenses with thickness varying from a few millimeters to 3 cm. Gas hydrate content in hydrate-bearing intervals visually amounted to 5%-30% of the sediment volume. This paper argued that gases in the sediment core were not all from gas hydrate decomposition during the gravity core lifting process, free gases must existed in the gas hydrate stability zone, and tectonic structure like dome structure in this paper was free gas central, gas hydrate formed only when gases over-saturated in this gas central, away from these struc tures, gas hydrate could not form due to low gas concentration.

  17. Characteristics of shallow gas hydrate in Okhotsk Sea

    Institute of Scientific and Technical Information of China (English)

    Anatoly; OBZHIROV

    2008-01-01

    Multidisciplinary field investigations were carried out in Okhotsk Sea by R/V Akademik M.A. Lavrentyev (LV) of the Russian Academy of Sciences (RAS) in May 2006, supported by funding agencies from Ko- rea, Russia, Japan and China. Geophysical data including echo-sounder, bottom profile, side-scan- sonar, and gravity core sample were obtained aimed to understand the characteristics and formation mechanism of shallow gas hydrates. Based on the geophysical data, we found that the methane flare detected by echo-sounder was the evidence of free gas in the sediment, while the dome structure de- tected by side-scan sonar and bottom profile was the root of gas venting. Gas hydrate retrieved from core on top of the dome structure which was interbedded as thin lamination or lenses with thickness varying from a few millimeters to 3 cm. Gas hydrate content in hydrate-bearing intervals visually amounted to 5%―30% of the sediment volume. This paper argued that gases in the sediment core were not all from gas hydrate decomposition during the gravity core lifting process, free gases must existed in the gas hydrate stability zone, and tectonic structure like dome structure in this paper was free gas central, gas hydrate formed only when gases over-saturated in this gas central, away from these struc- tures, gas hydrate could not form due to low gas concentration.

  18. Ultrasonic sound speed analysis of hydrating calcium sulphate hemihydrate

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.

    2011-01-01

    This article focuses on the hydration, and associated microstructure development, of b-hemihydrate to dihydrate (gypsum). The sound velocity is used to quantify the composition of the fresh slurry as well as the hardening and hardened—porous—material. Furthermore, an overview of available hydration

  19. Putting the Deep Biosphere and Gas Hydrates on the Map

    Science.gov (United States)

    Sikorski, Janelle J.; Briggs, Brandon R.

    2016-01-01

    Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…

  20. Spectroscopic determination of optimal hydration time of zircon surface

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia R, G. [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Garcia G, N., E-mail: eduardo.ordonez@inin.gob.m [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Av. Colon y Av. Tollocan, 50180 Toluca, Estado de Mexico (Mexico)

    2010-07-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO{sub 4}) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy{sup 3+}, Eu{sup 3+} and Er{sup 3} in the bulk of zircon. The Dy{sup 3+} is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy{sup 3+} has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  1. The effect of stereochemistry on carbohydrate hydration in aqueous solutions

    NARCIS (Netherlands)

    Galema, Saskia Alexandra

    1992-01-01

    Although-carbohydrates are widely used, not much is known about the stereochemical aspects of hydration of carbohydrates. For D-aldohexoses, for example, there are eight different stereoisomers. Just how the hydroxy topology of a carbohydrate molecule influences the hydration behaviour in water is r

  2. Strengthening mechanism of cemented hydrate-bearing sand at microscales

    Science.gov (United States)

    Yoneda, Jun; Jin, Yusuke; Katagiri, Jun; Tenma, Norio

    2016-07-01

    On the basis of hypothetical particle-level mechanisms, several constitutive models of hydrate-bearing sediments have been proposed previously for gas production. However, to the best of our knowledge, the microstructural large-strain behaviors of hydrate-bearing sediments have not been reported to date because of the experimental challenges posed by the high-pressure and low-temperature testing conditions. Herein, a novel microtriaxial testing apparatus was developed, and the mechanical large-strain behavior of hydrate-bearing sediments with various hydrate saturation values (Sh = 0%, 39%, and 62%) was analyzed using microfocus X-ray computed tomography. Patchy hydrates were observed in the sediments at Sh = 39%. The obtained stress-strain relationships indicated strengthening with increasing hydrate saturation and a brittle failure mode of the hydrate-bearing sand. Localized deformations were quantified via image processing at the submillimeter and micrometer scale. Shear planes and particle deformation and/or rotation were detected, and the shear band thickness decreased with increasing hydrate saturation.

  3. Determination of the Formula of a Hydrate: A Greener Alternative

    Science.gov (United States)

    Klingshirn, Marc A.; Wyatt, Allison F.; Hanson, Robert M.; Spessard, Gary O.

    2008-01-01

    We are currently in the process of incorporating green chemistry throughout the chemistry curriculum. In this article we describe how we applied the principles of green chemistry in one of our first-semester general chemistry courses, specifically in relation to the determination of the formula of a hydrate. We utilize a copper hydrate salt that…

  4. Hydration dynamics of the collagen triple helix by NMR.

    Science.gov (United States)

    Melacini, G; Bonvin, A M; Goodman, M; Boelens, R; Kaptein, R

    2000-07-28

    The hydration of the collagen-like Ac-(Gly-Pro-Hyp)(6)-NH(2) triple-helical peptide in solution was investigated using an integrated set of high-resolution NMR hydration experiments, including different recently developed exchange-network editing methods. This approach was designed to explore the hydration dynamics in the proximity of labile groups, such as the hydroxyproline hydroxyl group, and revealed that the first shell of hydration in collagen-like triple helices is kinetically labile with upper limits for water molecule residence times in the nanosecond to sub-nanosecond range. This result is consistent with a "hopping" hydration model in which solvent molecules are exchanged in and out of solvation sites at a rate that is not directly correlated to the degree of site localization. The hopping model thus reconciles the dynamic view of hydration revealed by NMR with the previously suggested partially ordered semi-clathrate-like cylinder of hydration. In addition, the nanosecond to sub-nanosecond upper limits for water molecule residence times imply that hydration-dehydration events are not likely to be the rate-limiting step for triple helix self-recognition, complementing previous investigations on water dynamics in collagen fibers. This study has also revealed labile proton features expected to facilitate the characterization of the structure and folding of triple helices in collagen peptides.

  5. INFLUENCE OF CHEMICAL ADDITIVES ON GAS HYDRATE FORMATION

    Institute of Scientific and Technical Information of China (English)

    TANG Cuiping; FAN Shuanshi

    2003-01-01

    One surfactant as sodium dodecyl sulfate (SDS) and one synthesized sample as gas hydrate inhibitor are introduced in this paper. Through experiments we prove sodium dodecyl sulfate can accelerate the formation rate of gas hydrate and the synthesized sample can inhibit the formation and growth.

  6. Lactate Dehydrogenase Catalysis: Roles of Keto, Hydrated, and Enol Pyruvate

    Science.gov (United States)

    Meany, J. E.

    2007-01-01

    Many carbonyl substrates of oxidoreductase enzymes undergo hydration and enolization so that these substrate systems are partitioned between keto, hydrated (gem-diol), and enol forms in aqueous solution. Some oxidoreductase enzymes are subject to inhibition by high concentrations of substrate. For such enzymes, two questions arise pertaining to…

  7. Lactate Dehydrogenase Catalysis: Roles of Keto, Hydrated, and Enol Pyruvate

    Science.gov (United States)

    Meany, J. E.

    2007-01-01

    Many carbonyl substrates of oxidoreductase enzymes undergo hydration and enolization so that these substrate systems are partitioned between keto, hydrated (gem-diol), and enol forms in aqueous solution. Some oxidoreductase enzymes are subject to inhibition by high concentrations of substrate. For such enzymes, two questions arise pertaining to…

  8. Gas hydrates and magnetism : comparative geological settings for diagenetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, L.; Enkin, R.J. [Natural Resources Canada, Sidney, BC (Canada). Geological Survey of Canada; Hamilton, T. [Camosun College, Victoria, BC (Canada)

    2008-07-01

    Geophysical and geochemical methods assist in locating and quantifying natural gas hydrate deposits. They are also useful in understanding these resources, their climate impacts and their potential role in geohazards. In order to understand the mechanisms of gas hydrate formation and its natural distribution in sediments, magnetic studies were conducted on cores from three different geological settings. This paper presented the results of a detailed magnetic investigation, as well as petrological observations, that were conducted on cores from a permafrost setting in the Mackenzie Delta located in the Canadian Northwest Territories Mallik region, and two marine settings, from the Cascadia margin off Vancouver Island and the Indian National Gas Hydrate Program from the Bengal Fan. The paper provided background information on the permafrost setting in Mallik region of the Mackenzie Delta as well as the Cascadia margin. The magnetic properties of gas hydrate bearing sediments were found to be a combination of the original detrital content and the diagenetic transformations of iron minerals caused by the unique environment produced by gas hydrate formation. The availability of methane to provide food for bacteria coupled with the concentration of solutes outside gas hydrate accumulation zones led to the creation of iron sulphides. These new minerals were observable using magnetic techniques, which help in delineating the gas hydrate formation mechanism and may be developed into new geophysical methods of gas hydrate exploration. 7 refs., 7 figs.

  9. Determination of amlodipine using terbium-sensitized luminescence in the presence of europium(III) as a co-luminescence reagent.

    Science.gov (United States)

    Al-Kindy, Salma M Z; Al-Snedi, Abdalla; Suliman, Fakhr Eldin O; Al-Lawati, Haidar A J

    2014-09-01

    A sensitive time-resolved luminescence method for the determination of amlodipine (AM) in methanol and in aqueous solution is described. The method is based on the luminescence sensitization of terbium (Tb(3+) ) by formation of a ternary complex with AM in the presence of tri-n-octylphosphine oxide (TOPO) as co-ligand, dodecylbenzenesulfate as surfactant and europium ion as a co-luminescence reagent. The signal for Tb-AM-TOPO is monitored at λex  = 242 nm and λem  = 550 nm. Optimum conditions for the formation of the complex in aqueous system were 0.015 m Tris (hydroxylmethyl) amino methane buffer, pH 9.0, TOPO (1.0 × 10(-4) m), Eu(3+) (2.0 × 10(-7) m), dodecylbenzenesulfate (0.14%) and 6.0 × 10(-5) m of Tb(3+) , which allows the determination of 10-50 ppb of AM with a limit of detection of 1.2 ppb. The relative standard deviations of the method range between 0.1 and 0.2% indicated excellent reproducibility of the method. The proposed method was successfully applied for the assay of AM in pharmaceutical formulations and in plasma samples. Average recoveries of 98.5 ± 0.2% and 95.2 ± 0.2% were obtained for AM in tablet and plasma samples respectively.

  10. Salinity-buffered methane hydrate formation and dissociation in gas-rich systems

    Science.gov (United States)

    You, Kehua; Kneafsey, Timothy J.; Flemings, Peter B.; Polito, Peter; Bryant, Steven L.

    2015-02-01

    Methane hydrate formation and dissociation are buffered by salinity in a closed system. During hydrate formation, salt excluded from hydrate increases salinity, drives the system to three-phase (gas, water, and hydrate phases) equilibrium, and limits further hydrate formation and dissociation. We developed a zero-dimensional local thermodynamic equilibrium-based model to explain this concept. We demonstrated this concept by forming and melting methane hydrate from a partially brine-saturated sand sample in a controlled laboratory experiment by holding pressure constant (6.94 MPa) and changing temperature stepwise. The modeled methane gas consumptions and hydrate saturations agreed well with the experimental measurements after hydrate nucleation. Hydrate dissociation occurred synchronously with temperature increase. The exception to this behavior is that substantial subcooling (6.4°C in this study) was observed for hydrate nucleation. X-ray computed tomography scanning images showed that core-scale hydrate distribution was heterogeneous. This implied core-scale water and salt transport induced by hydrate formation. Bulk resistivity increased sharply with initial hydrate formation and then decreased as the hydrate ripened. This study reproduced the salinity-buffered hydrate behavior interpreted for natural gas-rich hydrate systems by allowing methane gas to freely enter/leave the sample in response to volume changes associated with hydrate formation and dissociation. It provides insights into observations made at the core scale and log scale of salinity elevation to three-phase equilibrium in natural hydrate systems.

  11. Seismic-Scale Rock Physics of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Amos Nur

    2009-01-08

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  12. AN EXPERIMENTAL STUDY ON HYDRATION OF VARIOUS MAGNESIA RAW MATERIALS

    Directory of Open Access Journals (Sweden)

    Ilona Jastrzebska

    2015-03-01

    Full Text Available Hydration of various commercially available magnesia raw materials were studied under hydrothermal conditions. Raw materials were characterized by XRD, XRF, TG/DTA and SEM/EDS methods. Subsequently, they were subjected to hydration test conducted at temperature of 162oC and presuure of 552 kPa according to ASTM C 554-92 standard. The evolution of phase, microstructure and physicochemical behaviour after hydration test were analysed by XRD, DTA/TG and SEM/EDS. The results showed that presence of the specific secondary phases plays a crucial role in preventing MgO grains against the hydration. Merwinite, monticellite, magnesioferrite and srebrnodolskite were found to constitute protector-like phases that inibit hydration process of magnesia.

  13. Calorimetric Determination of Enthalpy of Formation of Natural Gas Hydrates

    Institute of Scientific and Technical Information of China (English)

    高军; KennethN.Marsh

    2003-01-01

    This paper reports the measurements of enthalpies of natural gas hydrates in typical natural gas mixture containing methane, ethane, propane and iso-butane at pressure in the vicinity of 2000 kPa (300 psi) and 6900 kPa(1000psi). The measurements were made in a multi-cell differential scanning calorimeter using modified high pressure cells. The enthalpy of water and the enthalpy of dissociation of the gas hydrate were determined from the calorimeter response during slow temperature scanning at constant pressure. The amount of gas released from the dissociation of hydrate was determined from the pumped volume of the high pressure pump. The occupation ratio (mole ratio) of the water to gas and the enthalpy of hydrate formation are subject to uncertainty of 1.5%.The results show that the enthalpy of hydrate formation and the occupation ratio are essentially independent of pressure.

  14. Methane hydrate formation and dissociation in synthetic seawater

    Institute of Scientific and Technical Information of China (English)

    Vikash Kumar Saw; Iqbal Ahmad; Ajay Mandal; G.Udayabhanu; Sukumar Laik

    2012-01-01

    The formation and dissociation of methane gas hydrate at an interface between synthetic seawater (SSW) and methane gas have been experimentally investigated in the present work.The amount of gas consumed during hydrate formation has been calculated using the real gas equation.Induction time for the formation of hydrate is found to depend on the degree of subcooling.All the experiments were conducted in quiescent system with initial cell pressure of 11.14 MPa.Salinity effects on the onset pressure and temperature of hydrate formation are also observed.The dissociation enthalpies of methane hydrate in synthetic seawater were determined by Clausius-Clapeyron equation based on the measured phase equilibrium data.The dissociation data have been analyzed by existing models and compared with the reported data.

  15. Fundamental challenges to methane recovery from gas hydrates

    Science.gov (United States)

    Servio, P.; Eaton, M.W.; Mahajan, D.; Winters, W.J.

    2005-01-01

    The fundamental challenges, the location, magnitude, and feasibility of recovery, which must be addressed to recover methane from dispersed hydrate sources, are presented. To induce dissociation of gas hydrate prior to methane recovery, two potential methods are typically considered. Because thermal stimulation requires a large energy input, it is less economically feasible than depressurization. The new data will allow the study of the effect of pressure, temperature, diffusion, porosity, tortuosity, composition of gas and water, and porous media on gas-hydrate production. These data also will allow one to improve existing models related to the stability and dissociation of sea floor hydrates. The reproducible kinetic data from the planned runs together with sediment properties will aid in developing a process to economically recover methane from a potential untapped hydrate source. The availability of plentiful methane will allow economical and large-scale production of methane-derived clean fuels to help avert future energy crises.

  16. Theoretical description of biomolecular hydration - Application to A-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.E.; Hummer, G. [Los Alamos National Laboratory, NM (United States); Soumpasis, D.M. [Max Planck Inst. for Biophysical Chemistry, Goettingen (Germany)

    1994-12-31

    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG){sub 5}]{sub 2} and [d(C{sub 5}G{sub 5})]{sub 2}. We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers.

  17. The Pore Structure and Hydration Performance of Sulphoaluminate MDF Cement

    Institute of Scientific and Technical Information of China (English)

    HUANG Cong-yun; YUAN Run-zhang; LONG Shi-zong

    2004-01-01

    The hydration and pore structure of sulphoaluminate MDF cement were studied by X-ray diffractometer ( XRD ), scanning electron microscope (SEM) and mercury intrusion porosimeter ( MIP ) etc. The ex-perimental results indicate that hydration products of the materials are entringites ( Aft ), aluminium hydroxide andCSH (Ⅰ) gel etc. Due to its very low water-cement ratio, hydration function is only confined to the surfaces of ce-ment grains, and there is a lot of sulphoaluminate cement in the hardenite which is unhydrated yet. Hydration re-action was rapidly carried under the condition of the heat-pressing. Therefore cement hydrates Aft, CSH (Ⅰ) andaluminium hydroxide gel fill in pores. The expansibility of Aft makes the porosity of MDF cement lower ( less than1 percent ) and the size of pore smaller (80 percent pore was less than 250A), and enhances its strength.

  18. Volatile inventories in clathrate hydrates formed in the primordial nebula

    CERN Document Server

    Mousis, O; Picaud, S; Cordier, D

    2010-01-01

    Examination of ambient thermodynamic conditions suggest that clathrate hydrates could exist in the martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems. In this work, we use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in each clathrate hydrate formed at given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically a...

  19. Heat of Hydration of Low Activity Cementitious Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Nasol, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-23

    During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulants of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.

  20. HEAT OF HYDRATION OF SALTSTONE MIXES-MEASUREMENT BY ISOTHERMAL CALORIMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V; Tommy Edwards, T

    2007-07-02

    This report provides initial results on the measurement of heat of hydration of Saltstone mixes using isothermal calorimetry. The results were obtained using a recently purchased TAM Air Model 3116 Isothermal Conduction Calorimeter. Heat of hydration is an important property of Saltstone mixes. Greater amounts of heat will increase the temperature of the curing mix in the vaults and limit the processing rate. The heat of hydration also reflects the extent of the hydraulic reactions that turn the fluid mixture into a ''stone like'' solid and consequently impacts performance properties such as permeability. Determining which factors control these reactions, as monitored by the heat of hydration, is an important goal of the variability study. Experiments with mixes of portland cement in water demonstrated that the heats measured by this technique over a seven day period match very well with the literature values of (1) seven day heats of hydration using the standard test method for heat of hydration of hydraulic cement, ASTM C 186-05 and (2) heats of hydration measured using isothermal calorimetry. The heats of hydration of portland cement or blast furnace slag in a Modular Caustic Side Solvent Extraction Unit (MCU) simulant revealed that if the cure temperature is maintained at 25 C, the amount of heat released over a seven day period is roughly 62% less than the heat released by portland cement in water. Furthermore, both the blast furnace slag and the portland cement were found to be equivalent in heat production over the seven day period in MCU. This equivalency is due to the activation of the slag by the greater than 1 Molar free hydroxide ion concentration in the simulant. Results using premix (a blend of 10% cement, 45% blast furnace slag, and 45% fly ash) in MCU, Deliquification, Dissolution and Adjustment (DDA) and Salt Waste Processing Facility (SWPF) simulants reveal that the fly ash had not significantly reacted (undergone hydration

  1. Ultrafast phosphate hydration dynamics in bulk H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Costard, Rene, E-mail: costard@mbi-berlin.de; Tyborski, Tobias; Fingerhut, Benjamin P., E-mail: fingerhut@mbi-berlin.de; Elsaesser, Thomas [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin (Germany)

    2015-06-07

    Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H{sub 2}PO{sub 4}{sup −} ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric (ν{sub S}(PO{sub 2}{sup −})) and asymmetric (ν{sub AS}(PO{sub 2}{sup −})) PO{sub 2}{sup −} stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH){sub 2}) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the ν{sub S}(PO{sub 2}{sup −}) and ν{sub AS}(PO{sub 2}{sup −}) transition frequencies with larger frequency excursions for ν{sub AS}(PO{sub 2}{sup −}). The calculated frequency-time correlation function is in good agreement with the experiment. The ν(PO{sub 2}{sup −}) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H{sub 2}PO{sub 4}{sup −}/H{sub 2}O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water.

  2. Hydrated Cations in the General Chemistry Course.

    Science.gov (United States)

    Kauffman, George B.; Baxter, John F., Jr.

    1981-01-01

    Presents selected information regarding the descriptive chemistry of the common metal ions and their compounds, including the concepts of process of solution, polar molecules, ionic size and charge, complex ions, coordination number, and the Bronsted-Lowry acid-base theory. (CS)

  3. Effect of agglomeration during coprecipitation: Delayed spinellization of magnesium aluminate hydrate

    Indian Academy of Sciences (India)

    Soumen Pal; A K Bandyopadhyay; S Mukherjee; B N Samaddar; P G Pal

    2010-08-01

    Precipitation of magnesium aluminate hydrate with faster addition of ammonia at desired pH causes agglomeration. Agglomerated powder, without any further treatment, on calcination forms intermediate compounds at low temperatures (≤ 900°C). The intermediate compounds on further heat treatment (≥ 1000°C) decompose into MgO, MgAl2O4 and -Al2O3. Effect of agglomeration and absorption of foreign ions such as Cl–, SO$^{2-}_{4}$, and NH$^{+}_{4}$ in complex compounds probably cause loss of Al3+ and Mg2+ ions during heat treatment, and stoichiometry changes. Powders prepared by continuous method with better control of process parameters than batch process yields better spinellization.

  4. Reversible emission evolution from Ag activated zeolite Na-A upon dehydration/hydration

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hui, E-mail: linh8112@163.com, E-mail: fujii@eedept.kobe-u.ac.jp; Imakita, Kenji; Fujii, Minoru, E-mail: linh8112@163.com, E-mail: fujii@eedept.kobe-u.ac.jp [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-11-24

    Reversible emission evolution of thermally treated Ag activated zeolite Na-A upon dehydration/hydration in vacuum/water vapor was observed. The phenomenon was observed even for the sample with low Ag{sup +}-Na{sup +} exchanging (8.3%), indicating that the emission from Ag activated zeolites may not come from Ag clusters while from the surrounding coordinated Ag{sup +} ions or Ag{sup 0} atoms. It was disclosed that the characteristic yellow-green emission at ∼560 ± 15 nm is strongly associated with the coordinating water molecules to the Ag{sup +} ions or Ag{sup 0} atoms, which is clear evidence for that the efficient emission from Ag activated zeolites may not originate from the quantum confinement effect.

  5. Nasogastric Hydration in Infants with Bronchiolitis Less Than 2 Months of Age.

    Science.gov (United States)

    Oakley, Ed; Bata, Sonny; Rengasamy, Sharmila; Krieser, David; Cheek, John; Jachno, Kim; Babl, Franz E

    2016-11-01

    To determine whether nasogastric hydration can be used in infants less than 2 months of age with bronchiolitis, and characterize the adverse events profile of these infants compared with infants given intravenous (IV) fluid hydration. A descriptive retrospective cohort study of children with bronchiolitis under 2 months of age admitted for hydration at 3 centers over 3 bronchiolitis seasons was done. We determined type of hydration (nasogastric vs IV fluid hydration) and adverse events, intensive care unit admission, and respiratory support. Of 491 infants under 2 months of age admitted with bronchiolitis, 211 (43%) received nonoral hydration: 146 (69%) via nasogastric hydration and 65 (31%) via IV fluid hydration. Adverse events occurred in 27.4% (nasogastric hydration) and 23.1% (IV fluid hydration), difference of 4.3%; 95%CI (-8.2 to 16.9), P = .51. The majority of adverse events were desaturations (21.9% nasogastric hydration vs 21.5% IV fluid hydration, difference 0.4%; [-11.7 to 12.4], P = .95). There were no pulmonary aspirations in either group. Apneas and bradycardias were similar in each group. IV fluid hydration use was positively associated with intensive care unit admission (38.5% IV fluid hydration vs 19.9% nasogastric hydration; difference 18.6%, [5.1-32.1], P = .004); and use of ventilation support (27.7% IV fluid hydration vs 15.1% nasogastric hydration; difference 12.6 [0.3-23], P = .03). Fewer infants changed from nasogastric hydration to IV fluid hydration than from IV fluid hydration to nasogastric hydration (12.3% vs 47.7%; difference -35.4% [-49 to -22], P bronchiolitis. Nasogastric hydration and IV fluid hydration had similar rates of complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Ion-Ion Neutralization.

    Science.gov (United States)

    1980-12-31

    plasma were identified using a downstream quadrupole mass spectrometer. In these experimento it is a simple matter to establish H+(H 2 0):f as the...pressure as predicted by the Thomson t2rnary mechanism whicK hzr been suownr to be valid experimentally at hiTh rrsurs (,han and Peron, 1:EI4 hereafter t...of NO , NO2 ions in various gases and the ternary recombination coefficients of these ions in the higher pres:;ure ( Thomson ) re"ie. Equation (5) cr>n

  7. Local structures of ions at ion-exchange resin/solution interface.

    Science.gov (United States)

    Harada, Makoto; Okada, Tetsuo

    2005-08-26

    The local structures of Cl- and Br- in anion-exchange resins have been studied by X-ray absorption fine structure (XAFS), and separation selectivity is discussed on the basis of results. When two different anion-exchange resins having trimethylammonium and dimethylammonium groups as anion-exchange groups are employed for ion-exchange experiments, slightly higher Br- selectivity has been obtained with the former. XAFS has indicated that the average hydration numbers for a given anion is not affected by the structure of the ion-exchange group, but that the extent of ion-association between the anion and the ion-exchange groups depends on the type of the ion-exchange group. Shorter interaction distance (and in turn stronger ion-association) has been confirmed for the dimethylammonium-type resin, and is consistent with lower Br- selectivity of this resin.

  8. Linking basin-scale and pore-scale gas hydrate distribution patterns in diffusion-dominated marine hydrate systems

    Science.gov (United States)

    Nole, Michael; Daigle, Hugh; Cook, Ann E.; Hillman, Jess I. T.; Malinverno, Alberto

    2017-02-01

    The goal of this study is to computationally determine the potential distribution patterns of diffusion-driven methane hydrate accumulations in coarse-grained marine sediments. Diffusion of dissolved methane in marine gas hydrate systems has been proposed as a potential transport mechanism through which large concentrations of hydrate can preferentially accumulate in coarse-grained sediments over geologic time. Using one-dimensional compositional reservoir simulations, we examine hydrate distribution patterns at the scale of individual sand layers (1-20 m thick) that are deposited between microbially active fine-grained material buried through the gas hydrate stability zone (GHSZ). We then extrapolate to two-dimensional and basin-scale three-dimensional simulations, where we model dipping sands and multilayered systems. We find that properties of a sand layer including pore size distribution, layer thickness, dip, and proximity to other layers in multilayered systems all exert control on diffusive methane fluxes toward and within a sand, which in turn impact the distribution of hydrate throughout a sand unit. In all of these simulations, we incorporate data on physical properties and sand layer geometries from the Terrebonne Basin gas hydrate system in the Gulf of Mexico. We demonstrate that diffusion can generate high hydrate saturations (upward of 90%) at the edges of thin sands at shallow depths within the GHSZ, but that it is ineffective at producing high hydrate saturations throughout thick (greater than 10 m) sands buried deep within the GHSZ. Furthermore, we find that hydrate in fine-grained material can preserve high hydrate saturations in nearby thin sands with burial.Plain Language SummaryThis study combines one-, two-, and three-dimensional simulations to explore one potential process by which methane dissolved in water beneath the seafloor can be converted into solid methane hydrate. This work specifically examines one end-member methane transport

  9. Evaluation of a rapid hydration protocol: Safety and effectiveness.

    Science.gov (United States)

    Meredith, Sean; Hilliard, Jane; Vaillancourt, Regis

    2017-06-01

    Background The Children's Hospital of Eastern Ontario (CHEO) has implemented a rapid hydration protocol that may reduce the time required to achieve urine specific gravity and pH targets prior to chemotherapy. Objective The aim of this study was to determine if a rapid hydration protocol resulted in a shorter time to chemotherapy administration and during peak staffing levels without increasing adverse effects. Methods A retrospective chart review was conducted using data from electronic and paper medical charts, the hematology/oncology whiteboard, and video recordings. Patients who received cyclophosphamide, methotrexate, cisplatin and ifosfamide during the study period were included in the chart review. A urine specific gravity of ≤1.01, and in most cases a urine pH ≥7 was required to begin chemotherapy. Differences in time parameters between the standard and rapid hydration protocols were measured. Comparable parameters included the time from the start of pre-chemotherapy hydration to meeting urine targets, time from starting hydration to administration of chemotherapy, length of hospital stay and the number of chemotherapy administrations that were initiated prior to the nursing shift change at 19:30 h. Results Data were collected from 116 pre-chemotherapy intravenous hydration events administered to 25 different patients. There was a shorter time required to reach urine specific gravity and pH targets with the rapid hydration protocol compared to the standard hydration protocol, which translated into initiating chemotherapy sooner. There was also a shorter overall length of hospital stay and administration of chemotherapy occurred before the nursing shift change more often in the rapid hydration cohort compared to those patients who received the standard hydration protocol. There were no significant differences in adverse effects between the groups. Conclusion Patients receiving rapid hydration had a shorter time to chemotherapy administration and had a

  10. Influence of solution parameters on europium(III), α-Al2O3, and humic acid interactions: Macroscopic and time-resolved laser-induced luminescence data

    Science.gov (United States)

    Janot, Noémie; Benedetti, Marc F.; Reiller, Pascal E.

    2013-12-01

    Speciation of Eu(III) in the presence of purified Aldrich humic acid (PAHA) and/or α-Al2O3 has been studied by time-resolved luminescence spectroscopy as a function of pH, ionic strength and PAHA concentration. The comparisons of macroscopic and spectroscopic data (adsorption, spectra, and decay times analyses) between the ternary system, i.e., Eu(III)/PAHA/α-Al2O3, and the corresponding binary systems are comprehensively presented. As expected, results show almost no influence of ionic strength on Eu(III) adsorption onto α-Al2O3. However, in the binary Eu(III)/PAHA system, it is clearly shown that variations of electrolyte concentration, which modify PAHA conformation, influence the symmetry of the humic-bound Eu(III) at pH ⩾ 7. In the ternary system, adsorption of both Eu(III) and PAHA onto the surface decreases with ionic strength. At I = 0.01 M NaClO4, Eu(III) luminescence decay is much faster than at I = 0.1 M NaClO4. This is most likely due to the lower surface concentration of PAHA at lower ionic strength, leading to a less constrained environment for Eu(III) ions. At high pH, luminescence spectra are different at the two ionic strengths studied. Concerning the influence of PAHA concentration, spectroscopic results show that in the binary Eu(III)/PAHA system complete complexation of 1 μM Eu(III) is reached for 16 mgPAHA l-1 at pH 4, and for lower PAHA concentrations at higher pH. At the same PAHA concentration, asymmetry ratios are comparable between the binary Eu(III)/PAHA system and the ternary system between pH 4 and 7.7. This means that the presence of mineral surface has almost no influence on Eu(III) environment symmetry below pH 8; hence, under these acid to neutral pH conditions, the occurrence of Eu(III)-bridged humic surface complexes is not likely. In the ternary system, at different pH, luminescence decay times of Eu(III) increase with PAHA concentration. They are much higher in the ternary system than in the binary Eu(III)/PAHA system

  11. Disentangling volumetric and hydrational properties of proteins.

    Science.gov (United States)

    Voloshin, Vladimir P; Medvedev, Nikolai N; Smolin, Nikolai; Geiger, Alfons; Winter, Roland

    2015-02-05

    We used molecular dynamics simulations of a typical monomeric protein, SNase, in combination with Voronoi-Delaunay tessellation to study and analyze the temperature dependence of the apparent volume, Vapp, of the solute. We show that the void volume, VB, created in the boundary region between solute and solvent, determines the temperature dependence of Vapp to a major extent. The less pronounced but still significant temperature dependence of the molecular volume of the solute, VM, is essentially the result of the expansivity of its internal voids, as the van der Waals contribution to VM is practically independent of temperature. Results for polypeptides of different chemical nature feature a similar temperature behavior, suggesting that the boundary/hydration contribution seems to be a universal part of the temperature dependence of Vapp. The results presented here shine new light on the discussion surrounding the physical basis for understanding and decomposing the volumetric properties of proteins and biomolecules in general.

  12. Irradiation effects in hydrated zirconium molybdate

    Science.gov (United States)

    Fourdrin, C.; Esnouf, S.; Dauvois, V.; Renault, J.-P.; Venault, L.; Tabarant, M.; Durand, D.; Chenière, A.; Lamouroux-Lucas, C.; Cochin, F.

    2012-07-01

    Hydrated zirconium molybdate is a precipitate formed during the process of spent nuclear fuel dissolution. In order to study the radiation stability of this material, we performed gamma and electron irradiation in a dose range of 10-100 kGy. XRD patterns showed that the crystalline structure is not affected by irradiation. However, the yellow original sample exhibits a blue-grey color after exposure. The resulting samples were analyzed by means of EPR and diffuse reflectance spectroscopy. Two sites for trapped electrons were evidenced leading to a d1 configuration responsible for the observed coloration. Moreover, a third defect corresponding to a hole trapped on oxygen was observed after electron irradiation at low temperature.

  13. High-pressure structures of methane hydrate

    CERN Document Server

    Hirai, H; Fujihisa, H; Sakashita, M; Katoh, E; Aoki, K; Yamamoto, Y; Nagashima, K; Yagi, T

    2002-01-01

    Three high-pressure structures of methane hydrate, a hexagonal structure (str. A) and two orthorhombic structures (str. B and str. C), were found by in situ x-ray diffractometry and Raman spectroscopy. The well-known structure I (str. I) decomposed into str. A and fluid at 0.8 GPa. Str. A transformed into str. B at 1.6 GPa, and str. B further transformed into str. C at 2.1 GPa which survived above 7.8 GPa. The fluid solidified as ice VI at 1.4 GPa, and the ice VI transformed to ice VII at 2.1 GPa. The bulk moduli, K sub 0 , for str. I, str. A, and str. C were calculated to be 7.4, 9.8, and 25.0 GPa, respectively.

  14. DNA under Force: Mechanics, Electrostatics, and Hydration

    Directory of Open Access Journals (Sweden)

    Jingqiang Li

    2015-02-01

    Full Text Available Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  15. THz Medical Imaging: in vivo Hydration Sensing

    Science.gov (United States)

    Taylor, Zachary D.; Singh, Rahul S.; Bennett, David B.; Tewari, Priyamvada; Kealey, Colin P.; Bajwa, Neha; Culjat, Martin O.; Stojadinovic, Alexander; Lee, Hua; Hubschman, Jean-Pierre; Brown, Elliott R.; Grundfest, Warren S.

    2015-01-01

    The application of THz to medical imaging is experiencing a surge in both interest and federal funding. A brief overview of the field is provided along with promising and emerging applications and ongoing research. THz imaging phenomenology is discussed and tradeoffs are identified. A THz medical imaging system, operating at ~525 GHz center frequency with ~125 GHz of response normalized bandwidth is introduced and details regarding principles of operation are provided. Two promising medical applications of THz imaging are presented: skin burns and cornea. For burns, images of second degree, partial thickness burns were obtained in rat models in vivo over an 8 hour period. These images clearly show the formation and progression of edema in and around the burn wound area. For cornea, experimental data measuring the hydration of ex vivo porcine cornea under drying is presented demonstrating utility in ophthalmologic applications. PMID:26085958

  16. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo

    2010-11-25

    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  17. Phase behavior and hydration of silk fibroin.

    Science.gov (United States)

    Sohn, Sungkyun; Strey, Helmut H; Gido, Samuel P

    2004-01-01

    The osmotic stress method was applied to study the thermodynamics of supramolecular self-assembly phenomena in crystallizable segments of Bombyx mori silkworm silk fibroin. By controlling compositions and phases of silk fibroin solution, the method provided a means for the direct investigation of microscopic and thermodynamic details of these intermolecular interactions in aqueous media. It is apparent that as osmotic pressure increases, silk fibroin molecules are crowded together to form silk I structure and then with further increase in osmotic pressure become an antiparallel beta-sheet structure, silk II. A partial ternary phase diagram of water-silk fibroin-LiBr was constructed based on the results. The results provide quantitative evidence that the silk I structure must contain water of hydration. The enhanced control over structure and phase behavior using osmotic stress, as embodied in the phase diagram, could potentially be utilized to design a new route for water-based wet spinning of regenerated silk fibroin.

  18. Influence of Physical Activity and Ambient Temperature on Hydration: The European Hydration Research Study (EHRS

    Directory of Open Access Journals (Sweden)

    Ricardo Mora-Rodriguez

    2016-04-01

    Full Text Available This study explored the effects of physical activity (PA and ambient temperature on water turnover and hydration status. Five-hundred seventy three healthy men and women (aged 20–60 years from Spain, Greece and Germany self-reported PA, registered all food and beverage intake, and collected 24-h urine during seven consecutive days. Fasting blood samples were collected at the onset and end of the study. Food moisture was assessed using nutritional software to account for all water intake which was subtracted from daily urine volume to allow calculation of non-renal water loss (i.e., mostly sweating. Hydration status was assessed by urine and blood osmolality. A negative association was seen between ambient temperature and PA (r = −0.277; p < 0.001. Lower PA with high temperatures did not prevent increased non-renal water losses (i.e., sweating and elevated urine and blood osmolality (r = 0.218 to 0.163 all p < 0.001. When summer and winter data were combined PA was negatively associated with urine osmolality (r = −0.153; p = 0.001. Our data suggest that environmental heat acts to reduce voluntary PA but this is not sufficient to prevent moderate dehydration (increased osmolality. On the other hand, increased PA is associated with improved hydration status (i.e., lower urine and blood osmolality.

  19. Detection and Appraisal of Gas Hydrates: Indian Scenario

    Science.gov (United States)

    Sain, K.

    2009-04-01

    Gas hydrates, found in shallow sediments of permafrost and outer continental margins, are crystalline form of methane and water. The carbon within global gas hydrates is estimated two times the carbon contained in world-wide fossil fuels. It is also predicted that 15% recovery of gas hydrates can meet the global energy requirement for the next 200 years. Several parameters like bathymetry, seafloor temperature, sediment thickness, rate of sedimentation and total organic carbon content indicate very good prospect of gas hydrates in the vast offshore regions of India. Methane stored in the form of gas hydrates within the Indian exclusive economic zone is estimated to be few hundred times the country's conventional gas reserve. India produces less than one-third of her oil requirement and gas hydrates provide great hopes as a viable source of energy in the 21st century. Thus identification and quantitative assessment of gas hydrates are very important. By scrutiny and reanalysis of available surface seismic data, signatures of gas hydrates have been found out in the Kerala-Konkan and Saurashtra basins in the western margin, and Krishna-Godavari, Mahanadi and Andaman regions in the eastern margin of India by mapping the bottom simulating reflector or BSR based on its characteristic features. In fact, the coring and drilling in 2006 by the Indian National Gas Hydrate Program have established the ground truth in the eastern margin. It has become all the more important now to identify further prospective regions with or without BSR; demarcate the lateral/areal extent of gas hydrate-bearing sediments and evaluate their resource potential in both margins of India. We have developed various approaches based on seismic traveltime tomography; waveform inversion; amplitude versus offset (AVO) modeling; AVO attributes; seismic attributes and rock physics modeling for the detection, delineation and quantification of gas-hydrates. The blanking, reflection strength, instantaneous

  20. RESEARCH ON COUPLED RELATIONSHIP BETWEEN HYDRATION NUMBER WITH RAMAN SPECTRUM

    Institute of Scientific and Technical Information of China (English)

    LEI Huaiyan; LIU Zhihong; FAN Shuanshi; XU Maoquan; GUAN Baocong

    2003-01-01

    As we know, there are three structures-sⅠ, sⅡ, and sH, with hydrocarbonate gas hydrate.Because of those special structures characteristics and potentail large fossil energy resource, gas hydrate play an important role in natural carbonate cycle system. In this paper, CH4, CO2, C3H8, and CH4 +CO2 system have been experimental performed in order to model hydrate formation and discomposition and to obtain hydrate stability conditions of tempreature and pressure. The results from laboratory using Raman spectra show that Raman spectrascopy is a effective tool to identify hydrate structure. Raman spectra of clathrate hydrate guest molecules are presented for two structure (sⅠ and sⅡ) in the following systems: CH4, CO2, C3 H8. Relatively occupancy of CH4 in the large and small cavities of sⅠ were determined by deconvoluting the v1 symmetric bands, resulting in hydration numbers of 6.04±0.03. The freqyuency of the v1 bands for CH4 in structures Ⅰ and Ⅱ differ statistically. The large cavities were measured to be almost fully occupied by CH4 and CO2, whereas only a small fraction of the small cavities are occupied by CH4. No CO2 was found in the small cavities.

  1. The effect of hydrate promoters on gas uptake.

    Science.gov (United States)

    Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen

    2017-08-16

    Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH4 storage and CO2 capture from CO2/H2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

  2. Dynamics of Hydration Water in Sugars and Peptides Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Perticaroli, Stefania [ORNL; Nakanishi, Masahiro [ORNL; Pashkovski, Eugene [Unilever R& D Trumbull, Trumbull CT; Sokolov, Alexei P [ORNL

    2013-01-01

    We analyzed solute and solvent dynamics of sugars and peptides aqueous solutions using extended epolarized light scattering (EDLS) and broadband dielectric spectroscopies (BDS). Spectra measured with both techniques reveal the same mechanism of rotational diffusion of peptides molecules. In the case of sugars, this solute reorientational relaxation can be isolated by EDLS measurements, whereas its ontribution to the dielectric spectra is almost negligible. In the presented analysis, we characterize the hydration water in terms of hydration number and retardation ratio between relaxation times of hydration and bulk water. Both techniques provide similar estimates of . The retardation imposed on the hydration water by sugars is 3.3 1.3 and involves only water molecules hydrogen-bonded (HB) to solutes ( 3 water molecules per sugar OH-group). In contrast, polar peptides cause longer range erturbations beyond the first hydration shell, and between 2.8 and 8, increasing with the number of chemical groups engaged in HB formation. We demonstrate that chemical heterogeneity and specific HB interactions play a crucial role in hydration dynamics around polar solutes. The obtained results help to disentangle the role of excluded volume and enthalpic contributions in dynamics of hydration water at the interface with biological molecules.

  3. Hydrates of nat­ural gas in continental margins

    Science.gov (United States)

    Kvenvolden, K.A.; Barnard, L.A.

    1982-01-01

    Natural gas hydrates in continental margin sediment can be inferred from the widespread occurrence of an anomalous seismic reflector which coincides with the predicted transition boundary at the base of the gas hydrate zone. Direct evidence of gas hydrates is provided by visual observations of sediments from the landward wall of the Mid-America Trench off Mexico and Guatemala, from the Blake Outer Ridge off the southeastern United States, and from the Black Sea in the U.S.S.R. Where solid gas hydrates have been sampled, the gas is composed mainly of methane accompanied by CO2 and low concentrations of ethane and hydrocarbons of higher molecular weight. The molecular and isotopic composition of hydrocarbons indicates that most of the methane is of biolog cal origin. The gas was probably produced by the bacterial alteration of organic matter buried in the sediment. Organic carbon contents of the sediment containing sampled gas hydrates are higher than the average organic carbon content of marine sediments. The main economic importance of gas hydrates may reside in their ability to serve as a cap under which free gas can collect. To be producible, however, such trapped gas must occur in porous and permeable reservoirs. Although gas hydrates are common along continental margins, the degree to which they are associated with significant reservoirs remains to be investigated.

  4. Determination of hydration film thickness using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    PENG Changsheng; SONG Shaoxian; GU Qingbao

    2005-01-01

    Dispersion of a solid particle in water may lead to the formation of hydration film on the particle surface, which can strongly increase the repulsive force between the particles and thus strongly affect the stability of dispersions. The hydration film thickness, which varies with the variation of property of suspension particles, is one of the most important parameters of hydration film, and is also one of the most difficult parameters that can be measured accurately. In this paper, a method, based on force-distance curve of atomic force microscopy, for determining the hydration film thickness of particles is developed. The method utilizes the difference of cantilever deflection before, between and after penetrating the hydration films between tip and sample, which reflect the difference of slope on the force-distance curve. 3 samples, mica, glass and stainless steel, were used for hydration thickness determination, and the results show that the hydration film thickness between silicon tip and mica, glass and stainless steel are 30.0(2.0, 29.0(1.0 and 32.5(2.5 nm, respectively.

  5. Hydration status of pregnant women in West Jakarta.

    Science.gov (United States)

    Mulyani, Erry Yudhya; Hardinsyah; Briawan, Dodik; Santoso, Budi Iman

    2017-06-01

    During pregnancy, the body exhibits dynamic changes in fluid composition. More than 50%of women experience nausea and vomiting during the first trimester. Studies of hydration status in pregnant women are limited, and not in tropical countries, like in Indonesia. The objective of this study was to investigate the hydration status and appropriate biomarkers for determination of hydration status in pregnant women in West Jakarta. This study was cross-sectional. A total of 35 pregnant women aged (19-35 years) at the early second trimester of pregnancy was recruited. Urine osmolality, urine specific gravity, and serum osmolality were used to determine hydration status. Subjects then were divided into a hydration group (HG) and a dehydration group (DG). We used independent t tests, chi-square and Spearman rank correlation coefficient to analyse the data. The population was comparably divided between dehydration and hydration groups (57.1% and 42.9%, respectively). The proportions by age, parity, gestational age, height, weight, upper arm circumference, waist circumference, pelvic circumference, body temperature, blood pressure, and fundal height did not differ between groups (p>=0.05). There was a relationship between urine colour and hydration status (ppregnant women.

  6. NIST Gas Hydrate Research Database and Web Dissemination Channel.

    Science.gov (United States)

    Kroenlein, K; Muzny, C D; Kazakov, A; Diky, V V; Chirico, R D; Frenkel, M; Sloan, E D

    2010-01-01

    To facilitate advances in application of technologies pertaining to gas hydrates, a freely available data resource containing experimentally derived information about those materials was developed. This work was performed by the Thermodynamic Research Center (TRC) paralleling a highly successful database of thermodynamic and transport properties of molecular pure compounds and their mixtures. Population of the gas-hydrates database required development of guided data capture (GDC) software designed to convert experimental data and metadata into a well organized electronic format, as well as a relational database schema to accommodate all types of numerical and metadata within the scope of the project. To guarantee utility for the broad gas hydrate research community, TRC worked closely with the Committee on Data for Science and Technology (CODATA) task group for Data on Natural Gas Hydrates, an international data sharing effort, in developing a gas hydrate markup language (GHML). The fruits of these efforts are disseminated through the NIST Sandard Reference Data Program [1] as the Clathrate Hydrate Physical Property Database (SRD #156). A web-based interface for this database, as well as scientific results from the Mallik 2002 Gas Hydrate Production Research Well Program [2], is deployed at http://gashydrates.nist.gov.

  7. Scanning electron microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice, and comparison to natural hydrates

    Science.gov (United States)

    Stern, L.A.; Kirby, S.H.; Circone, S.; Durham, W.B.

    2004-01-01

    Scanning electron microscopy (SEM) was used to investigate grain texture and pore structure development within various compositions of pure sI and sII gas hydrates synthesized in the laboratory, as well as in natural samples retrieved from marine (Gulf of Mexico) and permafrost (NW Canada) settings. Several samples of methane hydrate were also quenched after various extents of partial reaction for assessment of mid-synthesis textural progression. All laboratory-synthesized hydrates were grown under relatively high-temperature and high-pressure conditions from rounded ice grains with geometrically simple pore shapes, yet all resulting samples displayed extensive recrystallization with complex pore geometry. Growth fronts of mesoporous methane hydrate advancing into dense ice reactant were prevalent in those samples quenched after limited reaction below and at the ice point. As temperatures transgress the ice point, grain surfaces continue to develop a discrete "rind" of hydrate, typically 5 to 30 ??m thick. The cores then commonly melt, with rind microfracturing allowing migration of the melt to adjacent grain boundaries where it also forms hydrate. As the reaction continues under progressively warmer conditions, the hydrate product anneals to form dense and relatively pore-free regions of hydrate grains, in which grain size is typically several tens of micrometers. The prevalence of hollow, spheroidal shells of hydrate, coupled with extensive redistribution of reactant and product phases throughout reaction, implies that a diffusion-controlled shrinking-core model is an inappropriate description of sustained hydrate growth from melting ice. Completion of reaction at peak synthesis conditions then produces exceptional faceting and euhedral crystal growth along exposed pore walls. Further recrystallization or regrowth can then accompany even short-term exposure of synthetic hydrates to natural ocean-floor conditions, such that the final textures may closely mimic

  8. CO2 hydrate: Synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate

    Science.gov (United States)

    Circone, S.; Stern, L.A.; Kirby, S.H.; Durham, W.B.; Chakoumakos, B.C.; Rawn, C.J.; Rondinone, A.J.; Ishii, Y.

    2003-01-01

    Structure I (sI) carbon dioxide (CO2) hydrate exhibits markedly different dissociation behavior from sI methane (CH4) hydrate in experiments in which equilibrated samples at 0.1 MPa are heated isobarically at 13 K/h from 210 K through the H2O melting point (273.15 K). The CO2 hydrate samples release only about 3% of their gas content up to temperatures of 240 K, which is 22 K above the hydrate phase boundary. Up to 20% is released by 270 K, and the remaining CO2 is released at 271.0 plusmn; 0.5 K, where the sample temperature is buffered until hydrate dissociation ceases. This reproducible buffering temperature for the dissociation reaction CO2??nH2O = CO2(g) + nH2O(1 to s) is measurably distinct from the pure H2O melting point at 273.15 K, which is reached as gas evolution ceases. In contrast, when si CH4 hydrate is heated at the same rate at 0.1 MPa, >95% of the gas is released within 25 K of the equilibrium temperature (193 K at 0.1 MPa). In conjunction with the dissociation study, a method for efficient and reproducible synthesis of pure polycrystalline CO2 hydrate with suitable characteristics for material properties testing was developed, and the material was characterized. CO2 hydrate was synthesized from CO2 liquid and H2O solid and liquid reactants at pressures between 5 and 25 MPa and temperatures between 250 and 281 K. Scanning electron microscopy (SEM) examination indicates that the samples consist of dense crystalline hydrate and 50-300 ??m diameter pores that are lined with euhedral cubic hydrate crystals. Deuterated hydrate samples made by this same procedure were analyzed by neutron diffraction at temperatures between 4 and 215 K; results confirm that complete conversion of water to hydrate has occurred and that the measured unit cell parameter and thermal expansion are consistent with previously reported values. On the basis of measured weight gain after synthesis and gas yields from the dissociation experiments, approximately all cages in the

  9. Ions in water: the microscopic structure of concentrated hydroxide solutions.

    Science.gov (United States)

    Imberti, S; Botti, A; Bruni, F; Cappa, G; Ricci, M A; Soper, A K

    2005-05-15

    Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45 degrees from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.

  10. The effect of polymethylsiloxanes on hydration of clinker phases

    Science.gov (United States)

    Stoch, A.; Zdaniewicz, M.; Paluszkiewicz, Cz.

    1999-11-01

    The effect of the polydimethylsiloxane (PDMS) admixture on hydration of pure clinker phases: alite, belite or tricalcium aluminate was studied by means of FTIR spectroscopy. It was shown that PDMS, introduced to a clinker phase paste during the hydration process reduces the carbonation reaction, improves the crystallization of hydrates in tricalcium aluminate and considerably increases water resistance without significantly changing the mechanical parameters. Our FTIR results were also confirmed by XRD, DTA and SEM study of the morphology of the newly formed phases. Introduction of as much as 5 wt.% of the PDMS increases the wetting angle by up to 80-120°.

  11. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans

    OpenAIRE

    Boudreau, B.P.; Luo, Yiming; Filip J R Meysman; J. J. Middelburg; G. R. Dickens

    2015-01-01

    Anthropogenic warming of the oceans can release methane (CH4) currently stored in sediments as gas hydrates. This CH4 will be oxidized to CO2, thus increasing the acidification of the oceans. We employ a biogeochemical model of the multimillennial carbon cycle to determine the evolution of the oceanic dissolved carbonate system over the next 13 kyr in response to CO2 from gas hydrates, combined with a reasonable scenario for long-term anthropogenic CO2 emissions. Hydrate-derived CO2 will appr...

  12. Effect on Hydration and Hardening of Tricalcium Phosphate Bone Cement

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The bioactive α-Ca3 (PO4)2 bone cement was studied by XRD , SEM and isothermal calorimetric measurements. The results showed that a mixed pattern of TCP and hydroxylapatite were obtained after hydration and hardening. The mechanism of hydration and hardening of the α-Ca3 ( PO4 )2 was dissolution-precipitation,(NH4) H2 PO4 was the best set accelerator to the α-Ca3 ( PO4 )2 cement, and the HAP powers and the(NH4) H2 PO4 concentration had a great effect on the hydration rate of α-Ca3 ( PO4 )2.

  13. Communication: Charge transfer dominates over proton transfer in the reaction of nitric acid with gas-phase hydrated electrons

    Science.gov (United States)

    Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.

    2017-09-01

    The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.

  14. Examination of Hydrate Formation Methods: Trying to Create Representative Samples

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.

    2011-04-01

    Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas

  15. Experimental studies for the cyclability of salt hydrates for thermochemical heat storage

    NARCIS (Netherlands)

    Donkers, P.A.J.; Pel, L.; Adan, O.C.G.

    2016-01-01

    Salt hydrates have promising potential as heat storage materials by use of their hydration/dehydration reaction. These hydration/dehydration reactions are studied in this paper for CuCl2, CuSO4, MgCl2 and MgSO4. During a hydration/dehydration reaction, the salt shrinks and expands as a result of the

  16. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    Science.gov (United States)

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms