WorldWideScience

Sample records for hydrate-bearing core duringextraction

  1. Multiple-pressure-tapped core holder combined with X-ray computed tomography scanning for gas-water permeability measurements of methane-hydrate-bearing sediments

    Science.gov (United States)

    Konno, Yoshihiro; Jin, Yusuke; Uchiumi, Takashi; Nagao, Jiro

    2013-06-01

    We present a novel setup for measuring the effective gas-water permeability of methane-hydrate-bearing sediments. We developed a core holder with multiple pressure taps for measuring the pressure gradient of the gas and water phases. The gas-water flooding process was simultaneously detected using an X-ray computed tomography scanner. We successfully measured the effective gas-water permeability of an artificial sandy core with methane hydrate during the gas-water flooding test.

  2. Grain-scale imaging and compositional characterization of cryo-preserved India NGHP 01 gas-hydrate-bearing cores

    Science.gov (United States)

    Stern, Laura A.; Lorenson, T.D.

    2014-01-01

    We report on grain-scale characteristics and gas analyses of gas-hydrate-bearing samples retrieved by NGHP Expedition 01 as part of a large-scale effort to study gas hydrate occurrences off the eastern-Indian Peninsula and along the Andaman convergent margin. Using cryogenic scanning electron microscopy, X-ray spectroscopy, and gas chromatography, we investigated gas hydrate grain morphology and distribution within sediments, gas hydrate composition, and methane isotopic composition of samples from Krishna–Godavari (KG) basin and Andaman back-arc basin borehole sites from depths ranging 26 to 525 mbsf. Gas hydrate in KG-basin samples commonly occurs as nodules or coarse veins with typical hydrate grain size of 30–80 μm, as small pods or thin veins 50 to several hundred microns in width, or disseminated in sediment. Nodules contain abundant and commonly isolated macropores, in some places suggesting the original presence of a free gas phase. Gas hydrate also occurs as faceted crystals lining the interiors of cavities. While these vug-like structures constitute a relatively minor mode of gas hydrate occurrence, they were observed in near-seafloor KG-basin samples as well as in those of deeper origin (>100 mbsf) and may be original formation features. Other samples exhibit gas hydrate grains rimmed by NaCl-bearing material, presumably produced by salt exclusion during original hydrate formation. Well-preserved microfossil and other biogenic detritus are also found within several samples, most abundantly in Andaman core material where gas hydrate fills microfossil crevices. The range of gas hydrate modes of occurrence observed in the full suite of samples suggests a range of formation processes were involved, as influenced by local in situconditions. The hydrate-forming gas is predominantly methane with trace quantities of higher molecular weight hydrocarbons of primarily microbial origin. The composition indicates the gas hydrate is Structure I.

  3. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn

    2009-11-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  4. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, D.D.; Martin, A.I.; Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces. Copyright 2009 by the American Geophysical Union.

  5. Methane Recovery from Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  6. Strengthening mechanism of cemented hydrate-bearing sand at microscales

    Science.gov (United States)

    Yoneda, Jun; Jin, Yusuke; Katagiri, Jun; Tenma, Norio

    2016-07-01

    On the basis of hypothetical particle-level mechanisms, several constitutive models of hydrate-bearing sediments have been proposed previously for gas production. However, to the best of our knowledge, the microstructural large-strain behaviors of hydrate-bearing sediments have not been reported to date because of the experimental challenges posed by the high-pressure and low-temperature testing conditions. Herein, a novel microtriaxial testing apparatus was developed, and the mechanical large-strain behavior of hydrate-bearing sediments with various hydrate saturation values (Sh = 0%, 39%, and 62%) was analyzed using microfocus X-ray computed tomography. Patchy hydrates were observed in the sediments at Sh = 39%. The obtained stress-strain relationships indicated strengthening with increasing hydrate saturation and a brittle failure mode of the hydrate-bearing sand. Localized deformations were quantified via image processing at the submillimeter and micrometer scale. Shear planes and particle deformation and/or rotation were detected, and the shear band thickness decreased with increasing hydrate saturation.

  7. Geomechanical Performance of Hydrate-Bearing Sediments in Offshore Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stephen A. Holditch

    2006-12-31

    The main objective of this study is to develop the necessary knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus is on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. To achieve this objective, we have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. To be sure our geomechanical modeling is realistic, we are also investigating the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. In Phase II of the project, we will review all published core data and generate additional core data to verify the models. To generate data for our models, we are using data from the literature and we will be conducting laboratory studies in 2007 that generate data to (1) evaluate the conceptual pore-scale models, (2) calibrate the mathematical models, (3) determine dominant relations and critical parameters defining the geomechanical behavior of HBS, and (4) establish relationships between the geomechanical status of HBS and the corresponding geophysical signature. The milestones for Phase I of this project are given as follows: Literature survey on typical sediments containing gas hydrates in the ocean (TAMU); Recommendations on how to create typical sediments in the laboratory (TAMU); Demonstrate that typical sediments can be created in a repeatable manner in the laboratory and gas hydrates can be created in the pore space (TAMU); Develop a conceptual pore-scale model based on available data and reports (UCB); Test the developed pore-scale concepts on simple configurations and verify the results against known measurements and observations (UCB

  8. Water retention curve for hydrate-bearing sediments

    Science.gov (United States)

    Dai, Sheng; Santamarina, J. Carlos

    2013-11-01

    water retention curve plays a central role in numerical algorithms that model hydrate dissociation in sediments. The determination of the water retention curve for hydrate-bearing sediments faces experimental difficulties, and most studies assume constant water retention curves regardless of hydrate saturation. This study employs network model simulation to investigate the water retention curve for hydrate-bearing sediments. Results show that (1) hydrate in pores shifts the curve to higher capillary pressures and the air entry pressure increases as a power function of hydrate saturation; (2) the air entry pressure is lower in sediments with patchy rather than distributed hydrate, with higher pore size variation and pore connectivity or with lower specimen slenderness along the flow direction; and (3) smaller specimens render higher variance in computed water retention curves, especially at high water saturation Sw > 0.7. Results are relevant to other sediment pore processes such as bioclogging and mineral precipitation.

  9. Methane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Joseph P. Smith

    2014-09-01

    Full Text Available In June 2007 sediment cores were collected in Alaminos Canyon, Gulf of Mexico across a series of seismic data profiles indicating rapid transitions between the presence of methane hydrates and vertical gas flux. Vertical profiles of dissolved sulfate, chloride, calcium, magnesium, and dissolved inorganic carbon (DIC concentrations in porewaters, headspace methane, and solid phase carbonate concentrations were measured at each core location to investigate the cycling of methane-derived carbon in shallow sediments overlying the hydrate bearing strata. When integrated with stable carbon isotope ratios of DIC, geochemical results suggest a significant fraction of the methane flux at this site is cycled into the inorganic carbon pool. The incorporation of methane-derived carbon into dissolved and solid inorganic carbon phases represents a significant sink in local carbon cycling and plays a role in regulating the flux of methane to the overlying water column at Alaminos Canyon. Targeted, high-resolution geochemical characterization of the biogeochemical cycling of methane-derived carbon in shallow sediments overlying hydrate bearing strata like those in Alaminos Canyon is critical to quantifying methane flux and estimating methane hydrate distributions in gas hydrate bearing marine sediments.

  10. Chemical and isotopic characteristics of gas hydrate- and pore-water samples obtained from gas hydrate-bearing sediment cores retrieved from a mud volcano in the Kukuy Canyon, Lake Baikal

    Energy Technology Data Exchange (ETDEWEB)

    Minami, H.; Hachikubo, A.; Krylov, A.; Sakagami, H.; Ohashi, M.; Bai, J.; Kataoka, S.; Yamashita, S.; Takahashi, N.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan); Khlystov, O.; Zemskaya, T.; Grachev, M. [Russian Academy of Sciences, Irkutsk (Russian Federation). Limnological Inst.

    2008-07-01

    This paper provided details of a method developed to obtain gas hydrate water samples from a mud volcano in Lake Baikal, Russia. Chemical and isotopic analyses were conducted to examine the hydrate and pore water samples as well as to evaluate the original water involved in shallow gas hydrate accumulations in the region. Lake sediment core samples were retrieved from the bottom of the lake with gravity corers. A squeezer was used to take pore water samples from the sediments. Hydrate samples were taken from a gas hydrate placed on a polyethylene funnel. Dissolved hydrate water was filtered through a membrane into bottles. Both samples were kept under chilled or liquid nitrogen temperatures. Ion chromatography was used to determine concentrations of anions and hydrogen carbonate ions. Sodium and magnesium concentrations were determined using an inductively coupled plasma atomic emission spectrometer. An absorption spectrometer was used to determine potassium and calcium concentrations, and a mass spectrometer was used to analyze stable isotopes of oxygen and hydrogen. Results of the study suggested that the gas dissolved in pore water and adsorbed on the surfaces of sediment particles was not the original gas from the hydrates retrieved at the mud volcano. Original gas hydrate-forming fluids were chemically different from the pore- and lake-water samples. The oxygen isotopic composition of the gas hydrate water samples correlated well with hydrogen values. It was concluded that ascending fluid and water delivered the gas into the gas stability zone, and is the main gas hydrate-forming fluid in the area of study. 12 refs., 1 fig.

  11. Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough

    Science.gov (United States)

    Santamarina, J.C.; Dai, Shifeng; Terzariol, M.; Jang, Jeonghwan; Waite, William F.; Winters, William J.; Nagao, J.; Yoneda, J.; Konno, Y.; Fujii, T.; Suzuki, K.

    2015-01-01

    Natural hydrate-bearing sediments from the Nankai Trough, offshore Japan, were studied using the Pressure Core Characterization Tools (PCCTs) to obtain geomechanical, hydrological, electrical, and biological properties under in situ pressure, temperature, and restored effective stress conditions. Measurement results, combined with index-property data and analytical physics-based models, provide unique insight into hydrate-bearing sediments in situ. Tested cores contain some silty-sands, but are predominantly sandy- and clayey-silts. Hydrate saturations Sh range from 0.15 to 0.74, with significant concentrations in the silty-sands. Wave velocity and flexible-wall permeameter measurements on never-depressurized pressure-core sediments suggest hydrates in the coarser-grained zones, the silty-sands where Sh exceeds 0.4, contribute to soil-skeletal stability and are load-bearing. In the sandy- and clayey-silts, where Sh < 0.4, the state of effective stress and stress history are significant factors determining sediment stiffness. Controlled depressurization tests show that hydrate dissociation occurs too quickly to maintain thermodynamic equilibrium, and pressure–temperature conditions track the hydrate stability boundary in pure-water, rather than that in seawater, in spite of both the in situ pore water and the water used to maintain specimen pore pressure prior to dissociation being saline. Hydrate dissociation accompanied with fines migration caused up to 2.4% vertical strain contraction. The first-ever direct shear measurements on never-depressurized pressure-core specimens show hydrate-bearing sediments have higher sediment strength and peak friction angle than post-dissociation sediments, but the residual friction angle remains the same in both cases. Permeability measurements made before and after hydrate dissociation demonstrate that water permeability increases after dissociation, but the gain is limited by the transition from hydrate saturation

  12. THCM Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments (Marine and Permafrost Settings)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marcelo J. [Texas A & M Univ., College Station, TX (United States); Santamarina, J. Carlos [King Abdullah Univ. of Science and Technology (Saudi Arabia)

    2017-02-14

    Gas hydrates are solid compounds made of water molecules clustered around low molecular weight gas molecules such as methane, hydrogen, and carbon dioxide. Methane hydrates form under pressure (P) and temperature (T) conditions that are common in sub-permafrost layers and in deep marine sediments. Stability conditions constrain the occurrence of gas hydrates to submarine sediments and permafrost regions. The amount of technically recoverable methane trapped in gas hydrate may exceed 104tcf. Gas hydrates are a potential energy resource, can contribute to climate change, and can cause large-scale seafloor instabilities. In addition, hydrate formation can be used for CO2 sequestration (also through CO2-CH4 replacement), and efficient geological storage seals. The experimental study of hydrate bearing sediments has been hindered by the very low solubility of methane in water (lab testing), and inherent sampling difficulties associated with depressurization and thermal changes during core extraction. This situation has prompted more decisive developments in numerical modeling in order to advance the current understanding of hydrate bearing sediments, and to investigate/optimize production strategies and implications. The goals of this research has been to addresses the complex thermo-hydro-chemo-mechanical THCM coupled phenomena in hydrate-bearing sediments, using a truly coupled numerical model that incorporates sound and proven constitutive relations, satisfies fundamental conservation principles. Analytical solutions aimed at verifying the proposed code have been proposed as well. These tools will allow to better analyze available data and to further enhance the current understanding of hydrate bearing sediments in view of future field experiments and the development of production technology.

  13. Stability Analysis of Methane Hydrate-Bearing Soils Considering Dissociation

    Directory of Open Access Journals (Sweden)

    Hiromasa Iwai

    2015-06-01

    Full Text Available It is well known that the methane hydrate dissociation process may lead to unstable behavior such as large ground deformations, uncontrollable gas production, etc. A linear instability analysis was performed in order to investigate which variables have a significant effect on the onset of the instability behavior of methane hydrate-bearing soils subjected to dissociation. In the analysis a simplified viscoplastic constitutive equation is used for the soil sediment. The stability analysis shows that the onset of instability of the material system mainly depends on the strain hardening-softening parameter, the degree of strain, and the permeability for water and gas. Then, we conducted a numerical analysis of gas hydrate-bearing soil considering hydrate dissociation in order to investigate the effect of the parameters on the system. The simulation method used in the present study can describe the chemo-thermo-mechanically coupled behaviors such as phase changes from hydrates to water and gas, temperature changes and ground deformation. From the numerical results, we found that basically the larger the permeability for water and gas is, the more stable the simulation results are. These results are consistent with those obtained from the linear stability analysis.

  14. Geomechanical Performance of Hydrate-Bearing Sediment in Offshore Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; Tad Patzek; Jonny Rutqvist; George Moridis; Richard Plumb

    2008-03-31

    The objective of this multi-year, multi-institutional research project was to develop the knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate-bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus was on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. We have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. We also investigated the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. The objective of the UC Berkeley work was to develop a grain-scale model of hydrate-bearing sediments. Hydrate dissociation alters the strength of HBS. In particular, transformation of hydrate clusters into gas and liquid water weakens the skeleton and, simultaneously, reduces the effective stress by increasing the pore pressure. The large-scale objective of the study is evaluation of geomechanical stability of offshore oil and gas production infrastructure. At Lawrence Berkeley National Laboratory (LBNL), we have developed the numerical model TOUGH + Hydrate + FLAC3D to evaluate how the formation and disassociation of hydrates in seafloor sediments affects seafloor stability. Several technical papers were published using results from this model. LBNL also developed laboratory equipment and methods to produce realistic laboratory samples of sediments containing gas hydrates so that mechanical properties could be measured in the laboratory. These properties are required to run TOUGH + Hydrate + FLAC3D to evaluate seafloor stability issues. At Texas A&M University we performed a detailed literature review to determine what gas hydrate formation properties had been measured and reported in the literature. We

  15. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  16. Simulation experiments on gas production from hydrate-bearing sediments

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Experiments were made on 58 sediment samples from four sites(1244,1245,1250 and 1251) of ODP204 at five temperature points(25,35,45,55 and 65℃) to simulate methane production from hydrate-bearing sediments.Simulation results from site 1244 show that the gas components consist mainly of methane and carbon dioxide,and heavy hydrocarbons more than C2+ cannot be detected.This site also gives results,similar to those from the other three,that the methane production is controlled by experimental temperatures,generally reaching the maximum gas yields per gram sediment or TOC under lower temperatures(25 and 35 ℃).In other words,the methane amount could be related to the buried depth of sediments,given the close relation between the depth and temperature.Sediments less than 1200 m below seafloor are inferred to still act as a biogenic gas producer to pour methane into the present hydrate zone,while sedimentary layers more than 1200 m below seafloor have become too biogenically exhausted to offer any biogas,but instead they produce thermogenic gas to give additional supply to the hydrate formation in the study area.

  17. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization

    Science.gov (United States)

    Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-01-01

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed, at least briefly, to non-in situ conditions during recovery. To examine the effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes, and speeds of the original and depressurized/repressurized samples are compared. X-ray computed tomography images track how the gas-hydrate distribution changes in the hydrate-cemented sands owing to the depressurizaton/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  18. Methane hydrate-bearing sediments in the Terrebonne basin, northern Gulf of Mexico

    Science.gov (United States)

    Meazell, K.; Flemings, P. B.

    2015-12-01

    We characterize the geological, geophysical, and thermodynamic state of three dipping, hydrate-bearing sands in the Terrebonne mini basin of the northern Gulf of Mexico, and describe three potential drilling locations to sample these hydrate reservoirs. Within the sand bodies, there is a prominent negative polarity seismic reflection (opposite phase to the seafloor reflector) that we interpret to record the boundary between gas hydrate above and free gas below. This anomaly is the Bottom Simulating Reflector (BSR) and the base of the Gas Hydrate Stability Zone (BGHSZ). Above the BSR, reflection seismic data record these reservoirs with a positive polarity while below it, they record the reservoirs with a negative polarity event. Within the sand bodies, seismic amplitudes are generally strongest immediately above and below the BSR and weaken in updip and downdip directions. Beneath the BSR, two of the reservoirs have a strong negative amplitude event that parallels structure that we interpret to record a gas-water contact, while the third reservoir does not clearly record this behavior. Much like the seafloor, the BSR is bowl-shaped, occurring at greatest depths in the northwest and rising near salt bodies in the south and east. In the north east area of previous exploration, the BSR is found at a depth of 2868 meters below sealevel, implying a geothermal gradient of 20.1oC/km for type I hydrates. Logging while drilling data reveal that the sands are composed of numerous thin, hydrocarbon-charged, coarse-grained sediments. Hydrate saturation in these sands is greatest near the BGHSZ. Pressure coring is proposed for three wells that will penetrate the reservoirs at different structural elevations in order to further elucidate reservoir conditions of the sands.

  19. Model-based temperature measurement system development for marine methane hydrate-bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, Masafumi; Sugiyama, Hitoshi; Igarashi, Juei; Fujii, Kasumi; Shun' etsu, Onodera; Tertychnyi, Vladimir; Shandrygin, Alexander; Pimenov, Viacheslav; Shako, Valery; Matsubayashi, Osamu; Ochiai, Koji

    2005-07-01

    This paper describes the effect of the sensor installation on the temperature of the hydrate-bearing sediments through modeling, how the system was deployed in Nankai Trough area in Japan, and the features of the marine methane hydrate temperature measurement system. (Author)

  20. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties

    Science.gov (United States)

    Lee, J. Y.; Francisca, F. M.; Santamarina, J. C.; Ruppel, C.

    2010-11-01

    The small-strain mechanical properties (e.g., seismic velocities) of hydrate-bearing sediments measured under laboratory conditions provide reference values for calibration of logging and seismic exploration results acquired in hydrate-bearing formations. Instrumented cells were designed for measuring the compressional (P) and shear (S) velocities of sand, silts, and clay with and without hydrate and subject to vertical effective stresses of 0.01 to 2 MPa. Tetrahydrofuran (THF), which is fully miscible in water, was used as the hydrate former to permit close control over the hydrate saturation Shyd and to produce hydrate from dissolved phase, as methane hydrate forms in most natural marine settings. The results demonstrate that laboratory hydrate formation technique controls the pattern of P and S velocity changes with increasing Shyd and that the small-strain properties of hydrate-bearing sediments are governed by effective stress, σ'v and sediment specific surface. The S velocity increases with hydrate saturation owing to an increase in skeletal shear stiffness, particularly when hydrate saturation exceeds Shyd≈ 0.4. At very high hydrate saturations, the small strain shear stiffness is determined by the presence of hydrates and becomes insensitive to changes in effective stress. The P velocity increases with hydrate saturation due to the increases in both the shear modulus of the skeleton and the bulk modulus of pore-filling phases during fluid-to-hydrate conversion. Small-strain Poisson's ratio varies from 0.5 in soft sediments lacking hydrates to 0.25 in stiff sediments (i.e., subject to high vertical effective stress or having high Shyd). At Shyd ≥ 0.5, hydrate hinders expansion and the loss of sediment stiffness during reduction of vertical effective stress, meaning that hydrate-rich natural sediments obtained through pressure coring should retain their in situ fabric for some time after core retrieval if the cores are maintained within the hydrate

  1. Evidence for Freshwater Discharge at a Gas Hydrate-Bearing Seafloor Mound on the Beaufort Sea Continental Slope

    Science.gov (United States)

    Pohlman, J.; Lorenson, T. D.; Hart, P. E.; Ruppel, C. D.; Joseph, C.; Torres, M. E.; Edwards, B. D.

    2011-12-01

    A deep-water (~2.5 km water depth) seafloor mound located ~150 km offshore of the North Slope Alaska, informally named the Canning Seafloor Mound (CSM), contains a documented occurrence of gas hydrate; the first from the Beaufort Sea. Gases and porewater extracted from cores taken at the CSM summit several months after core recovery provided surprisingly consistent and outstanding results. Gases migrating into the structure are likely a mixture of primary microbial gas formed by carbonate reduction and secondary microbial gas formed from degraded thermogenic gases, linking the system to deep oil and gas generation (see companion abstract by Lorenson et al.). Pore fluids extracted from the base of the 572 cm-long hydrate-bearing core had chloride values as low as 160 mM, which equates to an ~80% freshwater contribution. Low chloride values, often interpreted as a product of gas hydrate dissociation in hydrate-bearing cores, were coincident with sulfate values in excess of 1 mM and as high as 22 mM (seawater is ~28mM). High sulfate concentrations generally indicate an absence of methane, and, thus, gas hydrate; therefore, an allochthonous source of freshwater is required. Potential sources are clay mineral dehydration, clay membrane filtration and/or a meteoric water influx. Several lines of evidence indicate the Canning Seafloor Mound is connected to either a deep, landward freshwater aquifer or to an unusually fresh oil field brine. First, Na/Cl ratios decrease from marine (~0.86) near the seafloor to distinctly higher values of 1.20 at the bottom of the core. Second, clay dehydration and ion filtration processes have not, to our knowledge, yielded fluids as fresh as measured in these near-seafloor sediments. Third, and most importantly, δ18O-δD systematics of fluid end members are entirely consistent with a meteoric water source and inconsistent with trends expected for either gas hydrate dissociation, smectite to illite clay dewatering or ion filtration

  2. Numerical simulations of sand production in interbedded hydrate-bearing sediments during depressurization

    Science.gov (United States)

    Uchida, Shun; Lin, Jeen-Shang; Myshakin, Evgeniy; Seol, Yongkoo; Collett, Timothy S.; Boswell, Ray

    2017-01-01

    Geomechanical behavior of hydrate-bearing sediments during gas production is complex, involving changes in hydrate-dependent mechanical properties. When interbedded clay layers are present, the complexity is more pronounced because hydrate dissociation tends to occur preferentially in the sediments adjacent to the clay layers due to clay layers acting as a heat source. This would potentially lead to shearing deformation along the sand/clay contacts and may contribute to solid migration, which hindered past field-scale gas production tests. This paper presents a near-wellbore simulation of sand/clay interbedded hydrate-bearing sediments that have been subjected to depressurization and discusses the effect of clay layers on sand production.

  3. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments

    Science.gov (United States)

    Mahabadi, Nariman; Zheng, Xianglei; Jang, Jaewon

    2016-05-01

    The experimental measurement of water retention curve in hydrate-bearing sediments is critically important to understand the behavior of hydrate dissociation and gas production. In this study, tetrahydrofuran (THF) is selected as hydrate former. The pore habit of THF hydrates is investigated by visual observation in a transparent micromodel. It is confirmed that THF hydrates are not wetting phase on the quartz surface of the micromodel and occupy either an entire pore or part of pore space resulting in change in pore size distribution. And the measurement of water retention curves in THF hydrate-bearing sediments with hydrate saturation ranging from Sh = 0 to Sh = 0.7 is conducted for excess water condition. The experimental results show that the gas entry pressure and the capillary pressure increase with increasing hydrate saturation. Based on the experimental results, fitting parameters for van Genuchten equation are suggested for different hydrate saturation conditions.

  4. Water permeability in hydrate-bearing sediments: A pore-scale study

    Science.gov (United States)

    Dai, Sheng; Seol, Yongkoo

    2014-06-01

    Permeability is a critical parameter governing methane flux and fluid flow in hydrate-bearing sediments; however, limited valid data are available due to experimental challenges. Here we investigate the relationship between apparent water permeability (k') and hydrate saturation (Sh), accounting for hydrate pore-scale growth habit and meso-scale heterogeneity. Results from capillary tube models rely on cross-sectional tube shapes and hydrate pore habits, thus are appropriate only for sediments with uniform hydrate distribution and known hydrate pore character. Given our pore network modeling results showing that accumulating hydrate in sediments decreases sediment porosity and increases hydraulic tortuosity, we propose a modified Kozeny-Carman model to characterize water permeability in hydrate-bearing sediments. This model agrees well with experimental results and can be easily implemented in reservoir simulators with no empirical variables other than Sh. Results are also relevant to flow through other natural sediments that undergo diagenesis, salt precipitation, or bio-clogging.

  5. Thessaloniki Mud Volcano, the Shallowest Gas Hydrate-Bearing Mud Volcano in the Anaximander Mountains, Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    C. Perissoratis

    2011-01-01

    Full Text Available A detailed multibeam survey and the subsequent gravity coring carried out in the Anaximander Mountains, Eastern Mediterranean, detected a new active gas hydrate-bearing mud volcano (MV that was named Thessaloniki. It is outlined by the 1315 m bathymetric contour, is 1.67 km2 in area, and has a summit depth of 1260 m. The sea bottom water temperature is 13.7∘C. The gas hydrate crystals generally have the form of flakes or rice, some larger aggregates of them are up to 2 cm across. A pressure core taken at the site contained 3.1 lt. of hydrocarbon gases composed of methane, nearly devoid of propane and butane. The sediment had a gas hydrate occupancy of 0.7% of the core volume. These characteristics place the gas hydrate field at Thessaloniki MV at the upper boundary of the gas hydrate stability zone, prone to dissociation with the slightest increase in sea water temperature, decrease in hydrostatic pressure, or change in the temperature of the advecting fluids.

  6. Transport Mechanisms for CO2-CH4 Exchange and Safe CO2 Storage in Hydrate-Bearing Sandstone

    Directory of Open Access Journals (Sweden)

    Knut Arne Birkedal

    2015-05-01

    Full Text Available CO2 injection in hydrate-bearing sediments induces methane (CH4 production while benefitting from CO2 storage, as demonstrated in both core and field scale studies. CH4 hydrates have been formed repeatedly in partially water saturated Bentheim sandstones. Magnetic Resonance Imaging (MRI and CH4 consumption from pump logs have been used to verify final CH4 hydrate saturation. Gas Chromatography (GC in combination with a Mass Flow Meter was used to quantify CH4 recovery during CO2 injection. The overall aim has been to study the impact of CO2 in fractured and non-fractured samples to determine the performance of CO2-induced CH4 hydrate production. Previous efforts focused on diffusion-driven exchange from a fracture volume. This approach was limited by gas dilution, where free and produced CH4 reduced the CO2 concentration and subsequent driving force for both diffusion and exchange. This limitation was targeted by performing experiments where CO2 was injected continuously into the spacer volume to maintain a high driving force. To evaluate the effect of diffusion length multi-fractured core samples were used, which demonstrated that length was not the dominating effect on core scale. An additional set of experiments is presented on non-fractured samples, where diffusion-limited transportation was assisted by continuous CO2 injection and CH4 displacement. Loss of permeability was addressed through binary gas (N2/CO2 injection, which regained injectivity and sustained CO2-CH4 exchange.

  7. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  8. Experimental study on steam and inhibitor injection into methane hydrate bearing sediments

    Science.gov (United States)

    Kawamura, T.; Sakamoto, Y.; Temma, N.; Yamamoto, Y.; Komai, T.

    2007-12-01

    Natural gas hydrate that exists in the ocean sediment is thought to constitute a large methane gas reservoir and is expected to be an energy resource in the future. In order to make recovery of natural gas from hydrates commercially viable, hydrates must be dissociated in-situ. Inhibitor injection method is thought to be one of the effective dissociation method as well as depressurization and thermal stimulation. Meanwhile, steam injection method is practically used for oil sand to recover heavy oil and recognized as a means that is commercially successful. In this study, the inhibitor injection method and the steam injection method for methane hydrate bearing sediments have been examined and discussed on an experimental basis. New experimental apparatuses have been designed and constructed. Using these apparatuses, inhibitor and steam were successfully injected into artificial methane hydrate bearing sediments that were simulated in laboratory scale. In the case of inhibitor injection, characteristic temperature drop during dissociation was observed. And decreases of permeability that is caused by the reformation of methane hydrate were prevented effectively. In the case of steam injection, the phase transition from vapor water to liquid water in methane hydrate bearing sediments was observed. It can be concluded that roughly 44 % of total hydrate origin gas was produced after steam injection. From these approaches, the applicability of these methods as enhanced gas recovery methods are discussed.

  9. Stability evaluation of hydrate-bearing sediments during thermally-driven hydrate dissociation

    Science.gov (United States)

    Kwon, T.; Cho, G.; Santamarina, J.; Kim, H.; Lee, J.

    2009-12-01

    Hydrate-bearing sediments may destabilize spontaneously as part of geological processes, unavoidably during petroleum drilling/production operations, or intentionally as part of gas extraction from the hydrate itself. In all cases, high pore fluid pressure generation is anticipated during hydrate dissociation. This study examined how thermal changes destabilize gas hydrate-bearing sediments. First, an analytical formulation was derived for predicting fluid pressure evolution in hydrate-bearing sediments subjected to thermal stimulation without mass transfer. The formulation captures the self-preservation behavior, calculates the hydrate and free gas quantities during dissociation, considering effective stress-controlled sediment compressibility and gas solubility in aqueous phase. Pore fluid pressure generation is proportional to the initial hydrate fraction and the sediment bulk stiffness; is inversely proportional to the initial gas fraction and gas solubility; and is limited by changes in effective stress that cause the failure of the sediment. Second, the analytical formulation for hydrate dissociation was incorporated as a user-defined function into a verified finite difference code (FLAC2D). The underlying physical processes of hydrate-bearing sediments, including hydrate dissociation, self-preservation, pore pressure evolution, gas dissolution, and sediment volume expansion, were coupled with the thermal conduction, pore fluid flow, and mechanical response of sediments. We conducted the simulations for a duration of 20 years, assuming a constant-temperature wellbore transferred heat to the surrounding hydrate-bearing sediments, resulting in dissociation of methane hydrate in the well vicinity. The model predicted dissociation-induced excess pore fluid pressures which resulted in a large volume expansion and plastic deformation of the sediments. Furthermore, when the critical stress was reached, localized shear failure of the sediment around the borehole was

  10. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments, on the Pacific Ocean Margin

    DEFF Research Database (Denmark)

    Inagaki, F.; Nunoura, T.; Nakagawa, S.

    2006-01-01

    The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes and their ......The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes...... in prokaryotic distribution patterns in sediments with or without methane hydrates, we studied > 2,800 clones possessing partial sequences (400-500 bp) of the 16S rRNA gene and 348 representative clone sequences (approximate to 1 kbp) from the two geographically separated subseafloor environments. Archaea...... of the JS1 group, Planctomycetes, and Chloroflexi. Results from cluster and principal component analyses, which include previously reported data from the West and East Pacific Margins, suggest that, For these locations in the Pacific Ocean, prokaryotic communities from methane hydrate-bearing sediment cores...

  11. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms

    KAUST Repository

    Sánchez, Marcelo

    2016-11-30

    Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.

  12. Models for Gas Hydrate-Bearing Sediments Inferred from Hydraulic Permeability and Elastic Velocities

    Science.gov (United States)

    Lee, Myung W.

    2008-01-01

    Elastic velocities and hydraulic permeability of gas hydrate-bearing sediments strongly depend on how gas hydrate accumulates in pore spaces and various gas hydrate accumulation models are proposed to predict physical property changes due to gas hydrate concentrations. Elastic velocities and permeability predicted from a cementation model differ noticeably from those from a pore-filling model. A nuclear magnetic resonance (NMR) log provides in-situ water-filled porosity and hydraulic permeability of gas hydrate-bearing sediments. To test the two competing models, the NMR log along with conventional logs such as velocity and resistivity logs acquired at the Mallik 5L-38 well, Mackenzie Delta, Canada, were analyzed. When the clay content is less than about 12 percent, the NMR porosity is 'accurate' and the gas hydrate concentrations from the NMR log are comparable to those estimated from an electrical resistivity log. The variation of elastic velocities and relative permeability with respect to the gas hydrate concentration indicates that the dominant effect of gas hydrate in the pore space is the pore-filling characteristic.

  13. Submarine Slope Failure Primed and Triggered by Bottom Water Warming in Oceanic Hydrate-Bearing Deposits

    Directory of Open Access Journals (Sweden)

    Tae-Hyuk Kwon

    2012-08-01

    Full Text Available Many submarine slope failures in hydrate-bearing sedimentary deposits might be directly triggered, or at least primed, by gas hydrate dissociation. It has been reported that during the past 55 years (1955–2010 the 0–2000 m layer of oceans worldwide has been warmed by 0.09 °C because of global warming. This raises the following scientific concern: if warming of the bottom water of deep oceans continues, it would dissociate natural gas hydrates and could eventually trigger massive slope failures. The present study explored the submarine slope instability of oceanic gas hydrate-bearing deposits subjected to bottom water warming. One-dimensional coupled thermal-hydraulic-mechanical (T-H-M finite difference analyses were performed to capture the underlying physical processes initiated by bottom water warming, which includes thermal conduction through sediments, thermal dissociation of gas hydrates, excess pore pressure generation, pressure diffusion, and hydrate dissociation against depressurization. The temperature rise at the seafloor due to bottom water warming is found to create an excess pore pressure that is sufficiently large to reduce the stability of a slope in some cases. Parametric study results suggest that a slope becomes more susceptible to failure with increases in thermal diffusivity and hydrate saturation and decreases in pressure diffusivity, gas saturation, and water depth. Bottom water warming can be further explored to gain a better understanding of the past methane hydrate destabilization events on Earth, assuming that more reliable geological data is available.

  14. Active downhole thermal property measurement system for characterization of gas hydrate-bearing formations

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, Masafumi; Fujii, Kasumi; Tertychnyi, Vladimir; Shandrygin, Alexander; Popov, Yuri; Matsubayashi, Osamu; Kusaka, Koji; Yasuda, Masato

    2005-07-01

    Gas hydrates dissociate or form when temperature and/or pressure conditions cross the equilibrium border. When we consider gas hydrates as an energy resource, understanding those parameters is very important for developing efficient production schemes. Therefore, thermal measurement is one of the key components of the characterization of the gas hydrate-bearing formation, not only statically but also dynamically. To estimate thermal properties such as thermal conductivity and diffusivity of subsurface formations, the conventional method has been to monitor temperature passively at several underground locations and interpret collected information with assumptions such as steady heat flow or relaxation from thermal disturbance by fluid flow, etc. Because the thermal properties are estimated based on several assumptions, these passive measurement methods sometimes leave a lot of uncertainties. On the other hand, active thermal property measurement, which could minimize those uncertainties, is commonly used in a laboratory and many types of equipment exist commercially for the purpose. The concept of measurement is very simple: creating a known thermal disturbance with a thermal source and then monitoring the response of the specimen. However, simply applying this method to subsurface formation measurement has many technical and logistical difficulties. In this paper, newly developed thermal property measurement equipment and its measurement methodology are described. Also discussed are the theoretical background for the application of the methodology to a gas hydrate-bearing formation through numerical simulation and the experimental results of laboratory mockup in a controlled environment. (Author)

  15. Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne Point, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.M.; Hunter, R. (ASRC Energy Services, Anchorage, AK); Collett, T. (USGS, Denver, CO); Digert, S. (BP Exploration (Alaska) Inc., Anchorage, AK); Hancock, S. (RPS Energy Canada, Calgary, Alberta, Canada); Weeks, M. (BP Exploration (Alaska) Inc., Anchorage, AK); Mt. Elbert Science Team

    2008-01-01

    In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), Inc., and the U.S. Geological Survey conducted an extensive data collection effort at the "Mount Elbert #1" gas hydrates stratigraphic test well on the Alaska North Slope (ANS). The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a full suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. Hole conditions, and therefore log data quality, were excellent due largely to the use of chilled oil-based drilling fluids. The logging program confirmed the existence of approximately 30 m of gashydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60% to 75% largely as a function of reservoir quality. Continuous wire-line coring operations (the first conducted on the ANS) achieved 85% recovery through 153 meters of section, providing more than 250 subsamples for analysis. The "Mount Elbert" data collection program culminated with open-hole tests of reservoir flow and pressure responses, as well as gas and water sample collection, using Schlumberger's Modular Formation Dynamics Tester (MDT) wireline tool. Four such tests, ranging from six to twelve hours duration, were conducted. This field program demonstrated the ability to safely and efficiently conduct a research-level openhole data acquisition program in shallow, sub-permafrost sediments. The program also demonstrated the soundness of the program's pre-drill gas hydrate characterization methods and increased confidence in gas hydrate resource assessment methodologies for the ANS.

  16. Investigation of gas hydrate-bearing sandstone reservoirs at the Mount Elbert stratigraphic test well, Milne Point, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Hunter, R. [ASRC Energy Services, Anchorage, AK (United States); Collett, T. [United States Geological Survey, Denver, CO (United States); Digert, S.; Weeks, M. [BP Exploration Alaska Inc., Anchorage, AK (United States); Hancock, S. [RPS Energy Canada, Calgary, AB (Canada)

    2008-07-01

    Gas hydrates occur within the shallow sand reservoirs on the Alaska North Slope (ANS). The mean estimate for gas hydrate in-place resources on the ANS is 16.7 trillion cubic metres. In the past, they were viewed primarily as a drilling hazard to be managed during the development of deeper oil resources. In 2002, a cooperative research program was launched to help determine the potential for environmentally-sound and economically-viable production of methane from gas hydrates. Additional objectives were to refine ANS gas hydrate resource potential, improve the geologic and geophysical methods used to locate and asses gas hydrate resources, and develop numerical modeling capabilities that are essential in both planning and evaluating gas hydrate field programs. This paper reviewed the results of the an extensive data collection effort conducted at the Mount Elbert number 1 gas hydrates stratigraphic test well on the ANS. The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. The logging program confirmed the existence of approximately 30 m of gas hydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60 to 75 per cent. Continuous wire-line coring operations achieved 85 per cent recovery. The Mount Elbert field program also involved gas and water sample collection. It demonstrated the ability to safely and efficiently conduct a research-level open-hole data acquisition program in shallow, sub-permafrost sediments and increased confidence in gas hydrate resource assessment methodologies for the ANS. 10 refs., 9 figs.

  17. New Approaches for the Production of Hydrocarbons from Hydrate Bearing Sediments

    Directory of Open Access Journals (Sweden)

    Ronny Giese

    2011-01-01

    Full Text Available The presence of natural gas hydrates at all active and passive continental margins has been proven. Their global occurrence as well as the fact that huge amounts of methane and other lighter hydrocarbons are stored in natural gas hydrates has led to the idea of using hydrate bearing sediments as an energy resource. However, natural gas hydrates remain stable as long as they are in mechanical, thermal and chemical equilibrium with their environment. Thus, for the production of gas from hydrate bearing sediments, at least one of these equilibrium states must be disturbed by depressurization, heating or addition of chemicals such as CO2. Depressurization, thermal or chemical stimulation may be used alone or in combination, but the idea of producing hydrocarbons from hydrate bearing sediments by CO2 injection suggests the potential of an almost emission free use of this unconventional natural gas resource. However, up to now there are still open questions regarding all three production principles. Within the framework of the German national research project SUGAR the thermal stimulation method by use of in situ combustion was developed and tested on a pilot plant scale and the CH4-CO2 swapping process in gas hydrates studied on a molecular level. Microscopy, confocal Raman spectroscopy and X-ray diffraction were used for in situ investigations of the CO2-hydrocarbon exchange process in gas hydrates and its driving forces. For the thermal stimulation a heat exchange reactor was designed and tested for the exothermal catalytic oxidation of methane. Furthermore, a large scale reservoir simulator was realized to synthesize hydrates in sediments under conditions similar to nature and to test the efficiency of the reactor. Thermocouples placed in the reservoir simulator with a total volume of 425 L collect data regarding the propagation of the heat front. In addition, CH4 sensors are placed in the water saturated sediment to detect the distribution of CH4

  18. Composite model to reproduce the mechanical behaviour of methane hydrate bearing soils

    Science.gov (United States)

    De la Fuente, Maria

    2016-04-01

    Methane hydrate bearing sediments (MHBS) are naturally-occurring materials containing different components in the pores that may suffer phase changes under relative small temperature and pressure variations for conditions typically prevailing a few hundreds of meters below sea level. Their modelling needs to account for heat and mass balance equations of the different components, and several strategies already exist to combine them (e.g., Rutqvist & Moridis, 2009; Sánchez et al. 2014). These equations have to be completed by restrictions and constitutive laws reproducing the phenomenology of heat and fluid flows, phase change conditions and mechanical response. While the formulation of the non-mechanical laws generally includes explicitly the mass fraction of methane in each phase, which allows for a natural update of parameters during phase changes, mechanical laws are, in most cases, stated for the whole solid skeleton (Uchida et al., 2012; Soga et al. 2006). In this paper, a mechanical model is proposed to cope with the response of MHBS. It is based on a composite approach that allows defining the thermo-hydro-mechanical response of mineral skeleton and solid hydrates independently. The global stress-strain-temperature response of the solid phase (grains + hydrate) is then obtained by combining both responses according to energy principle following the work by Pinyol et al. (2007). In this way, dissociation of MH can be assessed on the basis of the stress state and temperature prevailing locally within the hydrate component. Besides, its structuring effect is naturally accounted for by the model according to patterns of MH inclusions within soil pores. This paper describes the fundamental hypothesis behind the model and its formulation. Its performance is assessed by comparison with laboratory data presented in the literature. An analysis of MHBS response to several stress-temperature paths representing potential field cases is finally presented. References

  19. Experimental characterization of production behavior accompanying the hydrate reformation in methane hydrate bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.; Kang, J.M.; Nguyen, H.T. [Seoul National Univ., Seoul (Korea, Republic of); Park, C. [Kangwon National Univ., (Korea, Republic of); Lee, J. [Korea Inst., of Geoscience and Mineral Resources (Korea, Republic of)

    2010-07-01

    This study investigated the production behaviour associated with gas hydrate reformation in methane hydrate-bearing sediment by hot-brine injection. A range of different temperature and brine injection rates were used to analyze the pressure and temperature distribution, the gas production behaviour and the movement of the dissociation front. The study showed that hydrate reformation reduces the production rate considerably at an early time. However, gas production increases during the dissociation, near the outlet because the dissociated methane around the inlet is consumed in reforming the hydrate and increases the hydrate saturation around the outlet. Higher temperature also increases the gas production rate and the speed of the dissociation front. 12 refs., 2 tabs., 4 figs.

  20. Joint Electrical and Seismic Interpretation of Gas Hydrate Bearing Sediments From the Cascadia Margin

    Science.gov (United States)

    Ellis, M.; Minshull, T.; Sinha, M.; Best, A.

    2008-12-01

    Gas hydrates are found in continental margin sediments worldwide. Their global importance as future energy reserves and their potential impact on slope stability and abrupt climate change all require better knowledge of where they occur and how much hydrate is present. However, current estimates of the distribution and volume of gas hydrate beneath the seabed range widely. Improved geophysical methods could provide much better constraints on hydrate concentrations. Geophysical measurements of seismic velocity and electrical resistivity using seabed or borehole techniques are often used to determine the hydrate saturation of sediments. Gas hydrates are well known to affect these physical properties; hydrate increases sediment p-wave velocity and electrical resistivity by replacing the conductive pore fluids, by cementing grains together and by blocking pores. A range of effective medium theoretical models have been developed to interpret these measurements in terms of hydrate content, but uncertainties about the pore-scale distribution of hydrate can lead to large uncertainties in the results. This study developed effective medium models to determine the seismic and electrical properties of hydrate bearing sediments in terms of their porosity, micro-structure and hydrate saturation. The seismic approach combines a Self Consistent Approximation (SCA) and Differential Effective Medium (DEM), which can model a bi-connected effective medium and allows the shape and alignment of the grains to be taken into account. The electrical effective medium method was developed to complement the seismic models and is based on the application of a geometric correction to the Hashin-Shrikman conductive bound. The electrical and seismic models are non-unique and hence it was necessary to develop a joint electrical and seismic interpretation method to investigate hydrate bearing sediments. The joint method allows two variables (taken from porosity, aspect ratio or hydrate saturation

  1. Methane flux in potential hydrate-bearing sediments offshore southwestern Taiwan

    Science.gov (United States)

    Chen, Nai-Chen; Yang, Tsanyao Frank; Chuang, Pei-Chuan; Hong, Wei-Li; Chen, Hsuan-Wen; Lin, Saulwood; Lin, Li-Hung; Mastumoto, Ryo; Hiruta, Akihiro; Sun, Chih-Hsien; Wang, Pei-Ling; Yang, Tau; Jiang, Shao-yong; Wang, Yun-shuen; Chung, San-Hsiung; Chen, Cheng-Hong

    2016-04-01

    Methane in interstitial water of hydrate-bearing marine sediments ascends with buoyant fluids and is discharged into seawater, exerting profound impacts on ocean biogeochemistry and greenhouse effects. Quantifying the exact magnitude of methane transport across different geochemical transitions in different geological settings would provide bases to better constrain global methane discharge to seawater and to assess physio-chemical contexts imposed on microbial methane production and consumption and carbon sequestration in marine environments. Using sediments collected from different geological settings offshore southwestern Taiwan through decadal exploration on gas hydrates, this study analyzed gas and aqueous geochemistry and calculated methane fluxes across different compartments. Three geochemical transitions, including sulfate-methane transition zone (SMTZ), shallow sediments, and sediment-seawater interface were specifically focused for the flux calculation. The results combined with previous published data showed that methane fluxes at three interfaces of 2.71×10-3 to 3.52×10-1, 5.28×10-7 to 1.08×100, and 1.34×10-6 to 3.17×100 mmol m-2 d-1, respectively. The ranges of fluxes suggest that more than 90 % of methane originating from depth was consumed by anaerobic methanotrophy at the SMTZ, and further >90% of the remnant methane was removed by aerobic methanotrophy prior to reaching the sediment-seawater interface. Exceptions are sites at cold seeps where the percentage of methane released into seawater can reach more than 80% of methane at depth. Most sites with such high methane fluxes are located at active margin where thrusts and diapirism are well developed. Carbon mass balance method was applied for the calculation of anaerobic oxidation of methane (AOM) and organotrophic sulfate reduction rates at SMTZ. Results indicated that AOM rates were comparable with fluxes deduced from concentration gradients for most sites. At least 60% of sulfate

  2. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Lixin Kuang

    2011-01-01

    Full Text Available Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na2CO3, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from −8 °C to 15 °C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments.

  3. Role of critical state framework in understanding geomechanical behavior of methane hydrate-bearing sediments

    Science.gov (United States)

    Uchida, Shun; Xie, Xiao-Guang; Leung, Yat Fai

    2016-08-01

    A proper understanding of geomechanical behavior of methane hydrate-bearing sediments is crucial for sustainable future gas production. There are a number of triaxial experiments conducted over synthetic and natural methane hydrate (MH)-bearing sediments, and several soil constitutive models have been proposed to describe their behavior. However, the generality of a sophisticated model is questioned if it is tested only for a limited number of cases. Furthermore, it is difficult to experimentally determine the associated parameters if their physical meanings and significance are not elucidated. The objective of this paper is to demonstrate that a simple extension of the critical state framework is sufficient to capture the geomechanical behavior of MH-bearing soils from various sources around the world, while the significance of each parameter is quantified through variance-based global sensitivity analyses. Our results show that the influence of hydrates can be largely represented by one hydrate-dependent parameter, pcd', which controls the expansion of the initial yield surface. This is validated through comparisons with shearing and volumetric response of MH-bearing soils tested at various institutes under different confining stresses and with varying degrees of hydrate saturation. Our study suggests that the behavior of MH-bearing soils can be reasonably predicted based on pcd' and the conventional critical state parameters of the host sediments that can be obtained through typical geotechnical testing procedures.

  4. Relative water and gas permeability for gas production from hydrate-bearing sediments

    Science.gov (United States)

    Mahabadi, Nariman; Jang, Jaewon

    2014-06-01

    water and gas permeability equations are important for estimating gas and water production from hydrate-bearing sediments. However, experimental or numerical study to determine fitting parameters of those equations is not available in the literature. In this study, a pore-network model is developed to simulate gas expansion and calculate relative water and gas permeability. Based on the simulation results, fitting parameters for modified Stone equation are suggested for a distributed hydrate system where initial hydrate saturations range from Sh = 0.1 to 0.6. The suggested fitting parameter for relative water permeability is nw ≈ 2.4 regardless of initial hydrate saturation while the suggested fitting parameter for relative gas permeability is increased from ng = 1.8 for Sh = 0.1 to ng = 3.5 for Sh = 0.6. Results are relevant to other systems that experience gas exsolution such as pockmark formation due to sea level change, CO2 gas formation during geological CO2 sequestration, and gas bubble accumulation near the downstream of dams.

  5. Modeling on the gas-generating amount of sediments hydrate-bearing

    Energy Technology Data Exchange (ETDEWEB)

    Gong, J.M.; Cao, Z.M. [Ocean Univ. of China, Qingdao (China); Jian-Ming, G.; Chen, J.W. [Qingdao Inst. of Marine Geology, Qingdao (China); Zhang, M.; Yang, G.F. [Yangtze Univ., Jingzhou (China); Li, J. [PetroChina, HeBei (China). Langfang Branch, Research Inst. of Petroleum Exploration and Development

    2008-07-01

    Gas hydrate is a form of clean fossil energy. It has the characteristics of extensive distribution, large reserve, high-energy capacity and less pollution after combustion. It also has a great energy value, generating interest from governments and scientists in different countries. This paper discussed a study in which methane generating hydrate-bearing sediments were investigated. A total of 58 sediment samples from 4 sites of ODP Leg 204 were modeled by 5 temperature points. ODP Leg 204 lies offshore western United States, in the Hydrate Ridge region (Oregon) of the Pacific. It is one of the most studied areas and clearest about hydrate distribution in the world. The paper described the study area and sample preparation. It also discussed the modeling and geochemical characteristics of the gas-generating samples. A model section revealed bacteria species, substrate deployment, selection of culture flask, and sample culture. The geochemical characteristics of the gas-generating samples were also described. It was concluded that the sediments within 1,200 meters below the seafloor were the main gas source of the biogenic gas hydrate. The organic matter abundance of the sediments at this depth and the migration passage of the fluids in the strata were important for the formation and preservation of the gas hydrate deposits. 21 refs., 1 tab., 6 figs.

  6. Evaluation of Different CH4-CO2 Replacement Processes in Hydrate-Bearing Sediments by Measuring P-Wave Velocity

    Directory of Open Access Journals (Sweden)

    Bei Liu

    2013-11-01

    Full Text Available The replacement of methane with carbon dioxide in natural gas hydrate-bearing sediments is considered a promising technology for simultaneously recovering natural gas and entrapping CO2. During the CH4-CO2 replacement process, the variations of geophysical property of the hydrate reservoir need to be adequately known. Since the acoustic wave velocity is an important geophysical property, in this work, the variations of P-wave velocity of hydrate-bearing sediments were measured during different CH4-CO2 replacement processes using pure gaseous CO2 and CO2/N2 gas mixtures. Our experimental results show that P-wave velocity continually decreased during all replacement processes. Compared with injecting pure gaseous CO2, injection of CO2/N2 mixture can promote the replacement process, however, it is found that the sediment experiences a loss of stiffness during the replacement process, especially when using CO2/N2 gas mixtures.

  7. Microbial Diversity in Hydrate-bearing and -free Seafloor Surface Sediments in the Shenhu Area, South China Sea

    Science.gov (United States)

    Su, X.

    2015-12-01

    In 2007, the China's first gas hydrate drilling expedition GMGS-1 in the Shenhu area on the northern continental slope of the South China Sea was performed (Zhang et al., 2007). Six holes (namely Sites SH1B, SH2B, SH3B, SH5B, SH5C and SH7B) were drilled, and gas hydrate samples were recovered at three sites: Sites SH2B, SH3B and SH7B. In order to investigate microbial diversity and community features in correlation to gas hydrate-bearing sediments, a study on microbial diversity in the surface sediments at hydrate-bearing sites (SH3B and SH7B) and -free sites (SH1B, SH5B, SH5C) was carried out by using 16S rRNA gene phylogenetic analysis. The phylogenetic results indicated difference in microbial communities between hydrate-bearing and -free sediments. At the gas hydrate-bearing sites, bacterial communities were dominated by Deltaproteobacteria (30.5%), and archaeal communities were dominated by Miscellaneous Crenarchaeotic Group (33.8%); In contrast, Planctomycetes was the major group (43.9%) in bacterial communities, while Marine Benthic Group-D (MBG-D) (32.4%) took up the largest proportion in the archaeal communities. Moreover, the microbial communities have characteristics different from those in other hydrate-related sediments around the world, indicating that the presence of hydrates could affect the microbial distribution and community composition. In addition, the microbial community composition in the studied sediments has its own uniqueness, which may be resulted by co-effect of geochemical characteristics and presence/absence of gas hydrates.

  8. Experimental study of enhanced gas recovery from gas hydrate bearing sediments by inhibitor and steam injection methods

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, T.; Ohtake, M.; Sakamoto, Y.; Yamamoto, Y.; Haneda, H. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan). Methane Hydrate Research Laboratory; Komai, T. [National Inst. of Advanced Industrial Science and Technoloyg, Tsukuba (Japan). Inst. for Geo-Resource and Environment; Higuchi, S. [Nihon Axis Co. Ltd., Mito (Japan)

    2008-07-01

    Inhibitor and steam injection methods for recovering methane hydrate-bearing sediments were investigated. New apparatus designs were used to inject steam into artificial methane hydrate-bearing sediments. Aqueous methanol was injected into a silica-based hydrate-bearing sediment in order to examine the dissociation behaviour of the methane hydrates. Experiments were conducted to examine the effects of steam injection using pure water; an aqueous methyl alcohol (MeOh) solution at 10 wt per cent; and an aqueous sodium chloride (NaC1) solution at 3 wt per cent. Temperatures for the injected fluids were set at 40 degrees C. Total gas production behaviour was divided into 3 stages: (1) the replacement of the remaining gas with the injected solution in the pore space; (2) gas production by hydrate dissociation; and (3) steady state and gas release. Results showed that cumulative gas production using the inhibitor solutions of MeOH and NaC1 proceeded more rapidly than the pure water samples. Downstream temperatures were not maintained at initial temperatures but decreased following the initiation of hydrate dissociation. Temperature changes were attributed to the coupling effect of the dissociation temperature and changes in inhibitor concentrations at the methane hydrate's surface. The use of inhibitors resulted in higher levels of cumulative gas production and more rapid hydrate dissociation rates. It was concluded that depressurization and steam injection induced hydrate dissociation from both upstream and downstream to the center of the sediment sample. 18 refs., 9 figs.

  9. Permeability of laboratory-formed methane-hydrate-bearing sand: Measurements and observations using x-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T. J.; Seol, Y.; Gupta, A.; Tomutsa, L.

    2010-09-15

    Methane hydrate was formed in two moist sands and a sand/silt mixture under a confining stress in an X-ray-transparent pressure vessel. Three initial water saturations were used to form three different methane-hydrate saturations in each medium. X-ray computed tomography (CT) was used to observe location-specific density changes caused by hydrate formation and flowing water. Gas-permeability measurements in each test for the dry, moist, frozen, and hydrate-bearing states are presented. As expected, the effective permeabilities (intrinsic permeability of the medium multiplied by the relative permeability) of the moist sands decreased with increasing moisture content. In a series of tests on a single sample, the effective permeability typically decreased as the pore space became more filled, in the order of dry, moist, frozen, and hydrate-bearing. In each test, water was flowed through the hydrate-bearing medium and we observed the location-specific changes in water saturation using CT scanning. We compared our data to a number of models, and our relative permeability data compare most favorably with models in which hydrate occupies the pore bodies rather than the pore throats. Inverse modeling (using the data collected from the tests) will be performed to extend the relative permeability measurements.

  10. Fluid-solid coupling model for studying wellbore instability in drilling of gas hydrate bearing sediments

    Institute of Scientific and Technical Information of China (English)

    程远方; 李令东; 崔青

    2013-01-01

    As the oil or gas exploration and development activities in deep and ultra-deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and pressure can destabilize gas hydrate in nearby formation around the borehole, which may reduce the strength of the formation and result in wellbore instability. A non-isothermal, transient, two-phase, and fluid-solid coupling mathematical model is proposed to simulate the complex stability performance of a wellbore drilled in HBS. In the model, the phase transition of hydrate dissociation, the heat exchange between drilling fluid and formation, the change of mechanical and petrophysical properties, the gas-water two-phase seepage, and its interaction with rock deformation are considered. A finite element simulator is developed, and the impact of drilling mud on wellbore instability in HBS is simulated. Results indicate that the re-duction in pressure and the increase in temperature of the drilling fluid can accelerate hydrate decomposition and lead to mechanical properties getting worse tremendously. The cohesion decreases by 25% when the hydrate totally dissociates in HBS. This easily causes the wellbore instability accordingly. In the first two hours after the formation is drilled, the regions of hydrate dissociation and wellbore instability extend quickly. Then, with the soaking time of drilling fluid increasing, the regions enlarge little. Choosing the low temperature drilling fluid and increasing the drilling mud pressure appropriately can benefit the wellbore stability of HBS. The established model turns out to be an efficient tool in numerical studies of the hydrate dissociation behavior and wellbore stability of HBS.

  11. The Water Retention Curves in THF Hydrate-Bearing Sediments - Experimental Measurement and Pore Scale Simulation

    Science.gov (United States)

    Mahabadi, N.; Zheng, X.; Dai, S.; Seol, Y.; Zapata, C.; Yun, T.; Jang, J.

    2015-12-01

    The water retention curve (WRC) of hydrate-bearing sediments is critically important to understand the behaviour of hydrate dissociation for gas production. Most gas hydrates in marine environment have been formed from an aqueous phase (gas-dissolved water). However, the gas hydrate formation from an aqueous phase in a laboratory requires long period due to low gas solubility in water and is also associated with many experimental difficulties such as hydrate dissolution, difficult hydrate saturation control, and dynamic hydrate dissolution and formation. In this study, tetrahydrofuran (THF) is chosen to form THF hydrate because the formation process is faster than gas hydrate formation and hydrate saturation is easy to control. THF hydrate is formed at water-excess condition. Therefore, there is only water in the pore space after a target THF hydrate saturation is obtained. The pore habit of THF hydrate is investigated by visual observation in a transparent micromodel and X-ray computed tomography images; and the water retention curves are obtained under different THF hydrate saturation conditions. Targeted THF hydrate saturations are Sh=0, 0.2, 0.4, 0.6 and 0.8. Results shown that at a given water saturation the capillary pressure increases as THF hydrate saturation increases. And the gas entry pressure increases with increasing hydrate saturation. The WRC obtained by experiments is also compared with the results of a pore-network model simulation and Lattice Boltzmann Method. The fitting parameters of van Genuchten equation for different hydrate saturation conditions are suggested for the use as input parameters of reservoir simulators.

  12. Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems

    Science.gov (United States)

    Winters, William J.; Wilcox-Cline, R.W.; Long, P.; Dewri, S.K.; Kumar, P.; Stern, Laura A.; Kerr, Laura A.

    2014-01-01

    The sediment characteristics of hydrate-bearing reservoirs profoundly affect the formation, distribution, and morphology of gas hydrate. The presence and type of gas, porewater chemistry, fluid migration, and subbottom temperature may govern the hydrate formation process, but it is the host sediment that commonly dictates final hydrate habit, and whether hydrate may be economically developed.In this paper, the physical properties of hydrate-bearing regions offshore eastern India (Krishna-Godavari and Mahanadi Basins) and the Andaman Islands, determined from Expedition NGHP-01 cores, are compared to each other, well logs, and published results of other hydrate reservoirs. Properties from the hydrate-free Kerala-Konkan basin off the west coast of India are also presented. Coarser-grained reservoirs (permafrost-related and marine) may contain high gas-hydrate-pore saturations, while finer-grained reservoirs may contain low-saturation disseminated or more complex gas-hydrates, including nodules, layers, and high-angle planar and rotational veins. However, even in these fine-grained sediments, gas hydrate preferentially forms in coarser sediment or fractures, when present. The presence of hydrate in conjunction with other geologic processes may be responsible for sediment porosity being nearly uniform for almost 500 m off the Andaman Islands.Properties of individual NGHP-01 wells and regional trends are discussed in detail. However, comparison of marine and permafrost-related Arctic reservoirs provides insight into the inter-relationships and common traits between physical properties and the morphology of gas-hydrate reservoirs regardless of location. Extrapolation of properties from one location to another also enhances our understanding of gas-hydrate reservoir systems. Grain size and porosity effects on permeability are critical, both locally to trap gas and regionally to provide fluid flow to hydrate reservoirs. Index properties corroborate more advanced

  13. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2009-06-01

    We used X-ray computed tomography (CT) to image and quantify the effect of a heterogeneous sand grain-size distribution on the formation and dissociation of methane hydrate, as well as the effect on water flow through the heterogeneous hydrate-bearing sand. A 28 cm long sand column was packed with several segments having vertical and horizontal layers with sands of different grain-size distributions. During the hydrate formation, water redistribution occurred. Observations of water flow through the hydrate-bearing sands showed that water was imbibed more readily into the fine sand, and that higher hydrate saturation increased water imbibition in the coarse sand due to increased capillary strength. Hydrate dissociation induced by depressurization resulted in different flow patterns with the different grain sizes and hydrate saturations, but the relationships between dissociation rates and the grain sizes could not be identified using the CT images. The formation, presence, and dissociation of hydrate in the pore space dramatically impact water saturation and flow in the system.

  14. The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation

    Science.gov (United States)

    Mahabadi, Nariman; Dai, Sheng; Seol, Yongkoo; Sup Yun, Tae; Jang, Jaewon

    2016-08-01

    The water retention curve and relative permeability are critical to predict gas and water production from hydrate-bearing sediments. However, values for key parameters that characterize gas and water flows during hydrate dissociation have not been identified due to experimental challenges. This study utilizes the combined techniques of micro-focus X-ray computed tomography (CT) and pore-network model simulation to identify proper values for those key parameters, such as gas entry pressure, residual water saturation, and curve fitting values. Hydrates with various saturation and morphology are realized in the pore-network that was extracted from micron-resolution CT images of sediments recovered from the hydrate deposit at the Mallik site, and then the processes of gas invasion, hydrate dissociation, gas expansion, and gas and water permeability are simulated. Results show that greater hydrate saturation in sediments lead to higher gas entry pressure, higher residual water saturation, and steeper water retention curve. An increase in hydrate saturation decreases gas permeability but has marginal effects on water permeability in sediments with uniformly distributed hydrate. Hydrate morphology has more significant impacts than hydrate saturation on relative permeability. Sediments with heterogeneously distributed hydrate tend to result in lower residual water saturation and higher gas and water permeability. In this sense, the Brooks-Corey model that uses two fitting parameters individually for gas and water permeability properly capture the effect of hydrate saturation and morphology on gas and water flows in hydrate-bearing sediments.

  15. Testing a coupled hydro-thermo-chemo-geomechanical model for gas hydrate bearing sediments using triaxial compression lab experiments

    CERN Document Server

    Gupta, Shubhangi; Haeckel, Matthias; Helmig, Rainer; Wohlmuth, Barbara

    2015-01-01

    The presence of gas hydrates influences the stress-strain behavior and increases the load-bearing capacity of sub-marine sediments. This stability is reduced or completely lost when gas hydrates become unstable. Since natural gas hydrate reservoirs are considered as potential resources for gas production on industrial scales, there is a strong need for numerical production simulators with geomechanical capabilities. To reliably predict the mechanical behavior of gas hydrate-bearing sediments during gas production, numerical tools must be sufficiently calibrated against data from controlled experiments or field tests, and the models must consider thermo-hydro-chemo-mechanical process coupling in a suitable manner. In this study, we perform a controlled triaxial volumetric strain test on a sediment sample in which methane hydrate is first formed under controlled isotropic effective stress and then dissociated via depressurization under controlled total stress. Sample deformations were kept small, and under thes...

  16. A Counter-Current Heat-Exchange Reactor for the Thermal Stimulation of Hydrate-Bearing Sediments

    Directory of Open Access Journals (Sweden)

    Manja Luzi-Helbing

    2013-06-01

    Full Text Available Since huge amounts of CH4 are bound in natural gas hydrates occurring at active and passive continental margins and in permafrost regions, the production of natural gas from hydrate-bearing sediments has become of more and more interest. Three different methods to destabilize hydrates and release the CH4 gas are discussed in principle: thermal stimulation, depressurization and chemical stimulation. This study focusses on the thermal stimulation using a counter-current heat-exchange reactor for the in situ combustion of CH4. The principle of in situ combustion as a method for thermal stimulation of hydrate bearing sediments has been introduced and discussed earlier [1,2]. In this study we present the first results of several tests performed in a pilot plant scale using a counter-current heat-exchange reactor. The heat of the flameless, catalytic oxidation of CH4 was used for the decomposition of hydrates in sand within a LArge Reservoir Simulator (LARS. Different catalysts were tested, varying from diverse elements of the platinum group to a universal metal catalyst. The results show differences regarding the conversion rate of CH4 to CO2. The promising results of the latest reactor test, for which LARS was filled with sand and ca. 80% of the pore space was saturated with CH4 hydrate, are also presented in this study. The data analysis showed that about 15% of the CH4 gas released from hydrates would have to be used for the successful dissociation of all hydrates in the sediment using thermal stimulation via in situ combustion.

  17. The impact of hydrate saturation on the mechanical, electrical, and thermal properties of hydrate-bearing sand, silts, and clay

    Energy Technology Data Exchange (ETDEWEB)

    Santamarina, J.C. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering; Ruppel, C. [United States Geological Survey, Woods Hole, MA (United States)

    2008-07-01

    A study was conducted to provide an internally-consistent, systematically-acquired database that could help in evaluating gas hydrate reservoirs. Other objectives were to assist in geomechanical analyses, hazards evaluation and the development of methane hydrate production techniques in sandy lithologies and fine-grained sediments that exist in the northern Gulf of Mexico. An understanding of the physical properties of hydrate-bearing sediments facilitates the interpretation of geophysical field data, borehole and slope stability analyses, and reservoir simulation and production models. This paper reported on the key findings derived from 5 years of laboratory experiments conducted on synthetic samples of sand, silts, or clays subjected to various confining pressures. The samples contained controlled saturations of tetrahydrofuran hydrate formed from the dissolved phase. This internally-consistent data set was used to conduct a comprehensive analysis of the trends in geophysical and geotechnical properties as a function of hydrate saturation, soil characteristics, and other parameters. The experiments emphasized measurements of seismic velocities, electrical conductivity and permittivity, large strain deformation and strength, and thermal conductivity. The impact of hydrate formation technique on the resulting physical properties measurements were discussed. The data set was used to identify systematic effects of sediment characteristics, hydrate concentration, and state of stress. The study showed that the electrical properties of hydrate-bearing sediments are less sensitive to the method used to form hydrate in the laboratory than to hydrate saturation. It was concluded that mechanical properties are strongly influenced by both soil properties and the hydrate loci. Since the thermal conductivity depends on the interaction of several factors, it cannot be readily predicted by volume average formulations. 23 refs., 2 tabs., 9 figs.

  18. The assessment of different production methods for hydrate bearing sediments - results from small and large scale experiments

    Science.gov (United States)

    Schicks, Judith; Heeschen, Katja; Spangenberg, Erik; Luzi-Helbing, Manja; Beeskow-Strauch, Bettina; Priegnitz, Mike; Giese, Ronny; Abendroth, Sven; Thaler, Jan

    2017-04-01

    Natural gas hydrates occur at all active and passive continental margins, in permafrost regions, and deep lakes. Since they are supposed to contain enormous amounts of methane, gas hydrates are discussed as an energy resource. For the production of gas from hydrate bearing sediments, three different production methods were tested during the last decade: depressurization, thermal and chemical stimulation as well as combinations of these methods. In the framework of the SUGAR project we developed a Large Scale Reservoir Simulator (LARS) with a total volume of 425L to test these three methods in a pilot plant scale. For this purpose we formed hydrate from methane saturated brine in sediments under conditions close to natural gas hydrate deposits. The obtained hydrate saturations varied between 40-90%. Hydrate saturation and distribution were determined using electrical resistivity tomography (ERT). The volumes of the produced gas and water were determined and the gas phase was analyzed via gas chromatography. Multi-step depressurization, thermal stimulation applying in-situ combustion as well as chemical stimulation via the injection of CO2 and a CO2-N2-mixture were tested. Depressurization and thermal stimulation appear to be less complicated compared to the chemical stimulation. For the understanding of the macroscopically observed processes on a molecular level, we also performed experiments on a smaller scale using microscopic observation, Raman spectroscopy and X-ray diffraction. The results of these experiments are of particular importance for the understanding of the processes occurring during the CO2-CH4 swapping. Under the chosen experimental conditions the observations indicate a (partial) decomposition and reformation of the hydrate structure rather than a diffusion-controlled exchange of the molecules.

  19. Invasion of drilling mud into gas-hydrate-bearing sediments. Part I: effect of drilling mud properties

    Science.gov (United States)

    Ning, Fulong; Zhang, Keni; Wu, Nengyou; Zhang, Ling; Li, Gang; Jiang, Guosheng; Yu, Yibing; Liu, Li; Qin, Yinghong

    2013-06-01

    To our knowledge, this study is the first to perform a numerical simulation and analysis of the dynamic behaviour of drilling mud invasion into oceanic gas-hydrate-bearing sediment (GHBS) and to consider the effects of such an invasion on borehole stability and the reliability of well logging. As a case study, the simulation background sets up the conditions of mud temperature over hydrate equilibrium temperature and overbalanced drilling, considering the first Chinese expedition to drill gas hydrate (GMGS-1). The results show that dissociating gas may form secondary hydrates in the sediment around borehole by the combined effects of increased pore pressure (caused by mud invasion and flow resistance), endothermic cooling that accompanies hydrate dissociation compounded by the Joule-Thompson effect and the lagged effect of heat transfer in sediments. The secondary hydrate ring around the borehole may be more highly saturated than the in situ sediment. Mud invasion in GHBS is a dynamic process of thermal, fluid (mud invasion), chemical (hydrate dissociation and reformation) and mechanical couplings. All of these factors interact and influence the pore pressure, flow ability, saturation of fluid and hydrates, mechanical parameters and electrical properties of sediments around the borehole, thereby having a strong effect on borehole stability and the results of well logging. The effect is particularly clear in the borehole SH7 of GMGS-1 project. The borehole collapse and resistivity distortion were observed during practical drilling and wireline logging operations in borehole SH7 of the GMGS-1.mud density (i.e. the corresponding borehole pressure), temperature and salinity have a marked influence on the dynamics of mud invasion and on hydrate stability. Therefore, perhaps well-logging distortion caused by mud invasion, hydrate dissociation and reformation should be considered for identifying and evaluating gas hydrate reservoirs. And some suitable drilling

  20. Application of Crunch-Flow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Marta

    2014-01-31

    In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling efforts that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to instruct

  1. Neural network analysis of crosshole tomographic images: The seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada)

    Science.gov (United States)

    Bauer, K.; Pratt, R. G.; Haberland, C.; Weber, M.

    2008-10-01

    Crosshole seismic experiments were conducted to study the in-situ properties of gas hydrate bearing sediments (GHBS) in the Mackenzie Delta (NW Canada). Seismic tomography provided images of P velocity, anisotropy, and attenuation. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. Application to the Mallik data reveals four major litho-types: (1) GHBS, (2) sands, (3) shale/coal interlayering, and (4) silt. The signature of seismic P wave characteristics distinguished for the GHBS (high velocities, strong anisotropy and attenuation) is new and can be used for new exploration strategies to map and quantify gas hydrates.

  2. Pressure Core Characterization

    Science.gov (United States)

    Santamarina, J. C.

    2014-12-01

    Natural gas hydrates form under high fluid pressure and low temperature, and are found in permafrost, deep lakes or ocean sediments. Hydrate dissociation by depressurization and/or heating is accompanied by a multifold hydrate volume expansion and host sediments with low permeability experience massive destructuration. Proper characterization requires coring, recovery, manipulation and testing under P-T conditions within the stability field. Pressure core technology allows for the reliable characterization of hydrate bearing sediments within the stability field in order to address scientific and engineering needs, including the measurement of parameters used in hydro-thermo-mechanical analyses, and the monitoring of hydrate dissociation under controlled pressure, temperature, effective stress and chemical conditions. Inherent sampling effects remain and need to be addressed in test protocols and data interpretation. Pressure core technology has been deployed to study hydrate bearing sediments at several locations around the world. In addition to pressure core testing, a comprehensive characterization program should include sediment analysis, testing of reconstituted specimens (with and without synthetic hydrate), and in situ testing. Pressure core characterization technology can be used to study other gas-charged formations such as deep sea sediments, coal bed methane and gas shales.

  3. Application of the Split Hopkinson Resonant Bar Test for Seismic Property Characterization of Hydrate-bearing Sand Undergoing Water Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, S.; Kneafsey, T.J.

    2011-05-03

    Conventional resonant bar tests allow the measurement of seismic properties of rocks and sediments at low frequencies (several kilohertz). However, the tests require a long, slender sample which is often difficult to obtain from the deep subsurface and weak and fractured formations. We present an alternative low-frequency measurement technique to the conventional resonant bar tests. This technique involves a jacketed core sample placed between a pair of long, metal extension rods with attached seismic source and receiver—the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the added length and mass to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The proposed “Split Hopkinson Resonant Bar (SHRB)” test is applied in two steps. In the first step, extension and torsion-mode resonance frequencies and attenuation of the system are measured. Then, numerical inversions for the compressional and shear wave velocities and attenuation are performed. We initially applied the SHRB test to synthetic materials (plastics) for testing its accuracy, then used it for measuring the seismic velocities and attenuation of a rock core containing supercritical CO{sub 2}, and a sediment core while methane hydrate formed in the pore space.

  4. On the path to the digital rock physics of gas hydrate-bearing sediments - processing of in situ synchrotron-tomography data

    Science.gov (United States)

    Sell, Kathleen; Saenger, Erik H.; Falenty, Andrzej; Chaouachi, Marwen; Haberthür, David; Enzmann, Frieder; Kuhs, Werner F.; Kersten, Michael

    2016-08-01

    To date, very little is known about the distribution of natural gas hydrates in sedimentary matrices and its influence on the seismic properties of the host rock, in particular at low hydrate concentration. Digital rock physics offers a unique approach to this issue yet requires good quality, high-resolution 3-D representations for the accurate modeling of petrophysical and transport properties. Although such models are readily available via in situ synchrotron radiation X-ray tomography, the analysis of such data asks for complex workflows and high computational power to maintain valuable results. Here, we present a best-practice procedure complementing data from Chaouachi et al. (2015) with data post-processing, including image enhancement and segmentation as well as exemplary numerical simulations of an acoustic wave propagation in 3-D using the derived results. A combination of the tomography and 3-D modeling opens a path to a more reliable deduction of properties of gas hydrate-bearing sediments without a reliance on idealized and frequently imprecise models.

  5. Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, Timothy J.; Lu, Hailong; Winters, William; Boswell, Ray; Hunter, Robert; Collett, Timothy S.

    2009-09-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  6. TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George; Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    2008-03-01

    TOUGH+HYDRATE v1.0 is a new code for the simulation of the behavior of hydrate-bearing geologic systems. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH{sub 4}-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy's law is valid. TOUGH+HYDRATE v1.0 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH{sub 4}, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is the first member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  7. 含气水合物沉积物弹塑性损伤本构模型探讨%A constitutive model coupling elastoplasticity and damage for methane hydrate-bearing sediments

    Institute of Scientific and Technical Information of China (English)

    杨期君; 赵春风

    2014-01-01

    天然气水合物的开采会带来一系列的岩土工程问题,为了保障相关工程设施的安全,有必要建立一个合理的水合物沉积物本构模型。通过深入分析水合物沉积物力学特点,从颗粒间的作用机制出发,认为水合物沉积物的力学响应是沉积物中土体颗粒间摩擦与水合物胶结二者共同作用的结果;考虑到摩擦与接触特性不同的力学机制,分别采用修正剑桥模型和弹性损伤模型对土体骨架及水合物胶结的应力-应变关系进行描述;通过假定水合物胶结的损伤演化规律,并认为在受力变形过程中二者的应变始终相等,初步建立了一个水合物沉积物的弹塑性损伤本构模型。不同水合物饱和度沉积物应力-应变曲线的模型预测结果与室内三轴排水试验结果吻合良好,表明了所建模型的可行性和合理性。%The extraction of methane hydrate in the seabed will result in a series of geotechnical engineering problems and disasters. In order to ensure the safety of the related engineering facilities during the extraction, it is necessary to build reasonable constitutive model for methane hydrate bearing sediments. Based on the thorough study of the geomechanical characteristics of hydrate bearing sediments and the contacts between soil grains, the authors suppose that the geomechanical behavior of hydrate bearing sediments resulting from the combination of the friction between soil grains and cementation due to methane hydrate. Considering the different mechanical mechanisms of the friction and cementation, the modified Cam-clay model and elasticity damage model are employed to describe their mechanical responses respectively. By assuming that soil skeleton and cementation have the same strain during the loading, a constitutive model coupling elastoplasticity and damage for methane hydrate bearing sediments is then established based on a simplified damage evolution law. The

  8. Reflection and transmission of bottom simulating reflectors in gas hydrate-bearing sediments: Two-phase media models%天然气水合物似海底反射层(BSR)AVA特征:双相介质模型

    Institute of Scientific and Technical Information of China (English)

    麻纪强; 耿建华

    2008-01-01

    The bottom simulating reflector (BSR) in gas hydrate-bearing sediments is a physical interface which is composed of solid, gas, and liquid and is influenced by temperature and pressure. Deep sea floor sediment is a porous, unconsolidated, fluid saturated media. Therefore, the reflection and transmission coefficients computed by the Zoeppritz equation based on elastic media do not match reality. In this paper, a two-phase media model is applied to study the reflection and transmission at the bottom simulating reflector in order to find an accurate wave propagation energy distribution and the relationship between reflection and transmission and fluid saturation on the BSR. The numerical experiments show that the type I compressional (fast) and shear waves are not sensitive to frequency variation and the velocities change slowly over the whole frequency range. However, type II compressional (slow) waves are more sensitive to frequency variation and the velocities change over a large range. We find that reflection and transmission coefficients change with the amount of hydrate and free gas. Frequency, pore fluid saturation, and incident angle have different impacts on the reflection and transmission coefficients. We can use these characteristics to estimate gas hydrate saturation or detect lithological variations in the gas hydrate-bearing sediments.

  9. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.J.; Liu, T.J. H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-06-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  10. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    Science.gov (United States)

    Kneafsey, T.J.; Lu, H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-01-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  11. 含天然气水合物沉积物损伤统计本构模型%A statistical damage constitutive model of hydrate-bearing sediments

    Institute of Scientific and Technical Information of China (English)

    吴二林; 韦昌富; 魏厚振; 颜荣涛

    2013-01-01

    Hydrate saturation and effective confining pressure can significantly influence the mechanical behaviour of hydrate-bearing sediments. In the case, that the effects of the hydrate type, grain size, and testing conditions are excluded, these two variables are the critical factors that determine their elastic modulus. Based on the relationship between equivalent elastic modulus and hydrate saturation, a power function is established for the damage variable, which takes into account the influence of effective confining pressure. Drucker-Prager failure criterion is adopted to describe the strength of a micro-element of hydrate-bearing sediments. By assuming that the variation of the micro-element strength follows Weibull's distribution, a statistical damage constitutive model of hydrate-bearing sediments is developed. By comparing the simulated results with the experimental data available in the literature, we show that the proposed model can describe the stress-strain behavior of the hydrate-bearing sediments very well under the triaxial shearing condition. The results can provide reference for numerical simulation of engineering properties of gas hydrate sediments.%水合物含量、有效围压是影响含天然气水合物沉积物力学性质的主要因素,在忽略其他次要因素(包括水合物种类、试样颗粒大小、试验条件等)的情况下,水合物含量和有效围压是决定试样弹性模量的两个关键参数.在分析等效弹性模量与水合物含量相互关系的基础上,考虑有效围压的影响,建立了弹性模量与有效围压的幂函数关系;同时采用Drucker-Prager破坏准则来表示含天然气水合物沉积物微元强度,并假设其微元强度服从Weibull分布,从而建立了含天然气水合物沉积物的损伤统计本构模型,与不同有效围压下的试验结果及已有研究成果相比较,表明了所建模型能够很好地模拟三轴剪切条件下含水合物沉积物试样的应力-应变

  12. Micro-bond contact model and its parameters for the deep-sea methane hydrate bearing soils%深海能源土微观力学胶结模型及参数研究

    Institute of Scientific and Technical Information of China (English)

    蒋明镜; 肖俞; 朱方园

    2012-01-01

    天然气水合物主要以胶结物形式存在深海能源土颗粒之间,对能源土强度影响显著,因此研究水合物胶结接触力学特性对能源土力学性质研究有重要作用,而其中的关键是水合物胶结模型及胶结参数的确定。首先,引入并讨论了一种微观胶结接触模型及其对于能源土胶结接触力学特性的适用性;其次,通过文献资料系统分析,获取不同温度、压力及水合物密度条件下天然气水合物的强度与弹性模量表达式;最后,进一步研究了水合物微观胶结模型中的胶结参数,该类水合物微观胶结参数取决于能源土中水合物埋藏深度(赋存环境压力)、温度、水合物密度,这些宏观参量容易确定。%Methane hydrate (MH), which has significant influences on the strength of methane hydrate bearing soils, exits mainly in the form of cement materials between soil particles. Hence, the study of bond mechanical behavior of MH between soil particles is significant to the research of methane hydrate bearing soils, of which the keypoint is the determination of the micro-contact model and corresponding bond parameters of MH. First, a micro-bond contact model is introduced to reflect the contact properties of the soil particles. Second, the strengths and elastic modulus of MH (such as the tensile strength, compressive strength, shear strength and torsion strength) are obtained through the literatures about methane hydrate triaxial tests. Finally, micro bond parameters needed by the contact model are obtained. The results show that the micro bond parameters of gas hydrate are determined by the saturation and strength parameters of gas hydrate, which can be obtained through the temperature, density of hydrate and its burial depth which are easy to be determined.

  13. Constraining gas hydrate occurrence in the northern Gulf of Mexico continental slope : fine scale analysis of grain-size in hydrate-bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hangsterfer, A.; Driscoll, N.; Kastner, M. [Scripps Inst. of Oceanography, La Jolla, CA (United States). Geosciences Research Division

    2008-07-01

    Methane hydrates can form within the gas hydrate stability zone (GHSZ) in sea beds. The Gulf of Mexico (GOM) contains an underlying petroleum system and deeply buried, yet dynamic salt deposits. Salt tectonics and fluid expulsion upward through the sediment column result in the formation of fractures, through which high salinity brines migrate into the GHSZ, destabilizing gas hydrates. Thermogenic and biogenic hydrocarbons also migrate to the seafloor along the GOMs northern slope, originating from the thermal and biogenic degradation of organic matter. Gas hydrate occurrence can be controlled by either primary permeability, forming in coarse-grained sediment layers, or by secondary permeability, forming in areas where hydrofracture and faulting generate conduits through which hydrocarbon-saturated fluids flow. This paper presented a study that attempted to determine the relationship between grain-size, permeability, and gas hydrate distribution. Grain-size analyses were performed on cores taken from Keathley Canyon and Atwater Valley in the GOM, on sections of cores that both contained and lacked gas hydrate. Using thermal anomalies as proxies for the occurrence of methane hydrate within the cores, samples of sediment were taken and the grain-size distributions were measured to see if there was a correlation between gas hydrate distribution and grain-size. The paper described the methods, including determination of hydrate occurrence and core analysis. It was concluded that gas hydrate occurrence in Keathley Canyon and Atwater Valley was constrained by secondary permeability and was structurally controlled by hydrofractures and faulting that acted as conduits through which methane-rich fluids flowed. 11 refs., 2 tabs., 5 figs.

  14. 海底扩散体系含天然气水合物沉积物制样方法与装置%A method and apparatus for formation sample of gas hydrates bearing sediments in marine diffusion system

    Institute of Scientific and Technical Information of China (English)

    魏厚振; 韦昌富; 颜荣涛; 吴二林; 陈盼

    2011-01-01

    Natural gas hydrate is one of the most important potential energy sources distributing in the seabed and continental permafrost; at the same time, the dissociation of hydrate in hydrates bearing layers is a triggering factor of global climate change and geologic hazards. The method and apparatus for formation sample is a basic issue for researching on hydrates-bearing sediments(HBS), which require homogeneity of the sample according with in-situ formation mode as soon as possible. Most marine hadrate formed in diffusion system, which means the gas transferred to the hydrate occur zone by diffusion in water and formed hydrate.Gas-bearing water is moved in cycles by constant-flow pump in this method and apparatus; and gas solubility in water is enlarged through stirred by magnetic stirring apparatus; soil sample could be saturated with gas-bearing water in short time; and then reduce the temperature of soil sample, Gas dissolved in water associates with water to form hydrate filling in the pore of soil sample equably. The experiments show that 1 day is spent to form the hydrates-bearing sediments used by silt and CO2 sample. Homogeneity is testified through observing and testing water-contents of different positions in formed sample. Thereby , heterogeneity caused by hydrate distribution in pore of sample and cost time too long is dissolved well; technological basis is provided for physico-mechanical experiments of hydrates bearing sediments.%天然气水合物是分布在海洋和大陆多年冻土中的一种具有巨大商业开发价值的新型战略性替代能源.同时,含天然气水合物地层中水合物的分解将带来严重的地质灾害和气候问题的关注.试验室内开展含天然气水合物沉积物物理力学性质研究需要首先解决的是制样问题,即在试验室内快速形成符合现场原位形成模式的试样,并且水合物均匀分布于土样孔隙中.海洋天然气水合物主要是在扩散体系中形成的,即溶

  15. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  16. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  17. Testing of pressurised cores containing gas hydrate from deep ocean sediments

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, C.; Kingston, E.; Priest, J. [Southampton Univ., Highfield, Southampton (United Kingdom). School of Civil Engineering and the Environment; Schultheiss, P. [Geotek Ltd., Daventry, Northamptonshire (United Kingdom)]|[Indian National Gas Hydrate Program Expedition 01, New Delhi (India)

    2008-07-01

    The geotechnical properties of hydrate-bearing sediments were investigated given their importance in predicting the stability of wellbores drilled in hydrate bearing sediments. The properties can also be used to assess the potential for submarine slope instability during exploration or development activity or environmental change. This paper reported on a program of laboratory testing conducted on samples obtained using the hydrate autoclave coring equipment (HYACE) pressurized core barrel system, received at Southampton University following the Indian National Gas Hydrate Program (NGHP) 01 Expedition. The paper described the techniques used at Southampton University, the difficulties encountered, and the results obtained from geotechnical testing of these samples. The program involved a number of stages of testing, including initial appraisal of the geometry, disturbance and hydrate content of the frozen cores using computerized tomography scanning; creation of a photographic record of the frozen cores following their removal from plastic liners; identification of different sections and masses of core to be used in subsequent testing; testing of the best preserved core in the GHRC; selection of small sub-samples for moisture content, organic content and salinity testing; unfreezing of core, and collection of dissociating gas; imaging of subsamples using scanning electron microscopy; particle size distribution (PSD) testing of subsamples; analysis of subsamples for moisture content, salinity and organic content; and a combination of samples to provide sufficient mass for subsequent geotechnical testing. Other stages that were discussed in the paper included a geotechnical description of the sediment; plasticity testing at as received salinity; unconsolidated undrained triaxial shear strength testing at as-received salinity; washing to remove salts; and determination of plasticity with zero salinity pore fluid. The results of the geotechnical testing were reported

  18. 钻井液侵入海洋含水合物地层的一维数值模拟研究%Invasion of water-based drilling mud into oceanic gas-hydrate-bearing sediment:One-dimensional numerical simulations

    Institute of Scientific and Technical Information of China (English)

    宁伏龙; 张可霓; 吴能友; 蒋国盛; 张凌; 刘力; 余义兵

    2013-01-01

    mud invasion into oceanic gas hydrate bearing sediments (GHBS) by taking hydrate reservoirs in the Gulf of Mexico as a case. Compared with the conventional oil/gas-bearing sediments, hydrate dissociation and reformation are the main characteristics of mud invasion in GHBS when the invasion condition is in an unstable region of gas hydrates phase diagram. The simulation results show that the density (I. E. , corresponding pressure), temperature, and salt content of drilling fluids have great effects on the process of drilling fluid invasion. When the temperature and salt content of drilling fluids are constants, the higher the density of the drilling fluid is, the greater degree of invasion and hydrate dissociation are. The increased pore pressure caused by the mud invasion, endothermic cooling with hydrate dissociation compounded by the Joule-Thompson effect and lagged effect of heat transfer in sediments, together make water and gas forming secondary hydrates. The secondary hydrate together with existing hydrate probably makes the hydrate saturation higher than original hydrate saturation. This high saturation hydrate ring could be attributed to the displacement effect of mud invasion and the permeability reduction because of secondary hydrates forming. Under the same temperature and pressure of drilling fluids, the higher the salt concentration of the drilling fluid, the faster rate and greater degree of hydrate dissociation due to the stronger thermodynamic inhibition effect and heat transfer efficiency. The occurrence of high-saturation hydrate girdle band seems to mainly depend on the temperature and salinity of drilling fluids. The dissociated free gas, the dilution of water salinity associated with hydrate dissociation and the occurrence of high saturation hydrate ring probably cause the calculated hydrate saturation based on well logging is higher than that of actual hydrate-bearing sediments. Our simulations suggest that in order to keep wellbore stability

  19. Seismic velocities for hydrate-bearing sediments using weighted equation

    Science.gov (United States)

    Lee, M.W.; Hutchinson, D.R.; Collett, T.S.; Dillon, William P.

    1996-01-01

    A weighted equation based on the three-phase time-average and Wood equations is applied to derive a relationship between the compressional wave (P wave) velocity and the amount of hydrates filling the pore space. The proposed theory predicts accurate P wave velocities of marine sediments in the porosity range of 40-80% and provides a practical means of estimating the amount of in situ hydrate using seismic velocity. The shear (S) wave velocity is derived under the assumption that the P to S wave velocity ratio of the hydrated sediments is proportional to the weighted average of the P to S wave velocity ratios of the constituent components of the sediment. In the case that all constituent components are known, a weighted equation using multiphase time-average and Wood equations is possible. However, this study showed that a three-phase equation with modified matrix velocity, compensated for the clay content, is sufficient to accurately predict the compressional wave velocities for the marine sediments. This theory was applied to the laboratory measurements of the P and S wave velocities in permafrost samples to infer the amount of ice in the unconsolidated sediment. The results are comparable to the results obtained by repeatedly applying the two-phase wave scattering theory. The theory predicts that the Poisson's ratio of the hydrated sediments decreases as the hydrate concentration increases and the porosity decreases. In consequence, the amplitude versus offset (AVO) data for the bottom-simulating reflections may reveal positive, negative, or no AVO anomalies depending on the concentration of hydrates in the sediments.

  20. Simulation experiments on gas production from hydrate-bearing sediments

    Institute of Scientific and Technical Information of China (English)

    GONG JianMing; CAO ZhiMin; CHEN JianWen; ZHANG Min; LI Jin; YANG GuiFang

    2009-01-01

    Experiments were made on 58 sediment samples from four sites (1244, 1245, 1250 and 1251) of ODP204 at five temperature points (25, 35, 45, 55 and 65℃) to simulate methane production from hy drate-bearing sediments. Simulation results from site 1244 show that the gas components consist mainly of methane and carbon dioxide, and heavy hydrocarbons more than C2+ cannot be detected.This site also gives results, similar to those from the other three, that the methane production is con trolled by experimental temperatures, generally reaching the maximum gas yields per gram sediment or TOC under lower temperatures (25 and 35℃). In other words, the methane amount could be related to the buried depth of sediments, given the close relation between the depth and temperature. Sediments less than 1200 m below seafioor are inferred to still act as a biogenic gas producer to pour methane into the present hydrate zone, while sedimentary layers more than 1200 m below seafloor have become too biogenically exhausted to offer any biogas, but instead they produce thermogenic gas to give ad ditional supply to the hydrate formation in the study area.

  1. Pore capillary pressure and saturation of methane hydrate bearing sediments

    Institute of Scientific and Technical Information of China (English)

    SUN Shicai; LIU Changling; YE Yuguang; LIU Yufeng

    2014-01-01

    To better understand the relationship between the pore capillary pressure and hydrate saturation in sedi-ments, a new method was proposed. First, the phase equilibria of methane hydrate in fine-grained silica sands were measured. As to the equilibrium data, the pore capillary pressure and saturation of methane hydrate were calculated. The results showed that the phase equilibria of methane hydrates in fine-grained silica sands changed due to the depressed activity of pore water caused by the surface group and negatively charged characteristic of silica particles as well as the capillary pressure in small pores together. The capil-lary pressure increased with the increase of methane hydrate saturation due to the decrease of the available pore space. However, the capillary-saturation relationship could not yet be described quantitatively because of the stochastic habit of hydrate growth.

  2. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Coring operations, core sedimentology, and lithostratigraphy

    Science.gov (United States)

    Rose, K.; Boswell, R.; Collett, T.

    2011-01-01

    In February 2007, BP Exploration (Alaska), the U.S. Department of Energy, and the U.S. Geological Survey completed the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) in the Milne Point Unit on the Alaska North Slope. The program achieved its primary goals of validating the pre-drill estimates of gas hydrate occurrence and thickness based on 3-D seismic interpretations and wireline log correlations and collecting a comprehensive suite of logging, coring, and pressure testing data. The upper section of the Mount Elbert well was drilled through the base of ice-bearing permafrost to a casing point of 594??m (1950??ft), approximately 15??m (50??ft) above the top of the targeted reservoir interval. The lower portion of the well was continuously cored from 606??m (1987??ft) to 760??m (2494??ft) and drilled to a total depth of 914??m. Ice-bearing permafrost extends to a depth of roughly 536??m and the base of gas hydrate stability is interpreted to extend to a depth of 870??m. Coring through the targeted gas hydrate bearing reservoirs was completed using a wireline-retrievable system. The coring program achieved 85% recovery of 7.6??cm (3??in) diameter core through 154??m (504??ft) of the hole. An onsite team processed the cores, collecting and preserving approximately 250 sub-samples for analyses of pore water geochemistry, microbiology, gas chemistry, petrophysical analysis, and thermal and physical properties. Eleven samples were immediately transferred to either methane-charged pressure vessels or liquid nitrogen for future study of the preserved gas hydrate. Additional offsite sampling, analyses, and detailed description of the cores were also conducted. Based on this work, one lithostratigraphic unit with eight subunits was identified across the cored interval. Subunits II and Va comprise the majority of the reservoir facies and are dominantly very fine to fine, moderately sorted, quartz, feldspar, and lithic fragment-bearing to

  3. Heave Compensation Evaluation and Formation Strength Estimation from Drill String Acceleration Measurements While Coring

    Science.gov (United States)

    Guerin, G.; Goldberg, D.; Meltser, A.

    2001-05-01

    One of the recurring challenges in deep-sea drilling has been to maintain a precise control of coring depths, and to limit the influence of surface heave on drill bit motion. Operating in water depths between 1 and 6 km, the Ocean Drilling Program has relied on a drill string heave compensator to collect more than 200 km of cores, with maximum penetration of 2km. To evaluate the efficiency of the heave compensation, a device was developed to measure downhole acceleration from the top of the core barrel. This probe records three-axis acceleration and pressure at up to 100 samples per second. The first deployments of this instrument on ODP Legs 185 and 191 show that the heave compensator limits the bit motion to about 10% of the surface heave. This device could prove most useful to monitor heave compensation on shallow water drilling platforms where heave is a primary concern. The high-resolution downhole acceleration data can also be used to determine some of the mechanical properties of the formation. When deployed on piston cores, a maximum vertical acceleration of up to 3G is recorded as the coring shoe penetrates the formation. This maximum value is characteristic of the sediment strength and its degree of consolidation and can be used to identify formations that are typically difficult to recover, such as hard layers or hydrate-bearing sediments. With rotary coring, downhole acceleration signals decrease in magnitude and frequency content with the increasing hardness of the formation. High amplitude is observed in uncompacted sediments and low amplitudes in low-porosity oceanic basalt. Comparison between acceleration records and geophysical logs show that this relationship can be observed at a dm-scale within an individual core. Easy to deploy and adding almost no time to coring operations, the downhole accelerometer tool offers a way to characterize formations continuously while coring, which is particularly useful in the event of poor core recovery.

  4. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  5. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in...

  6. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    2014-01-01

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  7. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    2014-01-01

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  8. Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea

    Science.gov (United States)

    Bahk, J.-J.; Kim, G.-Y.; Chun, J.-H.; Kim, J.-H.; Lee, J.Y.; Ryu, B.-J.; Lee, J.-H.; Son, B.-K.; Collett, Timothy S.

    2013-01-01

    Examinations of core and well-log data from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) drill sites suggest that Sites UBGH2-2_2 and UBGH2-6 have relatively good gas hydrate reservoir quality in terms of individual and total cumulative thicknesses of gas-hydrate-bearing sand (HYBS) beds. In both of the sites, core sediments are generally dominated by hemipelagic muds which are intercalated with turbidite sands. The turbidite sands are usually thin-to-medium bedded and mainly consist of well sorted coarse silt to fine sand. Anomalies in infrared core temperatures and porewater chlorinity data and pressure core measurements indicate that “gas hydrate occurrence zones” (GHOZ) are present about 68–155 mbsf at Site UBGH2-2_2 and 110–155 mbsf at Site UBGH2-6. In both the GHOZ, gas hydrates are preferentially associated with many of the turbidite sands as “pore-filling” type hydrates. The HYBS identified in the cores from Site UBGH2-6 are medium-to-thick bedded particularly in the lower part of the GHOZ and well coincident with significant high excursions in all of the resistivity, density, and velocity logs. Gas-hydrate saturations in the HYBS range from 12% to 79% with an average of 52% based on pore-water chlorinity. In contrast, the HYBS from Site UBGH2-2_2 are usually thin-bedded and show poor correlations with both of the resistivity and velocity logs owing to volume averaging effects of the logging tools on the thin HYBS beds. Gas-hydrate saturations in the HYBS range from 15% to 65% with an average of 37% based on pore-water chlorinity. In both of the sites, large fluctuations in biogenic opal contents have significant effects on the sediment physical properties, resulting in limited usage of gamma ray and density logs in discriminating sand reservoirs.

  9. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2010-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  10. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2008-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  11. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  12. Core BPEL

    DEFF Research Database (Denmark)

    Hallwyl, Tim; Højsgaard, Espen

    extensions. Combined with the fact that the language definition does not provide a formal semantics, it is an arduous task to work formally with the language (e.g. to give an implementation). In this paper we identify a core subset of the language, called Core BPEL, which has fewer and simpler constructs......, does not allow omissions, and does not contain ignorable elements. We do so by identifying syntactic sugar, including default values, and ignorable elements in WS-BPEL. The analysis results in a translation from the full language to the core subset. Thus, we reduce the effort needed for working...... formally with WS-BPEL, as one, without loss of generality, need only consider the much simpler Core BPEL. This report may also be viewed as an addendum to the WS-BPEL standard specification, which clarifies the WS-BPEL syntax and presents the essential elements of the language in a more concise way...

  13. Core BPEL

    DEFF Research Database (Denmark)

    Hallwyl, Tim; Højsgaard, Espen

    extensions. Combined with the fact that the language definition does not provide a formal semantics, it is an arduous task to work formally with the language (e.g. to give an implementation). In this paper we identify a core subset of the language, called Core BPEL, which has fewer and simpler constructs......, does not allow omissions, and does not contain ignorable elements. We do so by identifying syntactic sugar, including default values, and ignorable elements in WS-BPEL. The analysis results in a translation from the full language to the core subset. Thus, we reduce the effort needed for working...... formally with WS-BPEL, as one, without loss of generality, need only consider the much simpler Core BPEL. This report may also be viewed as an addendum to the WS-BPEL standard specification, which clarifies the WS-BPEL syntax and presents the essential elements of the language in a more concise way...

  14. Core benefits

    National Research Council Canada - National Science Library

    Keith, Brian W

    2010-01-01

    This SPEC Kit explores the core employment benefits of retirement, and life, health, and other insurance -benefits that are typically decided by the parent institution and often have significant governmental regulation...

  15. Characterizing electrical properties and permeability changes of hydrate bearing sediments using ERT data

    Science.gov (United States)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Schrötter, Jörg; Abendroth, Sven

    2015-09-01

    A LArge Reservoir Simulator (LARS) was equipped with an electrical resistivity tomography (ERT) array to monitor hydrate formation and dissociation experiments. During two hydrate formation experiments reaching 90 per cent bulk hydrate saturation, frequent measurements of the electrical properties within the sediment sample were performed. Subsequently, several common mixing rules, including two different interpretations of Archie's law, were tested to convert the obtained distribution of the electrical resistivity into the spatial distribution of local hydrate saturation. It turned out that the best results estimating values of local hydrate saturation were obtained using the Archievar-phi approach where the increasing hydrate phase is interpreted as part of the sediment grain framework reducing the sample's porosity. These values of local hydrate saturation were used to determine local permeabilities by applying the Carman-Kozeny relation. The formed hydrates were dissociated via depressurization. The decomposition onset as well as areas featuring hydrates and free gas were inferred from the ERT results. Supplemental consideration of temperature and pressure data granted information on discrete areas of hydrate dissociation.

  16. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    OpenAIRE

    Lixin Kuang; Yibing Yu; Yunzhong Tu; Ling Zhang; Fulong Ning; Guosheng Jiang; Tianle Liu

    2011-01-01

    Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na 2 CO 3 , 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% ...

  17. Elastic velocity models for gas-hydrate-bearing sediments-a comparison

    Science.gov (United States)

    Chand, Shyam; Minshull, Tim A.; Gei, Davide; Carcione, José M.

    2004-11-01

    The presence of gas hydrate in oceanic sediments is mostly identified by bottom-simulating reflectors (BSRs), reflection events with reversed polarity following the trend of the seafloor. Attempts to quantify the amount of gas hydrate present in oceanic sediments have been based mainly on the presence or absence of a BSR and its relative amplitude. Recent studies have shown that a BSR is not a necessary criterion for the presence of gas hydrates, but rather its presence depends on the type of sediments and the in situ conditions. The influence of hydrate on the physical properties of sediments overlying the BSR is determined by the elastic properties of their constituents and on sediment microstructure. In this context several approaches have been developed to predict the physical properties of sediments, and thereby quantify the amount of gas/gas hydrate present from observed deviations of these properties from those predicted for sediments without gas hydrate. We tested four models: the empirical weighted equation (WE); the three-phase effective-medium theory (TPEM); the three-phase Biot theory (TPB) and the differential effective-medium theory (DEM). We compared these models for a range of variables (porosity and clay content) using standard values for physical parameters. The comparison shows that all the models predict sediment properties comparable to field values except for the WE model at lower porosities and the TPB model at higher porosities. The models differ in the variation of velocity with porosity and clay content. The variation of velocity with hydrate saturation is also different, although the range is similar. We have used these models to predict velocities for field data sets from sediment sections with and without gas hydrates. The first is from the Mallik 2L-38 well, Mackenzie Delta, Canada, and the second is from Ocean Drilling Program (ODP) Leg 164 on Blake Ridge. Both data sets have Vp and Vs information along with the composition and porosity of the matrix. Models are considered successful if predictions from both Vp and Vs match hydrate saturations inferred from other data. Three of the models predict consistent hydrate saturations of 60-80 per cent from both Vp and Vs from log and vertical seismic profiling data for the Mallik 2L-38 well data set, but the TPEM model predicts 20 per cent higher saturations, as does the DEM model with a clay-water starting medium. For the clay-rich sediments of Blake Ridge, the DEM, TPEM and WE models predict 10-20 per cent hydrate saturation from Vp data, comparable to that inferred from resistivity data. The hydrate saturation predicted by the TPB model from Vp is higher. Using Vs data, the DEM and TPEM models predict very low or zero hydrate saturation while the TPB and WE models predict hydrate saturation very much higher than those predicted from Vp data. Low hydrate saturations are observed to have little effect on Vs. The hydrate phase appears to be connected within the sediment microstructure even at low saturations.

  18. Impact of Residual Water on CH4-CO2 Exchange rate in Hydrate bearing Sandstone

    Science.gov (United States)

    Ersland, G.; Birkedal, K.; Graue, A.

    2012-12-01

    It is previously shown that sequestration of CO2 in natural gas hydrate reservoirs may offer stable long term deposition of a greenhouse gas while benefiting from methane production, without adding heat to the process. In this work CH4 hydrate formation and CO2 reformation in sandstone has been quantified in a series of experiments using Magnetic Resonance Imaging. The overall objective was to provide an improved basic understanding of processes involved in formation and production of methane from methane hydrates within porous media, and to provide data for numerical modeling and scaling. CH4 hydrate has been formed repeatedly in Bentheim sandstone rocks to study hydrate growth patterns for various brine salinities and saturations to prepare for subsequent lab-scale methane production tests through carbon dioxide replacement at various residual water saturations. Surface area for CO2 exposure and the role of permeability and diffusion on the CH4-CO2 exchange rate will also be discussed.

  19. Water Retention Curve and Relative Permeability for Gas Production from Hydrate-Bearing Sediments

    Science.gov (United States)

    Mahabadi, N.; Dai, S.; Seol, Y.; Jang, J.

    2014-12-01

    Water retention curve (soil water characteristic curve SWCC) and relative permeability equations are important to determine gas and water production for gas hydrate development. However, experimental studies to determine fitting parameters of those equations are not available in the literature. The objective of this research is to obtain reliable parameters for capillary pressure functions and relative permeability equations applicable to hydrate dissociation and gas production. In order to achieve this goal, (1) micro X-ray Computer Tomography (CT) is used to scan the specimen under 10MPa effective stress, (2) a pore network model is extracted from the CT image, (3) hydrate dissociation and gas expansion are simulated in the pore network model, (4) the parameters for the van Genuchten-type soil water characteristic curve and relative permeability equation during gas expansion are suggested. The research outcome will enhance the ability of numerical simulators to predict gas and water production rate.

  20. Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico

    Science.gov (United States)

    Cook, Anne E.; Anderson, Barbara I.; Rasmus, John; Sun, Keli; Li, Qiming; Collett, Timothy S.; Goldberg, David S.

    2012-01-01

    We present new results and interpretations of the electricalanisotropy and reservoir architecture in gashydrate-bearingsands using logging data collected during the Gulf of MexicoGasHydrate Joint Industry Project Leg II. We focus specifically on sandreservoirs in Hole Alaminos Canyon 21 A (AC21-A), Hole Green Canyon 955 H (GC955-H) and Hole Walker Ridge 313 H (WR313-H). Using a new logging-while-drilling directional resistivity tool and a one-dimensional inversion developed by Schlumberger, we resolve the resistivity of the current flowing parallel to the bedding, R| and the resistivity of the current flowing perpendicular to the bedding, R|. We find the sandreservoir in Hole AC21-A to be relatively isotropic, with R| and R| values close to 2 Ω m. In contrast, the gashydrate-bearingsandreservoirs in Holes GC955-H and WR313-H are highly anisotropic. In these reservoirs, R| is between 2 and 30 Ω m, and R| is generally an order of magnitude higher. Using Schlumberger's WebMI models, we were able to replicate multiple resistivity measurements and determine the formation resistivity the gashydrate-bearingsandreservoir in Hole WR313-H. The results showed that gashydrate saturations within a single reservoir unit are highly variable. For example, the sand units in Hole WR313-H contain thin layers (on the order of 10-100 cm) with varying gashydrate saturations between 15 and 95%. Our combined modeling results clearly indicate that the gashydrate-bearingsandreservoirs in Holes GC955-H and WR313-H are highly anisotropic due to varying saturations of gashydrate forming in thin layers within larger sand units.

  1. Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes

    Science.gov (United States)

    Pohlman, J.W.; Bauer, J.E.; Canuel, E.A.; Grabowski, K.S.; Knies, D.L.; Mitchell, C.S.; Whiticar, Michael J.; Coffin, R.B.

    2009-01-01

    Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (??? 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations. In combination with ??13C- and ??D-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6??m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.

  2. Core Java

    CERN Document Server

    Horstmann, Cay S

    2013-01-01

    Fully updated to reflect Java SE 7 language changes, Core Java™, Volume I—Fundamentals, Ninth Edition, is the definitive guide to the Java platform. Designed for serious programmers, this reliable, unbiased, no-nonsense tutorial illuminates key Java language and library features with thoroughly tested code examples. As in previous editions, all code is easy to understand, reflects modern best practices, and is specifically designed to help jumpstart your projects. Volume I quickly brings you up-to-speed on Java SE 7 core language enhancements, including the diamond operator, improved resource handling, and catching of multiple exceptions. All of the code examples have been updated to reflect these enhancements, and complete descriptions of new SE 7 features are integrated with insightful explanations of fundamental Java concepts.

  3. Geological & Geophysical findings from seismic, well log and core data for marine gas hydrate deposits at the 1st offshore methane hydrate production test site in the eastern Nankai Trough, offshore Japan: An overview

    Science.gov (United States)

    Fujii, T.; Noguchi, S.; Takayama, T.; Suzuki, K.; Yamamoto, K.

    2012-12-01

    In order to evaluate productivity of gas from marine gas hydrate by the depressurization method, Japan Oil, Gas and Metals National Corporation is planning to conduct a full-scale production test in early 2013 at the AT1 site in the north slope of Daini-Atsumi Knoll in the eastern Nankai Trough, Japan. The test location was determined using the combination of detailed 3D seismic reflection pattern analysis, high-density velocity analysis, and P-impedance inversion analysis, which were calibrated using well log data obtained in 2004. At the AT1 site, one production well (AT1-P) and two monitoring wells (AT1-MC and MT1) were drilled from February to March 2012, followed by 1 coring well (AT1-C) from June to July 2012. An extensive logging program with logging while drilling (LWD) and wireline-logging tools, such as GeoVISION (resistivity image), EcoScope (neutron/density porosity, mineral spectroscopy etc.), SonicScanner (Advanced Sonic tool), CMR/ProVISION (Nuclear Magnetic Resonance Tools), XPT (formation pressure, fluid mobility), and IsolationScanner (ultrasonic cement evaluation tools) was conducted at AT1-MC well to evaluate physical reservoir properties of gas hydrate-bearing sediments, to determine production test interval in 2013, and to evaluate cement bonding. Methane hydrate concentrated zone (MHCZ) confirmed by the well logging at AT1-MC was thin turbidites (tens of centimeters to few meters) with 60 m of gross thickness, which is composed of lobe type sequences in the upper part of it and channel sand sequences in the lower part. The gross thickness of MHCZ in the well is thicker than previous wells in 2004 (A1, 45 m) located around 150 m northeast, indicating that the prediction given by seismic inversion analysis was reasonable. Well-to-well correlation between AT1-MC and MT1 wells within 40 m distance exhibited that lateral continuity of these sand layers (upper part of reservoir) are fairly good, which representing ideal reservoir for the production

  4. Dual-core antiresonant hollow core fibers.

    Science.gov (United States)

    Liu, Xuesong; Fan, Zhongwei; Shi, Zhaohui; Ma, Yunfeng; Yu, Jin; Zhang, Jing

    2016-07-25

    In this work, dual-core antiresonant hollow core fibers (AR-HCFs) are numerically demonstrated, based on our knowledge, for the first time. Two fiber structures are proposed. One is a composite of two single-core nested nodeless AR-HCFs, exhibiting low confinement loss and a circular mode profile in each core. The other has a relatively simple structure, with a whole elliptical outer jacket, presenting a uniform and wide transmission band. The modal couplings of the dual-core AR-HCFs rely on a unique mechanism that transfers power through the air. The core separation and the gap between the two cores influence the modal coupling strength. With proper designs, both of the dual-core fibers can have low phase birefringence and short modal coupling lengths of several centimeters.

  5. Animal MRI Core

    Data.gov (United States)

    Federal Laboratory Consortium — The Animal Magnetic Resonance Imaging (MRI) Core develops and optimizes MRI methods for cardiovascular imaging of mice and rats. The Core provides imaging expertise,...

  6. k-core covers and the core

    NARCIS (Netherlands)

    Sanchez-Rodriguez, E.; Borm, Peter; Estevez-Fernandez, A.; Fiestras-Janeiro, G.; Mosquera, M.A.

    2015-01-01

    This paper extends the notion of individual minimal rights for a transferable utility game (TU-game) to coalitional minimal rights using minimal balanced families of a specific type, thus defining a corresponding minimal rights game. It is shown that the core of a TU-game coincides with the core of

  7. Academic Rigor: The Core of the Core

    Science.gov (United States)

    Brunner, Judy

    2013-01-01

    Some educators see the Common Core State Standards as reason for stress, most recognize the positive possibilities associated with them and are willing to make the professional commitment to implementing them so that academic rigor for all students will increase. But business leaders, parents, and the authors of the Common Core are not the only…

  8. k-core covers and the core

    NARCIS (Netherlands)

    Sanchez-Rodriguez, E.; Borm, Peter; Estevez-Fernandez, A.; Fiestras-Janeiro, G.; Mosquera, M.A.

    This paper extends the notion of individual minimal rights for a transferable utility game (TU-game) to coalitional minimal rights using minimal balanced families of a specific type, thus defining a corresponding minimal rights game. It is shown that the core of a TU-game coincides with the core of

  9. Comodules over semiperfect corings

    CERN Document Server

    Caenepeel, S

    2011-01-01

    We discuss when the Rat functor associated to a coring satisfying the left $\\alpha$-condition is exact. We study the category of comodules over a semiperfect coring. We characterize semiperfect corings over artinian rings and over qF-rings.

  10. Coring Sample Acquisition Tool

    Science.gov (United States)

    Haddad, Nicolas E.; Murray, Saben D.; Walkemeyer, Phillip E.; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Kriechbaum, Kristopher L.; Richardson, Megan; Klein, Kerry J.

    2012-01-01

    A sample acquisition tool (SAT) has been developed that can be used autonomously to sample drill and capture rock cores. The tool is designed to accommodate core transfer using a sample tube to the IMSAH (integrated Mars sample acquisition and handling) SHEC (sample handling, encapsulation, and containerization) without ever touching the pristine core sample in the transfer process.

  11. Banded transformer cores

    Science.gov (United States)

    Mclyman, C. W. T. (Inventor)

    1974-01-01

    A banded transformer core formed by positioning a pair of mated, similar core halves on a supporting pedestal. The core halves are encircled with a strap, selectively applying tension whereby a compressive force is applied to the core edge for reducing the innate air gap. A dc magnetic field is employed in supporting the core halves during initial phases of the banding operation, while an ac magnetic field subsequently is employed for detecting dimension changes occurring in the air gaps as tension is applied to the strap.

  12. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 1. Electromagnetic properties

    Science.gov (United States)

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2010-01-01

    The marked decrease in bulk electrical conductivity of sediments in the presence of gas hydrates has been used to interpret borehole electrical resistivity logs and, to a lesser extent, the results of controlled source electromagnetic surveys to constrain the spatial distribution and predicted concentration of gas hydrate in natural settings. Until now, an exhaustive laboratory data set that could be used to assess the impact of gas hydrate on the electromagnetic properties of different soils (sand, silt, and clay) at different effective stress and with different saturations of hydrate has been lacking. The laboratory results reported here are obtained using a standard geotechnical cell and the hydrate-formed tetrahydrofuran (THF), a liquid that is fully miscible in water and able to produce closely controlled saturations of hydrate from dissolved phase. Both permittivity and electrical conductivity are good indicators of the volume fraction of free water in the sediment, which is in turn dependent on hydrate saturation. Permittivity in the microwave frequency range is particularly predictive of free water content since it is barely affected by ionic concentration, pore structure, and surface conduction. Electrical conductivity (or resistivity) is less reliable for constraining water content or hydrate saturation: In addition to fluid-filled porosity, other factors, such as the ionic concentration of the pore fluid and possibly other conduction effects (e.g., surface conduction in high specific surface soils having low conductivity pore fluid), also influence electrical conductivity.

  13. Modified effective medium model for gas hydrate bearing,clay-dominated sediments in the Krishna-Godavari Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sriram, G.; Dewangan, P.; Ramprasad, T.

    volume fraction qf and cf are related to the original fraction ( if ) as, ( ) ( ) ( ) ( ),11 ,11 φφ φφ −−= −−= ic iq ff ff (6) and ( ) ( ).1 φ−= hh Cf The effective dry bulk )( HMK and shear )( HMG moduli at critical...

  14. HyFlux - Part II: Subsurface sequestration of methane-derived carbon in gas-hydrate- bearing marine sediments

    Science.gov (United States)

    Naehr, T. H.; Asper, V. L.; Garcia, O.; Kastner, M.; Leifer, I.; MacDonald, I. R.; Solomon, E. A.; Yvon-Lewis, S.; Zimmer, B.

    2008-12-01

    The recently funded DOE/NETL study "HyFlux: Remote sensing and sea-truth measurements of methane flux to the atmosphere" (see MacDonald et al.: HyFlux - Part I) will combine sea surface, water column and shallow subsurface observations to improve our estimates of methane flux from submarine seeps and associated gas hydrate deposits to the water column and atmosphere along the Gulf of Mexico continental margin and other selected areas world-wide. As methane-rich fluids rise towards the sediment-water interface, they will interact with sulfate-rich pore fluids derived from overlying bottom water, which results in the formation of an important biogeochemical redox boundary, the so-called sulfate-methane interface, or SMI. Both methane and sulfate are consumed within the SMI and dissolved inorganic carbon, mostly bicarbonate (HCO3-) and hydrogen sulfide are produced, stimulating authigenic carbonate precipitation at and immediately below the SMI. Accordingly, the formation of authigenic carbonates in methane- and gas-hydrate-rich sediments will sequester a portion of the methane-derived carbon. To date, however, little is known about the quantitative aspects of these reactions. Rates of DIC production are not well constrained, but recent biogeochemical models indicate that CaCO3 precipitation rates may be as high as 120 μmol cm-2a-1. Therefore, AOM-driven carbonate precipitation must be considered when assessing the impact of gas-hydrate-derived methane on the global carbon cycle. As part of HyFlux, we will conduct pore water analyses (DOC, DIC, CH4, δ13CDIC, δ13CDOC, δ13CCH4, δ18O, and δD isotope ratios) to evaluate the importance of authigenic carbonate precipitation as a sequestration mechanism for methane- derived carbon. In addition, sediment and seafloor carbonate samples will be analyzed for bulk sedimentary carbonate (δ13C and δ18O) and bulk sedimentary organic matter (δ13C and δ15N), as well as sulfur, bulk mineralogy, texture and morphological features, and carbonate stable isotopes. We will then combine observational, geochemical, microbiological, and mathematical methods to assess the effectiveness of authigenic carbonate precipitation as a sink for methane-derived carbon under varying environmental conditions. Results of water column flux analysis, air-sea flux modeling, and sediment and pore water analysis will contribute to the development of a working model for quantifying regional fluxes of gas-hydrate-derived methane from the subsurface to the water column and atmosphere.

  15. Hydro-geomechanical behaviour of gas-hydrate bearing soils during gas production through depressurization and CO2 injection

    Science.gov (United States)

    Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.

    2015-12-01

    Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.

  16. Relative permeability of hydrate-bearing sediments from percolation theory and critical path analysis: theoretical and experimental results

    Science.gov (United States)

    Daigle, H.; Rice, M. A.

    2015-12-01

    Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, which may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.

  17. Relative permeability of hydrate-bearing sediments from percolation theory and critical path analysis: theoretical and experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Daigle, Hugh [University of Texas at Austin; Rice, Mary Anna [North Carolina State University; Daigle, Hugh

    2015-12-14

    Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, which may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.

  18. The core paradox.

    Science.gov (United States)

    Kennedy, G. C.; Higgins, G. H.

    1973-01-01

    Rebuttal of suggestions from various critics attempting to provide an escape from the seeming paradox originated by Higgins and Kennedy's (1971) proposed possibility that the liquid in the outer core was thermally stably stratified and that this stratification might prove a powerful inhibitor to circulation of the outer core fluid of the kind postulated for the generation of the earth's magnetic field. These suggestions are examined and shown to provide no reasonable escape from the core paradox.

  19. K-core inflation

    OpenAIRE

    Alexander L. Wolman

    2011-01-01

    K-core inflation is a new class of underlying inflation measures. The two most popular measures of underlying inflation are core inflation and trimmed mean inflation. The former removes fixed categories of goods and services (food and energy) from the inflation calculation, and the latter removes fixed percentiles of the weighted distribution of price changes. In contrast, k-core inflation specifies a size of relative price change to be removed from the inflation calculation. Thus, the catego...

  20. Sediment Core Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation and expertise for physical and geoacoustic characterization of marine sediments. DESCRIPTION: The multisensor core logger measures...

  1. Sediment Core Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation and expertise for physical and geoacoustic characterization of marine sediments.DESCRIPTION: The multisensor core logger measures...

  2. Ice Core Investigations

    Science.gov (United States)

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  3. Making an Ice Core.

    Science.gov (United States)

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  4. Ice Core Investigations

    Science.gov (United States)

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  5. Iowa Core Annual Report

    Science.gov (United States)

    Iowa Department of Education, 2015

    2015-01-01

    One central component of a great school system is a clear set of expectations, or standards, that educators help all students reach. In Iowa, that effort is known as the Iowa Core. The Iowa Core represents the statewide academic standards, which describe what students should know and be able to do in math, science, English language arts, and…

  6. Mercury's core evolution

    Science.gov (United States)

    Deproost, Marie-Hélène; Rivoldini, Attilio; Van Hoolst, Tim

    2016-10-01

    Remote sensing data of Mercury's surface by MESSENGER indicate that Mercury formed under reducing conditions. As a consequence, silicon is likely the main light element in the core together with a possible small fraction of sulfur. Compared to sulfur, which does almost not partition into solid iron at Mercury's core conditions and strongly decreases the melting temperature, silicon partitions almost equally well between solid and liquid iron and is not very effective at reducing the melting temperature of iron. Silicon as the major light element constituent instead of sulfur therefore implies a significantly higher core liquidus temperature and a decrease in the vigor of compositional convection generated by the release of light elements upon inner core formation.Due to the immiscibility in liquid Fe-Si-S at low pressure (below 15 GPa), the core might also not be homogeneous and consist of an inner S-poor Fe-Si core below a thinner Si-poor Fe-S layer. Here, we study the consequences of a silicon-rich core and the effect of the blanketing Fe-S layer on the thermal evolution of Mercury's core and on the generation of a magnetic field.

  7. Mars' core and magnetism.

    Science.gov (United States)

    Stevenson, D J

    2001-07-12

    The detection of strongly magnetized ancient crust on Mars is one of the most surprising outcomes of recent Mars exploration, and provides important insight about the history and nature of the martian core. The iron-rich core probably formed during the hot accretion of Mars approximately 4.5 billion years ago and subsequently cooled at a rate dictated by the overlying mantle. A core dynamo operated much like Earth's current dynamo, but was probably limited in duration to several hundred million years. The early demise of the dynamo could have arisen through a change in the cooling rate of the mantle, or even a switch in convective style that led to mantle heating. Presently, Mars probably has a liquid, conductive outer core and might have a solid inner core like Earth.

  8. The t-core of an s-core

    OpenAIRE

    Fayers, Matthew

    2010-01-01

    We consider the $t$-core of an $s$-core partition, when $s$ and $t$ are coprime positive integers. Olsson has shown that the $t$-core of an $s$-core is again an $s$-core, and we examine certain actions of the affine symmetric group on $s$-cores which preserve the $t$-core of an $s$-core. Along the way, we give a new proof of Olsson's result. We also give a new proof of a result of Vandehey, showing that there is a simultaneous $s$- and $t$-core which contains all others.

  9. The t-core of an s-core

    OpenAIRE

    Fayers, Matthew

    2010-01-01

    We consider the $t$-core of an $s$-core partition, when $s$ and $t$ are coprime positive integers. Olsson has shown that the $t$-core of an $s$-core is again an $s$-core, and we examine certain actions of the affine symmetric group on $s$-cores which preserve the $t$-core of an $s$-core. Along the way, we give a new proof of Olsson's result. We also give a new proof of a result of Vandehey, showing that there is a simultaneous $s$- and $t$-core which contains all others.

  10. Korrelasjon mellom core styrke, core stabilitet og utholdende styrke i core

    OpenAIRE

    Berg-Olsen, Andrea Marie; Fugelsøy, Eivor; Maurstad, Ann-Louise

    2010-01-01

    Formålet med studien var å se hvilke korrelasjon det er mellom core styrke, core stabilitet og utholdende styrke i core. Testingen bestod av tre hoveddeler hvor vi testet core styrke, core stabilitet og utholdende styrke i core. Innenfor core styrke og utholdende styrke i core ble tre ulike tester utført. Ved måling av core stabilitet ble det gjennomført kun en test. I core styrke ble isometrisk abdominal fleksjon, isometrisk rygg ekstensjon og isometrisk lateral fleksjon testet. Sit-ups p...

  11. Korrelasjon mellom core styrke, core stabilitet og utholdende styrke i core

    OpenAIRE

    Berg-Olsen, Andrea Marie; Fugelsøy, Eivor; Maurstad, Ann-Louise

    2010-01-01

    Formålet med studien var å se hvilke korrelasjon det er mellom core styrke, core stabilitet og utholdende styrke i core. Testingen bestod av tre hoveddeler hvor vi testet core styrke, core stabilitet og utholdende styrke i core. Innenfor core styrke og utholdende styrke i core ble tre ulike tester utført. Ved måling av core stabilitet ble det gjennomført kun en test. I core styrke ble isometrisk abdominal fleksjon, isometrisk rygg ekstensjon og isometrisk lateral fleksjon testet. Sit-ups p...

  12. Earth's inner core: Innermost inner core or hemispherical variations?

    NARCIS (Netherlands)

    Lythgoe, K. H.; Deuss, A.; Rudge, J. F.; Neufeld, J. A.

    2014-01-01

    The structure of Earth's deep inner core has important implications for core evolution, since it is thought to be related to the early stages of core formation. Previous studies have suggested that there exists an innermost inner core with distinct anisotropy relative to the rest of the inner core.

  13. Earth's inner core: Innermost inner core or hemispherical variations?

    NARCIS (Netherlands)

    Lythgoe, K. H.; Deuss, A.; Rudge, J. F.; Neufeld, J. A.

    2014-01-01

    The structure of Earth's deep inner core has important implications for core evolution, since it is thought to be related to the early stages of core formation. Previous studies have suggested that there exists an innermost inner core with distinct anisotropy relative to the rest of the inner core.

  14. IGCSE core mathematics

    CERN Document Server

    Wall, Terry

    2013-01-01

    Give your core level students the support and framework they require to get their best grades with this book dedicated to the core level content of the revised syllabus and written specifically to ensure a more appropriate pace. This title has been written for Core content of the revised Cambridge IGCSE Mathematics (0580) syllabus for first teaching from 2013. ? Gives students the practice they require to deepen their understanding through plenty of practice questions. ? Consolidates learning with unique digital resources on the CD, included free with every book. We are working with Cambridge

  15. Core shroud corner joints

    Science.gov (United States)

    Gilmore, Charles B.; Forsyth, David R.

    2013-09-10

    A core shroud is provided, which includes a number of planar members, a number of unitary corners, and a number of subassemblies each comprising a combination of the planar members and the unitary corners. Each unitary corner comprises a unitary extrusion including a first planar portion and a second planar portion disposed perpendicularly with respect to the first planar portion. At least one of the subassemblies comprises a plurality of the unitary corners disposed side-by-side in an alternating opposing relationship. A plurality of the subassemblies can be combined to form a quarter perimeter segment of the core shroud. Four quarter perimeter segments join together to form the core shroud.

  16. Biospecimen Core Resource - TCGA

    Science.gov (United States)

    The Cancer Genome Atlas (TCGA) Biospecimen Core Resource centralized laboratory reviews and processes blood and tissue samples and their associated data using optimized standard operating procedures for the entire TCGA Research Network.

  17. NICHD Zebrafish Core

    Data.gov (United States)

    Federal Laboratory Consortium — The core[HTML_REMOVED]s goal is to help researchers of any expertise perform zebrafish experiments aimed at illuminating basic biology and human disease mechanisms,...

  18. iPSC Core

    Data.gov (United States)

    Federal Laboratory Consortium — The induced Pluripotent Stem Cells (iPSC) Core was created in 2011 to accelerate stem cell research in the NHLBI by providing investigators consultation, technical...

  19. Reference: -300CORE [PLACE

    Lifescience Database Archive (English)

    Full Text Available -300CORE Forde BG, Heyworth A, Pywell J, Kreis M Nucleotide sequence of a B1 hordein gene and the identifica...tion of possible upstream regulatory elements in endosperm storage protein genes fr

  20. INTEGRAL core programme

    Science.gov (United States)

    Gehrels, N.; Schoenfelder, V.; Ubertini, P.; Winkler, C.

    1997-01-01

    The International Gamma Ray Astrophysics Laboratory (INTEGRAL) mission is described with emphasis on the INTEGRAL core program. The progress made in the planning activities for the core program is reported on. The INTEGRAL mission has a nominal lifetime of two years with a five year extension option. The observing time will be divided between the core program (between 30 and 35 percent during the first two years) and general observations. The core program consists of three main elements: the deep survey of the Galactic plane in the central radian of the Galaxy; frequent scans of the Galactic plane in the search for transient sources, and pointed observations of several selected sources. The allocation of the observation time is detailed and the sensitivities of the observations are outlined.

  1. Focusing on Core Business

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    China is regulating state-owned enterprises that are investing outside of their core business realms, concerned that poor investment decisions could lead to loss of state-owned assets, but some doubt the effect of the new regulation

  2. Organizing Core Tasks

    DEFF Research Database (Denmark)

    Boll, Karen

    Civil servants conduct the work which makes welfare states functions on an everyday bases: Police men police, school teachers teach, and tax inspectors inspect. Focus in this paper is on the core tasks of tax inspectors. The paper argues that their core task of securing the collection of revenue...... has remained much the same within the last 10 years. However, how the core task has been organized has changed considerable under the influence of various “organizing devices”. The paper focusses on how organizing devices such as risk assessment, output-focus, effect orientation, and treatment...... projects influence the organization of core tasks within the tax administration. The paper shows that the organizational transformations based on the use of these devices have had consequences both for the overall collection of revenue and for the employees’ feeling of “making a difference”. All in all...

  3. Packing in protein cores

    Science.gov (United States)

    Gaines, J. C.; Clark, A. H.; Regan, L.; O'Hern, C. S.

    2017-07-01

    Proteins are biological polymers that underlie all cellular functions. The first high-resolution protein structures were determined by x-ray crystallography in the 1960s. Since then, there has been continued interest in understanding and predicting protein structure and stability. It is well-established that a large contribution to protein stability originates from the sequestration from solvent of hydrophobic residues in the protein core. How are such hydrophobic residues arranged in the core; how can one best model the packing of these residues, and are residues loosely packed with multiple allowed side chain conformations or densely packed with a single allowed side chain conformation? Here we show that to properly model the packing of residues in protein cores it is essential that amino acids are represented by appropriately calibrated atom sizes, and that hydrogen atoms are explicitly included. We show that protein cores possess a packing fraction of φ ≈ 0.56 , which is significantly less than the typically quoted value of 0.74 obtained using the extended atom representation. We also compare the results for the packing of amino acids in protein cores to results obtained for jammed packings from discrete element simulations of spheres, elongated particles, and composite particles with bumpy surfaces. We show that amino acids in protein cores pack as densely as disordered jammed packings of particles with similar values for the aspect ratio and bumpiness as found for amino acids. Knowing the structural properties of protein cores is of both fundamental and practical importance. Practically, it enables the assessment of changes in the structure and stability of proteins arising from amino acid mutations (such as those identified as a result of the massive human genome sequencing efforts) and the design of new folded, stable proteins and protein-protein interactions with tunable specificity and affinity.

  4. Inner core structure behind the PKP core phase triplication

    NARCIS (Netherlands)

    Blom, Nienke A.; Deuss, Arwen; Paulssen, Hanneke; Waszek, Lauren

    2015-01-01

    The structure of the Earth's inner core is not well known between depths of ∼100–200 km beneath the inner core boundary. This is a result of the PKP core phase triplication and the existence of strong precursors to PKP phases, which hinder the measurement of inner core compressional PKIKP waves at e

  5. Inner core structure behind the PKP core phase triplication

    NARCIS (Netherlands)

    Blom, Nienke A.; Deuss, Arwen; Paulssen, Hanneke; Waszek, Lauren

    The structure of the Earth's inner core is not well known between depths of ∼100–200 km beneath the inner core boundary. This is a result of the PKP core phase triplication and the existence of strong precursors to PKP phases, which hinder the measurement of inner core compressional PKIKP waves at

  6. GREEN CORE HOUSE

    Directory of Open Access Journals (Sweden)

    NECULAI Oana

    2017-05-01

    Full Text Available The Green Core House is a construction concept with low environmental impact, having as main central element a greenhouse. The greenhouse has the innovative role to use the biomass energy provided by plants to save energy. Although it is the central piece, the greenhouse is not the most innovative part of the Green Core House, but the whole building ensemble because it integrates many other sustainable systems as "waste purification systems", "transparent photovoltaic panels" or "double skin façades".

  7. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  8. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  9. Investigation of EAS cores

    Science.gov (United States)

    Shaulov, S. B.; Beyl, P. F.; Beysembaev, R. U.; Beysembaeva, E. A.; Bezshapov, S. P.; Borisov, A. S.; Cherdyntceva, K. V.; Chernyavsky, M. M.; Chubenko, A. P.; Dalkarov, O. D.; Denisova, V. G.; Erlykin, A. D.; Kabanova, N. V.; Kanevskaya, E. A.; Kotelnikov, K. A.; Morozov, A. E.; Mukhamedshin, R. A.; Nam, R. A.; Nesterova, N. M.; Nikolskaya, N. M.; Pavluchenko, V. P.; Piskal, V. V.; Puchkov, V. S.; Pyatovsky, S. E.; Ryabov, V. A.; Sadykov, T. Kh.; Schepetov, A. L.; Smirnova, M. D.; Stepanov, A. V.; Uryson, A. V.; Vavilov, Yu. N.; Vildanov, N. G.; Vildanova, L. I.; Zayarnaya, I. S.; Zhanceitova, J. K.; Zhukov, V. V.

    2017-06-01

    The development of nuclear-electromagnetic cascade models in air in the late forties have shown informational content of the study of cores of extensive air showers (EAS). These investigations were the main goal in different experiments which were carried out over many years by a variety of methods. Outcomes of such investigations obtained in the HADRON experiment using an X-ray emulsion chamber (XREC) as a core detector are considered. The Ne spectrum of EAS associated with γ-ray families, spectra of γ-rays (hadrons) in EAS cores and the Ne dependence of the muon number, ⟨Nμ⟩, in EAS with γ-ray families are obtained for the first time at energies of 1015-1017 eV with this method. A number of new effects were observed, namely, an abnormal scaling violation in hadron spectra which are fundamentally different from model predictions, an excess of muon number in EAS associated with γ-ray families, and the penetrating component in EAS cores. It is supposed that the abnormal behavior of γ-ray spectra and Ne dependence of the muon number are explained by the emergence of a penetrating component in the 1st PCR spectrum `knee' range. Nuclear and astrophysical explanations of the origin of the penetrating component are discussed. The necessity of considering the contribution of a single close cosmic-ray source to explain the PCR spectrum in the knee range is noted.

  10. Some Core Contested Concepts

    Science.gov (United States)

    Chomsky, Noam

    2015-01-01

    Core concepts of language are highly contested. In some cases this is legitimate: real empirical and conceptual issues arise. In other cases, it seems that controversies are based on misunderstanding. A number of crucial cases are reviewed, and an approach to language is outlined that appears to have strong conceptual and empirical motivation, and…

  11. Looking for Core Values

    Science.gov (United States)

    Carter, Margie

    2010-01-01

    People who view themselves as leaders, not just managers or teachers, are innovators who focus on clarifying core values and aligning all aspects of the organization with these values to grow their vision. A vision for an organization can't be just one person's idea. Visions grow by involving people in activities that help them name and create…

  12. Nucleosome Core Particle

    Science.gov (United States)

    1997-01-01

    Nucleosome Core Particle grown on STS-81. The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication. Principal Investigator's are Dr. Dan Carter and Dr. Gerard Bunick of New Century Pharmaceuticals.

  13. Investigation of EAS cores

    Directory of Open Access Journals (Sweden)

    Shaulov S.B.

    2017-01-01

    Full Text Available The development of nuclear-electromagnetic cascade models in air in the late forties have shown informational content of the study of cores of extensive air showers (EAS. These investigations were the main goal in different experiments which were carried out over many years by a variety of methods. Outcomes of such investigations obtained in the HADRON experiment using an X-ray emulsion chamber (XREC as a core detector are considered. The Ne spectrum of EAS associated with γ-ray families, spectra of γ-rays (hadrons in EAS cores and the Ne dependence of the muon number, ⟨Nμ⟩, in EAS with γ-ray families are obtained for the first time at energies of 1015–1017 eV with this method. A number of new effects were observed, namely, an abnormal scaling violation in hadron spectra which are fundamentally different from model predictions, an excess of muon number in EAS associated with γ-ray families, and the penetrating component in EAS cores. It is supposed that the abnormal behavior of γ-ray spectra and Ne dependence of the muon number are explained by the emergence of a penetrating component in the 1st PCR spectrum ‘knee’ range. Nuclear and astrophysical explanations of the origin of the penetrating component are discussed. The necessity of considering the contribution of a single close cosmic-ray source to explain the PCR spectrum in the knee range is noted.

  14. Modeling Core Collapse Supernovae

    Science.gov (United States)

    Mezzacappa, Anthony

    2017-01-01

    Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.

  15. The Earth's Core.

    Science.gov (United States)

    Jeanloz, Raymond

    1983-01-01

    The nature of the earth's core is described. Indirect evidence (such as that determined from seismological data) indicates that it is an iron alloy, solid toward its center but otherwise liquid. Evidence also suggests that it is the turbulent flow of the liquid that generates the earth's magnetic field. (JN)

  16. Some Core Contested Concepts

    Science.gov (United States)

    Chomsky, Noam

    2015-01-01

    Core concepts of language are highly contested. In some cases this is legitimate: real empirical and conceptual issues arise. In other cases, it seems that controversies are based on misunderstanding. A number of crucial cases are reviewed, and an approach to language is outlined that appears to have strong conceptual and empirical motivation, and…

  17. Languages for Dublin Core.

    Science.gov (United States)

    Baker, Thomas

    1998-01-01

    Focusing on languages for the Dublin Core, examines the experience of some related ways to seek semantic interoperability through simplicity: planned languages, interlingua constructs, and pidgins. Also defines the conceptual and organizational problem of maintaining a metadata standard in multiple languages. (AEF)

  18. Core calculations of JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)

  19. The core and cosmopolitans

    DEFF Research Database (Denmark)

    Dahlander, Linus; Frederiksen, Lars

    2012-01-01

    Users often interact and help each other solve problems in communities, but few scholars have explored how these relationships provide opportunities to innovate. We analyze the extent to which people positioned within the core of a community as well as people that are cosmopolitans positioned...

  20. Schumpeter's core works revisited

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    2012-01-01

    This paper organises Schumpeter’s core books in three groups: the programmatic duology,the evolutionaryeconomic duology,and the socioeconomic synthesis. By analysing these groups and their interconnections from the viewpoint of modern evolutionaryeconomics,the paper summarises resolved problems...

  1. Adult educators' core competences

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne

    2016-01-01

    environment as well as the kind of adult education concerned (e.g. basic education, work-related education etc.). However, it seems that it is possible to identify certain competence requirements which transcend national, cultural and functional boundaries. This research note summarises these common or “core...

  2. Adult educators' core competences

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne

    2016-01-01

    environment as well as the kind of adult education concerned (e.g. basic education, work-related education etc.). However, it seems that it is possible to identify certain competence requirements which transcend national, cultural and functional boundaries. This research note summarises these common or “core...

  3. Application of Core Dynamics Modeling to Core-Mantle Interactions

    Science.gov (United States)

    Kuang, Weijia

    2003-01-01

    Observations have demonstrated that length of day (LOD) variation on decadal time scales results from exchange of axial angular momentum between the solid mantle and the core. There are in general four core-mantle interaction mechanisms that couple the core and the mantle. Of which, three have been suggested likely the dominant coupling mechanism for the decadal core-mantle angular momentum exchange, namely, gravitational core-mantle coupling arising from density anomalies in the mantle and in the core (including the inner core), the electromagnetic coupling arising from Lorentz force in the electrically conducting lower mantle (e.g. D-layer), and the topographic coupling arising from non-hydrostatic pressure acting on the core-mantle boundary (CMB) topography. In the past decades, most effort has been on estimating the coupling torques from surface geomagnetic observations (kinematic approach), which has provided insights on the core dynamical processes. In the meantime, it also creates questions and concerns on approximations in the studies that may invalidate the corresponding conclusions. The most serious problem is perhaps the approximations that are inconsistent with dynamical processes in the core, such as inconsistencies between the core surface flow beneath the CMB and the CMB topography, and that between the D-layer electric conductivity and the approximations on toroidal field at the CMB. These inconsistencies can only be addressed with numerical core dynamics modeling. In the past few years, we applied our MoSST (Modular, Scalable, Self-consistent and Three-dimensional) core dynamics model to study core-mantle interactions together with geodynamo simulation, aiming at assessing the effect of the dynamical inconsistencies in the kinematic studies on core-mantle coupling torques. We focus on topographic and electromagnetic core-mantle couplings and find that, for the topographic coupling, the consistency between the core flow and the CMB topography is

  4. USGS Core Research Center (CRC) Collection of Core

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Core Research Center (CRC) was established in 1974 by the U.S. Geological Survey (USGS) to preserve valuable rock cores for use by scientists and educators from...

  5. Ice Cores of the National Ice Core Laboratory

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. National Ice Core Laboratory (NICL) is a facility for storing, curating, and studying ice cores recovered from the polar regions of the world. It provides...

  6. Core Outlet Temperature Study

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Laboratory (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Laboratory (ANL), Argonne, IL (United States); Majumdar, S. [Argonne National Laboratory (ANL), Argonne, IL (United States)

    2008-07-28

    It is a known fact that the power conversion plant efficiency increases with elevation of the heat addition temperature. The higher efficiency means better utilization of the available resources such that higher output in terms of electricity production can be achieved for the same size and power of the reactor core or, alternatively, a lower power core could be used to produce the same electrical output. Since any nuclear power plant, such as the Advanced Burner Reactor, is ultimately built to produce electricity, a higher electrical output is always desirable. However, the benefits of the higher efficiency and electricity production usually come at a price. Both the benefits and the disadvantages of higher reactor outlet temperatures are analyzed in this work.

  7. Geomagnetism of earth's core

    Science.gov (United States)

    Benton, E. R.

    1983-01-01

    Instrumentation, analytical methods, and research goals for understanding the behavior and source of geophysical magnetism are reviewed. Magsat, launched in 1979, collected global magnetometer data and identified the main terrestrial magnetic fields. The data has been treated by representing the curl-free field in terms of a scalar potential which is decomposed into a truncated series of spherical harmonics. Solutions to the Laplace equation then extend the field upward or downward from the measurement level through intervening spaces with no source. Further research is necessary on the interaction between harmonics of various spatial scales. Attempts are also being made to analytically model the main field and its secular variation at the core-mantle boundary. Work is also being done on characterizing the core structure, composition, thermodynamics, energetics, and formation, as well as designing a new Magsat or a tethered satellite to be flown on the Shuttle.

  8. Geomagnetism of earth's core

    Science.gov (United States)

    Benton, E. R.

    1983-01-01

    Instrumentation, analytical methods, and research goals for understanding the behavior and source of geophysical magnetism are reviewed. Magsat, launched in 1979, collected global magnetometer data and identified the main terrestrial magnetic fields. The data has been treated by representing the curl-free field in terms of a scalar potential which is decomposed into a truncated series of spherical harmonics. Solutions to the Laplace equation then extend the field upward or downward from the measurement level through intervening spaces with no source. Further research is necessary on the interaction between harmonics of various spatial scales. Attempts are also being made to analytically model the main field and its secular variation at the core-mantle boundary. Work is also being done on characterizing the core structure, composition, thermodynamics, energetics, and formation, as well as designing a new Magsat or a tethered satellite to be flown on the Shuttle.

  9. Dynamics of core accretion

    Science.gov (United States)

    Nelson, Andrew F.; Ruffert, Maximilian

    2013-02-01

    We perform three-dimensional hydrodynamic simulations of gas flowing around a planetary core of mass Mpl = 10M⊕ embedded in a near Keplerian background flow, using a modified shearing box approximation. We assume an ideal gas behaviour following an equation of state with a fixed ratio of the specific heats, γ = 1.42, consistent with the conditions of a moderate-temperature background disc with solar composition. No radiative heating or cooling is included in the models. We employ a nested grid hydrodynamic code implementing the `Piecewise Parabolic Method' with as many as six fixed nested grids, providing spatial resolution on the finest grid comparable to the present-day diameters of Neptune and Uranus. We find that a strongly dynamically active flow develops such that no static envelope can form. The activity is not sensitive to plausible variations in the rotation curve of the underlying disc. It is sensitive to the thermodynamic treatment of the gas, as modelled by prescribed equations of state (either `locally isothermal' or `locally isentropic') and the temperature of the background disc material. The activity is also sensitive to the shape and depth of the core's gravitational potential, through its mass and gravitational softening coefficient. Each of these factors influences the magnitude and character of hydrodynamic feedback of the small-scale flow on the background, and we conclude that accurate modelling of such feedback is critical to a complete understanding of the core accretion process. The varying flow pattern gives rise to large, irregular eruptions of matter from the region around the core which return matter to the background flow: mass in the envelope at one time may not be found in the envelope at any later time. No net mass accretion into the envelope is observed over the course of the simulation and none is expected, due to our neglect of cooling. Except in cases of very rapid cooling however, as defined by locally isothermal or

  10. Some core contested concepts.

    Science.gov (United States)

    Chomsky, Noam

    2015-02-01

    Core concepts of language are highly contested. In some cases this is legitimate: real empirical and conceptual issues arise. In other cases, it seems that controversies are based on misunderstanding. A number of crucial cases are reviewed, and an approach to language is outlined that appears to have strong conceptual and empirical motivation, and to lead to conclusions about a number of significant issues that differ from some conventional beliefs.

  11. Central core disease

    Directory of Open Access Journals (Sweden)

    Jungbluth Heinz

    2007-05-01

    Full Text Available Abstract Central core disease (CCD is an inherited neuromuscular disorder characterised by central cores on muscle biopsy and clinical features of a congenital myopathy. Prevalence is unknown but the condition is probably more common than other congenital myopathies. CCD typically presents in infancy with hypotonia and motor developmental delay and is characterized by predominantly proximal weakness pronounced in the hip girdle; orthopaedic complications are common and malignant hyperthermia susceptibility (MHS is a frequent complication. CCD and MHS are allelic conditions both due to (predominantly dominant mutations in the skeletal muscle ryanodine receptor (RYR1 gene, encoding the principal skeletal muscle sarcoplasmic reticulum calcium release channel (RyR1. Altered excitability and/or changes in calcium homeostasis within muscle cells due to mutation-induced conformational changes of the RyR protein are considered the main pathogenetic mechanism(s. The diagnosis of CCD is based on the presence of suggestive clinical features and central cores on muscle biopsy; muscle MRI may show a characteristic pattern of selective muscle involvement and aid the diagnosis in cases with equivocal histopathological findings. Mutational analysis of the RYR1 gene may provide genetic confirmation of the diagnosis. Management is mainly supportive and has to anticipate susceptibility to potentially life-threatening reactions to general anaesthesia. Further evaluation of the underlying molecular mechanisms may provide the basis for future rational pharmacological treatment. In the majority of patients, weakness is static or only slowly progressive, with a favourable long-term outcome.

  12. Core-seis: a code for LMFBR core seismic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chellapandi, P.; Ravi, R.; Chetal, S.C.; Bhoje, S.B. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Reactor Group

    1995-12-31

    This paper deals with a computer code CORE-SEIS specially developed for seismic analysis of LMFBR core configurations. For demonstrating the prediction capability of the code, results are presented for one of the MONJU reactor core mock ups which deals with a cluster of 37 subassemblies kept in water. (author). 3 refs., 7 figs., 2 tabs.

  13. Core Exercises: Why You Should Strengthen Your Core Muscles

    Science.gov (United States)

    Healthy Lifestyle Fitness You know core exercises are good for you — but do you include core exercises in your fitness routine? Here's why ... 18, 2014 Original article: http://www.mayoclinic.org/healthy-lifestyle/fitness/in-depth/core-exercises/art-20044751 . Mayo Clinic Footer Legal Conditions and ...

  14. ICF Core Sets for stroke

    National Research Council Canada - National Science Library

    Szilvia Geyh; Alarcos Cieza; Jan Schouten; Hugh Dickson; Peter Frommelt; Zaliha Omar; Nenad Kostanjsek; Haim Ring; Gerold Stucki

    2004-01-01

    Objective: To report on the results of the consensus process integrating evidence from preliminary studies to develop the first version of the Comprehensive ICF Core Set and the Brief ICF Core Set for stroke. Methods...

  15. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  16. On core stability and extendability

    OpenAIRE

    Shellshear, Evan

    2007-01-01

    This paper investigates conditions under which the core of a TU cooperative game is stable. In particular the author extends the idea of extendability to find new conditions under which the core is stable. It is also shown that these new conditions are not necessary for core stability.

  17. Dual-core Itanium Processor

    CERN Multimedia

    2006-01-01

    Intel’s first dual-core Itanium processor, code-named "Montecito" is a major release of Intel's Itanium 2 Processor Family, which implements the Intel Itanium architecture on a dual-core processor with two cores per die (integrated circuit). Itanium 2 is much more powerful than its predecessor. It has lower power consumption and thermal dissipation.

  18. On core stability and extendability

    OpenAIRE

    Shellshear, Evan

    2007-01-01

    This paper investigates conditions under which the core of a TU cooperative game is stable. In particular the author extends the idea of extendability to find new conditions under which the core is stable. It is also shown that these new conditions are not necessary for core stability.

  19. Winning Cores in Parity Games

    DEFF Research Database (Denmark)

    Vester, Steen

    2016-01-01

    We introduce the novel notion of winning cores in parity games and develop a deterministic polynomial-time under-approximation algorithm for solving parity games based on winning core approximation. Underlying this algorithm are a number properties about winning cores which are interesting...... in their own right. In particular, we show that the winning core and the winning region for a player in a parity game are equivalently empty. Moreover, the winning core contains all fatal attractors but is not necessarily a dominion itself. Experimental results are very positive both with respect to quality...

  20. Models of the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  1. Complex coacervate core micelles.

    Science.gov (United States)

    Voets, Ilja K; de Keizer, Arie; Cohen Stuart, Martien A

    2009-01-01

    In this review we present an overview of the literature on the co-assembly of neutral-ionic block, graft, and random copolymers with oppositely charged species in aqueous solution. Oppositely charged species include synthetic (co)polymers of various architectures, biopolymers - such as proteins, enzymes and DNA - multivalent ions, metallic nanoparticles, low molecular weight surfactants, polyelectrolyte block copolymer micelles, metallo-supramolecular polymers, equilibrium polymers, etcetera. The resultant structures are termed complex coacervate core/polyion complex/block ionomer complex/interpolyelectrolyte complex micelles (or vesicles); i.e., in short C3Ms (or C3Vs) and PIC, BIC or IPEC micelles (and vesicles). Formation, structure, dynamics, properties, and function will be discussed. We focus on experimental work; theory and modelling will not be discussed. Recent developments in applications and micelles with heterogeneous coronas are emphasized.

  2. Understanding core conductor fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, D E, E-mail: deswenson@affinity-esd.com [Affinity Static Control Consulting, LLC 2609 Quanah Drive, Round Rock, Texas, 78681 (United States)

    2011-06-23

    ESD Association standard test method ANSI/ESD STM2.1 - Garments (STM2.1), provides electrical resistance test procedures that are applicable for materials and garments that have surface conductive or surface dissipative properties. As has been reported in other papers over the past several years{sup 1} fabrics are now used in many industries for electrostatic control purposes that do not have surface conductive properties and therefore cannot be evaluated using the procedures in STM2.1{sup 2}. A study was conducted to compare surface conductive fabrics with samples of core conductor fibre based fabrics in order to determine differences and similarities with regards to various electrostatic properties. This work will be used to establish a new work item proposal within WG-2, Garments, in the ESD Association Standards Committee in the USA.

  3. Growth outside the core.

    Science.gov (United States)

    Zook, Chris; Allen, James

    2003-12-01

    Growth in an adjacent market is tougher than it looks; three-quarters of the time, the effort fails. But companies can change those odds dramatically. Results from a five-year study of corporate growth conducted by Bain & Company reveal that adjacency expansion succeeds only when built around strong core businesses that have the potential to become market leaders. And the best place to look for adjacency opportunities is inside a company's strongest customers. The study also found that the most successful companies were able to consistently, profitably outgrow their rivals by developing a formula for pushing out the boundaries of their core businesses in predictable, repeatable ways. Companies use their repeatability formulas to expand into any number of adjacencies. Some companies make repeated geographic moves, as Vodafone has done in expanding from one geographic market to another over the past 13 years, building revenues from $1 billion in 1990 to $48 billion in 2003. Others apply a superior business model to new segments. Dell, for example, has repeatedly adapted its direct-to-customer model to new customer segments and new product categories. In other cases, companies develop hybrid approaches. Nike executed a series of different types of adjacency moves: it expanded into adjacent customer segments, introduced new products, developed new distribution channels, and then moved into adjacent geographic markets. The successful repeaters in the study had two common characteristics. First, they were extraordinarily disciplined, applying rigorous screens before they made an adjacency move. This discipline paid off in the form of learning curve benefits, increased speed, and lower complexity. And second, in almost all cases, they developed their repeatable formulas by studying their customers and their customers' economics very, very carefully.

  4. Advances in core drilling technology

    Science.gov (United States)

    Holdsworth, G.

    Some notable technical advances in drill design were reported at the meeting, held in Canada August 30-September 1, 1982, at the University of Calgary. Chief amongst these was a battery powered, computer assisted electromechanical core drill which has recently been used by the Danes in Greenland to continuously core to the base of the ice sheet at 2038 m. This is the deepest coring operation so far on the Greenland ice sheet. (The record for deep glacier drilling is held by the U.S. Army Cold Regions Research and Engineering Laboratory for the continuous coring through 2164 m of ice to bedrock at Byrd Station, Antarctica, in 1968). In early 1982, a current Soviet core drilling operation was reported to be at a depth of 2000 m at Vostok station, Antarctica, where the total ice thickness is about 4000 m; the goal of core drilling the entire ice thickness there could be achieved before the end of 1983.

  5. Core TuLiP

    OpenAIRE

    Czenko, M.R.; Etalle, Sandro

    2007-01-01

    We propose CoreTuLiP - the core of a trust management language based on Logic Programming. CoreTuLiP is based on a subset of moded logic programming, but enjoys the features of TM languages such as RT; in particular clauses are issued by different authorities and stored in a distributed manner. We present a lookup and inference algorithm which we prove to be correct and complete w.r.t. the declarative semantics. CoreTuLiP enjoys uniform syntax and the well-established semantics and is express...

  6. Biochemistry Instrumentation Core Technology Center

    Data.gov (United States)

    Federal Laboratory Consortium — The UCLA-DOE Biochemistry Instrumentation Core Facility provides the UCLA biochemistry community with easy access to sophisticated instrumentation for a wide variety...

  7. Waves in the core and mechanical core-mantle interactions

    DEFF Research Database (Denmark)

    Jault, D.; Finlay, Chris

    2015-01-01

    the motions in the direction parallel to the Earth'srotation axis. This property accounts for the signicance of the core-mantle topography.In addition, the stiening of the uid in the direction parallel to the rotation axis gives riseto a magnetic diusion layer attached to the core-mantle boundary, which would...

  8. Characterizing the Core via K-Core Covers

    NARCIS (Netherlands)

    Sanchez, S.M.; Borm, P.E.M.; Estevez, A.

    2013-01-01

    This paper extends the notion of individual minimal rights for a transferable utility game (TU-game) to coalitional minimal rights using minimal balanced families of a specific type, thus defining a corresponding minimal rights game. It is shown that the core of a TU-game coincides with the core of

  9. Characterizing the Core via K-Core Covers

    NARCIS (Netherlands)

    Sanchez, S.M.; Borm, P.E.M.; Estevez, A.

    2013-01-01

    This paper extends the notion of individual minimal rights for a transferable utility game (TU-game) to coalitional minimal rights using minimal balanced families of a specific type, thus defining a corresponding minimal rights game. It is shown that the core of a TU-game coincides with the core of

  10. Relativistic frozen core potential scheme with relaxation of core electrons

    Science.gov (United States)

    Nakajima, Yuya; Seino, Junji; Hayami, Masao; Nakai, Hiromi

    2016-10-01

    This letter proposes a relaxation scheme for core electrons based on the frozen core potential method at the infinite-order Douglas-Kroll-Hess level, called FCP-CR. The core electrons are self-consistently relaxed using frozen molecular valence potentials after the valence SCF calculation is performed. The efficiency of FCP-CR is confirmed by calculations of gold clusters. Furthermore, FCP-CR reproduces the results of the all-electron method for the energies of coinage metal dimers and the core ionization energies and core level shifts of vinyl acetate and three tungsten complexes at the Hartree-Fock and/or symmetry-adapted cluster configuration interaction levels.

  11. Adult educators' core competences

    Science.gov (United States)

    Wahlgren, Bjarne

    2016-06-01

    Which competences do professional adult educators need? This research note discusses the topic from a comparative perspective, finding that adult educators' required competences are wide-ranging, heterogeneous and complex. They are subject to context in terms of national and cultural environment as well as the kind of adult education concerned (e.g. basic education, work-related education etc.). However, it seems that it is possible to identify certain competence requirements which transcend national, cultural and functional boundaries. This research note summarises these common or "core" requirements, organising them into four thematic subcategories: (1) communicating subject knowledge; (2) taking students' prior learning into account; (3) supporting a learning environment; and (4) the adult educator's reflection on his or her own performance. At the end of his analysis of different competence profiles, the author notes that adult educators' ability to train adult learners in a way which then enables them to apply and use what they have learned in practice (thus performing knowledge transfer) still seems to be overlooked.

  12. Core of Cloud Computing

    Directory of Open Access Journals (Sweden)

    Prof. C.P.Chandgude

    2017-04-01

    Full Text Available Advancement in computing facilities marks back from 1960’s with introduction of mainframes. Each of the computing has one or the other issues, so keeping this in mind cloud computing was introduced. Cloud computing has its roots in older technologies such as hardware virtualization, distributed computing, internet technologies, and autonomic computing. Cloud computing can be described with two models, one is service model and second is deployment model. While providing several services, cloud management’s primary role is resource provisioning. While there are several such benefits of cloud computing, there are challenges in adopting public clouds because of dependency on infrastructure that is shared by many enterprises. In this paper, we present core knowledge of cloud computing, highlighting its key concepts, deployment models, service models, benefits as well as security issues related to cloud data. The aim of this paper is to provide a better understanding of the cloud computing and to identify important research directions in this field

  13. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    F W Giacobbe

    2003-03-01

    An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is significantly different from a more typical Chandrasekhar mass limit approach. This technique produced a maximum stellar iron core mass value of 2.69 × 1030 kg (1.35 solar masses). This mass value is very near to the typical mass values found for neutron stars in a recent survey of actual neutron star masses. Although slightly lower and higher neutron star masses may also be found, lower mass neutron stars are believed to be formed as a result of enhanced iron core compression due to the weight of non-ferrous matter overlying the iron cores within large stars. And, higher mass neutron stars are likely to be formed as a result of fallback or accretion of additional matter after an initial collapse event involving an iron core having a mass no greater than 2.69 × 1030 kg.

  14. The INTEGRAL Core Observing Programme

    OpenAIRE

    Winkler, C; Gehrels, N.; Lund, N.; Schoenfelder, V.; Ubertini, P.

    1999-01-01

    The Core Programme of the INTEGRAL mission is defined as the portion of the scientific programme covering the guaranteed time observations for the INTEGRAL Science Working Team. This paper describes the current status of the Core Programme preparations and summarizes the key elements of the observing programme.

  15. The INTEGRAL Core Observing Programme

    DEFF Research Database (Denmark)

    Winkler, C.; Gehrels, N.; Lund, Niels

    1999-01-01

    The Core Programme of the INTEGRAL mission is defined as the portion of the scientific programme covering the guaranteed time observations for the INTEGRAL Science Working Team. This paper describes the current status of the Core Programme preparations and summarizes the key elements...

  16. Complicated Politics to the Core

    Science.gov (United States)

    McGuinn, Patrick

    2015-01-01

    People dislike the Common Core for several different reasons, and so it is important to disaggregate the sources of opposition and to assess and then to dispel some of the myths that have built up around it. It also is important to understand the unusual political alliances that have emerged in opposition to Common Core implementation and how they…

  17. Common Core: Victory Is Yours!

    Science.gov (United States)

    Fink, Jennifer L. W.

    2012-01-01

    In this article, the author discusses how to implement the Common Core State Standards in the classroom. She presents examples and activities that will leave teachers feeling "rosy" about tackling the new standards. She breaks down important benchmarks and shows how other teachers are doing the Core--and loving it!

  18. The INTEGRAL Core Observing Programme

    DEFF Research Database (Denmark)

    Winkler, C.; Gehrels, N.; Lund, Niels

    1999-01-01

    The Core Programme of the INTEGRAL mission is defined as the portion of the scientific programme covering the guaranteed time observations for the INTEGRAL Science Working Team. This paper describes the current status of the Core Programme preparations and summarizes the key elements...

  19. Complicated Politics to the Core

    Science.gov (United States)

    McGuinn, Patrick

    2015-01-01

    People dislike the Common Core for several different reasons, and so it is important to disaggregate the sources of opposition and to assess and then to dispel some of the myths that have built up around it. It also is important to understand the unusual political alliances that have emerged in opposition to Common Core implementation and how they…

  20. Core body temperature in obesity.

    Science.gov (United States)

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C; Yanovski, Jack A

    2011-05-01

    A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. In study 1, nonobese [body mass index (BMI; in kg/m(2)) temperature-sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18-25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P body temperature. It may be necessary to study individuals with function-altering mutations in core temperature-regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500.

  1. COSIS: COre State Indication System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. Y.; Lee, K. B.; Koo, B. S.; Lee, W. K.; Lee, C. C; Zee, S. Q

    2006-02-15

    COSIS (COre State Indication System) which implemented in the SMART research reactor plays a role to supply the core state parameters or graphs for the operator to recognize the core state effectively. The followings are the main functions of COSIS. (1) Validity Check for the Process Signals and Determination of the COSIS Inputs (SIGVAL) (2) Coolant Flow Rate Calculation (FLOW) (3) Core Thermal Power Calculation (COREPOW) (4) In-core 3-Dimensional Power Distribution Calculation and Peaking Parameters Generation (POWER3D) (5) Azimuthal Tilt Calculation (AZITILT). This report describes the methodology of COSIS which produces the core state parameters using the process and detector signals. In the SIGVAL module, COSIS checks most signals except for the CEA position and determines the input signals. In the FLOW module, the corelation coefficient between the RPM signal and coolant flow is updated from the energy balance at the steam generator, and the coolant flow rate is calculated using the RPM signal. In the COREPOW module, the secondary calorimetric power, the primary {delta}T power and the ex-core power are calculated, and the final core thermal power and biased core power are determined. In the POWER3D module, the 3-dimensional power distribution is calculated using the in-core detector signal, and the 3-D peaking factor, 2-D radial peaking factor, axial offset, maximum linear power density are produced. In the AZITILT module, the arithmetic averaged and vector averaged azimuthal tilts are calculated, and the final tilt is determined. The COSIS performance test of the COSIS is performed for the temperature compensation method, the COREPOW and the POWER3D modules. The test for the temperature compensation method is performed for the temperature variations of the linear, parabolic, exponential, sine function. The test shows that the implemented temperature compensation method works soundly. The COREPOW test is performed by varying the core power from the initial

  2. Epistemology and ontology in core ontologies: FOLaw and LRI-Core, two core ontologies for law

    NARCIS (Netherlands)

    Breukers, J.A.P.J.; Hoekstra, R.J.

    2004-01-01

    For more than a decade constructing ontologies for legal domains, we, at the Leibniz Center for Law, felt really the need to develop a core ontology for law that would enable us to re-use the common denominator of the various legal domains. In this paper we present two core ontologies for law. The

  3. Multi-Core Cache Hierarchies

    CERN Document Server

    Balasubramonian, Rajeev

    2011-01-01

    A key determinant of overall system performance and power dissipation is the cache hierarchy since access to off-chip memory consumes many more cycles and energy than on-chip accesses. In addition, multi-core processors are expected to place ever higher bandwidth demands on the memory system. All these issues make it important to avoid off-chip memory access by improving the efficiency of the on-chip cache. Future multi-core processors will have many large cache banks connected by a network and shared by many cores. Hence, many important problems must be solved: cache resources must be allocat

  4. Characterizing Facesheet/Core Disbonding in Honeycomb Core Sandwich Structure

    Science.gov (United States)

    Rinker, Martin; Ratcliffe, James G.; Adams, Daniel O.; Krueger, Ronald

    2013-01-01

    Results are presented from an experimental investigation into facesheet core disbonding in carbon fiber reinforced plastic/Nomex honeycomb sandwich structures using a Single Cantilever Beam test. Specimens with three, six and twelve-ply facesheets were tested. Specimens with different honeycomb cores consisting of four different cell sizes were also tested, in addition to specimens with three different widths. Three different data reduction methods were employed for computing apparent fracture toughness values from the test data, namely an area method, a compliance calibration technique and a modified beam theory method. The compliance calibration and modified beam theory approaches yielded comparable apparent fracture toughness values, which were generally lower than those computed using the area method. Disbonding in the three-ply facesheet specimens took place at the facesheet/core interface and yielded the lowest apparent fracture toughness values. Disbonding in the six and twelve-ply facesheet specimens took place within the core, near to the facesheet/core interface. Specimen width was not found to have a significant effect on apparent fracture toughness. The amount of scatter in the apparent fracture toughness data was found to increase with honeycomb core cell size.

  5. Introduction to the Core Curriculum in GIS

    OpenAIRE

    2015-01-01

    This short narrative introduces the Core Curriculum in GIS and provides a historical overview of the Core Curriculum Project, including the later Core Curriculum in GIScience and Core Curriculum for Technical Programs. Appended to this description is an original pamphlet advertising the Core Curriculum in GIS.

  6. Assessing Core Competencies

    Science.gov (United States)

    Narayanan, M.

    2004-12-01

    Catherine Palomba and Trudy Banta offer the following definition of assessment, adapted from one provided by Marches in 1987. Assessment in the systematic collection, review, and use of information about educational programs undertaken for the purpose of improving student learning and development. (Palomba and Banta 1999). It is widely recognized that sophisticated computing technologies are becoming a key element in today's classroom instructional techniques. Regardless, the Professor must be held responsible for creating an instructional environment in which the technology actually supplements learning outcomes of the students. Almost all academic disciplines have found a niche for computer-based instruction in their respective professional domain. In many cases, it is viewed as an essential and integral part of the educational process. Educational institutions are committing substantial resources to the establishment of dedicated technology-based laboratories, so that they will be able to accommodate and fulfill students' desire to master certain of these specific skills. This type of technology-based instruction may raise some fundamental questions about the core competencies of the student learner. Some of the most important questions are : 1. Is the utilization of these fast high-powered computers and user-friendly software programs creating a totally non-challenging instructional environment for the student learner ? 2. Can technology itself all too easily overshadow the learning outcomes intended ? 3. Are the educational institutions simply training students how to use technology rather than educating them in the appropriate field ? 4. Are we still teaching content-driven courses and analysis oriented subject matter ? 5. Are these sophisticated modern era technologies contributing to a decline in the Critical Thinking Capabilities of the 21st century technology-savvy students ? The author tries to focus on technology as a tool and not on the technology

  7. Viral Evolution Core | FNLCR Staging

    Science.gov (United States)

    Brandon F. Keele, Ph.D. PI/Senior Principal Investigator, Retroviral Evolution Section Head, Viral Evolution Core Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research Frederick, MD 21702-1201 Tel: 301-846-173

  8. Lunar Core Drive Tubes Summary

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains a brief summary and high resolution imagery from various lunar rock and core drive tubes collected from the Apollo and Luna missions to the moon.

  9. A Method to Use Solar Energy for the Production of Gas from Marine Hydrate-Bearing Sediments: A Case Study on the Shenhu Area

    Directory of Open Access Journals (Sweden)

    Fenglin Tang

    2010-12-01

    Full Text Available A method is proposed that uses renewable solar energy to supply energy for the exploitation of marine gas hydrates using thermal stimulation. The system includes solar cells, which are installed on the platform and a distributor with electric heaters. The solar module is connected with electric heaters via an insulated cable, and provides power to the heaters. Simplified equations are given for the calculation of the power of the electric heaters and the solar battery array. Also, a case study for the Shenhu area is provided to illustrate the calculation of the capacity of electric power and the solar cell system under ideal conditions. It is shown that the exploitation of marine gas hydrates by solar energy is technically and economically feasible in typical marine areas and hydrate reservoirs such as the Shenhu area. This method may also be used as a good assistance for depressurization exploitation of marine gas hydrates in the future.

  10. Estimation of seismic attenuation of gas hydrate bearing sediments from multi-channel seismic data: A case study from Krishna-Godavari offshore basin

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Mandal, R.; Jaiswal, P.; Ramprasad, T.; Sriram, G.

    the quality of the manuscript. This is NIO contribution no. xxx. Appendix A: Peak frequency method (Zhang and Ulrych, 2002) The propagating wavelet at the onset of source (t=0) can be approximated by a Ricker wavelet with dominant frequency fm as...

  11. TOUGH+HYDRATE v1.2 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kowalsky, Michael B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    TOUGH+HYDRATE v1.2 is a code for the simulation of the behavior of hydratebearing geologic systems, and represents the second update of the code since its first release [Moridis et al., 2008]. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy’s law is valid. TOUGH+HYDRATE v1.2 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is a member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  12. Ocean Bottom Gamma-Ray Anomaly Around Methane Seeps Related to Gas Hydrate- Bearing Zone in The Eastern Margin of Japan Sea and Off Southwest Taiwan

    Science.gov (United States)

    Machiyama, H.; Kinoshita, M.; Lin, S.; Matsumoto, R.; Soh, W.

    2008-12-01

    JAMSTEC has conducted the ocean bottom gamma-ray measurement using ROVs and Submersibles since 1997. Gamma-ray spectrometer utilizes 3-inch spherical NaI(Tl) scintillator and the signal processor including DA converter in a pressure case. After processing data, we get total count rate (intensity value: count per second (cps)) of gamma ray and contents of K, U-, and Th-series radionuclides. The sensor was equipped to the side of the sample basket or foot of ROVs and submersibles, and always touches the seafloor when ROVs completely landed. Their results are posted on JAMSTEC website as a database. On the basis of past achievements, we present the results of the ocean bottom gamma-ray measurement at the methane seep sites related to gas hydrate off Joetsu in the eastern margin of Japan Sea and off southwest Taiwan. Off Joetsu: A number of mounds, large pockmarks (20 - 50 m deep and 200 - 500 m across), gas plumes, and gas hydrate are found at water depth of 900 - 1000 m in the Umitaka Spur and the Joetsu Knoll. Gamma-ray intensity values are 50 - 70 cps in normal muddy seafloor. On the other hand, the intensity values are 100 - 200 cps around methane venting sites, bacteria mats, and 'collapsed hydrate zone' which has an undulating, rugged seafloor with carbonate nodules and gravels. Contents of each radionuclide are also high. Low U/Th ratio suggests that there is less contribution of Rn accompanied with a recent fault activity. Off southwest Taiwan: Large, dense chemosynthetic communities, associated with carbonate pavements, were discovered at water depth of about 1100 - 1200 m on the top of the Formosa Ridge. Gamma-ray intensity values in normal muddy seafloor (120 - 150 cps) are higher than those around Japan. Since Th-series radionuclide easily absorbs other particles, it is commonly included in surface sediments. This may cause higher content of Th-series radionuclide in normal muddy seafloor. On the other hand, anomaly of gamma-ray intensity (200 - 300 cps) shows a methane seep activity from subsurface. It is hard to pinpoint the location and occurrence of seeps and fault without biotic activities. The ocean bottom gamma-ray measurement is one of the effective tools for the exploration of seeps and faults, though their values are different among areas and are not quantitative.

  13. Viscosity of the earth's core.

    Science.gov (United States)

    Gans, R. F.

    1972-01-01

    Calculation of the viscosity of the core at the boundary of the inner and outer core. It is assumed that this boundary is a melting transition and the viscosity limits of the Andrade (1934,1952) hypothesis (3.7 to 18.5 cp) are adopted. The corresponding kinematic viscosities are such that the precessional system explored by Malkus (1968) would be unstable. Whether it would be sufficiently unstable to overcome a severely subadiabatic temperature gradient cannot be determined.

  14. Nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Ndoni, Sokol

    2010-01-01

    We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented.......We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented....

  15. Crystallization in Earth's Core after High-Temperature Core Formation

    Science.gov (United States)

    Hirose, K.; Morard, G.; Hernlund, J. W.; Helffrich, G. R.; Ozawa, H.

    2015-12-01

    Recent core formation models based on the metal-silicate partitioning of siderophile elements suggest that the Earth's core was formed by metal segregation at high pressure and high temperature in a deep magma ocean. It is also thought that the simultaneous solubility of silicon and oxygen in liquid iron are strongly enhanced at high pressure and high temperature, such that at the end of accretion the core was rich in both silicon and oxygen. Here we performed crystallization experiments on the Fe-Si binary and Fe-Si-O ternary systems up to core pressure in a laser-heated diamond-anvil cell. The starting material for the latter was a homogeneous mixture of fine-grain Fe-Si and SiO2 (sustain without extreme degrees of secular cooling. However, even for modest degrees of joint Si-O incorporation into the early core, the buoyancy released by crystallization of SiO2 is sufficient to overcome thermal stratification and sustain the geodynamo.

  16. Core formation in silicate bodies

    Science.gov (United States)

    Nimmo, F.; O'Brien, D. P.; Kleine, T.

    2008-12-01

    Differentiation of a body into a metallic core and silicate mantle occurs most efficiently if temperatures are high enough to allow at least the metal to melt [1], and is enhanced if matrix deformation occurs [2]. Elevated temperatures may occur due to either decay of short-lived radio-isotopes, or gravitational energy release during accretion [3]. For bodies smaller than the Moon, core formation happens primarily due to radioactive decay. The Hf-W isotopic system may be used to date core formation; cores in some iron meteorites and the eucrite parent body (probably Vesta) formed within 1 My and 1-4~My of solar system formation, respectively [4]. These formation times are early enough to ensure widespread melting and differentiation by 26Al decay. Incorporation of Fe60 into the core, together with rapid early mantle solidification and cooling, may have driven early dynamo activity on some bodies [5]. Iron meteorites are typically depleted in sulphur relative to chondrites, for unknown reasons [6]. This depletion contrasts with the apparently higher sulphur contents of cores in larger planetary bodies, such as Mars [7], and also has a significant effect on the timing of core solidification. For bodies of Moon-size and larger, gravitational energy released during accretion is probably the primary cause of core formation [3]. The final stages of accretion involve large, stochastic collisions [8] between objects which are already differentiated. During each collision, the metallic cores of the colliding objects merge on timescales of a few hours [9]. Each collision will reset the Hf-W isotopic signature of both mantle and core, depending on the degree to which the impactor core re-equilibrates with the mantle of the target [10]. The re-equilibration efficiency depends mainly on the degree to which the impactor emulsifies [11], which is very uncertain. Results from N-body simulations [8,12] suggest that significant degrees of re- equilibration are required [4,10]. Re

  17. Viscosity of Earth's Outer Core

    CERN Document Server

    Smylie, D E

    2007-01-01

    A viscosity profile across the entire fluid outer core is found by interpolating between measured boundary values, using a differential form of the Arrhenius law governing pressure and temperature dependence. The discovery that both the retrograde and prograde free core nutations are in free decay (Palmer and Smylie, 2005) allows direct measures of viscosity at the top of the outer core, while the reduction in the rotational splitting of the two equatorial translational modes of the inner core allows it to be measured at the bottom. We find 2,371 plus/minus 1,530 Pa.s at the top and 1.247 plus/minus 0.035 x 10^11 Pa.s at the bottom. Following Brazhkin (1998) and Brazhkin and Lyapin (2000) who get 10^2 Pa.s at the top, 10^11 Pa.s at the bottom, by an Arrhenius extrapolation of laboratory experiments, we use a differential form of the Arrhenius law to interpolate along the melting temperature curve to find a viscosity profile across the outer core. We find the variation to be closely log-linear between the meas...

  18. SMART core protection system design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K.; Park, H. Y.; Koo, I. S. [KAERI, Taejon (Korea, Republic of); Park, H. S.; Kim, J. S.; Son, C. H. [Samchang Enterprise Co., Ltd., Taejon (Korea, Republic of)

    2003-10-01

    SMART COre Protection System(SCOPS) is designed with real-tims Digital Signal Processor(DSP) board and Network Interface Card(NIC) board. SCOPS has a Control Rod POSition (CRPOS) software module while Core Protection Calculator System(CPCS) consists of Core Protection Calculators(CPCs) and Control Element Assembly(CEA) Calculators(CEACs) in the commercial nuclear plant. It's not necessary to have a independent cabinets for SCOPS because SCOPS is physically very small. Then SCOPS is designed to share the cabinets with Plant Protection System(PPS) of SMART. Therefor it's very easy to maintain the system because CRPOS module is used instead of the computer with operating system.

  19. Atmospheric Methane in Ice Cores

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The reconstruction of air trapped in ice cores provides us the most direct information about atmospheric CH4 variations in the past history. Ice core records from the "Three Poles (Antarctica, Greenland and Tibetan Plateau)" reveal the detailed fluctuations of atmospheric CH4 concentration with time and are allowed to quantify the CH4 differences among latitudes. These data are indispensably in the farther study of the relationship between greenhouse gases and climatic change, and of the past changes in terrestrial CH4 emissions. Ice cores reconstruction indicates that atmospheric CH4 concentration has increased quickly since industrialization, and the present day's level of atmospheric CH4 (1800 ppbv) is unprecedented during the past Glacial-Interglacial climate cycles.

  20. Distributed k-Core Decomposition

    CERN Document Server

    Montresor, Alberto; Miorandi, Daniele

    2011-01-01

    Among the novel metrics used to study the relative importance of nodes in complex networks, k-core decomposition has found a number of applications in areas as diverse as sociology, proteinomics, graph visualization, and distributed system analysis and design. This paper proposes new distributed algorithms for the computation of the k-core decomposition of a network, with the purpose of (i) enabling the run-time computation of k-cores in "live" distributed systems and (ii) allowing the decomposition, over a set of connected machines, of very large graphs, that cannot be hosted in a single machine. Lower bounds on the algorithms complexity are given, and an exhaustive experimental analysis on real-world graphs is provided.

  1. Identifying ELIXIR Core Data Resources.

    Science.gov (United States)

    Durinx, Christine; McEntyre, Jo; Appel, Ron; Apweiler, Rolf; Barlow, Mary; Blomberg, Niklas; Cook, Chuck; Gasteiger, Elisabeth; Kim, Jee-Hyub; Lopez, Rodrigo; Redaschi, Nicole; Stockinger, Heinz; Teixeira, Daniel; Valencia, Alfonso

    2016-01-01

    The core mission of ELIXIR is to build a stable and sustainable infrastructure for biological information across Europe. At the heart of this are the data resources, tools and services that ELIXIR offers to the life-sciences community, providing stable and sustainable access to biological data. ELIXIR aims to ensure that these resources are available long-term and that the life-cycles of these resources are managed such that they support the scientific needs of the life-sciences, including biological research. ELIXIR Core Data Resources are defined as a set of European data resources that are of fundamental importance to the wider life-science community and the long-term preservation of biological data. They are complete collections of generic value to life-science, are considered an authority in their field with respect to one or more characteristics, and show high levels of scientific quality and service. Thus, ELIXIR Core Data Resources are of wide applicability and usage. This paper describes the structures, governance and processes that support the identification and evaluation of ELIXIR Core Data Resources. It identifies key indicators which reflect the essence of the definition of an ELIXIR Core Data Resource and support the promotion of excellence in resource development and operation. It describes the specific indicators in more detail and explains their application within ELIXIR's sustainability strategy and science policy actions, and in capacity building, life-cycle management and technical actions. The identification process is currently being implemented and tested for the first time. The findings and outcome will be evaluated by the ELIXIR Scientific Advisory Board in March 2017. Establishing the portfolio of ELIXIR Core Data Resources and ELIXIR Services is a key priority for ELIXIR and publicly marks the transition towards a cohesive infrastructure.

  2. Earth's core and the geodynamo

    Science.gov (United States)

    Buffett

    2000-06-16

    Earth's magnetic field is generated by fluid motion in the liquid iron core. Details of how this occurs are now emerging from numerical simulations that achieve a self-sustaining magnetic field. Early results predict a dominant dipole field outside the core, and some models even reproduce magnetic reversals. The simulations also show how different patterns of flow can produce similar external fields. Efforts to distinguish between the various possibilities appeal to observations of the time-dependent behavior of the field. Important constraints will come from geological records of the magnetic field in the past.

  3. Magnetic Probing of Core Geodynamics

    Science.gov (United States)

    Voorhies, Coerte V.

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynmcal hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth's core and uncertainty. If this agrees with the seismologic value, then the hypothes pass the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth's core, this yields a generalized Stevenson-McLeod spectrum for the core-source field, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale change. In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at lentgh-scale l/k, if one presumes kinetic energy is converted in either eddy- overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magneto-geostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core- mantle boundary. The resulting theoretical spectra for the core-source field and its SV are far more compatible with observation. The conversion time-scale of order l20 years is pseudo-scale-invarient. Magnetic spectra of other

  4. Core competencies in internal medicine.

    Science.gov (United States)

    Porcel, José Manuel; Casademont, Jordi; Conthe, Pedro; Pinilla, Blanca; Pujol, Ramón; García-Alegría, Javier

    2012-06-01

    The working group on Competencies of Internal Medicine from the Spanish Society of Internal Medicine (SEMI) proposes a series of core competencies that we consider should be common to all European internal medicine specialists. The competencies include aspects related to patient care, clinical knowledge, technical skills, communication skills, professionalism, cost-awareness in medical care and academic activities. The proposal could be used as a working document for the Internal Medicine core curriculum in the context of the educational framework of medical specialties in Europe.

  5. Core Task and Organizational Reality

    DEFF Research Database (Denmark)

    Vikkelsø, Signe

    2015-01-01

    of core objects such as ‘task’ and ‘coordination,’ contemporary organization studies emphasize, much like other social science disciplines, broader topics such as ‘network,’ ‘identity,’ and ‘change.’ The paper argues that this altered focus and vocabulary is accompanied by a diminished ability to specify...... and intervene into the practical reality of organizations. It further argues that a discipline's core objects are not anachronisms to be discarded with, but crucial for specifying reality in ways that have proven practically relevant and still are....

  6. Producing gapped-ferrite transformer cores

    Science.gov (United States)

    Mclyman, W. T.

    1980-01-01

    Improved manufacturing techniques make reproducible gaps and minimize cracking. Molded, unfired transformer cores are cut with thin saw and then fired. Hardened semicircular core sections are bonded together, placed in aluminum core box, and fluidized-coated. After winding is run over box, core is potted. Economical method significantly reduces number of rejects.

  7. Multi-core Architectures and Streaming Applications

    NARCIS (Netherlands)

    Smit, Gerard J.M.; Kokkeler, André B.J.; Wolkotte, Pascal T.; Burgwal, van de Marcel D.; Mandoiu, I.; Kennings, A.

    2008-01-01

    In this paper we focus on algorithms and reconfigurable multi-core architectures for streaming digital signal processing (DSP) applications. The multi-core concept has a number of advantages: (1) depending on the requirements more or fewer cores can be switched on/off, (2) the multi-core structure f

  8. Core Stability Training for Injury Prevention

    OpenAIRE

    2013-01-01

    Context: Enhancing core stability through exercise is common to musculoskeletal injury prevention programs. Definitive evidence demonstrating an association between core instability and injury is lacking; however, multifaceted prevention programs including core stabilization exercises appear to be effective at reducing lower extremity injury rates. Evidence Acquisition: PubMed was searched for epidemiologic, biomechanic, and clinical studies of core stability for injury prevention (keywords: ...

  9. Visual Feedback for Rover-based Coring

    Science.gov (United States)

    Backes, Paul; Helmick, Daniel; Bajracharya, Max

    2008-01-01

    Technology for coring from a low-mass rover has been developed to enable core sample acquisition where a planetary rover experiences moderate slip during the coring operation. A new stereo vision technique, Absolute Motion Visual Odometry, is used to measure rover slip during coring and the slip is accommodated through corresponding arm pose updating. Coring rate is controlled by feedback of themeasured force of the coring tool against the environment. Test results in the JPL Marsyard show for the first time that coring from a low-mass rover with slip is feasible.

  10. Core Competence Development : paradigm and practical implementations

    OpenAIRE

    Koay, Ze Wei; E.Markov, Denis

    2011-01-01

    The theory of core competence has drawn a large amount of attention in the academic field as well as of practitioners in the corporate world. Theory asserts that long-term value creation and competitiveness of the corporation relies on full-scale exploitation and timely development of company Core Competences; business strategies should be built around the core competencies of a firm. Identification and exploitation of Core Competences as well as essential elements comprising Core Competences...

  11. Fuzzy Cores and Fuzzy Balancedness

    NARCIS (Netherlands)

    van Gulick, G.; Norde, H.W.

    2011-01-01

    We study the relation between the fuzzy core and balancedness for fuzzy games. For regular games, this relation has been studied by Bondareva (1963) and Shapley (1967). First, we gain insight in this relation when we analyse situations where the fuzzy game is continuous. Our main result shows that a

  12. Competition for cores in remanufacturing

    NARCIS (Netherlands)

    Bulmus, Serra Caner; Zhu, Stuart X.; Teunter, Ruud

    2014-01-01

    We study competition between an original equipment manufacturer (OEM) and an independently operating remanufacturer (IO). Different from the existing literature, the OEM and IO compete not only for selling their products but also for collecting returned products (cores) through their acquisition pri

  13. One Health Core Competency Domains.

    Science.gov (United States)

    Frankson, Rebekah; Hueston, William; Christian, Kira; Olson, Debra; Lee, Mary; Valeri, Linda; Hyatt, Raymond; Annelli, Joseph; Rubin, Carol

    2016-01-01

    The emergence of complex global challenges at the convergence of human, animal, and environmental health has catalyzed a movement supporting "One Health" approaches. Despite recognition of the importance of One Health approaches to address these complex challenges, little effort has been directed at identifying the seminal knowledge, skills, and attitudes necessary for individuals to successfully contribute to One Health efforts. Between 2008 and 2011, three groups independently embarked on separate initiatives to identify core competencies for professionals involved with One Health approaches. Core competencies were considered critically important for guiding curriculum development and continuing professional education, as they describe the knowledge, skills, and attitudes required to be effective. A workshop was convened in 2012 to synthesize the various strands of work on One Health competencies. Despite having different mandates, participants, and approaches, all of these initiatives identified similar core competency domains: management; communication and informatics; values and ethics; leadership; teams and collaboration; roles and responsibilities; and systems thinking. These core competency domains have been used to develop new continuing professional education programs for One Health professionals and help university curricula prepare new graduates to be able to contribute more effectively to One Health approaches.

  14. Fuzzy Cores and Fuzzy Balancedness

    NARCIS (Netherlands)

    van Gulick, G.; Norde, H.W.

    2011-01-01

    We study the relation between the fuzzy core and balancedness for fuzzy games. For regular games, this relation has been studied by Bondareva (1963) and Shapley (1967). First, we gain insight in this relation when we analyse situations where the fuzzy game is continuous. Our main result shows that

  15. Common Core: Solve Math Problems

    Science.gov (United States)

    Strom, Erich

    2012-01-01

    The new common core standards for mathematics demand that students (and teachers!) exhibit deeper conceptual understanding. That's music to the ears of education professor John Tapper, who says teachers have overemphasized teaching procedures--and getting right answers. In his new book, "Solving for Why," he makes a powerful case for moving beyond…

  16. Reference: GT1CORE [PLACE

    Lifescience Database Archive (English)

    Full Text Available GT1CORE Green PJ, Yong M-H, Cuozzo M, Kano-Murakami Y, Silverstein P, Chua N-H Binding site require...ments for pea nuclear protein factor GT-1 correlate with sequences required for light-depend

  17. One Health Core Competency Domains

    Science.gov (United States)

    Frankson, Rebekah; Hueston, William; Christian, Kira; Olson, Debra; Lee, Mary; Valeri, Linda; Hyatt, Raymond; Annelli, Joseph; Rubin, Carol

    2016-01-01

    The emergence of complex global challenges at the convergence of human, animal, and environmental health has catalyzed a movement supporting “One Health” approaches. Despite recognition of the importance of One Health approaches to address these complex challenges, little effort has been directed at identifying the seminal knowledge, skills, and attitudes necessary for individuals to successfully contribute to One Health efforts. Between 2008 and 2011, three groups independently embarked on separate initiatives to identify core competencies for professionals involved with One Health approaches. Core competencies were considered critically important for guiding curriculum development and continuing professional education, as they describe the knowledge, skills, and attitudes required to be effective. A workshop was convened in 2012 to synthesize the various strands of work on One Health competencies. Despite having different mandates, participants, and approaches, all of these initiatives identified similar core competency domains: management; communication and informatics; values and ethics; leadership; teams and collaboration; roles and responsibilities; and systems thinking. These core competency domains have been used to develop new continuing professional education programs for One Health professionals and help university curricula prepare new graduates to be able to contribute more effectively to One Health approaches. PMID:27679794

  18. Stability of Molten Core Materials

    Energy Technology Data Exchange (ETDEWEB)

    Layne Pincock; Wendell Hintze

    2013-01-01

    The purpose of this report is to document a literature and data search for data and information pertaining to the stability of nuclear reactor molten core materials. This includes data and analysis from TMI-2 fuel and INL’s LOFT (Loss of Fluid Test) reactor project and other sources.

  19. One Health Core Competency Domains

    Directory of Open Access Journals (Sweden)

    Rebekah Frankson

    2016-09-01

    Full Text Available The emergence of complex global challenges at the convergence of human, animal, and environmental health has catalyzed a movement supporting ‘One Health’ approaches. Despite recognition of the importance of One Health approaches to address these complex challenges, little effort has been directed at identifying the seminal knowledge, skills and attitudes necessary for individuals to successfully contribute to One Health efforts. Between 2008 and 2011, three groups independently embarked on separate initiatives to identify core competencies for professionals involved with One Health approaches. Core competencies were considered critically important for guiding curriculum development and continuing professional education as they describe the knowledge, skills and attitudes required to be effective. A workshop was convened in 2012 to synthesize the various strands of work on One Health competencies. Despite having different mandates, participants, and approaches, all of these initiatives identified similar core competency domains: management; communication and informatics; values and ethics; leadership; teams and collaboration; roles and responsibilities; and systems thinking. These core competency domains have been used to develop new continuing professional education programs for One Health professionals and help university curricula prepare new graduates to be able to contribute more effectively to One Health approaches.

  20. Earth rotation and core topography

    Science.gov (United States)

    Hager, Bradford H.; Clayton, Robert W.; Spieth, Mary Ann

    1988-01-01

    The NASA Geodynamics program has as one of its missions highly accurate monitoring of polar motion, including changes in length of day (LOD). These observations place fundamental constraints on processes occurring in the atmosphere, in the mantle, and in the core of the planet. Short-timescale (t less than or approx 1 yr) variations in LOD are mainly the result of interaction between the atmosphere and the solid earth, while variations in LOD on decade timescales result from the exchange of angular momentum between the mantle and the fluid core. One mechanism for this exchange of angular momentum is through topographic coupling between pressure variations associated with flow in the core interacting with topography at the core-mantel boundary (CMB). Work done under another NASA grant addressing the origin of long-wavelength geoid anomalies as well as evidence from seismology, resulted in several models of CMB topography. The purpose of work supported by NAG5-819 was to study further the problem of CMB topography, using geodesy, fluid mechanics, geomagnetics, and seismology. This is a final report.

  1. CopperCore Service Integration

    Science.gov (United States)

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; van Rosmalen, Peter; Koper, Rob

    2007-01-01

    In an e-learning environment there is a need to integrate various e-learning services like assessment services, collaboration services, learning design services and communication services. In this article we present the design and implementation of a generic integrative service framework, called CopperCore Service Integration (CCSI). We will…

  2. Core shift effect in blazars

    Science.gov (United States)

    Agarwal, A.; Mohan, P.; Gupta, Alok C.; Mangalam, A.; Volvach, A. E.; Aller, M. F.; Aller, H. D.; Gu, M. F.; Lähteenmäki, A.; Tornikoski, M.; Volvach, L. N.

    2017-07-01

    We studied the pc-scale core shift effect using radio light curves for three blazars, S5 0716+714, 3C 279 and BL Lacertae, which were monitored at five frequencies (ν) between 4.8 and 36.8 GHz using the University of Michigan Radio Astronomical Observatory (UMRAO), the Crimean Astrophysical Observatory (CrAO) and Metsähovi Radio Observatory for over 40 yr. Flares were Gaussian fitted to derive time delays between observed frequencies for each flare (Δt), peak amplitude (A) and their half width. Using A ∝ να, we infer α in the range of -16.67-2.41 and using Δ t ∝ ν ^{1/k_r}, we infer kr ∼ 1, employed in the context of equipartition between magnetic and kinetic energy density for parameter estimation. From the estimated core position offset (Ωrν) and the core radius (rcore), we infer that opacity model may not be valid in all cases. The mean magnetic field strengths at 1 pc (B1) and at the core (Bcore) are in agreement with previous estimates. We apply the magnetically arrested disc model to estimate black hole spins in the range of 0.15-0.9 for these blazars, indicating that the model is consistent with expected accretion mode in such sources. The power-law-shaped power spectral density has slopes -1.3 to -2.3 and is interpreted in terms of multiple shocks or magnetic instabilities.

  3. Magnectic Probing of Core Geodynamics

    Science.gov (United States)

    Voorhies, Coerte

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynamical hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth s core and uncertainty. If this agrees with the seismologic value, then the hypotheses pass the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth s core, this yields a JGR-PI, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale change.In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at length- scale l/k, if one presumes kinetic energy is converted in either eddy- overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magneto- geostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core-mantle boundary. The resulting theoretical spectra for the core- source field and its SV are far more compatible with observation. The conversion time-scale of order 120 years is pseudo-scale-invariant. Magnetic spectra of other planets may differ; however, if a transition to non

  4. Interleaved Core Assignment for Bidirectional Transmission in Multi-Core Fibers

    DEFF Research Database (Denmark)

    Ye, Feihong; Morioka, Toshio

    2013-01-01

    We study interleaved core assignment for bidirectional transmission in multi-core fibers. By combining it with heterogeneous core structure in an 18-core fiber, the transmission distance is extended by 10 times compared to homogeneous core structure with unidirectional transmission, achieving...

  5. Interleaved Core Assignment for Bidirectional Transmission in Multi-Core Fibers

    OpenAIRE

    2013-01-01

    We study interleaved core assignment for bidirectional transmission in multi-core fibers. By combining it with heterogeneous core structure in an 18-core fiber, the transmission distance is extended by 10 times compared to homogeneous core structure with unidirectional transmission, achieving a total capacity of 1 Pb/s per direction.

  6. Interleaved Core Assignment for Bidirectional Transmission in Multi-Core Fibers

    DEFF Research Database (Denmark)

    Ye, Feihong; Morioka, Toshio

    2013-01-01

    We study interleaved core assignment for bidirectional transmission in multi-core fibers. By combining it with heterogeneous core structure in an 18-core fiber, the transmission distance is extended by 10 times compared to homogeneous core structure with unidirectional transmission, achieving a t...

  7. Cores to the rescue: how old cores enable new science

    Science.gov (United States)

    Ito, E.; Noren, A. J.; Brady, K.

    2016-12-01

    The value of archiving scientific specimens and collections for the purpose of enabling further research using new analytical techniques, resolving conflicting results, or repurposing them for entirely new research, is often discussed in abstract terms. We all agree that samples with adequate metadata ought to be archived systematically for easy access, for a long time and stored under optimal conditions. And yet, as storage space fills, there is a temptation to cull the collection, or when a researcher retires, to discard the collection unless the researcher manages to make his or her own arrangement for the collection to be accessioned elsewhere. Nobody has done anything with these samples in over 20 years! Who would want them? It turns out that plenty of us do want them, if we know how to find them and if they have sufficient metadata to assess past work and suitability for new analyses. The LacCore collection holds over 33 km of core from >6700 sites in diverse geographic locations worldwide with samples collected as early as 1950s. From these materials, there are many examples to illustrate the scientific value of archiving geologic samples. One example that benefitted Ito personally were cores from Lakes Mirabad and Zeribar, Iran, acquired in 1963 by Herb Wright and his associates. Several doctoral and postdoctoral students generated and published paleoecological reconstructions based on cladocerans, diatoms, pollen or plant macrofossils, mostly between 1963 and 1967. The cores were resampled in 1990s by a student being jointly advised by Wright and Ito for oxygen isotope analysis of endogenic calcite. The results were profitably compared with pollen and the results published in 2001 and 2006. From 1979 until very recently, visiting Iran for fieldwork was not pallowed for US scientists. Other examples will be given to further illustrate the power of archived samples to advance science.

  8. Hydrologic characterization of four cores from the Geysers Coring Project

    Energy Technology Data Exchange (ETDEWEB)

    Persoff, Peter; Hulen, Jeffrey B.

    1996-01-24

    Results of hydrologic tests conducted on four representative core plugs from Geysers Coring Project drill hole SB-15-D have been related to detailed mineralogic and textural characterization of the plugs to yield new information about permeability, porosity, and capillary-pressure characteristics of the uppermost Geysers steam reservoir and its immediately overlying caprock. The core plugs are all fine- to medium-grained, Franciscan-assemblage (late Mesozoic) metagraywacke with sparse Franciscan metamorphic quartz-calcite veins and late Cenozoic, hydrothermal quartz-calcite-pyrite veins. The matrices of three plugs from the caprock are rich in metamorphic mixed-layer illite/smectite and disseminated hydrothermal pyrite; the reservoir plug instead contains abundant illite and only minor pyrite. The reservoir plug and one caprock plug are sparsely disrupted by latest-stage, unmineralized microfractures which both follow and crosscut veinlets but which could be artifacts. Porosities of the plugs, measured by Boyles-law gas expansion, range between 1.9 and 2.5%. Gas permeability and Klinkenberg slip factor were calculated from gas-pressure-pulse-decay measurements using a specially designed permeameter with small (2 mL) reservoirs. Matrix permeabilities in the range 10-21 m² ( = 1 nanodarcy) were measured for two plugs that included mineral-filled veins but no unfilled microfractures. Greater permeabilities were measured on plugs that contained microfractures; at 500 psi net confining pressure, an effective aperture of 1.6 µm was estimated for one plug. Capillary pressure curves were determined for three cores by measuring saturation as weight gain of plugs equilibrated with atmospheres in which the relative humidity was controlled by saturated brines.

  9. Hydrologic characterization of four cores from the Geysers Coring Project

    Energy Technology Data Exchange (ETDEWEB)

    Persoff, P. [Lawrence Berkeley National Lab., CA (United States); Hulen, J.B. [Univ. of Utah, Salt Lake City, UT (United States). Earth Sciences and Resources Institute

    1996-01-01

    Results of hydrologic tests on 4 representative core plugs from Geysers Coring Project drill hole SB-15-D were related to mineralogy and texture. Permeability measurements were made on 3 plugs from caprock and one plug from the steam reservoir. Late-stage microfractures present in 2 of the plugs contributed to greater permeability, but the values for the 2 other plugs indicate a typical matrix permeability of 1 to 2 {times} 10{sup {minus}21}m{sup 2}. Klinkenberg slip factor b for these plugs is generally consistent with the inverse relation between slip factor and permeability observed by Jones (1972) for plugs of much more permeable material. The caprock and reservoir samples are nearly identical metagraywackes with slight mineralogical differences which appear to have little effect on hydrology. The late stage microfractures are suspected of being artifacts. The capillary pressure curves for 3 cores are fit by power-law relations which can be used to estimate relative permeability curves for the matrix rocks.

  10. Logging-while-coring method and apparatus

    Science.gov (United States)

    Goldberg, David S.; Myers, Gregory J.

    2007-11-13

    A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.

  11. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  12. Whole Core Transport Calculation Methodology for a Hexagonal Core

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. Y.; Kim, K. S.; Lee, C. C.; Zee, S. Q.; Joo, H. G

    2007-07-15

    This report discusses the hexagonal module implemented to the DeCART code and the performance of them. The implemented hexagonal module includes the hexagonal ray tracing and the CMFD acceleration modules. The performance of the implemented hexagonal module is examined for 4 tests of: (1) CMFD acceleration test, (2) the accuracy test of the hexagonal module, (3) the performance test for 2-D NGNP problem and (4) the applicability test for 3-D NGNP problem. The features of the implemented hexagonal modules are: (1) The Modular ray tracing scheme based on a hexagonal assembly and a path linking scheme between the modular rays. (2) Segment generation based on the structure unit. (3) Cell ray approximation: This feature is developed to reduce the memory required to store the segment information. (4) Modified cycle ray scheme that begins the ray tracing at a given surface and finishes if the reflected ray meets the starting surface. This feature is developed to reduce the memory required for the angular flux at the core boundary. (5) Fixed assembly geometry. The pin geometry of the single pin per assembly problem is different from that of the multi-pin problem. The core geometry of a single assembly problem is also different from that of the multi-assembly problem. (6) CMFD module based on unstructured cell. This feature is to deal with the irregular gap cells that are positioned at the assembly boundaries. The examination results of the 4 tests can be summarized as: (1) The CMFD acceleration test shows that the CMFD module speedups about greater than 200 for the core problem. (2) The accuracy test shows that the hexagonal MOC module produces an accurate solution of less than 60 pcm of eigenvalue and less than 2 % of local pin power errors. (3) The performance test for 2-D NGNP problem shows that the implemented hexagonal module works soundly and produces a reasonable solution by cooperating with the existing DeCART library and the other modules. (4) The applicability

  13. Divergent Chemoenzymatic Synthesis of Asymmetrical-Core-Fucosylated and Core-Unmodified N-Glycans

    NARCIS (Netherlands)

    Li, Tiehai; Huang, Min; Liu, Lin; Wang, Shuo; Moremen, Kelley W; Boons, Geert-Jan|info:eu-repo/dai/nl/088245489

    2016-01-01

    A divergent chemoenzymaytic approach for the preparation of core-fucosylated and core-unmodified asymmetrical N-glycans from a common advances precursor is described. An undecasaccharide was synthesized by sequential chemical glycosylations of an orthogonally protected core fucosylated

  14. Sediments at the top of Earth's core.

    Science.gov (United States)

    Buffett, B A; Garnero, E J; Jeanloz, R

    2000-11-17

    Unusual physical properties at the core-mantle boundary have been inferred from seismic and geodetic observations in recent years. We show how both types of observations can be explained by a layer of silicate sediments, which accumulate at the top of the core as Earth cools. Compaction of the sediments expels most of the liquid iron but leaves behind a small amount of core material, which is entrained in mantle convection and may account for the isotopic signatures of core material in some hot spot plumes. Extraction of light elements from the liquid core also enhances the vigor of convection in the core and may increase the power available to the geodynamo.

  15. Core and Lumbopelvic Stabilization in Runners.

    Science.gov (United States)

    Rivera, Carlos E

    2016-02-01

    Core muscles provide stability that allows generation of force and motion in the lower extremities, as well as distributing impact forces and allowing controlled and efficient body movements. Imbalances or deficiencies in the core muscles can result in increased fatigue, decreased endurance, and injury in runners. Core strengthening should incorporate the intrinsic needs of the core for flexibility, strength, balance, and endurance, and the function of the core in relation to its role in extremity function and dysfunction. Specific exercises are effective in strengthening the core muscles.

  16. Accelerator driven sub-critical core

    Science.gov (United States)

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  17. L183, a Quiescent Core?

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Some observed results of NH3 (1, 1) and (2, 2) line emission in the starless dark cloud L183 are reported. Our observation suggests that the dense core of L183 has a size of ~ 0.16pc ×0.1pc with a mass of ~ 12M⊙. A velocity gradient of 4km s-1pc-1 from the north to the south was detected. The velocity shift corresponds to a central mass of ~ 5M⊙. If it is caused by rotation, the mass would be much less than the value above. This suggests that there may be more mass in the envelope of L183 than in the central region. The analysis of our data and the evidence in the literature about L183 indicate that it may be undergoing a process of collapsing to form a low-mass binary dense core.

  18. CORE CULTURE IN LANGUAGE LEARNING

    Institute of Scientific and Technical Information of China (English)

    Jane Orton

    2002-01-01

    This paper presents the essential role of culture in the creation of meaning of language-inuse, showing it to be the source of both the contextual shaping of a particular text and the fundamental core of beliefs and values from which contemporary contextual features derive. As a result of this essential relationship, it is argued, modern language learners need to master the cultural system as well as the linguistic system of their new language if they are to be able to use it competently in real life, as mo st intend today. Samples of texts are examined to show how the meanings of both context and core culture are naturally embedded in ordinary language and suggestions are provided for how these might be successfully brought to students' attention and mastery in a classroom.

  19. Beyond core knowledge: Natural geometry

    Science.gov (United States)

    Spelke, Elizabeth; Lee, Sang Ah; Izard, Véronique

    2010-01-01

    For many centuries, philosophers and scientists have pondered the origins and nature of human intuitions about the properties of points, lines, and figures on the Euclidean plane, with most hypothesizing that a system of Euclidean concepts either is innate or is assembled by general learning processes. Recent research from cognitive and developmental psychology, cognitive anthropology, animal cognition, and cognitive neuroscience suggests a different view. Knowledge of geometry may be founded on at least two distinct, evolutionarily ancient, core cognitive systems for representing the shapes of large-scale, navigable surface layouts and of small-scale, movable forms and objects. Each of these systems applies to some but not all perceptible arrays and captures some but not all of the three fundamental Euclidean relationships of distance (or length), angle, and direction (or sense). Like natural number (Carey, 2009), Euclidean geometry may be constructed through the productive combination of representations from these core systems, through the use of uniquely human symbolic systems. PMID:20625445

  20. Continuous Chemistry in Ice Cores

    DEFF Research Database (Denmark)

    Kjær, Helle Astrid

    originating from volcanic eruptions, crucial for cross-dating ice cores and relevant for climate interpretations. The method includes a heat bath to minimize the acidifying effect of CO2 both from the laboratory and from the ice itself. While for acidic ice the method finds similar concentrations of H......Ice cores provide high resolution records of past climate and environment. In recent years the use of continuous flow analysis (CFA) systems has increased the measurement throughput, while simultaneously decreasing the risk of contaminating the ice samples. CFA measurements of high temporal...... resolution increase our knowledge on fast climate variations and cover a wide range of proxies informing on a variety of components such as atmospheric transport, volcanic eruptions, forest fires and many more. New CFA methods for the determination of dissolved reactive phosphorus (DRP) and pH are presented...

  1. Composite Structure with Origami Core

    Science.gov (United States)

    2016-07-19

    preparation). Hence, we are able to produce foldcores in any given shape. Mechanical behaviour of sandwich shells with foldcores Equipped with the...being pressed in order to invert the tube inside out. For a tube with circular section, this particular mode of failure has been proven to consume the...to design the most suitable folded core structure for given applications. Gattas J M and You Z, The Behaviour of Curved-Crease Foldcores under

  2. Hollow-core grating fiber

    Science.gov (United States)

    Barillé, R.; Tajalli, P.; Roy, P.; Ahmadi-kandjani, S.; Kucharski, S.; Ortyl, E.

    2012-02-01

    We propose a new type of hollow-core fiber where the propagation is ensured by a photoinduced self-pattern acting as a surface relief grating (SRG). The SRG is written by launching a suitable laser beam with proper polarization in a capillary glass fiber with the inner surface previously coated with an azopolymer thin film. Such a grating acts as a wavelength/angle dependant reflective mirror and enhances the confinement and the propagation of the light.

  3. Understanding Core-Collapse Supernovae

    CERN Document Server

    Burrows, A

    2004-01-01

    I summarize, in the form of an extended abstract, the ongoing efforts at the University of Arizona (and in collaboration) to understand core-collapse supernovae theoretically. Included are short discussions of 1D (SESAME) and 2D (VULCAN/2D) codes and results, as well as discussions of the possible role of rotation. Highlighted are recent developments in multi-dimensional radiation hydrodynamics and the essential physics of the neutrino-driven mechanism.

  4. Finding your next core business.

    Science.gov (United States)

    Zook, Chris

    2007-04-01

    How do you know when your core needs to change? And how do you determine what should replace it? From an in-depth study of 25 companies, the author, a strategy consultant, has discovered that it's possible to measure the vitality of a business's core. If it needs reinvention, he says, the best course is to mine hidden assets. Some of the 25 companies were in deep crisis when they began the process of redefining themselves. But, says Zook, management teams can learn to recognize early signs of erosion. He offers five diagnostic questions with which to evaluate the customers, key sources of differentiation, profit pools, capabilities, and organizational culture of your core business. The next step is strategic regeneration. In four-fifths of the companies Zook examined, a hidden asset was the centerpiece of the new strategy. He provides a map for identifying the hidden assets in your midst, which tend to fall into three categories: undervalued business platforms, untapped insights into customers, and underexploited capabilities. The Swedish company Dometic, for example, was manufacturing small absorption refrigerators for boats and RVs when it discovered a hidden asset: its understanding of, and access to, customers in the RV market. The company took advantage of a boom in that market to refocus on complete systems for live-in vehicles. The Danish company Novozymes, which produced relatively low-tech commodity enzymes such as those used in detergents, realized that its underutilized biochemical capability in genetic and protein engineering was a hidden asset and successfully refocused on creating bioengineered specialty enzymes. Your next core business is not likely to announce itself with fanfare. Use the author's tools to conduct an internal audit of possibilities and pinpoint your new focus.

  5. Rich-cores in networks

    CERN Document Server

    Ma, Athen

    2014-01-01

    A core is said to be a group of central and densely connected nodes which governs the overall behavior of a network. Profiling this meso--scale structure currently relies on a limited number of methods which are often complex, and have scalability issues when dealing with very large networks. As a result, we are yet to fully understand its impact on network properties and dynamics. Here we introduce a simple method to profile this structure by combining the concepts of core/periphery and rich-club. The key challenge in addressing such association of the two concepts is to establish a way to define the membership of the core. The notion of a "rich-club" describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. Interestingly, the definition of a rich-club naturally emphasizes high degree nodes and divides a network into two subgroups. Our approach theoretically couples the underlying principle of a rich-club with the escape time of a rand...

  6. Grain alignment in starless cores

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. J.; Bagley, M. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Krejny, M. [Cree Inc., 4600 Silicon Dr., Durham, NC (United States); Andersson, B.-G. [SOFIA Science Center, USRA, Moffett Field, CA (United States); Bastien, P., E-mail: tjj@astro.umn.edu [Centre de recherche en astrophysique du Québec and Départment de Physique, Université de Montréal, Montréal (Canada)

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A{sub V}∼48. We find that P{sub K}/τ{sub K} continues to decline with increasing A{sub V} with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A{sub V}≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A{sub V}∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  7. Helium in Earth's early core

    Science.gov (United States)

    Bouhifd, M. A.; Jephcoat, Andrew P.; Heber, Veronika S.; Kelley, Simon P.

    2013-11-01

    The observed escape of the primordial helium isotope, 3He, from the Earth's interior indicates that primordial helium survived the energetic process of planetary accretion and has been trapped within the Earth to the present day. Two distinct reservoirs in the Earth's interior have been invoked to account for variations in the 3He/4He ratio observed at the surface in ocean basalts: a conventional depleted mantle source and a deep, still enigmatic, source that must have been isolated from processing throughout Earth history. The Earth's iron-based core has not been considered a potential helium source because partitioning of helium into metal liquid has been assumed to be negligible. Here we determine helium partitioning in experiments between molten silicates and iron-rich metal liquids at conditions up to 16GPa and 3,000K. Analyses of the samples by ultraviolet laser ablation mass spectrometry yield metal-silicate helium partition coefficients that range between 4.7×10-3 and 1.7×10-2 and suggest that significant quantities of helium may reside in the core. Based on estimated concentrations of primordial helium, we conclude that the early core could have incorporated enough helium to supply deep-rooted plumes enriched in 3He throughout the age of the Earth.

  8. Core shifts in blazar jets

    CERN Document Server

    Zdziarski, Andrzej A; Pjanka, Patryk; Tchekhovskoy, Alexander

    2014-01-01

    We study the effect of core shift in jets, which is the dependence of the position of the jet radio core on the frequency. We derive a new method to measure the jet magnetic field based on both the value of the shift and the observed flux, which compliments the standard method assuming equipartition. Using both methods, we re-analyse the blazar sample of Zamaninasab et al. We find that equipartition is satisfied only if the jet opening angle in the radio core region is close to the values found observationally, $\\simeq$0.1--0.2 divided by the bulk Lorentz factor, $\\Gamma_{\\rm j}$. Larger values, e.g., $1/\\Gamma_{\\rm j}$, would imply very strong departures from equipartition. A small jet opening angle implies in turn the magnetization parameter of $\\ll 1$. We determine the jet magnetic flux taking this effect into account. We find that the average jet magnetic flux is compatible with the model of jet formation due to black-hole spin energy extraction and accretion being magnetically arrested. We calculate the ...

  9. Core stability training for injury prevention.

    Science.gov (United States)

    Huxel Bliven, Kellie C; Anderson, Barton E

    2013-11-01

    Enhancing core stability through exercise is common to musculoskeletal injury prevention programs. Definitive evidence demonstrating an association between core instability and injury is lacking; however, multifaceted prevention programs including core stabilization exercises appear to be effective at reducing lower extremity injury rates. PUBMED WAS SEARCHED FOR EPIDEMIOLOGIC, BIOMECHANIC, AND CLINICAL STUDIES OF CORE STABILITY FOR INJURY PREVENTION (KEYWORDS: "core OR trunk" AND "training OR prevention OR exercise OR rehabilitation" AND "risk OR prevalence") published between January 1980 and October 2012. Articles with relevance to core stability risk factors, assessment, and training were reviewed. Relevant sources from articles were also retrieved and reviewed. Stabilizer, mobilizer, and load transfer core muscles assist in understanding injury risk, assessing core muscle function, and developing injury prevention programs. Moderate evidence of alterations in core muscle recruitment and injury risk exists. Assessment tools to identify deficits in volitional muscle contraction, isometric muscle endurance, stabilization, and movement patterns are available. Exercise programs to improve core stability should focus on muscle activation, neuromuscular control, static stabilization, and dynamic stability. Core stabilization relies on instantaneous integration among passive, active, and neural control subsystems. Core muscles are often categorized functionally on the basis of stabilizing or mobilizing roles. Neuromuscular control is critical in coordinating this complex system for dynamic stabilization. Comprehensive assessment and training require a multifaceted approach to address core muscle strength, endurance, and recruitment requirements for functional demands associated with daily activities, exercise, and sport.

  10. CORE SHAPES AND ORIENTATIONS OF CORE-SÉRSIC GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Dullo, Bililign T.; Graham, Alister W., E-mail: Bdullo@astro.swin.edu.au [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2015-01-01

    The inner and outer shapes and orientations of core-Sérsic galaxies may hold important clues to their formation and evolution. We have therefore measured the central and outer ellipticities and position angles for a sample of 24 core-Sérsic galaxies using archival Hubble Space Telescope (HST) images and data. By selecting galaxies with core-Sérsic break radii R{sub b} —a measure of the size of their partially depleted core—that are ≳ 0.''2, we find that the ellipticities and position angles are quite robust against HST seeing. For the bulk of the galaxies, there is a good agreement between the ellipticities and position angles at the break radii and the average outer ellipticities and position angles determined over R {sub e}/2 < R < R {sub e}, where R {sub e} is the spheroids' effective half light radius. However there are some interesting differences. We find a median ''inner'' ellipticity at R{sub b} of ε{sub med} = 0.13 ± 0.01, rounder than the median ellipticity of the ''outer'' regions ε{sub med} = 0.20 ± 0.01, which is thought to reflect the influence of the central supermassive black hole at small radii. In addition, for the first time we find a trend, albeit weak (2σ significance), such that galaxies with larger (stellar deficit-to-supermassive black hole) mass ratios—thought to be a measure of the number of major dry merger events—tend to have rounder inner and outer isophotes, suggesting a connection between the galaxy shapes and their merger histories. We show that this finding is not simply reflecting the well known result that more luminous galaxies are rounder, but it is no doubt related.

  11. Optimized Cellular Core for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Patz Materials and Technologies has developed, produced and tested, as part of the Phase-I SBIR, a new form of composite cellular core material, named Interply Core,...

  12. Scaling Turbo Boost to a 1000 cores

    CERN Document Server

    S, Ananth Narayan; Fedorova, Alexandra

    2010-01-01

    The Intel Core i7 processor code named Nehalem provides a feature named Turbo Boost which opportunistically varies the frequencies of the processor's cores. The frequency of a core is determined by core temperature, the number of active cores, the estimated power consumption, the estimated current consumption, and operating system frequency scaling requests. For a chip multi-processor(CMP) that has a small number of physical cores and a small set of performance states, deciding the Turbo Boost frequency to use on a given core might not be difficult. However, we do not know the complexity of this decision making process in the context of a large number of cores, scaling to the 100s, as predicted by researchers in the field.

  13. Investigating the translation of Earth's inner core

    DEFF Research Database (Denmark)

    Day, Elizabeth A; Cormier, Vernon F; Geballe, Zachary M;

    2012-01-01

    The Earth’s inner core provides unique insights into processes that are occurring deep within our Earth today, as well as processes that occurred in the past. The seismic structure of the inner core is complex, and is dominated by anisotropic and isotropic differences between the Eastern...... and Western ‘hemispheres’ of the inner core. Recent geodynamical models suggest that this hemispherical dichotomy can be explained by a fast translation of the inner core. In these models one side of the inner core is freezing, while the other side is melting, leading to the development of different seismic...... properties on either side of the inner core. A simple translating model of the inner core, however, does not seem to easily explain all of the seismically observed features, including the innermost inner core; the observed sharp lateral gradient in seismic properties between the two hemispheres...

  14. High Efficiency Solar Furnace Core Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop a high efficiency solar furnace core that greatly lessens the heat losses from the furnace core, either greatly reducing the amount of...

  15. Characterizing core stability with fuzzy games

    OpenAIRE

    Shellshear, Evan

    2011-01-01

    This paper investigates core stability of cooperative, TU games via a fuzzy extension of the totally balanced cover of a TU game. The stability of the core of the fuzzy extension of a game, the concave extension, is shown to reflect the core stability of the original game and vice versa. Stability of the core is then shown to be equivalent to the existence of an equilibrium of a certain correspondence.

  16. Characterizing core stability with fuzzy games

    OpenAIRE

    Shellshear, Evan

    2009-01-01

    This paper investigates core stability of cooperative, TU games via a fuzzy extension of the totally balanced cover of a TU game. The stability of the core of the fuzzy extension of a game, the concave extension, is shown to reflect the core stability of the original game and vice versa. Stability of the core is then shown to be equivalent to the existence of an equilibrium of a certain correspondence.

  17. Core Processes: Earth's eccentric magnetic field

    DEFF Research Database (Denmark)

    Finlay, Chris

    2012-01-01

    Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause.......Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause....

  18. Rotation and Magnetism of Earth's Inner Core

    Science.gov (United States)

    Glatzmaier; Roberts

    1996-12-13

    Three-dimensional numerical simulations of the geodynamo suggest that a super- rotation of Earth's solid inner core relative to the mantle is maintained by magnetic coupling between the inner core and an eastward thermal wind in the fluid outer core. This mechanism, which is analogous to a synchronous motor, also plays a fundamental role in the generation of Earth's magnetic field.

  19. Core Competencies in Information Management Education.

    Science.gov (United States)

    Gorman, G. E.; Corbitt, B. J.

    2002-01-01

    Discusses core competencies in library and information science and in information systems to use as a background for an examination of core competencies in information management. Suggests a set of core competencies and educational outcomes that might be applied to curricula in both developed and developing countries. (Author/LRW)

  20. Simplifying the ELA Common Core; Demystifying Curriculum

    Science.gov (United States)

    Schmoker, Mike; Jago, Carol

    2013-01-01

    The English Language Arts (ELA) Common Core State Standards ([CCSS], 2010) could have a transformational effect on American education. Though the process seems daunting, one can begin immediately integrating the essence of the ELA Common Core in every subject area. This article shows how one could implement the Common Core and create coherent,…

  1. Heterogeneity and anisotropy of Earth's inner core

    NARCIS (Netherlands)

    Deuss, Arwen

    2014-01-01

    Seismic observations provide strong evidence that Earth's inner core is anisotropic, with larger velocity in the polar than in the equatorial direction. The top 60-80 km of the inner core is isotropic; evidence for an innermost inner core is less compelling. The anisotropy is most likely due to alig

  2. Honeycomb Core Permeability Under Mechanical Loads

    Science.gov (United States)

    Glass, David E.; Raman, V. V.; Venkat, Venki S.; Sankaran, Sankara N.

    1997-01-01

    A method for characterizing the air permeability of sandwich core materials as a function of applied shear stress was developed. The core material for the test specimens was either Hexcel HRP-3/16-8.0 and or DuPont Korex-1/8-4.5 and was nominally one-half inch thick and six inches square. The facesheets where made of Hercules' AS4/8552 graphite/epoxy (Gr/Ep) composites and were nominally 0.059-in. thick. Cytec's Metalbond 1515-3M epoxy film adhesive was used for co-curing the facesheets to the core. The permeability of the specimens during both static (tension) and dynamic (reversed and non-reversed) shear loads were measured. The permeability was measured as the rate of air flow through the core from a circular 1-in2 area of the core exposed to an air pressure of 10.0 psig. In both the static and dynamic testing, the Korex core experienced sudden increases in core permeability corresponding to a core catastrophic failure, while the URP core experienced a gradual increase in the permeability prior to core failure. The Korex core failed at lower loads than the HRP core both in the transverse and ribbon directions.

  3. Heterogeneity and anisotropy of Earth's inner core

    NARCIS (Netherlands)

    Deuss, Arwen

    2014-01-01

    Seismic observations provide strong evidence that Earth's inner core is anisotropic, with larger velocity in the polar than in the equatorial direction. The top 60-80 km of the inner core is isotropic; evidence for an innermost inner core is less compelling. The anisotropy is most likely due to

  4. Improving Core Strength to Prevent Injury

    Science.gov (United States)

    Oliver, Gretchen D.; Adams-Blair, Heather R.

    2010-01-01

    Regardless of the sport or skill, it is essential to have correct biomechanical positioning, or postural control, in order to maximize energy transfer. Correct postural control requires a strong, stable core. A strong and stable core allows one to transfer energy effectively as well as reduce undue stress. An unstable or weak core, on the other…

  5. The core health science library in Canada.

    Science.gov (United States)

    Huntley, J L

    1974-04-01

    Core lists in Canada are characterized by regional differences. The lists of current importance are: (1) the British Columbia acquisitions guide for hospital libraries, (2) three Saskatchewan lists for hospitals of different sizes, (3) a core list recommended for Ontario hospitals, (4) Quebec core lists, including French language lists.

  6. The Core Health Science Library in Canada *

    Science.gov (United States)

    Huntley, June Leath

    1974-01-01

    Core lists in Canada are characterized by regional differences. The lists of current importance are: (1) the British Columbia acquisitions guide for hospital libraries, (2) three Saskatchewan lists for hospitals of different sizes, (3) a core list recommended for Ontario hospitals, (4) Quebec core lists, including French language lists. PMID:4826482

  7. Common Core: Teaching Optimum Topic Exploration (TOTE)

    Science.gov (United States)

    Karge, Belinda Dunnick; Moore, Roxane Kushner

    2015-01-01

    The Common Core has become a household term and yet many educators do not understand what it means. This article explains the historical perspectives of the Common Core and gives guidance to teachers in application of Teaching Optimum Topic Exploration (TOTE) necessary for full implementation of the Common Core State Standards. An effective…

  8. Core Journal Lists: Classic Tool, New Relevance

    Science.gov (United States)

    Paynter, Robin A.; Jackson, Rose M.; Mullen, Laura Bowering

    2010-01-01

    Reviews the historical context of core journal lists, current uses in collection assessment, and existing methodologies for creating lists. Outlines two next generation core list projects developing new methodologies and integrating novel information/data sources to improve precision: a national-level core psychology list and the other a local…

  9. Structure of Hot Molecular Cores

    OpenAIRE

    Rolffs, Rainer

    2011-01-01

    High-mass stars form deeply embedded in dense molecular gas, which they heat up and ionize due to their high energy output. During an early phase, the ionization is confined to small regions, and the stellar radiation is absorbed by dust. The high temperatures lead to the evaporation of ice mantles around dust grains, and many highly excited and complex molecules can be observed in these Hot Molecular Cores. At later stages, the whole molecular cloud is ionized and disrupted, and a...

  10. Antiferromagnetic hedgehogs with superconducting cores

    Energy Technology Data Exchange (ETDEWEB)

    Goldbart, P.M.; Sheehy, D.E. [Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}

  11. Evaluation of Fugen core management code (POLESTAR)

    Energy Technology Data Exchange (ETDEWEB)

    Shiratori, Yoshitake (Power Reactor and Nuclear Fuel Development Corp., Tsuruga, Fukui (Japan). Fugen Nuclear Power Station); Matsumoto, Mitsuo; Deshimaru, Takehide; Saito, Kuniyoshi

    1991-06-01

    Core management code POLESTAR has been developed by PNC and it has enough functions for core management. The code has been successfully used to carry out core management of Fugen such as making a long term or next cycle fuel loading plan, predicting detailed characteristics of a next cycle core, planning of a control rod pattern and evaluating the core life time after reactor start-up and so on. This code has been contributed to the reliable and economical operation of Fugen, since its accuracy has been checked and the code has been tailored by comparing its calculation results with various measured data. (author).

  12. Double U-Core Switched Reluctance Machine

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to an electrical machine stator comprising a plurality of stator segments (131,132,133), each segment comprises a first U-core and a second U-core wound with a winding, where the winding being arranged with at least one coil turn, each coil turn comprises a first axial......(s), wherein the first U-core and the second U-core are located adjacent to each other, whereby the winding spans the first and second U-cores. The invention also relates to a SRM machine with a stator mentioned above and a rotor....

  13. Hydrophobic-Core Microcapsules and Their Formation

    Science.gov (United States)

    Calle, Luz M. (Inventor); Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor)

    2016-01-01

    Hydrophobic-core microcapsules and methods of their formation are provided. A hydrophobic-core microcapsule may include a shell that encapsulates a hydrophobic substance with a core substance, such as dye, corrosion indicator, corrosion inhibitor, and/or healing agent, dissolved or dispersed therein. The hydrophobic-core microcapsules may be formed from an emulsion having hydrophobic-phase droplets, e.g., containing the core substance and shell-forming compound, dispersed in a hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  14. Hydrophilic-Core Microcapsules and Their Formation

    Science.gov (United States)

    Calle, Luz M. (Inventor); Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor)

    2016-01-01

    Hydrophilic-core microcapsules and methods of their formation are provided. A hydrophilic-core microcapsule may include a shell that encapsulates water with the core substance dissolved or dispersed therein. The hydrophilic-core microcapsules may be formed from an emulsion having hydrophilic-phase droplets dispersed in a hydrophobic phase, with shell-forming compound contained in the hydrophilic phase or the hydrophobic phase and the core substance contained in the hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  15. 77 FR 30435 - In-core Thermocouples at Different Elevations and Radial Positions in Reactor Core

    Science.gov (United States)

    2012-05-23

    ... COMMISSION 10 CFR Part 50 In-core Thermocouples at Different Elevations and Radial Positions in Reactor Core... ``require all holders of operating licenses for nuclear power plants (``NPP'') to operate NPPs with in-core thermocouples at different elevations and radial positions throughout the reactor core.'' DATES: Submit...

  16. Dependence of Core and Extended Flux on Core Dominance Parameter for Radio Sources

    Indian Academy of Sciences (India)

    J. J. Nie; J. H. Yang

    2014-09-01

    Based on two extragalactic radio source samples, the core dominance parameter is calculated, and the correlations between the core/extended flux density and core dominance parameter are investigated. When the core dominance parameter is lower than unity, it is linearly correlated with the core flux density, but it is not correlated with the extended flux density. When the core dominance parameter is higher than unity, it is not correlated with the core flux density, but it is linearly correlated with the extended flux density. Therefore, there are different results from different samples. The results can be explained using a relativistic beaming model.

  17. Drilling history core hole DC-8

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored.

  18. Functional Screening of Core Promoter Activity.

    Science.gov (United States)

    Even, Dan Y; Kedmi, Adi; Ideses, Diana; Juven-Gershon, Tamar

    2017-01-01

    The core promoter is the DNA sequence that recruits the basal transcription machinery and directs accurate initiation of transcription. It is an active contributor to gene expression that can be rationally designed to manipulate the levels of expression. Core promoter function can be analyzed using different experimental approaches. Here, we describe the qualitative and quantitative analysis of engineered core promoter functions using the EGFP reporter gene that is driven by distinct core promoters. Expression plasmids are transfected into different mammalian cell lines, and the resulting fluorescence is monitored by live cell imaging , as well as by flow cytometry. In order to verify that the transcriptional activity of the examined core promoters is indeed a function of their activity, as opposed to differences in DNA uptake, real-time quantitative PCR analysis is performed. Importantly, the described methodology for functional screening of core promoter activity has enabled the analysis of engineered potent core promoters for extended time periods.

  19. Research on plasma core reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, G.A.; Barton, D.M.; Helmick, H.H.; Bernard, W.; White, R.H.

    1977-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with 1-m-diam by 1-m-long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17-cm-thick by 89-cm-diam beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF/sub 6/ container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials were measured. Finally, an 85,000-cm/sup 3/ aluminum canister in the central region was fueled with UF/sub 6/ gas and fission density distributions determined. These results will be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation.

  20. Electrostatically enhanced core separator system

    Energy Technology Data Exchange (ETDEWEB)

    Easom, B.H.; Smolensky, L.A.; Altman, R.F. [LSR Technologies, Inc., Acton, MA (United States)

    1997-12-31

    The Electrostatically Enhanced Core Separator (EECS) system employs the same design principles as the mechanical Core Separator system plus an electrostatic separation enhancing technique. The EECS system contains a special type of separator, the EECS element, a conventional solids collector and means for flow recirculation. In the EECS system solids separation and collection are accomplished in two different components. The EECS element acts as a separator, not as a collector so particles are not collected on its walls. This eliminates or at least mitigates the problems associated with reentrainment (due to high or low dust resistivity), seepage (due to gas flow below the precipitator plates and over the hoppers), sneakage (due to gas flow both above and below the precipitator plates), and rapping reentrainment. If the EECS separation efficiency is high enough, particles cannot leave the system with the process stream. They recirculate until they are extracted by the collector. As a result, the separation efficiency of the EECS element determines the efficiency of the system, even if the collector efficiency is relatively low. 8 refs., 3 figs.

  1. PHYLOMETABOLIC CORE OF INTESTINAL MICROBIOTA

    Directory of Open Access Journals (Sweden)

    S. I. Sitkin

    2015-01-01

    Full Text Available The authors  discuss the  theory  of human  superorganism and its microbiota (microbiome, whose mutualistic  interactions  is realized within the  microbiota – gut – brain axis that includes endocrine, immune and neurohumoral pathways. The newest concepts  of microbiome enterotypes and core microbiota  are  presented, which are  important  for understanding of the  role of symbiotic  microorganisms  in human  vital activities, for explanation of pathophysiology of many  chronic  human  diseases  (beyond  gastrointestinal disorders, as well as for the  search of effective therapeutic targets. As highly promising are considered  the functional approaches to studies  of microbiota  that  allowed to formulate the concept  of phylometabolic (phylofunctional core. This is a series of evolutionally stable microorganisms  responsible  for majority of the  main microbiome  functions, such as fermentation  of polysaccharides  (glycans, production of short-chain  fatty acids (butyrate, propionate, acetate, hydrogen  utilization, production of lactate, metabolism of aminoacids, bile acids, choline, production  of vitamins and  some  biologically active substances – anti-inflammatory, anti-microbial, immunostimulatory. The authors are first to describe the main functional groups  of microorganisms  of   gut microbiota phylometabolic core, providing key metabolic functions, as well as the leading characteristics of the  phylometabolic core as such. The perspectives  of modification  of composition  and functions  of phylometabolic microbiota  core are discussed based on metabiotics  as a virtually new class of therapeutic agents. A hypothesis has been proposed that  the  ratios  between main  components of the key gut microbiota may reflect fundamental  processed  related  to a mutualistic interactions between microbiota and human body, as well as they may serve as effective biological markers of

  2. Melting of the Earth's inner core.

    Science.gov (United States)

    Gubbins, David; Sreenivasan, Binod; Mound, Jon; Rost, Sebastian

    2011-05-19

    The Earth's magnetic field is generated by a dynamo in the liquid iron core, which convects in response to cooling of the overlying rocky mantle. The core freezes from the innermost surface outward, growing the solid inner core and releasing light elements that drive compositional convection. Mantle convection extracts heat from the core at a rate that has enormous lateral variations. Here we use geodynamo simulations to show that these variations are transferred to the inner-core boundary and can be large enough to cause heat to flow into the inner core. If this were to occur in the Earth, it would cause localized melting. Melting releases heavy liquid that could form the variable-composition layer suggested by an anomaly in seismic velocity in the 150 kilometres immediately above the inner-core boundary. This provides a very simple explanation of the existence of this layer, which otherwise requires additional assumptions such as locking of the inner core to the mantle, translation from its geopotential centre or convection with temperature equal to the solidus but with composition varying from the outer to the inner core. The predominantly narrow downwellings associated with freezing and broad upwellings associated with melting mean that the area of melting could be quite large despite the average dominance of freezing necessary to keep the dynamo going. Localized melting and freezing also provides a strong mechanism for creating seismic anomalies in the inner core itself, much stronger than the effects of variations in heat flow so far considered.

  3. The Transcendental Core of Correlationism

    Directory of Open Access Journals (Sweden)

    Paul J. Ennis

    2011-06-01

    Full Text Available In this paper I read Quentin Meillassoux’s critique of correlationism as truly a critique of transcendentalism and the transcendental method. I do so by considering the two correlationist rejoinders that occur in the English edition of Meillassoux’s After Finitude. The first rejoinder is from an idealist and relies on adumbrations for its defence. This reliance on adumbrations will be shown to be itself transcendentally implicated through Edmund Husserl’s Crisis of the European Sciences and Transcendental Phenomenology. I then turn to the explicit engagement with the transcendental method that arises from the transcendentalist’s rejoinder. Considered together I hope to convince the reader that the core of correlationism is transcendentalism.

  4. Thermohydraulics of LMFBR core catchers

    Science.gov (United States)

    Turland, B. D.

    Characterization of the likely form of fuel debris after an accident, following interaction with sodium in the primary vessel and mechanisms controlling the location of the debris in the primary system is discussed. Heat transfer from particulate to liquid sodium and the development of models predicting the amount of debris that may be retained in a coolable form on a structure are considered. The evaluation of the coolability of the structure itself in post accident conditions, particularly the cooling provided by natural convection alone is treated. The response of structures at elevated temperatures and under high thermal loads is considered. The potential for vessel failure if significant quantities of debris accumulate at the bottom of the vessel is shown. The performance of a flat plate core catcher, or similar structure with good cooling from underneath is evaluated.

  5. Final Report - BRER Core Support

    Energy Technology Data Exchange (ETDEWEB)

    Evan B. Douple

    2007-01-09

    This contract provided core support for activities of the advisory committee of experts comprising the Board on Radiation Effects Research (BRER), in The National Academies' Division on Earth and Life Studies. That committee met two times during the funding period. The committee members provided oversight and advice regarding ongoing BRER projects and also assisted in the identification of potential committee members for new studies and the development of proposals for projects in the radiation sciences worthy for future study. In addition, funding provided support for the planning, advertisement, and invited speakers' travel-expense reimbursement for the Third and Fourth Gilbert W. Beebe Symposia held at The National Academies on December 1, 2004 and on November 30, 2005, respectively.

  6. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate

    Science.gov (United States)

    Yun, T.S.; Santamarina, C.J.; Ruppel, C.

    2007-01-01

    The mechanical behavior of hydrate-bearing sediments subjected to large strains has relevance for the stability of the seafloor and submarine slopes, drilling and coring operations, and the analysis of certain small-strain properties of these sediments (for example, seismic velocities). This study reports on the results of comprehensive axial compression triaxial tests conducted at up to 1 MPa confining pressure on sand, crushed silt, precipitated silt, and clay specimens with closely controlled concentrations of synthetic hydrate. The results show that the stress-strain behavior of hydrate-bearing sediments is a complex function of particle size, confining pressure, and hydrate concentration. The mechanical properties of hydrate-bearing sediments at low hydrate concentration (probably 50% of pore space), the behavior becomes more independent of stress because the hydrates control both stiffness and strength and possibly the dilative tendency of sediments by effectively increasing interparticle coordination, cementing particles together, and filling the pore space. The cementation contribution to the shear strength of hydrate-bearing sediments decreases with increasing specific surface of soil minerals. The lower the effective confining stress, the greater the impact of hydrate formation on normalized strength.

  7. On-line core axial power distribution synthesis method from in-core and ex-core neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang Kee; Cho, Byung Oh [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    This document describes the methodology in detail and the synthesis coefficients of the Fourier series expansion and the cubic spline synthesis techniques. A computer program was developed to generate the synthesis coefficients and the core power distribution. For the illustration, various axial power shapes for YGN 3 Cycle 1 and SMART were synthesized using the simulated in-core and/or ex-core detector signals. The results of this study will be useful to select the best synthesis method for the SMART core monitoring and protection systems and to evaluate the accuracy of the synthesized power shape. 4 refs., 13 figs., 5 tabs. (Author)

  8. 75 FR 52596 - Financial Education Core Competencies; Comment Request

    Science.gov (United States)

    2010-08-26

    ... Financial Education Core Competencies; Comment Request AGENCY: Department of the Treasury. ACTION: Notice... proposed set of financial education core competencies (``Core Competencies''). Comments are requested specifically on whether the list of Core Competencies referenced in the Supplementary Section is complete...

  9. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    Science.gov (United States)

    Voorhies, C. V.

    1999-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.

  10. Advantages of iron core in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bettis, E.S.; Ballou, J.K.; Becraft, W.R.; Peng, Y.K.M.; Watts, H.L.

    1977-01-01

    A quantitative comparison of the iron core vs air core concepts was carried out on a preliminary basis by using a representative tokamak reactor design with the following self-consistent reference parameters. In the area of plasma engineering, poloidal field and MHD equilibrium considerations with an unsaturated iron core is discussed. The question of proper poloidal field coils to maintain D-shaped plasmas of relatively high anti ..beta.. (7%) with a saturated iron core is also discussed. Estimates of the required iron core size, volt seconds, magnetic flux and its influence on force loading on the superconducting toroidal field coils are shown. Conceptual designs of the mechanical structure of an iron core device are presented. Favorable impacts on the OH power supply cost and complexity are indicated.

  11. Cool Core Clusters from Cosmological Simulations

    CERN Document Server

    Rasia, E; Murante, G; Planelles, S; Beck, A M; Biffi, V; Ragone-Figueroa, C; Granato, G L; Steinborn, L K; Dolag, K

    2015-01-01

    We present results obtained from a set of cosmological hydrodynamic simulations of galaxy clusters, aimed at comparing predictions with observational data on the diversity between cool-core and non-cool-core clusters. Our simulations include the effects of stellar and AGN feedback and are based on an improved version of the Smoothed-Particle-Hydrodynamics code GADGET-3, which ameliorates gas mixing and better captures gas-dynamical instabilities by including a suitable artificial thermal diffusion. In this Letter, we focus our analysis on the entropy profiles, our primary diagnostic to classify the degree of cool-coreness of clusters, and on the iron profiles. In keeping with observations, our simulated clusters display a variety of behaviors in entropy profiles: they range from steadily decreasing profiles at small radii, characteristic of cool-core systems, to nearly flat core isentropic profiles, characteristic of non cool-core systems. Using observational criteria to distinguish between the two classes of...

  12. Modeling of Pulsed Transformer with Nanocrystalline Cores

    Directory of Open Access Journals (Sweden)

    Amir Baktash

    2014-07-01

    Full Text Available Recently tape wound cores, due to their excellent properties, are widely used in transformers for pulsed or high frequency applications. The spiral structure of these cores affects the flux distribution inside the core and causes complication of the magnetic analysis and consequently the circuit analysis. In this paper, a model based on reluctance networks method is used to analyze the magnetic flux in toroidal wound cores and losses calculation. A Preisach based hysteresis model is included in the model to consider the nonlinear characteristic of the core. Magnetic losses are calculated by having the flux density in different points of the core and using the hysteresis model. A transformer for using in a series resonant converter is modeled and implemented. The modeling results are compared with experimental measurements and FEM results to evaluate the validity of the model. Comparisons show the accuracy of the model besides its simplicity and fast convergence.

  13. Reinventing the Platform Core Through Acquisition

    DEFF Research Database (Denmark)

    Toppenberg, Gustav; Henningsson, Stefan; Eaton, Ben

    2016-01-01

    Digital platform leaders need to continuously innovate the platform core to drive the technological trajectory of the overall architecture and business system, of which the platform is a core element. This papers analyses the potential of and challenges to completing this task through...... the acquisition and integration of companies presenting innovative technologies of relevance to the platform core. Using a revelatory case study of Cisco Systems, we develop the explanatory notion of ‘coring acquisition’. In this type of acquisition value is created through the acquisition of companies...... that provide products external to the acquirer that can be assimilated into the platform core. This creates value through the transformational process that we term ‘coring’. We also analyze how the benefits of coring acquisitions are contingent on challenges concerning the integration of acquisitions offering...

  14. Optical fiber sensor having an active core

    Science.gov (United States)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1993-01-01

    An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.

  15. Design Principles for Synthesizable Processor Cores

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; McKee, Sally A.; Karlsson, Sven

    2012-01-01

    As FPGAs get more competitive, synthesizable processor cores become an attractive choice for embedded computing. Currently popular commercial processor cores do not fully exploit current FPGA architectures. In this paper, we propose general design principles to increase instruction throughput...... on FPGA-based processor cores: first, superpipelining enables higher-frequency system clocks, and second, predicated instructions circumvent costly pipeline stalls due to branches. To evaluate their effects, we develop Tinuso, a processor architecture optimized for FPGA implementation. We demonstrate...

  16. Design Principles for Synthesizable Processor Cores

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; McKee, Sally A.; Karlsson, Sven

    2012-01-01

    As FPGAs get more competitive, synthesizable processor cores become an attractive choice for embedded computing. Currently popular commercial processor cores do not fully exploit current FPGA architectures. In this paper, we propose general design principles to increase instruction throughput...... through the use of micro-benchmarks that our principles guide the design of a processor core that improves performance by an average of 38% over a similar Xilinx MicroBlaze configuration....

  17. The Fluxgate Ring-Core Internal Field

    DEFF Research Database (Denmark)

    Primdahl, Fritz; Brauer, Peter; Merayo, José M.G.

    2002-01-01

    A large number of measured demagnetizing factors for fluxgate ring cores of a wide range of cross section shapes have been compiled from the literature and plotted against the core cross-sectional area over the squared mean core diameter. The points group close to a straight line through the origin...... that the demagnetizing factor for thin rings is proportional to the ring cross-sectional area divided by the diameter squared....

  18. Briefing paper for universities on Core Maths

    OpenAIRE

    Glaister, Paul

    2015-01-01

    This briefing paper outlines the rationale for and development of the new Core Maths qualifications, the characteristics of Core Maths, and why Core Maths is important for higher education. It is part of a communication to university vice-chancellors from the Department for Business, Innovation and Skills (BIS) comprising this paper and a joint Ministerial letter from Jo Johnson, Minister of State for Universities and Science in BIS, and Nick Gibb, Minister of State for Schools in the Departm...

  19. Impact of core-cladding boundary shape on the waveguide properties of hollow core microstructured fibers

    Science.gov (United States)

    Pryamikov, A. D.; Alagashev, G. K.; Kosolapov, A. F.; Biriukov, A. S.

    2016-12-01

    In this paper we consider an interaction between the air core modes (ACMs) of hollow core waveguide microstructures and core-cladding boundary walls in various shapes. The analysis is based on well-established models such as the ARROW (anti-resonant reflecting optical waveguide) model and on the models proposed for the first time. In particular, we consider the dynamics of light localization in the polygonal core cladding boundary wall as dependant on the type of its discrete rotational symmetry. Based on our findings we analyze the mechanisms of light localization in the core-cladding boundary walls of negative curvature hollow core microstructured fibers (NC HCMFs).

  20. Material with core-shell structure

    Science.gov (United States)

    Luhrs, Claudia; Richard, Monique N.; Dehne, Aaron; Phillips, Jonathan; Stamm, Kimber L.; Fanson, Paul T.

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  1. The Cores of Elliptical Galaxies in Coma

    Science.gov (United States)

    Lucey, John

    1995-07-01

    The cores of galaxies are astrophysically unique. They canhost high energy nuclei, star formation and perhaps even blackholes. HST observations have established that the cores ofellipticals are related to their global properties, and so canbe used as diagnostics of the physical processes occurring atthe time of formation. HST images of galaxy cores havedistinguished two different types of core luminosity profiles:`soft' and `hard' types. It is suggested that luminous, slowlyrotating galaxies have `soft' cores and the less luminousdisky galaxies have `hard' cores. This can be interpreted interms of a formation scenario based on a merger hierarchy inwhich the low luminosity systems experience highly dissipativemergers, but as the luminous systems are assembled the mergersbecome increasingly stellar. In this picture, the type of corea galaxy generates is intimately related to its evolutionaryhistory, i.e. the degree of interaction/merging experiencedand the availability of cold gas. In turn, this should notonly depend on luminosity but also on the galaxy's localenvironment. Here we propose to test the gaseous/stellarmerger picture by imaging a set of Coma cluster ellipticalsfrom a wide range of cluster radii. In the gas poorenvironment of the cluster core there may be insufficent coldgas for the low luminosity galaxies to form `hard' cores.Similarly, at the cluster turnround radius even luminousgalaxies may have experienced a dissipative core formation andpossess

  2. The nature of the earth's core

    Science.gov (United States)

    Jeanloz, Raymond

    1990-01-01

    The properties of the earth's core are overviewed with emphasis on seismologically determined regions and pressures and seismologically measured density, elastic wave velocities, and gravitational acceleration. Attention is given to solid-state convection of the inner core, and it is noted that though seismological results do not conclusively prove that the inner core is convective, the occurrence and magnitude of seismic anisotropy are explained by the effects of solid-state convection. Igneous petrology and geochemistry of the inner core, a layer at the base of the mantle and contact metasomatism at the core-mantle boundary, and evolution of the core-mantle system are discussed. It is pointed out that high-pressure melting experiments indicate that the temperature of the core is ranging from 4500 to 6500 K, and a major implication of such high temperature is that the tectonics and convection of the mantle, as well as the resulting geological processes observed at the surface, are powered by heat from the core. As a result of the high temperatures, along with the compositional contrast between silicates and iron alloy, the core-mantle boundary is considered to be most chemically active region of the earth.

  3. Optimized Cellular Core for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Patz Materials and Technologies proposes to develop a unique structural cellular core material to improve mechanical performance, reduce platform weight and lower...

  4. Recent Problems of Transformer Core Design

    Science.gov (United States)

    Valkovic, Z.

    1988-01-01

    The paper describes the result of the investigations of the efficiency of power loss reduction in transformer cores made with high-permeability (HGO) and laser scribed (LS) grain-oriented electrical steels, and also the phenomena in three-limb three-phase cores with the so-called staggered T-joint design. The efficiency of the HGO material depends on core form and core induction. The efficiency is better for single-phase than for three-phase cores and also for higher induction. The localised efficiency of HGO material is not uniform and it is significantly lower in the yoke than in other parts. The efficiency of LS material (grade ZDKH) is better than that of the HGO material and also somewhat higher for single-phase than for three-phase cores. The localised flux distribution in the central limb of the core with staggered T-joint is more uniform and the content of higher harmonics is smaller than in the core with conventional V-45° T-joint. This results in a 13% loss reduction in the central limb and in a 4-5% reduction of total core loss.

  5. Challenges Regarding IP Core Functional Reliability

    Science.gov (United States)

    Berg, Melanie D.; LaBel, Kenneth A.

    2017-01-01

    For many years, intellectual property (IP) cores have been incorporated into field programmable gate array (FPGA) and application specific integrated circuit (ASIC) design flows. However, the usage of large complex IP cores were limited within products that required a high level of reliability. This is no longer the case. IP core insertion has become mainstream including their use in highly reliable products. Due to limited visibility and control, challenges exist when using IP cores and subsequently compromise product reliability. We discuss challenges and suggest potential solutions to critical application IP insertion.

  6. More on core instabilities of magnetic monopoles

    CERN Document Server

    Striet, J

    2003-01-01

    In this paper we present new results on the core instability of the 't Hooft Polyakov monopoles we reported on before. This instability, where the spherical core decays in a toroidal one, typically occurs in models in which charge conjugation is gauged. In this paper we also discuss a third conceivable configuration denoted as ``split core'', which brings us to some details of the numerical methods we employed. We argue that a core instability of 't Hooft Polyakov type monopoles is quite a generic feature of models with charged Higgs particles.

  7. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  8. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.

    Science.gov (United States)

    Haldar, Krishna Kanta; Kundu, Simanta; Patra, Amitava

    2014-12-24

    Bimetallic core-shell nanoparticles have recently emerged as a new class of functional materials because of their potential applications in catalysis, surface enhanced Raman scattering (SERS) substrate and photonics etc. Here, we have synthesized Au/Ag bimetallic core-shell nanoparticles with varying the core diameter. The red-shifting of the both plasmonic peaks of Ag and Au confirms the core-shell structure of the nanoparticles. Transmission electron microscopy (TEM) analysis, line scan EDS measurement and UV-vis study confirm the formation of core-shell nanoparticles. We have examined the catalytic activity of these core-shell nanostructures in the reaction between 4-nitrophenol (4-NP) and NaBH4 to form 4-aminophenol (4-AP) and the efficiency of the catalytic reaction is found to be increased with increasing the core size of Au/Ag core-shell nanocrystals. The catalytic efficiency varies from 41.8 to 96.5% with varying core size from 10 to 100 nm of Au/Ag core-shell nanoparticles, and the Au100/Ag bimetallic core-shell nanoparticle is found to be 12-fold more active than that of the pure Au nanoparticles with 100 nm diameter. Thus, the catalytic properties of the metal nanoparticles are significantly enhanced because of the Au/Ag core-shell structure, and the rate is dependent on the size of the core of the nanoparticles.

  9. Core Forensics: Earth's Accretion and Differentiation

    Science.gov (United States)

    Badro, J.; Brodholt, J. P.; Siebert, J.; Piet, H.; Ryerson, F. J.

    2013-12-01

    Earth's accretion and its primitive differentiation are intimately interlinked processes. One way to constrain accretionary processes is by looking at the major differentiation event that took place during accretion: core formation. Understanding core formation and core composition can certainly shed a new light on early and late accretionary processes. On the other hand, testing certain accretionary models and hypothesis (fluxes, chemistries, timing) allows -short of validating them- at the very least to unambiguously refute them, through the 'filter'' of core formation and composition. Earth's core formed during accretion as a result of melting, phase-separation, and segregation of accretionary building blocks (from meteorites to planetesimals). The bulk composition of the core and mantle depends on the evolution (pressure, temperature, composition) of core extraction during accretion. The entire process left a compositional imprint on both reservoirs: (1) in the silicate Earth, in terms of siderophile trace-element (Ni, Co, V, Cr, among others) concentrations and isotopic fractionation (Si, Cu, among others), a record that is observed in present-day mantle rocks; and (2) on the core, in terms of major element composition and light elements dissolved in the metal, a record that is observed by seismology through the core density-deficit. This imprint constitutes actually a fairly impressive set of evidence (siderophile element concentration and fractionation, volatile and siderophile element isotopic fractionation), can be used today to trace back the primordial processes that occurred 4.5 billion years ago. We are seeking to provide an overhaul of the standard core formation/composition models, by using a new rationale that bridges geophysics and geochemistry. The new ingredients are (1) new laser-heated diamond anvil cell partitioning data, dramatically extending the previous P-T conditions for experimental work, (2) ab initio molecular dynamics calculations to

  10. Drilling history core hole DC-4

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Core hole DC-4 was completed at a depth of 3998 feet in December, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Sicsson, Inc. furnished the engineering, daily supervision of the cable tool and core drilling activities, and geological core logging for DC-4. Core hole DC-4 is located on the Hanford Site about 3 miles east of the Yakima Barricade and approximately 103 feet southwest of rotary hole DC-5, which was completed to 3990 feet in February, 1978. Hanford Site coordinates reported for hole DC-4 are north 49,385.62 feet and west 85,207.63 feet, and Washington State coordinates are north 454,468.73 feet and east 2,209,990.87 feet. No elevation survey is available for hole DC-4, but it is approximately 745 feet above mean sea level based upon the survey of hole DC-5, which has a reported elevation of 745.16 feet on the top of the 3-inch flange. The purpose of core hole DC-4 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing, cross-hole seismic shear, and pressure wave velocity studies with rotary hole DC-5. Hole DC-4 was drilled through the overburden into basalt bedrock by cable tool methods (0-623 feet) and continuously cored through the final interval (623 to 3998 feet).Core recovery was 95.8 percent of the total footage cored.

  11. CoreDevRec:Automatic Core Member Recommendation for Contribution Evaluation

    Institute of Scientific and Technical Information of China (English)

    蒋竞; 贺佳欢; 陈学渊

    2015-01-01

    The pull-based software development helps developers make contributions flexibly and effciently. Core members evaluate code changes submitted by contributors, and decide whether to merge these code changes into repositories or not. Ideally, code changes are assigned to core members and evaluated within a short time after their submission. However, in reality, some popular projects receive many pull requests, and core members have di昋culties in choosing pull requests which are to be evaluated. Therefore, there is a growing need for automatic core member recommendation, which improves the evaluation process. In this paper, we investigate pull requests with manual assignment. Results show that 3.2%∼40.6% of pull requests are manually assigned to specific core members. To assist with the manual assignment, we propose CoreDevRec to recommend core members for contribution evaluation in GitHub. CoreDevRec uses support vector machines to analyze different kinds of features, including file paths of modified codes, relationships between contributors and core members, and activeness of core members. We evaluate CoreDevRec on 18 651 pull requests of five popular projects in GitHub. Results show that CoreDevRec achieves accuracy from 72.9% to 93.5% for top 3 recommendation. In comparison with a baseline approach, CoreDevRec improves the accuracy from 18.7% to 81.3% for top 3 recommendation. Moreover, CoreDevRec even has higher accuracy than manual assignment in the project TrinityCore. We believe that CoreDevRec can improve the assignment of pull requests.

  12. Analysis of circuits including magnetic cores (MTRAC)

    Science.gov (United States)

    Hanzen, G. R.; Nitzan, D.; Herndon, J. R.

    1972-01-01

    Development of automated circuit analysis computer program to provide transient analysis of circuits with magnetic cores is discussed. Allowance is made for complications caused by nonlinearity of switching core model and magnetic coupling among loop currents. Computer program is conducted on Univac 1108 computer using FORTRAN IV.

  13. Community College Presidents' Core Internal Metaphors

    Science.gov (United States)

    DeBraak, LaRonna S.

    2011-01-01

    This study identified the core internal metaphors of 8 community college presidents, 4 females and 4 males. The participants of this study resided in both rural and metropolitan communities. Core internal metaphors were adopted due to a strong association to a primary conceptual metaphor, which the participants had internalized as a result of…

  14. 13CO Cores in Taurus Molecular Cloud

    CERN Document Server

    Qian, Lei; Goldsmith, Paul

    2012-01-01

    Young stars form in molecular cores, which are dense condensations within molecular clouds. We have searched for $^{13}$CO $J=1\\to 0$ cores in the Taurus molecular cloud and studied their properties. Our data set has a spatial dynamic range (the ratio of linear map size to the pixel size) of about 1000 and spectrally resolved velocity information. We use empirical fit to the CO and CO$_2$ ice to correct the depletion. The core mass function (CMF) can be fitted better with a log-normal function than with a power law function. We also extract cores and calculate the CMF based on the integrated intensity of $^{13}$CO and the extinction from 2MASS. We demonstrate that there exists core blending, i.e. combined structures that are incoherent in velocity but continuous in column density. The resulting core samples based on 2D and 3D data thus differ significantly from each other. In particular, the cores derived from 2MASS extinction can be fitted with a power-law function, but not a log-normal function. The core ve...

  15. Institutional Core Values: Operationalising the Constructs

    Science.gov (United States)

    Lee, Ellen Suzanne

    2010-01-01

    This research begins to operationalise eight institutional core values at a mid-sized, Midwestern Catholic university. The survey sought examples of ways in which the graduate students in a master of arts in teaching and leadership programme had and/or had not experienced the institutional core values with the same professor during their…

  16. Rapidly changing flows in the Earth's core

    DEFF Research Database (Denmark)

    Olsen, Nils; Mandea, M.

    2008-01-01

    A large part of the Earth's magnetic field is generated by fluid motion in the molten outer core(1). As a result of continuous satellite measurements since 1999, the core magnetic field and its recent variations can now be described with a high resolution in space and time(2). These data have rec...... of future numerical models of the geodynamo....

  17. Future Directions for Research on Core Competencies

    Science.gov (United States)

    Bradshaw, Catherine P.; Guerra, Nancy G.

    2008-01-01

    This concluding commentary highlights common themes that emerged across the chapters in this volume. We identify strengths and limitations of the core competencies framework and discuss the importance of context, culture, and development for understanding the role of the core competencies in preventing risk behavior in adolescence. We also outline…

  18. Continuous greenhouse gas measurements from ice cores

    DEFF Research Database (Denmark)

    Stowasser, Christopher

    several applications of the new continuous data sets: (1) Past atmospheric mixing ratios of methane were measured along ca. 800 m of the deep ice core from the North Greenland Eemian Ice Core Drilling project (NEEM) covering almost the complete last glaciation and deglaciation. The record reveals new sub-millennial...

  19. Future Directions for Research on Core Competencies

    Science.gov (United States)

    Bradshaw, Catherine P.; Guerra, Nancy G.

    2008-01-01

    This concluding commentary highlights common themes that emerged across the chapters in this volume. We identify strengths and limitations of the core competencies framework and discuss the importance of context, culture, and development for understanding the role of the core competencies in preventing risk behavior in adolescence. We also outline…

  20. Development of core design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim Young In; Kim, Young Il; Kim, Y. G.; Kim, S. J.; Song, H.; Kim, T. K.; Kim, W. S.; Hwang, W.; Lee, B. O.; Park, C. K.; Joo, H. K.; Yoo, J. W.; Kang, H. Y.; Park, W. S

    2000-05-01

    For the development of KALIMER (150 MWe) core conceptual design, design evolution and optimization for improved economics and safety enhancement was performed in the uranium metallic fueled equilibrium core design which uses U-Zr binary fuel not in excess of 20 percent enrichment. Utilizing results of the uranium ,metallic fueled core design, the breeder equilibrium core design with breeding ratio being over 1.1 was developed. In addition, utilizing LMR's excellent neutron economy, various core concepts for minor actinide burnup, inherent safety, economics and non-proliferation were realized and its optimization studies were performed. A code system for the LMR core conceptual design has been established through the implementation of needed functions into the existing codes and development of codes. To improve the accuracy of the core design, a multi-dimensional nodal transport code SOLTRAN, a three-dimensional transient code analysis code STEP, MATRA-LMR and ASSY-P for T/H analysis are under development. Through the automation of design calculations for efficient core design, an input generator and several interface codes have been developed. (author)

  1. After Common Core, States Set Rigorous Standards

    Science.gov (United States)

    Peterson, Paul E.; Barrows, Samuel; Gift, Thomas

    2016-01-01

    In spite of Tea Party criticism, union skepticism, and anti-testing outcries, the campaign to implement Common Core State Standards (otherwise known as Common Core) has achieved phenomenal success in statehouses across the country. Since 2011, 45 states have raised their standards for student proficiency in reading and math, with the greatest…

  2. Core Knowledge Confusions among University Students

    Science.gov (United States)

    Lindeman, Marjaana; Svedholm, Annika M.; Takada, Mikito; Lonnqvist, Jan-Erik; Verkasalo, Markku

    2011-01-01

    Previous studies have demonstrated that university students hold several paranormal beliefs and that paranormal beliefs can be best explained with core knowledge confusions. The aim of this study was to explore to what extent university students confuse the core ontological attributes of lifeless material objects (e.g. a house, a stone), living…

  3. The Hausdorff core problem on simple polygons

    Directory of Open Access Journals (Sweden)

    Reza Dorrigiv

    2014-02-01

    Full Text Available A polygon \\(Q\\ is a \\(k\\-bounded Hausdorff Core of a polygon \\(P\\ if \\(P\\ contains \\(Q\\, \\(Q\\ is convex, and the Hausdorff distance between \\(P\\ and \\(Q\\ is at most \\(k\\. A Hausdorff Core of \\(P\\ is a \\(k\\-bounded Hausdorff Core of \\(P\\ with the minimum possible value of \\(k\\, which we denote \\(k_{\\min}\\. Given any \\(k\\ and any \\(\\varepsilon\\gt 0\\, we describe an algorithm for computing a \\(k'\\-bounded Hausdorff Core (if one exists in \\(O(n^3+n^2\\varepsilon^{-4}(\\log n+ \\varepsilon^{-2}\\ time, where \\(k'\\lt k+d_{\\text{rad}}\\cdot\\varepsilon\\ and \\(d_{\\text{rad}}\\ is the radius of the smallest disc that encloses \\(P\\ and whose center is in \\(P\\. We use this solution to provide an approximation algorithm for the optimization Hausdorff Core problem which results in a solution of size \\(k_{\\min}+d_{\\text{rad}}\\cdot\\varepsilon\\ in \\(O(\\log(\\varepsilon^{-1}(n^3+n^2\\varepsilon^{-4}(\\log n+ \\varepsilon^{-2}\\ time. Finally, we describe an approximation scheme for the \\(k\\-bounded Hausdorff Core problem which, given a polygon \\(P\\, a distance \\(k\\, and any \\(\\varepsilon\\gt 0\\, answers true if there is a \\(((1+\\varepsilonk\\-bounded Hausdorff Core and false if there is no \\(k\\-bounded Hausdorff Core. The running time of the approximation scheme is in \\(O(n^3+n^2\\varepsilon^{-4}(\\log n+ \\varepsilon^{-2}\\.

  4. Shape-tunable core-shell microparticles.

    Science.gov (United States)

    Klein, Matthias K; Saenger, Nicolai R; Schuetter, Stefan; Pfleiderer, Patrick; Zumbusch, Andreas

    2014-10-28

    Colloidal polymer particles are an important class of materials finding use in both everyday and basic research applications. Tailoring their composition, shape, and functionality is of key importance. In this article, we describe a new class of shape-tunable core-shell microparticles. They are composed of a cross-linked polystyrene (PS) core and a poly(methyl methacrylate) (PMMA) shell of varying thickness. In the first step, we prepared highly cross-linked PS cores, which are subsequently transferred into a nonpolar dispersant. They serve as the seed dispersion for a nonaqueous dispersion polymerization to generate the PMMA shell. The shape of the particles can subsequently be manipulated. After the shell growth stage, the spherical PS/PMMA core-shell colloids exhibit an uneven and wrinkled surface. An additional tempering procedure allows for smoothing the surface of the core-shell colloids. This results in polymer core-shell particles with a perfectly spherical shape. In addition to this thermal smoothing of the PMMA shell, we generated a selection of shape-anisotropic core-shell particles using a thermomechanical stretching procedure. Because of the unique constitution, we can selectively interrogate molecular vibrations in the PS core or the PMMA shell of the colloids using nonlinear optical microscopy techniques. This is of great interest because no photobleaching occurs, such that the particles can be tracked in real space over long times.

  5. Common Core in the Real World

    Science.gov (United States)

    Hess, Frederick M.; McShane, Michael Q.

    2013-01-01

    There are at least four key places where the Common Core intersects with current efforts to improve education in the United States--testing, professional development, expectations, and accountability. Understanding them can help educators, parents, and policymakers maximize the chance that the Common Core is helpful to these efforts and, perhaps…

  6. Moving core beam energy absorber and converter

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  7. The Core Journal Concept in Black Studies

    Science.gov (United States)

    Weissinger, Thomas

    2010-01-01

    Black Studies scholars have shown interest in the core journal concept. Indeed, the idea of core journals for the study of the Black experience has changed several times since 1940. While Black Studies scholars are citing Black Studies journals with frequency, they also cite traditional disciplinary journals a great deal of the time. However,…

  8. Common Core in the Real World

    Science.gov (United States)

    Hess, Frederick M.; McShane, Michael Q.

    2013-01-01

    There are at least four key places where the Common Core intersects with current efforts to improve education in the United States--testing, professional development, expectations, and accountability. Understanding them can help educators, parents, and policymakers maximize the chance that the Common Core is helpful to these efforts and, perhaps…

  9. Observations of exotic inner core waves

    NARCIS (Netherlands)

    Waszek, Lauren; Deuss, A.F.

    2015-01-01

    The seismic structure of Earth’s inner core is highly complex, displaying strong anisotropy and further regional variations. However, few seismic waves are sensitive to the inner core and fundamental questions regarding the origin of the observed seismic features remain unanswered. Thus, new

  10. UV Defined Nanoporous Liquid Core Waveguides

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Ndoni, Sokol

    2011-01-01

    Nanoporous liquid core waveguides, where both core and cladding are made from the same material, are presented. The nanoporous polymer used is intrinsically hydrophobic, but selective UV exposure enables it to infiltrate with an aqueous solution, thus raising the refractive index from 1.26 to 1...

  11. Children's Science Learning: A Core Skills Approach

    Science.gov (United States)

    Tolmie, Andrew K.; Ghazali, Zayba; Morris, Suzanne

    2016-01-01

    Background: Research has identified the core skills that predict success during primary school in reading and arithmetic, and this knowledge increasingly informs teaching. However, there has been no comparable work that pinpoints the core skills that underlie success in science. Aims and method: The present paper attempts to redress this by…

  12. No Common Opinion on the Common Core

    Science.gov (United States)

    Henderson, Michael B.; Peterson, Paul E.; West, Martin R.

    2015-01-01

    According to the three authors of this article, the 2014 "EdNext" poll yields four especially important new findings: (1) Opinion with respect to the Common Core has yet to coalesce. The idea of a common set of standards across the country has wide appeal, and the Common Core itself still commands the support of a majority of the public.…

  13. Beyond the Core: Peer Observation Brings Common Core to Vocational and Electives Classes

    Science.gov (United States)

    Thurber Rasmussen, Harriette

    2014-01-01

    This article describes how a Washington State School District increased professional learning around the Common Core State Standards. The challenge was how to establish a way for career and technical education and electives teachers to learn and apply Common Core in their classes. Weaving Common Core literacy standards into vocational and…

  14. Core-annular flow through a horizontal pipe: Hydrodynamic counterbalancing of buoyancy force on core

    NARCIS (Netherlands)

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference betwe

  15. Beyond the Core: Peer Observation Brings Common Core to Vocational and Electives Classes

    Science.gov (United States)

    Thurber Rasmussen, Harriette

    2014-01-01

    This article describes how a Washington State School District increased professional learning around the Common Core State Standards. The challenge was how to establish a way for career and technical education and electives teachers to learn and apply Common Core in their classes. Weaving Common Core literacy standards into vocational and…

  16. Controlled Release of Ciprofloxacin from Core-Shell Nanofibers with Monolithic or Blended Core.

    Science.gov (United States)

    Zupančič, Špela; Sinha-Ray, Sumit; Sinha-Ray, Suman; Kristl, Julijana; Yarin, Alexander L

    2016-04-04

    Sustained controlled drug release is one of the prominent contributions for more successful treatment outcomes in the case of several diseases. However, the incorporation of hydrophilic drugs into nanofibers, a promising novel delivery system, and achieving a long-term sustained release still pose a challenging task. In this work we demonstrated a robust method of avoiding burst release of drugs and achieving a sustained drug release from 2 to 4 weeks using core-shell nanofibers with poly(methyl methacrylate) (PMMA) shell and monolithic poly(vinyl alcohol) (PVA) core or a novel type of core-shell nanofibers with blended (PVA and PMMA) core loaded with ciprofloxacin hydrochloride (CIP). It is also shown that, for core-shell nanofibers with monolithic core, drug release can be manipulated by varying flow rate of the core PVA solution, whereas for core-shell nanofibers with blended core, drug release can be manipulated by varying the ratios between PMMA and PVA in the core. During coaxial electrospinning, when the solvent from the core evaporates in concert with the solvent from the shell, the interconnected pores spanning the core and the shell are formed. The release process is found to be desorption-limited and agrees with the two-stage desorption model. Ciprofloxacin-loaded nanofiber mats developed in the present work could be potentially used as local drug delivery systems for treatment of several medical conditions, including periodontal disease and skin, bone, and joint infections.

  17. Divergent Chemoenzymatic Synthesis of Asymmetrical-Core-Fucosylated and Core-Unmodified N-Glycans

    NARCIS (Netherlands)

    Li, Tiehai; Huang, Min; Liu, Lin; Wang, Shuo; Moremen, Kelley W; Boons, Geert-Jan

    2016-01-01

    A divergent chemoenzymaytic approach for the preparation of core-fucosylated and core-unmodified asymmetrical N-glycans from a common advances precursor is described. An undecasaccharide was synthesized by sequential chemical glycosylations of an orthogonally protected core fucosylated hexasaccharid

  18. Core-annular flow through a horizontal pipe: Hydrodynamic counterbalancing of buoyancy force on core

    NARCIS (Netherlands)

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference

  19. Engineered Magnetic Core-Shell Structures.

    Science.gov (United States)

    Alavi Nikje, Mir Mohammad; Vakili, Maryam

    2015-01-01

    In recent years, engineered magnetic core-shell structures are playing an important role in the wide range of various applications. These magnetic core-shell structures have attracted considerable attention because of their unique properties and various applications. Also, the synthesis of engineered magnetic core-shell structures has attracted practical interest because of potential applications in areas such as ferrofluids, medical imaging, drug targeting and delivery, cancer therapy, separations, and catalysis. So far a large number of engineered magnetic core-shell structures have been successfully synthesized. This review article focuses on the recent progress in synthesis and characterization of engineered magnetic core-shell structures. Also, this review gives a brief description of the various application of these structures. It is hoped that this review will play some small part in helping future developments in important field.

  20. Achieving micelle control through core crystallinity.

    Science.gov (United States)

    Glavas, Lidija; Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2013-11-11

    We have designed a pathway for controlling the critical micelle concentration and micelle size of polyester-based systems. This was achieved by creating an array of different copolymers with semicrystalline or amorphous hydrophobic blocks. The hydrophobic block was constructed through ring-opening polymerization of ε-caprolactone, L-lactide, and ε-decalactone, either as homopolymers or random copolymers, using PEG as both the initiator and the hydrophilic block. Micelles formed with amorphous cores exhibited considerably higher critical micelle concentrations than those with semicrystalline cores. Micelles with amorphous cores also became larger in size with an increased molecular weight of the hydrophobic bock, in contrast to micelles with semicrystalline cores, which displayed the opposite behavior. Hence, core crystallinity was found to be a potent tool for tailoring micelle properties and thereby facilitating the optimization of drug delivery systems. The introduction of PEG-PεDL also proved to be a valuable asset in the tuning of micelle properties.

  1. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    Energy Technology Data Exchange (ETDEWEB)

    Melatos, A., E-mail: amelatos@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2012-12-10

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed {approx}10{sup 3} yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  2. Drought rewires the cores of food webs

    Science.gov (United States)

    Lu, Xueke; Gray, Clare; Brown, Lee E.; Ledger, Mark E.; Milner, Alexander M.; Mondragón, Raúl J.; Woodward, Guy; Ma, Athen

    2016-09-01

    Droughts are intensifying across the globe, with potentially devastating implications for freshwater ecosystems. We used new network science approaches to investigate drought impacts on stream food webs and explored potential consequences for web robustness to future perturbations. The substructure of the webs was characterized by a core of richly connected species surrounded by poorly connected peripheral species. Although drought caused the partial collapse of the food webs, the loss of the most extinction-prone peripheral species triggered a substantial rewiring of interactions within the networks’ cores. These shifts in species interactions in the core conserved the underlying core/periphery substructure and stability of the drought-impacted webs. When we subsequently perturbed the webs by simulating species loss in silico, the rewired drought webs were as robust as the larger, undisturbed webs. Our research unearths previously unknown compensatory dynamics arising from within the core that could underpin food web stability in the face of environmental perturbations.

  3. The punctilious RNA polymerase II core promoter.

    Science.gov (United States)

    Vo Ngoc, Long; Wang, Yuan-Liang; Kassavetis, George A; Kadonaga, James T

    2017-07-01

    The signals that direct the initiation of transcription ultimately converge at the core promoter, which is the gateway to transcription. Here we provide an overview of the RNA polymerase II core promoter in bilateria (bilaterally symmetric animals). The core promoter is diverse in terms of its composition and function yet is also punctilious, as it acts with strict rules and precision. We additionally describe an expanded view of the core promoter that comprises the classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. This model may eventually lead to a more unified conceptual understanding of the core promoter. © 2017 Vo ngoc et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Core body temperature in obesity123

    Science.gov (United States)

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C

    2011-01-01

    Background: A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. Objective: We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. Design: In study 1, nonobese [body mass index (BMI; in kg/m2) temperature–sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18–25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Results: Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P body temperature. It may be necessary to study individuals with function-altering mutations in core temperature–regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500. PMID:21367952

  5. Evidence of Historical Supernovae in Ice Cores

    Science.gov (United States)

    Young, Donna

    2011-05-01

    Within the framework of the U.S. Greenland Ice Core Science Project (GISP2), an ice core, known as the GISP H-Core, was collected in June, 1992 adjacent to the GISP2 summit drill site. The project scientists, Gisela A.M. Dreschhoff and Edward J. Zeller, were interested in dating solar proton events with volcanic eruptions. The GISP2-H 122-meter firn and ice core is a record of 415 years of liquid electrical conductivity (LEC) and nitrate concentrations, spanning the years 1992 at the surface through 1577 at the bottom. At the National Ice Core Laboratory in Denver, Colorado, the core (beneath the 12-meter firn) was sliced into 1.5 cm sections and analyzed. The resulting data set consisted of 7,776 individual analyses. The ultrahigh resolution sampling technique resulted in a time resolution of one week near the surface and one month at depth. The liquid electrical conductivity (LEC) sequence contains signals from a number of known volcanic eruptions and provides a dating system at specific locations along the core. The terrestrial and solar background nitrate records show seasonal and annual variations, respectively. However, major nitrate anomalies within the record do not correspond to any known terrestrial or solar events. There is evidence that these nitrate anomalies could be a record of supernovae events. Cosmic X-rays ionize atmospheric nitrogen, producing excess nitrate that is then deposited in the Polar Regions. The GISP2-H ice core has revealed nitrate anomalies at the times of the Tycho and Kepler supernovae. The Cassiopeia A supernova event may be documented in the core as well. We have developed a classroom activity for high school and college students, in which they examine several lines of evidence in the Greenland ice core, discriminating among nearby and mid-latitude volcanic activity, solar proton events, and supernovae. Students infer the date of the Cassiopeia A supernova.

  6. Limits to Determining the Core of Jupiter

    Science.gov (United States)

    Stevenson, David J.

    2016-10-01

    Simple, approximate models based on perturbations of the n=1 polytrope are used to identify some general properties of models for nearly-isentropic Jupiter-like planets where the total heavy element mass fraction is small. In these models, it is found that the radius is remarkably insensitive to the distribution of heavy elements and is effectively a measure of total heavy element enrichment (sum of core and envelope). The gravity harmonic J2 and the normalized moment of inertia α=I/MR2 are almost entirely determined by the density structure outside the core, and this depends on the reduced core mass, defined to be the actual core mass minus the mass of hydrogen and helium that would occupy that region in the absence of the core. The actual core mass or its radius or composition cannot be well determined, even when there is perfect knowledge of the equation of state, thermal state and envelope enrichment by heavy elements. The central concentration of heavy elements is approximately determined, even when the actual core is more massive and contaminated with hydrogen and helium by mixing or erosion (double diffusive convection). At fixed J2, the dependence of α on core structure is very small, and only exceeds the likely detection limit ~0.1-0.2% for very extended cores. Even though these results are obtained for a simple model, it is argued that they are semi-quantitatively applicable to realistic models. A perturbation scheme is presented for testing this systematically and for assessing the consequences of perturbations to the equation of state, compositional profile and temperature structure for the trade-off between reduced core mass and envelope enrichment.

  7. Pre-supernova neutrino emissions from ONe cores in the progenitors of core-collapse supernovae: are they distinguishable from those of Fe cores?

    CERN Document Server

    Kato, Chinami; Yamada, Shoichi; Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi; Ishidoshiro, Koji

    2015-01-01

    Aiming to distinguish two types of progenitors of core collapse supernovae, i.e., one with a core composed mainly of oxygen and neon (abbreviated as ONe core) and the other with an iron core (or Fe core), we calculated the luminosities and spectra of neutrinos emitted from these cores prior to gravitational collapse, taking neutrino oscillation into account. We found that the total energies emitted as $\\bar{\

  8. Core foundations of abstract geometry.

    Science.gov (United States)

    Dillon, Moira R; Huang, Yi; Spelke, Elizabeth S

    2013-08-27

    Human adults from diverse cultures share intuitions about the points, lines, and figures of Euclidean geometry. Do children develop these intuitions by drawing on phylogenetically ancient and developmentally precocious geometric representations that guide their navigation and their analysis of object shape? In what way might these early-arising representations support later-developing Euclidean intuitions? To approach these questions, we investigated the relations among young children's use of geometry in tasks assessing: navigation; visual form analysis; and the interpretation of symbolic, purely geometric maps. Children's navigation depended on the distance and directional relations of the surface layout and predicted their use of a symbolic map with targets designated by surface distances. In contrast, children's analysis of visual forms depended on the size-invariant shape relations of objects and predicted their use of the same map but with targets designated by corner angles. Even though the two map tasks used identical instructions and map displays, children's performance on these tasks showed no evidence of integrated representations of distance and angle. Instead, young children flexibly recruited geometric representations of either navigable layouts or objects to interpret the same spatial symbols. These findings reveal a link between the early-arising geometric representations that humans share with diverse animals and the flexible geometric intuitions that give rise to human knowledge at its highest reaches. Although young children do not appear to integrate core geometric representations, children's use of the abstract geometry in spatial symbols such as maps may provide the earliest clues to the later construction of Euclidean geometry.

  9. Impact of core cladding boundary shape on the waveguide properties of hollow core microstructured fibers

    CERN Document Server

    Pryamikov, A D; Biriukov, A S

    2016-01-01

    In this paper we consider an interaction between the air core modes of hollow core waveguide microstructures and core cladding boundary walls in various shapes. The analysis is based on well established models such as the anti-resonant reflecting optical waveguide model and on the models proposed for the first time. In particular, we consider the dynamics of light localization in the polygonalcore cladding boundary wall as dependant on the type of its discrete rotational symmetry. Based on our findings we analyze the mechanisms of light localization in the core cladding boundary walls of negative curvature hollow core microstructured fibers.

  10. A study on the recriticality possibilities of fast reactor cores after a hypothetical core meltdown accident

    Energy Technology Data Exchange (ETDEWEB)

    Na, Byung Chan; Han, Do Hee; Kim, Young Cheol

    1997-04-01

    The preliminary and parametric sensitivity study on recriticality risk of fast reactor cores after a hypothetical total core meltdown accident was performed. Only the neutronic aspects of the accident was considered for this study, independent of the accident scenario. Estimation was made for the quantities of molten fuel which must be ejected out of the core in order to assure a sub-critical state. Diverse parameters were examined: molten pool type (homogenized or stratified), fuel temperature, conditions of the reactor core, core size (small or large), and fuel type (oxide, nitride, metal) (author). 7 refs.

  11. Light localization in hollow core fibers with a complicated shape of the core cladding boundary

    CERN Document Server

    Pryamikov, A D; Alagashev, G K

    2016-01-01

    In this paper we present a theoretical and numerical analysis of light localization in hollow core microstructured fibers (HCMFs) with a complicated shape of the core cladding boundary. The analysis is based on well established models (for example, the ARROW model) and also on the models proposed for the first time. In particular, we consider local and nonlocal mechanisms of light localization in the waveguide structures with a determined type of discrete rotational symmetry of the core cladding boundary. We interpret and analyze mechanisms of light localization in negative curvature hollow core microstructured fibers (NC HCMFs) and simplified HC PCFs with a polygonal shape of the core cladding boundary.

  12. Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland Ice Core Chronology

    DEFF Research Database (Denmark)

    Vinther, Bo Møllesøe; Clausen, Henrik Brink; Fischer, D. A.

    2008-01-01

    Four ice cores from the Agassiz ice cap in the Canadian high arctic and one ice core from the Renland ice cap in eastern Greenland have been synchronized to the Greenland Ice Core Chronology 2005 (GICC05) which is based on annual layer counts in the DYE-3, GRIP and NGRIP ice cores. Volcanic...... reference horizons, seen in electrical conductivity measurements (ECM) have been used to carry out the synchronization throughout the Holocene. The Agassiz ice cores have been matched to the NGRIP ice core ECM signal, while the Renland core has been matched to the GRIP ice core ECM signal, thus tying...... the cores to GICC05. Furthermore, it has been possible to synchronize the Renland ice core to NGRIP-GICC05 in the glacial period back to 60,000 years b2k (years before A.D. 2000), on the basis of a matching of transitions between stadials and interstadials. This work brings the total number of ice core...

  13. Divergent Chemoenzymatic Synthesis of Asymmetrical-Core-Fucosylated and Core-Unmodified N-Glycans.

    Science.gov (United States)

    Li, Tiehai; Huang, Min; Liu, Lin; Wang, Shuo; Moremen, Kelley W; Boons, Geert-Jan

    2016-12-23

    A divergent chemoenzymaytic approach for the preparation of core-fucosylated and core-unmodified asymmetrical N-glycans from a common advances precursor is described. An undecasaccharide was synthesized by sequential chemical glycosylations of an orthogonally protected core fucosylated hexasaccharide that is common to all mammalian core fucosylated N-glycans. Antennae-selective enzymatic extension of the undecasaccharide using a panel of glycosyl transferases afforded core fucosylated asymmetrical triantennary N-glycan isomers, which are potential biomarkers for breast cancer. A unique aspect of our approach is that a fucosidase (FucA1) has been identified that selectively can cleave a core-fucoside without affecting the fucoside of a sialyl Lewis(X) epitope to give easy access to core-unmodified compounds.

  14. Glass-clad semiconductor core optical fibers

    Science.gov (United States)

    Morris, Stephanie Lynn

    Glass-clad optical fibers comprising a crystalline semiconductor core have garnered considerable recent attention for their potential utility as novel waveguides for applications in nonlinear optics, sensing, power delivery, and biomedicine. As research into these fibers has progressed, it has become evident that excessive losses are limiting performance and so greater understanding of the underlying materials science, coupled with advances in fiber processing, is needed. More specifically, the semiconductor core fibers possess three performance-limiting characteristics that need to be addressed: (a) thermal expansion mismatches between crystalline core and glass cladding that lead to cracks, (b) the precipitation of oxide species in the core upon fiber cooling, which results from partial dissolution of the cladding glass by the core melt, and (c) polycrystallinity; all of which lead to scattering and increased transmission losses. This dissertation systematically studies each of these effects and develops both a fundamental scientific understanding of and practical engineering methods for reducing their impact. With respect to the thermal expansion mismatch and, in part, the dissolution of oxides, for the first time to our knowledge, oxide and non-oxide glass compositions are developed for a series of semiconductor cores based on two main design criteria: (1) matching the thermal expansion coefficient between semiconductor core and glass cladding to minimize cracking and (2) matching the viscosity-temperature dependences, such that the cladding glass draws into fiber at a temperature slightly above the melting point of the semiconductor in order to minimize dissolution and improve the fiber draw process. The x[Na 2O:Al2O3] + (100 - 2x)SiO2 glass compositional family was selected due to the ability to tailor the glass properties to match the aforementioned targets through slight variations in composition and adjusting the ratios of bridging and non-bridging oxygen

  15. Core merging and stratification following giant impact

    Science.gov (United States)

    Landeau, Maylis; Olson, Peter; Deguen, Renaud; Hirsh, Benjamin H.

    2016-10-01

    A stratified layer below the core-mantle boundary has long been suspected on the basis of geomagnetic and seismic observations. It has been suggested that the outermost core has a stratified layer about 100 km thick that could be due to the diffusion of light elements. Recent seismological evidence, however, supports a layer exceeding 300 km in thickness of enigmatic origin. Here we show from turbulent mixing experiments that merging between projectile and planetary core following a giant impact can lead to a stratified layer at the top of the core. Scaling relationships between post-impact core structure and projectile properties suggest that merging between Earth's protocore and a projectile core that is enriched in light elements and 20 times less massive can produce the thick stratification inferred from seismic data. Our experiments favour Moon-forming impact scenarios involving a projectile smaller than the proto-Earth and suggest that entrainment of mantle silicates into the protocore led to metal-silicate equilibration under extreme pressure-temperature conditions. We conclude that the thick stratified layer detected at the top of Earth's core can be explained as a vestige of the Moon-forming giant impact during the late stages of planetary accretion.

  16. Magnetic induction measurements in distribution transformer cores

    Energy Technology Data Exchange (ETDEWEB)

    Paraskevopoulos, A.A.P.; Bourkas, P.D. [National Technical Univ. of Athens, Athens (Greece). Computer Engineering, High Voltage, and Electrical Measurements Laboratory; Paparigas, D. [Schneider ELVIM Electric Transformer Factory, Athens (Greece)

    2005-07-01

    Transformers need high magnetic field rates in order to operate efficiently. In this study, magnetic induction measurements of distribution transformer cores with power levels of 630 kVA were used to assess the performance of transformers in a city in Greece. A 630 kVA transformer was used to investigate whether magnetic induction measurements of the iron core arcs of the transformer were similar to the rest of the transformer's magnetic rate. Potential load losses were also investigated. Eight cores of 4 different sizes were measured in the study. Voltage transmissions were varied in order to measure the different cores. The voltage transmitted into the coil was calculated in order to compare the transformer's magnetic field with the cores. Average values for the measured cores were then calculated. Leakages were measured using a Gauss meter. Results of the study indicated that the measured values were lower than established safety limits for transformers. It was concluded that the magnetic induction measurements of transformer cores can be used to measure the overall performance of transformers. 18 refs., 8 tabs., 5 figs.

  17. Dense Molecular Cores Being Externally Heated

    CERN Document Server

    Kim, Gwanjeong; Gopinathan, Maheswar; Jeong, Woong-Seob; Kim, Mi-Ryang

    2016-01-01

    We present results of our study on eight dense cores, previously classified as starless, using infrared (3-160 {\\micron}) imaging observations with \\textit{AKARI} telescope and molecular line (HCN and N$_2$H$^+$) mapping observations with \\textit{KVN} telescope. Combining our results with the archival IR to mm continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosity of $\\sim0.3-4.4$ L$_{\\odot}$. The other six cores are found to remain as starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3-6 K towards the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an over-dominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory mot...

  18. A Hunt for Massive Starless Cores

    CERN Document Server

    Kong, Shuo; Caselli, Paola; Fontani, Francesco; Liu, Mengyao; Butler, Michael J

    2016-01-01

    We carry out an ALMA $\\rm N_2D^+$(3-2) and 1.3~mm continuum survey towards 32 high mass surface density regions in seven Infrared Dark Clouds with the aim of finding massive starless cores, which may be the initial conditions for the formation of massive stars. Cores showing strong $\\rm N_2D^+$(3-2) emission are expected to be highly deuterated and indicative of early, potentially pre-stellar stages of star formation. We also present maps of these regions in ancillary line tracers, including C$^{18}$O(2-1), DCN(3-2) and DCO$^+$(3-2). Over 100 $\\rm N_2D^+$ cores are identified with our newly developed core-finding algorithm based on connected structures in position-velocity space. The most massive core has $\\gtrsim70\\:M_\\odot$ (potentially $\\sim170\\:M_\\odot$) and so may be representative of the initial conditions for massive star formation. The existence and dynamical properties of such cores constrain massive star formation theories. We measure the line widths and thus velocity dispersion of six of the cores ...

  19. Why do some cores remain starless ?

    CERN Document Server

    Anathpindika, S

    2016-01-01

    Physical conditions that could render a core starless(in the local Universe) is the subject of investigation in this work. To this end we studied the evolution of four starless cores, B68, L694-2, L1517B, L1689, and L1521F, a VeLLO. The density profile of a typical core extracted from an earlier simulation developed to study core-formation in a molecular cloud was used for the purpose. We demonstrate - (i) cores contracted in quasistatic manner over a timescale on the order of $\\sim 10^{5}$ years. Those that remained starless did briefly acquire a centrally concentrated density configuration that mimicked the density profile of a unstable Bonnor Ebert sphere before rebounding, (ii) three of our test cores viz. L694-2, L1689-SMM16 and L1521F remained starless despite becoming thermally super-critical. On the contrary B68 and L1517B remained sub-critical; L1521F collapsed to become a VeLLO only when gas-cooling was enhanced by increasing the size of dust-grains. This result is robust, for other cores viz. B68, ...

  20. Tuned Chamber Core Panel Acoustic Test Results

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  1. Oak Ridge National Laboratory Core Competencies

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.B.; Anderson, T.D.; Berven, B.A.; Hildebrand, S.G.; Hartman, F.C.; Honea, R.B.; Jones, J.E. Jr.; Moon, R.M. Jr.; Saltmarsh, M.J.; Shelton, R.B. [and others

    1994-12-01

    A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competency represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.

  2. The Cloud's Core Virtual Infrastructure Security

    Science.gov (United States)

    Tolnai, Annette; von Solms, Sebastiaan

    Cloud service providers (CSPs) should institute the necessary security controls, including restricting physical and logical access to hypervisor and other forms of employed virtualization layers. To enact relevant security measures, the core elements communicating with the hypervisor need to be secured. A proposed security model will introduce some of the aspects that need to be secured in the virtual environment to ensure a secure and sound cloud computing environment. This paper will discuss the core aspects of the virtualized architecture explaining the security risks, including a discussion pertaining to the relevant security core concepts to mitigate the risks.

  3. Apparatus for controlling molten core debris. [LMFBR

    Science.gov (United States)

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1977-07-19

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.

  4. Processor core model for quantum computing.

    Science.gov (United States)

    Yung, Man-Hong; Benjamin, Simon C; Bose, Sougato

    2006-06-09

    We describe an architecture based on a processing "core," where multiple qubits interact perpetually, and a separate "store," where qubits exist in isolation. Computation consists of single qubit operations, swaps between the store and the core, and free evolution of the core. This enables computation using physical systems where the entangling interactions are "always on." Alternatively, for switchable systems, our model constitutes a prescription for optimizing many-qubit gates. We discuss implementations of the quantum Fourier transform, Hamiltonian simulation, and quantum error correction.

  5. Anti-resonant hexagram hollow core fibers.

    Science.gov (United States)

    Hayes, John R; Poletti, Francesco; Abokhamis, Mousavi S; Wheeler, Natalie V; Baddela, Naveen K; Richardson, David J

    2015-01-26

    Various simple anti-resonant, single cladding layer, hollow core fiber structures are examined. We show that the spacing between core and jacket glass and the shape of the support struts can be used to optimize confinement loss. We demonstrate the detrimental effect on confinement loss of thick nodes at the strut intersections and present a fabricated hexagram fiber that mitigates this effect in both straight and bent condition by presenting thin and radially elongated nodes. This fiber has loss comparable to published results for a first generation, multi-cladding ring, Kagome fiber with negative core curvature and has tolerable bend loss for many practical applications.

  6. Curvilinear coordinates for full-core atoms

    Science.gov (United States)

    Putrino, Anna; Bachelet, Giovanni B.

    1998-03-01

    Curvilinear coordinates, first introduced by F. Gygi for valence-only electronic systems within the local-density functional theory (F. Gygi, Europhysics Letters 19), 617 (1992)., can be used to describe both core and valence electrons in electronic-structure calculations. A simple and quite general coordinate transformation results in a large, yet affordable plane-wave energy cutoff for full-core systems (e.g., ~= 120 Ryd for carbon or silicon) within the local-density functional theory, and in a reduced correlation time for full-core variational Monte Carlo calculations. Numerical examples will be presented.

  7. Hollow Core, Whispering Gallery Resonator Sensors

    CERN Document Server

    Ward, Jonathan M; Chormaic, Síle Nic

    2014-01-01

    A review of hollow core whispering gallery resonators (WGRs)is given. After a short introduction to the topic of whispering gallery resonators we provide a description of whispering gallery modes in hollow or liquid core WGRs. Next, whispering gallery mode (WGM) sensing mechanisms are outlined and some fabrication methods for microbubbles, microcapillaries and other tubular WGM devices are discussed. We then focus on the most common applications of hollow core WGRs, namely refractive index and temperature sensing, gas sensing, force sensing, biosensing, and lasing. The review highlights some of the key papers in this field and gives the reader a general overview of the current state-of-the-art.

  8. Multi-core processors - An overview

    CERN Document Server

    Venu, Balaji

    2011-01-01

    Microprocessors have revolutionized the world we live in and continuous efforts are being made to manufacture not only faster chips but also smarter ones. A number of techniques such as data level parallelism, instruction level parallelism and hyper threading (Intel's HT) already exists which have dramatically improved the performance of microprocessor cores. This paper briefs on evolution of multi-core processors followed by introducing the technology and its advantages in today's world. The paper concludes by detailing on the challenges currently faced by multi-core processors and how the industry is trying to address these issues.

  9. Preliminaries on core image analysis using fault drilling samples; Core image kaiseki kotohajime (danso kussaku core kaisekirei)

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, T.; Ito, H. [Geological Survey of Japan, Tsukuba (Japan)

    1996-05-01

    This paper introduces examples of image data analysis on fault drilling samples. The paper describes the following matters: core samples used in the analysis are those obtained from wells drilled piercing the Nojima fault which has moved in the Hygoken-Nanbu Earthquake; the CORESCAN system made by DMT Corporation, Germany, used in acquiring the image data consists of a CCD camera, a light source and core rotation mechanism, and a personal computer, its resolution being about 5 pixels/mm in both axial and circumferential directions, and 24-bit full color; with respect to the opening fractures in core samples collected by using a constant azimuth coring, it was possible to derive values of the opening width, inclination angle, and travel from the image data by using a commercially available software for the personal computer; and comparison of this core image with the BHTV record and the hydrophone VSP record (travel and inclination obtained from the BHTV record agree well with those obtained from the core image). 4 refs., 4 figs.

  10. Massive Quiescent Cores in Orion: Dichotomy in the Dynamical Status of Cores

    Science.gov (United States)

    Velusamy, Thangasamy; Goldsmith, P. F.; Li, D.; Langer, W. D.; Pineda, J. L.; Peng, R.

    2009-01-01

    To study the evolution of high mass cores we have searched for evidence of collapse motions in a large sample of starless cores in the Orion molecular cloud. We used the Caltech Submillimeter Observatory telescope to obtain spectra of the optically thin (H13CO+) and optically thick (HCO+) high density tracer molecules in 27 cores with masses > 1 MO. The red- and blue-asymmetries seen in the line profiles of the optically thick line with respect to the optically thin line indicate that 2/3 of these cores are not static and we interpret these as evidence for inward or outward motions in 19 cores. We present RATRAN radiative transfer models of these cores that support the interpretation of inward and outward motion consistent with the observed spectral asymmetries. Thus we detect infall (inward motions) in 9 cores and outward motions for 10 cores, suggesting a dichotomy in the kinematic state in this sample. This population of massive molecular cloud cores is in general likely to be dynamic, out-of-equilibrium structures, rather than quasi-hydro/magneto-static structures. Our results provide an important observational constraint on the fraction of collapsing (inward motions) versus non-collapsing (re-expanding) cores for comparison with model simulations. This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Research at the Caltech Submillimeter Observatory is supported by NSF grant AST-0229008.

  11. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures.

    Science.gov (United States)

    El-Toni, Ahmed Mohamed; Habila, Mohamed A; Labis, Joselito Puzon; ALOthman, Zeid A; Alhoshan, Mansour; Elzatahry, Ahmed A; Zhang, Fan

    2016-02-01

    With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in

  12. Core design and optimization of high performance low sodium void 1000 MWe heterogeneous oxide LMFBR cores

    Energy Technology Data Exchange (ETDEWEB)

    Barthold, W.P.; Orechwa, Y.; Su, S.F.; Beitel, J.C.; Turski, R.; Lam, P.S.K.; Fuller, E.L.

    1979-01-01

    Radially heterogeneous core configurations are effective means to reduce sodium void reactivity. In general, radially heterogeneous cores can be designed as tightly or loosely coupled cores with center core or center blanket arrangements. Core height, number of core regions and number of fuel pins per assembly are additional variables in an optimization of basic heterogeneous core configurations. An extensive study was carried out to optimize the core configurations for 1000 MWe LMFBRs. All cores were subject to a common set of nuclear, mechanical, and thermal-hydraulic design assumptions. They were restrained by an upper sodium void reactivity limit of $2.50 and a doubling time of approximately 15 to 18 years. The screening and optimization procedures employed lead to two core layouts which were both tightly coupled. A complete nuclear analysis of these two cores (derived from a loosely coupled configuration/derived from a tightly coupled configuration) determined the fissile inventories (4268.4/4213.4 kg at BOEC), burnups (83.90/100.7 MWd/t peak), reactivity swings (0.49/1.8% ..delta..k total), power and flux distributions for different control insertion patterns, the breeding performance (15.7/15.3 yrs CSDT), the safety parameters, such as sodium void reactivity ($2.38/$2.23 at EOEC), isothermal Doppler coefficients for both sodium-in (45.6/46.1 T dk/dT x 10/sup -4/ core at EOEC) and sodium-out conditions (28.6/28.2 T dk/dT x 10/sup -4/ core at EOEC), and the transient behavior which shows very little space-dependence during a 60 cent reactivity step insertion.

  13. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures

    Science.gov (United States)

    El-Toni, Ahmed Mohamed; Habila, Mohamed A.; Labis, Joselito Puzon; Alothman, Zeid A.; Alhoshan, Mansour; Elzatahry, Ahmed A.; Zhang, Fan

    2016-01-01

    With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in

  14. Minimal Reductions and Cores of Edge Ideals

    CERN Document Server

    Fouli, Louiza

    2010-01-01

    We study minimal reductions of edge ideals of graphs containing a unique even cycle, and determine restrictions on the coefficients of the generators of these minimal reductions. We focus our attention on two special subclasses of edge ideals; the first is edge ideals of even cycles and the second is edge ideals of even cycles with an arbitrary number of whiskers. We prove that $\\rm{core}(I)=\\mathfrak{m} I$, where $I$ is the edge ideal in the corresponding localized polynomial ring and $\\mathfrak{m}$ is the maximal ideal of this ring. Moreover, we show that the core is obtained as a finite intersection of homogeneous minimal reductions in the case of even cycles. The formula for the core does not hold in general for the edge ideal of any graph and we provide a counterexample. In particular, we show in this example that the core is not obtained as a finite intersection of general minimal reductions.

  15. Core graduate courses: A missed learning opportunity?

    Science.gov (United States)

    Singh, Chandralekha; Maries, Alexandru

    2013-01-01

    An important goal of graduate physics core courses is to help students develop expertise in problem solving and improve their reasoning and meta-cognitive skills. We explore the conceptual difficulties of physics graduate students by administering conceptual problems on topics covered in undergraduate physics courses before and after instruction in related first year core graduate courses. Here, we focus on physics graduate students' difficulties manifested by their performance on two qualitative problems involving diagrammatic representation of vector fields. Some graduate students had great difficulty in recognizing whether the diagrams of the vector fields had divergence and/or curl but they had no difficulty computing the divergence and curl of the vector fields mathematically. We also conducted individual discussions with various faculty members who regularly teach first year graduate physics core courses about the goals of these courses and the performance of graduate students on the conceptual problems after related instruction in core courses.

  16. Pilates: Build Strength in Your Core Muscles

    Science.gov (United States)

    Healthy Lifestyle Fitness Pilates may sound intimidating, but it's an accessible way to build strength in your core muscles for better posture, balance and flexibility. By Mayo Clinic Staff Pilates isn't just for fitness fanatics. It's actually ...

  17. Bioinformatics and Computational Core Technology Center

    Data.gov (United States)

    Federal Laboratory Consortium — SERVICES PROVIDED BY THE COMPUTER CORE FACILITYEvaluation, purchase, set up, and maintenance of the computer hardware and network for the 170 users in the research...

  18. Classifying Star Forming Cores through Chemical Anomalies

    Science.gov (United States)

    Hoq, Sadia; Jackson, J.; Foster, J.

    2011-05-01

    The chemical makeup of Infrared Dark Clouds may offer a method to classify star forming cores. This study uses the molecular line maps from the Millimetre Astronomy Legacy Team 90 GHz (MALT90) Survey, observed using the 22-m ATNF Mopra Telescope. The relative abundances of the four molecules, N2H+, HNC, HCN and HCO+ are calculated for each of 500 cores to determine the chemical signatures of star forming cores in their early evolutionary stages, as deduced from Spitzer data. Cores are classified as prestellar, protostellar, or HII regions. Initial findings indicate that sources with relatively strong N2H+ lines are prestellar, whereas weak N2H+ lines may designate protostellar or HII regions. These chemical anomalies, where the N2H+ lines are either very prominent or weak are rare, suggesting that these are short-lived chemical phases.

  19. Extracting the Cores of Implicit Communities

    Institute of Scientific and Technical Information of China (English)

    YANG Nan; LIN Songxiang; GAO Qiang

    2007-01-01

    In this paper, we improve the trawling and point out some communities missed by trawling. We use the DBG (Dense Bipartite Graph) to identify a structure of a potential community instead of CBG (Complete Bipartite Graph). Based on DBG, we proposed a new method based on edge removal to extract cores from a web graph. Moreover, we improve the crawler to save only potential pages as fans of a core and save a lot of disk storage space. To evaluate the set of cores whether or not belong to a community, the statistics of term frequency is used. In the paper,the dataset of experiment were crawled under domain ".cn". The result show that the our algorithm works properly and some new cores can be found by our method.

  20. Core inflation indicators for Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Alkhareif Ryadh M.

    2015-01-01

    Full Text Available This paper constructs and analyzes core inflation indicators for Saudi Arabia for the period of March 2012 to May 2014 using two alternative approaches: the exclusion method (ex food and housing/rent and the statistical method. The findings of the analysis suggest that the ex food and housing/ rent inflation is more volatile than the overall CPI inflation over the sample period. In contrast, the statistical core inflation is relatively more stable and less volatile. Moreover, the ex food and housing/rent inflation is only weakly correlated with headline inflation, whereas the statistical core inflation exhibits a stronger correlation. This combination of lower volatility and higher correlation with headline inflation makes the statistical method a much better choice for policymakers. From a monetary policy standpoint, using a bundle of core inflation measures, including both properly constructed exclusion and statistical methods, is more desirable, especially when variation across measures is widespread, as is the case in Saudi Arabia.

  1. Emergence of core-peripheries in networks

    CERN Document Server

    Verma, T; Araújo, N A M; Nagler, J; Herrmann, H J

    2016-01-01

    A number of important transport networks, such as the airline and trade networks of the world, exhibit a characteristic core-periphery structure, wherein a few nodes are highly interconnected and the rest of the network frays into a tree. Mechanisms underlying the emergence of core-peripheries, however, remain elusive. Here, we demonstrate that a simple pruning process based on removal of underutilized links and redistribution of loads can lead to the emergence of core-peripheries. Links are assumed beneficial if they either carry a sufficiently large load or are essential for global connectivity. This incentivized redistribution process is controlled by a single parameter which balances connectivity and profit. The obtained networks exhibit a highly resilient and connected core with a frayed periphery. The balanced network shows a higher resilience than the World Airline Network or the World Trade Network, revealing a pathway towards robust structural features through pruning.

  2. Degraded core analysis for the PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gittus, J.H.

    1987-10-01

    The paper presents an analysis of the probability and consequences of degraded core accidents for the PWR. The article is based on a paper which was presented by the author to the Sizewell-B public inquiry. Degraded core accidents are examined with respect to:- the initiating events, safety plant failure, and processes with a bearing on containment failure. Accident types and frequencies are discussed, as well as the dispersion of radionuclides. Accident risks, i.e. individual and societal risks in degraded core accidents are assessed from:- the amount of radionuclides released, the weather, the population distribution, and the accident frequencies. Uncertainties in the assessment of degraded core accidents are also summarized. (U.K.).

  3. NICHD Biomedical Mass Spectrometry Core Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Biomedical Mass Spectrometry Core Facility was created under the auspices of the Office of the Scientific Director to provide high-end mass-spectrometric...

  4. Wire core reactor for nuclear thermal propulsion

    Science.gov (United States)

    Harty, Richard B.; Brengle, Robert G.

    1993-01-01

    Studies have been performed of a compact high-performance nuclear rocket reactor that incorporates a tungsten alloy wire fuel element. This reactor, termed the wire core reactor, can deliver a specific impulse of 1,000 s using an expander cycle and a nozzle expansion ratio of 500 to 1. The core is constructed of layers of 0.8-mm-dia fueled tungsten wires wound over alternate layers of spacer wires, which forms a rugged annular lattice. Hydrogen flow in the core is annular, flowing from inside to outside. In addition to the concepts compact size and good heat transfer, the core has excellent power-flow matching features and can resist vibration and thermal stresses during star-up and shutdown.

  5. Trends in adsorbate induced core level shifts

    Science.gov (United States)

    Nilsson, Viktor; Van den Bossche, Maxime; Hellman, Anders; Grönbeck, Henrik

    2015-10-01

    Photoelectron core level spectroscopy is commonly used to monitor atomic and molecular adsorption on metal surfaces. As changes in the electron binding energies are convoluted measures with different origins, calculations are often used to facilitate the decoding of experimental signatures. The interpretation could in this sense benefit from knowledge on trends in surface core level shifts for different metals and adsorbates. Here, density functional theory calculations have been used to systematically evaluate core level shifts for (111) and (100) surfaces of 3d, 4d, and 5d transition metals upon CO, H, O and S adsorption. The results reveal trends and several non-intuitive cases. Moreover, the difficulties correlating core level shifts with charging and d-band shifts are underlined.

  6. The HOR HEU/LEU core conversion

    Energy Technology Data Exchange (ETDEWEB)

    Gibcus, H.P.M.; Vries, J.W. de [Department of HOR-Development, IRI, Delft University of Technology, Delft (Netherlands); Leege, P.F.A. de [Department of Reactor Physics, IRI, Delft University of Technology, Delft (Netherlands)

    1999-07-01

    On March 16, 1998 the first two LEU (low enriched uranium) fuel elements were introduced in the HOR reactor of the Interfaculty Reactor Institute (IRI). At the moment the core consists of 5 LEU and 19 HEU (highly enriched uranium) fuel elements. It is anticipated that after about 13 core reload operations the HOR will be fully converted from HEU to LEU to a so called LEU compact core consisting of about 21 LEU fuel assemblies and as many beryllium reflector elements. The HOR HEU/LEU core conversion program, progress of the step-by-step transition phase, including comparisons of calculations and measurements, as well as the impact on the utilization of the reactor are discussed. (author)

  7. NICHD Microscopy and Imaging Core (MIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Microscopy and Imaging Core (MIC) is designed as a multi-user research facility providing training and instrumentation for high resolution microscopy and...

  8. Recovery of antigenically reactive HIV-2 cores.

    Science.gov (United States)

    Chrystie, I L; Almeida, J D

    1989-03-01

    Negative staining studies of human immunodeficiency virus (HIV) have been hampered by the fragile nature of the particles. Although detergent treatment is capable of releasing cores from HIV-2 particles, these are unstable and do not retain morphological integrity. Addition of glutaraldehyde will stabilise these structures but, if used at too high a concentration, will destroy their antigenicity. This study shows that if both detergent and glutaraldehyde are used in correct proportions, antigenically reactive cores can be recovered from HIV-2 cell cultures. More specifically we show that a mixture of 0.1% Nonidet P40 and 0.1% glutaraldehyde produces preparations of HIV-2 cores that are suitable for immune electron microscopy. These cores reacted positively, that is, formed immune complexes, with both human HIV-2 antisera and a mouse monoclonal antibody that, although directed against p24 (HIV-1), reacts also with p25 (HIV-2).

  9. A core alternative[Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, R.H. [Chart Heat Exchangers, Wisconsin (United States)

    2001-09-01

    The development of the efficient Core-in-kettle heat exchangers by Chart Heat Exchangers as an alternative to shell and tube exchangers is reported, and its use as condensers and reboilers in ethylene plants and refrigerant condensers and chillers in natural gas processing and liquid natural gas (LNG) plants are discussed. The novel technology is described with details given of the replacement of the tube bundle with a Chart brazed aluminium plate-fin heat exchanger core, the operation of the exchanger, the savings achieved by installing these heat exchangers in new or existing plants, and Core-in-Kettle retrofits of existing shell and tube heat exchangers. The limitations of the use of Core-in-Kettle heat exchangers to clean fluids typical of hydrocarbon processing, and temperature and pressure limitations are noted.

  10. Bioinformatics and Computational Core Technology Center

    Data.gov (United States)

    Federal Laboratory Consortium — SERVICES PROVIDED BY THE COMPUTER CORE FACILITY Evaluation, purchase, set up, and maintenance of the computer hardware and network for the 170 users in the research...

  11. Elastic anisotropy of Earth's inner core.

    Science.gov (United States)

    Belonoshko, Anatoly B; Skorodumova, Natalia V; Rosengren, Anders; Johansson, Börje

    2008-02-08

    Earth's solid-iron inner core is elastically anisotropic. Sound waves propagate faster along Earth's spin axis than in the equatorial plane. This anisotropy has previously been explained by a preferred orientation of the iron alloy hexagonal crystals. However, hexagonal iron becomes increasingly isotropic on increasing temperature at pressures of the inner core and is therefore unlikely to cause the anisotropy. An alternative explanation, supported by diamond anvil cell experiments, is that iron adopts a body-centered cubic form in the inner core. We show, by molecular dynamics simulations, that the body-centered cubic iron phase is extremely anisotropic to sound waves despite its high symmetry. Direct simulations of seismic wave propagation reveal an anisotropy of 12%, a value adequate to explain the anisotropy of the inner core.

  12. Inquiry, New Literacies, and the Common Core

    Science.gov (United States)

    Stegman, Bridget

    2014-01-01

    For 21st century learning, students need to be well versed in techniques for inquiry using new literacies. Developing these skills also will meet the rigorous expectations of the Common Core State Standards.

  13. Inquiry, New Literacies, and the Common Core

    Science.gov (United States)

    Stegman, Bridget

    2014-01-01

    For 21st century learning, students need to be well versed in techniques for inquiry using new literacies. Developing these skills also will meet the rigorous expectations of the Common Core State Standards.

  14. Core Cognition and Embodied Agency in Gaming

    DEFF Research Database (Denmark)

    Gregersen, Andreas Lindegaard

    The dissertation is premised on the assumption that video game structure is geared towards the functionality of challenging interaction by embodied human individuals. The first chapter introduces "core cognition", referring to a stable and common human embodiment of cognitive powers related...... that of the game world, or virtual world. Games are, in accordance with previous claims, defined as simulations of game worlds which are recruited for game functionalities of challenges of control in relation to artificial conflict. On the basis of core cognition, intentional agency, and play-related phenomena...... altogether. Avatar control is dealt with in detail in relation to embodiment through the concept of "body-image-in-action". It is also argued that game simulation and representation is tailored to core cognition. Core cognition is the base of a shared semantics of physical processes, embodied actions...

  15. An integral approach to investigate planetary cores

    Science.gov (United States)

    Fei, Y.

    2012-12-01

    The same core-mantle differentiation process was in operation during the early formation of the terrestrial planets, but it led to unique cores for the Earth, Venus, Mars, and Mercury, with different magnetic fields, reflecting their different dynamic, physical, and chemical states. Assuming all terrestrial planets shared the same materials of the building block, the differences must be resulted from the different conditions of the early accretion and the subsequent planetary evolution unique to each planet. The pressures at the core-mantle boundary of the terrestrial planets range from as low as 7 GPa to 136 GPa. The physical state (liquid or solid) for each planetary core is closely tied to the melting and chemical composition of the cores. In order to determine the minimal temperature of a liquid core or the maximal temperature of a solid core, we have systematically investigated melting relations in the binary systems Fe-FeS, Fe-C, and Fe-FeSi, move toward unravelling the crystallization sequence and element partitioning between solid and liquid metal in the ternary and quaternary systems up to 25 GPa, using multi-anvil apparatus. We have developed new techniques to analyze the quenched samples recovered from laser-heating diamond-anvil cell experiments using combination of focus ion beam (FIB) milling, high-resolution SEM imaging, and quantitative chemical analysis with silicon drift detector EDS. With precision milling of the laser-heating spot, we determined melting using quenching texture criteria imaged with high-resolution SEM and the sulfur partitioning between solid and liquid at submicron spatial resolution. We have also re-constructed 3D image of the laser-heating spot at multi-megabar pressures to better constrain melting point and understanding melting process. The new techniques allow us to extend precise measurements of melting relations to core pressures in the laser-heating diamond-anvil cell. In addition to the static experiments, we also used

  16. Viscosity anomaly in core-softened liquids

    OpenAIRE

    Fomin, Yu. D.; Ryzhov, V. N.

    2013-01-01

    The present article presents a molecular dynamics study of several anomalies of core-softened systems. It is well known that many core-softened liquids demonstrate diffusion anomaly. Usual intuition relates the diffusion coefficient to shear viscosity via Stockes-Einstein relation. However, it can break down at low temperature. In this respect it is important to see if viscosity also demonstrates anomalous behavior.

  17. Porous-core honeycomb bandgap THz fiber

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Jepsen, Peter Uhd

    2011-01-01

    In this Letter we propose a novel (to our knowledge) porous-core honeycomb bandgap design. The holes of the porous core are the same size as the holes in the surrounding cladding, thereby giving the proposed fiber important manufacturing benefits. The fiber is shown to have a 0:35-THz......-wide fundamental bandgap centered at 1:05 THz. The calculated minimum loss of the fiber is 0:25 dB=cm....

  18. Multi-core fiber undersea transmission systems

    DEFF Research Database (Denmark)

    Nooruzzaman, Md; Morioka, Toshio

    2017-01-01

    Various potential architectures of branching units for multi-core fiber undersea transmission systems are presented. It is also investigated how different architectures of branching unit influence the number of fibers and those of inline components.......Various potential architectures of branching units for multi-core fiber undersea transmission systems are presented. It is also investigated how different architectures of branching unit influence the number of fibers and those of inline components....

  19. Core-level spectra from graphene

    OpenAIRE

    Sernelius, Bo

    2014-01-01

    We calculate core-level spectra for pristine and doped free-standing graphene sheets. Instructions for how to perform the calculations are given in detail. Although pristine graphene is not metallic the core-level spectrum presents low-energy tailing which is characteristic of metallic systems. The peak shapes vary with doping level in a characteristic way. The spectra are compared to experiments and show good agreement. We compare to two different pristine samples and to one doped sample. Th...

  20. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  1. Mode characteristics of hollow core Bragg fiber

    Institute of Scientific and Technical Information of China (English)

    Minning Ji; Zhidong Shi; Qiang Guo

    2005-01-01

    Analytical expression to calculate propagation constant and mode field of the hollow core Bragg fiber is derived. Numerical results are presented. It is shown that the fundamental mode of the hollow core Bragg fiber is circularly symmetric TE01 mode with no polarization degeneracy, while the higher order mode may be HE11, TM01, or TE02 etc.. This property is different from conventional optical fiber that its fundamental mode is the linearly polarized HE11 mode and is polarization degeneracy.

  2. Retention Models on Core-Shell Columns.

    Science.gov (United States)

    Jandera, Pavel; Hájek, Tomáš; Růžičková, Marie

    2017-07-13

    A thin, active shell layer on core-shell columns provides high efficiency in HPLC at moderately high pressures. We revisited three models of mobile phase effects on retention for core-shell columns in mixed aqueous-organic mobile phases: linear solvent strength and Snyder-Soczewiński two-parameter models and a three-parameter model. For some compounds, two-parameter models show minor deviations from linearity due to neglect of possible minor retention in pure weak solvent, which is compensated for in the three-parameter model, which does not explicitly assume either the adsorption or the partition retention mechanism in normal- or reversed-phase systems. The model retention equation can be formulated as a function of solute retention factors of nonionic compounds in pure organic solvent and in pure water (or aqueous buffer) and of the volume fraction of an either aqueous or organic solvent component in a two-component mobile phase. With core-shell columns, the impervious solid core does not participate in the retention process. Hence, the thermodynamic retention factors, defined as the ratio of the mass of the analyte mass contained in the stationary phase to its mass in the mobile phase in the column, should not include the particle core volume. The values of the thermodynamic factors are lower than the retention factors determined using a convention including the inert core in the stationary phase. However, both conventions produce correct results if consistently used to predict the effects of changing mobile phase composition on retention. We compared three types of core-shell columns with C18-, phenyl-hexyl-, and biphenyl-bonded phases. The core-shell columns with phenyl-hexyl- and biphenyl-bonded ligands provided lower errors in two-parameter model predictions for alkylbenzenes, phenolic acids, and flavonoid compounds in comparison with C18-bonded ligands.

  3. Synthesis of dehydrobenzoannulenes with pyrene core

    Indian Academy of Sciences (India)

    Antony Joseph; Gandikota Venkataramana; Sethuraman Sankararaman

    2012-05-01

    Synthesis of dehydrobenzoannulenes (DBAs) with pyrene core from 1,8-diethynylpyrene and 1,3,6,8-tetraethynylpyrene as building blocks is reported. A sequence involving Sonogashira coupling, Corey- Fuchs reaction and oxidative coupling (Eglinton coupling) is used for the synthesis of pyrene-based dehydrobenzoannulenes. Due to the presence of pyrenechromophore these DBAs and their precursors are highly fluorescent and emit in the visible region, due to extended conjugation of the acetylenic units with the pyrene core.

  4. Combustion and Engine-Core Noise

    Science.gov (United States)

    Ihme, Matthias

    2017-01-01

    The implementation of advanced low-emission aircraft engine technologies and the reduction of noise from airframe, fan, and jet exhaust have made noise contributions from an engine core increasingly important. Therefore, meeting future ambitious noise-reduction goals requires the consideration of engine-core noise. This article reviews progress on the fundamental understanding, experimental analysis, and modeling of engine-core noise; addresses limitations of current techniques; and identifies opportunities for future research. After identifying core-noise contributions from the combustor, turbomachinery, nozzles, and jet exhaust, they are examined in detail. Contributions from direct combustion noise, originating from unsteady combustion, and indirect combustion noise, resulting from the interaction of flow-field perturbations with mean-flow variations in turbine stages and nozzles, are analyzed. A new indirect noise-source contribution arising from mixture inhomogeneities is identified by extending the theory. Although typically omitted in core-noise analysis, the impact of mean-flow variations and nozzle-upstream perturbations on the jet-noise modulation is examined, providing potential avenues for future core-noise mitigation.

  5. Hybrid Analysis of Engine Core Noise

    Science.gov (United States)

    O'Brien, Jeffrey; Kim, Jeonglae; Ihme, Matthias

    2015-11-01

    Core noise, or the noise generated within an aircraft engine, is becoming an increasing concern for the aviation industry as other noise sources are progressively reduced. The prediction of core noise generation and propagation is especially challenging for computationalists since it involves extensive multiphysics including chemical reaction and moving blades in addition to the aerothermochemical effects of heated jets. In this work, a representative engine flow path is constructed using experimentally verified geometries to simulate the physics of core noise. A combustor, single-stage turbine, nozzle and jet are modeled in separate calculations using appropriate high fidelity techniques including LES, actuator disk theory and Ffowcs-Williams Hawkings surfaces. A one way coupling procedure is developed for passing fluctuations downstream through the flowpath. This method effectively isolates the core noise from other acoustic sources, enables straightforward study of the interaction between core noise and jet exhaust, and allows for simple distinction between direct and indirect noise. The impact of core noise on the farfield jet acoustics is studied extensively and the relative efficiency of different disturbance types and shapes is examined in detail.

  6. The iron alloys of the Earth's core

    Science.gov (United States)

    Caracas, R.; Verstraete, M. J.; Vargas Calderon, A.; Labrosse, S.; Hernlund, J. W.; Gomi, H.; Ohta, K.; Hirose, K.

    2012-12-01

    We estimate the necessary amount of several light elements - C, S, P, O, Si - as major alloying components to match the observed seismic properties of the Earth's inner core. For this we compute the elastic constants tensors and determine the seismic properties of Fe3X compounds, with X = C, S, P, O and Si, using first-principles calculations. Assuming linear relations and similar temperature corrections of velocities, we obtain as most reasonable silicon and oxygen. We perform the same exercise on Fe-Ni alloys and see a minor effect of Ni on the seismic properties of iron. We compute the electrical conductivity of iron and iron alloys at Earth's core conditions from electron-phonon coupling in the ABINIT implementation. We find an excellent agreement with experimental results for pure hcp iron below 1 mbars. We confidently use our results up to core pressure conditions. We show that the conductivity exhibits saturation at high pressures. We treat in detail the effect of Si on hcp iron and show a marked saturation effect, an increase in anisotropy and a strong dependence with the substitution pattern. The computed values suggest that the outer core should have conductivities in excess of 90 W/K/m, which is considerably larger than current estimates. This implies an inner core younger than 1 bil. years and stratification of the outer core.

  7. ACGME core competencies: where are we?

    Science.gov (United States)

    Yaszay, Burt; Kubiak, Erik; Agel, Julie; Hanel, Douglas P

    2009-03-01

    Beginning in July 2002, the Accreditation Council for Graduate Medical Education (ACGME) instructed all residency programs to require their residents to demonstrate competency in 6 core areas: patient care, interpersonal and communication skills, medical knowledge, professionalism, practice-based learning, and systems-based practice. The goal was to have objective markers of performance that would serve as a gauge to determine a program's accreditation. To determine the experiences of orthopedic residency programs with regard to the ACGME's core competencies, a national survey was administered to orthopedic program directors and selected orthopedic residents. Of those orthopedic programs that responded, most appeared to be complying with the ACGME requirements. Both directors and residents thought patient care and medical knowledge ranked most important, while practice-based learning and systems-based practice were assigned the lowest ranks. Barriers to implementation of the core competencies included low priority compared with clinical duties, lack of faculty or resident education, and lack of formal orthopedic core competencies. Residents and program directors agreed that their programs would benefit from a definition of each of the core competencies, including a greater commitment to the processes involved in surgical procedures. This study demonstrated a commitment to the core competencies by the programs that responded. The survey also suggested this commitment would be aided by improved definitions of some of the competencies for the orthopedic resident.

  8. Subannual layer variability in Greenland firn cores

    Science.gov (United States)

    Kjær, Helle Astrid; Vallelonga, Paul; Vinther, Bo; Winstrup, Mai; Simonsen, Marius; Maffezzoli, Niccoló; Jensen, Camilla Marie

    2017-04-01

    Ice cores are used to infer information about the past and modern techniques allow for high resolution (CFA) of the ice. Such analysis is often used to inform on annual layers to constrain dating of ice cores, but can also be extended to provide information on sub-annual deposition patterns. In this study we use available high resolution data from multiple shallow cores around Greenland to investigate the seasonality and trends in the most often continuously measured components sodium, insoluble dust, calcium, ammonium and conductivity (or acidity) from 1800 AD to today. We evaluate the similarities and differences between the records and discuss the causes from different sources and transport to deposition and post-deposition effects over differences in measurement set up. Further we add to the array of cores already published with measurements from the newly drilled ReCAP ice core from a coastal ice cap in eastern Greenland and from a shallow core drilled at the high accumulation site at the Greenland South Dome.

  9. Cool Core Disruption in Abell 1763

    Science.gov (United States)

    Douglass, Edmund; Blanton, Elizabeth L.; Clarke, Tracy E.; Randall, Scott W.; Edwards, Louise O. V.; Sabry, Ziad

    2017-01-01

    We present the analysis of a 20 ksec Chandra archival observation of the massive galaxy cluster Abell 1763. A model-subtracted image highlighting excess cluster emission reveals a large spiral structure winding outward from the core to a radius of ~950 kpc. We measure the gas of the inner spiral to have significantly lower entropy than non-spiral regions at the same radius. This is consistent with the structure resulting from merger-induced motion of the cluster’s cool core, a phenomenon seen in many systems. Atypical of spiral-hosting clusters, an intact cool core is not detected. Its absence suggests the system has experienced significant disruption since the initial dynamical encounter that set the sloshing core in motion. Along the major axis of the elongated ICM distribution we detect thermal features consistent with the merger event most likely responsible for cool core disruption. The merger-induced transition towards non-cool core status will be discussed. The interaction between the powerful (P1.4 ~ 1026 W Hz-1) cluster-center WAT radio source and its ICM environment will also be discussed.

  10. The compactness of presupernova stellar cores

    Energy Technology Data Exchange (ETDEWEB)

    Sukhbold, Tuguldur; Woosley, S. E., E-mail: sukhbold@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2014-03-01

    The success or failure of the neutrino-transport mechanism for producing a supernova in an evolved massive star is known to be sensitive not only to the mass of the iron core that collapses, but also to the density gradient in the silicon and oxygen shells surrounding that core. Here we study the systematics of a presupernova core's 'compactness' as a function of the mass of the star and the physics used in its calculation. Fine-meshed surveys of presupernova evolution are calculated for stars from 15 to 65 M {sub ☉}. The metallicity and the efficiency of semiconvection and overshoot mixing are both varied and bare carbon-oxygen cores are explored as well as full hydrogenic stars. Two different codes, KEPLER and MESA, are used for the study. A complex interplay of carbon and oxygen burning, especially in shells, can cause rapid variations in the compactness for stars of very nearly the same mass. On larger scales, the distribution of compactness with main sequence mass is found to be robustly non-monotonic, implying islands of 'explodabilty,' particularly around 8-20 M {sub ☉} and 25-30 M {sub ☉}. The carbon-oxygen (CO) core mass of a presupernova star is a better, (though still ambiguous) discriminant of its core structure than the main sequence mass.

  11. Formed Core Sampler Hydraulic Conductivity Testing

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. H.; Reigel, M. M.

    2012-09-25

    A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposed to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.

  12. Geochemistry of sediment cores of the western equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, P; Cronan, D.S.; Rao, Ch.M.; Paropkari, A.L.; Topgi, R.S.; Guptha, M.V.S.; Colley, N.

    Geochemical investigations including partition analysis have been carried out on nine sediment cores from the western equatorial Indian Ocean. The results show that a core from the Arabian Sea exhibits a greater terrigenous influence than cores from...

  13. Evaluating Community Health Advisor (CHA) Core Competencies: The CHA Core Competency Retrospective Pretest/Posttest (CCCRP).

    Science.gov (United States)

    Story, Lachel; To, Yen M

    2016-05-01

    Health care and academic systems are increasingly collaborating with community health advisors (CHAs) to provide culturally relevant health interventions that promote sustained community transformation. Little attention has been placed on CHA training evaluation, including core competency attainment. This study identified common CHA core competencies, generated a theoretically based measure of those competencies, and explored psychometric properties of that measure. A concept synthesis revealed five CHA core competencies (leadership, translation, guidance, advocacy, and caring). The CHA Core Competency Retrospective Pretest/Posttest (CCCRP) resulted from that synthesis, which was administered using multiple approaches to individuals who previously received CHA training (N= 142). Exploratory factor analyses revealed a two-factor structure underlying the posttraining data, and Cronbach's alpha indicated high internal consistency. This study suggested some CHA core competencies might be more interrelated than previously thought, and two major competencies exist rather than five and supported the CCCRP's use to evaluate core competency attainment resulting from training.

  14. Entrapment of carbon dioxide with chitosan-based core-shell particles containing changeable cores.

    Science.gov (United States)

    Dong, Yanrui; Fu, Yinghao; Lin, Xia; Xiao, Congming

    2016-08-01

    Water-soluble chitosan-based core-shell particles that contained changeable cores were successfully applied to anchor carbon dioxide. The entrapment capacity of the particles for carbon dioxide (EC) depended on the cores. It was found that EC of the particles contained aqueous cores was higher than that of the beads with water-soluble chitosan gel cores, which was confirmed with thermogravimetric analysis. In addition, calcium ions and sodium hydroxide were introduced within the particles to examine their effect on the entrapment. EC of the particles was enhanced with sodium hydroxide when the cores were WSC gel. The incorporation of calcium ions was helpful for stabilizing carbon dioxide through the formation of calcium carbonate, which was verified with Fourier transform infrared spectra and scanning electron microscopy/energy-dispersive spectrometry. This phenomenon meant the role of calcium ions for fixating carbon dioxide was significant.

  15. Top coalitions, common rankings, and semistrict core stability

    OpenAIRE

    Dinko Dimitrov

    2006-01-01

    The top coalition property of Banerjee et al. (2001) and the common ranking property of Farrell and Scotchmer (1988) are sufficient conditions for core stability in hedonic games. We introduce the semistrict core as a stronger stability concept than the core, and show that the top coalition property guarantees the existence of semistrictly core stable coalition structures. Moreover, for each game satisfying the common ranking property, the core and the semistrict core coincide.

  16. On top coalitions, common rankings, and semistrict core stability

    OpenAIRE

    Dimitrov, Dinko

    2011-01-01

    The top coalition property of Banerjee et al. (2001) and the common ranking property of Farrell and Scotchmer (1988) are sufficient conditions for core stability in hedonic games. We introduce the semistrict core as a stronger stability concept than the core, and show that the top coalition property guarantees the existence of semistrictly core stable coalition structures. Moreover, for each game satisfying the common ranking property, the core and the semistrict core coincide.

  17. Top coalitions, common rankings, and semistrict core stability

    OpenAIRE

    Dinko Dimitrov

    2006-01-01

    The top coalition property of Banerjee et al. (2001) and the common ranking property of Farrell and Scotchmer (1988) are sufficient conditions for core stability in hedonic games. We introduce the semistrict core as a stronger stability concept than the core, and show that the top coalition property guarantees the existence of semistrictly core stable coalition structures. Moreover, for each game satisfying the common ranking property, the core and the semistrict core coincide.

  18. Development of Toroidal Core Transformers

    Energy Technology Data Exchange (ETDEWEB)

    de Leon, Francisco [New York Univ. (NYU), Brooklyn, NY (United States). Dept. of Electrical and Computer Engineering

    2014-08-01

    The original objective of this project was to design, build and test a few prototypes of single-phase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014. The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k

  19. Development of Toroidal Core Transformers

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Francisco

    2014-05-31

    The original objective of this project was to design, build and test a few prototypes of singlephase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014.The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k

  20. EFFECT OF DIVIDED CORE ON THE BENDING PERFORMANCES OF TEXTILE REINFORCED FOAM CORE SANDWICH COMPOSITES

    Directory of Open Access Journals (Sweden)

    ALPYILDIZ Tuba

    2016-05-01

    Full Text Available Sandwich composites are generally used in marine applications, wind turbines, space and aircraft vehicles due to their high bending rigidities in addition to their lighter weights. The objective of this study is to investigate the effect of divided foam core and interlayer sheet of glass fabric on the bending performances of sandwich composites which are manufactured with glass fabrics as the facesheets/interlayer sheets and PVC foam as the core material. Sandwich composites with single and divided core are manufactured and compared in terms of flexural behavious via three point bending tests. It is found that the bending performance is enhanced with the use of divided core and using divided core does not affect the behaviour of the sandwich composite against bending deformations. In the case of the plain core sandwich composite, dividing the core is advised for certain applications rather than perforating the core to increase the bending stiffness and strength of the textile reinforced sandwich composites because it is possible to purchase core with any thickness and there is no need for additional process such as perforation. The proposed application could enhance the bending performances without altering the weight and cost of the sandwich composites, which are preferred due to their higher bending rigidities in relation to their lighter weights.

  1. Hollow-core tapered coupler for large inner diameter hollow-core optical fibers

    Institute of Scientific and Technical Information of China (English)

    Guiyao Zhou(周桂耀); Zhiyun Hou(侯峙云); Lantian Hou(侯蓝田); Jigang Liu(刘继刚)

    2003-01-01

    A novel hollow-core tapered coupler has been theoretically designed and fabricated by fiber drawing machine. The coupler's inner wall is coated with a polycrystalline GeO2 film. The coupling loss of hollow-core tapered coupler is about 0.2 dB. Hollow-core tapered coupler reduces the transmission loss of hollow-core optical fiber (HCOF) by 0.5 dB/m, therefore the coupler is suitable for coupling high power CO2 laser in industrial application.

  2. Overview on Hydrate Coring, Handling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  3. CFD Analysis of Core Bypass Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2010-03-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the sector grid can be set as a symmetry boundary

  4. CFD Analysis of Core Bypass Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2009-11-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary

  5. Investigation of intravalence, core-valence and core-core electron correlation effects in polonium atomic structure calculations

    Science.gov (United States)

    Quinet, Pascal

    2014-09-01

    A detailed investigation of the atomic structure and radiative parameters involving the lowest states within the 6p4, 6p36d, 6p37s, 6p37p and 6p37d configurations of neutral polonium is reported in the present paper. Using different physical models based on the pseudo-relativistic Hartree-Fock approach, the influence of intravalence, core-valence and core-core electron correlation on the atomic parameters is discussed in detail. This work allowed us to fix the spectroscopic designation of some experimental level energy values and to provide for the first time a set of reliable oscillator strengths corresponding to 31 Po I spectral lines in the wavelength region from 175 to 987 nm.

  6. Chimeric hepatitis B virus core particles with parts or copies of the hepatitis C virus core protein.

    OpenAIRE

    Yoshikawa, A.; Tanaka, T; Hoshi, Y.; Kato, N; K. Tachibana; Iizuka, H; Machida, A; Okamoto, H; Yamasaki, M.; Miyakawa, Y

    1993-01-01

    Either parts or multiple copies of the core gene of hepatitis C virus (HCV) were fused to the 3' terminus of the hepatitis B virus (HBV) core gene with 34 codons removed. As many as four copies of HCV core protein (720 amino acids) were fused to the carboxy terminus of truncated HBV core protein (149 amino acids) without preventing the assembly of HBV core particles. Chimeric core particles were sandwiched between monoclonal antibody to HBV core and that to HCV core, thereby indicating that a...

  7. Chimeric hepatitis B virus core particles with parts or copies of the hepatitis C virus core protein.

    OpenAIRE

    Yoshikawa, A.; Tanaka, T; Hoshi, Y.; Kato, N.; Tachibana, K; Iizuka, H.; Machida, A; Okamoto, H; Yamasaki, M.; Miyakawa, Y

    1993-01-01

    Either parts or multiple copies of the core gene of hepatitis C virus (HCV) were fused to the 3' terminus of the hepatitis B virus (HBV) core gene with 34 codons removed. As many as four copies of HCV core protein (720 amino acids) were fused to the carboxy terminus of truncated HBV core protein (149 amino acids) without preventing the assembly of HBV core particles. Chimeric core particles were sandwiched between monoclonal antibody to HBV core and that to HCV core, thereby indicating that a...

  8. The Earth's Inner Core: a Black Box

    Science.gov (United States)

    Tkalčić, Hrvoje

    2016-04-01

    The Earth's inner core continues to provoke interest and interaction among various disciplines within the deep Earth scientific community for many reasons, including the following: i) The phase diagram of iron and its alloys at high pressures and temperatures is still in a state of investigation, and several crystalographic phases of iron and/or their aggregates have been proposed to be stable at inner core conditions. Seismological datasets have increased in size, but there is a serious trade-off between isotropic and anisotropic velocity structure. This is further exacerbated by the non-uniqueness of the inverse problem in which travel time data are modeled by volumetric changes in isotropic/anisotropic structure. These datasets are nevertheless invaluable, and their further growth through receiver installations in remote regions will further constrain this problem. ii) Radial and lateral variations in inner core structure have been intensively studied and confirmed, both in terms of velocity and attenuation. Studying the latter is complicated since another trade-off exists - that between the viscoelastic and scattering origin of attenuation. There is an ongoing debate about the existence of the innermost inner core and the geodynamical mechanism responsible for the seismologically observed east-west dichotomy in isotropic velocity. The growing travel time and waveform datasets, both from individual stations and arrays, hold the key to solving these problems. iii) The growth mechanism of the inner core is in dispute; its age is still unknown, and it is not completely understood how its growing front crystallizes. The seismological datasets are arguably less potent in providing direct answers to this question. Nonetheless, there is some potential in studying the texture present in the outermost inner core, the velocity gradient at the bottom of the outer core, and the nature of the inner core boundary using waveform simulations and the coda of the seismic phases

  9. Limits on the Core Mass of Jupiter

    Science.gov (United States)

    Stevenson, D. J.

    2015-12-01

    The core is here defined as the central concentration of elements heavier than hydrogen and helium (it need not be solid and it need not be purely heavy elements and it will not have a sharp boundary). Its determination is a major goal of the Juno mission (2016-17) and it will be difficult to determine because it is expected to be only a few percent of the total mass. It has long been known that there is no prospect of determining the nature of this core (e.g., its density) from gravity measurements, even though the mass can be estimated. By consideration of simple models that are nonetheless faithful to the essential physics, it is further shown that should the core be contaminated with light elements (hydrogen and helium) then the gravity data can tell us the core mass as defined (with some caveats about the fuzziness of its boundary) but not the total mass within some small radius (which could include any light elements mixed in). This is both good and bad news: Good in that the core is thought to be diagnostic of the conditions under which the planet formed but bad in that the admixture also tells us more about both formation process and core erosion. Further, a linear perturbation theory has been developed that provides an easy approximate way of determining how errors in the equation of state (EOS) propagate into errors in the estimated core mass or envelope enrichment in heavies in models that nonetheless satisfy all observables. This theory does not require detailed models of the planet but provides an integral mapping from changes in the EOS into approximate changes in radius at fixed mass, and low degree gravity (or moment of inertia, MOI). This procedure also shows that there exist perturbations that leave the radius, mass and MOI unchanged but cause a change in J2, though in practice the non-uniqueness of structure by this consideration (~0.2% or less in MOI for example) is less than the non-uniqueness arising from likely EOS uncertainties (~1% in total

  10. ROSA full-core and DNBR capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gibcus, H.P.M.; Verhagen, F.C.M.; Wakker, P.H. [NRG, Arnhem (Netherlands)

    2012-11-01

    This paper presents the latest developments of the ROSA (Reloading Optimization by Simulated Annealing) code system with an emphasis on the first full-core version and the minimum DNBR (Departure from Nucleate Boiling Ratio) as a new optimization parameter. Designing the core loading pattern of nuclear power plants is becoming a more and more complex task. This task becomes even more complicated if asymmetries in the core loading pattern arise, for instance due to damaged fuel assemblies. For over almost two decades ROSA, NRG's (Nuclear Research and consultancy Group) loading pattern optimization code system for PWRs, has proven to be a valuable tool to reactor operators in accomplishing this task. To improve the use of ROSA for designing asymmetric loading patterns, NRG has developed a full-core version of ROSA besides the original quarter-core version which requires rotational symmetry in the computational domain. The extension of ROSA with DNBR as an optimization parameter is part of ROSA's continuous development. (orig.)

  11. ROSA full-core and DNBR capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gibcus, H.P.M.; Verhagen, F.C.M.; Wakker, P.H. [NRG, Arnhem (Netherlands)

    2013-06-15

    The latest developments of the ROSA (Reloading Optimization by Simulated Annealing) code system with an emphasis on the first full-core version and the minimum DNBR (Departure from Nucleate Boiling Ratio) as a new optimization parameter are presented. Designing the core loading pattern of nuclear power plants is becoming a more and more complex task. This task becomes even more complicated if asymmetries in the core loading pattern arise, for instance due to damaged fuel assemblies. For over almost 2 decades ROSA, NRG's (Nuclear Research and consultancy Group) loading pattern optimization code system for PWRs, has proven to be a valuable tool to reactor operators in accomplishing this task. To improve the use of ROSA for designing asymmetric loading patterns, NRG has developed a full-core version of ROSA besides the original quarter-core version which requires rotational symmetry in the computational domain. The extension of ROSA with DNBR as an optimization parameter is part of ROSA's continuous development. (orig.)

  12. Simulating an Exploding Fission-Bomb Core

    Science.gov (United States)

    Reed, Cameron

    2016-03-01

    A time-dependent desktop-computer simulation of the core of an exploding fission bomb (nuclear weapon) has been developed. The simulation models a core comprising a mixture of two isotopes: a fissile one (such as U-235) and an inert one (such as U-238) that captures neutrons and removes them from circulation. The user sets the enrichment percentage and scattering and fission cross-sections of the fissile isotope, the capture cross-section of the inert isotope, the number of neutrons liberated per fission, the number of ``initiator'' neutrons, the radius of the core, and the neutron-reflection efficiency of a surrounding tamper. The simulation, which is predicated on ordinary kinematics, follows the three-dimensional motions and fates of neutrons as they travel through the core. Limitations of time and computer memory render it impossible to model a real-life core, but results of numerous runs clearly demonstrate the existence of a critical mass for a given set of parameters and the dramatic effects of enrichment and tamper efficiency on the growth (or decay) of the neutron population. The logic of the simulation will be described and results of typical runs will be presented and discussed.

  13. Geodynamo Modeling of Core-Mantle Interactions

    Science.gov (United States)

    Kuang, Wei-Jia; Chao, Benjamin F.; Smith, David E. (Technical Monitor)

    2001-01-01

    Angular momentum exchange between the Earth's mantle and core influences the Earth's rotation on time scales of decades and longer, in particular in the length of day (LOD) which have been measured with progressively increasing accuracy for the last two centuries. There are four possible coupling mechanisms for transferring the axial angular momentum across the core-mantle boundary (CMB): viscous, magnetic, topography, and gravitational torques. Here we use our scalable, modularized, fully dynamic geodynamo model for the core to assess the importance of these torques. This numerical model, as an extension of the Kuang-Bloxham model that has successfully simulated the generation of the Earth's magnetic field, is used to obtain numerical results in various physical conditions in terms of specific parameterization consistent with the dynamical processes in the fluid outer core. The results show that depending on the electrical conductivity of the lower mantle and the amplitude of the boundary topography at CMB, both magnetic and topographic couplings can contribute significantly to the angular momentum exchange. This implies that the core-mantle interactions are far more complex than has been assumed and that there is unlikely a single dominant coupling mechanism for the observed decadal LOD variation.

  14. Blue straggler formation at core collapse

    CERN Document Server

    Banerjee, Sambaran

    2016-01-01

    Among the most striking feature of blue straggler stars (BSS) is the presence of multiple sequences of BSSs in the colour-magnitude diagrams (CMDs) of several globular clusters. It is often envisaged that such a multiple BSS sequence would arise due a recent core collapse of the host cluster, triggering a number of stellar collisions and binary mass transfers simultaneously over a brief episode of time. Here we examine this scenario using direct N-body computations of moderately massive star clusters (of order 10^4 Msun ). As a preliminary attempt, these models are initiated with approx. 8-10 Gyr old stellar population and King profiles of high concentrations, being "tuned" to undergo core collapse quickly. BSSs are indeed found to form in a "burst" at the onset of the core collapse and several of such BS-bursts occur during the post-core-collapse phase. In those models that include a few percent primordial binaries, both collisional and binary BSSs form after the onset of the (near) core-collapse. However, t...

  15. Photoevaporating transitional discs and molecular cloud cores

    Science.gov (United States)

    Li, Min; Sui, Ning

    2017-04-01

    We investigate the evolution of photoevaporating protoplanetary discs including mass influx from molecular cloud cores. We examine the influence of cloud core properties on the formation and evolution of transitional discs. We use one-dimensional thin disc assumption and calculate the evolution of the protoplanetary disc. The effects of X-ray photoevaporation are also included. Our calculations suggest that most discs should experience the transitional disc phase within 10 Myr. The formation time of a gap and its initial location are functions of the properties of the cloud cores. In some circumstances, discs can open two gaps by photoevaporation alone. The two gaps form when the gas in the disc can expand to large radius and if the mass at large radius is sufficiently small. The surface density profile of the disc determines whether the two gaps can form. Since the structure of a disc is determined by the properties of a molecular cloud core, the core properties determine the formation of two gaps in the disc. We further find that even when the photoevaporation rate is reduced to 10 per cent of the standard value, two gaps can still form in the disc. The only difference is that the formation time is delayed.

  16. Dark matter cores all the way down

    CERN Document Server

    Read, J I; Collins, M L M

    2015-01-01

    We use high resolution simulations of isolated dwarf galaxies to study the physics of dark matter cusp-core transformation at the edge of galaxy formation (Mvir = 10^7 - 10^9 Msun). We work at a resolution (4 pc) at which the impact from individual supernovae explosions can be resolved, becoming insensitive to even large changes in our numerical 'sub-grid' parameters. We find that our dwarf galaxies give a remarkable match to the stellar light profile; star formation history; metallicity distribution function; and star/gas kinematics of isolated dwarf irregular galaxies. Our key result is that dark matter cores of size comparable to the half light radius r_1/2 always form if star formation proceeds for long enough. Cores fully form in less than 4 Gyrs for the Mvir =10^8 Msun and 14 Gyrs for the 10^9 Msun dwarf. We provide a convenient two parameter 'coreNFW' fitting function that captures this dark matter core growth as a function of star formation time and the projected half light radius. Our results have se...

  17. Core radii and common-envelope evolution

    CERN Document Server

    Hall, Philip D

    2014-01-01

    Many classes of objects and events are thought to form in binary star systems after a phase in which a core and companion spiral to smaller separation inside a common envelope (CE).Such a phase can end with the merging of the two stars or with the ejection of the envelope to leave a surviving binary system.The outcome is usually predicted by calculating the separation to which the stars must spiral to eject the envelope, assuming that the ratio of the core--envelope binding energy to the change in orbital energy is equal to a constant efficiency factor $\\alpha$. If either object would overfill its Roche lobe at this end-of-CE separation, then the stars are assumed to merge. It is unclear what critical radius should be compared to the end-of-CE Roche lobe for stars which have developed cores before the start of a CE phase. After improving the core radius formulae in the widely used BSE rapid evolution code, we compare the properties of populations in which the critical radius is chosen to be the pre-CE core ra...

  18. Stellar core collapse. I - Infall epoch

    Science.gov (United States)

    van Riper, K. A.; Lattimer, J. M.

    1981-10-01

    Simulations of the collapse of the central iron core of a 15-solar-mass spherically symmetric star are reported. In this paper the infall epoch, between the onset of collapse and core bounce, is considered. The models use the recent equation of state of Lamb, Lattimer, Pethick, and Ravenhall and general-relativistic hydrodynamics. The electron capture rates on nuclei proceed rapidly for densities less than 10 to the 11th g/cu cm, but are suppressed at higher densities where the neutron number of the nucleus, N, exceeds 40 (Fuller, Fowler, and Newman). Neutrino transport is treated by a leakage scheme. The effects of changes in the neutrino trapping density and of qualitative changes in the electron capture reactions on the evolution are explored. Greater lepton loss during collapse leads to larger pressure deficits, more rapid collapse, and smaller inner homologous cores. The entropy change during the infall is small, the absolute value of delta s being less than 0.8. The mass of inner core is given, to about 20%, by the formula of Goldreich and Weber. Because the collapsing core is far from equilibrium, the effects of general relativity are small.

  19. The Dynamics of Massive Starless Cores

    Science.gov (United States)

    Tan, Jonathan; Caselli, P.; Fontani, F.; Kong, S.; Butler, M. J.

    2012-05-01

    Progress towards resolving a decade-long debate about how massive stars form can be made by determining if massive starless cores exist in a state of near virial equilibrium. These are the initial conditions invoked by the Core Accretion model of McKee & Tan (2003). Alternatively, the Competitive Accretion model of Bonnell et al. (2001) requires sub-virial conditions. We have identified 4 prime examples of massive ( 50 Msun) cores from mid-infrared (MIR) extinction mapping (Butler & Tan 2009, 2012) of Infrared Dark Clouds. We have found spectacularly high deuterated fractions of N_2H+ of 0.5 in these objects with the IRAM 30m telescope (Fontani et al. 2011). Thus N_2D+ is expected to be an excellent tracer of the kinematics of these cold, dark cores, where most other molecular tracers are thought to be depleted from the gas phase. We report on ALMA Cycle 0 Compact Configuration Band 6 observations of these 4 cores that probe the N_2D+(3-2) line on scales from 9" down to 2.3", well-matched to the structures we see in MIR extinction and discuss their implications for massive star formation theories.

  20. Water Abundance in Molecular Cloud Cores

    CERN Document Server

    Snell, R L; Ashby, M L N; Bergin, E A; Chin, G; Erickson, N R; Goldsmith, P F; Harwit, M; Kleiner, S C; Koch, D G; Neufeld, D A; Patten, B M; Plume, R; Schieder, R; Stauffer, J R; Tolls, V; Wang, Z; Winnewisser, G; Zhang, Y F; Melnick, G J

    2000-01-01

    We present Submillimeter Wave Astronomy Satellite (SWAS) observations of the 1_{10}-1_{01} transition of ortho-water at 557 GHz toward 12 molecular cloud cores. The water emission was detected in NGC 7538, Rho Oph A, NGC 2024, CRL 2591, W3, W3(OH), Mon R2, and W33, and was not detected in TMC-1, L134N, and B335. We also present a small map of the water emission in S140. Observations of the H_2^{18}O line were obtained toward S140 and NGC 7538, but no emission was detected. The abundance of ortho-water relative to H_2 in the giant molecular cloud cores was found to vary between 6x10^{-10} and 1x10^{-8}. Five of the cloud cores in our sample have previous water detections; however, in all cases the emission is thought to arise from hot cores with small angular extents. The water abundance estimated for the hot core gas is at least 100 times larger than in the gas probed by SWAS. The most stringent upper limit on the ortho-water abundance in dark clouds is provided in TMC-1, where the 3-sigma upper limit on the ...

  1. HANARO core channel flow-rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.

  2. Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor

    Science.gov (United States)

    Butler, C.; Albright, D.

    2007-01-01

    Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.

  3. Optimal core acquisition and remanufacturing policies under uncertain core quality fractions

    NARCIS (Netherlands)

    Teunter, Ruud H.; Flapper, Simme Douwe P.

    2011-01-01

    Cores acquired by a remanufacturer are typically highly variable in quality. Even if the expected fractions of the various quality levels are known, then the exact fractions when acquiring cores are still uncertain. Our model incorporates this uncertainty in determining optimal acquisition decisions

  4. Electromagnetically driven westward drift and inner-core superrotation in Earth’s core

    Science.gov (United States)

    Livermore, Philip W.; Hollerbach, Rainer; Jackson, Andrew

    2013-01-01

    A 3D numerical model of the earth’s core with a viscosity two orders of magnitude lower than the state of the art suggests a link between the observed westward drift of the magnetic field and superrotation of the inner core. In our model, the axial electromagnetic torque has a dominant influence only at the surface and in the deepest reaches of the core, where it respectively drives a broad westward flow rising to an axisymmetric equatorial jet and imparts an eastward-directed torque on the solid inner core. Subtle changes in the structure of the internal magnetic field may alter not just the magnitude but the direction of these torques. This not only suggests that the quasi-oscillatory nature of inner-core superrotation [Tkalčić H, Young M, Bodin T, Ngo S, Sambridge M (2013) The shuffling rotation of the earth’s inner core revealed by earthquake doublets. Nat Geosci 6:497–502.] may be driven by decadal changes in the magnetic field, but further that historical periods in which the field exhibited eastward drift were contemporaneous with a westward inner-core rotation. The model further indicates a strong internal shear layer on the tangent cylinder that may be a source of torsional waves inside the core. PMID:24043841

  5. Apple-CORE: harnessing general-purpose many-cores with hardware concurrency management

    NARCIS (Netherlands)

    Poss, R.; Lankamp, M.; Yang, Q.; Fu, J.; van Tol, M.W.; Uddin, I.; Jesshope, C.

    2013-01-01

    To harness the potential of CMPs for scalable, energy-efficient performance in general-purpose computers, the Apple-CORE project has co-designed a general machine model and concurrency control interface with dedicated hardware support for concurrency management across multiple cores. Its SVP interfa

  6. Wavelength-Dependence of Inter-Core Crosstalk in Homogeneous Multi-Core Fibers

    DEFF Research Database (Denmark)

    Ye, Feihong; Saitoh, Kunimasa; Takenaga, Katsuhiro;

    2016-01-01

    The wavelength dependence of inter-core crosstalk in homogeneous multi-core fibers (MCFs) is investigated, and the corresponding analytical expressions are derived. The derived analytical expressions can be used to determine the crosstalk at any wavelength necessary for designing future MCF...... wavelengthdivision multiplexing (MCF-WDM) networks and transmission systems....

  7. 78 FR 56174 - In-Core Thermocouples at Different Elevations and Radial Positions in Reactor Core

    Science.gov (United States)

    2013-09-12

    ... coolant Temperature--Enthalpy (T-H) properties. The coolant steady-state properties (i.e., temperature) do... the rapid zirconium-steam reaction, core exit temperatures were measured at around 800 F. (Leyse-4... some liquefaction of core components because of eutectic reactions (i.e., the eutectic reaction...

  8. Electromagnetically driven westward drift and inner-core superrotation in Earth's core.

    Science.gov (United States)

    Livermore, Philip W; Hollerbach, Rainer; Jackson, Andrew

    2013-10-01

    A 3D numerical model of the earth's core with a viscosity two orders of magnitude lower than the state of the art suggests a link between the observed westward drift of the magnetic field and superrotation of the inner core. In our model, the axial electromagnetic torque has a dominant influence only at the surface and in the deepest reaches of the core, where it respectively drives a broad westward flow rising to an axisymmetric equatorial jet and imparts an eastward-directed torque on the solid inner core. Subtle changes in the structure of the internal magnetic field may alter not just the magnitude but the direction of these torques. This not only suggests that the quasi-oscillatory nature of inner-core superrotation [Tkalčić H, Young M, Bodin T, Ngo S, Sambridge M (2013) The shuffling rotation of the earth's inner core revealed by earthquake doublets. Nat Geosci 6:497-502.] may be driven by decadal changes in the magnetic field, but further that historical periods in which the field exhibited eastward drift were contemporaneous with a westward inner-core rotation. The model further indicates a strong internal shear layer on the tangent cylinder that may be a source of torsional waves inside the core.

  9. Preserving Social Studies as Core Curricula in an Era of Common Core Reform

    Science.gov (United States)

    Denton, David W.; Sink, Cindy

    2015-01-01

    Education reform over the last two decades has changed perceptions of core curricula. Although social studies has traditionally been part of the core, emphasis on standards-based teaching and learning, along with elaborate accountability schemes, is causing unbalanced treatment of subjects. While the research literature indicates teachers are…

  10. Novel Fe-based amorphous magnetic powder cores with ultra-low core losses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Amorphous magnetic alloy powders were prepared from bulk metallic glasses Fe74Cr2Mo2Sn2P10Si4B4C2 with supercooled liq-uid region of 32 K by water atomization.Amorphous magnetic powder core precursor was produced from a mixture of the amorphous alloy powder with addition of insulation and bonding materials by mold compacting at room temperature.After annealing the core precursor,the amorphous magnetic core exhibits superior magnetic properties as compared with molypermalloy powder core.The initial permeability up to 1 MHz was about 80,the flux density at 300 Oe was 1.06 T and the core loss at 100 kHz for Bm=0.1 T was only 329 kW/m3.The ultra-low core loss is attributed to the combination of relatively high resistivity and the amorphous structure of the Fe-based amorphous powder.Besides the outstanding magnetic properties,the Fe-based amorphous magnetic powder core had a much lower cost which renders the powder cores a potential candidate for a variety of industrial applications.

  11. Zonal flow formation in the Earth's core.

    Science.gov (United States)

    Miyagoshi, Takehiro; Kageyama, Akira; Sato, Tetsuya

    2010-02-11

    Zonal jets are very common in nature. Well-known examples are those in the atmospheres of giant planets and the alternating jet streams found in the Earth's world ocean. Zonal flow formation in nuclear fusion devices is also well studied. A common feature of these zonal flows is that they are spontaneously generated in turbulent systems. Because the Earth's outer core is believed to be in a turbulent state, it is possible that there is zonal flow in the liquid iron of the outer core. Here we report an investigation at the current low-viscosity limit of numerical simulations of the geodynamo. We find a previously unknown convection regime of the outer core that has a dual structure comprising inner, sheet-like radial plumes and an outer, westward cylindrical zonal flow. We numerically confirm that the dual-convection structure with such a zonal flow is stable under a strong, self-generated dipole magnetic field.

  12. Turbulence and cooling in cluster cores

    CERN Document Server

    Banerjee, Nilanjan

    2014-01-01

    We study the interplay between turbulent heating, mixing, and radiative cooling in an idealized model of cool cluster cores. Active galactic nuclei (AGN) jets are expected to drive turbulence and heat cluster cores. Cooling of the intracluster medium (ICM) and stirring by AGN jets are tightly coupled in a feedback loop. We impose the feedback loop by balancing radiative cooling with turbulent heating. In addition to heating the plasma, turbulence also mixes it, suppressing the formation of cold gas at small scales. In this regard, the effect of turbulence is analogous to thermal conduction. For uniform plasma in thermal balance (turbulent heating balancing radiative cooling), cold gas condenses only if the cooling time is shorter than the mixing time. This condition requires the turbulent kinetic energy to be $\\gtrsim$ the plasma internal energy; such high velocities in cool cores are ruled out by observations. The results with realistic magnetic fields and thermal conduction are qualitatively similar to the ...

  13. Core Graduate Courses: A Missed Learning Opportunity?

    CERN Document Server

    Singh, Chandralekha

    2016-01-01

    An important goal of graduate physics core courses is to help students develop expertise in problem solving and improve their reasoning and meta-cognitive skills. We explore the conceptual difficulties of physics graduate students by administering conceptual problems on topics covered in undergraduate physics courses before and after instruction in related first year core graduate courses. Here, we focus on physics graduate students' difficulties manifested by their performance on two qualitative problems involving diagrammatic representation of vector fields. Some graduate students had great difficulty in recognizing whether the diagrams of the vector fields had divergence and/or curl but they had no difficulty computing the divergence and curl of the vector fields mathematically. We also conducted individual discussions with various faculty members who regularly teach first year graduate physics core courses about the goals of these courses and the performance of graduate students on the conceptual problems...

  14. Exploring Cosmic Origins with CORE: Cosmological Parameters

    CERN Document Server

    Di Valentino, Eleonora; Gerbino, Martina; Poulin, Vivian; Bouchet, François R; Lesgourgues, Julien; Melchiorri, Alessandro; Chluba, Jens; Clesse, Sebastien; Delabrouille, Jacques; Dvorkin, Cora; Forastieri, Francesco; Galli, Silvia; Hooper, Deanna C; Lattanzi, Massimiliano; Martins, Carlos J A P; Salvati, Laura; Cabass, Giovanni; Caputo, Andrea; Giusarma, Elena; Hivon, Eric; Natoli, Paolo; Pagano, Luca; Paradiso, Simone; Rubino-Martin, Jose Alberto; Achucarro, Ana; Ballardini, Mario; Bartolo, Nicola; Baumann, Daniel; Bartlett, James G; de Bernardis, Paolo; Bonaldi, Anna; Bucher, Martin; Cai, Zhen-Yi; De Zotti, Gianfranco; Diego, Josè Maria; Errard, Josquin; Ferraro, Simone; Finelli, Fabio; Genova-Santos, Ricardo T; Gonzalez-Nuevo, Joaquin; Grandis, Sebastian; Greenslade, Josh; Hagstotz, Steffen; Handley, Will; Hindmarsh, Mark; Hernandez-Monteagudo, Carlos; Kiiveri, Kimmo; Kunz, Martin; Lasenby, Anthony; Liguori, Michele; Lopez-Caniego, Marcos; Luzzi, Gemma; Melin, Jean-Baptiste; Mohr, Joseph J; Negrello, Mattia; Paoletti, Daniela; Remazeilles, Mathieu; Ringeval, Christophe; Valiviita, Jussi; Van Tent, Bartjan; Vennin, Vincent; Vittorio, Nicola

    2016-01-01

    We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume LCDM as our general framework and quantify...

  15. LANMAS core: Update and current directions

    Energy Technology Data Exchange (ETDEWEB)

    Claborn, J. [Los Alamos National Lab., NM (United States). Safeguards Systems Group; Alvarado, A. [Sandia National Labs., Albuquerque, NM (United States)

    1994-08-01

    Local Area Network Material Accountability System (LANMAS) core software will provide the framework of a material accountability system. LANMAS is a network-based nuclear material accountability system. It tracks the movement of material throughout a site and generates the required reports on material accountability. LANMAS will run in a client/server mode. The database of material type and location will reside on the server, while the user interface runs on the client. The user interface accesses the server via a network. The LANMAS core can be used as the foundation for building required Materials Control and Accountability (MC&A) functionality at any site requiring a new MC&A system. An individual site will build on the LANMAS core by supplying site-specific software. This paper will provide an update on the current LANMAS development activities and discuss the current direction of the LANMAS project.

  16. From DeepCore to PINGU

    Directory of Open Access Journals (Sweden)

    Yáñez J.P.

    2016-01-01

    Full Text Available Very large volume neutrino telescopes (VLVNTs observe atmospheric neutrinos over a wide energy range (GeV to TeV, after they travel distances as large as the Earth's diameter. DeepCore, the low energy extension of IceCube, has started making meaningful measurements of the neutrino oscillation parameters θ23 and | Δm232| by analyzing the atmospheric flux at energies above 10 GeV. PINGU, a proposed project to lower DeepCore's energy threshold, aims to use the same flux to further increase the precision with which these parameters are known, and eventually determine the sign of Δm232. The latest results from DeepCore, and the planned transition to PINGU, are discussed here.

  17. Core-shell fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav; Bliznakov, Stoyan; Vukmirovic, Miomir

    2017-07-25

    Embodiments of the disclosure relate to electrocatalysts. The electrocatalyst may include at least one gas-diffusion layer having a first side and a second side, and particle cores adhered to at least one of the first and second sides of the at least one gas-diffusion layer. The particle cores includes surfaces adhered to the at least one of the first and second sides of the at least one gas-diffusion layer and surfaces not in contact with the at least one gas-diffusion layer. Furthermore, a thin layer of catalytically atoms may be adhered to the surfaces of the particle cores not in contact with the at least one gas-diffusion layer.

  18. Histones in functional diversification. Core histone variants.

    Science.gov (United States)

    Pusarla, Rama-Haritha; Bhargava, Purnima

    2005-10-01

    Recent research suggests that minor changes in the primary sequence of the conserved histones may become major determinants for the chromatin structure regulating gene expression and other DNA-related processes. An analysis of the involvement of different core histone variants in different nuclear processes and the structure of different variant nucleosome cores shows that this may indeed be so. Histone variants may also be involved in demarcating functional regions of the chromatin. We discuss in this review why two of the four core histones show higher variation. A comparison of the status of variants in yeast with those from higher eukaryotes suggests that histone variants have evolved in synchrony with functional requirement of the cell.

  19. Periodically-segmented liquid crystal core waveguides

    Science.gov (United States)

    Sharma, Mukesh; Shenoy, M. R.; Sinha, Aloka

    2017-09-01

    We report the fabrication and characterization of electrically-tunable periodically segmented waveguides (PSWs) with different duty cycles of 0.25, 0.33, 0.50 and 0.76, using the nematic liquid crystal 5CB as the guiding layer, and the negative photoresist AZ15nXT as the cladding. The experimental results show that light diffracts and re-focuses periodically on propagation through the liquid crystal (LC) core PSW, when an external voltage is applied to the periodically segmented electrodes. The performance of the fabricated LC core PSWs are analyzed in terms of effective refractive index, output power and duty cycle. The electrically-tunable LC core PSWs have potential application in the realization of optical filters, polarizers and dynamic mode size converters.

  20. Anatomy of curriculum: digging to the core.

    Science.gov (United States)

    Berman, Anthony C

    2014-01-01

    This viewpoint commentary, written from the perspective of a teacher who has helped to educate students in a wide variety of educational environments, is a reaction to the article published in Anatomical Sciences Education on developing of core syllabuses for the anatomical sciences. After reflecting on the definitions of both curriculum and syllabus and their importance as roadmaps for effective instruction, the value of core knowledge and core syllabuses in anatomical sciences was explored. Encouragement for the pursuit of the project proposed in the original article was provided; however, the reminder to not allow any curriculum or syllabus to prevent instructional flexibility was emphasized. Several constructive questions (regarding democracy in curriculum development, the proposed rating scale, and the desirability of reaching local or national consensus before seeking global agreement) were advanced for consideration.

  1. Mechanisms and Geochemical Models of Core Formation

    CERN Document Server

    Rubie, David C

    2015-01-01

    The formation of the Earth's core is a consequence of planetary accretion and processes in the Earth's interior. The mechanical process of planetary differentiation is likely to occur in large, if not global, magma oceans created by the collisions of planetary embryos. Metal-silicate segregation in magma oceans occurs rapidly and efficiently unlike grain scale percolation according to laboratory experiments and calculations. Geochemical models of the core formation process as planetary accretion proceeds are becoming increasingly realistic. Single stage and continuous core formation models have evolved into multi-stage models that are couple to the output of dynamical models of the giant impact phase of planet formation. The models that are most successful in matching the chemical composition of the Earth's mantle, based on experimentally-derived element partition coefficients, show that the temperature and pressure of metal-silicate equilibration must increase as a function of time and mass accreted and so m...

  2. Continuous greenhouse gas measurements from ice cores

    DEFF Research Database (Denmark)

    Stowasser, Christopher

    -consuming and labor-intensive. This PhD thesis presents the development of a new method for measurements of greenhouse gas mixing ratios from ice cores based on a melting device of a continuous flow analysis (CFA) system. The coupling to a CFA melting device enables time-efficient measurements of high resolution......Ice cores offer the unique possibility to study the history of past atmospheric greenhouse gases over the last 800,000 years, since past atmospheric air is trapped in bubbles in the ice. Since the 1950s, paleo-scientists have developed a variety of techniques to extract the trapped air from...... individual ice core samples, and to measure the mixing ratio of greenhouse gases such as carbon dioxide, methane and nitrous oxide in the extracted air. The discrete measurements have become highly accurate and reproducible, but require relatively large amounts of ice per measured species and are both time...

  3. Solid oxide fuel cell having monolithic core

    Science.gov (United States)

    Ackerman, J. P.; Young, J. E.

    1983-10-01

    A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. The core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces have only the anode material or only the cathode material exposed. Each layer of the electrolyte and interconnect materials 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is 0.002 to 0.05 cm thick.

  4. Evolution of the Internet and its cores

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Guoqing; Zhang Guoqiang; Yang Qingfeng; Cheng Suqi [Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190 (China); Zhou Tao [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)], E-mail: gqzhang@ict.ac.cn, E-mail: zhutou@ustc.edu

    2008-12-15

    In this paper, we empirically study the evolution of large scale Internet topology at the autonomous system (AS) level. The network size grows in an exponential form, obeying the famous Moore's law. We theoretically predict that the size of the AS-level Internet will double every 5.32 years. We apply the k-core decomposition method on the real Internet, and find that the size of a k-core with larger k is nearly stable over time. In addition, the maximal coreness is very stable after 2003. In contrast to the predictions of most previous models, the maximal degree of the Internet is also relatively stable versus time. We use the edge-exchange operation to obtain the randomized networks with the same degree sequence. A systematical comparison is drawn, indicating that the real Internet is more loosely connected, and both the full Internet and the nucleus are more disassortative than their randomized versions.

  5. Core 2 Duo与Core Duo处理器的比试

    Institute of Scientific and Technical Information of China (English)

    huhu

    2006-01-01

    Intel最新推出的Core2 Duo桌面处理器已经成为目前市场上关注率最高的产品,对应的移动处理器,同样采用Core 2 Duo命名。移动Core 2 Duo显然不如它的桌面兄弟知名度高,有两个因素:Core Duo的Yonah已经很强;没有来自AMD同类产品的竞争,Intel对这款移动用途Core 2 Duo的宣传力度不大。

  6. Dark matter cores all the way down

    Science.gov (United States)

    Read, J. I.; Agertz, O.; Collins, M. L. M.

    2016-07-01

    We use high-resolution simulations of isolated dwarf galaxies to study the physics of dark matter cusp-core transformations at the edge of galaxy formation: M200 = 107-109 M⊙. We work at a resolution (˜4 pc minimum cell size; ˜250 M⊙ per particle) at which the impact from individual supernovae explosions can be resolved, becoming insensitive to even large changes in our numerical `sub-grid' parameters. We find that our dwarf galaxies give a remarkable match to the stellar light profile; star formation history; metallicity distribution function; and star/gas kinematics of isolated dwarf irregular galaxies. Our key result is that dark matter cores of size comparable to the stellar half-mass radius r1/2 always form if star formation proceeds for long enough. Cores fully form in less than 4 Gyr for the M200 = 108 M⊙ and ˜14 Gyr for the 109 M⊙ dwarf. We provide a convenient two parameter `CORENFW' fitting function that captures this dark matter core growth as a function of star formation time and the projected stellar half-mass radius. Our results have several implications: (i) we make a strong prediction that if Λcold dark matter is correct, then `pristine' dark matter cusps will be found either in systems that have truncated star formation and/or at radii r > r1/2; (ii) complete core formation lowers the projected velocity dispersion at r1/2 by a factor of ˜2, which is sufficient to fully explain the `too-big-to-fail problem'; and (iii) cored dwarfs will be much more susceptible to tides, leading to a dramatic scouring of the sub-halo mass function inside galaxies and groups.

  7. Analytical Chemistry Core Capability Assessment - Preliminary Report

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Mary E. [Los Alamos National Laboratory; Farish, Thomas J. [Los Alamos National Laboratory

    2012-05-16

    The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This

  8. The Deuteration Clock for Massive Starless Cores

    Science.gov (United States)

    Kong, S.; Tan, J. C.; Caselli, P.; Fontani, F.

    2015-05-01

    To understand massive star formation requires study of its initial conditions. Two massive starless core candidates, C1-N & C1-S, have been detected in IRDC G028.37+00.07 in N2D+(3-2) with ALMA. From their line widths, either the cores are subvirial and are thus young structures on the verge of near free-fall collapse, or they are threaded by ˜1 mG B-fields that help support them in near virial equilibrium and potentially have older ages. We modeled the deuteration rate of N2H+ to constrain collapse rates of the cores. First, to measure their current deuterium fraction, D≡ [N2D+]/[N2H+], we observed multiple transitions of N2H+ and N2D+ with CARMA, SMA, JCMT, NRO 45 m and IRAM 30 m, to complement the ALMA data. For both cores we derived D ˜ 0.3, several orders of magnitude above the cosmic [D]/[H] ratio. We then carried out chemodynamical modeling, exploring how collapse rate relative to free-fall, αff, affects the level of D that is achieved from a given initial condition. To reach the observed D, most models require slow collapse with αff˜0.1, i.e., ˜1/10th of free-fall. This makes it more likely that the cores have been able to reach a near virial equilibrium state and we predict that strong B-fields will eventually be detected. The methods developed here will be useful for measurement of the pre-stellar core mass function.

  9. The core regulatory network in human cells.

    Science.gov (United States)

    Kim, Man-Sun; Kim, Dongsan; Kang, Nam Sook; Kim, Jeong-Rae

    2017-03-04

    In order to discover the common characteristics of various cell types in the human body, many researches have been conducted to find the set of genes commonly expressed in various cell types and tissues. However, the functional characteristics of a cell is determined by the complex regulatory relationships among the genes rather than by expressed genes themselves. Therefore, it is more important to identify and analyze a core regulatory network where all regulatory relationship between genes are active across all cell types to uncover the common features of various cell types. Here, based on hundreds of tissue-specific gene regulatory networks constructed by recent genome-wide experimental data, we constructed the core regulatory network. Interestingly, we found that the core regulatory network is organized by simple cascade and has few complex regulations such as feedback or feed-forward loops. Moreover, we discovered that the regulatory links from genes in the core regulatory network to genes in the peripheral regulatory network are much more abundant than the reverse direction links. These results suggest that the core regulatory network locates at the top of regulatory network and plays a role as a 'hub' in terms of information flow, and the information that is common to all cells can be modified to achieve the tissue-specific characteristics through various types of feedback and feed-forward loops in the peripheral regulatory networks. We also found that the genes in the core regulatory network are evolutionary conserved, essential and non-disease, non-druggable genes compared to the peripheral genes. Overall, our study provides an insight into how all human cells share a common function and generate tissue-specific functional traits by transmitting and processing information through regulatory network.

  10. EEA core set of indicators. Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This guide provides information on the quality of the 37 indicators in the EEA core set. Its primary role is to support improved implementation of the core set in the EEA, European topic centres and the European environment information and observation network (Eionet). In parallel, it is aimed at helping users outside the EEA/Eionet system make best use of the indicators in their own work. It is hoped that the guide will promote cooperation on improving indicator methodologies and data quality as part of the wider process to streamline and improve environmental reporting in the European Union and beyond. (au)

  11. Core-polarization effects in Cu II

    Energy Technology Data Exchange (ETDEWEB)

    Biemont, E. [Liege Univ. (Belgium). Inst. de Phys. Nucl. Exp.; Astrophysique et Spectroscopie, Univ. de Mons, Mons (Belgium); Pinnington, E.H. [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics; Quinet, P. [Astrophysique et Spectroscopie, Univ. de Mons, Mons (Belgium); Zeippen, C.J. [Observatoire de Paris, Section de Meudon, 92 (France). DAEC

    2000-05-01

    Core-polarization and configuration interaction effects are investigated in singly ionized copper. It is shown that these effects are responsible, to a large extent, for the discrepancies observed between recent relativistic Hartree-Fock (HFR) and configuration-interaction (CIV3) calculations and accurate beam-laser experimental results. A new set of transition rates is obtained using the HFR + core polarization formalism leading to theoretical lifetime and transition probability values in fair agreement with the experiment. An indicative calculation performed with the configuration-interaction code superstructure demonstrates the importance of semi-empirical term energy corrections in producing reliable transition ratesin a case like the present one. (orig.)

  12. Core-Collapse supernovae and its progenitors

    CERN Document Server

    Bose, Subhash; Misra, Kuntal

    2016-01-01

    Massive stars unable to sustain gravitational collapse, at the end of nuclear burning stage, turns out into core-collapse supernovae, leaving behind compact objects like neutron stars or black holes. The progenitor properties like mass and metallicity primarily governs the explosion parameters and type of compact remnant. In this contribution we summarize observational study of three Core Collapse type IIP SNe 2012aw, 2013ab and 2013ej, which are rigorously observed from ARIES and other Indian observatories and discuss their progenitor and explosion properties.

  13. Study on pure silica core optical fibers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An optimal refractive index profile of pure silica core optical fiber (PSCF) was designed, in combination with the characters of the modified chemical vapor deposition (MCVD) process. Techniques of preform fabrication by a new furnace round heating MCVD process and fiber drawing process were reviewed. Difficulties in doping fluorine in silica, widening the depressed-index cladding and maintaining the index of fiber core were discussed. Methods used to overcome these difficulties were given at the same time. Additionally, the optimal refractive index profiles of PSCF were presented.

  14. SproutCore web application development

    CERN Document Server

    Keating, Tyler

    2013-01-01

    Written as a practical, step-by-step tutorial, Creating HTML5 Apps with SproutCore is full of engaging examples to help you learn in a practical context.This book is for any person looking to write software for the Web or already writing software for the Web. Whether your background is in web development or in software development, Creating HTML5 Apps with SproutCore will help you expand your skills so that you will be ready to apply the software development principles in the web development space.

  15. ABSTRACTS Preliminary Study of Strategic Inner Cores

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    When a strategic entity attempts to make a dicision, first the project must be m accoroance wlm its strategic framework as well as make the strategic inner cores prominent. The existing theories of development strategy indicate that the formation of the framework can be divided into the following parts: inside and outside environments, purpose, goal, key points, and countermeasures. The strategic inner cores that put forward by this paper is the intensification and advancement for the theory of strategic framework, strategic orientation, strategic vision and main line are inciuded. Appearance of these ideas have improved the theory and enhanced strategic practice.

  16. Neural simulations on multi-core architectures

    Directory of Open Access Journals (Sweden)

    Hubert Eichner

    2009-07-01

    Full Text Available Neuroscience is witnessing increasing knowledge about the anatomy and electrophysiological properties of neurons and their connectivity, leading to an ever increasing computational complexity of neural simulations. At the same time, a rather radical change in personal computer technology emerges with the establishment of multi-cores: high-density, explicitly parallel processor architectures for both high performance as well as standard desktop computers. This work introduces strategies for the parallelization of biophysically realistic neural simulations based on the compartmental modeling technique and results of such an implementation, with a strong focus on multi-core architectures and automation, i. e. user-transparent load balancing.

  17. A Core Language for Separate Variability Modeling

    DEFF Research Database (Denmark)

    Iosif-Lazăr, Alexandru Florin; Wasowski, Andrzej; Schaefer, Ina

    2014-01-01

    Separate variability modeling adds variability to a modeling language without requiring modifications of the language or the supporting tools. We define a core language for separate variability modeling using a single kind of variation point to define transformations of software artifacts in object...... hierarchical dependencies between variation points via copying and flattening. Thus, we reduce a model with intricate dependencies to a flat executable model transformation consisting of simple unconditional local variation points. The core semantics is extremely concise: it boils down to two operational rules...

  18. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.

    Science.gov (United States)

    Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S

    2016-12-21

    Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation.

  19. EPICS: porting iocCore to multiple operating systems.

    Energy Technology Data Exchange (ETDEWEB)

    Kraimer, M.

    1999-09-30

    An important component of EPICS (Experimental Physics and Industrial Control System) is iocCore, which is the core software in the IOC (input/output controller) front-end processors. Currently iocCore requires the vxWorks operating system. This paper describes the porting of iocCore to other operating systems.

  20. Effect of Rotation in Cloud Core Collapse

    Science.gov (United States)

    Tsuribe, T.

    The collapse of rotating clouds is investigated.At first, isothermal collapse of an initially uniform-density, uniform-rotating, molecular cloud core with pressure and self-gravity is investigated to determine the conditions under which a cloud is unstable to fragmentation. A semianalytic model for the collapse of rotating spheroids is developed with the method of characteristics for inwardly propagating rarefaction waves. Three-dimensional self-gravitating hydrodynamical calculations are performed for the initially uniform-density rigid-rotating sphere. Both investigations show that the criterion for fragmentation is modified from the one in the literature if the property of the non-homologous collapse is taken into account. It is shown that the central flatness, that is, the axial ratio of the isodensity contour in the central region, is a good indicator for the fate of the cloud. We derive the criterion for the fragmentation considering the evolution of the flatness of the central core. If the central flatness becomes greater than the critical value ˜ 4π, a collapsing cloud with moderate perturbations is unstable for fragmentation, while if the central flatness stays smaller than the critical value, it does not fragment at least before adiabatic core formation. Warm clouds (α0 ≳ 0.5) are not expected to fragment before adiabatic core formation almost independent of the initial rotation (β0) and the properties of the initial perturbation. The effect of the initial density central concentration is also investigated. If it exists, distortion or flattening of a cloud core is suppressed even if α0 ≲ 0.5 in small rotation cases due to stronger nonhomologous property of the collapse. We conclude that the binary fragmentation is difficult during isothermal stage if a core collapse had started from near spherical configurations with moderate thermal energy or small rotation. We suggest that the close binary fragmentation may be possible in the nonisothermal