WorldWideScience

Sample records for hydrate resource potential

  1. Submarine methane hydrates - Potential fuel resource of the 21st century

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.

    initiated to date, some interesting ideas have been conceived for the production of methane from hydrates and its transportation to shore. Apart from being an abundant fuel resource, methane hydrates are also a matter of concern, as destabilization of sub...

  2. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

    2008-02-12

    Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

  3. Report: Proceedings of the Hedberg Research Conference 'Gas Hydrates : Energy resource potential and associated geologic hazards'

    Digital Repository Service at National Institute of Oceanography (India)

    Veerayya, M.

    computable through simulations on the GIS for different rates and volumes of precipitation. We are systematically under prepared in the war against natural hazards. System needs a psychological adjustment to become receptive to scientists and scientific... and discussed the state-of-the-art concepts, methodologies, case histories, and the future direction of gas hydrates as an energy resource. The primary goals of the conference were to critically examine the geologic parameters that control the occurrence...

  4. Toward production from gas hydrates: Current status, assessment of resources, and simulation-based evaluation of technology and potential

    Science.gov (United States)

    Moridis, G.J.; Collett, T.S.; Boswell, R.; Kurihara, M.; Reagan, M.T.; Koh, C.; Sloan, E.D.

    2009-01-01

    Gas hydrates (GHs) are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural GH accumulations, the status of the primary international research and development (R&D) programs, and the remaining science and technological challenges facing the commercialization of production. After a brief examination of GH accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate-production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical-simulation capabilities are quite advanced and that the related gaps either are not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of GH deposits and determine that there are consistent indications of a large production potential at high rates across long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets; (b) methods to maximize production; and (c) some of the conditions and characteristics that render certain GH deposits undesirable for production. Copyright ?? 2009 Society of Petroleum Engineers.

  5. Prospecting for marine gas hydrate resources

    Science.gov (United States)

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.

    2016-01-01

    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  6. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    Energy Technology Data Exchange (ETDEWEB)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  7. Development of Alaskan gas hydrate resources

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  8. Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.D.; Kamath, V.A.; Godbole, S.P.; Patil, S.L.; Paranjpe, S.G.; Mutalik, P.N.; Nadem, N.

    1987-10-01

    Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future source of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.

  9. The Potential Socio-economic Impacts of Gas Hydrate Exploitation

    Science.gov (United States)

    Riley, David; Schaafsma, Marije; Marin-Moreno, Héctor; Minshull, Tim A.

    2017-04-01

    Gas hydrate has garnered significant interest as a possible clean fossil fuel resource, especially in countries with limited energy supplies. Whilst the sector is still in its infancy, there has been escalating development towards commercial production. To the best of our knowledge it appears that, despite its potential, existing analyses of the social and economic impacts of hydrate exploitation have been very limited. Before any viable commercial production commences, the potential impacts across society must be considered. It is likely that such impact assessments will become a legislative requirement for hydrate exploitation, similar to their requirement in conventional oil and gas projects. Social impact analysis should guide hydrate development to have the highest possible net benefits to the human and natural environment. Without active commercial hydrate operations, potential socio-economic impacts can only be inferred from other fossil fuel resource focused communities, including those directly or indirectly affected by the oil and gas industry either in the vicinity of the well or further afield. This review attempts to highlight potential impacts by synthesising current literature, focusing on social impacts at the extraction stage of operation, over time. Using a DPSIR (Driving forces; Pressures; States; Impacts; Responses) framework, we focus on impacts upon: health and wellbeing, land use and access, services and infrastructure, population, employment opportunities, income and lifestyles. Human populations directly or indirectly related with fossil fuel extraction activities often show boom and bust dynamics, and so any impacts may be finite or change temporally. Therefore potential impacts have to be reassessed throughout the lifetime of the exploitation. Our review shows there are a wide range of possible positive and negative socio-economic impacts from hydrate development. Exploitation can bring jobs and infrastructure to remote areas, although

  10. Great Market Potential of Hydrazine Hydrate

    Institute of Scientific and Technical Information of China (English)

    Shi Yuying

    2007-01-01

    @@ Stable consumption growth worldwide Hydrazine hydrate is an organic chemical raw material with extensive applications. The world's capacity to produce hydrazine hydrate has reached more than 200 thousand t/atoday (based on 100% hydrazine content).

  11. Evaluation of Gas Production Potential of Hydrate Deposits in Alaska North Slope using Reservoir Simulations

    Science.gov (United States)

    Nandanwar, M.; Anderson, B. J.

    2015-12-01

    Over the past few decades, the recognition of the importance of gas hydrates as a potential energy resource has led to more and more exploration of gas hydrate as unconventional source of energy. In 2002, U.S. Geological Survey (USGS) started an assessment to conduct a geology-based analysis of the occurrences of gas hydrates within northern Alaska. As a result of this assessment, many potential gas hydrate prospects were identified in the eastern National Petroleum Reserve Alaska (NPRA) region of Alaska North Slope (ANS) with total gas in-place of about 2 trillion cubic feet. In absence of any field test, reservoir simulation is a powerful tool to predict the behavior of the hydrate reservoir and the amount of gas that can be technically recovered using best suitable gas recovery technique. This work focuses on the advanced evaluation of the gas production potential of hydrate accumulation in Sunlight Peak - one of the promising hydrate fields in eastern NPRA region using reservoir simulations approach, as a part of the USGS gas hydrate development Life Cycle Assessment program. The main objective of this work is to develop a field scale reservoir model that fully describes the production design and the response of hydrate field. Due to the insufficient data available for this field, the distribution of the reservoir properties (such as porosity, permeability and hydrate saturation) are approximated by correlating the data from Mount Elbert hydrate field to obtain a fully heterogeneous 3D reservoir model. CMG STARS is used as a simulation tool to model multiphase, multicomponent fluid flow and heat transfer in which an equilibrium model of hydrate dissociation was used. Production of the gas from the reservoir is carried out for a period of 30 years using depressurization gas recovery technique. The results in terms of gas and water rate profiles are obtained and the response of the reservoir to pressure and temperature changes due to depressurization and hydrate

  12. Methane hydrate resource assessment of the outer continental shelf : in-place Gulf of Mexico results

    Energy Technology Data Exchange (ETDEWEB)

    Frye, M. [Minerals Mangement Service, Herndon, VA (United States); Grace, J. [Earth Science Associates, Long Beach, CA (United States); Hunt, J.; Shedd, W. [Minerals Management Service, New Orleans, LA (United States); Kaufman, G. [Massachusetts Inst. of Technology, Boston, MA (United States); Schuenemeyer, J. [Southwest Statistical Consulting, Cortez, CO (United States)

    2008-07-01

    The Minerals Management Service (MMS) is division of the United States (U.S.) Department of the Interior. Its mandate is to manage natural gas, oil, and other mineral resources on the U.S. outer continental shelf (OCS). The MMS launched a project in order to provide an assessment of the natural gas hydrate resource potential across the entire OCS, including the Alaskan, Atlantic, Gulf of Mexico, and Pacific margins. The purpose of this ongoing project is to provide a probabilistic evaluation of in-place, technically recoverable, and economically recoverable gas hydrate resources. This paper provided an overview of the project, including a preliminary assessment of in-place gas hydrate resources in the Gulf of Mexico. The paper described the probabilistic model that was built on a mass balance approach to assessment. The model provided a high degree of spatial resolution and supported detailed mapping. The model produced a Monte Carlo distribution of in-place resources that ranged from 314 trillion to 974 trillion cubic meters (TCM) with a mean value of 607 TCM. The paper also provided a link to the full report which included the model methodology, underlying assumptions, and input datasets. Additional work on the development of a technically recoverable model component is currently underway. 1 fig.

  13. Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size.

    Science.gov (United States)

    Parsons, Drew F; Boström, Mathias; Lo Nostro, Pierandrea; Ninham, Barry W

    2011-07-21

    The classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloids, and corresponding theories of electrolytes, are unable to explain ion specific forces between colloidal particles quantitatively. The same is true generally, for surfactant aggregates, lipids, proteins, for zeta and membrane potentials and in adsorption phenomena. Even with fitting parameters the theory is not predictive. The classical theories of interactions begin with continuum solvent electrostatic (double layer) forces. Extensions to include surface hydration are taken care of with concepts like inner and outer Helmholtz planes, and "dressed" ion sizes. The opposing quantum mechanical attractive forces (variously termed van der Waals, Hamaker, Lifshitz, dispersion, nonelectrostatic forces) are treated separately from electrostatic forces. The ansatz that separates electrostatic and quantum forces can be shown to be thermodynamically inconsistent. Hofmeister or specific ion effects usually show up above ≈10(-2) molar salt. Parameters to accommodate these in terms of hydration and ion size had to be invoked, specific to each case. Ionic dispersion forces, between ions and solvent, for ion-ion and ion-surface interactions are not explicit in classical theories that use "effective" potentials. It can be shown that the missing ionic quantum fluctuation forces have a large role to play in specific ion effects, and in hydration. In a consistent predictive theory they have to be included at the same level as the nonlinear electrostatic forces that form the skeletal framework of standard theory. This poses a challenge. The challenges go further than academic theory and have implications for the interpretation and meaning of concepts like pH, buffers and membrane potentials, and for their experimental interpretation. In this article we overview recent quantitative developments in our evolving understanding of the theoretical origins of specific ion, or Hofmeister effects. These are demonstrated

  14. China's Research on Non-conventional Energy Resources- Gas Hydrate

    Institute of Scientific and Technical Information of China (English)

    Pu Ming; Ma Jianguo

    2002-01-01

    @@ Methane exists in ice-like formations called gas hydrate. Hydrate traps methane molecules inside a cage of frozen water. The magnitude of this previously unknown global storehouse of methane is truly staggering and has raised serious inquiry into the possibility of using methane hydrate as a substitute source of energy for oil and conventional natural gas. According to the estimation by PGC, gas hydrate deposits amount to 7.6 × 1018m3 and contain more than twice as much organic carbon as all the world's coal, oil and non-hydrate natural gas combined.

  15. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  16. Development of Alaskan gas hydrate resources. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  17. Potentials and Exploration Prospect of China's Hydrocarbon Resources

    Institute of Scientific and Technical Information of China (English)

    ZhangYiwei

    2004-01-01

    The potentials of China's hydrocarbon resources has risen as an important factor influencing the current policies of the country. China's oil industry is a developing industry. Gas reservoirs can be classified in light of their accumulation mechanisms into six types: water-sealed gas, hydrate, dissolved gas, conventional entrapped gas, capillary gas and adsorbed gas.

  18. Study on gas hydrate as a new energy resource in the 21th century

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Byeong-Jae; Kwak Young-Hoon; Kim, Won-Sik [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Natural gas hydrate, a special type of clathrate hydrates, is a metastable solid compound which mainly consists of methane and water, and generally called as gas hydrate. It is stable in the specific low-temperature/high-pressure conditions. Gas hydrates play an important role as major reservoir of methane on the earth. On the other hand, the formation and dissociation of gas hydrates could cause the plugging in pipeline, gas kick during production, atmospheric pollution and geohazard. To understand the formation and dissociation of the gas hydrate, the experimental equilibrium conditions of methane hydrate were measured in pure water, 3 wt.% NaCl and MgCl{sub 2} solutions. The equilibrium conditions of propane hydrates were also measured in pure water. The relationship between methane hydrate formation time and overpressure was also analyzed through the laboratory work. The geophysical surveys using air-gun system and multibeam echo sounder were implemented to develop exploration techniques and to evaluate the gas hydrate potential in the East Sea, Korea. General indicators of submarine gas hydrates on seismic data is commonly inferred from the BSR developed parallel to the see floor, amplitude blanking at the upper part of the BSR, and phase reversal and decrease of the interval velocity at BSR. The field data were processed using Geobit 2.9.5 developed by KIGAM to detect the gas hydrate indicators. The accurate velocity analysis was performed by XVA (X-window based Velocity Analysis). Processing results show that the strong reflector occurred parallel to the sea floor were shown at about 1800 ms two way travel time. The interval velocity decrease at this strong reflector and at the reflection phase reversal corresponding to the reflection at the sea floor. Gas hydrate stability field in the study area was determined using the data of measured hydrate equilibrium condition, hydrothermal gradient and geothermal gradient. The depth of BSR detected in the seismic

  19. A review and assessment of gas hydrate potential in Çınarcık Basin, Sea of Marmara

    Science.gov (United States)

    Sile, Hande; Akin, Cansu; Ucarkus, Gulsen; Namik Cagatay, M.

    2016-04-01

    The Sea of Marmara (NW Turkey), an intracontinental sea between the Mediterranean and Black Seas, is located in a tectonically active region with the formation of shallow gas hydrates and free gas. It is widely known that, Sea of Marmara sediments are organic-rich and conducive to production of methane, which is released on the sea floor through active fault segments of the North Anatolian Fault (Geli et al., 2008). Here we study the gas hydrate potential of the Çınarcık Basin using published data and our core analyses together with gas hydrate stability relations. The gas sampled in the Çınarcık Basin is composed mainly of biogenic methane and trace amounts of heavier hydrocarbons (Bourry et al., 2009). The seafloor at 1273 m depth on the Çınarcık Basin with temperature of 14.5oC and hydrostatic pressure of 127.3 atm corresponds to the physical limit for gas hydrate formation with respect to phase behavior of gas hydrates in marine sediments (Ménot and Bard, 2010). In order to calculate the base of the gas hydrate stability zone in Çınarcık Basin, we plotted T (oC) calculated considering the geothermal gradient versus P (atm) on the phase boundary diagram. Below the seafloor, in addition to hydrostatic pressure (10 Mpa/km), we calculated lithostatic pressure due to sediment thickness considering the MSCL gamma ray density values (~1.7 gr/cm3). Our estimations show that, gas hydrate could be stable in the upper ~20 m of sedimentary succession in Çınarcık Basin. The amount of gas hydrate in the Çınarcık Basin can be determined using the basinal area below 1220 m depth (483 km2) and average thickness of the gas hydrate stability zone (20 m) and the sediment gas hydrate saturation (1.2 % used as Milkov, 2004 suggested). The calculations indicate the potential volume of gas hydrate in Çınarcık Basin as ~11.6x107 m3. Such estimates are helpful for the consideration of gas hydrates as a new energy resource, for assessment of geohazards or their

  20. Regional Mapping and Resource Assessment of Shallow Gas Hydrates of Japan Sea - METI Launched 3 Years Project in 2013.

    Science.gov (United States)

    Matsumoto, R.

    2014-12-01

    Agency of Natural Resources and Energy of METI launched a 3 years shallow gas hydrate exploration project in 2013 to make a precise resource assessment of shallow gas hydrates in the eastern margin of Japan Sea and around Hokkaido. Shallow gas hydrates of Japan Sea occur in fine-grained muddy sediments of shallow subsurface of mounds and gas chimneys in the form of massive nodular to platy accumulation. Gas hydrate bearing mounds are often associated with active methane seeps, bacterial mats and carbonate concretions and pavements. Gases of gas hydrates are derived either from deep thermogenic, shallow microbial or from the mixed gases, contrasting with totally microbial deep-seated stratigraphically controlled hydrates. Shallow gas hydrates in Japan Sea have not been considered as energy resource due to its limited distribution in narrow Joetsu basin. However recently academic research surveys have demonstrated regional distribution of gas chimney and hydrate mound in a number of sedimentary basins along the eastern margin of Japan Sea. Regional mapping of gas chimney and hydrate mound by means of MBES and SBP surveys have confirmed that more than 200 gas chimneys exist in 100 km x 100 km area. ROV dives have identified dense accumulation of hydrates on the wall of half collapsed hydrate mound down to 30 mbsf. Sequential LWD and shallow coring campaign in the Summer of 2014, R/V Hakurei, which is equipped with Fugro Seacore R140 drilling rig, drilled through hydrate mounds and gas chimneys down to the BGHS (base of gas hydrate stability) level and successfully recovered massive gas hydrates bearing sediments from several horizons.

  1. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    Science.gov (United States)

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  2. Handbook of gas hydrate properties and occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  3. A new method for screening potential sII and sH hydrogen clathrate hydrate promoters with model potentials.

    Science.gov (United States)

    Frankcombe, Terry J; Kroes, Geert-Jan

    2011-08-01

    A new predictive computational method for classifying clathrate hydrate promoter molecules is presented, based on the interaction energies between potential promoters and the water networks of sII and sH clathrates. The motivation for this work is identifying promoters for storing hydrogen compactly in clathrate hydrates. As a first step towards achieving this goal, we have developed a general method aimed at distinguishing between molecules that form sII clathrate hydrates and molecules that can-together with a weakly interacting help gas-form sH clathrate hydrates. The new computational method calculates differences in estimated formation energies of the sII and the sH clathrate hydrate. Model interaction potentials have been used, including the electrostatic interactions with newly calculated partial charges for all the considered potential promoter molecules. The methodology can discriminate between the clathrate structure types (sII or sH) formed by each potential promoter with good selectivity, i.e., better than achieved with a simple van der Waals diameter criterion.

  4. Ab initio studies of ionization potentials of hydrated hydroxide and hydronium

    CERN Document Server

    Swartz, Charles W

    2013-01-01

    The ionization potential distributions of hydrated hydroxide and hydronium are computed with many-body approach for electron excitations with configurations generated by {\\it ab initio} molecular dynamics. The experimental features are well reproduced and found to be closely related to the molecular excitations. In the stable configurations, the ionization potential is mainly perturbed by water molecules within the first solvation shell. On the other hand, electron excitation is delocalized on both proton receiving and donating complex during proton transfer, which shifts the excitation energies and broadens the spectra for both hydrated ions.

  5. Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands.

    Science.gov (United States)

    Kaasik, Ago; Vohla, Christina; Mõtlep, Riho; Mander, Ulo; Kirsimäe, Kalle

    2008-02-01

    The P-retention in hydrated calcareous ash sediment from oil-shale burning thermal power plants in Estonia was studied. Batch experiments indicate good (up to 65 mg P g(-1)) P-binding capacity of the hydrated oil-shale ash sediment, with a removal effectiveness of 67-85%. The high phosphorus sorption potential of hydrated oil-shale ash is considered to be due to the high content of reactive Ca-minerals, of which ettringite Ca6Al2(SO4)3(OH)12.26H2O and portlandite Ca(OH)2 are the most important. The equilibrium dissolution of ettringite provides free calcium ions that act as stable nuclei for phosphate precipitation. The precipitation mechanism of phosphorus removal in hydrated ash plateau sediment is suggested by Ca-phosphate formation in batch experiments at different P-loadings. Treatment with a P-containing solution causes partial-to-complete dissolution of ettringite and portlandite, and precipitation of Ca-carbonate and Ca-phosphate phases, which was confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM)-EDS studies. Thus, the hydrated oil-shale ash sediment can be considered as a potential filtration material for P removal in constructed wetlands for wastewater treatment.

  6. Potential natural gas hydrates resources in Indian Offshore areas

    Digital Repository Service at National Institute of Oceanography (India)

    Sethi, A.K.; Sathe, A.V.; Ramana, M.V.

    Large amount of multi-channel seismic reflection data was acquired by oil industry for exploration of hydrocarbon in the Indian Deepwater basins, beyond 400m isobath. These data were examined for BSRs, blanking above BSRs, polarity reversals etc...

  7. Evaluation of the Gas Production Potential of Marine HydrateDeposits in the Ulleung Basin of the Korean East Sea

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol,Yongkoo; Zhang, Keni

    2007-11-16

    Although significant hydrate deposits are known to exist in the Ulleung Basin of the Korean East Sea, their survey and evaluation as a possible energy resource has not yet been completed. However, it is possible to develop preliminary estimates of their production potential based on the limited data that are currently available. These include the elevation and thickness of the Hydrate-Bearing Layer (HBL), the water depth, and the water temperature at the sea floor. Based on this information, we developed estimates of the local geothermal gradient that bracket its true value. Reasonable estimates of the initial pressure distribution in the HBL can be obtained because it follows closely the hydrostatic. Other critical information needs include the hydrate saturation, and the intrinsic permeabilities of the system formations. These are treated as variables, and sensitivity analysis provides an estimate of their effect on production. Based on the geology of similar deposits, it is unlikely that Ulleung Basin accumulations belong to Class 1 (involving a HBL underlain by a mobile gas zone). If Class 4 (disperse, low saturation accumulations) deposits are involved, they are not likely to have production potential. The most likely scenarios include Class 2 (HBL underlain by a zone of mobile water) or Class 3 (involving only an HBL) accumulations. Assuming nearly impermeable confining boundaries, this numerical study indicates that large production rates (several MMSCFD) are attainable from both Class 2 and Class 3 deposits using conventional technology. The sensitivity analysis demonstrates the dependence of production on the well design, the production rate, the intrinsic permeability of the HBL, the initial pressure, temperature and hydrate saturation, as well as on the thickness of the water zone (Class 2). The study also demonstrates that the presence of confining boundaries is indispensable for the commercially viable production of gas from these deposits.

  8. Microbial community in the potential gas hydrate area Kaoping Canyon bearing sediment at offshore SW Taiwan

    Science.gov (United States)

    Wu, S. Y.; Hung, C. C.; Lai, S. J.; Ding, J. Y.; Lai, M. C.

    2015-12-01

    The deep sub-seafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass plays a potentially important role in long-term controls of global biogeochemical cycles. The research team from Taiwan, supported by the Central Geological Survey (CGS), has been demonstrated at SW offshore Taiwan that indicated this area is potential gas hydrate region. Therefore, the Gas Hydrate Master Program (GHMP) was brought in the National Energy Program-Phase II (NEP-II) to continue research and development. In this study, the microbial community structure of potential gas hydrate bearing sediments of giant piston core MD-178-10-3291 (KP12N) from the Kaoping Canyon offshore SW of Taiwan were investigated. This core was found many empty spaces and filling huge methane gas (>99.9 %) that might dissociate from solid gas hydrate. 16S rRNA gene clone libraries and phylogenetic analysis showed that the dominant members of Archaea were ANME (13 %), SAGMEG (31 %) and DSAG (20 %), and those of Bacteria were Chloroflexi (13 %), Candidate division JS1 (40 %) and Planctomycetes (15 %). Among them, ANME-3 is only distributed at the sulfate-methane interface (SMI) of 750 cmbsf, and sharing similarity with the Hydrate Ridge clone HydBeg92. ANME-1 and SAGMEG distributed below 750 cmbsf. In addition, DSAG and Candidate division JS1 are most dominant and distributed vertically at all tested depths from 150-3600 cmbsf. Combine the geochemical data and microbial phylotype distribution suggests the potential of gas hydrate bearing sediments at core MD-178-10-3291 (KP12N) from the Kaoping Canyon offshore SW of Taiwan.

  9. National Assessment of Oil and Gas Project: geologic assessment of undiscovered gas hydrate resources on the North Slope, Alaska

    Science.gov (United States)

    USGS AK Gas Hydrate Assessment Team: Collett, Timothy S.; Agena, Warren F.; Lee, Myung Woong; Lewis, Kristen A.; Zyrianova, Margarita; Bird, Kenneth J.; Charpentier, Ronald R.; Cook, Troy A.; Houseknecht, David W.; Klett, Timothy R.; Pollastro, Richard M.

    2014-01-01

    Scientists with the U.S. Geological Survey have completed the first assessment of the undiscovered, technically recoverable gas hydrate resources beneath the North Slope of Alaska. This assessment indicates the existence of technically recoverable gas hydrate resources—that is, resources that can be discovered, developed, and produced using current technology. The approach used in this assessment followed standard geology-based USGS methodologies developed to assess conventional oil and gas resources. In order to use the USGS conventional assessment approach on gas hydrate resources, three-dimensional industry-acquired seismic data were analyzed. The analyses indicated that the gas hydrates on the North Slope occupy limited, discrete volumes of rock bounded by faults and downdip water contacts. This assessment approach also assumes that the resource can be produced by existing conventional technology, on the basis of limited field testing and numerical production models of gas hydrate-bearing reservoirs. The area assessed in northern Alaska extends from the National Petroleum Reserve in Alaska on the west through the Arctic National Wildlife Refuge on the east and from the Brooks Range northward to the State-Federal offshore boundary (located 3 miles north of the coastline). This area consists mostly of Federal, State, and Native lands covering 55,894 square miles. Using the standard geology-based assessment methodology, the USGS estimated that the total undiscovered technically recoverable natural-gas resources in gas hydrates in northern Alaska range between 25.2 and 157.8 trillion cubic feet, representing 95 percent and 5 percent probabilities of greater than these amounts, respectively, with a mean estimate of 85.4 trillion cubic feet.

  10. A study on gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byoung Jae; Jung, Tae Jin; Sunwoo, Don [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Sufficient documents were reviewed to understand solid components of water and gaseous hydrocarbon known as gas hydrates, which represent an important potential energy resource of the future. The review provides us with valuable information on crystal structures, kinetics, origin and distribution of gas hydrates. In addition, the review increased our knowledge of exploration and development methods of gas hydrates. Large amounts of methane, the principal component of natural gas, in the form of solid gas hydrate are found mainly offshore in outer continental margin sediment and, to a lesser extent, in polar regions commonly associated with permafrost. Natural gas hydrates are stable in some environments where the hydrostatic pressure exerted by overlying water column is sufficient for hydrate formation and stability. The required high pressures generally restrict gas hydrate to sediments beneath water of approximately 400 m. Higher sediment temperatures at greater subbottom depths destabilize gas hydrates. Based on the pressure- temperature condition, the outer continental margin of East Sea where water depth is deep enough to form gas hydrate is considered to have high potential of gas hydrate accumulations. (author). 56 refs., tabs., figs.

  11. Study on gas hydrate as a new energy resource in the twenty first century

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Byung Jae; Kim, Won Sik; Oh, Jae Ho [Korea Institute of Geology Mining and Materials, Taejon (Korea)] [and others

    1998-12-01

    Methane hydrate, a special type of clathrate hydrates, is a metastable solid compound mainly consisted of methane and water and generally called as gas hydrate. It is stable in the specific low- temperature/high-pressure conditions. Very large amount of methane that is the main component of natural gas, is accumulated in the form of methane hydrate subaquatic areas. Methane hydrate are the major reservoir of methane on the earth. On the other hand, the development and transmission through pipeline of oil and natural gas in the permafrost and deep subaquatic regions are significantly complicated by formation and dissociation of methane hydrate. The dissociation of natural methane hydrates caused by increasing temperature and decreasing pressure could cause the atmospheric pollution and geohazard. The formation, stable existence and dissociation of natural methane hydrates depend on the temperature, pressure, and composition of gas and characteristics of the interstitial waters. For the study on geophysical and geological conditions for the methane hydrate accumulation and to find BSR in the East Sea, Korea, the geophysical surveys using air-gun system, multibeam echo sounder, SBP were implemented in last September. The water temperature data vs. depth were obtained to determine the methane hydrate stability zone in the study area. The experimental equilibrium condition of methane hydrate was also measured in 3 wt.% sodium chloride solution. The relationship between Methane hydrate formation time and overpressure was analyzed through the laboratory work. (author). 49 refs., 6 tabs., 26 figs.

  12. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces.

    Science.gov (United States)

    Gawrisch, K; Ruston, D; Zimmerberg, J; Parsegian, V A; Rand, R P; Fuller, N

    1992-01-01

    We have compared hydration forces, electrical dipole potentials, and structural parameters of dispersions of dipalmitoylphosphatidylcholine (DPPC) and dihexadecylphosphatidylcholine (DHPC) to evaluate the influence of fatty acid carbonyl groups on phospholipid bilayers. NMR and x-ray investigations performed over a wide range of water concentrations in the samples show, that in the liquid crystalline lamellar phase, the presence of carbonyl groups is not essential for lipid structure and hydration. Within experimental error, the two lipids have identical repulsive hydration forces between their bilayers. The higher transport rate of the negatively charged tetraphenylboron over the positively charged tetraphenylarsonium indicates that the dipole potential is positive inside the membranes of both lipids. However, the lack of fatty acid carbonyl groups in the ether lipid DHPC decreased the potential by (118 +/- 15) mV. By considering the sign of the potential and the orientation of carbonyl groups and headgroups, we conclude that the first layer of water molecules at the lipid water interface makes a major contribution to the dipole potential. PMID:1600081

  13. Potentials and risks of utilizing methane from methane hydrate as an energy support; Potentiale und Risiken der Nutzung von Methan aus Methandhydraten als Energietraeger

    Energy Technology Data Exchange (ETDEWEB)

    Groth, Markus [Lueneburg Univ. (Germany). Lehrstuhl fuer Nachhaltigkeitsoekonomie

    2009-10-15

    Marine and permafrost-based methane hydrates are the largest existing fossil carbon resource, whereby the marine deposits far outweigh the terrestrial ones. Their broad geographic distribution, especially in comparison to oil and conventional gas, make them a promising future source of energy. However, there is a danger of forcing the greenhouse effect in the event of a release of methane into the atmosphere as well as causing the collapse of oceanic slope sediments. Also the technical difficulties in extracting methane from hydrates are not yet fully resolved. Nevertheless, research on methane hydrates has been forced both on political as well as economic considerations in recent years and methane hydrates have several practical advantages, which make them a transitional solution worth looking at on the way to a future renewable-based energy supply, not in the least in playing a role in carbon capture and sequestration. However, the knowledge of the potentials and risks of methane hydrates is still very poor, especially in the German-speaking public, administration and policies. This deficiency hopefully will be eased by this overview dealing with the current state of research and an outlook based on the most important findings. (orig.)

  14. Clathrate hydrates in nature.

    Science.gov (United States)

    Hester, Keith C; Brewer, Peter G

    2009-01-01

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO2. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves.

  15. Relation between soil matrix potential changes and water conversion ratios during methane hydrate formation processes in loess

    Institute of Scientific and Technical Information of China (English)

    Peng Zhang; Qingbai Wu; Guanli Jiang; Yibin Pu

    2011-01-01

    With a new apparatus designed and assembled by ourselves,the matrix potential of non-saturated loess was firstly measured and studied during methane hydrate formation processes.The experimental results showed that during two formation processes,the matrix potential changes of the loess all presented a good linear relationship with water conversion ratios.In addition,although it was well known that the secondary gas hydrate formation was easier than the initial,our experimental results showed that the initial hydrate formation efficiency in non-saturated loess was higher than that of the secondary.

  16. High-resolution seafloor features related to potential gas-hydrate formation off SW Taiwan

    Science.gov (United States)

    Hsu, S.; Tsai, C.; Chen, S.; Shih, T.

    2010-12-01

    The area off SW Taiwan is considered as a high potential area for gas-hydrate formation. The gas-hydrate signature is indicated by the abundant presence of BSR (Bottom-Simulating-Reflector). High methane concentration is also shown in the bottom water near the seafloor. To have a better understanding, we have conducted deep-towed survey of side-scan sonar and sub-bottom profiler in several potential areas. Pockmarks are found in several places. Some are related to gas seeping. The gas seeps are especially obvious in high-resolution sub-bottom profilers. The high pore-pressure due to the charging of the gas has clearly uplifted a top layer of sediments. The pockmarks area usually accompany the presence of authigenic carbonate. In the image of side-scan sonar data, the irregular patterns of strong backscatter signal are associated with the gas seeping or pockmark sites. The presence of pockmarks or gas seeps could be related to structural faults. Because the NW convergence of the Philippine Sea plate relative to the Eurasian plate, the area off SW Taiwan in fact is under compression and has caused folds and faults. These structural faults provide efficient conduits for fluid to migrate upward. Thus, the pockmarks frequently appear near faults. In the water depth of about 450m, the upward gas even goes into water column and creates clear gas plume image in EK 500 data. The gas is inferred to be dissociated from gas-hydrate and can get into the atmosphere. The dissociation of gas-hydrate has probably also induced the instability of the seafloor off SW Taiwan and cuased submarine landslides.

  17. Potential-of-mean-force description of ionic interactions and structural hydration in biomolecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Hummer, G.; Garcia, A.E. [Los Alamos National Lab., NM (United States). Theoretical Biology and Biophysics Group; Soumpasis, D.M. [Max-Planck-Inst for Biophysical Chemistry, Goettingen (Germany). Biocomputation Group

    1994-10-01

    To understand the functioning of living organisms on a molecular level, it is crucial to dissect the intricate interplay of the immense number of biological molecules. Most of the biochemical processes in cells occur in a liquid environment formed mainly by water and ions. This solvent environment plays an important role in biological systems. The potential-of-mean-force (PMF) formalism attempts to describe quantitatively the interactions of the solvent with biological macromolecules on the basis of an approximate statistical-mechanical representation. At its current status of development, it deals with ionic effects on the biomolecular structure and with the structural hydration of biomolecules. The underlying idea of the PMF formalism is to identify the dominant sources of interactions and incorporate these interactions into the theoretical formalism using PMF`s (or particle correlation functions) extracted from bulk-liquid systems. In the following, the authors shall briefly outline the statistical-mechanical foundation of the PMF formalism and introduce the PMF expansion formalism, which is intimately linked to superposition approximations for higher-order particle correlation functions. The authors shall then sketch applications, which describe the effects of the ionic environment on nucleic-acid structure. Finally, the authors shall present the more recent extension of the PMF idea to describe quantitatively the structural hydration of biomolecules. Results for the interface of ice and water and for the hydration of deoxyribonucleic acid (DNA) will be discussed.

  18. Gas and Gas Hydrate Potential Offshore Amasra,Bartin and Zonguldak and Possible Agent for Multiple BSR Occurrence

    Science.gov (United States)

    Mert Küçük, Hilmi; Dondurur, Derman; Özel, Özkan; Sınayuç, Çağlar; Merey, Şükrü; Parlaktuna, Mahmut; Çifçi, Günay

    2015-04-01

    Gas hydrates, shallow gases and mud volcanoes have been studied intensively in the Black Sea in recent years. Researches have shown that the Black Sea region has an important potential about hydrocarbon. BSR reflections in the seismic sections and seabed sampling studies also have proven the formations of hydrates clearly. In this respect, total of 2400 km multichannel seismic reflection, chirp and multibeam bathymetry data were collected along shelf to abyssal plain in 2010 and 2012 offshore Amasra, Bartın, Zonguldak-Kozlu in the central Black Sea.. Collected data represent BSRs, bright spots and transparent zones. It has been clearly observed that possible gas chimneys cross the base of gas hydrate stability zones as a result of possible weak zones in the gas hydrate bearing sediments. Seabed samples were collected closely to possible gas chimneys due to shallow gas anomalies in the data. Head space gas cromatography was applied to seabed samples to observe gas composition and the gas cromatography results represented hydrocarbon gases such as Methane, Ethane, Propane, i-Butane, n-Butane, i-Pentane, n-Pentane and Hexane. Thermogenic gas production by Turkish Petroleum Corp. from Akçakoca-1 and Ayazlı-1 well is just located at the southwest of the study area and the observations of the study area point out there is also thermogenic gas potential at the eastern side of the Akçakoca. In addition, multiple-BSRs were observed in the study area and it is thought the key point of the multiple-BSRs are different gas compositions. This suggests that hydrate formations can be formed by gas mixtures. Changing of the thermobaric conditions can trigger dissociation of the gas hydrates in the marine sediments due to sedimentary load and changing of the water temperature around seabed. Our gas hydrate modelling study suggest that gas hydrates are behaving while their dissociation process if the gas hydrates are generated by gas mixture. Monitoring of our gas hydrate

  19. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  20. Developing Human Resources through Actualizing Human Potential

    Science.gov (United States)

    Clarken, Rodney H.

    2012-01-01

    The key to human resource development is in actualizing individual and collective thinking, feeling and choosing potentials related to our minds, hearts and wills respectively. These capacities and faculties must be balanced and regulated according to the standards of truth, love and justice for individual, community and institutional development,…

  1. Indian National Gas Hydrate Program Expedition 01 report

    Science.gov (United States)

    Collett, Timothy S.; Riedel, M.; Boswell, R.; Presley, J.; Kumar, P.; Sathe, A.; Sethi, A.; Lall, M.; ,

    2015-01-01

    Gas hydrate is a naturally occurring “ice-like” combination of natural gas and water that has the potential to serve as an immense resource of natural gas from the world’s oceans and polar regions. However, gas-hydrate recovery is both a scientific and a technical challenge and much remains to be learned about the geologic, engineering, and economic factors controlling the ultimate energy resource potential of gas hydrate. The amount of natural gas contained in the world’s gas-hydrate accumulations is enormous, but these estimates are speculative and range over three orders of magnitude from about 2,800 to 8,000,000 trillion cubic meters of gas. By comparison, conventional natural gas accumulations (reserves and undiscovered, technically recoverable resources) for the world are estimated at approximately 440 trillion cubic meters. Gas recovery from gas hydrate is hindered because the gas is in a solid form and because gas hydrate commonly occurs in remote Arctic and deep marine environments. Proposed methods of gas recovery from gas hydrate generally deal with disassociating or “melting” in situ gas hydrate by heating the reservoir beyond the temperature of gas-hydrate formation, or decreasing the reservoir pressure below hydrate equilibrium. The pace of energy-related gas hydrate assessment projects has accelerated over the past several years.

  2. Study of methane hydrate as a future energy resource: low emission extraction and power generation

    Science.gov (United States)

    Chen, L.; Yamada, H.; Kanda, Y.; Sasaki, H.; Okajima, J.; Iga, Y.; Komiya, A.; Maruyama, S.

    2016-08-01

    With the fast increase of world energy consumption in recent years, new and sustainable energy sources are becoming more and more important. Methane Hydrate is one promising candidate for the future energy supply of humankind, due to its vast existence in permafrost regions and near-coast seabed. This study is focused on the effective low emission utilization of methane hydrate from deep seabed. The Nankai Trough of Japan is taken as the target region in this study for methane hydrate extraction and utilization system design. Low emission system and power generation system with CCS (Carbon Capture and Sequestration) processes are proposed and analyzed for production rate and electricity generation efficiency problem study. It is found that the gas production price can reach the current domestic natural gas supply price level if the production rate can be improved. The optimized system is estimated to have power efficiency about 35%. In addition, current development and analysis from micro-to-macro scale methane hydrate production and dissociation dynamics are also discussed into detail in this study.

  3. Focus on the Development of Natural Gas Hydrate in China

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2016-05-01

    Full Text Available Natural gas hydrate, also known as combustible ice, and mainly composed of methane, is identified as a potential clean energy for the 21st century. Due to its large reserves, gas hydrate can ease problems caused by energy resource shortage and has gained attention around the world. In this paper, we focus on the exploration and development of gas hydrate as well as discussing its status and future development trend in China and abroad. We then analyze its opportunities and challenges in China from four aspects, resource, technology, economy and policy, with five forces model and Politics Economics Society Technology method. The results show China has abundance gas hydrate resource; however, backward technologies and inadequate investment have seriously hindered the future development of gas hydrate; thus, China should establish relevant cooperation framework and intuitional arrangement to attract more investment as well as breaking through technical difficulties to commercialization gas hydrate as soon as possible.

  4. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    and the role it plays in the global climate and the future of fuels. Russia, Japan, Nigeria, Peru, Chile, Pakistan, Indonesia, Korea, etc are various countries who are perusing the gas hydrates studies as a future resource for fuel. Indian Initiative..., 1993, Free gas at the base of the gas hydrate zone in the vicinity of the Chile Triple junction: Geology, v. 21, pp. 905-908. Borowski, W.S., C.K. Paull, and U. William, III, 1999, Global and local variations of interstitial sulfate gradients...

  5. Methane flux in potential hydrate-bearing sediments offshore southwestern Taiwan

    Science.gov (United States)

    Chen, Nai-Chen; Yang, Tsanyao Frank; Chuang, Pei-Chuan; Hong, Wei-Li; Chen, Hsuan-Wen; Lin, Saulwood; Lin, Li-Hung; Mastumoto, Ryo; Hiruta, Akihiro; Sun, Chih-Hsien; Wang, Pei-Ling; Yang, Tau; Jiang, Shao-yong; Wang, Yun-shuen; Chung, San-Hsiung; Chen, Cheng-Hong

    2016-04-01

    infiltrating from seawater was consumed by AOM. Gas compositions and methane carbon isotopes show microbial gas dominated at passive margin and lower slope of active margin; by contrast, thermogenic gas source was prevalent at upper slope of active margin. In summary, transport of deeply sourced methane in potential hydrate-bearing sediments is strongly controlled by geological structures and microbial processes. For most of sites, anaerobic and aerobic methanotrophy in sediments act as efficient biofiltration for the removal of methane. For sites with strong fluid advection, a great fraction of deeply-sourced methane could escape from anaerobic and aerobic methanotrophy and be discharged into seawater column. The changing mechanisms for gas generation from passive to active margin highlights the interplay between in situ methanogenesis, sediment loading, and connectivity of fluid conduits.

  6. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  7. Accurate measurement of phase equilibria and dissociation enthalpies of HFC-134a hydrates in the presence of NaCl for potential application in desalination

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongyoung; Lee, Yohan; Choi, Wonjung; Seo, Yongwon [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Seungmin [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2016-04-15

    Phase equilibria, structure identification, and dissociation enthalpies of HFC-134a hydrates in the presence of NaCl are investigated for potential application in desalination. To verify the influence of NaCl on the thermodynamic hydrate stability of the HFC-134a hydrate, the three-phase (hydrate (H) - liquid water (L{sub W}) - vapor (V)) equilibria of the HFC-134a+NaCl (0, 3.5, and 8.0 wt%)+water systems are measured by both a conventional isochoric (pVT) method and a stepwise differential scanning calorimeter (DSC) method. Both pVT and DSC methods demonstrate reliable and consistent hydrate phase equilibrium points of the HFC-134a hydrates in the presence of NaCl. The HFC- 134a hydrate is identified as sII via powder X-ray diffraction. The dissociation enthalpies (ΔH{sub d}) of the HFC-134a hydrates in the presence of NaCl are also measured with a high pressure micro-differential scanning calorimeter. The salinity results in significant thermodynamic inhibition of the HFC-134a hydrates, whereas it has little effect on the dissociation enthalpy of the HFC-134a hydrates. The experimental results obtained in this study can be utilized as foundational data for the hydrate-based desalination process.

  8. Trichloroethylene Hypersensitivity Syndrome Is Potentially Mediated through Its Metabolite Chloral Hydrate.

    Directory of Open Access Journals (Sweden)

    Yongshun Huang

    Full Text Available We documented previously the entity of trichloroethylene (TCE hypersensitivity syndrome (THS in occupational workers.To identify the culprit causative compound, determine the type of hypersensitivity of THS, and establish a screening test for subjects at risk of THS.TCE and its main metabolites chloral hydrate (CH, trichloroethanol (TCOH and trichloroacetic acid (TCA were used as allergens at different concentrations in skin patch tests. The study included 19 case subjects diagnosed with occupational THS, 22 control healthy workers exposed to TCE (exposure >12 weeks, and 20 validation new workers exposed to TCE for <12 weeks free of THS. All subjects were followed-up for 12 weeks after the patch test.The highest patch test positive rate in subjects with THS was for CH, followed by TCOH, TCA and TCE. The CH patch test positive rate was 100% irrespective of CH concentrations (15%, 10% and 5%. The TCOH patch test positive rate was concentration-dependent (89.5%, 73.7% and 52.6% for 5%, 0.5% and 0.05%, respectively. Lower patch test positive rates were noted for TCA and TCE. All patch tests (including four allergens were all negative in each of the 22 control subjects. None of the subjects of the validation group had a positive 15% CH patch test.Chloral hydrate seems to be the culprit causative compound of THS and type IV seems to be the major type of hypersensitivity of THS. The CH patch test could be potentially useful for screening workers at risk of THS.

  9. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta

    Science.gov (United States)

    Sultan, N.; Marsset, B.; Ker, S.; Marsset, T.; Voisset, M.; Vernant, A. M.; Bayon, G.; Cauquil, E.; Adamy, J.; Colliat, J. L.; Drapeau, D.

    2010-08-01

    Based on acquired geophysical, geological and geotechnical data and modeling, we suggest hydrate dissolution to cause sediment collapse and pockmark formation in the Niger delta. Very high-resolution bathymetry data acquired from the Niger delta reveal the morphology of pockmarks with different shapes and sizes going from a small ring depression surrounding an irregular floor to more typical pockmarks with uniform depression. Geophysical data, in situ piezocone measurements, piezometer measurements and sediment cores demonstrate the presence of a common internal architecture of the studied pockmarks: inner sediments rich in gas hydrates surrounded by overpressured sediments. The temperature, pressure and salinity conditions of the studied area have allowed us to exclude the process of gas-hydrate dissociation (gas hydrate turns into free gas/water mixture) as a trigger of the observed pockmarks. Based on numerical modeling, we demonstrate that gas-hydrate dissolution (gas hydrate becomes mixture of water and dissolved gas) under a local decrease of the gas concentration at the base of the gas-hydrate occurrence zone (GHOZ) can explain the excess pore pressure and fluid flow surrounding the central hydrated area and the sediment collapse at the border of the GHOZ. The different deformation (or development) stages of the detected pockmarks confirm that a local process such as the amount of gas flow through faults rather than a regional one is at the origin of those depressions.

  10. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    our understanding of methane hydrates in nature. COL assembled a Methane Hydrate Project Science Team with members from academia, industry, and government. This Science Team worked with COL and DOE to develop and host the Methane Hydrate Community Workshop, which surveyed a substantial cross section of the methane hydrate research community for input on the most important research developments in our understanding of methane hydrates in nature and their potential role as an energy resource, a geohazard, and/or as an agent of global climate change. Our understanding of how methane hydrates occur in nature is still growing and evolving, and it is known with certainty that field, laboratory, and modeling studies have contributed greatly to our understanding of hydrates in nature and will continue to be a critical source of the information needed to advance our understanding of methane hydrates.

  11. Evaluation of gas production potential from gas hydrate deposits in National Petroleum Reserve Alaska using numerical simulations

    Science.gov (United States)

    Nandanwar, Manish S.; Anderson, Brian J.; Ajayi, Taiwo; Collett, Timothy S.; Zyrianova, Margarita V.

    2016-01-01

    An evaluation of the gas production potential of Sunlight Peak gas hydrate accumulation in the eastern portion of the National Petroleum Reserve Alaska (NPRA) of Alaska North Slope (ANS) is conducted using numerical simulations, as part of the U.S. Geological Survey (USGS) gas hydrate Life Cycle Assessment program. A field scale reservoir model for Sunlight Peak is developed using Advanced Processes & Thermal Reservoir Simulator (STARS) that approximates the production design and response of this gas hydrate field. The reservoir characterization is based on available structural maps and the seismic-derived hydrate saturation map of the study region. A 3D reservoir model, with heterogeneous distribution of the reservoir properties (such as porosity, permeability and vertical hydrate saturation), is developed by correlating the data from the Mount Elbert well logs. Production simulations showed that the Sunlight Peak prospect has the potential of producing 1.53 × 109 ST m3 of gas in 30 years by depressurization with a peak production rate of around 19.4 × 104 ST m3/day through a single horizontal well. To determine the effect of uncertainty in reservoir properties on the gas production, an uncertainty analysis is carried out. It is observed that for the range of data considered, the overall cumulative production from the Sunlight Peak will always be within the range of ±4.6% error from the overall mean value of 1.43 × 109 ST m3. A sensitivity analysis study showed that the proximity of the reservoir from the base of permafrost and the base of hydrate stability zone (BHSZ) has significant effect on gas production rates. The gas production rates decrease with the increase in the depth of the permafrost and the depth of BHSZ. From the overall analysis of the results it is concluded that Sunlight Peak gas hydrate accumulation behaves differently than other Class III reservoirs (Class III reservoirs are composed of a single layer of hydrate with no

  12. Complex Assessment of Sufficiency of the Bank Resource Potential

    Directory of Open Access Journals (Sweden)

    Azizova Kateryna M.

    2014-01-01

    Full Text Available The goal of the article is development of methodical recommendations regarding assessment of sufficiency of the bank resource potential by means of identification and analysis of all its components and use of the method of rating assessment. Analysing, systemising and generalising scientific works of foreign and Ukrainian scientists, the article considers a complex approach to the bank resource potential management. In the result of the study the article identifies specific features of a complex approach in the bank resource potential management. The method of geometric average and normative values of selected ratios for calculation was used for the generalising complex assessment of sufficiency of the bank resource potential. The rating assessment of the Public JSC Mercury Bank resource potential was calculated by such indicators as: debt, loan and own resources. The stated algorithm of the rating assessment of the resource potential could be applied for comparison of banks in dynamics.

  13. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204

    Science.gov (United States)

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.

    2004-01-01

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally <2% of the pore space, although this estimate may increase by a factor of 2 when patchy zones of locally higher gas hydrate content are included in the calculation. These patchy zones are structurally and stratigraphically controlled, contain up to 20% hydrate in the pore space when averaged over zones ???10 m thick, and may occur in up to ???20% of the region imaged by 3D seismic data. This heterogeneous gas hydrate distribution is an important constraint on models of gas hydrate formation in marine sediments and the response of the sediments to tectonic and environmental change. ?? 2004 Published by Elsevier B.V.

  14. Potential impact on climate of the exploitation of methane hydrate deposits offshore

    Digital Repository Service at National Institute of Oceanography (India)

    Glasby, G.P.

    –175 www.elsevier.com/locate/marpetgeo * Current address: 42 Warminster Cresent, Sheffield S8 9NW. E-mail address: g.p.glasby@talk21.com (G.P. Glasby). 2. Stability and occurrence of methane hydrates Methane hydrate has a clathrate structure in which..., it was concluded that the magnitude of the methane increases was insufficient to account for the extent of atmospheric warming and that about 50 Tg of methane per year (37 Mt of methane carbon) would have needed to be introduced into the atmosphere to account...

  15. Appraisal of gas hydrate resources based on a P- and S-impedance reflectivity template: case study from the deep sea sediments in Iran

    Science.gov (United States)

    Shoar, Behnam Hosseini; Javaherian, Abdolrahim; Keshavarz Farajkhah, Nasser; Seddigh Arabani, Mojtaba

    2013-12-01

    The occurrence of a bottom simulating reflector (BSR) in the 2D seismic data from Makran's accretionary prism reveals the presence of gas hydrate and free gas several hundred meters below the seafloor of Iran's deep sea. According to the global distribution of marine hydrates, they are widely present in deep sea sediments, where high operational costs and hazards cause a lack of well log information. Therefore, developing a method to quantify the hydrate resources with seismic data is an ultimate goal for unexplored regions. In this study, the so-called reflectivity templates (RTs) are introduced for quantification of the hydrate and free gas near the BSR. These RTs are intuitive crossplots of P-impedance and S-impedance contrasts across the BSR. They are calculated theoretically based on the effective medium theory for different hydrate distribution modes with some assumptions on porosity and mineralogical composition of unconsolidated sediments. This technique suggests the possibility of using the amplitude variation versus offset (AVO) analysis of the BSR for a quantitative interpretation when well log data are not available. By superimposing the AVO-derived P-impedance and S-impedance contrasts across the BSR on these RTs, the saturations of the hydrate and free gas near the BSR could be estimated. Validation of this approach by synthetic data showed that a reliable quantification could be achieved if the model parameters were rearranged to a form in which the AVO inversion was independent of the S-wave to P-wave velocity-ratio assumption. Based on this approach applied on the 2D marine pre-stack time migrated seismic line in offshore Iran, 4% to 28% of the gas hydrate and 1% to 2% of the free gas are expected to be accumulated near the thrusted-ridge and thrusted-footwall types of BSRs.

  16. Collecting high-order interactions in an effective pairwise intermolecular potential using the hydrated ion concept: The hydration of Cf{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Galbis, Elsa; Pappalardo, Rafael R.; Marcos, Enrique Sánchez, E-mail: sanchez@us.es [Departmento de Química Física, Universidad de Sevilla, 41012 Seville (Spain); Hernández-Cobos, Jorge [Instituto de Ciencias Físicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca (Mexico)

    2014-06-07

    This work proposes a new methodology to build interaction potentials between a highly charged metal cation and water molecules. These potentials, which can be used in classical computer simulations, have been fitted to reproduce quantum mechanical interaction energies (MP2 and BP86) for a wide range of [M(H{sub 2}O){sub n}]{sup m+}(H{sub 2}O){sub ℓ} clusters (n going from 6 to 10 and ℓ from 0 to 18). A flexible and polarizable water shell model (Mobile Charge Density of Harmonic Oscillator) has been coupled to the cation-water potential. The simultaneous consideration of poly-hydrated clusters and the polarizability of the interacting particles allows the inclusion of the most important many-body effects in the new polarizable potential. Applications have been centered on the californium, Cf(III) the heaviest actinoid experimentally studied in solution. Two different strategies to select a set of about 2000 structures which are used for the potential building were checked. Monte Carlo simulations of Cf(III)+500 H{sub 2}O for three of the intermolecular potentials predict an aquaion structure with coordination number close to 8 and average R{sub Cf−−O} in the range 2.43–2.48 Å, whereas the fourth one is closer to 9 with R{sub Cf−−O} = 2.54 Å. Simulated EXAFS spectra derived from the structural Monte Carlo distribution compares fairly well with the available experimental spectrum for the simulations bearing 8 water molecules. An angular distribution similar to that of a square antiprism is found for the octa-coordination.

  17. Potential recoverable natural gas resources in China

    Institute of Scientific and Technical Information of China (English)

    Liu Chenglin; Zhu Jie; Che Changbo; Liu Guangdi

    2008-01-01

    Natural gas resources in China are abundant. The undiscovered recoverable natural gas resources in China are estimated to be 19.27×1012 m3. Natural gas is mainly distributed in the middle and west China and offshore areas of China. The Tarim Basin, Sichuan Basin, Ordos Basin, East China Sea Basin, Tsaidam Basin, Yinggehai Basin, and Qiongdongnan Basin are the main gas-beating basins. The natural gas resources are not distributed evenly and are under-explored in China. The deeper horizons in east China, foreland basins and craton paleo-uplifts in the middle and west China, and the offshore basins are the main exploration areas in the future.

  18. Methane hydrates and the future of natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2011-01-01

    For decades, gas hydrates have been discussed as a potential resource, particularly for countries with limited access to conventional hydrocarbons or a strategic interest in establishing alternative, unconventional gas reserves. Methane has never been produced from gas hydrates at a commercial scale and, barring major changes in the economics of natural gas supply and demand, commercial production at a large scale is considered unlikely to commence within the next 15 years. Given the overall uncertainty still associated with gas hydrates as a potential resource, they have not been included in the EPPA model in MITEI’s Future of Natural Gas report. Still, gas hydrates remain a potentially large methane resource and must necessarily be included in any consideration of the natural gas supply beyond two decades from now.

  19. Production behaviour of gas hydrate under hot sea water injection : laboratory case study

    Energy Technology Data Exchange (ETDEWEB)

    Nengkoda, A. [Schlumberger, Calgary, AB (Canada); Budhijanto, B.; Supranto, S.; Prasetyo, I.; Purwono, S.; Sutijan, S. [Gadjah Mada Univ., Yogyakarta (Indonesia)

    2010-07-01

    The gas hydrate potential in Indonesia was discussed, with particular reference to offshore production of gas from deep-water gas-hydrates by injection of hot seawater. In 2004, the Indonesian National Agency for Assessment and Application Technology estimated the gas hydrate resource potential to be 850 trillion cubic feet (tcf). To date, the 3 most reliable scenarios for gas hydrate production are thermal stimulation which involves increasing the temperature until the hydrates break into water and gas; depressurization which involves lowering the pressure by pumping out gas at the base of the hydrate to cause dissociation of hydrates into gas; and injection of a chemical inhibitor such as methanol into the hydrated sediments to cause destabilization, thus releasing gas from hydrates. This study investigated the effect of hot seawater injection on the gas hydrate production under laboratory conditions. The temperature profile distribution was examined along with operational parameters and flow characteristics of the dissociated gas and water from hydrates in porous systems under a synthetic hydrate setup. The study showed that gas production increases with time until a maximum is reached, at which time it begins to decrease. The energy ratio of thermal stimulation production was found to be influenced by the injection water temperature and rate as well as the hydrate content in the synthetic sediment. Scale problems were found to be associated with high temperature seawater injection. 8 refs., 3 tabs., 7 figs.

  20. Methane Hydrate Field Program. Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Tim [U.S. Geological Survey, Boulder, CO (United States); Bahk, Jang-Jun [Korea Inst. of Geoscience and Mineral Resources, Daejeon (Korea); Frye, Matt [U.S. Bureau of Ocean Energy Management, Sterling, VA (United States); Goldberg, Dave [Lamont-Doherty Earth Observatory, Palisades, NY (United States); Husebo, Jarle [Statoil ASA, Stavenger (Norway); Koh, Carolyn [Colorado School of Mines, Golden, CO (United States); Malone, Mitch [Texas A & M Univ., College Station, TX (United States); Shipp, Craig [Shell International Exploration and Production Inc., Anchorage, AK (United States); Torres, Marta [Oregon State Univ., Corvallis, OR (United States); Myers, Greg [Consortium For Ocean Leadership Inc., Washington, DC (United States); Divins, David [Consortium For Ocean Leadership Inc., Washington, DC (United States); Morell, Margo [Consortium For Ocean Leadership Inc., Washington, DC (United States)

    2013-12-31

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these efforts have been episodic in nature. To further our understanding, these efforts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and offers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  1. Origin and character of gaseous hydrocarbons in the hydrate and non-hydrate charged sediments on the Norway - Svalbard margins

    Energy Technology Data Exchange (ETDEWEB)

    Vaular, Espen Nesheim

    2011-05-15

    Gas incubated in clathrate water-structures, stabilizes the hydrogen bonded substance termed gas hydrate. In the marine environment vast amount of carbon is stored as gas hydrates within the temperature and pressure zone these ice-like structures are stable. Natural gas hydrate mapping and characterization is important basic research that brings about critical knowledge concerning various topics. Natural gas hydrates is a vital part of the carbon cycle, it is a potential energy resource (and thereby a potential climate agent) and it is a potential geo-hazard. One of the goals the GANS initiative aimed at exploring, was the hydrate bearing sediment of the Norway -Svalbard margins, to investigate the character and expansion of natural gas hydrates. Part of the investigation was to define how the gas in the hydrated sediment was produced and where it came from. As a result this thesis addresses the matter of light hydrocarbon characterization and origin in two Norwegian hydrate deposits. On cruises to Vestnesa on the Svalbard margin and to Nyegga in the mid-Norwegian margin, samples of hydrate charged and non-hydrate charged sediments were obtained and analyzed. Through compositional and isotopic analyses the origin of the hydrate bound gas in the fluid escape feature G11 at Nyegga was determined. The hydrate incubated methane is microbial produced as well as parts of the hydrate bound ethane. The compositional analysis in both the Nyegga area and at the Vestnesa Ridge points at thermogenic contributions in the sediment interstitials and pore water. The two hydrate bearing margins show large differences in hydrocarbon content and microbial activity in the pockmarks investigated. The gravity cores from the penetrated pockmark at Vestnesa showed low hydrocarbon content and thus suggest ceased or periodic venting. The fluid flow escape features at Nyegga show large variety of flux rates based on ROV monitoring and headspace analysis of the sediment and pore water. The

  2. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)

    2008-07-01

    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.

  3. Resource efficiency potential of selected technologies, products and strategies.

    Science.gov (United States)

    Rohn, Holger; Pastewski, Nico; Lettenmeier, Michael; Wiesen, Klaus; Bienge, Katrin

    2014-03-01

    Despite rising prices for natural resources during the past 30 years, global consumption of natural resources is still growing. This leads to ecological, economical and social problems. So far, however, limited effort has been made to decrease the natural resource use of goods and services. While resource efficiency is already on the political agenda (EU and national resource strategies), there are still substantial knowledge gaps on the effectiveness of resource efficiency improvement strategies in different fields. In this context and within the project "Material Efficiency and Resource Conservation", the natural resource use of 22 technologies, products and strategies was calculated and their resource efficiency potential analysed. In a preliminary literature- and expert-based identification process, over 250 technologies, strategies, and products, which are regarded as resource efficient, were identified. Out of these, 22 subjects with high resource efficiency potential were selected. They cover a wide range of relevant technologies, products and strategies, such as energy supply and storage, Green IT, transportation, foodstuffs, agricultural engineering, design strategies, lightweight construction, as well as the concept "Using Instead of Owning". To assess the life-cycle-wide resource use of the selected subjects, the material footprint has been applied as a reliable indicator. In addition, sustainability criteria on a qualitative basis were considered. The results presented in this paper show significant resource efficiency potential for many technologies, products and strategies.

  4. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  5. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, R.K.; Allen, W.W.

    1992-12-01

    The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  6. Resource constraints in petroleum production potential.

    Science.gov (United States)

    Masters, C D; Root, D H; Attanasi, E D

    1991-07-12

    Geologic reasons indicate that the dominant position of the Middle East as a source of conventional petroleum will not be changed by new discoveries elsewhere. The share of world crude oil production coming from the Middle East could increase, within 10 to 20 years, to exceed 50 percent, under even modest increases in world consumption. Nonconventional resources of oil exist in large quantities, but because of their low production rates they can at best only mitigate extant trends. Increased production of natural gas outside the United States, however, offers an opportunity for geographically diversified energy supplies in the near future.

  7. An assessement of global energy resource economic potentials

    CERN Document Server

    Mercure, J F

    2012-01-01

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary mate...

  8. Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms.

    Science.gov (United States)

    Guo, Guang-Jun; Li, Meng; Zhang, Yi-Gang; Wu, Chang-Hua

    2009-11-28

    By performing constrained molecular dynamics simulations in the methane-water system, we successfully calculated the potential of mean force (PMF) between a dodecahedral water cage (DWC) and dissolved methane for the first time. As a function of the distance between DWC and methane, this is characterized by a deep well at approximately 6.2 A and a shallow well at approximately 10.2 A, separated by a potential barrier at approximately 8.8 A. We investigated how the guest molecule, cage rigidity and the cage orientation affected the PMF. The most important finding is that the DWC itself strongly adsorbs methane and the adsorption interaction is independent of the guests. Moreover, the activation energy of the DWC adsorbing methane is comparable to that of hydrogen bonds, despite differing by a factor of approximately 10% when considering different water-methane interaction potentials. We explain that the cage-methane adsorption interaction is a special case of the hydrophobic interaction between methane molecules. The strong net attraction in the DWC shell with radii between 6.2 and 8.8 A may act as the inherent driving force that controls hydrate formation. A cage adsorption hypothesis for hydrate nucleation is thus proposed and discussed.

  9. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a drilling hazard by the oil and gas industry for years. Drilling engineers working in Russia, Canada and the USA have documented numerous problems, including drilling kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates as a potential energy source agree that the resource potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained from physical samples taken from actual hydrate-bearing rocks. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The project team drilled and continuously cored the Hot Ice No. 1 well on Anadarko-leased acreage beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and used for determining physical characteristics of hydrates and surrounding rock. After the well was logged, a 3D vertical seismic profile (VSP) was recorded to calibrate the shallow geologic section with seismic data and to investigate techniques to better resolve lateral subsurface variations of potential hydrate-bearing strata. Paulsson Geophysical Services, Inc. deployed their 80 level 3C clamped borehole seismic receiver array in the wellbore to record samples every 25 ft. Seismic vibrators were successively positioned at 1185 different surface positions in a circular pattern around the wellbore. This technique generated a 3D image of the subsurface. Correlations were

  10. Structural features of a potential gas hydrate area in the Pointer Ridge off southwest Taiwan

    Science.gov (United States)

    Wang, Hsueh-Fen; Hsu, Shu-Kun; Tsai, Ching-Hui; Chen, Song-Chuen; Liu, Char-Shine; Lin, Hsiao-Shan

    2015-04-01

    The offshore area of the southwest Taiwan is located in the oblique convergence zone between the northern continental margin of South China Sea and the Manila accretionary wedge. To the west of the deformation front offshore southwestern Taiwan, the Pointer Ridge is located in the passive South China Sea continental margin. The continental margin is compose of extensional horst-and-graben structures. There are numerous submarine channels and linear ridge, formed due to the submarine erosion across the continental slope region. According to geophysical research off SW Taiwan, abundant gas hydrate may exist. In this study, our purpose is to understand the relationship between the near-seafloor structures of the Pointer Ridge and the gas hydrate formation off SW Taiwan. The data we used include multi-beam echo sounder (MBES), side-scan sonar (SSS), sub-bottom profiler (SBP) and the multi-channel reflection seismic (MCS) data. Our results show the pockmark and gas seepage structures mainly appear in the place where the gradient of the BSR thickness is maximum. Those sites contain authigenic carbonate signature shown in the sub-bottom profiler. We also observe several folds and faults structures in this extensional background; however, these compressional features need further studies.

  11. Origins of hydration lubrication.

    Science.gov (United States)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-14

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  12. Nigerian Wood Waste: A Potential Resource for Economic ...

    African Journals Online (AJOL)

    Nigerian Wood Waste: A Potential Resource for Economic Development. ... industries and increased demand for wood and its products in the country. ... public health and the environment in Nigeria due to its indiscriminate disposal practices.

  13. CO2 hydrate formation and dissociation in cooled porous media: a potential technology for CO2 capture and storage.

    Science.gov (United States)

    Yang, Mingjun; Song, Yongchen; Jiang, Lanlan; Zhu, Ningjun; Liu, Yu; Zhao, Yuechao; Dou, Binlin; Li, Qingping

    2013-09-03

    The purpose of this study was to investigate the hydrate formation and dissociation with CO2 flowing through cooled porous media at different flow rates, pressures, temperatures, and flow directions. CO2 hydrate saturation was quantified using the mean intensity of water. The experimental results showed that the hydrate block appeared frequently, and it could be avoided by stopping CO2 flooding early. Hydrate formed rapidly as the temperature was set to 274.15 or 275.15 K, but the hydrate formation delayed when it was 276.15 K. The flow rate was an important parameter for hydrate formation; a too high or too low rate was not suitable for CO2 hydration formation. A low operating pressure was also unacceptable. The gravity made hydrate form easily in the vertically upward flow direction. The pore water of the second cycle converted to hydrate more completely than that of the first cycle, which was a proof of the hydrate "memory effect". When the pressure was equal to atmospheric pressure, hydrate did not dissociate rapidly and abundantly, and a long time or reduplicate depressurization should be used in industrial application.

  14. Exploitation of subsea gas hydrate reservoirs

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  15. New Methods for Gas Hydrate Energy and Climate Studies

    Science.gov (United States)

    Ruppel, C. D.; Pohlman, J.; Waite, W. F.; Hunt, A. G.; Stern, L. A.; Casso, M.

    2015-12-01

    Over the past few years, the USGS Gas Hydrates Project has focused on advancements designed to enhance both energy resource and climate-hydrate interaction studies. On the energy side, the USGS now manages the Pressure Core Characterization Tools (PCCTs), which includes the Instrumented Pressure Testing Chamber (IPTC) that we have long maintained. These tools, originally built at Georgia Tech, are being used to analyze hydrate-bearing sediments recovered in pressure cores during gas hydrate drilling programs (e.g., Nankai 2012; India 2015). The USGS is now modifying the PCCTs for use on high-hydrate-saturation and sand-rich sediments and hopes to catalyze third-party tool development (e.g., visualization). The IPTC is also being used for experiments on sediments hosting synthetic methane hydrate, and our scanning electron microscope has recently been enhanced with a new cryo-stage for imaging hydrates. To support climate-hydrate interaction studies, the USGS has been re-assessing the amount of methane hydrate in permafrost-associated settings at high northern latitudes and examined the links between methane carbon emissions and gas hydrate dissociation. One approach relies on the noble gas signature of methane emissions. Hydrate dissociation uniquely releases noble gases partitioned by molecular weight, providing a potential fingerprint for hydrate-sourced methane emissions. In addition, we have linked a DOC analyzer with an IRMS at Woods Hole Oceanographic Institution, allowing rapid and precise measurement of DOC and DIC concentrations and carbon isotopic signatures. The USGS has also refined methods to measure real-time sea-air flux of methane and CO2 using cavity ring-down spectroscopy measurements coupled with other data. Acquiring ~8000 km of data on the Western Arctic, US Atlantic, and Svalbard margins, we have tested the Arctic methane catastrophe hypothesis and the link between seafloor methane emissions and sea-air methane flux.

  16. Seismic time-lapse monitoring of potential gas hydrate dissociation around boreholes : could it be feasible? A conceptual 2D study linking geomechanical and seismic FD models

    Energy Technology Data Exchange (ETDEWEB)

    Pecher, I.; Yang, J.; Anderson, R.; Tohidi, B.; MacBeth, C. [Heriot-Watt Univ., Edinburgh (United Kingdom). Inst. of Petroleum Engineering; Freij-Ayoub, R.; Clennell, B. [CSIRO Petroleum, Bentley, WA (Australia)

    2008-07-01

    Dissociation of gas hydrate to water and potentially overpressured gas around boreholes may pose a hazard for deep-water hydrocarbon production. Strategies to mitigate this risk include monitoring for early detection of dissociation. Seismic methods are especially promising, primarily because of a high sensitivity of P-wave velocity to gas in the pore space of unconsolidated sediments. This paper presented a study that applied commonly used rock physics modeling to predict the seismic response to gas hydrate dissociation with a focus on P-impedance and performed sensitivity tests. The geomechanical model was translated into seismic models. In order to determine which parameters needed to be particularly well calibrated in experimental and modeling studies, the sensitivity of seismic properties to a variation of input parameters was estimated. The seismic response was predicted from dissociating gas hydrates using two-dimensional finite-difference wave-propagation modeling to demonstrate that despite the small predicted lateral extent of hydrate dissociation, its pronounced effect on seismic properties should allow detection with a seismic source on a drilling platform and receivers on the seafloor. The paper described the methods, models, and results of the study. It was concluded that the key factors for predicting the seismic response of sediments to hydrate dissociation were the mode of gas hydrate distribution, gas distribution in the sediments, gas saturation, and pore pressure. 33 refs., 3 tabs., 8 figs.

  17. MRPM: three visual basic programs for mineral resource potential mapping

    Science.gov (United States)

    Chen, Yongliang

    2004-11-01

    A traditional method for mineral resource potential mapping is to superimpose a number of indicator maps, and to combine geological information with or without the use of multivariate statistical models. More recently, GISs have become widely applied in mineral resource assessment and many statistical models for geological information synthesis have been proposed. GIS-based mineral resource potential mapping has facilitated modern mineral resource assessment. As a contribution to publicly available computer software for GIS-based mineral resource assessment, integrated three Visual Basic programs have been developed on MapInfo platform. The programs integrate map patterns using weights of evidence, applied general C-F, and evidence theory models, and generate posterior probability, combined certainty factor, and combined basic probability assignment maps, respectively. The software is demonstrated by a case study based on a real data set.

  18. Assessment of Global Wind Energy Resource Utilization Potential

    Science.gov (United States)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  19. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  20. Values and resources analysis - recreation resources present situation and resource potential

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The National Petroleum Reserve in Alaska (NPR-A) is a vast Arctic land area with relatively limited recreation resources in comparison to its size. Certain areas of...

  1. Potential game theory applications in radio resource allocation

    CERN Document Server

    Lã, Quang Duy; Soong, Boon-Hee

    2016-01-01

    This book offers a thorough examination of potential game theory and its applications in radio resource management for wireless communications systems and networking. The book addresses two major research goals: how to identify a given game as a potential game, and how to design the utility functions and the potential functions with certain special properties in order to formulate a potential game. After proposing a unifying mathematical framework for the identification of potential games, the text surveys existing applications of this technique within wireless communications and networking problems found in OFDMA 3G/4G/WiFi networks, as well as next-generation systems such as cognitive radios and dynamic spectrum access networks. Professionals interested in understanding the theoretical aspect of this specialized field will find Potential Game Theory a valuable resource, as will advanced-level engineering students. It paves the way for extensive and rigorous research exploration on a topic whose capacity for...

  2. Preliminary discussion on gas hydrate reservoir system of Shenhu Area, North Slope of South China Sea

    Energy Technology Data Exchange (ETDEWEB)

    Wu, N.; Yang, S.; Liang, J.; Wang, H.; Fu, S. [Guangzhou Marine Geological Survey, Guangzhou (China); Zhang, H. [China Geological Survey, Beijing (China); Su, X. [China Univ. of Geosciences, Beijing (China)

    2008-07-01

    Gas hydrate is a type of ice-like solid substance formed by the combination of certain low-molecular-weight gases such as methane, ethane, and carbon dioxide with water. Gas hydrate primarily occurs naturally in sediments beneath the permafrost and the sediments of the continental slope with the water depth greater than 300 m. Marine gas hydrate geological systems are important because they may be sufficiently concentrated in certain locations to be an economically viable fossil fuel resource. However, gas hydrates can cause geo-hazards through large-scale slope destabilization and can release methane, a potential greenhouse gas, into the environment. This paper discussed the hydrate drilling results from a geological and geophysical investigation of the gas hydrate reservoir system of the Shenhu Area, located in the north slope of South China Sea. The paper identified the basic formation conditions, and discussed the pore-water geochemical features of shallow sediments and their inflected gas sources, gas hydrate distribution and seismic characteristics. It was concluded that the gas hydrate was heterogeneously distributed in space, and mainly distributed in certain ranges above the bottom of the gas hydrate stability zone. It was also concluded that methane gas that formed hydrate was likely from in-situ micro-biogenic methane. Last, it was found that distributed and in-situ micro-biogenic methane resulted in low methane flux, and formed the distributed pattern of gas hydrate system with the features of differential distribution and saturation. 34 refs., 2 tabs., 3 figs.

  3. Gas hydrates and magnetism : comparative geological settings for diagenetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, L.; Enkin, R.J. [Natural Resources Canada, Sidney, BC (Canada). Geological Survey of Canada; Hamilton, T. [Camosun College, Victoria, BC (Canada)

    2008-07-01

    Geophysical and geochemical methods assist in locating and quantifying natural gas hydrate deposits. They are also useful in understanding these resources, their climate impacts and their potential role in geohazards. In order to understand the mechanisms of gas hydrate formation and its natural distribution in sediments, magnetic studies were conducted on cores from three different geological settings. This paper presented the results of a detailed magnetic investigation, as well as petrological observations, that were conducted on cores from a permafrost setting in the Mackenzie Delta located in the Canadian Northwest Territories Mallik region, and two marine settings, from the Cascadia margin off Vancouver Island and the Indian National Gas Hydrate Program from the Bengal Fan. The paper provided background information on the permafrost setting in Mallik region of the Mackenzie Delta as well as the Cascadia margin. The magnetic properties of gas hydrate bearing sediments were found to be a combination of the original detrital content and the diagenetic transformations of iron minerals caused by the unique environment produced by gas hydrate formation. The availability of methane to provide food for bacteria coupled with the concentration of solutes outside gas hydrate accumulation zones led to the creation of iron sulphides. These new minerals were observable using magnetic techniques, which help in delineating the gas hydrate formation mechanism and may be developed into new geophysical methods of gas hydrate exploration. 7 refs., 7 figs.

  4. Alaska coal geology, resources, and coalbed methane potential

    Science.gov (United States)

    Flores, Romeo M.; Stricker, Gary D.; Kinney, Scott A.

    2004-01-01

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines in these two provinces. Alaskan coal resources have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. The identified resources are near existing and planned infrastructure to promote development, transportation, and marketing of this low-sulfur coal. The relatively short distances to countries in the west Pacific Rim make them more exportable to these countries than to the lower 48 States of the United States. Another untapped but potential resource of large magnitude is coalbed methane, which has been estimated to total 1,000 trillion cubic feet (28 trillion cubic meters) by T.N. Smith 1995, Coalbed methane potential for Alaska and drilling results for the upper Cook Inlet Basin: Intergas, May 15 - 19, 1995, Tuscaloosa, University of Alabama, p. 1 - 21.

  5. Space Resource Utilization: Technologies and Potential Synergism with Terrestrial Mining

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    Space Resources and Their Uses: The idea of using resources in space to support human exploration and settlement or for economic development and profit beyond the surface of Earth has been proposed and discussed for decades. Work on developing a method to extract oxygen from lunar regolith started even before humans set foot on the Moon for the first time. The use of space resources, commonly referred to as In Situ Resource Utilization (ISRU), involves the processes and operations to harness and utilize resources in space (both natural and discarded) to create products for subsequent use. Potential space resources include water, solar wind implanted volatiles (hydrogen, helium, carbon, nitrogen, etc.), vast quantities of metals and minerals in extraterrestrial soils, atmospheric constituents, unlimited solar energy, regions of permanent light and darkness, the vacuum and zero-gravity of space itself, trash and waste from human crew activities, and discarded hardware that has completed its primary purpose. ISRU covers a wide variety of concepts, technical disciplines, technologies, and processes. When considering all aspects of ISRU, there are 5 main areas that are relevant to human space exploration and the commercialization of space: 1. Resource Characterization and Mapping, 2. In Situ Consumables Production, 3. Civil Engineering and Construction, 4. In Situ Energy Production and Storage, and 5. In Situ Manufacturing.

  6. The potential of sustainable algal biofuel production using wastewater resources.

    Science.gov (United States)

    Pittman, Jon K; Dean, Andrew P; Osundeko, Olumayowa

    2011-01-01

    The potential of microalgae as a source of renewable energy has received considerable interest, but if microalgal biofuel production is to be economically viable and sustainable, further optimization of mass culture conditions are needed. Wastewaters derived from municipal, agricultural and industrial activities potentially provide cost-effective and sustainable means of algal growth for biofuels. In addition, there is also potential for combining wastewater treatment by algae, such as nutrient removal, with biofuel production. Here we will review the current research on this topic and discuss the potential benefits and limitations of using wastewaters as resources for cost-effective microalgal biofuel production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Resources

    Science.gov (United States)

    ... resources Alzheimer's - resources Anorexia nervosa - resources Arthritis - resources Asthma and allergy - resources Autism - resources Blindness - resources BPH - resources Breastfeeding - resources Bulimia - resources Burns - resources Cancer - resources Cerebral ...

  8. The potential wind power resource in Australia: a new perspective.

    Directory of Open Access Journals (Sweden)

    Willow Hallgren

    Full Text Available Australia's wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia's electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia's energy mix, this study sets out to analyze and interpret the nature of Australia's wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast's electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it's intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale.

  9. The potential wind power resource in Australia: a new perspective.

    Science.gov (United States)

    Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam

    2014-01-01

    Australia's wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia's electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia's energy mix, this study sets out to analyze and interpret the nature of Australia's wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast's electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it's intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale.

  10. Updates to Enhanced Geothermal System Resource Potential Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad

    2017-05-01

    The deep EGS electricity generation resource potential estimate maintained by the National Renewable Energy Laboratory was updated using the most recent temperature-at-depth maps available from the Southern Methodist University Geothermal Laboratory. The previous study dates back to 2011 and was developed using the original temperature-at-depth maps showcased in the 2006 MIT Future of Geothermal Energy report. The methodology used to update the deep EGS resource potential is the same as in the previous study and is summarized in the paper. The updated deep EGS resource potential estimate was calculated for depths between 3 and 7 km and is binned in 25 degrees C increments. The updated deep EGS electricity generation resource potential estimate is 4,349 GWe. A comparison of the estimates from the previous and updated studies shows a net increase of 117 GWe in the 3-7 km depth range, due mainly to increases in the underlying temperature-at-depth estimates from the updated maps.

  11. SCRAN, Archaeology and Education: Realising the potential of digital resources

    Directory of Open Access Journals (Sweden)

    Elaine Mowat

    2002-08-01

    Full Text Available The many digitisation initiatives over the last ten years have made available thousands of new resources for learning and teaching. Students of archaeology now have unprecedented access to detailed views of delicate artefacts, remote landscapes and rare maps, as well as virtual reality reconstructions, interactive panoramas, and all kinds of online archives, databases and tutorials. But does this increased access to information automatically lead to improved learning? Some of the emerging problems of this new learning landscape include information overload, poorly understood and badly implemented technologies and a lack of time and skills among educators to explore properly what's newly available. On the other hand, one of the most interesting outcomes of the introduction of the new educational technologies has been a renewed and lively debate as to what learning involves and how exactly it takes place. This article will discuss the potential of digital resources to add value to learning. It will consider current ideas about learning in order to identify some of the key ingredients of a good learning experience. It will then identify the different ways in which a digital resource base can contribute to such an experience. Specifically, it will discuss how the resources contained within SCRAN, an online multimedia resource base for education, can be used in the context of learning and teaching in archaeology. There is evidence that electronic resources are not yet being fully exploited by the current generation of educators and students. By grounding this discussion of their potential within a sound pedagogic rationale, this paper aims to promote informed use and properly placed enthusiasm for these resources.

  12. Variation in Surface Ionization Potentials of Pristine and Hydrated BiVO4.

    Science.gov (United States)

    Crespo-Otero, Rachel; Walsh, Aron

    2015-06-18

    Bismuth vanadate (BiVO4) is a promising material for photoelectrochemical water splitting and photocatalytic degradation of organic moieties. We evaluate the ionization potentials of the (010) surface termination of BiVO4 using first-principles simulations. The electron removal energy of the pristine termination (7.2 eV) validates recent experimental reports. The effect of water absorption on the ionization potentials is considered using static models as well as structures obtained from molecular dynamics simulations. Owing to the large molecular dipole of H2O, adsorption stabilizes the valence band edge (downward band bending), thereby increasing the ionization potentials. These results provide new understanding to the role of polar layers on complex oxide semiconductors, with importance for the design of efficient photoelectrodes for water splitting.

  13. Potential for natural evaporation as a reliable renewable energy resource.

    Science.gov (United States)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  14. Energy from gas hydrates - assessing the opportunities and challenges for Canada: report of the expert panel on gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-09-15

    Gas hydrates form when water and natural gas combine at low temperatures and high pressures in regions of permafrost and in marine subseafloor sediments. Estimates suggest that the total amount of natural gas bound in hydrate form may exceed all conventional gas resources, or even the amount of all combined hydrocarbon energy. Gas from gas hydrate could provide a potentially vast new source of energy to offset declining supplies of conventional natural gas in North America and to provide greater energy security for countries such as Japan and India that have limited domestic sources. However, complex issues would need to be addressed if gas hydrate were to become a large part of the energy future of Canada. Natural Resources Canada asked the Council of Canadian Academies to assemble a panel of experts to examine the challenges for an acceptable operational extraction of gas hydrates in Canada. This report presented an overview of relevant contextual background, including some basic science; the medium-term outlook for supply and demand in markets for natural gas; broad environmental issues related to gas hydrate in its natural state and as a fuel; and an overview of Canada's contribution to knowledge about gas hydrate in the context of ongoing international research activity. The report also presented current information on the subject and what would be required to delineate and quantify the resource. Techniques for extracting gas from gas hydrate were also outlined. The report also addressed safety issues related to gas hydrate dissociation during drilling operations or release into the atmosphere; the environmental issues associated with potential leakage of methane into the atmosphere and with the large volumes of water produced during gas hydrate dissociation; and jurisdictional and local community issues that would need to be resolved in order to proceed with the commercial exploitation of gas hydrate. It was concluded that there does not appear to be

  15. Progress of Gas Hydrate Studies in China

    Institute of Scientific and Technical Information of China (English)

    樊栓狮; 汪集旸

    2006-01-01

    A brief overview is given on the gas hydrate-related research activities carried out by Chinese researchers in the past 15 years. The content involves: (1) Historical review. Introducing the gas hydrate research history in China; (2) Gas hydrate research groups in China. There are nearly 20 groups engaged in gas hydrate research now; (3) Present studies.Including fundamental studies, status of the exploration of natural gas hydrate resources in the South China Sea region, and development of hydrate-based new techniques; (4) Future development.

  16. Potential for Development of Solar and Wind Resource in Bhutan

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  17. Site selection for DOE/JIP gas hydrates drilling in the northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.R.; Ruppel, C. [United States Geological Survey, Woods Hole, MA (United States); Shelander, D.; Dai, J. [Schlumberger, Houston, TX (United States); McConnell, D. [AOA Geophysics Inc., Houston, TX (United States); Shedd, W. [Minerals Management Service, New Orleans, LA (United States); Frye, M. [Minerals Management Service, Herndon, VA (United States); Boswell, R.; Rose, K. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Jones, E.; Latham, T. [Chevron Energy Technology Corp., Houston, TX (United States); Collett, T. [United States Geological Survey, Denver, CO (United States); Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Science; Wood, W. [United States Naval Research Lab, Stennis Space Center, MS (United States)

    2008-07-01

    As drilling operations in the Gulf of Mexico shift from shallow water to deeper water targets, operators are encountering sediments with pressure-temperature regimes for gas hydrate stability. The Chevron-led Joint Industry Project (JIP) on methane hydrates was formed in 2001 to study the hazards associated with drilling these types of hydrate-bearing sediments and to assess the capacity of geological and geophysical tools to predict gas hydrate distributions and concentrations. Selected reservoirs units with high concentrations of gas hydrate were sampled to obtain physical data on hydrate bearing sediments. The JIP work validates methods devised to estimate gas hydrate distribution and concentrations in order to analyze the resource potential of these hydrate-bearing sediments. This paper described the geologic and geophysical setting of 3 sites in the northern Gulf of Mexico that contain hydrate-bearing reservoir sands. The three sites that will undergo exploratory drilling and a logging campaign in late spring 2008 include the Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system characterized with seafloor fluid expulsion features, structural closure associated with uplifted salt, and seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets sheet sands and associated channel deposits within a small basin. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. 39 refs., 1 tab., 4 figs.

  18. Biomass potential resources identification in Togean Islands, Central Sulawesi

    Science.gov (United States)

    Bunyamin, A.; Purnomo, D.

    2017-05-01

    Togean Islands is one of remote area in Central Sulawesi Province, Indonesia. Togean has been already well known for its great underwater scenery which fascinating many foreign tourists stay there. The large number of visits to Togean doesn’t mean at the same time it brings much improvement to local economy. People in Togean was used to live with limited utilities. Water and electricity are the two major problems that have been faced by the communities for many years. On the other hand, Togean has a very good potential for the development of biomass as a renewable energy source. This paper evaluated the potency of each resources using some parameters including availability, social support, technology feasibilities and sustainability aspect. Biomass potential resources that were investigated are hardwoods and forestry product, agroindustrial waste and by-products, and also household waste. Advanced analysis has concluded that the most feasible resources that eligible to be considered as future biomass resources is household waste followed by agro-industrial and agricultural waste then hardwood and forestry products.

  19. Gas hydrate detection and mapping on the US east coast

    Energy Technology Data Exchange (ETDEWEB)

    Ahlbrandt, T.S.; Dillon, W.P.

    1993-12-31

    Project objectives are to identify and map gas hydrate accumulations on the US eastern continental margin using remote sensing (seismic profiling) techniques and to relate these concentrations to the geological factors that-control them. In order to test the remote sensing methods, gas hydrate-cemented sediments will be tested in the laboratory and an effort will be made to perform similar physical tests on natural hydrate-cemented sediments from the study area. Gas hydrate potentially may represent a future major resource of energy. Furthermore, it may influence climate change because it forms a large reservoir for methane, which is a very effective greenhouse gas; its breakdown probably is a controlling factor for sea-floor landslides; and its presence has significant effect on the acoustic velocity of sea-floor sediments.

  20. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    Science.gov (United States)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  1. Geospatial analysis identifies critical mineral-resource potential in Alaska

    Science.gov (United States)

    Karl, Susan; Labay, Keith; Jacques, Katherine; Landowski, Claire

    2017-03-03

    Alaska consists of more than 663,000 square miles (1,717,000 square kilometers) of land—more than a sixth of the total area of the United States—and large tracts of it have not been systematically studied or sampled for mineral-resource potential. Many regions of the State are known to have significant mineral-resource potential, and there are currently six operating mines in the State along with numerous active mineral exploration projects. The U.S. Geological Survey and the Alaska Division of Geological & Geophysical Surveys have developed a new geospatial tool that integrates and analyzes publicly available databases of geologic information and estimates the mineral-resource potential for critical minerals, which was recently used to evaluate Alaska. The results of the analyses highlight areas that have known mineral deposits and also reveal areas that were not previously considered to be prospective for these deposit types. These results will inform land management decisions by Federal, State, and private landholders, and will also help guide future exploration activities and scientific investigations in Alaska.

  2. ADVANCED DEVELOPMENT MODEL OF TERRITORIAL HUMAN RESOURCES POTENTIAL

    Directory of Open Access Journals (Sweden)

    Alexander G. Моkronosov

    2015-03-01

    Full Text Available The aim of the study is to substantiate the need for eliminating the excessive spatial polarization of territorial socio-economic development as a necessary condition for advanced development of human resources potential. The authors explore the basic problems and contradictions of modern regional and local labor markets in Russia. Based on generalization and systematization of foreign and domestic research outcomes, the paper reveals the main condition for eliminating the territorial polarization threats, which implies formation of a new institutional environment in order to provide co-operation of participants in the territorial interest zone in personnel training and new jobs creating.The research findings demonstrate the increased disproportions between the workforce and labor markets of municipal formations in Sverdlovsk region, and emphasize the need for territorial industrial educational clusters maximizing the network co-operation of the involved parties.The scientific novelty combines adaptation of theoretical concepts of the “new economic geography” applied to reorganization processes in the Russian economy; and elaboration of the cluster model of advanced development of territorial human resources potential by means of territorial centers coordinating the interests of administration, business society, and households.Practical significance of the research results is related to facilitating the administrative efficiency of regional and municipal formations, employers, territorial employment centers, and thereby the advanced development of human resources potential.

  3. ADVANCED DEVELOPMENT MODEL OF TERRITORIAL HUMAN RESOURCES POTENTIAL

    Directory of Open Access Journals (Sweden)

    Alexander G. Моkronosov

    2014-01-01

    Full Text Available The aim of the study is to substantiate the need for eliminating the excessive spatial polarization of territorial socio-economic development as a necessary condition for advanced development of human resources potential. The authors explore the basic problems and contradictions of modern regional and local labor markets in Russia. Based on generalization and systematization of foreign and domestic research outcomes, the paper reveals the main condition for eliminating the territorial polarization threats, which implies formation of a new institutional environment in order to provide co-operation of participants in the territorial interest zone in personnel training and new jobs creating.The research findings demonstrate the increased disproportions between the workforce and labor markets of municipal formations in Sverdlovsk region, and emphasize the need for territorial industrial educational clusters maximizing the network co-operation of the involved parties.The scientific novelty combines adaptation of theoretical concepts of the “new economic geography” applied to reorganization processes in the Russian economy; and elaboration of the cluster model of advanced development of territorial human resources potential by means of territorial centers coordinating the interests of administration, business society, and households.Practical significance of the research results is related to facilitating the administrative efficiency of regional and municipal formations, employers, territorial employment centers, and thereby the advanced development of human resources potential.

  4. Potentially exploitable supercritical geothermal resources in the ductile crust

    Science.gov (United States)

    Watanabe, Noriaki; Numakura, Tatsuya; Sakaguchi, Kiyotoshi; Saishu, Hanae; Okamoto, Atsushi; Ingebritsen, Steven E.; Tsuchiya, Noriyoshi

    2017-01-01

    The hypothesis that the brittle–ductile transition (BDT) drastically reduces permeability implies that potentially exploitable geothermal resources (permeability >10−16 m2) consisting of supercritical water could occur only in rocks with unusually high transition temperatures such as basalt. However, tensile fracturing is possible even in ductile rocks, and some permeability–depth relations proposed for the continental crust show no drastic permeability reduction at the BDT. Here we present experimental results suggesting that the BDT is not the first-order control on rock permeability, and that potentially exploitable resources may occur in rocks with much lower BDT temperatures, such as the granitic rocks that comprise the bulk of the continental crust. We find that permeability behaviour for fractured granite samples at 350–500 °C under effective confining stress is characterized by a transition from a weakly stress-dependent and reversible behaviour to a strongly stress-dependent and irreversible behaviour at a specific, temperature-dependent effective confining stress level. This transition is induced by onset of plastic normal deformation of the fracture surface (elastic–plastic transition) and, importantly, causes no ‘jump’ in the permeability. Empirical equations for this permeability behaviour suggest that potentially exploitable resources exceeding 450 °C may form at depths of 2–6 km even in the nominally ductile crust.

  5. Potentially exploitable supercritical geothermal resources in the ductile crust

    Science.gov (United States)

    Watanabe, Noriaki; Numakura, Tatsuya; Sakaguchi, Kiyotoshi; Saishu, Hanae; Okamoto, Atsushi; Ingebritsen, Steven E.; Tsuchiya, Noriyoshi

    2017-01-01

    The hypothesis that the brittle-ductile transition (BDT) drastically reduces permeability implies that potentially exploitable geothermal resources (permeability >10-16 m2) consisting of supercritical water could occur only in rocks with unusually high transition temperatures such as basalt. However, tensile fracturing is possible even in ductile rocks, and some permeability-depth relations proposed for the continental crust show no drastic permeability reduction at the BDT. Here we present experimental results suggesting that the BDT is not the first-order control on rock permeability, and that potentially exploitable resources may occur in rocks with much lower BDT temperatures, such as the granitic rocks that comprise the bulk of the continental crust. We find that permeability behaviour for fractured granite samples at 350-500 °C under effective confining stress is characterized by a transition from a weakly stress-dependent and reversible behaviour to a strongly stress-dependent and irreversible behaviour at a specific, temperature-dependent effective confining stress level. This transition is induced by onset of plastic normal deformation of the fracture surface (elastic-plastic transition) and, importantly, causes no `jump' in the permeability. Empirical equations for this permeability behaviour suggest that potentially exploitable resources exceeding 450 °C may form at depths of 2-6 km even in the nominally ductile crust.

  6. Investigation of gas hydrate-bearing sandstone reservoirs at the Mount Elbert stratigraphic test well, Milne Point, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Hunter, R. [ASRC Energy Services, Anchorage, AK (United States); Collett, T. [United States Geological Survey, Denver, CO (United States); Digert, S.; Weeks, M. [BP Exploration Alaska Inc., Anchorage, AK (United States); Hancock, S. [RPS Energy Canada, Calgary, AB (Canada)

    2008-07-01

    Gas hydrates occur within the shallow sand reservoirs on the Alaska North Slope (ANS). The mean estimate for gas hydrate in-place resources on the ANS is 16.7 trillion cubic metres. In the past, they were viewed primarily as a drilling hazard to be managed during the development of deeper oil resources. In 2002, a cooperative research program was launched to help determine the potential for environmentally-sound and economically-viable production of methane from gas hydrates. Additional objectives were to refine ANS gas hydrate resource potential, improve the geologic and geophysical methods used to locate and asses gas hydrate resources, and develop numerical modeling capabilities that are essential in both planning and evaluating gas hydrate field programs. This paper reviewed the results of the an extensive data collection effort conducted at the Mount Elbert number 1 gas hydrates stratigraphic test well on the ANS. The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. The logging program confirmed the existence of approximately 30 m of gas hydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60 to 75 per cent. Continuous wire-line coring operations achieved 85 per cent recovery. The Mount Elbert field program also involved gas and water sample collection. It demonstrated the ability to safely and efficiently conduct a research-level open-hole data acquisition program in shallow, sub-permafrost sediments and increased confidence in gas hydrate resource assessment methodologies for the ANS. 10 refs., 9 figs.

  7. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  8. Geologic implications of gas hydrates in the offshore of India: Results of the National Gas Hydrate Program Expedition 01

    Digital Repository Service at National Institute of Oceanography (India)

    Collett, T.S.; Boswell, R.; Cochran, J.R.; Kumar, P.; Lall, M.; Mazumdar, A.; Ramana, M.V.; Ramprasad, T.; Riedel, M.; Sain, K.; Sathe, A.V.; Vishwanath, K.; NGHP Expedition 01 Scientific Party

    the continental margins of India. This was done in order to meet the long-term goal of exploiting gas hydrate as a potential energy resource in a cost effective and safe manner. During its 113.5-day voyage, the D/V JOIDES Resolution cored and/or drilled 39 holes...

  9. Aram Chaos: a Long Lived Subsurface Aqueous Environment with Strong Water Resources Potential for Human Missions on Mars

    Science.gov (United States)

    Sibille, L.; Mueller, R.; Niles, P. B.; Glotch, T.; Archer, P. D.; Bell, M. S.

    2015-01-01

    Aram Chaos, Mars is a crater 280 kilometers in diameter with elevations circa. minus 2 to minus 3 kilometers below datum that provides a compelling landing site for future human explorers as it features multiple scientific regions of interest (ROI) paired with a rich extensible Resource ROI that features poly-hydrated sulfates [1]. The geologic history of Aram Chaos suggests several past episodes of groundwater recharge and infilling by liquid water, ice, and other materials [1-3]. The creation of the fractured region with no known terrestrial equivalent may have been caused by melting of deep ice reservoirs that triggered the collapse of terrain followed by catastrophic water outflows over the region. Aram Chaos is of particular scientific interest because it is hypothesized that the chaotic terrain may be the source of water that contributed to the creation of nearby valleys such as Ares Vallis flowing toward Chryse Planitia. The liquid water was likely sourced as groundwater and therefore represents water derived from a protected subsurface environment making it a compelling astrobiological site [2]. The past history of water is also represented by high concentrations of hematite, Fe-oxyhydroxides, mono-hydrated and poly-hydrated sulfates [1, 2]. Poly-hydrated sulfates are likely to contain abundant water that evolves at temperatures below 500 degrees Centigrade thus conferring Aram Chaos a potentially high value for early in-situ resource utilization (ISRU) [4]. The geologic history also calls for future prospecting of deep ice deposits and possibly liquid water via deep drilling. The most recent stratigraphic units in the central part of Aram Chaos are not fractured, and are part of a dome-shaped formation that features bright, poorly-consolidated material that contains both hydrated sulfates and ferric oxides according to OMEGA (Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité) data [5]. These surface material characteristics are

  10. Latest progress in numerical simulations on multiphase flow and thermodynamics in production of natural gas from gas hydrate reservoir

    Institute of Scientific and Technical Information of China (English)

    Lin ZUO; Lixia SUN; Changfu YOU

    2009-01-01

    Natural gas hydrates are promising potential alternative energy resources. Some studies on the multiphase flow and thermodynamics have been conducted to investigate the feasibility of gas production from hydrate dissociation. The methods for natural gas production are analyzed and several models describing the dissociation process are listed and compared. Two prevailing models, one for depressurization and the other for thermal stimulation, are discussed in detail. A comprehensive numerical method considering the multiphase flow and thermodynamics of gas production from various hydrate-bearing reservoirs is required to better understand the dissociation process of natural gas hydrate, which would be of great benefit to its future exploration and exploitation.

  11. FY 1998 result report. Research/development on the energy overall development/utilization technology of gas hydrate resource; 1998 nendo seika hokokusho. Gas haidoreto shigen no energy sogo kaihatsu riyo gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This study is aimed at studying for survey of gas hydrate (GH) deposit required for GH resource development and gathering of it, and further at studying for industrial utilization technology development of GH which is different in formation condition depending on kind of gas with which it reacts. The results of FY 1998 are as follows. In the study of the situation of existence of gas hydrate in the tundra, the sedimentary environment of the tundra where natural gas hydrate exists was simulated in laboratory to measure thermal conductivity of the sediments including GH. In this fiscal year, design/fabrication/calibration were conducted of the GH synthesizer and thermal analyzer. In the study of GH gathering technology in the tundra, a technology is discussed for recovering gas from GH layer and at the same time substituting CO2 hydrate for GH by blowing CO2 into the geologic layer. In FY 1998, formation/dissociation behaviors were first studied of methane/CO2 mixture hydrate. For the overall energy development of GH resource and promotion of R and D of the utilization technology, studies were made on physical properties of GH and development of the usage. (NEDO)

  12. Evaluation of a deposit in the vicinity of the PBU L-106 Site, North Slope, Alaska, for a potential long-term test of gas production from hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Reagan, M.T.; Boyle, K.L.; Zhang, K.

    2010-05-01

    As part of the effort to investigate the technical feasibility of gas production from hydrate deposits, a long-term field test (lasting 18-24 months) is under consideration in a project led by the U.S. Department of Energy. We evaluate a candidate deposit involving the C-Unit in the vicinity of the PBU-L106 site in North Slope, Alaska. This deposit is stratigraphically bounded by impermeable shale top and bottom boundaries (Class 3), and is characterized by high intrinsic permeabilities, high porosity, high hydrate saturation, and a hydrostatic pressure distribution. The C-unit deposit is composed of two hydrate-bearing strata separated by a 30-ft-thick shale interlayer, and its temperatrure across its boundaries ranges between 5 and 6.5 C. We investigate by means of numerical simulation involving very fine grids the production potential of these two deposits using both vertical and horizontal wells. We also explore the sensitivity of production to key parameters such as the hydrate saturation, the formation permeability, and the permeability of the bounding shale layers. Finally, we compare the production performance of the C-Unit at the PBU-L106 site to that of the D-Unit accumulation at the Mount Elbert site, a thinner, single-layer Class 3 deposit on the North Slope of Alaska that is shallower, less-pressurized and colder (2.3-2.6 C). The results indicate that production from horizontal wells may be orders of magnitude larger than that from vertical ones. Additionally, production increases with the formation permeability, and with a decreasing permeability of the boundaries. The effect of the hydrate saturation on production is complex and depends on the time frame of production. Because of higher production, the PBU-L106 deposit appears to have an advantage as a candidate for the long-term test.

  13. Potential of fruit wastes as natural resources of bioactive compounds.

    Science.gov (United States)

    Deng, Gui-Fang; Shen, Chen; Xu, Xiang-Rong; Kuang, Ru-Dan; Guo, Ya-Jun; Zeng, Li-Shan; Gao, Li-Li; Lin, Xi; Xie, Jie-Feng; Xia, En-Qin; Li, Sha; Wu, Shan; Chen, Feng; Ling, Wen-Hua; Li, Hua-Bin

    2012-01-01

    Fruit wastes are one of the main sources of municipal waste. In order to explore the potential of fruit wastes as natural resources of bioactive compounds, the antioxidant potency and total phenolic contents (TPC) of lipophilic and hydrophilic components in wastes (peel and seed) of 50 fruits were systematically evaluated. The results showed that different fruit residues had diverse antioxidant potency and the variation was very large. Furthermore, the main bioactive compounds were identified and quantified, and catechin, cyanidin 3-glucoside, epicatechin, galangin, gallic acid, homogentisic acid, kaempferol, and chlorogenic acid were widely found in these residues. Especially, the values of ferric-reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC) and TPC in the residues were higher than in pulps. The results showed that fruit residues could be inexpensive and readily available resources of bioactive compounds for use in the food and pharmaceutical industries.

  14. Modeling Hydrates and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Weihua Wang

    2007-06-01

    Full Text Available Natural gas hydrates, as an important potential fuels, flow assurance hazards, and possible factors initiating the submarine geo-hazard and global climate change, have attracted the interest of scientists all over the world. After two centuries of hydrate research, a great amount of scientific data on gas hydrates has been accumulated. Therefore the means to manage, share, and exchange these data have become an urgent task. At present, metadata (Markup Language is recognized as one of the most efficient ways to facilitate data management, storage, integration, exchange, discovery and retrieval. Therefore the CODATA Gas Hydrate Data Task Group proposed and specified Gas Hydrate Markup Language (GHML as an extensible conceptual metadata model to characterize the features of data on gas hydrate. This article introduces the details of modeling portion of GHML.

  15. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  16. Preface to the special issue on gas hydrate drilling in the Eastern Nankai Trough

    Science.gov (United States)

    Yamamoto, Koji; Ruppel, Carolyn

    2015-01-01

    Methane hydrate traps enormous amounts of methane in frozen deposits in continental margin sediments, and these deposits have long been targeted for studies investigating their potential as an energy resource. As a concentrated form of methane that occurs at shallower depths than conventional and most unconventional gas reservoirs, methane hydrates could be a readily accessible source of hydrocarbons for countries hosting deposits within their Exclusive Economic Zones. Japan is one such country, and since 2001 the Research Consortium for Methane Hydrate Resources in Japan (referred to as MH21) has conducted laboratory, modeling, and field-based programs to study methane hydrates as an energy resource. The MH21 consortium is funded by the Japanese Ministry of Trade and Industry (METI) and led by the Japan Oil, Gas and Metals National Oil Corporation (JOGMEC) and the National Institute of Advanced Industrial Science and Technology (AIST).

  17. Survey of potential geopressured resource areas in California. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Robertson-Tait, A.; Kraemer, M.; Buening, N.

    1993-03-01

    This paper presents the initial results of a survey of the occurrence and characteristics of geopressured fluid resources in California using the publicly- available database involving more than 150,000 oil and gas wells drilled in the State. Of the 975 documented on-shore oil and gas pools studied, about 42% were identified as potentially geopressured. Geothermal gradients in California oil and gas fields lie within the normal range of 1 F to 2 F per 100 feet. Except for the Los Angeles Basin, there was no evidence of higher temperatures or temperature gradients in geopressured pools.

  18. Potential benefits of geothermal electrical production from hydrothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    Bloomster, C.H.; Engel, R.L.

    1976-06-01

    The potential national benefits of geothermal electric energy development from the hydrothermal resources in the West are estimated for several different scenarios. The U.S. electrical economy is simulated by computer using a linear programming optimization technique. Under most of the scenarios, benefits are estimated at $2 to $4 billion over the next 50 years on a discounted present value basis. The electricity production from hydrothermal plants reaches 2 to 4 percent of the national total, which will represent 10 to 20 percent of the installed capacity in the West. Installed geothermal capacity in 1990 is estimated to be 9,000 to 17,000 Mw(e). The geothermal capacity should reach 28,000 to 65,000 Mw(e) by year 2015. The ''most likely'' scenario yields the lower values in the above ranges. Under this scenario geothermal development would save the utility industry $11 billion in capital costs (undiscounted); 32 million separative work units; 64,000 tons of U/sub 3/O/sub 8/; and 700 million barrels of oil. The most favorable scenario for geothermal energy occurs when fossil fuel prices are projected to increase at 5 percent/year. The benefits of geothermal energy then exceed $8 billion on a discounted present value basis. Supply curves were developed for hydrothermal resources based on the recent U.S. Geological Survey (USGS) resource assessment, resource characteristics, and projected power conversion technology and costs. Geothermal plants were selected by the optimizing technique to fill a need for ''light load'' plants. This infers that geothermal plants may be used in the future primarily for load-following purposes.

  19. Biomass energy: the scale of the potential resource.

    Science.gov (United States)

    Field, Christopher B; Campbell, J Elliott; Lobell, David B

    2008-02-01

    Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing approximately 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change.

  20. National microalgae biofuel production potential and resource demand

    Science.gov (United States)

    Wigmosta, Mark S.; Coleman, André M.; Skaggs, Richard J.; Huesemann, Michael H.; Lane, Leonard J.

    2011-03-01

    Microalgae are receiving increased global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution spatiotemporal assessment that brings to bear fundamental questions of where production can occur, how many land and water resources are required, and how much energy is produced. Our study suggests that under current technology, microalgae have the potential to generate 220 × 109 L yr-1 of oil, equivalent to 48% of current U.S. petroleum imports for transportation. However, this level of production requires 5.5% of the land area in the conterminous United States and nearly three times the water currently used for irrigated agriculture, averaging 1421 L water per liter of oil. Optimizing the locations for microalgae production on the basis of water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, southeastern seaboard, and Great Lakes shows a 75% reduction in consumptive freshwater use to 350 L per liter of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target and utilizing some 25% of the current irrigation demand. With proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  1. Assessing the resources and mitigation potential of European forests

    Science.gov (United States)

    Hasenauer, Hubert; Neumann, Mathias; Moreno, Adam; Running, Steve

    2017-04-01

    also use this data to examine climate limitations on potential forest structure, relevant for assessing potential timber assortments or suitability as wildlife habitat. The results suggest: (i) Boreal forests are limited by minimum temperature, the Mediterranean forests by maximum temperature and temperate forests by both temperature and precipitation. As a result of changing climate during the last 50 years, the potential average diameter at breast height, which can be achieved in Europe, has decreased by 5.0 %. A similar result is evident for the potential basal area per hectare with a decrease of 6.5 %. (ii) European forests exhibit an annual average carbon uptake of 577 gC/m2/year, which can be considered as the carbon sequestration potential and/or available resource for the increasing demand of a growing bio-economy.

  2. Evaluation of long-term gas hydrate production testing locations on the Alaska North Slope

    Science.gov (United States)

    Collett, Timothy S.; Boswell, Ray; Lee, Myung W.; Anderson, Brian J.; Rose, Kelly K.; Lewis, Kristen A.

    2012-01-01

    The results of short-duration formation tests in northern Alaska and Canada have further documented the energy-resource potential of gas hydrates and have justified the need for long-term gas-hydrate-production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally occurring gas hydrate to depressurization-induced or thermal-, chemical-, or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gashydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas-hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with the US Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk River, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas-hydrate-production test sites. The test-site-assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas-hydrate testing. The site-selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas-hydrate-production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area and provides new information on the nature of gas-hydrate occurrence and the potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well-log analysis, geological correlation and mapping, and numerical

  3. Mapping Thermal Energy Resource Potentials from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Georg Neugebauer

    2015-09-01

    Full Text Available Wastewater heat recovery via heat exchangers and heat pumps constitutes an environmentally friendly, approved and economically competitive, but often underestimated technology. By introducing the spatial dimension in feasibility studies, the results of calculations change considerably. This paper presents a methodology to estimate thermal energy resource potentials of wastewater treatment plants taking spatial contexts into account. In close proximity to settlement areas, wastewater energy can ideally be applied for heating in mixed-function areas, which very likely have a continuous heat demand and allow for an increased amount of full-load hours compared to most single-use areas. For the Austrian case, it is demonstrated that the proposed methodology leads to feasible results and that the suggested technology might reduce up to 17% of the Austrian global warming potential of room heating. The method is transferrable to other countries as the input data and calculation formula are made available. A broad application of wastewater energy with regard to spatial structures and spatial development potentials can lead to (1 increasing energy efficiency by using a maximum of waste heat and (2 a significant reduction of (fossil energy consumption which results in a considerable reduction of the global warming potential of the heat supply (GWP if electricity from renewables is used for the operation of heat pumps.

  4. Drilling Gas Hydrates on hydrate Ridge, Oregon continental margin

    Science.gov (United States)

    Trehu, A. M.; Bohrmann, G.; Leg 204 Science Party

    2002-12-01

    During Leg 204, we cored and logged 9 sites on the Oregon continental margin to determine the distribution and concentration of gas hydrates in an accretionary ridge and adjacent slope basin, investigate the mechanisms that transport methane and other gases into the gas hydrate stability zone (GHSZ), and obtain constraints on physical properties of hydrates in situ. A 3D seismic survey conducted in 2000 provided images of potential subsurface fluid conduits and indicated the position of the GHSZ throughout the survey region. After coring the first site, we acquired Logging-While-Drilling (LWD) data at all but one site to provide an overview of downhole physical properties. The LWD data confirmed the general position of key seismic stratigraphic horizons and yielded an initial estimate of hydrate concentration through the proxy of in situ electrical resistivity. These records proved to be of great value in planning subsequent coring. The second new hydrate proxy to be tested was infrared thermal imaging of cores on the catwalk as rapidly as possible after retrieval. The thermal images were used to identify hydrate samples and to estimate the distribution and texture of hydrate within the cores. Geochemical analyses of interstitial waters and of headspace and void gases provide additional information on the distribution and concentration of hydrate within the stability zone, the origin and pathway of fluids into and through the GHSZ, and the rates at which gas hydrate is forming. Bio- and lithostratigraphic description of cores, measurement of physical properties, and in situ pressure core sampling and thermal measurements complement the data set, providing ground-truth tests of inferred physical and sedimentological properties. Among the most interesting preliminary results are: 1) that gas hydrates are distributed through a broad depth range within the GHSZ and that different physical and chemical proxies for hydrate distribution and concentration give generally

  5. Chinese Marine Materia Medica Resources: Status and Potential.

    Science.gov (United States)

    Fu, Xiu-Mei; Zhang, Meng-Qi; Shao, Chang-Lun; Li, Guo-Qiang; Bai, Hong; Dai, Gui-Lin; Chen, Qian-Wen; Kong, Wei; Fu, Xian-Jun; Wang, Chang-Yun

    2016-03-03

    Chinese marine materia medica (CMMM) is a vital part of traditional Chinese medicine (TCM). Compared with terrestrial TCM, CMMM, derived from specific marine habitats, possesses peculiar chemical components with unique structures reflecting as potent pharmacological activities, distinct drug properties and functions. Nowadays, CMMM appears to be especially effective in treating such difficult diseases as cancers, diabetes, cardio-cerebrovascular diseases, immunodeficiency diseases and senile dementia, and therefore has become an important medicinal resource for the research and development of new drugs. In recent years, such development has attracted wide attention in the field of medicine. In this study, the CMMM resources in China were systematically investigated and evaluated. It was found that the historic experiences of Chinese people using CMMM have continuously accumulated over a period of more than 3600 years, and that the achievements of the research on modern CMMM are especially outstanding. By June 2015, 725 kinds of CMMMs from Chinese coastal sea areas have been identified and recorded, covering 1552 organisms and minerals. More than 3100 traditional prescriptions containing CMMMs have been imparted and inherited. However, the number of CMMMs is less than the 8188 terrestrial TCMs, from more than 12,100 medicinal terrestrial plants, animals and minerals. In the future, the research and development of CMMM should focus on the channel entries (TCM drug properties), compatibility, effective ingredients, acting mechanisms, drug metabolism and quality standard. This study reveals the high potential of CMMM development.

  6. Chinese Marine Materia Medica Resources: Status and Potential

    Directory of Open Access Journals (Sweden)

    Xiu-Mei Fu

    2016-03-01

    Full Text Available Chinese marine materia medica (CMMM is a vital part of traditional Chinese medicine (TCM. Compared with terrestrial TCM, CMMM, derived from specific marine habitats, possesses peculiar chemical components with unique structures reflecting as potent pharmacological activities, distinct drug properties and functions. Nowadays, CMMM appears to be especially effective in treating such difficult diseases as cancers, diabetes, cardio-cerebrovascular diseases, immunodeficiency diseases and senile dementia, and therefore has become an important medicinal resource for the research and development of new drugs. In recent years, such development has attracted wide attention in the field of medicine. In this study, the CMMM resources in China were systematically investigated and evaluated. It was found that the historic experiences of Chinese people using CMMM have continuously accumulated over a period of more than 3600 years, and that the achievements of the research on modern CMMM are especially outstanding. By June 2015, 725 kinds of CMMMs from Chinese coastal sea areas have been identified and recorded, covering 1552 organisms and minerals. More than 3100 traditional prescriptions containing CMMMs have been imparted and inherited. However, the number of CMMMs is less than the 8188 terrestrial TCMs, from more than 12,100 medicinal terrestrial plants, animals and minerals. In the future, the research and development of CMMM should focus on the channel entries (TCM drug properties, compatibility, effective ingredients, acting mechanisms, drug metabolism and quality standard. This study reveals the high potential of CMMM development.

  7. Simulation of subsea gas hydrate exploitation

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2014-05-01

    The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within

  8. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, R.K.; Allen, W.W.

    1992-12-01

    The Walakpa Gas Field, located near the city of Barrow on Alaska`s North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  9. AVO Character Research of Natural Gas Hydrates in the East China Sea

    Institute of Scientific and Technical Information of China (English)

    LIU Huaishan; HUANG Guangnan; HE Yi; TONG Siyou; CUI Shuguo; ZHANG Jin

    2009-01-01

    Natural gas hydrates are considered as strategic resources with commercial potential in the 21st century. Obvious BSR characteristics will be shown on seismic profiles, if there exist natural gas hydrates. The AVO method is one of the methods which can be used to identify and forecast lithologic characteristics and fluid properties by using the relationship between Amplitude and Offset. AVO anomaly is one of the significant signs to check out whether or not there is free gas below the BSR, so it can be used to detect natural gas hydrates from the seismic profile. Considering the geological and geophysical characteristics of the Okinawa Trough and making use of the techniques mentioned above, we can conclude that the conditions there are favorable for the formation and concentration of natural gas hydrates. By analyzing the data collected from the study area, one can discover many different anomalous phenomena on the seismic profile which are related to the existence of natural gas hydrates. Preliminary estimation of the natural gas hydrates in the Okinawa Trough shows that the trough is rich in natural gas hydrates and may become a potential important resources exploration area.

  10. Resource potential of ukrainian agricultural sector and its implementation

    Directory of Open Access Journals (Sweden)

    L.M. Koval

    2014-06-01

    Full Text Available The aim of the article. The article defines its main goal as the assessment of the resource potential of agricultural sector of Ukraine and description the opportunities of its usage in achieving competitive advantages of the state on foreign markets. The results of the analysis. During the research it was established that the resource potential of agricultural sector of Ukraine provides conditions for formation of powerful competitive advantages in world markets. In the period of exacerbation of the global food crisis the prospects of Ukraine become apparent. However, it has been found out that the state does not use its opportunities and, moreover, turns into an import-dependent country. Transformation processes that began in the village after gaining Ukraine’s independence, had to withdraw the agrarian economy to a qualitatively new level of development, however, led to the decline of the industry. Land as the main national wealth turned out to be in the hands of those who were unable to take care of it, and is rapidly losing its value. Most newly formed agricultural farms work on short-term lease that does not induce them to make efforts for the implementation of land improvements, but only provokes predatory exploitation of the soil. The problem is exacerbated due to lack of effective legal base and state control over business activities in rural areas. At the same time, there is no sense to speak about the state support, which is missing for small structures are at the disposal to close to power managers of agricultural holdings, which puts the market participants in unequal conditions of competition. The results of investigation confirmed that several of agricultural holdings, which operate in the state procure more than half of the equipment and, thus, have a higher level of productivity. Small companies have no funds for it, and this undermines their competitive position, and gives them neither the access to world markets, nor the

  11. Detection and Appraisal of Gas Hydrates: Indian Scenario

    Science.gov (United States)

    Sain, K.

    2009-04-01

    Gas hydrates, found in shallow sediments of permafrost and outer continental margins, are crystalline form of methane and water. The carbon within global gas hydrates is estimated two times the carbon contained in world-wide fossil fuels. It is also predicted that 15% recovery of gas hydrates can meet the global energy requirement for the next 200 years. Several parameters like bathymetry, seafloor temperature, sediment thickness, rate of sedimentation and total organic carbon content indicate very good prospect of gas hydrates in the vast offshore regions of India. Methane stored in the form of gas hydrates within the Indian exclusive economic zone is estimated to be few hundred times the country's conventional gas reserve. India produces less than one-third of her oil requirement and gas hydrates provide great hopes as a viable source of energy in the 21st century. Thus identification and quantitative assessment of gas hydrates are very important. By scrutiny and reanalysis of available surface seismic data, signatures of gas hydrates have been found out in the Kerala-Konkan and Saurashtra basins in the western margin, and Krishna-Godavari, Mahanadi and Andaman regions in the eastern margin of India by mapping the bottom simulating reflector or BSR based on its characteristic features. In fact, the coring and drilling in 2006 by the Indian National Gas Hydrate Program have established the ground truth in the eastern margin. It has become all the more important now to identify further prospective regions with or without BSR; demarcate the lateral/areal extent of gas hydrate-bearing sediments and evaluate their resource potential in both margins of India. We have developed various approaches based on seismic traveltime tomography; waveform inversion; amplitude versus offset (AVO) modeling; AVO attributes; seismic attributes and rock physics modeling for the detection, delineation and quantification of gas-hydrates. The blanking, reflection strength, instantaneous

  12. Calculation of the eroei coefficient for natural gas hydrates in laboratory conditions

    Science.gov (United States)

    Siažik, Ján; Malcho, Milan; Čaja, Alexander

    2017-09-01

    In the 1960s, scientists discovered that methane hydrate existed in the gas field in Siberia. Gas hydrates are known to be stable under conditions of high pressure and low temperature that have been recognized in polar regions and in the uppermost part of deep -water sediments below the sea floor. The article deals with the determination of the EROEI coefficient to generate the natural gas hydrate in the device under specific temperature and pressure conditions. Energy returned on energy invested expresses ratio of the amount of usable energy delivered from a particular energy resource to the amount of exergy used to obtain that energy resource. Gas hydrates have been also discussed before decades like potential source mainly for regions with restricted access to conventional hydrocarbons also tactic interest in establishing alternative gas reserves.

  13. Self-compassion: a potential resource for young women athletes.

    Science.gov (United States)

    Mosewich, Amber D; Kowalski, Kent C; Sabiston, Catherine M; Sedgwick, Whitney A; Tracy, Jessica L

    2011-02-01

    Self-compassion has demonstrated many psychological benefits (Neff, 2009). In an effort to explore self-compassion as a potential resource for young women athletes, we explored relations among self-compassion, proneness to self-conscious emotions (i.e., shame, guilt-free shame, guilt, shame-free guilt, authentic pride, and hubristic pride), and potentially unhealthy self-evaluative thoughts and behaviors (i.e., social physique anxiety, obligatory exercise, objectified body consciousness, fear of failure, and fear of negative evaluation). Young women athletes (N = 151; Mage = 15.1 years) participated in this study. Self-compassion was negatively related to shame proneness, guilt-free shame proneness, social physique anxiety, objectified body consciousness, fear of failure, and fear of negative evaluation. In support of theoretical propositions, self-compassion explained variance beyond self-esteem on shame proneness, guilt-free shame proneness, shame-free guilt proneness, objectified body consciousness, fear of failure, and fear of negative evaluation. Results suggest that, in addition to self-esteem promotion, self-compassion development may be beneficial in cultivating positive sport experiences for young women.

  14. Continental shelves as potential resource of rare earth elements.

    Science.gov (United States)

    Pourret, Olivier; Tuduri, Johann

    2017-07-19

    The results of this study allow the reassessment of the rare earth elements (REE) external cycle. Indeed, the river input to the oceans has relatively flat REE patterns without cerium (Ce) anomalies, whereas oceanic REE patterns exhibit strong negative Ce anomalies and heavy REE enrichment. Indeed, the processes at the origin of seawater REE patterns are commonly thought to occur within the ocean masses themselves. However, the results from the present study illustrate that seawater-like REE patterns already occur in the truly dissolved pool of river input. This leads us to favor a partial or complete removal of the colloidal REE pool during estuarine mixing by coagulation, as previously shown for dissolved humic acids and iron. In this latter case, REE fractionation occurs because colloidal and truly dissolved pools have different REE patterns. Thus, the REE patterns of seawater could be the combination of both intra-oceanic and riverine processes. In this study, we show that the Atlantic continental shelves could be considered potential REE traps, suggesting further that shelf sediments could potentially become a resource for REE, similar to metalliferous deep sea sediments.

  15. KONTSEPUALNI MANAGEMENT PRINCIPLES MANAGED RESOURCE POTENTIAL AND ORGANIZATIONAL DEVELOPMENT OF ENTERPRISE

    OpenAIRE

    2014-01-01

    The paper improved the conceptual basis of management manageable resource potential and organizational development company. Determined that the economic research in the conceptual bases of manageable resource potential and organizational development company primarily associated with the assessment of the effectiveness of the company, determine their financial condition and competitiveness. It is concluded that the conceptual basis of management manageable resource potential and organizational...

  16. Urban Mining's Potential to Relieve China's Coming Resource Crisis

    NARCIS (Netherlands)

    Wen, Zongguo; Zhang, Chenkai; Ji, Xiaoli; Xue, Yanyan

    2015-01-01

    China's mineral resource consumption has gone through multiple increases since 1980, resulting in the inadequacy of important strategic resources and a high level of external dependence. Some developed countries have already reduced primary resources consumption through urban mining. Can China also

  17. Low-mature gases and their resource potentiality

    Institute of Scientific and Technical Information of China (English)

    XU Yongchang; WANG Xiaofeng; SHI Baoguang

    2009-01-01

    In the 80's of last century, based on the advances in natural gas exploration practice, the concepts of bio-thermocatalytic transitional-zone gas and early thermogenetic gas were proposed, and the lower limit Ro values for the formation and accumulation of thermogenetic natural gases of industrial importance have been extended to 0.3%-0.4%. In accordance with the two-stage model established on the basis of carbon isotope fractionation involved in the formation of coal-type natural gases, the upper limit Ro values of lowly evolved natural gases should be set at 0.8%-1.0%. This is the concept of low-mature gas which is commonly accepted at the present time. The Urengoy super-large gas field in western Siberian Basin is a typical example of low-mature gas field, where low-mature gas reserves account for 20% of the globally proven natural gas reserves, and this fully indicates the importance of this kind of resources. The proven reserves of natural gases in the Turpan-Hami Basin of China are approximate to 1000×108 m3, and the thermal evolution indices of source rocks are Ro=0.4%-0.8%. The δ13C1 values of methane are mainly within the range of -44‰- -39‰ (corresponding to Ro=0.6%-0.8%), and those of ethane are mainly within the range of -29‰- -26‰, indicating that these natural gases should be designated to the coal-type low-mature gases. The light hydrocarbon evolution indices of natural gases also provide strong evidence suggesting that they are the coal-type low-mature gases. If so, low-mature gas in the Turpan-Hami Basin has been accumulated to such an extent as to be equivalent to the total reserves of three large-sized gas fields, and their existence is of great significance in the study and exploration of China's low-mature gases. If it is evidenced that the source rocks of low-mature gases are related mainly to coal measures, China's abundant lowly evolved coal series resources will provide a huge resource potentiality for the generation of low

  18. Terminalia belerica Roxb. seed oil: a potential biodiesel resource.

    Science.gov (United States)

    Sarin, Rakesh; Sharma, Meeta; Khan, Arif Ali

    2010-02-01

    Terminalia belerica seeds, collected from Indian forests, were explored as an alternate bioresource for biodiesel synthesis. The oil yield of T. belerica seed is about 31% (dry weight basis). The fatty acid profile of T. belerica seed oil shows predominance of oleic acid (C(18:1)) glycerides (61.5%) along with linoleic (18.5%) and palmitic (11.6%) glycerides. Oil was extracted and evaluated for physico-chemical properties vis-a-vis jatropha, sunflower, soybean and rapeseed oil. T. belerica oil was transesterified with methanol in the presence of sodium methoxide catalyst. The physico-chemical properties of synthesized methyl ester were compared to jatropha, sunflower, soybean and rapeseed methyl esters as per ASTM D-6751 specification of biodiesel. Synthesized T. belerica methyl ester was also blended in diesel at 5-20% ratios and evaluated for key physico-chemical properties as per IS 1460 specification and found to meet in properties evaluated as per specific standards. The study revealed the possibility of T. belerica seed oil as potential resource of biodiesel.

  19. 43 CFR 11.22 - Sampling of potentially injured natural resources.

    Science.gov (United States)

    2010-10-01

    ... resources. 11.22 Section 11.22 Public Lands: Interior Office of the Secretary of the Interior NATURAL RESOURCE DAMAGE ASSESSMENTS Preassessment Phase § 11.22 Sampling of potentially injured natural resources... of this part to proceed with an assessment, field sampling of natural resources should be limited...

  20. Gas Hydrate Research Site Selection and Operational Research Plans

    Science.gov (United States)

    Collett, T. S.; Boswell, R. M.

    2009-12-01

    In recent years it has become generally accepted that gas hydrates represent a potential important future energy resource, a significant drilling and production hazard, a potential contributor to global climate change, and a controlling factor in seafloor stability and landslides. Research drilling and coring programs carried out by the Ocean Drilling Program (ODP), the Integrated Ocean Drilling Program (IODP), government agencies, and several consortia have contributed greatly to our understanding of the geologic controls on the occurrence of gas hydrates in marine and permafrost environments. For the most part, each of these field projects were built on the lessons learned from the projects that have gone before them. One of the most important factors contributing to the success of some of the more notable gas hydrate field projects has been the close alignment of project goals with the processes used to select the drill sites and to develop the project’s operational research plans. For example, IODP Expedition 311 used a transect approach to successfully constrain the overall occurrence of gas hydrate within the range of geologic environments within a marine accretionary complex. Earlier gas hydrate research drilling, including IODP Leg 164, were designed primarily to assess the occurrence and nature of marine gas hydrate systems, and relied largely on the presence of anomalous seismic features, including bottom-simulating reflectors and “blanking zones”. While these projects were extremely successful, expeditions today are being increasingly mounted with the primary goal of prospecting for potential gas hydrate production targets, and site selection processes designed to specifically seek out anomalously high-concentrations of gas hydrate are needed. This approach was best demonstrated in a recently completed energy resource focused project, the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II), which featured the collection of a

  1. Seismic detection and quantification of gas hydrates in Alaminos Canyon, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Jianchun, D.; Banik, N.; Shelander, D.; Bunge, G.; Dutta, N. [Schlumberger Data Consulting Services, Houston, TX (United States). Reservoir Seismic Services

    2008-07-01

    Due to the potential of gas hydrates as an alternative energy resource, and as possible sources of shallow hazards for drilling and production of oil and gas, and as an agent of long-term, global climate change, naturally occurring gas hydrates have drawn significant attention from the scientific community and industry around the world. Gas hydrates exist in shallow sediments in Arctic permafrost regions and in the world's deepwater oceans. A large portion of naturally occurring hydrates offer potential for an energy resource. Because the world demand for fossil fuel is ever-increasing and the supply is dwindling, it is crucial to have a methodology for reliable assessment of gas hydrates accumulation in worldwide deepwater basins. Three-dimensional seismic reflection is a possible technology for such efforts. This paper presented the results of a study on the quantitative estimation of gas hydrates in Alaminos Canyon block 818, Gulf of Mexico. A five-step workflow was used for the study, which included high resolution seismic re-processing; prestack full waveform inversion (PSWI) at selected locations; three-dimensional simultaneous inversion; rock physics modeling; and hydrate quantification. The final estimation of gas hydrates saturation was done using both a direct deterministic regression-based transformation method and using Bayesian statistical inversion. Based on these inversion results, a series of prospects were generated within the study area. The study identified a large area, approximately 1 square kilometre in the middle east of the AC818, containing high concentration gas hydrates bearing sediments. 8 refs., 9 figs.

  2. Hydrate Evolution in Response to Ongoing Environmental Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Alan [Univ. of Oregon, Eugene, OR (United States)

    2015-12-31

    Natural gas hydrates have the potential to become a vital domestic clean-burning energy source. However, past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. This project was designed to fill critical gaps in our understanding of domestic hydrate resources and improve forecasts for their response to environmental shifts. Project work can be separated into three interrelated components, each involving the development of predictive mathematical models. The first project component concerns the role of sediment properties on the development and dissociation of concentrated hydrate anomalies. To this end, we developed numerical models to predict equilibrium solubility of methane in twophase equilibrium with hydrate as a function of measureable porous medium characteristics. The second project component concerned the evolution of hydrate distribution in heterogeneous reservoirs. To this end, we developed numerical models to predict the growth and decay of anomalies in representative physical environments. The third project component concerned the stability of hydrate-bearing slopes under changing environmental conditions. To this end, we developed numerical treatments of pore pressure evolution and consolidation, then used "infinite-slope" analysis to approximate the landslide potential in representative physical environments, and developed a "rate-and-state" frictional formulation to assess the stability of finite slip patches that are hypothesized to develop in response to the dissociation of hydrate anomalies. The increased predictive capabilities that result from this work provide a framework for interpreting field observations of hydrate anomalies in terms of the history of environmental forcing that led to their development. Moreover

  3. Alaska Coal Geology, Resources, and Coalbed Methane Potential

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and...

  4. Testing a coupled hydro-thermo-chemo-geomechanical model for gas hydrate bearing sediments using triaxial compression lab experiments

    CERN Document Server

    Gupta, Shubhangi; Haeckel, Matthias; Helmig, Rainer; Wohlmuth, Barbara

    2015-01-01

    The presence of gas hydrates influences the stress-strain behavior and increases the load-bearing capacity of sub-marine sediments. This stability is reduced or completely lost when gas hydrates become unstable. Since natural gas hydrate reservoirs are considered as potential resources for gas production on industrial scales, there is a strong need for numerical production simulators with geomechanical capabilities. To reliably predict the mechanical behavior of gas hydrate-bearing sediments during gas production, numerical tools must be sufficiently calibrated against data from controlled experiments or field tests, and the models must consider thermo-hydro-chemo-mechanical process coupling in a suitable manner. In this study, we perform a controlled triaxial volumetric strain test on a sediment sample in which methane hydrate is first formed under controlled isotropic effective stress and then dissociated via depressurization under controlled total stress. Sample deformations were kept small, and under thes...

  5. Elemental distributions in surficial sediments and potential offshore mineral resources from the western continental margin of India. Part 2. Potential offshore mineral resources

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Mascarenhas, A.; Rao, Ch.M.; PrakashBabu, C.; Murty, P.S.N.

    patterns of ten selected elements is surficial sediments. Part 2 projects the potential offshore mineral resources. Target areas for future exploration and indicated and exploration strategies are recommended. Appendix 1 is a compilation of the bibliography...

  6. Unconventional energy resources: 2007-2008 review

    Science.gov (United States)

    Warwick, P.D.

    2009-01-01

    This paper summarizes five 2007-2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future. ?? 2009 International Association for Mathematical Geology.

  7. Geothermal resources in California: the problems and the potential

    Energy Technology Data Exchange (ETDEWEB)

    1973-01-01

    The report is presented under the following section headings: introduction; conclusions and recommendations; legislative activity in 1973; United Nations Geothermal Conference; International Geothermal Conference--1975; National Conference on Geothermal Energy, May 10--11, Palm Springs, Calif.; Imperial Valley field trip and joint interim hearing October 16--17, 1973 (Senate Committee on Natural Resources and Wildlife on Senate Bill 577 in San Diego); hearing of the Subcommittee on Geothermal Resources and the Senate Committee on Public Utilities and Corporations, Nov. 12, 1973 in San Francisco (public access to steam at The Geysers); hearing of the Senate Committee on Natural Resources and Wildlife on the continued availability of natural gas and other sources of energy, Nov. 15, 1973, in Martinez, Calif; and Appendix. (JGB)

  8. THE INVESTIGATION AND MANAGEMENT OF ECONOMICS’ RESOURCE POTENTIAL IN THE AGRARIAN SECTOR

    Directory of Open Access Journals (Sweden)

    Deshevova N. V.

    2016-03-01

    Full Text Available The article deals with the problems of investigating the resource potential state. We present a methodology based on the systematic approach. The development of economics’ resource potential requires shift from unilateral and local approaches to adaptive systemic paradigm, involving the use of tools, methods and mechanisms of development, which are formed in accordance with the hierarchical structure of the resource potential according to different levels. Generalization of the systemic aspects of the economics’ resource potential formation and development is revealed that the importance of informed decision-making in the system of sectorial management increases nowadays, that leads to the increasing the analytical and predictive tools obtaining relevant information according to the current processes in the resource fields. The managing development system of the economics’ resource potential in the context of adaptive systemic paradigm provides the identification of regional (across the macro-region and territorial (within the region features of developing status and trends of economics’ resource potential. Because of tools’ application for multivariate statistical analysis, we indicate groups of the identified areas with different levels of resource development. Main stages and steps allow formalizing the problem at different levels, which will facilitate the process of strategic planning and management of resource development. For example, the agrarian sector of the Southern and North Caucasian Federal District presents the results of cluster’s analysis of subjects’ districts. We group the regions according to resource potential development of the agricultural sector

  9. A Hydrate Database: Vital to the Technical Community

    Directory of Open Access Journals (Sweden)

    D Sloan

    2007-06-01

    Full Text Available Natural gas hydrates may contain more energy than all the combined other fossil fuels, causing hydrates to be a potentially vital aspect of both energy and climate change. This article is an overview of the motivation, history, and future of hydrate data management using a CODATA vehicle to connect international hydrate databases. The basis is an introduction to the Gas Hydrate Markup Language (GHML to connect various hydrate databases. The accompanying four articles on laboratory hydrate data by Smith et al., on field hydrate data by L?wner et al., on hydrate modeling by Wang et al., and on construction of a Chinese gas hydrate system by Xiao et al. provide details of GHML in their respective areas.

  10. NWTC Helps Chart the World's Wind Resource Potential

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) provide the wind industry, policymakers, and other stakeholders with applied wind resource data, information, maps, and technical assistance. These tools, which emphasize wind resources at ever-increasing heights, help stakeholders evaluate the wind resource and development potential for a specific area.

  11. Characterising resource use and potential inefficiencies during large-fire suppression in the western US

    Science.gov (United States)

    Hari Katuwal; Christopher J. Dunn; David E. Calkin

    2017-01-01

    Currently, limited research on large-fire suppression effectiveness suggests fire managers may over-allocate resources relative to values to be protected. Coupled with observations that weather may be more important than resource abundance to achieve control objectives, resource use may be driven more by risk aversion than efficiency. To explore this potential, we...

  12. Current Problems in Developing the Natural Resource Potential of the Russian Exclave in the Baltic

    Science.gov (United States)

    Fedorov, Gennady M.; Gritsenko, Vladimir A.; Dedkov, Viktor P.; Zotov, Sergey I.; Chernyshkov, Pavel P.

    2016-01-01

    The compact Kaliningrad region boasts relatively favourable environmental conditions and a remarkable diversity of natural resources. This article seeks to compare the natural resources of the exclave and other Russian regions. The authors examine recent statistical data to estimate the region's natural and resource potential, analyse its…

  13. Obsidian Hydration: A New Paleothermometer

    Energy Technology Data Exchange (ETDEWEB)

    Anovitz, Lawrence {Larry} M [ORNL; Riciputi, Lee R [ORNL; Cole, David R [ORNL; Fayek, Mostafa [ORNL; Elam, J. Michael [University of Tennessee, Knoxville (UTK)

    2006-01-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  14. Obsidian hydration: A new paleothermometer

    Science.gov (United States)

    Anovitz, Lawrence M.; Riciputi, Lee R.; Cole, David R.; Fayek, Mostafa; Elam, J. Michael

    2006-07-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  15. Recognition of Gas Hydrate Using AVO-Attribute Crossplots Based on the Porous Medium Theory

    Institute of Scientific and Technical Information of China (English)

    ZhangYuwen; LiuXuewei; YaoChangli

    2005-01-01

    Gas hydrate is gradually considered as a potential energy resource. The presence of gas hydrate is commonly inferred from the appearance of “bottom simulating reflector”(BSR) on seismic section. Understanding the properties of hydrate-bearing sediments and studying the AVO characteristics of BSR are of great significance. Although more and more domestic and international studies have been conducted on the subjects mentioned above, they are still in the primary stage and need a long way to go to be appled in practice, especially in the field of gas hydrate. Aiming at the identification of gas hydrate, we studied the characteristics of the AVO attributes based on the Biot's theory when the sediments were bearing gas hydrate or free gas. The AVO attribute crossplots obtained from seismic sections with the forward simulation by means of staggered-grid finite-difference were compared with that of theoretic models. The coincidence shows that utilization of AVO attribute crossplots is an effective way to recognize gas hydrate and free gas.

  16. GAS METHANE HYDRATES-RESEARCH STATUS, ANNOTATED BIBLIOGRAPHY, AND ENERGY IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    James Sorensen; Jaroslav Solc; Bethany Bolles

    2000-07-01

    The objective of this task as originally conceived was to compile an assessment of methane hydrate deposits in Alaska from available sources and to make a very preliminary evaluation of the technical and economic feasibility of producing methane from these deposits for remote power generation. Gas hydrates have recently become a target of increased scientific investigation both from the standpoint of their resource potential to the natural gas and oil industries and of their positive and negative implications for the global environment After we performed an extensive literature review and consulted with representatives of the U.S. Geological Survey (USGS), Canadian Geological Survey, and several oil companies, it became evident that, at the current stage of gas hydrate research, the available information on methane hydrates in Alaska does not provide sufficient grounds for reaching conclusions concerning their use for energy production. Hence, the original goals of this task could not be met, and the focus was changed to the compilation and review of published documents to serve as a baseline for possible future research at the Energy & Environmental Research Center (EERC). An extensive annotated bibliography of gas hydrate publications has been completed. The EERC will reassess its future research opportunities on methane hydrates to determine where significant initial contributions could be made within the scope of limited available resources.

  17. Maintaining the uranium resources data system and assessing the 1989 US uranium potential resources

    Energy Technology Data Exchange (ETDEWEB)

    McCammon, R.B. (Geological Survey, Reston, VA (USA)); Finch, W.I.; Grundy, W.D.; Pierson, C.T. (Geological Survey, Denver, CO (USA))

    1990-12-31

    Under the Memorandum of Understanding (MOU) between the EIA, US Department of Energy, and the US Geological Survey (USGS), US Department of the Interior, the USGS develops estimates of uranium endowment for selected geological environments in the United States. New estimates of endowment are used to update the Uranium Resources Assessment Data (URAD) System which, beginning in 1990, is maintained for EIA by the USGS. For 1989, estimates of US undiscovered resources were generated using revised economic index values (current to December 1989) in the URAD system's cost model. The increase in the estimates for the Estimated Additional Resources (EAR) and Speculative Resources (SR) classes resulted primarily from increases in the estimates of uranium endowment for the solution-collapse, breccia-pipe uranium deposit environment in the Colorado Plateau resource region. The mean values for $30-, $50-, and $100-per-pound U{sub 3}O{sub 8} forward-cost categories of EAR increased by about 8, 48, and 32 percent, respectively, as compared to 1988. Estimates of the 1989 undiscovered resources in the SR class also increased in all three forward-cost categories by 10, 5, and 9 percent, respectively. The original cost equations in the URAD System were designed to cover drilling costs related to extensive flat-lying tabular ore bodies. The equations do not adequately treat drilling costs for the smaller areas of vertical breccia pipe uranium deposits in the Colorado Plateau resource region. The development of appropriate cost equations for describing the economics of mining this type of deposit represents a major new task. 12 refs., 4 figs., 5 tabs.

  18. Methane release from the East-Siberian Arctic Shelf and its connection with permafrost and hydrate destabilization: First results and potential future developments

    Science.gov (United States)

    Shakhova, N.; Semiletov, I.

    2012-04-01

    The East Siberian Arctic Shelf (ESAS) is home to the world's largest hydrocarbon stocks, which consist of natural gas, coal bed methane (CH4), and shallow Arctic hydrates. Until recently, the ESAS was not considered a CH4 source due to the supposed impermeability of sub-sea permafrost, which was thought to completely isolate the CH4 beneath from modern biogeochemical cycles. However, the ESAS represents an enormous potential CH4 source that could be responsive to ongoing global warming. Such response could occur in substantially shorter time than that of terrestrial Arctic ecosystems, because sub-sea permafrost has experienced long-lasting destabilization initiated by its inundation during the Holocene ocean transgression. ESAS permafrost stability and integrity is key to whether sequestered ancient carbon escapes as the potent greenhouse gas CH4. Recent data suggest the sub-sea permafrost is currently experiencing significant changes in its thermal regime. For example, our recent data obtained in the ESAS during the drilling expedition of 2011 showed no frozen sediments at all within the 53 m long drilling core at water temperatures varying from -0.6°C to -1.3°C. Unfrozen sediments provide multiple potential CH4 migration pathways. We suggest that open taliks have formed beneath the areas underlain or influenced by the nearby occurrence of fault zones, under paleo-valleys, and beneath thaw lakes submerged several thousand years ago during the ocean transgression. Temporary gas migration pathways might occur subsequent to seismic and tectonic activity in an area, due to sediment settlement and subsidence; hydrates could destabilize due to development of thermokarst-related features or ice-scouring. Recently obtained geophysical data identified numerous gas seeps, mostly above prominent reflectors, and the ubiquitous occurrence of shallow gas-charged sediments containing numerous gas chimneys, underscoring the likelihood that the ability of sub-sea permafrost to

  19. Study of Formation Mechanisms of Gas Hydrate

    Science.gov (United States)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  20. Human ResourcePotential Factor of Organiztional Crisis

    Directory of Open Access Journals (Sweden)

    Mihail Cristian Negrulescu

    2008-10-01

    Full Text Available At the level of any economic system, the change brings about the modification of the internal operating method of the relations between the actors and of the work habits. In other words, the substance (main, important modifications can be shaped on each of the organizational dominant of the system at a structural, functional or cultural level, in which the main actor, the human resource, intends to be part of this equation of changes. In this context, significant is the role played by the main organization actors, a role which can be materialized either as a factor of innovation, prevention and even progress, or as a conflict promoting factor, which, in time, generates a state of abnormality, of crisis. That is why major importance must be allotted to the human resources at the level of each organisation, considering the progress focused on knowledge, experience, experiments, attitude, behaviour and competences, these implying factors of correction and efficient reaction for the administration of the organizational crises.

  1. Gas in Place Resource Assessment for Concentrated Hydrate Deposits in the Kumano Forearc Basin, Offshore Japan, from NanTroSEIZE and 3D Seismic Data

    Science.gov (United States)

    Taladay, K.; Boston, B.

    2015-12-01

    Natural gas hydrates (NGHs) are crystalline inclusion compounds that form within the pore spaces of marine sediments along continental margins worldwide. It has been proposed that these NGH deposits are the largest dynamic reservoir of organic carbon on this planet, yet global estimates for the amount of gas in place (GIP) range across several orders of magnitude. Thus there is a tremendous need for climate scientists and countries seeking energy security to better constrain the amount of GIP locked up in NGHs through the development of rigorous exploration strategies and standardized reservoir characterization methods. This research utilizes NanTroSEIZE drilling data from International Ocean Drilling Program (IODP) Sites C0002 and C0009 to constrain 3D seismic interpretations of the gas hydrate petroleum system in the Kumano Forearc Basin. We investigate the gas source, fluid migration mechanisms and pathways, and the 3D distribution of prospective HCZs. There is empirical and interpretive evidence that deeply sourced fluids charge concentrated NGH deposits just above the base of gas hydrate stability (BGHS) appearing in the seismic data as continuous bottoms simulating reflections (BSRs). These HCZs cover an area of 11 by 18 km, range in thickness between 10 - 80 m with an average thickness of 40 m, and are analogous to the confirmed HCZs at Daini Atsumi Knoll in the eastern Nankai Trough where the first offshore NGH production trial was conducted in 2013. For consistency, we calculated a volumetric GIP estimate using the same method employed by Japan Oil, Gas and Metals National Corporation (JOGMEC) to estimate GIP in the eastern Nankai Trough. Double BSRs are also common throughout the basin, and BGHS modeling along with drilling indicators for gas hydrates beneath the primary BSRs provides compelling evidence that the double BSRs reflect a BGHS for structure-II methane-ethane hydrates beneath a structure-I methane hydrate phase boundary. Additional drilling

  2. Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E. (Chevron); Latham, T. (Chevron); McConnell, D. (AOA Geophysics); Frye, M. (Minerals Management Service); Hunt, J. (Minerals Management Service); Shedd, W. (Minerals Management Service); Shelander, D. (Schlumberger); Boswell, R.M. (NETL); Rose, K.K. (NETL); Ruppel, C. (USGS); Hutchinson, D. (USGS); Collett, T. (USGS); Dugan, B. (Rice University); Wood, W. (Naval Research Laboratory)

    2008-05-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand

  3. Mineral resources

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    (placers), biogenous (ooze, limestone) or chemogenous (phosphorites and polymetallic nodules) type. In recent years, hydrothermal deposits, cobalt crust and methane gas hydrates are considered as frontier resources. Their distribution depends upon proximity...

  4. Molecular markers: a potential resource for ginger genetic diversity studies.

    Science.gov (United States)

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  5. The Potential of Indigenous Energy Resources for Remote Military Bases

    Science.gov (United States)

    1976-03-01

    lected from a limited number of widely distributed ocean stations are Inherently unreliable as a measure of the precise amount of potential power...more widely distributed mirror system that reflects and focuses solar radiation on a central receiver. The mirrors ( heliostats ) required are quite...data from India Station in the North Atlantic as analyzed more precisely by S. H. Salter (1974) of Edinburgh. Our results differed from Salter’s by

  6. Alluvial Diamond Resource Potential and Production Capacity Assessment of Ghana

    Science.gov (United States)

    Chirico, Peter G.; Malpeli, Katherine C.; Anum, Solomon; Phillips, Emily C.

    2010-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflictual concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by both diamond-producing and diamond-importing countries. Over 70 countries were included as members at the end of 2007. To prevent trade in 'conflict' diamonds while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was to assess the alluvial diamond resource endowment and current production capacity of the alluvial diamond-mining sector in Ghana. A modified volume and grade methodology was used to estimate the remaining diamond reserves within the Birim and Bonsa diamond fields. The production capacity of the sector was estimated using a formulaic expression of the number of workers reported in the sector, their productivity, and the average grade of deposits mined. This study estimates that there are approximately 91,600,000 carats of alluvial diamonds remaining in both the Birim and Bonsa diamond fields: 89,000,000 carats in the Birim and 2,600,000 carats in the Bonsa. Production capacity is calculated to be 765,000 carats per year, based on the formula used and available data on the number of workers and worker productivity. Annual production is highly dependent on the international diamond market and prices, the numbers of seasonal workers actively mining in the sector, and

  7. Preliminary Assessment of Geothermal Resource Potential at the UTTR

    Energy Technology Data Exchange (ETDEWEB)

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2011-06-01

    The purpose of this report is to summarize the current state of geologic knowledge concerning potential high-temperature geothermal development on the lands controlled by Hill Air Force Base (HAFB) at the Utah Testing and Training Range (UTTR) and the lands encompassed by the Dugway Proving Grounds (Dugway). This report is based on currently available published and publically available information. Most of the information presented here is purely geologic in nature. Therefore, the logistical issues (such as military exclusion areas, proximity to electrical infrastructure, and access) are additional considerations that are being addressed in a separate report that will be issued to HAFB by the SES corporation.

  8. Seaweeds from the Portuguese coast: A potential food resource?

    Science.gov (United States)

    Soares, C.; Machado, S.; Vieira, E. F.; Morais, S.; Teles, M. T.; Correia, M.; Carvalho, A.; Domingues, V. F.; Ramalhosa, M. J.; Delerue-Matos, C.; Antunes, F.

    2017-09-01

    The Portuguese coast presents a large amount of potentially edible seaweeds that are underexploited. The identification of different macroalgae species and their availability in the northern and central coast of the continental territory was assessed. The nutritional value of seaweeds is discussed based on a literature review (when available) focused on data for species collected in Portugal with the aim to define the most important nutritional parameters that should be characterized in the samples. Possible health concerns related with the presence of contaminants are also considered.

  9. Surfactant process for promoting gas hydrate formation and application of the same

    Science.gov (United States)

    Rogers, Rudy E.; Zhong, Yu

    2002-01-01

    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  10. Secondary Zinc Waste Sludge: Resource Material with Potential Application.

    Science.gov (United States)

    Khan, Mohd Akram; Shrivastava, Rajnish

    2014-01-01

    The waste sludge generated during secondary zinc extraction process of an industry was studied for the recovery of electrolytic grade zinc and copper. The physical, chemical and mineralogical properties of the secondary zinc waste were studied in detail. Toxicity Characteristic Leaching Procedure (TCLP) test was carried out for the sample and concentrations of heavy metals present in the waste were estimated. The engineering properties of the samples prepared through high temperature fired route provided important information on the characteristics and composition of the waste. Different binders like fly ash and yellow clay were used in different formulations using Indian Standard sand to prepare the samples and to study the Solidification-Stabilisation (S/S) mechanism of the encapsulated waste mass. The leachability studies and engineering properties of the samples were evaluated to study the abatement of hazardous potential of waste and to explore better utilisation options for the secondary zinc waste sludge.

  11. Grasses – a potential sustainable resource for biocrude production

    DEFF Research Database (Denmark)

    Grigoras, Ionela; Rosendahl, Lasse Aistrup; Toor, Saqib Sohail

    This study aims to map the spatial distribution of different types of grasses available in Denmark using a GIS (Geographical Information System) based approach and to supplement these with biofuel potential maps based on HtL conversion. Biomass yields (t/ha) and biofuel energy equivalent (GJ....../ha) are mapped as function of the type of grassland area (permanent, roadside, grass sown in crop rotation systems) using 2012 databases made available by Jordbrugs Analyser Portal and Danmarks Miljøportal. Grasses have become a promising lignocellulosic biomass for biofuels production due to the low cost factor......-crude yield and a high quality of the bio-crude using grasses as feedstock a series of experiments with meadow grass have been carried out in a batch reactor. Biomass input and liquefaction products are characterized using proximate analysis, elemental analysis, heating values, FTIR, GC/MS. Data is subject...

  12. Potential of secondary resources as aluminium-silicate precursors for geopolymer synthesis

    NARCIS (Netherlands)

    Valcke, S.L.A.; Pipilikaki, P.; Fischer, H.R.

    2015-01-01

    Secondary resources containing (catcium) atuminium-silicate phases, e.g., fly ash, slag or bottom ash are used as precursor for binders such as geopolymers. Because secondary resources can be highly variable in terms of their potential to dissolve and form reaction products, analytical methods are n

  13. Resource potential as factor of efficiency of adjusting of bank liquidity

    OpenAIRE

    Vogjov, S.

    2009-01-01

    The present article considers the questions of perfection of the system of bank liquidity adjusting on the basis of account of their resource potential and variation principle of setting of liquidity norms and its estimation.

  14. EPA Releases Draft Assessment on the Potential Impacts to Drinking Water Resources from Hydraulic Fracturing Activities

    Science.gov (United States)

    WASHINGTON-The Environmental Protection Agency (EPA) is releasing a draft assessment today on the potential impacts of hydraulic fracturing activities on drinking water resources in the United States. The assessment, done at the request of Congress, shows

  15. New Approaches for the Production of Hydrocarbons from Hydrate Bearing Sediments

    Directory of Open Access Journals (Sweden)

    Ronny Giese

    2011-01-01

    Full Text Available The presence of natural gas hydrates at all active and passive continental margins has been proven. Their global occurrence as well as the fact that huge amounts of methane and other lighter hydrocarbons are stored in natural gas hydrates has led to the idea of using hydrate bearing sediments as an energy resource. However, natural gas hydrates remain stable as long as they are in mechanical, thermal and chemical equilibrium with their environment. Thus, for the production of gas from hydrate bearing sediments, at least one of these equilibrium states must be disturbed by depressurization, heating or addition of chemicals such as CO2. Depressurization, thermal or chemical stimulation may be used alone or in combination, but the idea of producing hydrocarbons from hydrate bearing sediments by CO2 injection suggests the potential of an almost emission free use of this unconventional natural gas resource. However, up to now there are still open questions regarding all three production principles. Within the framework of the German national research project SUGAR the thermal stimulation method by use of in situ combustion was developed and tested on a pilot plant scale and the CH4-CO2 swapping process in gas hydrates studied on a molecular level. Microscopy, confocal Raman spectroscopy and X-ray diffraction were used for in situ investigations of the CO2-hydrocarbon exchange process in gas hydrates and its driving forces. For the thermal stimulation a heat exchange reactor was designed and tested for the exothermal catalytic oxidation of methane. Furthermore, a large scale reservoir simulator was realized to synthesize hydrates in sediments under conditions similar to nature and to test the efficiency of the reactor. Thermocouples placed in the reservoir simulator with a total volume of 425 L collect data regarding the propagation of the heat front. In addition, CH4 sensors are placed in the water saturated sediment to detect the distribution of CH4

  16. THCM Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments (Marine and Permafrost Settings)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marcelo J. [Texas A & M Univ., College Station, TX (United States); Santamarina, J. Carlos [King Abdullah Univ. of Science and Technology (Saudi Arabia)

    2017-02-14

    Gas hydrates are solid compounds made of water molecules clustered around low molecular weight gas molecules such as methane, hydrogen, and carbon dioxide. Methane hydrates form under pressure (P) and temperature (T) conditions that are common in sub-permafrost layers and in deep marine sediments. Stability conditions constrain the occurrence of gas hydrates to submarine sediments and permafrost regions. The amount of technically recoverable methane trapped in gas hydrate may exceed 104tcf. Gas hydrates are a potential energy resource, can contribute to climate change, and can cause large-scale seafloor instabilities. In addition, hydrate formation can be used for CO2 sequestration (also through CO2-CH4 replacement), and efficient geological storage seals. The experimental study of hydrate bearing sediments has been hindered by the very low solubility of methane in water (lab testing), and inherent sampling difficulties associated with depressurization and thermal changes during core extraction. This situation has prompted more decisive developments in numerical modeling in order to advance the current understanding of hydrate bearing sediments, and to investigate/optimize production strategies and implications. The goals of this research has been to addresses the complex thermo-hydro-chemo-mechanical THCM coupled phenomena in hydrate-bearing sediments, using a truly coupled numerical model that incorporates sound and proven constitutive relations, satisfies fundamental conservation principles. Analytical solutions aimed at verifying the proposed code have been proposed as well. These tools will allow to better analyze available data and to further enhance the current understanding of hydrate bearing sediments in view of future field experiments and the development of production technology.

  17. Evaluation of Water Resource Potential in Anhui Province Based on Allocation Model

    Institute of Scientific and Technical Information of China (English)

    Zhenyu; XU; Yanlin; ZHOU

    2013-01-01

    The nature of water resources can be divided into four categories:water for life,water for agriculture,water for industry,and water for ecology.On this basis,the regional right allocation model for water resources is built,and to make the model more operable,we calculate the weight of the key factors of model(four different types of water use:life,agriculture,industry,ecology),using analytic hierarchy process(AHP).Finally,based on the amount of available water resources in Anhui Province,we evaluate the water resource potential in Anhui Province according to the principle of rational allocation.

  18. Compound Natural Gas Hydrate: A Natural System for Separation of Hydrate-Forming Gases

    Science.gov (United States)

    Max, M. D.; Osegovic, J. P.

    2007-12-01

    Natural processes that separate materials from a mixture may exert a major influence on the development of the atmospheres and surfaces of planets, moons, and other planetary bodies. Natural distillation and gravity separation, amongst others, are well known means of differentiating materials through liquid-gas partitioning. One of the least known attributes of clathrate (gas) hydrates is their potential effect on the evolution of planetary system oceans and atmospheres. Gas hydrates separate gases from mixtures of gases by concentrating preferred hydrate-forming materials (HFM) guests within the water-molecule cage structure of crystalline hydrate. Different HFMs have very different fields of stability. When multiple hydrate formers are present, a preference series based on their selective uptake exists. Compound hydrate, which is formed from two or more species of HFM, extract preferred HFM from a mixture in very different proportions to their relative percentages of the original mixture. These compound hydrates can have different formation and dissociation conditions depending on the evolution of the environment. That is, the phase boundary of the compound hydrate that is required for dissociation lies along a lower pressure - higher temperature course. Compound hydrates respond to variations in temperature, pressure, and HFM composition. On Earth, the primary naturally occurring hydrate of interest to global climate modeling is methane hydrate. Oceanic hydrate on Earth is the largest store of carbon in the biosphere that is immediately reactive to environmental change, and is capable of releasing large amounts of methane into the atmosphere over a short geological time span. Hydrate formation is essentially metastable and is very sensitive to environmental change and to gas flux. Where natural variations in temperature and pressure varies so that hydrate will form and dissociate in some cyclical manner, such as in oceans where sea level is capable of rising and

  19. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Overview of scientific and technical program

    Science.gov (United States)

    Hunter, R.B.; Collett, T.S.; Boswell, R.; Anderson, B.J.; Digert, S.A.; Pospisil, G.; Baker, R.; Weeks, M.

    2011-01-01

    The Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled within the Alaska North Slope (ANS) Milne Point Unit (MPU) from February 3 to 19, 2007. The well was conducted as part of a Cooperative Research Agreement (CRA) project co-sponsored since 2001 by BP Exploration (Alaska), Inc. (BPXA) and the U.S. Department of Energy (DOE) in collaboration with the U.S. Geological Survey (USGS) to help determine whether ANS gas hydrate can become a technically and commercially viable gas resource. Early in the effort, regional reservoir characterization and reservoir simulation modeling studies indicated that up to 0.34 trillion cubic meters (tcm; 12 trillion cubic feet, tcf) gas may be technically recoverable from 0.92 tcm (33 tcf) gas-in-place within the Eileen gas hydrate accumulation near industry infrastructure within ANS MPU, Prudhoe Bay Unit (PBU), and Kuparuk River Unit (KRU) areas. To further constrain these estimates and to enable the selection of a test site for further data acquisition, the USGS reprocessed and interpreted MPU 3D seismic data provided by BPXA to delineate 14 prospects containing significant highly-saturated gas hydrate-bearing sand reservoirs. The "Mount Elbert" site was selected to drill a stratigraphic test well to acquire a full suite of wireline log, core, and formation pressure test data. Drilling results and data interpretation confirmed pre-drill predictions and thus increased confidence in both the prospect interpretation methods and in the wider ANS gas hydrate resource estimates. The interpreted data from the Mount Elbert well provide insight into and reduce uncertainty of key gas hydrate-bearing reservoir properties, enable further refinement and validation of the numerical simulation of the production potential of both MPU and broader ANS gas hydrate resources, and help determine viability of potential field sites for future extended term production testing. Drilling and data acquisition operations demonstrated that gas hydrate

  20. Bioactive sterols from marine resources and their potential benefits for human health.

    Science.gov (United States)

    Kim, Se-Kwon; Van Ta, Quang

    2012-01-01

    Bioactive agents from marine resources have shown their valuable health beneficial effects. Therefore, increase knowledge on novel functional ingredients with biological activities from marine animal and microbe has gained much attention. Sterols are recognized as potential in development functional food ingredients and pharmaceutical agents. Marine resources, with a great diversity, can be a very interesting natural resource of sterols. This chapter focuses on biological activities of marine animal and microbe sterols with potential health beneficial applications in functional foods and pharmaceuticals. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Hydration-controlled bacterial motility and dispersal on surfaces

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Wang, G.; Gulez, Gamze

    2010-01-01

    hydrated habitats, where water dynamics result in fragmented aquatic habitats connected by micrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using......Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably...... an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharply within a small range of water potential (0 to −2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly...

  2. Overview on Hydrate Coring, Handling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  3. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-07-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  5. Resources to Needs’: A Paradigm for Addressing the Potentiality of the Urban Volume

    Directory of Open Access Journals (Sweden)

    Michael Robert Doyle

    2017-03-01

    Full Text Available Underground resources are often addressed only out of necessity, leading to conflicts between uses and missing opportunities for productive synergies. The Deep City project is exploring a paradigm of ‘resources to needs’, which considers resource potentials prior to specific urban projects or plans. Mapping is central to the project and has been explored in several cities around the world. The ‘resources to needs’ paradigm, however, has received little theoretical or philosophical attention. To think resources before needs challenges common urban normative models and the process-oriented thinking of mechanical and ecological paradigms popular today. Where current methods for mapping the underground tend to enroll elements in a particular performance or resource use, Deep City seeks to facilitate an intermediate stage in which resource potentials can coexist without any pre-existing interaction or relationship. To think about the urban volume this way, this article works with the informational motor proposed by French philosopher Michel Serres. The logics of substitution and circulation of the map and its contents helps to think an alternative form of mapping in which the map itself becomes a reservoir of potentiality for thinking the urban volume less in terms of predefined functions and processes than a mass to be collectively cultivated.

  6. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  7. 对潜在信息资源的认识研究%Cognitive Research on Potential Information Resources

    Institute of Scientific and Technical Information of China (English)

    樊志伟

    2001-01-01

    Based on a description of the implication, character and type of information resources, this article analyzes the potential information resourecs which are seldom noticed by people. Emphases are put on their specific properties. The necessity and urgency of developing potential information resources are elaborated. The possibility of developing and utilizing potential information resources are predicted.

  8. A National Assessment of the Potential Impacts of Hydraulic Fracturing Activities on Drinking Water Resources

    Science.gov (United States)

    Ridley, C.; Burden, S.; Fleming, M. M.; Knightes, C. D.; Koplos, J.; LeDuc, S. D.; Ring, S.; Stanek, J.; Tuccillo, M. E.; Weaver, J.; Frithsen, J.

    2015-12-01

    The U.S. Environmental Protection Agency recently released a draft assessment of the potential impacts of hydraulic fracturing on drinking water resources. As part of the draft assessment, we reviewed, analyzed, and synthesized information from over 950 sources and concluded that there are above and below ground mechanisms by which hydraulic fracturing activities have the potential to impact drinking water resources. These mechanisms include: Water withdrawals in times of, or in areas with, low water availability; Spills of hydraulic fracturing fluids and produced water; Fracturing directly into underground drinking water resources; Below ground migration of liquids and gases; and Inadequate treatment and discharge of wastewater. Of the potential mechanisms identified in this report, we found specific instances where one or more mechanisms led to impacts on drinking water resources, including contamination of drinking water wells. The number of identified cases, however, was small compared to the number of hydraulically fractured wells. This finding could reflect a rarity of effects on drinking water resources, but may also be due to other limiting factors. These factors include: insufficient pre- and post-fracturing data on the quality of drinking water resources; the paucity of long-term systematic studies; the presence of other sources of contamination precluding a definitive link between hydraulic fracturing activities and an impact; and the inaccessibility of some information on hydraulic fracturing activities and potential impacts. Disclaimer: The views expressed are those of the authors and do not necessarily reflect the views or polices of the EPA.

  9. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  10. WEB-GIS FOR ASSESSING SCENARIOS OF USING NATURAL RESOURCE POTENTIAL OF SOUTHERN MACROREGION

    Directory of Open Access Journals (Sweden)

    O. E. Аrkhipova

    2017-01-01

    Full Text Available The article is devoted to the use of geoinformation technologies, including “cloud” services, for assessing the natural resource potential of the southern macroregion. The toolkit has been proposed to evaluate various scenarios of social and economic development of the regions and the associated use of the natural resource potential of the southern region. The geoinformation system for the regions of the South of Russia and a web application have been created.The methodology for assessing scenarios for usind the natural resource potential of the southern macroregion have been developed using ArcGis Online cloud technology. This technology allows you to run and maintain software and store data on the server by creating a private or combined cloud. Web-GIS are created on the basis of the interactive designer Story Map Journal℠.The relations in the nature-society system are evaluated on the example of two subjects of the Russian Federation that are part of the Southern and North-Caucasian federal districts – Rostov region and the Kabardino-Balkarian Republic. Investigation of the natural resource potential of the southern regions of Russia involves comparing the available reserves of a particular type of resources and the degree of their use. A comparison of the potential resource reserve and the real intensity of its consumption in the municipalities of these regions formed the basis for interpreting the obtained estimates of the efficiency of using of the natural resource potential. Quantitative estimates are obtained at the level of municipal regions using developed software tools that combine GIS, databases and mathematical modeling.

  11. Evaluation of the level of balneological resorts natural resources potential use

    Directory of Open Access Journals (Sweden)

    Yu.Ya. Dobush

    2013-12-01

    Full Text Available The aim of the article. The aim of the article is to identify natural resources potential of balneological resorts and evaluation of the level of its use by means of an integrated indicator. The article is dedicated to investigation of balneological resorts natural resources potential use, as one of the recommended potentials: namely: productive-economic, socio-economic and infrastructural. In this article the following is actualized: the question of necessity of evaluation of balneological resorts natural resources potential, with the aim of identifying a level of its use and showing possibilities of its use and providing recommendations regarding planning of recreational activities. This article deals with methodological approaches to evaluation of the level of balneological resorts natural resources potential use by domestic and foreign scientists, and possibilities of their improvement and development are displayed. The methodology of evaluation of the level of balneological resorts natural resources potential use by using an index of natural resources use, air quality index, index of resort landscaping is proposed in this article. The methods of evaluation of the level of balneological resorts natural resources potential use consists in use of standard and actual indicators on which the evaluation of possibilities of balneological resorts on placing tourists proceeding from stocks of natural resources, evaluation of cleanliness of air, proceeding from maximum permissible concentration of polluting substances thrown out in environment and evaluation of level of landscaping of balneological resorts, proceeding from the area of a resort occupied with green plantings is spent. The results of the analysis are the conclusion of an integrated indicator as average on weight factors of partial indicators that allows to evaluation of the level of balneological resorts natural resources potential use and identify areas of marketing strategy to ensure

  12. A new geotechnical gas hydrates research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates encapsulate natural gas molecules in a very compact form, as ice-like compounds composed of water molecules. Permafrost environments and offshore areas contain vast quantities of gas hydrates within soil and rock. This paper describes the role played by gas hydrates in submarine slope instability, their potential as a sustainable energy source, and their effects on global climate change. A new state-of-the-art laboratory located at the University of Calgary, which was developed to study the geomechanical behaviour of gas hydrate-sediment mixtures, was also presented. A specialized high pressure low temperature triaxial apparatus capable of performing a suite of tests on gas hydrate-sediment mixtures is housed in this laboratory. Extensive renovations were required in order to enable the use of methane gas to simulate natural hydrate formation conditions. The laboratory is specifically designed to examine the properties and behaviour of reconstituted gas hydrate-sediment mixtures and natural gas hydrate core samples. 26 refs., 9 figs.

  13. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  14. Analysis of the potential for hydrogen production in the province of Cordoba, Argentina, from wind resources

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, C.R.; Santa Cruz, R.; Aisa, S. [Universidad Empresarial Siglo 21, Monsenor Pablo Cabrera s/n calle, 5000 Cordoba (Argentina); Riso, M.; Jimenez Yob, G.; Ottogalli, R. [Subsecretaria de Infraestructuras y Programas, Ministerio de Obras y Servicios Publicos del Gobierno de la Provincia de Cordoba, Av. Poeta Lugones 12, 2do. Piso, 5000 Cordoba (Argentina); Jeandrevin, G. [Instituto Universitario Aeronautico, Avenida Fuerza Aerea km 6 1/2, 5022 Cordoba (Argentina); Leiva, E.P.M. [INFIQC, Unidad de Matematica y Fisica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre s/n, 5010 Cordoba (Argentina)

    2010-06-15

    The potential for hydrogen production from wind resources in the province of Cordoba, second consumer of fossil fuels for transportation in Argentina, is analyzed. Three aspects of the problem are considered: the evaluation of the hydrogen resource from wind power, the analysis of the production costs via electrolysis and the annual requirements of wind energy to generate hydrogen to fuel the vehicular transport of the province. Different scenarios were considered, including pure hydrogen as well as the so-called CNG plus, where hydrogen is mixed with compressed natural gas in a 20% V/V dilution of the former. The potential for hydrogen production from wind resources is analyzed for each department of the province, excluding those regions not suited for wind farms. The analysis takes into account the efficiency of the electrolyzer and the capacity factor of the wind power system. It is concluded that the automotive transportation could be supplied by hydrogen stemming from wind resources via electrolysis. (author)

  15. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  16. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  17. Antheraea pernyi Silk Fiber: A Potential Resource for Artificially Biospinning Spider Dragline Silk

    OpenAIRE

    Yaopeng Zhang; Hongxia Yang; Huili Shao; Xuechao Hu

    2010-01-01

    The outstanding properties of spider dragline silk are likely to be determined by a combination of the primary sequences and the secondary structure of the silk proteins. Antheraea pernyi silk has more similar sequences to spider dragline silk than the silk from its domestic counterpart, Bombyx mori. This makes it much potential as a resource for biospinning spider dragline silk. This paper further verified its possibility as the resource from the mechanical properties and the structures of t...

  18. Antheraea pernyi Silk Fiber: A Potential Resource for Artificially Biospinning Spider Dragline Silk

    OpenAIRE

    Yaopeng Zhang; Hongxia Yang; Huili Shao; Xuechao Hu

    2010-01-01

    The outstanding properties of spider dragline silk are likely to be determined by a combination of the primary sequences and the secondary structure of the silk proteins. Antheraea pernyi silk has more similar sequences to spider dragline silk than the silk from its domestic counterpart, Bombyx mori. This makes it much potential as a resource for biospinning spider dragline silk. This paper further verified its possibility as the resource from the mechanical properties and the structures of t...

  19. Experimental studies for the cyclability of salt hydrates for thermochemical heat storage

    NARCIS (Netherlands)

    Donkers, P.A.J.; Pel, L.; Adan, O.C.G.

    2016-01-01

    Salt hydrates have promising potential as heat storage materials by use of their hydration/dehydration reaction. These hydration/dehydration reactions are studied in this paper for CuCl2, CuSO4, MgCl2 and MgSO4. During a hydration/dehydration reaction, the salt shrinks and expands as a result of the

  20. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  1. Methane Recovery from Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  2. Technical Resource Potential of Non-disruptive Residential Demand Response in Denmark

    DEFF Research Database (Denmark)

    Mathieu, Johanna; Rasmussen, Theis Bo; Sørensen, Mads

    2014-01-01

    Denmark has one of the most aggressive renewable energy strategies in the world; however, large penetrations of fluctuating renewable energy resources will pose new problems in the Danish power system. Demand response (DR) has the potential to mitigate these problems by providing a new source...... of flexibility. This paper estimates the technical resource potential of residential DR in Denmark. We focus on DR that is non-disruptive to the consumer, meaning that DR actions harness inherent load flexibility and are not noticeable by the consumer. We build on existing methodologies for computing DR...... technical resource potentials, and use real data from Denmark. We find that country-wide load flexibility is on the order of GWs and GWhs, and will increase drastically over the next 20 years due to electrification of space heating systems and vehicles. However, we also find that flexibility is time...

  3. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, Elisa, E-mail: elia@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark); Maresca, Alberto; Olsson, Mikael Emil [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark); Holtze, Maria Sommer [Afatek Ltd., Selinevej 18, 2300 Copenhagen S (Denmark); Boldrin, Alessio; Astrup, Thomas Fruergaard [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark)

    2014-09-15

    Highlights: • Ferrous and non-ferrous metals were quantified in MSWI bottom ashes. • Metal recovery system efficiencies for bottom ashes were estimated. • Total content of critical elements was determined in bottom ash samples. • Post-incineration recovery is not viable for most critical elements. - Abstract: Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2 mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results

  4. pfSNP: An integrated potentially functional SNP resource that facilitates hypotheses generation through knowledge syntheses.

    Science.gov (United States)

    Wang, Jingbo; Ronaghi, Mostafa; Chong, Samuel S; Lee, Caroline G L

    2011-01-01

    Currently, >14,000,000 single nucleotide polymorphisms (SNPs) are reported. Identifying phenotype-affecting SNPs among these many SNPs pose significant challenges. Although several Web resources are available that can inform about the functionality of SNPs, these resources are mainly annotation databases and are not very comprehensive. In this article, we present a comprehensive, well-annotated, integrated pfSNP (potentially functional SNPs) Web resource (http://pfs.nus.edu.sg/), which is aimed to facilitate better hypothesis generation through knowledge syntheses mediated by better data integration and a user-friendly Web interface. pfSNP integrates >40 different algorithms/resources to interrogate >14,000,000 SNPs from the dbSNP database for SNPs of potential functional significance based on previous published reports, inferred potential functionality from genetic approaches as well as predicted potential functionality from sequence motifs. Its query interface has the user-friendly "auto-complete, prompt-as-you-type" feature and is highly customizable, facilitating different combination of queries using Boolean-logic. Additionally, to facilitate better understanding of the results and aid in hypotheses generation, gene/pathway-level information with text clouds highlighting enriched tissues/pathways as well as detailed-related information are also provided on the results page. Hence, the pfSNP resource will be of great interest to scientists focusing on association studies as well as those interested to experimentally address the functionality of SNPs.

  5. Potential contributions of extremophiles to hydrocarbon resources in marine extreme environments:A review

    Institute of Scientific and Technical Information of China (English)

    WANG Jiasheng; WANG Yongbiao; LI Qing

    2007-01-01

    To understand the potential mechanism of marine extremophiles participating in the formation and the evolution of hydrocarbon resources in marine extreme environments,some typical kinds of extremophiles and their distributions in marine hydrothermal and cold vents are discussed and evaluated respectively.The potential relationship between extremophile activities and hydrocarbon resources in marine extreme environments are then discussed in details.It could be now preliminary concluded that archaea and bacteria are the two main kinds of extremophiles in marine extreme environments.The dominating microbe communities in hydrothermal vents are heterotrophic zymogens,sulfate reducers and methanogens,while the ANME-2 group(Methanosarcinales) surrounded by sulfate-reducing bacteria and ANME-1 group dominate in cold vents.Marine extremophiles would be able to use CH,and H2S to synthesize energy for metabolism and to support food chains for other unique macrobiota nearby,which together present a high abundance but a low diversity with distinct characteristics of horizontal and vertical distributions.Marine extremophiles might play an important role either directly or indirectly in the processes of hydrocarbon formation and subsequent alteration,and could indicate the evolution of hydrocarbon resources in marine extreme environments.Our research thus has a great significance both in theoretical approach of potential hydrocarbon resources formed by marine extremophile activities and in practical exploration of the potential hydrocarbonsource sedimentary layers formed in the Earth history or the potential strata in southern China.

  6. Physical, mechanical and hydration kinetics of particleboards manufactured with woody biomass (Cupressus lusitanica, Gmelina arborea, Tectona grandis), agricultural resources, and Tetra Pak packages.

    Science.gov (United States)

    Moya, Róger; Camacho, Diego; Oporto, Gloria S; Soto, Roy F; Mata, Julio S

    2014-02-01

    Lignocellulosic wastes resulting from agricultural activities as well as Tetra Pak residues from urban centres can cause significant levels of pollution. A possible action to minimize this problem is to use them in the production of particleboards. The purpose of this study was to evaluate the physical, mechanical, and hydration properties of particleboards manufactured with the mixture of woody biomass (Cupressus lusitanica, Gmelina arborea, and Tectona grandis) and either agricultural wastes [pineapple leaves (Ananas comosus) and palm residues (Elaeis guineensis)] or Tetra Pak residues (TP). The results show that the particleboards prepared with TP and woody biomass can reduce the swelling and water absorption in up to 40% and 50% compared with particleboards without TP. Also, these particleboards had increased flexure resistance and shear stress (up to 100%) compared with those without TP. On the contrary, particleboards prepared with pineapple leaves in combination with woody biomass showed the lowest mechanical properties, particularly for tensile strength, hardness, glue-line shear, and nail and screw evaluation.

  7. Harmonising bioenergy resource potentials - Methodological lessons from review of state of the art bioenergy potential asessments

    NARCIS (Netherlands)

    Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    Published estimates of the potential of bioenergy vary widely, mainly due to the heterogeneity of methodologies, assumptions and datasets employed. These discrepancies are confusing for policy and it is thus important to have scientific clarity on the basis of the assessment outcomes. Such clear

  8. Harmonising bioenergy resource potentials - Methodological lessons from review of state of the art bioenergy potential asessments

    NARCIS (Netherlands)

    Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    Published estimates of the potential of bioenergy vary widely, mainly due to the heterogeneity of methodologies, assumptions and datasets employed. These discrepancies are confusing for policy and it is thus important to have scientific clarity on the basis of the assessment outcomes. Such clear ins

  9. Physical properties of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kliner, J.T.R.; Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates are naturally occurring, solid crystalline compounds (clathrates) that encapsulate gas molecules inside the lattices of hydrogen bonded water molecules within a specific temperature-pressure stability zone. Estimates of the total quantity of available methane gas in natural occurring hydrates are based on twice the energy content of known conventional fossil fuels reservoirs. Accurate and reliable in-situ quantification techniques are essential in determining the economic viability of this potential energy yield, which is dependent upon several factors such as sensitivity of the temperature-pressure stability zone, sediment type, porosity, permeability, concentration/abundance of free gas, spatial distribution in pore spaces, specific cage occupancy, and the influence of inhibitors. Various techniques like acoustic P and S waves, time domain reflectometry, and electrical resistance have been used to analyze the quantity and spatial distribution of the gas hydrate samples. These techniques were reviewed and the results obtained in the course of gas hydrate research were presented. 34 refs., 8 figs.

  10. Assessment of water resources potential of Ceará state (Brazil)

    Science.gov (United States)

    Araujo, Angelo; Pereira, Diamantino; Pereira, Paulo

    2016-04-01

    A methodological approach and results on water resources assessment in large areas are described with the case study of Ceará State (148,016 km2, northeast Brazil), where the scarceness of water resources is one of the main challenges in territorial planning and development. This work deals with the quantification and the mapping of water resources potential, being part of methodological approaches applied to the quantification of hydric diversity and geodiversity. Water resources potential is here considered as the sum of the hydric elements rainfall, groundwater specific discharge, water reservoirs, and river hierarchy. The assessment was based in a territorial organization by drainage sub-basins and in vector maps generated and treated with GIS software. Rainfall, groundwater specific discharge and hydrographical data were obtained in official institutions and allowed the construction of the annual mean rainfall map for a forty year period (1974-2014), the annual mean groundwater specific discharge map for a thirty-four year period, and the river and drainage basin hierarchy maps. These delivered rainfall, groundwater specific discharge, water reservoirs and river hierarchy partial indices expressed on quantitative maps with normalized values distributed by level 3 drainage basins. The sum of the partial indices originated the quantitative map of water resources potential index and by the Gaussian interpolation of this quantitative data a map of hydric diversity in Ceará state was created. Therefore, the water resources potential index is higher in 4 regions of the state (Noroeste Cearense, Zona Metropolitana de Fortaleza e da Zona Norte, Vale do Jaguaribe and Zonas Centro-sul e Sul Cearense). The index is low or very low in the whole region of Sertões Cearenses, confirming the important role of climatic features in hydrological diversity. Water resources management must consider technical tools for water resources assessment, in the line of other methods for

  11. Establishing and testing the "reuse potential" indicator for managing wastes as resources.

    Science.gov (United States)

    Park, Joo Young; Chertow, Marian R

    2014-05-01

    This study advances contemporary ideas promoting the importance of managing wastes as resources such as closed-loop or circular material economies, and sustainable materials management by reinforcing the notion of a resource-based paradigm rather than a waste-based one. It features the creation of a quantitative tool, the "reuse potential indicator" to specify how "resource-like" versus how "waste-like" specific materials are on a continuum. Even with increasing attention to waste reuse and resource conservation, constant changes in product composition and complexity have left material managers without adequate guidance to make decisions about what is technically feasible to recover from the discard stream even before markets can be considered. The reuse potential indicator is developed to aid management decision-making about waste based not on perception but more objectively on the technical ability of the materials to be reused in commerce. This new indicator is based on the extent of technological innovation and commercial application of actual reuse approaches identified and cataloged. Coal combustion by-products (CCBs) provide the test case for calculating the reuse potential indicator. While CCBs are often perceived as wastes and then isolated in landfills or surface impoundments, there is also a century-long history in the industry of developing technologies to reuse CCBs. The recent statistics show that most CCBs generated in Europe and Japan are reused (90-95%), but only 40-45% of CCBs are used in the United States. According to the reuse potential calculation, however, CCBs in the United States have high technical reusability. Of the four CCBs examined under three different regulatory schemes, reuse potential for boiler slag and flue-gas desulfurization gypsum maintains a value greater than 0.8 on a 0-1 scale, indicating they are at least 80% resource-like. Under current regulation in the United States, both fly ash and bottom ash are 80-90% resource

  12. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  13. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-04-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  14. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    Science.gov (United States)

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  15. Assessment of potential shale gas and shale oil resources of the Norte Basin, Uruguay, 2011

    Science.gov (United States)

    Schenk, Christopher J.; Kirschbaum, Mark A.; Charpentier, Ronald R.; Cook, Troy; Klett, Timothy R.; Gautier, Donald L.; Pollastro, Richard M.; Weaver, Jean N.; Brownfield, Michael

    2011-01-01

    Using a performance-based geological assessment methodology, the U.S. Geological Survey estimated mean volumes of 13.4 trillion cubic feet of potential technically recoverable shale gas and 0.5 billion barrels of technically recoverable shale oil resources in the Norte Basin of Uruguay.

  16. China’s Copper Ore Potential Resource Quantity Reached 180 Million Tonnes

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>The National Mineral Resource Potential Evaluation Project Special Topic Achievements Report-back Meeting convened by the Development Research Center of China Geological Survey announced that,the national chemical prospecting data application research innovatively adopted geochemical quantitative prediction method to predict that the national

  17. Biological productivity and potential resources of the exclusive economic zone (EEZ) of India

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    An assessment of the biological production and the potential fishery resources has been made based on the data collected over a period of 15 years (1976-1991). The entire Exclusive Economic Zone (EEZ), measuring 2.02 million km sup(2) was divided...

  18. Bioenergy resources in forest. Economic potential survey; Bioenergiressurser i skog. Kartlegging av oekonomisk potensial

    Energy Technology Data Exchange (ETDEWEB)

    Bergseng, Even; Eid, Tron; Roerstad, Per Kristian; Troemborg, Erik

    2012-07-01

    Forests constitute the largest resource potential for bioenergy in Norway. Based on simulations of forest development in Norway forward costs in the industry and other specified conditions, this study gives analysis and cost curves for increased recovery of bioenergy from Norwegian forests. (Author)

  19. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil

    2014-01-01

    data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap...

  20. Evaluating the Language Resources of Chatbots for Their Potential in English as a Second Language

    Science.gov (United States)

    Coniam, David

    2008-01-01

    This paper investigates the linguistic worth of current "chatbot" programs--software programs which attempt to hold a conversation, or interact, in English--as a precursor to their potential as an ESL (English as a second language) learning resource. After some initial background to the development of chatbots, and a discussion of the Loebner…

  1. Mineral resource potential map of the Muddy Mountains Wilderness Study Area, Clark County, Nevada

    Science.gov (United States)

    Bohannon, Robert G.; Leszcykowski, Andrew M.; Esparza, Leon E.; Rumsey, Clayton M.

    1982-01-01

    The Muddy Mountains Wilderness Study Area (WSA 050-0229), Clark County, Nevada, has a high potential for mineral deposits of calcium borates and lithium. The known and potential mineral deposits are concentrated in the east-central and south-central parts of the study area (see map). Zeolites (in particular clinoptilolite) are present in some tuff beds throughout much of the study area, and this resource potential is probably moderate to high. Stream-sediment sampling suggests that the Muddy Mountains area has little potential for mineral deposits of metals (other than lithium). Clay minerals are mined at one locality in the (!rea (see map). Building stone and silica sand have moderate to low potential in some places. Oil and gas potential within the study area is low, but complete evaluation of its potential is not possible without drilling.

  2. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  3. Maximum Growth Potential and Periods of Resource Limitation in Apple Tree.

    Science.gov (United States)

    Reyes, Francesco; DeJong, Theodore; Franceschi, Pietro; Tagliavini, Massimo; Gianelle, Damiano

    2016-01-01

    Knowledge of seasonal maximum potential growth rates are important for assessing periods of resource limitations in fruit tree species. In this study we assessed the periods of resource limitation for vegetative (current year stems, and woody biomass) and reproductive (fruit) organs of a major agricultural crop: the apple tree. This was done by comparing relative growth rates (RGRs) of individual organs in trees with reduced competition for resources to trees grown under standard field conditions. Special attention was dedicated to disentangling patterns and values of maximum potential growth for each organ type. The period of resource limitation for vegetative growth was much longer than in another fruit tree species (peach): from late May until harvest. Two periods of resource limitation were highlighted for fruit: from the beginning of the season until mid-June, and about 1 month prior to harvest. By investigating the variability in individual organs growth we identified substantial differences in RGRs among different shoot categories (proleptic and epicormic) and within each group of monitored organs. Qualitatively different and more accurate values of growth rates for vegetative organs, compared to the use of the simple compartmental means, were estimated. Detailed, source-sink based tree growth models, commonly in need of fine parameter tuning, are expected to benefit from the results produced by these analyses.

  4. Phase I (CATTS Theory), Phase II (Milne Point), Phase III (Hydrate Ridge)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-10-31

    This study introduces a new type of cumulative seismic attribute (CATT) which quantifies gas hydrates resources in Hydrate Ridge offshore Oregon. CATT is base on case-specific transforms that portray hydrated reservoir properties. In this study we used a theoretical rock physics model to correct measured velocity log data.

  5. Hydration Assessment of Athletes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ KEY POINTS · Although there is no scientific consensus for 1 ) howbest to assess the hydration status of athletes, 2)what criteria to use as acceptable outcome measurements, or 3) the best time to apply practical assessment methods, there are methods that can be used toprovide athletes with useful feedback about their hydration status

  6. Potential oil and gas resources of the Arctic National Wildlife Refuge in Alaska: 1002 area

    Science.gov (United States)

    Bird, K.J.

    2000-01-01

    A geologist with extensive experience in the study of northern Alaska's petroleum resources provides an overview of the first comprehensive reassessment of the petroleum potential of section 1002 of the Arctic National Wildlife Refuge since the original study of 1987. The paper surveys the region's geology, and provides a description of the methods employed and assessment results. The current resource is compared with that estimated in the original study, and is considerably larger, given the availability of new geologic and geophysical data, improved seismic processing and interpretation capabilities, and changes in the economics of North Slope oil development.

  7. THE METHODOLOGY OF DEVELOPING VALUE INDICATORS TO INTEGRALLY ASSESS RESOURCE POTENTIAL IN AGRICULTURAL UNITS

    Directory of Open Access Journals (Sweden)

    Elena TIMOFTI

    2014-06-01

    Full Text Available The problem of increasing the economic efficiency of resource use in agricultural production is very important. Its solution directly depends on the economic security of the country and its constant supply with agricultural products.There are three basic factors in agricultural production: nature (land, labour and capital, which have differentmeasure units. Comparability is necessary to express the value of the integral potential that gives the possibility totake into account the main resources involved in producing and obtaining results from the agricultural sector.

  8. Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, S.; Viramonte, J.G. [Instituto GEONORTE, Facultad de Ciencias Naturales, Universidad Nacional de Salta and CONICET, Avda. Bolivia 5150, Salta CP 4400 (Argentina); Nunez, V. [Instituto de Recursos Naturales y Ecodesarrollo (IRNED), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Avda. Bolivia 5150, Campo Castanares, Salta CP 4400 (Argentina); Franco, J. [Instituto Nacional de Energias No Convencionales (INENCO), Facultad de Ciencias Exactas, Universidad Nacional de Salta, CONICET, Avda. Bolivia 5150, Salta CP 4400 (Argentina)

    2009-08-15

    Renewable energy sources are considered as strategic opportunities to improve the population's quality of life, to promote the development of more efficient and equitable economic systems, and to favor environmental sustainability in the territorial planning of Lerma Valley (Salta, Argentina). The mapping in raster format (each pixel having a reference value) of the potential renewable energy sources (solar, wind, biomass, hydraulic, mixed) is essential to define ideal locations for different types of renewable applications, and to plan suitable strategies for its implementation. It is necessary considering environmental diversity and site conditions (topographic, natural resource, infrastructure and service availability, social and economical) of the intervention area. Different methodologies are used for mapping of potential energy resources. Solar radiation is spatialized through the application of statistical regressions between altitude, latitude, precise incident solar radiation records, and radiation data estimated with the Geosol V.2.0. trademark software. The Argentina Map program is used for the wind potential resource modeling. It requires as inputs: a Digital Elevation Model, a land use and cover map (to determine roughness), and measured and/or estimated wind speed and frequency data. The hydroelectric potential for microturbine applications is calculated from the topographic drop and the annual mean flow in cumulative models, through the application of the Idrisi Kilimanjaro trademark 's runoff tool; while the power densities are compared at the watershed. Biomass potential (at this exploratory stage), is interpreted from the available biomass type (land use and cover map), its energy application availability, and some quantitative indicators associated with the biomass types identified as priority. In conclusion, the renewable energy potential in Lerma Valley is very high and diverse, and its close connection with social

  9. Geo-scientific investigations of gas-hydrates in India

    Digital Repository Service at National Institute of Oceanography (India)

    Sain, K.; Gupta, H.; Mazumdar, A.; Bhaumik, A.K.; Bhowmick, P.K.

    The best solution to meet India's overwhelming energy requirement is to tap the nuclear and solar power to the maximum extent possible. Another feasible major energy resource is gas-hydrates (crystalline substances of methane and water) that have...

  10. Renewable Energy Potential of Greenland with emphasis on wind resource assessment

    DEFF Research Database (Denmark)

    Jakobsen, Kasper Rønnow

    of Profitable (required returns of investment), more can economically be saved by replacing outdated equipment. The renewable energy potential for both solar and wind was relatively high, with solar radiation above 1000 kWh=m2=year and mean wind speeds of 6.1 m/s at 10 MAG. For a 50 kWp PV installation the 25...... sources, such as wind and solar power. The biggest barriers to implementing these sources are lack of knowledge about the resources and their geographical distribution. In this project, different sources and methods for wind resource assessment are studied, with a focus on their performance in the complex...... areas. First, the existing ground-based measurements (Climate stations) were studied to determine applicability for wind resource estimation, and for many of the stations, a high local effect, inhomogeneous time series, and deviance from the WMO guidelines were found. The next step was to design...

  11. Potential Utilization of Renewable Energy Resources for Electicity Generation in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Fajik Begić

    2005-12-01

    Full Text Available Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalisation of the electricity market, and modernisation of the existing power plants, Bosnia and Herzegovina must turn to the utilisation of renewable resources in reasonable dynamics as well. Respecting this policy, the initial evaluation of the potential of renewable energy resources in Bosnia and Herzegovina is performed. The methodology of evaluation of wind energy utilisation is presented in this paper, as well as some other aspects of utilisation of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.

  12. Potential environmental conflicts in the area of the energy component of natural resource complex

    Directory of Open Access Journals (Sweden)

    Ie.V. Khlobystov

    2016-03-01

    Full Text Available The aim of the article. The purpose of the article is to identify potential and probable factors of environmental conflicts (EC larger amount of energy component of natural resource complex (NRC. Development of natural resource complex occurs in several ways to use them, in particular, with the position of the energy component of these methods were not considered in modern ecological and economic studies. The use of NRC for the purpose of increasing energy efficiency may determine through the essence of the principles and approaches to identifing of the potential of EC that can be implemented by defining the opportunities for renewable energy, usage of recreational, balneological and assimilation functions of natural resource complex and expensive analysis of these features, given the potential conflict of territorial development. The results of the analysis. Natural resource conflicts are the result of conflicts caused by limited quantity and quality of natural resources as between entities within the territorial social and economic systems and between different territorial systems. Energy potential of NRC can be defined as a set of certain characteristics, situation and processes that form the state energy supply a certain area at the projected use of resources. Energy potential of NRC includes such elements as natural resources and environmental sustainability, capacities for production, processing and transportation of energy. At the same time this potential has the dualistic nature, being the component part of both natural recourses and productive potential of the region. It is necessary to analyze quantitatively and qualitatively potential minerals. Quantitative characteristic provides identification of stocks of raw materials or fuel in the field of NRC, which can be used. They are divided on two type’s balance and off-balance sheet. To balance belong reserves, production and processing of which are economically viable in the achieved

  13. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  14. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  15. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  16. Formulating formation mechanism of natural gas hydrates.

    Science.gov (United States)

    Palodkar, Avinash V; Jana, Amiya K

    2017-07-25

    A large amount of energy, perhaps twice the total amount of all other hydrocarbon reserves combined, is trapped within gas hydrate deposits. Despite emerging as a potential energy source for the world over the next several hundred years and one of the key factors in causing future climate change, gas hydrate is poorly known in terms of its formation mechanism. To address this issue, a mathematical formulation is proposed in the form of a model to represent the physical insight into the process of hydrate growth that occurs on the surface and in the irregular nanometer-sized pores of the distributed porous particles. To evaluate the versatility of this rigorous model, the experimental data is used for methane (CH4) and carbon dioxide (CO2) hydrates grown in different porous media with a wide range of considerations.

  17. Quantifying hydrate formation and kinetic inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, E.D.; Subramanian, S.; Matthews, P.N.; Lederhos, J.P.; Khokhar, A.A. [Colorado School of Mines, Golden, CO (United States). Center for Hydrate Research

    1998-08-01

    In the Prausnitz tradition, molecular and macroscopic evidence of hydrate formation and kinetic inhibition is presented. On the microscopic level, the first Raman spectra are presented for the formation of both uninhibited and inhibited methane hydrates with time. This method has the potential to provide a microscopic-based kinetics model. Three macroscopic aspects of natural gas hydrate kinetic inhibition are also reported: (1) The effect of hydrate dissociation residual structures was measured, which has application in decreasing the time required for subsequent formation. (2) The performance of a kinetic inhibitor (poly(N-vinylcaprolactam) or PVCap) was measured and correlated as a function of PVCap molecular weight and concentrations of PVCap, methanol, and salt in the aqueous phase. (3) Long-duration test results indicated that the use of PVCap can prevent pipeline blockage for a time exceeding the aqueous phase residence time in some gas pipelines.

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  19. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2004-11-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained

  20. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained

  1. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  2. Alaska North Slope regional gas hydrate production modeling forecasts

    Science.gov (United States)

    Wilson, S.J.; Hunter, R.B.; Collett, T.S.; Hancock, S.; Boswell, R.; Anderson, B.J.

    2011-01-01

    A series of gas hydrate development scenarios were created to assess the range of outcomes predicted for the possible development of the "Eileen" gas hydrate accumulation, North Slope, Alaska. Production forecasts for the "reference case" were built using the 2002 Mallik production tests, mechanistic simulation, and geologic studies conducted by the US Geological Survey. Three additional scenarios were considered: A "downside-scenario" which fails to identify viable production, an "upside-scenario" describes results that are better than expected. To capture the full range of possible outcomes and balance the downside case, an "extreme upside scenario" assumes each well is exceptionally productive.Starting with a representative type-well simulation forecasts, field development timing is applied and the sum of individual well forecasts creating the field-wide production forecast. This technique is commonly used to schedule large-scale resource plays where drilling schedules are complex and production forecasts must account for many changing parameters. The complementary forecasts of rig count, capital investment, and cash flow can be used in a pre-appraisal assessment of potential commercial viability.Since no significant gas sales are currently possible on the North Slope of Alaska, typical parameters were used to create downside, reference, and upside case forecasts that predict from 0 to 71??BM3 (2.5??tcf) of gas may be produced in 20 years and nearly 283??BM3 (10??tcf) ultimate recovery after 100 years.Outlining a range of possible outcomes enables decision makers to visualize the pace and milestones that will be required to evaluate gas hydrate resource development in the Eileen accumulation. Critical values of peak production rate, time to meaningful production volumes, and investments required to rule out a downside case are provided. Upside cases identify potential if both depressurization and thermal stimulation yield positive results. An "extreme upside

  3. Application of Dempster-Shafer theory in mineral resource potential mapping

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Dempster-Shafer theory has been successfully applied to mineral resource potential mapping in GIS environmental. In this applied form, basic probability assignment and combined basic probability assignment are applied to measuring map pattern and map pattern combination, respectively; and the environment composed of the only two singleton sets (deposit set and non-deposit set), is used for expressing the entire map area. For a subarea in which the certain map pattern combination exists, the combined basic probability assignment corresponding to the map pattern combination existing in this subarea, expresses the belief of inferring the subarea belonging to the deposit set from the evidence that the corresponding map pattern combination existing in the subarea. Thus, it may be served as a statistical index measuring the relative mineral resource potentials of the subarea. And it may be determined like 1) dividing the map area into a series of small equal-sized grid cells and then select the training sample set composed of the well-known grid cells or the entire grid cells; 2) estimating the basic probability assignments corresponding to each map pattern fromthe training sample set; 3) determining the map pattern combination existing in each cell, and then appling the Dempster's Rule of Combination to integrating the all basic probability assignments corresponding to the map patterns existing in the cell into the combined basic probability assignment. Mineral resource potential mapping with the Dempster-Shafer theory is demonstrated on a case study to select mineral resource targets. The experimental results manifest that the model can be compared with the weights of evidence model in the effectiveness of mineral resource target selection.

  4. Adequacy of Online Patient Information Resources on Gout and Potentially Curative Urate-Lowering Treatment.

    Science.gov (United States)

    Jimenez-Liñan, L M; Edwards, L; Abhishek, A; Doherty, Michael

    2017-05-01

    To assess the content and readability of online patient information resources against the current understanding of gout. An online survey was undertaken using Google UK, USA, Australia, and Canada. Information was assessed for content and accuracy on 19 key points regarding core content for gout patient information resources. Readability was assessed using the Flesch-Kincaid Reading Ease score. Fifteen randomly selected websites were reviewed by a blinded second observer. A total of 85 websites were selected. More than 50% of the websites provided no information or had inaccuracies regarding the pathogenesis of gout. Most websites contained information on dietary and lifestyle modifications for treating gout and did not emphasize urate-lowering therapy (ULT) and its potential for cure. Over 75% of the websites had no/inaccurate information on the role of ULT or prophylaxis for preventing gout attacks on starting ULT. The majority of websites were difficult to read, with information in 68% of the websites rated at least fairly difficult. Only a few web-based patient information resources provide accurate and easy-to-read information on gout. This study will help physicians direct patients to currently reliable resources, but there is a need to improve many web-based patient information resources, which at present act as barriers to care. © 2016, American College of Rheumatology.

  5. Technogenic metallurgical resources raw potential usage under conditions of the zinc industry modernization

    Directory of Open Access Journals (Sweden)

    Leopold Igorevich Leontiev

    2016-07-01

    Full Text Available The article deals with the problem of accumulation and usage oftechnogenic metallurgical resources in the regions where the largeststeel plants are accommodated. The features of exploration anddevelopment of the mineral potential of technogenic metallurgicalresources are presented through the introduction of technologies ofdeep complex processing of technogenic raw materials. The topicalityof technogenic raw materials usage to expand the mineral resource baseof zinc producers in Russia is substantiated. The prospects of thezinc industry in terms of development of raw conversion by usingtechnological resources are explored. A methodical approach toevaluating the effectiveness of the usage of technogenic metallurgicalraw materials is developed. Approaches to establish the price oftechnogenic raw materials are determined; the expediency of increasingenvironmental charges for waste disposal is highlighted.Methodological developments are tested to assess the effectiveness of the usage of technogenic waste products made by ferrous metallurgyplants in Russia as a raw material for zinc production. There are set of the prioritiesfor the usage of raw potential of the technogenic resources todevelop the zinc industry.

  6. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  7. Analyses of exobiological and potential resource materials in the Martian soil.

    Science.gov (United States)

    Mancinelli, R L; Marshall, J R; White, M R

    1992-01-01

    Potential Martian soil components relevant to exobiology include water, organic matter, evaporites, clays, and oxides. These materials are also resources for human expeditions to Mars. When found in particular combinations, some of these materials constitute diagnostic paleobiomarker suites, allowing insight to be gained into the probability of life originating on Mars. Critically important to exobiology is the method of data analysis and data interpretation. To that end we are investigating methods of analysis of potential biomarker and paleobiomarker compounds and resource materials in soils and rocks pertinent to Martian geology. Differential thermal analysis coupled with gas chromatography is shown to be a highly useful analytical technique for detecting this wide and complex variety of materials.

  8. A comprehensive review of biomass resources and biofuels potential in Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Duku, Moses Hensley [School of Engineering Sciences, University of Southampton, Southampton, S017 1BJ (United Kingdom); Institute of Industrial Research, Council for Scientific and Industrial Research, P. Box LG 576, Legon (Ghana); Gu, Sai [School of Engineering Sciences, University of Southampton, Southampton, S017 1BJ (United Kingdom); Hagan, Essel Ben [Institute of Industrial Research, Council for Scientific and Industrial Research, P. Box LG 576, Legon (Ghana)

    2011-01-15

    Biomass is the major energy source in Ghana contributing about 64% of Ghana's primary energy supply. In this paper, an assessment of biomass resources and biofuels production potential in Ghana is given. The broad areas of energy crops, agricultural crop residues, forest products residues, urban wastes and animal wastes are included. Animal wastes are limited to those produced by domesticated livestock. Agricultural residues included those generated from sugarcane, maize, rice, cocoa, oil palm, coconut, sorghum and millet processing. The urban category is subdivided into municipal solid waste, food waste, sewage sludge or bio-solids and waste grease. The availability of these types of biomass, together with a brief description of possible biomass conversion routes, sustainability measures, and current research and development activities in Ghana is given. It is concluded that a large availability of biomass in Ghana gives a great potential for biofuels production from these biomass resources. (author)

  9. Potential hydrothermal resource temperatures in the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Ghanashayam Neupane; Earl D. Mattson; Cody J. Cannon; Trevor A. Atkinson; Travis L. McLing; Thomas R. Wood; Patrick F. Dobson; Mark E. Conrad

    2016-02-01

    The Eastern Snake River Plain (ESRP) in southern Idaho is a region of high heat flow. Sustained volcanic activities in the wake of the passage of the Yellowstone Hotspot have turned this region into an area with great potential for geothermal resources as evidenced by numerous hot springs scattered along the margins of the plain and several hot-water producing wells and hot springs within the plain. Despite these thermal expressions, it is hypothesized that the pervasive presence of an overlying groundwater aquifer in the region effectively masks thermal signatures of deep-seated geothermal resources. The dilution of deeper thermal water and re-equilibration at lower temperature are significant challenges for the evaluation of potential resource areas in the ESRP. Over the past several years, we collected approximately 100 water samples from springs/wells for chemical analysis as well as assembled existing water chemistry data from literature. We applied several geothermometric and geochemical modeling tools to these chemical compositions of ESRP water samples. Geothermometric calculations based on principles of multicomponent equilibrium geothermometry with inverse geochemical modeling capability (e.g., Reservoir Temperature Estimator, RTEst) have been useful for the evaluation of reservoir temperatures. RTEst geothermometric calculations of ESRP thermal water samples indicated numerous potential geothermal areas with elevated reservoir temperatures. Specifically, areas around southern/southwestern side of the Bennett Hills and within the Camas Prairies in the western-northwestern regions of the ESRP and its margins suggest temperatures in the range of 140-200°C. In the northeastern portions of the ESRP, Lidy Hot Springs, Ashton, Newdale, and areas east of Idaho Falls have expected reservoir temperature =140 °C. In the southern ERSP, areas near Buhl and Twin Falls are found to have elevated temperatures as high as 160 °C. These areas are likely to host

  10. Methane Hydrate-A Potential New Energy Source%海底甲烷水合物-未来可能的新能源

    Institute of Scientific and Technical Information of China (English)

    李步通; 董丽荣; 周权宝

    2015-01-01

    Nowadays people have to face the problem of the world's energy crisis.Making major efforts to development and utilization of energy , then mankind in the near future will face a major energy shortage problem.Human need to find a new energy to replace oil and natural gas to alleviate the energy crisis urgently.The methane hydrate with its rich reserves is regarded by great scientists as a possible new energy replacement , but no seabed mining methane hydrates which was still in the prospecting stage.According to scientists'prediction , large-scale exploitation of seabed methane hydrate could lead to global warming , tsunami.If these issues were resolved , it would bring disastrous consequences to human beings , but it was predicted in the next ten to fifteen years a maturity of mining technology would present.Methane hydrate as a possible new energy was optimistic about the prospects for development .%能源问题是现今我们全人类共同的问题。如何能够尽快找到煤炭和石油的替代能源是解决能源问题的紧迫任务。海底甲烷水合物以其丰富的储量、巨大的能量被科学家视为未来可能的新能源。本文从甲烷水合物的状态和结构、相平衡特征、赋存、勘探方法及深海拟开发技术、开发所面临的困难和可能导致的问题以及目前未能开采的原因几个方面对这一科学问题进行了综述。指出目前海底甲烷水合物尚没有开采,还处于探矿阶段。而且,海底甲烷水合物大规模不当开采可能会导致全球气候变暖、海啸等灾难。但是在未来10~15年将会有成熟的开采技术。海底甲烷作为一种可能的新能源具有乐观的开发前景。

  11. High-Resolution Coarse-Grained Model of Hydrated Anion-Exchange Membranes that Accounts for Hydrophobic and Ionic Interactions through Short-Ranged Potentials.

    Science.gov (United States)

    Lu, Jibao; Jacobson, Liam C; Perez Sirkin, Yamila A; Molinero, Valeria

    2017-01-10

    Molecular simulations provide a versatile tool to study the structure, anion conductivity, and stability of anion-exchange membrane (AEM) materials and can provide a fundamental understanding of the relation between structure and property of membranes that is key for their use in fuel cells and other applications. The quest for large spatial and temporal scales required to model the multiscale structure and transport processes in the polymer electrolyte membranes, however, cannot be met with fully atomistic models, and the available coarse-grained (CG) models suffer from several challenges associated with their low-resolution. Here, we develop a high-resolution CG force field for hydrated polyphenylene oxide/trimethylamine chloride (PPO/TMACl) membranes compatible with the mW water model using a hierarchical parametrization approach based on Uncertainty Quantification and reference atomistic simulations modeled with the Generalized Amber Force Field (GAFF) and TIP4P/2005 water. The parametrization weighs multiple properties, including coordination numbers, radial distribution functions (RDFs), self-diffusion coefficients of water and ions, relative vapor pressure of water in the solution, hydration enthalpy of the tetramethylammonium chloride (TMACl) salt, and cohesive energy of its aqueous solutions. We analyze the interdependence between properties and address how to compromise between the accuracies of the properties to achieve an overall best representability. Our optimized CG model FFcomp quantitatively reproduces the diffusivities and RDFs of the reference atomistic model and qualitatively reproduces the experimental relative vapor pressure of water in solutions of tetramethylammonium chloride. These properties are of utmost relevance for the design and operation of fuel cell membranes. To our knowledge, this is the first CG model that includes explicitly each water and ion and accounts for hydrophobic, ionic, and intramolecular interactions explicitly

  12. Underground Potential for Urban Sustainability: Mapping Resources and Their Interactions with the Deep City Method

    Directory of Open Access Journals (Sweden)

    Michael R. Doyle

    2016-08-01

    Full Text Available In the process of urban growth, the underground is often only addressed once all surface alternatives have been exhausted. Experience shows that this can lead to unforeseen conflicts (e.g., subsidence, groundwater pollution and to lost opportunities (e.g., combined geothermal systems and building foundations or recycling of excavation materials. One challenge is how the underground potentials are assessed by urban actors; data collection, analysis and visualization for the different resources are often conducted in separate disciplinary corners and administrative divisions. This paper presents a mapping method developed within the Deep City project at the Swiss Federal Institute of Technology in Lausanne (EPFL and its application to San Antonio, Texas. San Antonio is interesting in its lack of major underground infrastructure and its few means and political support for short-term underground development. We will specifically look at the production of a series of interaction maps, an original mapping strategy that is complementary to the resource potential maps we have produced in prior work. After situating this research within larger theoretical and philosophical questions, we will show how mapping the combined potentiality of underground resources can serve as a compass for future interdisciplinary discussions that address the urban underground as a source of opportunity, rather than as an afterthought.

  13. Geologic implications of gas hydrates in the offshore of India: Krishna-Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala-Konkan Basin

    Science.gov (United States)

    Kumar, Pushpendra; Collett, Timothy S.; Boswell, Ray; Cochran, James R.; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna; Yadav, U.S.

    2014-01-01

    Gas hydrate resource assessments that indicate enormous global volumes of gas present within hydrate accumulations have been one of the primary driving forces behind the growing interest in gas hydrates. Gas hydrate volumetric estimates in recent years have focused on documenting the geologic parameters in the “gas hydrate petroleum system” that control the occurrence of gas hydrates in nature. The primary goals of this report are to review our present understanding of the geologic controls on the occurrence of gas hydrate in the offshore of India and to document the application of the petroleum system approach to the study of gas hydrates.

  14. Potential resource and toxicity impacts from metals in waste electronic devices.

    Science.gov (United States)

    Woo, Seung H; Lee, Dae Sung; Lim, Seong-Rin

    2016-04-01

    As a result of the continuous release of new electronic devices, existing electronic devices are quickly made obsolete and rapidly become electronic waste (e-waste). Because e-waste contains a variety of metals, information about those metals with the potential for substantial environmental impact should be provided to manufacturers, recyclers, and disposers to proactively reduce this impact. This study assesses the resource and toxicity (i.e., cancer, noncancer, and ecotoxicity) potentials of various heavy metals commonly found in e-waste from laptop computers, liquid-crystal display (LCD) monitors, LCD TVs, plasma TVs, color cathode ray tube (CRT) TVs, and cell phones and then evaluates such potentials using life cycle impact-based methods. Resource potentials derive primarily from Cu, Sb, Ag, and Pb. Toxicity potentials derive primarily from Pb, Ni, and Hg for cancer toxicity; from Pb, Hg, Zn, and As for noncancer toxicity; and from Cu, Pb, Hg, and Zn for ecotoxicity. Therefore, managing these heavy metals should be a high priority in the design, recycling, and disposal stages of electronic devices.

  15. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Donald A. Goddard

    2004-10-28

    The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification.

  16. A Critical Assessment of the Resource Depletion Potential of Current and Future Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jens F. Peters

    2016-12-01

    Full Text Available Resource depletion aspects are repeatedly used as an argument for a shift towards new battery technologies. However, whether serious shortages due to the increased demand for traction and stationary batteries can actually be expected is subject to an ongoing discussion. In order to identify the principal drivers of resource depletion for battery production, we assess different lithium-ion battery types and a new lithium-free battery technology (sodium-ion under this aspect, applying different assessment methodologies. The findings show that very different results are obtained with existing impact assessment methodologies, which hinders clear interpretation. While cobalt, nickel and copper can generally be considered as critical metals, the magnitude of their depletion impacts in comparison with that of other battery materials like lithium, aluminum or manganese differs substantially. A high importance is also found for indirect resource depletion effects caused by the co-extraction of metals from mixed ores. Remarkably, the resource depletion potential per kg of produced battery is driven only partially by the electrode materials and thus depends comparably little on the battery chemistry itself. One of the key drivers for resource depletion seems to be the metals (and co-products in electronic parts required for the battery management system, a component rather independent from the actual battery chemistry. However, when assessing the batteries on a capacity basis (per kWh storage capacity, a high-energy density also turns out to be relevant, since it reduces the mass of battery required for providing one kWh, and thus the associated resource depletion impacts.

  17. Mineral resource potential map of the Blanco Mountain and Black Canyon roadless areas, Inyo and Mono counties, California

    Science.gov (United States)

    Diggles, Michael F.; Blakely, Richard J.; Rains, Richard L.; Schmauch, Steven W.

    1983-01-01

    On the basis of geologic, geochemical, and geophysical investigations and a survey of mines and prospects, the mineral resource potential for gold, silver, lead, zinc, tungsten, and barite of the Blanco Mountain and Black Canyon Roadless Areas is judged to be low to moderate, except for one local area that has high potential for gold and tungsten resources.

  18. Resource potential of bamboo, challenges and future directions towards sustainable management and utilization in Ethiopia

    Directory of Open Access Journals (Sweden)

    Getachew Desalegn

    2014-08-01

    Full Text Available Aim of study: Bamboo, the fastest growing and high yielding perennial plant of the world has more than 1500 species and 1500 versatile socio-economic uses and ecological services. Ethiopia has two indigenous bamboo species namely Yushania alpina and Oxytenantheria abyssinica, covering about one million ha with a wide distribution. The objective of this paper is to highlight the potential of bamboo resources, challenges including biodeterioration damage, opportunities and future research directions towards its sustainable management and rational utilization.Area of study: Bamboo resources of EthiopiaMaterial and Methods: Reconnaissance survey was done to some parts of the bamboo growing potential areas in Ethiopia besides the literature review. Main results: The bamboo resource, despite its socio-economic and environmental benefits, currently, in most areas has been under high pressure due to land use changes, bamboo mass- flowering, poor processing with low value addition, and damage by biodeteriorating agents (termites, beetles and fungi. The preservative tests on Ethiopian bamboos revealed low natural durability and highlighted the paramount importance of appropriate protection measures such as Tanalith and vehicles used motor oil to increase durability, service life and rational utilization of bamboo-based products and structures as potential alternative construction and furniture material.Research highlights: Therefore, integrated research and development interventions involving different propagation and managements techniques, harvesting season, processing, value addition including proper seasoning and preservation technologies and marketing are recommended to fill the information and technological gaps on sustainable management and rational utilization of this fast growing and multipurpose bamboo resources in Ethiopia.Key words: Bamboo; challenges; management; socio-economic and environmental significance; utilization.

  19. A Bayesian approach for solar resource potential assessment using satellite images

    Science.gov (United States)

    Linguet, L.; Atif, J.

    2014-03-01

    The need for a more sustainable and more protective development opens new possibilities for renewable energy. Among the different renewable energy sources, the direct conversion of sunlight into electricity by solar photovoltaic (PV) technology seems to be the most promising and represents a technically viable solution to energy demands. But implantation and deployment of PV energy need solar resource data for utility planning, accommodating grid capacity, and formulating future adaptive policies. Currently, the best approach to determine the solar resource at a given site is based on the use of satellite images. However, the computation of solar resource (non-linear process) from satellite images is unfortunately not straightforward. From a signal processing point of view, it falls within non-stationary, non-linear/non-Gaussian dynamical inverse problems. In this paper, we propose a Bayesian approach combining satellite images and in situ data. We propose original observation and transition functions taking advantages of the characteristics of both the involved type of data. A simulation study of solar irradiance is carried along with this method and a French Guiana solar resource potential map for year 2010 is given.

  20. Potential impacts on groundwater resources of deep CO2 storage: natural analogues for assessing potential chemical effects

    Science.gov (United States)

    Lions, J.; Gale, I.; May, F.; Nygaard, E.; Ruetters, H.; Beaubien, S.; Sohrabi, M.; Hatzignatiou, D. G.; CO2GeoNet Members involved in the present study Team

    2011-12-01

    Carbon dioxide Capture and Storage (CCS) is considered as one of the promising options for reducing atmospheric emissions of CO2 related to human activities. One of the main concerns associated with the geological storage of CO2 is that the CO2 may leak from the intended storage formation, migrate to the near-surface environment and, eventually, escape from the ground. This is a concern because such leakage may affect aquifers overlying the storage site and containing freshwater that may be used for drinking, industry and agriculture. The IEA Greenhouse Gas R&D Programme (IEAGHG) recently commissioned the CO2GeoNet Association to undertake a review of published and unpublished literature on this topic with the aim of summarizing 'state of the art' knowledge and identifying knowledge gaps and research priorities in this field. Work carried out by various CO2GeoNet members was also used in this study. This study identifies possible areas of conflict by combining available datasets to map the global and regional superposition of deep saline formations (DSF) suitable for CO2 storage and overlying fresh groundwater resources. A scenario classification is developed for the various geological settings where conflict could occur. The study proposes two approaches to address the potential impact mechanisms of CO2 storage projects on the hydrodynamics and chemistry of shallow groundwater. The first classifies and synthesizes changes of water quality observed in natural/industrial analogues and in laboratory experiments. The second reviews hydrodynamic and geochemical models, including coupled multiphase flow and reactive transport. Various models are discussed in terms of their advantages and limitations, with conclusions on possible impacts on groundwater resources. Possible mitigation options to stop or control CO2 leakage are assessed. The effect of CO2 pressure in the host DSF and the potential effects on shallow aquifers are also examined. The study provides a review of

  1. Logging potentials and energy wood resources in southern Finland; Potentiaaliset hakkuumahdollisuudet ja energiapuuvarat Etelae- Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Pesonen, M.; Malinen, J. [Finnish Forest Research Inst. METLA, Vantaa (Finland)

    1997-12-01

    Development of energy wood resources in Southern Finland over the next 40 years was studied on the basis of four cutting scenarios. Development of energy wood accrual was considered on the production cost levels of FIM 45/MWh and FIM 55/MWh in scenarios describing sustainable cutting potential, long-term cutting plans of forest owners and cutting of industrial mechandable wood over the years of depression. Effects of limitations concerning energy wood harvesting from meagre forest land and bogs on the energy wood accruals of sustainable cutting potential were also studied. The energy wood potential in Southern Finland was estimated at 3.6 million m{sup 3}/a on the production cost level of FIM 45/MWh. The energy wood accrual equal to sustainable cutting potential was 70 % of the energy wood potential. The energy wood potential increased to 8.8 m{sup 3}/a when the production cost level increased to FIM 55/MWh, the energy wood accrual of sustainable cutting potential being 51 %. The energy wood accruals according to felling plans of forest owners and cuttings over the years of depression were smaller than that of sustainable cutting potential, due to smaller loggings. Limitation of energy wood harvesting from meagre forest land and bogs would reduce the energy wood accrual of sustainable cutting potential by 22 %. This would involve a reduction of one million m{sup 3} in the harvesting potential. The energy wood accrual of sustainable cutting potential in Finland was 5.8 million m{sup 3}/a on the production cost level of FIM 55/MWh. This is equal to the aim set by the BIOENERGY Research Programme for the use potential of 1 Mtoe (equivalent oil tonne) on the production cost level of FIM 45/MWh

  2. Wet hydrate dissolution plant

    OpenAIRE

    Stanković Mirjana S.; Kovačević Branimir T.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with capacity of 50,000 t/y was manufactured, at "Zeolite Mira", Mira (VE), Italy, in 1997, for increasing detergent zeolite production from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate ...

  3. Identification of Reserved Energy Resource Potentials for Nigeria Power Generation Improvement

    Directory of Open Access Journals (Sweden)

    I. O. Akwukwaegbu

    2016-09-01

    Full Text Available Electrical power is the most widely used form of power in the industrialized countries. In Nigeria the epileptic pattern of electricity supply has affected every aspect of our economy and therefore required a strong political will and commitment on the part of Government to tackle. The solution to this problem lies in identifying and harnessing the abundant reserve energy resources available in various locations all over the country. This paper thus dwelt on identifying various sources of reserve energy potentials that abound in Nigeria which when harnessed and deployed appropriately will be sufficient to provide for both immediate and future electric power need of the country. The approach deployed in the study include the review of available statistical data of Nigeria reserve energy resources; identify the scale of its availability, location and the realizable amount of electric power from such reserve. The results show that the proven and estimated reserved energy resources of coal, natural gas and new hydro potentials could contribute a total of 96,079.40MW to the grid system, and when added to the existing installed electric power generation capacity of 12,066MW will give a total of 108,145.40MW

  4. Institutional Analysis of Knowledge Generation Resource Potential at the Enterprises of Regional Military-Industrial Complex

    Directory of Open Access Journals (Sweden)

    Evgeny Vasilyevich Popov

    2016-09-01

    Full Text Available The article is devoted to the processes of knowledge generation at the enterprises of military-industrial complex, which are the leaders of the regional innovative activity. The target of the research is to develop the methodology based on the use of resource application potential for increasing the efficiency of knowledge generation at the instrument-making enterprises of military-industrial complex. The system analysis of the knowledge generation processes is conducted at one of them. It allows to draw a conclusion that such enterprises have a lack of the institutes of knowledge generation processes. The authors are offered a technique of the development of the knowledge generation system at the military-industrial enterprises based on the accounting of assets and opportunities of the enterprise in the realization of intellectual activity. The developed technique is based on the determination of the horizontal resource potential of knowledge generation and allows to determine the potential of resource application at each stage of product life cycle. The comparison of the actual and theoretical values of horizontal resource potential allows to correct the distribution of a share of each of resources within a stage, and therefore, to optimize the realization of tasks at a specific stage. The offered tools were implemented in 2015 at one of the regional military-Industrial enterprises. The methodological tools of the research include the methods of expert assessment, mathematical statistics and the institutional analysis. On the basis of the offered technique and received empirical results, the institutional spiral of knowledge generation during the filling of state order at the military-industrial enterprise is developed. Its implementation will promote the decrease in the level of uncertainty during the whole life cycle of innovative activity product. The developed institutional spiral of knowledge generation at instrument-making military

  5. Interfacial phenomena in gas hydrate systems.

    Science.gov (United States)

    Aman, Zachary M; Koh, Carolyn A

    2016-03-21

    Gas hydrates are crystalline inclusion compounds, where molecular cages of water trap lighter species under specific thermodynamic conditions. Hydrates play an essential role in global energy systems, as both a hinderance when formed in traditional fuel production and a substantial resource when formed by nature. In both traditional and unconventional fuel production, hydrates share interfaces with a tremendous diversity of materials, including hydrocarbons, aqueous solutions, and inorganic solids. This article presents a state-of-the-art understanding of hydrate interfacial thermodynamics and growth kinetics, and the physiochemical controls that may be exerted on both. Specific attention is paid to the molecular structure and interactions of water, guest molecules, and hetero-molecules (e.g., surfactants) near the interface. Gas hydrate nucleation and growth mechanics are also presented, based on studies using a combination of molecular modeling, vibrational spectroscopy, and X-ray and neutron diffraction. The fundamental physical and chemical knowledge and methods presented in this review may be of value in probing parallel systems of crystal growth in solid inclusion compounds, crystal growth modifiers, emulsion stabilization, and reactive particle flow in solid slurries.

  6. Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds. Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lutken, Carol [Univ. of Mississippi, Oxford, MS (United States); Macelloni, Leonardo [Univ. of Mississippi, Oxford, MS (United States); D' Emidio, Marco [Univ. of Mississippi, Oxford, MS (United States); Dunbar, John [Univ. of Mississippi, Oxford, MS (United States); Higley, Paul [Univ. of Mississippi, Oxford, MS (United States)

    2015-01-31

    This study was designed to investigate temporal variations in hydrate system dynamics by measuring changes in volumes of hydrate beneath hydrate-bearing mounds on the continental slope of the northern Gulf of Mexico, the landward extreme of hydrate occurrence in this region. Direct Current Resistivity (DCR) measurements were made contemporaneously with measurements of oceanographic parameters at Woolsey Mound, a carbonate-hydrate complex on the mid-continental slope, where formation and dissociation of hydrates are most vulnerable to variations in oceanographic parameters affected by climate change, and where changes in hydrate stability can readily translate to loss of seafloor stability, impacts to benthic ecosystems, and venting of greenhouse gases to the water-column, and eventually, the atmosphere. We focused our study on hydrate within seafloor mounds because the structurally-focused methane flux at these sites likely causes hydrate formation and dissociation processes to occur at higher rates than at sites where the methane flux is less concentrated and we wanted to maximize our chances of witnessing association/dissociation of hydrates. We selected a particularly well-studied hydrate-bearing seafloor mound near the landward extent of the hydrate stability zone, Woolsey Mound (MC118). This mid-slope site has been studied extensively and the project was able to leverage considerable resources from the team’s research experience at MC118. The site exhibits seafloor features associated with gas expulsion, hydrates have been documented at the seafloor, and changes in the outcropping hydrates have been documented, photographically, to have occurred over a period of months. We conducted observatory-based, in situ measurements to 1) characterize, geophysically, the sub-bottom distribution of hydrate and its temporal variability, and 2) contemporaneously record relevant environmental parameters (temperature, pressure, salinity, turbidity, bottom currents) to

  7. Simulation of Methane Recovery from Gas Hydrates Combined with Storing Carbon Dioxide as Hydrates

    Directory of Open Access Journals (Sweden)

    Georg Janicki

    2011-01-01

    Full Text Available In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2 from fossil fuel consumption. This idea is supported by the thermodynamics of CO2 and methane (CH4 hydrates and the fact that CO2 hydrates are more stable than CH4 hydrates in a certain P-T range. The potential of producing methane by depressurization and/or by injecting CO2 is numerically studied in the frame of the SUGAR project. Simulations are performed with the commercial code STARS from CMG and the newly developed code HyReS (hydrate reservoir simulator especially designed for hydrate processing in the subsea sediment. HyReS is a nonisothermal multiphase Darcy flow model combined with thermodynamics and rate kinetics suitable for gas hydrate calculations. Two scenarios are considered: the depressurization of an area 1,000 m in diameter and a one/two-well scenario with CO2 injection. Realistic rates for injection and production are estimated, and limitations of these processes are discussed.

  8. Modeling DNA hydration: comparison of calculated and experimental hydration properties of nuclic acid bases.

    Science.gov (United States)

    Poltev, V I; Malenkov, G G; Gonzalez, E J; Teplukhin, A V; Rein, R; Shibata, M; Miller, J H

    1996-02-01

    Hydration properties of individual nucleic acid bases were calculated and compared with the available experimental data. Three sets of classical potential functions (PF) used in simulations of nucleic acid hydration were juxtaposed: (i) the PF developed by Poltev and Malenkov (PM), (ii) the PF of Weiner and Kollman (WK), which together with Jorgensen's TIP3P water model are widely used in the AMBER program, and (iii) OPLS (optimized potentials for liquid simulations) developed by Jorgensen (J). The global minima of interaction energy of single water molecules with all the natural nucleic acid bases correspond to the formation of two water-base hydrogen bonds (water bridging of two hydrophilic atoms of the base). The energy values of these minima calculated via PM potentials are in somewhat better conformity with mass-spectrometric data than the values calculated via WK PF. OPLS gave much weaker water-base interactions for all compounds considered, thus these PF were not used in further computations. Monte Carlo simulations of the hydration of 9-methyladenine, 1-methyluracil and 1-methylthymine were performed in systems with 400 water molecules and periodic boundary conditions. Results of simulations with PM potentials give better agreement with experimental data on hydration energies than WK PF. Computations with PM PF of the hydration energy of keto and enol tautomers of 9-methylguanine can account for the shift in the tautomeric equilibrium of guanine in aqueous media to a dominance of the keto form in spite of nearly equal intrinsic stability of keto and enol tautomers. The results of guanine hydration computations are discussed in relation to mechanisms of base mispairing errors in nucleic acid biosynthesis. The data presented in this paper along with previous results on simulation of hydration shell structures in DNA duplex grooves provide ample evidence for the advantages of PM PF in studies of nucleic-acid hydration.

  9. Resource potential methods using for efficiency of activities in the region increase

    Directory of Open Access Journals (Sweden)

    M. P. Vasiliev

    2016-01-01

    Full Text Available The article considers impact methods on the economic results, the effectiveness of the regional economic complex should be based on a high quality of the basic characteristics classification of the region state. Application composition techniques to ensure a comprehensive impact on the achievement of this goal should in synthesized form to union, adopt a target orientation of development of the region with the parameters objectively revealing his condition. Ensuring organizational, economic, financial and investment techniques to achieve the planned targets and requires specifying align resource potential of the region with the available capacity of the regional economic complex to promote economic growth, improve the efficiency of operations. The main characteristics of the potential resource opportunities in the region are the skill level of workers, the degree of depreciation of fixed assets and their renewability, increased innovation in the region, its branches and facilities, strengthening of competitive advantages, the annual average number of employees, the cost of fixed and current assets, financial stability. In the region the opportunity to potentially affect the ability of its structural components to achieve the financial and economic performance targets acts as efficiency ability to provide stable dynamics of regional production efficiency, enhance the level of benefits to achieve the planned efficiency used (consumed resource. Applying of certain methods or their entire structure, created to provide a comprehensive impact on the goal achievement, in the synthesized form of target orientation combines regional development with the parameters most objectively revealing his condition. Achieving the appropriate organizational, economic, financial, investment or other measures to achieve planned targets that are expressed by the level of efficiency of activity in the conditions of the most complete involvement and intensity of use in

  10. Potential environmental impacts of light-emitting diodes (LEDs): metallic resources, toxicity, and hazardous waste classification.

    Science.gov (United States)

    Lim, Seong-Rin; Kang, Daniel; Ogunseitan, Oladele A; Schoenung, Julie M

    2011-01-01

    Light-emitting diodes (LEDs) are advertised as environmentally friendly because they are energy efficient and mercury-free. This study aimed to determine if LEDs engender other forms of environmental and human health impacts, and to characterize variation across different LEDs based on color and intensity. The objectives are as follows: (i) to use standardized leachability tests to examine whether LEDs are to be categorized as hazardous waste under existing United States federal and California state regulations; and (ii) to use material life cycle impact and hazard assessment methods to evaluate resource depletion and toxicity potentials of LEDs based on their metallic constituents. According to federal standards, LEDs are not hazardous except for low-intensity red LEDs, which leached Pb at levels exceeding regulatory limits (186 mg/L; regulatory limit: 5). However, according to California regulations, excessive levels of copper (up to 3892 mg/kg; limit: 2500), Pb (up to 8103 mg/kg; limit: 1000), nickel (up to 4797 mg/kg; limit: 2000), or silver (up to 721 mg/kg; limit: 500) render all except low-intensity yellow LEDs hazardous. The environmental burden associated with resource depletion potentials derives primarily from gold and silver, whereas the burden from toxicity potentials is associated primarily with arsenic, copper, nickel, lead, iron, and silver. Establishing benchmark levels of these substances can help manufacturers implement design for environment through informed materials substitution, can motivate recyclers and waste management teams to recognize resource value and occupational hazards, and can inform policymakers who establish waste management policies for LEDs.

  11. Potential hydrologic effects of developing coal and other geoenergy resources in Oregon: a review

    Energy Technology Data Exchange (ETDEWEB)

    Sidle, W.C.

    1981-01-01

    Geoenergy resources in Oregon, in addition to coal, include noncommercial deposits of oil shale, natural gas, and geothermal heat. Commercial quantities of natural gas were discovered at Mist in northwestern Oregon in 1979. Gas presently is being produced from five wells and additional exploratory drilling is underway. More than 2 million acres of Oregon land is under lease for petroleum and natural gas exploration, mostly in the Astoria embayment-Willamette syncline, central (Oregon) Paleozoic-Mesozoic basin, and eastern Tertiary nonmarine basin. The Cascade Range and eastern Oregon contain sizable resources of geothermal heat, of which a small part has been developed for space heating at Klamath Falls and Lakeview. Thirteen Known Geothermal Resource Areas (KGRA's) comprising 432,000 acres have been identified, 422,000 acres are currently leased for geothermal development. KGRA's judged to have potential for generation of electrical power are Newberry Crater, Crump Geyser, and Alvord Desert. No adverse hydrologic effects have been noted to date from coal or other geoenergy exploration or development in Oregon, and no effects are expected if federal and state regulations are adhered to. The southwestern Oregon coals would have to be mined by underground methods. Potential hydrologic impacts would be local increases in sedimentation, turbidity, and mineralization of surface and ground water. Water-quality degradation, including both thermal pollution and increased concentrations of dissolved minerals, could result from geothermal development. Other potential problems include land subsidence and consumptive use of water associated with both coal and geothermal development. 53 refs., 3 figs., 1 tab.

  12. The resource potential of social protection of children with disabilities and the efficiency of its use

    Directory of Open Access Journals (Sweden)

    E. R. Kalimullina

    2016-01-01

    Full Text Available Over a long period of reforms, political, economic and social situation in the Russian Federation has changed significantly. Formed during transformation of the Russian economy, economic relations provoked a change in established patterns of socio-economic behavior of the population that determined the need for significant changes in the system of social security of citizens, especially in the social protection of families raising children with disabilities. Over the past five years has taken significant steps to improve the legislative norms regulating the situation of children with disabilities, which served as the preamble to the achievement of certain positive results, however, economic and social support for families raising children with disabilities, remains low. Equally important is the fact that the appearance of a fundamentally new for Russia, economic, social and institutional relations in this field has necessitated the study of various economic foundations of social protection of children with disabilities. To date this subject, though its importance was not considered in scientific research that determines the relevance of this dissertation work, its scientific and practical importance. The article discusses the conceptual basis of the resource potential of social protection of children with disabilities in the framework of the modern economic realities of the state policy on social-the shield of the population. A key aspect of the research was to determine the qualitative and quantitative level of resources, required to fully meet all the needs of potential customers, that is children with disabilities. The syllogism of the study is to identify criteria for the effectiveness of the services provided to children with disabilities the use of the resource potential of bodies of social protection.

  13. Controls on evolution of gas-hydrate system in the Krishna-Godavari basin, offshore India

    Digital Repository Service at National Institute of Oceanography (India)

    Badesab, F.K.; Dewangan, P.; Usapkar, A.; Kocherla, M.; Peketi, A.; Mohite, K.; Sangode, S.J.; Deenadayalan, K.

    magnetic minerals in the studied samples. 5.5. Can magnetic record be used as a potential tracer to identify the fossil gas hydrate zone in the K-G basin? In marine settings, the dissociation of gas hydrates takes place whenever P-T condition changes..., whenever the suitable P-T conditions prevail, hydrate nucleation takes place leaving the former boundary of gas hydrate stability zone (GHSZ) as a fossil gas hydrate horizon. In K-G basin, the present base of GHSZ calculated using hydrate stability...

  14. Potential of low-temperature geothermal resources in northern California. Report No. TR13

    Energy Technology Data Exchange (ETDEWEB)

    Hannah, J.L.

    1975-01-01

    Economically feasible uses for geothermal heat at temperatures too low for conventional electrical power generation at present are delineated. Several geothermal resource areas in northern California that have development potential are described, and applications of the heat found in each area are suggested. Plates are included of the following field study areas: the east side of the Sierra-Cascade Range north of Bishop, and the northern Coast Range from San Francisco Bay to Clear Lake. The counties included in the study area are Mo doc, Lassen, Sierra, Plumas, Placer, Alpine, Mono, Mendocino, Lake, and Sonoma. (LBS)

  15. An economic analysis of the electricity generation potential from biogas resources in the state of Indiana

    Science.gov (United States)

    Giraldo, Juan S.

    Anaerobic digestion is a process that is a common part of organic waste management systems and is used in concentrated animal feeding operations (CAFOs), wastewater treatment plants (WWTPs), and municipal solid waste (MSW) landfills. The process produces biogas, which contains methane, and it can be burned to generate electricity. Previous reports have indicated that based on the availability of feedstocks there is a large potential for biogas production and use for electricity generation in the state of Indiana. However, these reports varied in their consideration of important factors that affect the technical and economic feasibility of being able to develop the resources available. The goal of this thesis is to make a more targeted assessment of the electricity generation potential from biogas resources at CAFOs, WWTPs, and MSW landfills in Indiana. A capital budgeting model is used to estimate the net present value (NPV) of biogas electricity projects at facilities that are identified as technically suitable. A statewide estimate of the potential generation capacity is made by estimating the number of facilities that could profitably undertake a biogas electricity project. In addition this thesis explored the impact that different incentive policies would have on the economic viability of these projects. The results indicated that the electricity generation potential is much smaller when technical and economic factors are taken into account in addition to feedstock availability. In particular it was found that projects at hog farms are unlikely to be economically feasible in the present even when financial incentives are considered. In total, 47.94 MW of potential generating capacity is estimated from biogas production at CAFOs, WWTPs, and MSW landfills. Though results indicated that 37.10 MW of capacity are economically feasible under current operating conditions, sensitivity analysis reveals that these projects are very sensitive to capital cost assumptions

  16. Numerical simulation of gas hydrate exploitation from subsea reservoirs in the Black Sea

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2017-04-01

    Natural gas (methane) is the most environmental friendly source of fossil energy. When coal is replace by natural gas in power production the emission of carbon dioxide is reduced by 50 %. The vast amount of methane assumed in gas hydrate deposits can help to overcome a shortage of fossil energy resources in the future. To increase their potential for energy applications new technological approaches are being discussed and developed worldwide. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e. g. depressurization and/or carbon dioxide injection) is numerically studied in the frame of the German research project »SUGAR - Submarine Gas Hydrate Reservoirs«. In order to simulate the exploitation of hydrate-bearing sediments in the subsea, an in-house simulation model HyReS which is implemented in the general-purpose software COMSOL Multiphysics is used. This tool turned out to be especially suited for the flexible implementation of non-standard correlations concerning heat transfer, fluid flow, hydrate kinetics, and other relevant model data. Partially based on the simulation results, the development of a technical concept and its evaluation are the subject of ongoing investigations, whereby geological and ecological criteria are to be considered. The results illustrate the processes and effects occurring during the gas production from a subsea gas hydrate deposit by depressurization. The simulation results from a case study for a deposit located in the Black Sea reveal that the production of natural gas by simple depressurization is possible but with quite low rates. It can be shown that the hydrate decomposition and thus the gas production strongly depend on the geophysical properties of the reservoir, the mass and heat transport within the reservoir, and

  17. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2006-04-26

    The principal research effort for the first half of Year 3 of the project has been resource assessment. Emphasis has been on estimating the total volume of hydrocarbons generated and the potential amount of this resource that is classified as deep (>15,000 ft) gas in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Subbasin and the Conecuh Subbasin. The amount of this resource that has been expelled, migrated and entrapped is also the focus of the first half of Year 3 of this study.

  18. Putting the Deep Biosphere and Gas Hydrates on the Map

    Science.gov (United States)

    Sikorski, Janelle J.; Briggs, Brandon R.

    2016-01-01

    Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…

  19. Shorebird migration in the face of climate change: potential shifts in migration phenology and resource availability

    Science.gov (United States)

    Stutzman, Ryan J.; Fontaine, Joseph J

    2015-01-01

    Changes in temperature and seasonality resulting from climate change are heterogeneous, potentially altering important sources of natural selection acting on species phenology. Some species have apparently adapted to climate change but the ability of most species to adapt remains unknown. The life history strategies of migratory animals are dictated by seasonal factors, which makes these species particularly vulnerable to heterogeneous changes in climate and phenology. Here, we examine the phenology of migratory shorebirds, their habitats, and primary food resources, and we hypothesize how climate change may affect migrants through predicted changes in phenology. Daily abundance of shorebirds at stopover sites was correlated with local phenology and peaked immediately prior to peaks in invertebrate food resources. A close relationship between migrant and invertebrate phenology indicates that shorebirds may be vulnerable to changes in seasonality driven by climate change. It is possible that shifts in migrant and invertebrate phenology will be congruent in magnitude and direction, but because migration phenology is dependent on a suite of ecological factors, any response is likely to occur at a larger temporal scale and may lag behind the response of invertebrate food resources. The resulting lack of sufficient access to food at stopover habitats may cause migrants to extend migration and have cascading effects throughout their life cycle. If the heterogeneous nature of climate change results in uneven changes in phenology between migrants and their prey, it may threaten the long-term viability of migratory populations

  20. Potential impacts of global warming on water resources in southern California.

    Science.gov (United States)

    Beuhler, M

    2003-01-01

    Global warming will have a significant impact on water resources within the 20 to 90-year planning period of many water projects. Arid and semi-arid regions such as Southern California are especially vulnerable to anticipated negative impacts of global warming on water resources. Long-range water facility planning must consider global climate change in the recommended mix of new facilities needed to meet future water requirements. The generally accepted impacts of global warming include temperature, rising sea levels, more frequent and severe floods and droughts, and a shift from snowfall to rain. Precipitation changes are more difficult to predict. For Southern California, these impacts will be especially severe on surface water supplies. Additionally, rising sea levels will exacerbate salt-water intrusion into freshwater and impact the quality of surface water supplies. Integrated water resources planning is emerging as a tool to develop water supplies and demand management strategies that are less vulnerable to the impacts of global warming. These tools include water conservation, conjunctive use of surface and groundwater and desalination of brackish water and possibly seawater. Additionally, planning for future water needs should include explicit consideration of the potential range of global warming impacts through techniques such as scenario planning.

  1. Chapter 9: Oil and gas resource potential north of the Arctic Circle

    Science.gov (United States)

    Gautier, D.L.; Bird, K.J.; Charpentier, R.R.; Grantz, A.; Houseknecht, D.W.; Klett, T.R.; Moore, T.E.; Pitman, J.K.; Schenk, C.J.; Schuenemeyer, J.H.; Sorensen, K.; Tennyson, M.E.; Valin, Z.C.; Wandrey, C.J.

    2011-01-01

    The US Geological Survey recently assessed the potential for undiscovered conventional petroleumin the Arctic. Using a new map compilation of sedimentary elements, the area north of the Arctic Circle was subdivided into 70 assessment units, 48 of which were quantitatively assessed. The Circum-Arctic Resource Appraisal (CARA) was a geologically based, probabilistic study that relied mainly on burial history analysis and analogue modelling to estimate sizes and numbers of undiscovered oil and gas accumulations. The results of the CARA suggest the Arctic is gas-prone with an estimated 770-2990 trillion cubic feet of undiscovered conventional natural gas, most of which is in Russian territory. On an energy-equivalent basis, the quantity of natural gas ismore than three times the quantity of oil and the largest undiscovered gas eld is expected to be about 10 times the size of the largest undiscovered oil eld. In addition to gas, the gas accumulationsmay contain an estimated 39 billion barrels of liquids. The South Kara Sea is themost prospective gas assessment unit, but giant gas elds containingmore than 6 trillion cubic feet of recoverable gas are possible at a 50%chance in 10 assessment units. Sixty per cent of the estimated undiscovered oil resource is in just six assessment units, of which the Alaska Platform, with 31%of the resource, is the most prospective. Overall, the Arctic is estimated to contain between 44 and 157 billion barrels of recoverable oil. Billion barrel oil elds are possible at a 50%chance in seven assessment units.Undiscovered oil resources could be signicant to the Arctic nations, but are probably not sufcient to shift the world oil balance away from the Middle East. ?? 2011 The Geological Society of London.

  2. Effect of permafrost properties on gas hydrate petroleum system in the Qilian Mountains, Qinghai, Northwest China.

    Science.gov (United States)

    Wang, Pingkang; Zhang, Xuhui; Zhu, Youhai; Li, Bing; Huang, Xia; Pang, Shouji; Zhang, Shuai; Lu, Cheng; Xiao, Rui

    2014-12-01

    The gas hydrate petroleum system in the permafrost of the Qilian Mountains, which exists as an epigenetic hydrocarbon reservoir above a deep-seated hydrocarbon reservoir, has been dynamic since the end of the Late Pleistocene because of climate change. The permafrost limits the occurrence of gas hydrate reservoirs by changing the pressure-temperature (P-T) conditions, and it affects the migration of the underlying hydrocarbon gas because of its strong sealing ability. In this study, we reconstructed the permafrost structure of the Qilian Mountains using a combination of methods and measured methane permeability in ice-bearing sediment permafrost. A relationship between the ice saturation of permafrost and methane permeability was established, which permitted the quantitative evaluation of the sealing ability of permafrost with regard to methane migration. The test results showed that when ice saturation is >80%, methane gas can be completely sealed within the permafrost. Based on the permafrost properties and genesis of shallow gas, we suggest that a shallow "gas pool" occurred in the gas hydrate petroleum system in the Qilian Mountains. Its formation was related to a metastable gas hydrate reservoir controlled by the P-T conditions, sealing ability of the permafrost, fault system, and climatic warming. From an energy perspective, the increasing volume of the gas pool means that it will likely become a shallow gas resource available for exploitation; however, for the environment, the gas pool is an underground "time bomb" that is a potential source of greenhouse gas.

  3. Global wild annual Lens collection: a potential resource for lentil genetic base broadening and yield enhancement.

    Directory of Open Access Journals (Sweden)

    Mohar Singh

    Full Text Available Crop wild relatives (CWRs are invaluable gene sources for various traits of interest, yet these potential resources are themselves increasingly threatened by the impact of climate change as well as other anthropogenic and socio-economic factors. The prime goal of our research was to cover all aspects of wild Lens genetic resource management like species characterization, agro-morphological evaluation, diversity assessment, and development of representative sets for its enhanced utilization in lentil base broadening and yield improvement initiatives. We characterized and evaluated extensively, the global wild annual Lens taxa, originating from twenty seven counties under two agro-climatic conditions of India consecutively for three cropping seasons. Results on various qualitative and quantitative characters including two foliar diseases showed wide variations for almost all yield attributing traits including multiple disease resistance in the wild species, L. nigricans and L. ervoides accessions. The core set developed from the entire Lens taxa had maximum representation from Turkey and Syria, indicating rich diversity in accessions originating from these regions. Diversity analysis also indicated wide geographical variations across genepool as was reflected in the core set. Potential use of core set, as an initial starting material, for genetic base broadening of cultivated lentil was also suggested.

  4. The EPA's Study on the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    Science.gov (United States)

    Burden, Susan

    2013-03-01

    Natural gas plays a key role in our nation's clean energy future. The United States has vast reserves of natural gas that are commercially viable as a result of advances in horizontal drilling and hydraulic fracturing technologies, which enable greater access to gas in rock formations deep underground. These advances have spurred a significant increase in the production of both natural gas and oil across the country. However, as the use of hydraulic fracturing has increased, so have concerns about its potential human health and environmental impacts, especially for drinking water. In response to public concern, the US Congress requested that the US Environmental Protection Agency (EPA) conduct scientific research to examine the relationship between hydraulic fracturing and drinking water resources. In 2011, the EPA began research to assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of such impacts. The study is organized around the five stages of the hydraulic fracturing water cycle, from water acquisition through the mixing of chemicals and the injection of fracturing fluid to post-fracturing treatment and/or disposal of wastewater. EPA scientists are using a transdisciplinary research approach involving laboratory studies, computer modeling, toxicity assessments, and case studies to answer research questions associated with each stage of the water cycle. This talk will provide an overview of the EPA's study, including a description of the hydraulic fracturing water cycle and a summary of the ongoing research projects.

  5. Potential water resource impacts of hydraulic fracturing from unconventional oil production in the Bakken shale.

    Science.gov (United States)

    Shrestha, Namita; Chilkoor, Govinda; Wilder, Joseph; Gadhamshetty, Venkataramana; Stone, James J

    2017-01-01

    Modern drilling techniques, notably horizontal drilling and hydraulic fracturing, have enabled unconventional oil production (UOP) from the previously inaccessible Bakken Shale Formation located throughout Montana, North Dakota (ND) and the Canadian province of Saskatchewan. The majority of UOP from the Bakken shale occurs in ND, strengthening its oil industry and businesses, job market, and its gross domestic product. However, similar to UOP from other low-permeability shales, UOP from the Bakken shale can result in environmental and human health effects. For example, UOP from the ND Bakken shale generates a voluminous amount of saline wastewater including produced and flowback water that are characterized by unusual levels of total dissolved solids (350 g/L) and elevated levels of toxic and radioactive substances. Currently, 95% of the saline wastewater is piped or trucked onsite prior to disposal into Class II injection wells. Oil and gas wastewater (OGW) spills that occur during transport to injection sites can potentially result in drinking water resource contamination. This study presents a critical review of potential water resource impacts due to deterministic (freshwater withdrawals and produced water management) and probabilistic events (spills due to leaking pipelines and truck accidents) related to UOP from the Bakken shale in ND.

  6. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Steve Holditch; Emrys Jones

    2003-01-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During April-September 2002, the JIP concentrated on: Reviewing the tasks and subtasks on the basis of the information generated during the three workshops held in March and May 2002; Writing Requests for Proposals (RFPs) and Cost, Time and Resource (CTRs) estimates to accomplish the tasks and subtasks; Reviewing proposals sent in by prospective contractors; Selecting four contractors; Selecting six sites for detailed review; and Talking to drill ship owners and operators about potential work with the JIP.

  7. A molecular dynamic study on the dissociation mechanism of SI methane hydrate in inorganic salt aqueous solutions.

    Science.gov (United States)

    Xu, Jiafang; Chen, Zhe; Liu, Jinxiang; Sun, Zening; Wang, Xiaopu; Zhang, Jun

    2017-08-01

    Gas hydrate is not only a potential energy resource, but also almost the biggest challenge in oil/gas flow assurance. Inorganic salts such as NaCl, KCl and CaCl2 are widely used as the thermodynamic inhibitor to reduce the risk caused by hydrate formation. However, the inhibition mechanism is still unclear. Therefore, molecular dynamic (MD) simulation was performed to study the dissociation of structure I (SI) methane hydrate in existence of inorganic salt aqueous solution on a micro-scale. The simulation results showed that, the dissociation became stagnant due to the presence of liquid film formed by the decomposed water molecules, and more inorganic ions could shorten the stagnation-time. The diffusion coefficients of ions and water molecules were the largest in KCl system. The structures of ion/H2O and H2O/H2O were the most compact in hydrate/NaCl system. The ionic ability to decompose hydrate cells followed the sequence of: Ca(2+)>2K(+)>2Cl(-)>2Na(+). Copyright © 2017 Elsevier Inc. All rights reserved.

  8. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  9. Verification and recovery of thick deposits of massive gas hydrate from chimney structures, eastern margin of Japan Sea

    Science.gov (United States)

    Matsumoto, R.; Kakuwa, Y.; Snyder, G. T.; Tanahashi, M.; Yanagimoto, Y.; Morita, S.

    2016-12-01

    The initial scientific research that was carried out between 2004 and 2013 has provided us with invaluable evidence that gas hydrates occur widely on and below the sea floor down to approximately 30 mbsf within gas chimney structures in Japan Sea (Matsumoto, 2005; 2009). In 2013, METI (Ministry of Economy, Trade and Industry) launched a 3-year exploration project to assess the resource potential of shallow gas hydrates in Japan Sea. During the course of the project, Meiji University and AIST conducted: sea-going geophysical surveys with AUV, and high resolution 3D seismic and CSEM. These were followed by LWD and coring down to BSR depths, and coupled with a number of analyses and experiments. Regional mapping by MBES and SBP has confirmed 1742 gas chimneys in an area of 64,000km2 along the eastern margin of Japan Sea and around Hokkaido. Multiple LWD operations have revealed anomalous profiles such as extremely low natural gamma ray, high velocity Vp, and high resistivity Ro down to BSR depths, providing a strong indication that thick and massive gas hydrates exist throughout gas chimneys above the BSR. In several cases, conventional coring using 6-m long core liners recovered nearly 6 m long massive gas hydrates in several horizons adjacent to the anomalous LWD sites.The PCTB pressure coring system (Geotek Ltd) successfully cored 2-m long intervals of undisturbed, pressurized hydrate-bearing cores, providing valuable information about the in-situ occurrence and textural relations of hydrate and surrounding sediments. Full dissociation and slow degassing experiments of pressurized cores were conducted using onboard PCATS (Pressure core analysis and transfer system) to measure the amount of gases from hydrates. The mean volume fraction of gas hydrates in well-developed gas chimney structures is estimated to be 30 to 86 vol.% based on coupled PCATS and chloride anomaly profiles. Such an unusually high accumulation of gas hydrates in gas chimneys is assumed to have

  10. Formation of porous gas hydrates

    CERN Document Server

    Salamatin, Andrey N

    2015-01-01

    Gas hydrates grown at gas-ice interfaces are examined by electron microscopy and found to have a submicron porous texture. Permeability of the intervening hydrate layers provides the connection between the two counterparts (gas and water molecules) of the clathration reaction and makes further hydrate formation possible. The study is focused on phenomenological description of principal stages and rate-limiting processes that control the kinetics of the porous gas hydrate crystal growth from ice powders. Although the detailed physical mechanisms involved in the porous hydrate formation still are not fully understood, the initial stage of hydrate film spreading over the ice surface should be distinguished from the subsequent stage which is presumably limited by the clathration reaction at the ice-hydrate interface and develops after the ice grain coating is finished. The model reveals a time dependence of the reaction degree essentially different from that when the rate-limiting step of the hydrate formation at...

  11. Fundamental challenges to methane recovery from gas hydrates

    Science.gov (United States)

    Servio, P.; Eaton, M.W.; Mahajan, D.; Winters, W.J.

    2005-01-01

    The fundamental challenges, the location, magnitude, and feasibility of recovery, which must be addressed to recover methane from dispersed hydrate sources, are presented. To induce dissociation of gas hydrate prior to methane recovery, two potential methods are typically considered. Because thermal stimulation requires a large energy input, it is less economically feasible than depressurization. The new data will allow the study of the effect of pressure, temperature, diffusion, porosity, tortuosity, composition of gas and water, and porous media on gas-hydrate production. These data also will allow one to improve existing models related to the stability and dissociation of sea floor hydrates. The reproducible kinetic data from the planned runs together with sediment properties will aid in developing a process to economically recover methane from a potential untapped hydrate source. The availability of plentiful methane will allow economical and large-scale production of methane-derived clean fuels to help avert future energy crises.

  12. EnviroAtlas - Annual average potential wind energy resource by 12-digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the annual average potential wind energy resource in kilowatt hours per square kilometer per day for each 12-digit Hydrologic Unit...

  13. Simulation of natural gas production from submarine gas hydrate deposits combined with carbon dioxide storage

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2013-04-01

    The recovery of methane from gas hydrate layers that have been detected in several submarine sediments and permafrost regions around the world so far is considered to be a promising measure to overcome future shortages in natural gas as fuel or raw material for chemical syntheses. Being aware that natural gas resources that can be exploited with conventional technologies are limited, research is going on to open up new sources and develop technologies to produce methane and other energy carriers. Thus various research programs have started since the early 1990s in Japan, USA, Canada, South Korea, India, China and Germany to investigate hydrate deposits and develop technologies to destabilize the hydrates and obtain the pure gas. In recent years, intensive research has focussed on the capture and storage of carbon dioxide from combustion processes to reduce climate change. While different natural or manmade reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid carbon dioxide, the storage of carbon dioxide as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in form of hydrates. This has been shown in several laboratory tests and simulations - technical field tests are still in preparation. Within the scope of the German research project »SUGAR«, different technological approaches are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical effects are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs like CMG STARS and COMSOL Multiphysics. New simulations based on field data have been carried out. The studies focus on the evaluation of the gas production

  14. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  15. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  16. Apparatus investigates geological aspects of gas hydrates

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Dillon, William P.

    1999-01-01

    The US Geological Survey has developed a laboratory research system which allows the study of the creation and dissociation of gas hydrates under deepwater conditions and with different sediment types and pore fluids. The system called GHASTLI (gas hydrate and sediment test laboratory instrument) comprises a pressure chamber which holds a sediment specimen, and which can simulate water depths to 2,500m and different sediment overburden. Seawater and gas flow through a sediment specimen can be precisely controlled and monitored. It can simulate a wide range of geology and processes and help to improve understanding of gas hydrate processes and aid prediction of geohazards, their control and potential use as an energy source. This article describes GHASTLI and how it is able to simulate natural conditions, focusing on fluid volume, acoustic velocity-compressional and shear wave, electric resistance, temperature, pore pressure, shear strength, and permeability.

  17. Resource Potential and Exploration Techniques of Stratigraphic and subtle Reservoirs in China

    Institute of Scientific and Technical Information of China (English)

    JiaChengzao; ChiYingliu

    2004-01-01

    The onshore oil and gas exploration has stepped into a new stage in China, with equal attention paid to both stratigraphic and subtle reservoirs and structural reservoirs. In the past few years, the increases in oil reserves in most basins were found mainly in the stratigraphic and subtle reservoirs. Latest resource evaluation shows that the onshore stratigraphic and subtle reservoirs in China account for 42% of the total remaining resource, the highest in the four major exploration regions. Therefore, these reservoirs will be the most practical, potential and prevalent fields for long-lasting oil and gas exploration in onshore China. Among PetroChina's annual oil geologic reserves of 4.3 X 10sty4.6 X 10st, the stratigraphic and subtle reservoirs account for more than 50%. In such basins as Songliao, Ordos, Bohai Bay, Junggar, Tarim, Sichuan and Erlian basins, stratigraphic and subtle reservoirs with geologic reserves ranging from 5 X 107t to 3 X 10st were discovered, including Ansai, Jing'an, Daqingzijing, Liuxi, well-21 area in Shinan, and Hadexun. Stratigraphic and subtle reservoirs in the four types of inland basins differ from each other in the formation conditions and the distribution patterns. While continental basins are controlled by unconformity surface, maximum flooding surface and fracture surface, the Paleozoic marine basins are influenced by paleouplift, unconformity surface, and fluctuation of the sea level. Through exploration practices and research, PetroChina has formed its own technique series focused on 3-D seismics and sequence stratigraphy.

  18. Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y.; Renne, O.D. [National Renewable Energy Lab., Golden, CO (United States); Junfeng, Li [Energy Research Institute, Beijing (China)

    1996-12-31

    China, which has pursued aggressive policies to encourage economic development, could experience the world`s fastest growth in energy consumption over the next two decades. China has become the third largest energy user in the world since 1990 when primary energy consumption reached 960 million tons of coal equivalent (tce). Energy use is increasing at an annual rate of 6-7% despite severe infrastructure and capital constraints on energy sector development. Energy consumption in China is heavily dominated by coal, and fossil fuels provide up to 95% of all commercial energy use. Coal currently accounts for 77% of total primary energy use; oil, 16%; hydropower, 5%; and natural gas, 2%. Coal is expected to continue providing close to three-quarters of all energy consumed, and the amount of coal used is expected to triple by year 2020. Currently, renewable energy resources (except for hydropower) account for only a fraction of total energy consumption. However, the estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provides strong arguments for the development of renewable energy resources. Renewable energy potential in China is significantly greater than that indicated by the current level of use. With a clear policy goal and consistent efforts from the Government of China, renewables can play a far larger role in its future energy supply.

  19. Utilization of industrial dairy waste as microalgae cultivation medium : a potential study for sustainable energy resources

    Science.gov (United States)

    Nurmayani, S.; Sugiarti, Y.; Putra, R. H.

    2016-04-01

    Microalgae is one of biodiesel resources and call as third generation biofuel. Biodiesel is one alternative energy that being developed. So study about resource of biodiesel need a development, for the example is development the basic material such as microalgae. In this paper we explain the potential use of dairy waste from industry as a cultivation medium of microalgae for biodiesel production. Dairy waste from dairy industry contains 34.98% protein, 4.42% lactose, 9.77% fiber, 11.04% fat, 2.33% calcium, 1.05% phosfor, and 0.4 % magnesium, meaning that the dairy waste from dairy industry has a relatively high nutrient content and complete from a source of carbon, nitrogen and phosphorus as macro nutrients. The method in this paper is literature review to resulting a new conclusion about the potency of waste water from dairy industry as microalgae cultivation medium. Based on the study, the dairy waste from dairy industry has potency to be used as cultivation medium of Botryococcus braunii in the production of biodiesel, replacing the conventional cultivation medium.

  20. Antheraea pernyi Silk Fiber: A Potential Resource for Artificially Biospinning Spider Dragline Silk

    Directory of Open Access Journals (Sweden)

    Yaopeng Zhang

    2010-01-01

    Full Text Available The outstanding properties of spider dragline silk are likely to be determined by a combination of the primary sequences and the secondary structure of the silk proteins. Antheraea pernyi silk has more similar sequences to spider dragline silk than the silk from its domestic counterpart, Bombyx mori. This makes it much potential as a resource for biospinning spider dragline silk. This paper further verified its possibility as the resource from the mechanical properties and the structures of the A. pernyi silks prepared by forcible reeling. It is surprising that the stress-strain curves of the A. pernyi fibers show similar sigmoidal shape to those of spider dragline silk. Under a controlled reeling speed of 95 mm/s, the breaking energy was 1.04×105 J/kg, the tensile strength was 639 MPa and the initial modulus was 9.9 GPa. It should be noted that this breaking energy of the A. pernyi silk approaches that of spider dragline silk. The tensile properties, the optical orientation and the β-sheet structure contents of the silk fibers are remarkably increased by raising the spinning speeds up to 95 mm/s.

  1. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  2. [Hydration in clinical practice].

    Science.gov (United States)

    Maristany, Cleofé Pérez-Portabella; Segurola Gurruchaga, Hegoi

    2011-01-01

    Water is an essential foundation for life, having both a regulatory and structural function. The former results from active and passive participation in all metabolic reactions, and its role in conserving and maintaining body temperature. Structurally speaking it is the major contributer to tissue mass, accounting for 60% of the basis of blood plasma, intracellular and intersticial fluid. Water is also part of the primary structures of life such as genetic material or proteins. Therefore, it is necessary that the nurse makes an early assessment of patients water needs to detect if there are signs of electrolyte imbalance. Dehydration can be a very serious problem, especially in children and the elderly. Dehydrations treatment with oral rehydration solution decreases the risk of developing hydration disorders, but even so, it is recommended to follow preventive measures to reduce the incidence and severity of dehydration. The key to having a proper hydration is prevention. Artificial nutrition encompasses the need for precise calculation of water needs in enteral nutrition as parenteral, so the nurse should be part of this process and use the tools for calculating the patient's requirements. All this helps to ensure an optimal nutritional status in patients at risk. Ethical dilemmas are becoming increasingly common in clinical practice. On the subject of artificial nutrition and hydration, there isn't yet any unanimous agreement regarding hydration as a basic care. It is necessary to take decisions in consensus with the health team, always thinking of the best interests of the patient.

  3. Assessment of potential domestic fossil-fuel resources for SNG (substitute natural gas) production. Final report, February 1983-August 1984

    Energy Technology Data Exchange (ETDEWEB)

    Cover, A.E.; Hubbard, D.A.; Shah, K.V.; Koneru, P.B.

    1984-08-01

    Quality and availability of naturally occurring resources and industrial by-products which could be gasified and thereby serve as feedstock for SNG plants were studied to identify those resources with the greatest potential for exploitation in this regard. KRSI accumulated information from a large number of literature sources relative to the resources identified by GRI for study. To the extent possible, KRSI then organized this information to highlight for each resource the grades available, typical chemical compositions, quantities and locations of reserves, recovery methods and rates of production and consumption. This information clearly shows that coal is the most practical source of long-term feedstock for SNG in the contiguous USA. Coal resources amount to 84% (by quads) of the energy resources which were studied. In comparison, peat, shale oil and tar sand contain about 11% of the total.

  4. Harnessing Potential Evaporation as a Renewable Energy Resource With Water-Saving Benefits

    Science.gov (United States)

    Cavusoglu, A. H.; Chen, X.; Gentine, P.; Sahin, O.

    2015-12-01

    Water's large latent heat of vaporization makes evaporation a critical component of the energy balance at the Earth's surface. An immense amount of energy drives the hydrological cycle and is an important component of various weather and climate patterns. However, the potential of harnessing evaporation has received little attention as a renewable energy resource compared to wind and solar energy. Here, we investigate the potential of harvesting energy from naturally evaporating water. Using weather data across the contiguous United States and a modified model of potential evaporation, we estimate the power availability, intermittency, and the changes in evaporation rates imposed by energy conversion. Our results indicate that natural evaporation can deliver power densities similar to existing renewable energy platforms and require little to no energy storage to match the varying power demands of urban areas. This model also predicts additional, and substantial, water savings by reducing evaporative losses. These findings suggest that evaporative energy harvesting can address significant challenges with water/energy interactions that could be of interest to the hydrology community.

  5. Present Situation and Exploration Potentialities of Natural Gas Resources in Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Ordos Basin is the second largest sedimentary basin in China, with an area of 370 thousand km2. Since the first onshore oil well was drilled successfully in northern Shaanxi of China, there has been a century of oil and gas exploration in the basin, and it may be said that the oil exploration has a long history, but for natural gas exploration, it still may be regarded as a new area, because large-scale research, exploration, and development of natural gas in the basin have relatively lagged. The four big gas fields of Jingbian, Sulige, Yulin, and Uxin Banner with respective reserves of more than one hundred giga cubic meters were discovered since 1990s[1]. Therefore,the basin has a great resources potential of natural gas and a low discovery ratio of gas reserves. The natural gas industry has broad prospects of development.

  6. Resources

    Institute of Scientific and Technical Information of China (English)

    SIGFRIED OLG

    2006-01-01

    @@ Spending the hot summer in big Chinese cities is quite an experience. It is not just the heat, the heavy monsoon-rain or the thunderstorms; above all, it is pollution that hurts. Usually, the focus of our economic outlook is rather short-term. But pollution in our mind and our lungs is a long-term concern. As we have explained many times in this column, the medium and long-term outlook of China's GDP-growth-potential is enormous. However, at this point any serious economist has to attach some caveats.

  7. Alteration and Reformation of Hydrocarbon Reservoirs and Prediction of Remaining Potential Resources in Superimposed Basins

    Institute of Scientific and Technical Information of China (English)

    PANG Hong; PANG Xiongqi; YANG Haijun; LIN Changsong; MENG Qingyang; WANG Huaijie

    2010-01-01

    Complex hydrocarbon reservoirs developed widely in the superimposed basins of China formed from multiple structural alterations,reformation and destruction of hydrocarbon reservoirs formed at early stages.They are characterized currently by trap adjustment,component variation,phase conversion,and scale reformation.This is significant for guiding current hydrocarbon exploration by revealing evolution mechanisms after hydrocarbon reservoir formation and for predicting remaining potential resources.Based on the analysis of a number of complex hydrocarbon reservoirs,there are four geologic features controlling the degree of destruction of hydrocarbon reservoirs formed at early stages:tectonic event intensity,frequency,time and caprock sealing for oil and gas during tectonic evolution.Research shows that the larger the tectonic event intensity,the more frequent the tectonic event,the later the last tectonic event,the weaker the caprock sealing for oil and gas,and the greater the volume of destroyed hydrocarbons in the early stages.Based on research on the main controlling factors of hydrocarbon reservoir destruction mechanisms,a geological model of tectonic superimposition and a mathematical model evaluating potential remaining complex hydrocarbon reservoirs have been established.The predication method and technical procedures were applied in the Tazhong area of Tarim Basin,where four stages of hydrocarbon accumulation and three stages of hydrocarbon alteration occurred.Geohistorical hydrocarbon accumulation reached 3.184billion tons,of which 1.271 billion tons were destroyed.The total volume of remaining resources available for exploration is~1.9 billion tons.

  8. Potential supply of floral resources to managed honey bees in natural mistbelt forests.

    Science.gov (United States)

    Mensah, Sylvanus; Veldtman, Ruan; Seifert, Thomas

    2017-03-15

    Honey bees play a vital role in the pollination of flowers in many agricultural systems, while providing honey through well managed beekeeping activities. Managed honey bees rely on the provision of pollen and nectar for their survival and productivity. Using data from field plot inventories in natural mistbelt forests, we (1) assessed the diversity and relative importance of honey bee plants, (2) explored the temporal availability of honey bee forage (nectar and pollen resources), and (3) elucidated how plant diversity (bee plant richness and overall plant richness) influenced the amount of forage available (production). A forage value index was defined on the basis of species-specific nectar and pollen values, and expected flowering period. Up to 50% of the overall woody plant richness were found to be honey bee plant species, with varying flowering period. As expected, bee plant richness increased with overall plant richness. Interestingly, bee plants' flowering period was spread widely over a year, although the highest potential of forage supply was observed during the last quarter. We also found that only few honey bee plant species contributed 90 percent of the available forage. Surprisingly, overall plant richness did not significantly influence the bee forage value. Rather, bee plant species richness showed significant and greater effect. The results of this study suggest that mistbelt forests can contribute to increase the spatial and temporal availability of diverse floral resources for managed honey bees. Conservation efforts must be specifically oriented towards honey bee plant species in mistbelt forests to preserve and enhance their potential to help maintain honey bee colonies. The implications for forest management, beekeeping activities and pollination-based agriculture were discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. RESOURCE ASSESSMENT OF THE IN-PLACE AND POTENTIALLY RECOVERABLE DEEP NATURAL GAS RESOURCE OF THE ONSHORE INTERIOR SALT BASINS, NORTH CENTRAL AND NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2004-04-16

    The University of Alabama and Louisiana State University have undertaken a cooperative 3-year, advanced subsurface methodology resource assessment project, involving petroleum system identification, characterization and modeling, to facilitate exploration for a potential major source of natural gas that is deeply buried (below 15,000 feet) in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas. The project is designed to assist in the formulation of advanced exploration strategies for funding and maximizing the recovery from deep natural gas domestic resources at reduced costs and risks and with minimum impact. The results of the project should serve to enhance exploration efforts by domestic companies in their search for new petroleum resources, especially those deeply buried (below 15,000 feet) natural gas resources, and should support the domestic industry's endeavor to provide an increase in reliable and affordable supplies of fossil fuels. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification. The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The project objectives will be achieved through a 3-year effort. First, emphasis is on petroleum system identification and characterization in the

  10. Linking basin-scale and pore-scale gas hydrate distribution patterns in diffusion-dominated marine hydrate systems

    Science.gov (United States)

    Nole, Michael; Daigle, Hugh; Cook, Ann E.; Hillman, Jess I. T.; Malinverno, Alberto

    2017-02-01

    The goal of this study is to computationally determine the potential distribution patterns of diffusion-driven methane hydrate accumulations in coarse-grained marine sediments. Diffusion of dissolved methane in marine gas hydrate systems has been proposed as a potential transport mechanism through which large concentrations of hydrate can preferentially accumulate in coarse-grained sediments over geologic time. Using one-dimensional compositional reservoir simulations, we examine hydrate distribution patterns at the scale of individual sand layers (1-20 m thick) that are deposited between microbially active fine-grained material buried through the gas hydrate stability zone (GHSZ). We then extrapolate to two-dimensional and basin-scale three-dimensional simulations, where we model dipping sands and multilayered systems. We find that properties of a sand layer including pore size distribution, layer thickness, dip, and proximity to other layers in multilayered systems all exert control on diffusive methane fluxes toward and within a sand, which in turn impact the distribution of hydrate throughout a sand unit. In all of these simulations, we incorporate data on physical properties and sand layer geometries from the Terrebonne Basin gas hydrate system in the Gulf of Mexico. We demonstrate that diffusion can generate high hydrate saturations (upward of 90%) at the edges of thin sands at shallow depths within the GHSZ, but that it is ineffective at producing high hydrate saturations throughout thick (greater than 10 m) sands buried deep within the GHSZ. Furthermore, we find that hydrate in fine-grained material can preserve high hydrate saturations in nearby thin sands with burial.Plain Language SummaryThis study combines one-, two-, and three-dimensional simulations to explore one potential process by which methane dissolved in water beneath the seafloor can be converted into solid methane hydrate. This work specifically examines one end-member methane transport

  11. Real-time surrogate analysis for potential oil and gas contamination of drinking water resources

    Science.gov (United States)

    Son, Ji-Hee; Carlson, Kenneth H.

    2015-09-01

    Public concerns related to the fast-growing shale oil and gas industry have increased during recent years. The major concern regarding shale gas production is the potential of fracturing fluids being injected into the well or produced fluids flowing out of the well to contaminate drinking water resources such as surface water and groundwater. Fracturing fluids contain high total dissolved solids (TDS); thus, changes in TDS concentrations in groundwater might indicate influences of fracturing fluids. An increase of methane concentrations in groundwater could also potentially be due to hydraulic fracturing activities. To understand the possible contamination of groundwater by fracturing activities, real-time groundwater monitoring is being implemented in the Denver-Julesburg basin of northeast Colorado. A strategy of monitoring of surrogate parameters was chosen instead of measuring potential contaminants directly, an approach that is not cost effective or operationally practical. Contaminant surrogates of TDS and dissolved methane were proposed in this study, and were tested for correlation and data distribution with laboratory experiments. Correlations between TDS and electrical conductivity (EC), and between methane contamination and oxidation-reduction potential (ORP) were strong at low concentrations of contaminants (1 mg/L TDS and 0.3 mg/L CH4). Dissolved oxygen (DO) was only an effective surrogate at higher methane concentrations (≥2.5 mg/L). The results indicated that EC and ORP are effective surrogates for detecting concentration changes of TDS and methane, respectively, and that a strategy of monitoring for easy to measure parameters can be effective detecting real-time, anomalous behavior relative to a predetermined baseline.

  12. Theoretical description of biomolecular hydration - Application to A-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.E.; Hummer, G. [Los Alamos National Laboratory, NM (United States); Soumpasis, D.M. [Max Planck Inst. for Biophysical Chemistry, Goettingen (Germany)

    1994-12-31

    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG){sub 5}]{sub 2} and [d(C{sub 5}G{sub 5})]{sub 2}. We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers.

  13. The evaluation of the link between talent and potential of human resources

    Directory of Open Access Journals (Sweden)

    Daniel Daneci-Patrau

    2010-12-01

    Full Text Available The term “talent”, assigned to distinctive employees was certainly the past years leitmotif. Nowadays, the organizations need performance and for this reason they turn their attention towards the instruments which help them discover and explore the potential in people. In a context in which the crisis affects directly the labor market and the employees are more and more afraid of the possibility of losing their jobs, the incertitude and the insecurity appear more often. Especially, in these times, the need for continuous feedback, particularly connected to the decisions taken by the management, to the results of the company, to the adopted strategy and the way in which it reflects itself in the employees’ activity, is felt by all employees, no matter their role or their position. In this article, I presented the personal profile of the successful manager and the execution stages with the related conclusions in an evaluation program for the potential of the human resources in a sales company.

  14. Human parthenogenetic embryonic stem cells:one potential resource for cell therapy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Pluripotent stem cells derived from somatic cells through such processes as nuclear transfer or induced pluripotent stem(iPS) cells present an important model for biomedical research and provide potential resources for cell replacement therapies.However,the overall efficiency of the conversional nuclear transfer is very low and the safety issue remains a major concern for iPS cells.Embryonic stem cells(ESCs) generated from parthenogenetic embryos are one attractive alternative as a source of histocompatible cells and tissues for cell therapy.Recent studies on human parthenogenetic embryonic stem cells(hPG ESCs) have revealed that these ESCs are very similar to the hESCs derived from IVF or in vivo produced blastocysts in gene expression and other characteristics,but full differentiation and development potential of these hPG ESCs have to be further investigated before clinical research and therapeutic interventions.To generate various pluripotent stem cells,diverse reprogramming techniques and approaches will be developed and integrated.This may help elucidate the fundamental mechanisms underlying reprogramming and stem cell biology,and ultimately benefit cell therapy and regenerative medicine.

  15. Human parthenogenetic embryonic stem cells: one potential resource for cell therapy

    Institute of Scientific and Technical Information of China (English)

    HAO Jie; HU WanWan; SHENG Chao; YU Yang; ZHOU Qi

    2009-01-01

    Pluripotent stem cells derived from somatic cells through such processes as nuclear transfer or in duced pluripotent stem (iPS) cells present an important model for biomedical research and provide potential resources for cell replacement therapies. However, the overall efficiency of the conversional nuclear transfer is very low and the safety issue remains a major concern for iPS cells. Embryonic stem cells (ESCs) generated from parthenogenetic embryos are one attractive alternative as a source of histocompatible cells and tissues for cell therapy. Recent studies on human parthenogenetic embryonic stem cells (hPG ESCs) have revealed that these ESCs are very similar to the hESCs derived from IVF or in vivo produced blastocysts in gene expression and other characteristics, but full differentiation and development potential of these hPG ESCs have to be further investigated before clinical research and therapeutic interventions. To generate various pluripotent stem cells, diverse reprogramming techniques and approaches will be developed and integrated. This may help elucidate the fundamental mechanisms underlying reprogramming and stem cell biology, and ultimately benefit cell therapy and regenerative medicine.

  16. Controls on gas hydrate stability in methane depleted sediments: Laboratory and field measurements

    Science.gov (United States)

    Lapham, L.; Chanton, J.; Martens, C. S.

    2009-12-01

    Gas hydrate deposits are the Earth’s largest reservoir of the powerful greenhouse gas methane and thus a key future energy resource. However, hydrate stability in sedimentary environments featuring highly variable methane concentrations needs to be understood to allow resource estimation and recovery. Hydrates are at chemical equilibrium and therefore stable where high pressures, low temperatures, and moderate salinities coexist with methane-saturated pore waters. When all of these conditions are not met, hydrates should dissociate or dissolve, releasing methane to the overlying water and possibly the atmosphere. In addition, other natural factors may control the kinetics of their degradation complicating models for hydrate stability and occurrence. Our measurements indicate that the pore-waters surrounding some shallow buried hydrates are not methane-saturated suggesting that dissolution should occur relatively rapidly. Yet, these hydrate deposits are known to persist relatively unchanged for years. We hypothesize that, once formed, hydrate deposits may be stabilized by natural factors inhibiting dissolution, including oil or microbial biofilm coatings. While most studies have focused on pressure and temperature changes where hydrates occur, relatively few have included measurements of in situ methane concentration gradients because of the difficulties inherent to making such measurements. Here we present recent measurements of methane concentration and stable carbon isotope gradients immediately adjacent to undisturbed hydrate surfaces obtained through deployments of novel seafloor instruments. Our results suggest that the hydrates studied are relatively stable when exposed to overlying and pore-waters that are undersaturated with methane. Concurrent laboratory measurements of methane concentration gradients next to artificial hydrate surfaces were utilized to test our protective coating hypothesis. After a stable dissolution rate for hydrate samples was

  17. Using Facilities And Potential Of Geothermal Resources In The Canakkale Province - NW Turkey

    Science.gov (United States)

    Deniz, Ozan; Acar Deniz, Zahide

    2016-04-01

    Turkey, due to its geological location, has a rich potential in point of geothermal resources. Çanakkale province is located northwestern (NW) part of Turkey and it has important geothermal fields in terms of geothermal energy potential. Geothermal resources reach to the surface both effects of past volcanic activity and extensions of fault zones associated with complex tectonic systems in the region. The aim of this study is to summarize hydrogeochemical characteristics, using facilities and potential of hot springs and spas located in the Çanakkale province. There are 13 geothermal fields in the region and the surface temperatures of hot springs are ranging between 28 centigrade degree and 175 centigrade degree. Hydrogeochemical compositions of thermal water display variable chemical compositions. Na, Ca, SO4, HCO3 and Cl are the dominant ions in these waters. Thermal waters of Tuzla and Kestanbol geothermal fields which is located the near coastal area can be noted NaCl type. Because these two geothermal waters have high TDS values, scaling problems are seen around the hot springs and pipelines. Geothermal waters in the province are meteoric origin according to oxygen-18, deuterium and tritium isotopes data. Long underground residence times of these waters and its temperatures have caused both more water - rock interaction and low tritium values. Geothermal energy is utilized in many areas in Turkey today. It is generally used for space heating, balneotherapy and electricity generation. Explorations of geothermal resources and investments in geothermal energy sector have risen rapidly in the recent years particularly in western Turkey. High-temperature geothermal fields are generally located in this region related to the Aegean Graben System and the North Anotalian Fault Zone. All geothermal power plants in Turkey are located in this region. Considering the Çanakkale province, most geothermal fields are suitable for multipurpose usage but many of them have

  18. Thermal Stability and Proton Conductivity of Rare Earth Orthophosphate Hydrates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    Hydrated orthophosphate powders of three rare earth metals, lanthanum, neodymium and gadolinium, were prepared and studied as potential proton conducting materials for intermediate temperature electrochemical applications. The phosphates undergo a transformation from the rhabdophane structure...

  19. Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources (ERD)

    Science.gov (United States)

    In this report, EPA reviews and synthesizes scientific literature to assess the potential for hydraulic fracturing for oil and gas to change the quality or quantity of drinking water resources. This report also identifies factors affecting the frequency or severity of any potenti...

  20. RESEARCH ON COUPLED RELATIONSHIP BETWEEN HYDRATION NUMBER WITH RAMAN SPECTRUM

    Institute of Scientific and Technical Information of China (English)

    LEI Huaiyan; LIU Zhihong; FAN Shuanshi; XU Maoquan; GUAN Baocong

    2003-01-01

    As we know, there are three structures-sⅠ, sⅡ, and sH, with hydrocarbonate gas hydrate.Because of those special structures characteristics and potentail large fossil energy resource, gas hydrate play an important role in natural carbonate cycle system. In this paper, CH4, CO2, C3H8, and CH4 +CO2 system have been experimental performed in order to model hydrate formation and discomposition and to obtain hydrate stability conditions of tempreature and pressure. The results from laboratory using Raman spectra show that Raman spectrascopy is a effective tool to identify hydrate structure. Raman spectra of clathrate hydrate guest molecules are presented for two structure (sⅠ and sⅡ) in the following systems: CH4, CO2, C3 H8. Relatively occupancy of CH4 in the large and small cavities of sⅠ were determined by deconvoluting the v1 symmetric bands, resulting in hydration numbers of 6.04±0.03. The freqyuency of the v1 bands for CH4 in structures Ⅰ and Ⅱ differ statistically. The large cavities were measured to be almost fully occupied by CH4 and CO2, whereas only a small fraction of the small cavities are occupied by CH4. No CO2 was found in the small cavities.

  1. NIST Gas Hydrate Research Database and Web Dissemination Channel.

    Science.gov (United States)

    Kroenlein, K; Muzny, C D; Kazakov, A; Diky, V V; Chirico, R D; Frenkel, M; Sloan, E D

    2010-01-01

    To facilitate advances in application of technologies pertaining to gas hydrates, a freely available data resource containing experimentally derived information about those materials was developed. This work was performed by the Thermodynamic Research Center (TRC) paralleling a highly successful database of thermodynamic and transport properties of molecular pure compounds and their mixtures. Population of the gas-hydrates database required development of guided data capture (GDC) software designed to convert experimental data and metadata into a well organized electronic format, as well as a relational database schema to accommodate all types of numerical and metadata within the scope of the project. To guarantee utility for the broad gas hydrate research community, TRC worked closely with the Committee on Data for Science and Technology (CODATA) task group for Data on Natural Gas Hydrates, an international data sharing effort, in developing a gas hydrate markup language (GHML). The fruits of these efforts are disseminated through the NIST Sandard Reference Data Program [1] as the Clathrate Hydrate Physical Property Database (SRD #156). A web-based interface for this database, as well as scientific results from the Mallik 2002 Gas Hydrate Production Research Well Program [2], is deployed at http://gashydrates.nist.gov.

  2. Environmental impact studies for gas hydrate production test in the Ulleung Basin, East Sea of Korea

    Science.gov (United States)

    Ryu, Byong-Jae

    2017-04-01

    To develop potential future energy resources, the Korean National Gas Hydrate Program has been carried out since 2005. The program has been supported by the Ministry of Trade, Industry and Energy (MOTIE), and carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM), the Korea Gas Corporation (KOGAS) and the Korea National Oil Corporation (KNOC) under the management of Gas Hydrate R&D Organization (GHDO). As a part of this national program, geophysical surveys, geological studies on gas hydrates and two deep drilling expeditions were performed. Gas hydrate-bearing sand layers suitable for production using current technologies were found during the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) in 2010. Environmental impact studies (EIS) also have been carried out since 2012 by KIGAM in cooperation with domestic and foreign universities and research organizations to ensure safe production test that will be performed in near future. The schedule of production test is being planned. The EIS includes assessment of environmental risks, examination on domestic environmental laws related with production test, collection of basic oceanographic information, and baseline and monitoring surveys. Oceanographic information and domestic environmental laws are already collected and analyzed. Baseline survey has been performed using the in-house developed system, KIGAM Seafloor Observation System (KISOS) since 2013. It will also be performed. R/V TAMHAE II of KIGAM used for KISOS operation. As a part of this EIS, pseudo-3D Chirp survey also was carried out in 2014 to determine the development of fault near the potential testing site. Using KIGAM Seafloor Monitoring System (KIMOS), monitoring survey is planned to be performed from three month before production test to three months after production test. The geophysical survey for determining the change of gas hydrate reservoirs and production-efficiency around the production well would also be

  3. Developing Economic Arrangements for Water Resources Management : The potential of stakeholder oriented Water Valuation

    NARCIS (Netherlands)

    Hermans, L.M.; Halsema, van G.E.; Renault, D.

    2006-01-01

    As water is increasingly recognized as a scarce resource, the use of economic arrangements for water resources management seems increasingly promising. Experiences show that economic arrangements can contribute to a more efficient use of water resources but only if specific conditions are met, relat

  4. Assessment of (mu)grid distributed energy resource potential using DER-CAM and GIS

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Jennifer L.; Marnay, Chris; Bartholomew, Emily; Ouaglal, Boubekeur; Siddiqui, Afzal S.; LaCommare, Kristina S.H.

    2002-01-01

    This report outlines an approach to assess the local potential for deployment of distributed energy resources (DER), small power-generation installations located close to the point where the energy they produce will be consumed. Although local restraints, such as zoning, building codes, and on-site physical barriers are well-known frustrations to DER deployment, no analysis method has been developed to address them within a broad economic analysis framework. The approach developed here combines established economic optimization techniques embedded in the Distributed Energy Resource Customer Adoption Model (DER-CAM) with a geographic information system (GIS) analysis of local land-use constraint. An example case in the San Diego area is developed from a strictly customer perspective, based on the premise that future development of DER may take the form of microgrids ((mu)Grids) under the control of current utility customers. Beginning with assumptions about which customer combinations h ave complementary energy loads, a GIS was used to locate specific neighborhoods in the San Diego area with promising customer combinations. A detailed energy analysis was conducted for the commercial/residential area chosen covering both electrical and heat energy requirements. Under various scenarios, different combinations of natural gas reciprocating engines were chosen by DER-CAM, ranging in size from 25 kW to 500 kW, often with heat recovery or absorption cooling. These generators typically operate throughout the day and are supplemented by purchased electricity during late-night and early-morning hours, when utility time-of-use prices are lowest. Typical (mu)Grid scenarios displaced about 80 percent of their annual gas heat load through CHP. Self-generation together with absorption cooling dramatically reduce electricity purchases, which usually only occur during nighttime hours.

  5. Estimation of gas hydrate saturation with temperature calculated from hydrate threshold at C0002 during IODP NanTroSEIZE Stage 1 expeditions in the Nankai Trough

    Science.gov (United States)

    Miyakawa, A.; Yamada, Y.; Saito, S.; Bourlange, S.; Chang, C.; Conin, M.; Tomaru, H.; Kinoshita, M.; Tobin, H.; 314/315/316Scientists, E.

    2008-12-01

    During the IODP Expedition 314, conducted at Nankai trough accretionary prism, gas hydrate was observed at Site C0002. Gas hydrate beneath seafloor is promising energy source and potentially hazardous material during drilling. The precise estimation of gas hydrate saturation is important, but previous works have not considered the effect" of the in-situ temperature. In this study, we propose an estimation method of gas hydrate saturation with temperature calculated from threshold of gas hydrate. Gas hydrate saturation was determined based on the Logging While Drilling (LWD) Expedition 314 data. The gas hydrate bearing zone was located between 218.1 to 400.4 m below seafloor. Archie's relation was used to estimate gas hydrate saturation. This relation requires the porosity, the sea water resistivity and formation resistivity. We determined porosity to be between ~70 to ~30% based on density log. Since the resistivity of sea water is temperature dependent, temperature profile (calculated temperature model) was determined from the thermal conductivity and the temperature at the base of the gas hydrate. In our calculated temperature model, the saturation increases from ~10% at ~220m to ~30% at 400 m below sea floor. Spikes that have a maximum value at 80% at sand layers were observed. We also estimated the gas hydrate saturation from the constant temperature profile in 12°C (temperature constant model). This resulted in almost constant saturation (~15%) with the high saturation spikes. We compared these saturations with the hydrate occupation ratio within sand layers derived from RAB image. The hydrate occupation ratio shows increasing trend with increasing depth, and this trend is similar to the gas hydrate saturation with the calculated temperature model. This result suggests that the temperature profile should be considered to obtain precise gas hydrate saturation. Since the high sedimentation rate can affect thermal condition, we are planning to estimate the

  6. Marine Planning for Potential Wave Energy Facility Placement Amongst a Crowded Sea of Existing Resource Uses

    Science.gov (United States)

    Feist, B. E.; Fuller, E.; Plummer, M. L.

    2016-12-01

    Conversion to renewable energy sources is a logical response to increasing pressure to reduce greenhouse gas emissions. Ocean wave energy is the least developed renewable energy source, despite having the highest energy per unit area. While many hurdles remain in developing wave energy, assessing potential conflicts and evaluating tradeoffs with existing uses is essential. Marine planning encompasses a broad array of activities that take place in and affect large marine ecosystems, making it an ideal tool for evaluating wave energy resource use conflicts. In this study, we focus on the potential conflicts between wave energy conversion (WEC) facilities and existing marine uses in the context of marine planning, within the California Current Large Marine Ecosystem. First, we evaluated wave energy facility development using the Wave Energy Model (WEM) of the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) toolkit. Second, we ran spatial analyses on model output to identify conflicts with existing marine uses including AIS based vessel traffic, VMS and observer based measures of commercial fishing effort, and marine conservation areas. We found that regions with the highest wave energy potential were distant from major cities and that infrastructure limitations (cable landing sites) restrict integration with existing power grids. We identified multiple spatial conflicts with existing marine uses; especially shipping vessels and various commercial fishing fleets, and overlap with marine conservation areas varied by conservation designation. While wave energy generation facilities may be economically viable in the California Current, this viability must be considered within the context of the costs associated with conflicts that arise with existing marine uses. Our analyses can be used to better inform placement of WEC devices (as well as other types of renewable energy facilities) in the context of marine planning by accounting for economic tradeoffs

  7. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models

    National Research Council Canada - National Science Library

    Warzinski, Robert P; Lynn, Ronald; Haljasmaa, Igor; Leifer, Ira; Shaffer, Frank; Anderson, Brian J; Levine, Jonathan S

    2014-01-01

    Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing...

  8. Geology and coal bed methane resource potential of the Gondwana Barapukuria Coal Basin, Dinajpur, Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Md. Rafiqul; Hayashi, Daigoro [Department of Physics and Earth Sciences Faculty of Science, University of the Ryukyus, Okinawa, 903-0213 (Japan)

    2008-08-05

    constrained by adverse seam gradients and the presence of the overlying water-bearing Tertiary Dupi Tila sediments. The potential of coal bed methane extraction has been investigated as an alternative to underground mining. The study considers the Barapukuria deposit in terms of its geological structure, geothermal gradient, and the rank, porosity and permeability of the coal seams as determined by several phases of exploration of the area. The methane content of the bituminous coal at Barapukuria varies within the range 6.51-12.68 m{sup 3}/t, representing a potential resource of more than 5 Gm{sup 3} of gas. (author)

  9. Banana biomass as potential renewable energy resource: A Malaysian case study

    Energy Technology Data Exchange (ETDEWEB)

    Tock, Jing Yan; Lai, Chin Lin; Lee, Keat Teong; Tan, Kok Tat; Bhatia, Subhash [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2010-02-15

    The world has been relying on fossil fuels as its primary source of energy. This unsustainable energy source is not going to last long and thus, gradual shift towards green renewable energy should be practiced. In Malaysia, even though fossil fuel dominates the energy production, renewable energies such as hydropower and biomass are gaining popularity due to the implementation of energy policies and greater understanding on the importance of green energy. Malaysia has been well endowed with natural resources in areas such as agriculture and forestry. Thus, with the availability of feedstock, biomass energy is practical to be conducted and oil palm topped the ranking as biomass source here because of its high production. However, new sources should be sought after as to avoid the over dependency on a single source. Hence, other agriculture biomass should be considered such as banana plant biomass. This paper will discuss on its potential as a new biomass source in Malaysia. Banana plant is chosen as the subject due to its availability, high growth rates, carbon neutrality and the fact that it bears fruit only once a lifetime. Conversion of the biomass to energy can be done via combustion, supercritical water gasification and digestion to produce thermal energy and biogas. The theoretical potential power generation calculated reached maximum of 950 MW meeting more than half of the renewable energy requirement in the Fifth Fuel Policy (Eighth Malaysia Plan 2001-2005). Thus, banana biomass is feasible as a source of renewable energy in Malaysia and also other similar tropical countries in the world. (author)

  10. New technology and illness self-management: Potential relevance for resource-poor populations in Asia.

    Science.gov (United States)

    Lucas, Henry

    2015-11-01

    Advances in technology have made it possible for many standard diagnostic and health monitoring procedures, traditionally carried out by qualified personnel within medical facilities, to be reliably undertaken by patients or carers in their own homes with a minimum of basic training. There has also been a dramatic increase in the number and diversity of both sources of information on health issues and the possibilities for sharing information and experiences over ICT-based social networks. It has been suggested that these developments have the potential to 'empower' patients, reducing their dependence on providers and possibly improving their quality of care by increasing the volume and timeliness of diagnostic data and encouraging active self-management of their condition, for example through lifestyle changes. Perhaps more significantly, it is also seen by many economies with ageing populations as a way to contain high and ever rising healthcare costs. It has also been suggested that a move to greater self-management supported by expert networks and smart phone technology could improve the treatment of many millions of patients with chronic diseases in low and middle income economies that are also confronting the potential cost implications of epidemiological and demographic transitions, combined with the higher expectations of a more educated and knowledgeable population. There is now limited evidence that some fairly basic e- and mHealth interventions, for example in the areas of MNCH, malaria and HIV/AIDS can have a positive impact, even in resource-poor contexts. The aim here is to explore the extent to which further investment in technology could play a role in the development of an effective and affordable health sector strategy for at least some developing economies. It is suggested that the effectiveness of the approach may be highly dependent on the specific health conditions addressed, the nature of existing health systems and the overall socio

  11. Guest-Host Interaction Study in Clathrate Hydrates Using Lattice Dynamics Simulation

    Institute of Scientific and Technical Information of China (English)

    Maofeng Jing; Shunle Dong

    2005-01-01

    Lattice dynamics simulation of several gas hydrates (helium, argon, and methane) with different occupancy rates has been performed using TIP3P potential model. Results show that the coupling between the guest and host is not simple as depicted by the conventional viewpoints. For clathrate hydrate enclosing small guest, the small cages are dominantly responsible for the thermodynamic stability of clathrate hydrates. And the spectrum of methane hydrate is studied compared with argon hydrate,then as a result, shrink effect from positive hydrogen shell is proposed.

  12. Potential of chicken by-products as sources of useful biological resources

    Energy Technology Data Exchange (ETDEWEB)

    Lasekan, Adeseye [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abu Bakar, Fatimah, E-mail: fatim@putra.upm.edu.my [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hashim, Dzulkifly [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2013-03-15

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications.

  13. The Marsili Volcanic Seamount (Southern Tyrrhenian Sea: A Potential Offshore Geothermal Resource

    Directory of Open Access Journals (Sweden)

    Francesco Italiano

    2014-06-01

    Full Text Available Italy has a strong geothermal potential for power generation, although, at present, the only two geothermal fields being exploited are Larderello-Travale/Radicondoli and Mt. Amiata in the Tyrrhenian pre-Apennine volcanic district of Southern Tuscany. A new target for geothermal exploration and exploitation in Italy is represented by the Southern Tyrrhenian submarine volcanic district, a geologically young basin (Upper Pliocene-Pleistocene characterised by tectonic extension where many seamounts have developed. Heat-flow data from that area show significant anomalies comparable to those of onshore geothermal fields. Fractured basaltic rocks facilitate seawater infiltration and circulation of hot water chemically altered by rock/water interactions, as shown by the widespread presence of hydrothermal deposits. The persistence of active hydrothermal activity is consistently shown by many different sources of evidence, including: heat-flow data, gravity and magnetic anomalies, widespread presence of hydrothermal-derived gases (CO2, CO, CH4, 3He/4He isotopic ratios, as well as broadband OBS/H seismological information, which demonstrates persistence of volcano-tectonic events and High Frequency Tremor (HFT. The Marsili and Tyrrhenian seamounts are thus an important—and likely long-lasting-renewable energy resource. This raises the possibility of future development of the world’s first offshore geothermal power plant.

  14. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  15. Undiscovered phosphate resources in the Caribbean region and their potential value for agricultural development

    Science.gov (United States)

    Sheldon, Richard Porter; Davidson, D.F.; Riggs, S.R.; Burnett, W.C.

    1985-01-01

    The countries of the world's humid tropical regions lack the soil fertility necessary for high agricultural productivity. A recently developed agricultural technology that increases soil fertility can make tropical agriculture highly productive, but the technique requires large inputs into the soil of phosphorus and other fertilizers and soil amendments. Use of fertilizers derived from phosphate rock is increasing greatly throughout the world, and fertilizer raw materials are being produced more and more frequently from phosphate rock deposits close to the areas of use. An increased understanding of the origin of phosphate rock in ancient oceans has enabled exploration geologists to target areas of potential mineral resource value and to search directly for deposits. However, because of the difficulty of prospecting for mineral deposits in forested tropical regions, phosphate rock deposits are not being explored for in the countries of the humid tropics, including most countries of the Caribbean region. As a result, the countries of the Caribbean must import phosphate rock or phosphorus fertilizer products. In the present trade market, imports of phosphate are too low for the initiation of new agricultural technology in the Caribbean and Central American region. A newly proposed program of discovery and development of undiscovered phosphate rock deposits revolves around reconnaissance studies, prospecting by core drilling, and analysis of bulk samples. The program should increase the chance of discovering economic phosphate rock deposits. The search for and evaluation of phosphate rock resources in the countries of the Caribbean region would take about 5 years and cost an average of $15 million per country. The program is designed to begin with high risk-low cost steps and end with low risk-high cost steps. A successful program could improve the foreign exchange positions of countries in the Caribbean region by adding earnings from agricultural product exports and

  16. Baseline for Monitoring Water Resources Along Kabul and Indus Rivers of Pakistan for Potential Terrorist Contamination

    Science.gov (United States)

    Hamidullah, S.; Tariq, S.; Shah, M. T.; Bishop, M. P.; Kamp, U.; Olsenholler, J.

    2002-05-01

    Baseline for Monitoring Water Resources Along Kabul and Indus Rivers of Pakistan for Potential Terrorist Contamination Terrorism has temporarily constrained the dynamism of the world it was enjoying before September 11, 2001, but also has opened avenues for people of all ethnicities, creeds, and professions to join hands in combating it. Scientific efforts to combat terrorism are likely to lead to better use of existing scientific knowledge as well as to discoveries that will increase world organization, interconnectivity, and peace promotion. Afghanistan and surrounding regions are major focal points for current anti-terrorist activities of the USA and its allies, including Pakistan. The United States, Pakistan, and Afghanistan have shared many similar political objectives, as well as differences, in cold war and post-cold-war eras, reflected by variable provisions of material aid. It is well recognized that understanding Afghanistan requires comprehension of the Pakistan situation as well, especially for common resources. Water is paramount because it is absolutely vital, but can be contaminated by internal or cross-border terrorism. The Kabul and Indus rivers originate in the Hindu Kush - Himalaya ranges. The Kabul River flows from Afghanistan into Pakistan, and after irrigating Peshawar basin, joins the Indus. The Indus, after its origin in Tibet and flow through the Indian Himalaya, enters Pakistan and flows south as the irrigation lifeblood of the country. Any terroristic addition of radioactive nuclides or contaminants to either river could dramatically impact the dependent riverine ecologies. Monitoring cells thus need to be established at locations in Afghanistan and Pakistan to assess base-line river variances for possible future contamination by terrorists. This paper presents a general view and the physical and chemical parameters of parts of the two rivers, and of the surrounding underground water in Peshawar Basin, including pH, conductivity, total

  17. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions.

    Science.gov (United States)

    Wang, Yimin; Bowman, Joel M; Kamarchik, Eugene

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na(+)H2O, F(-)H2O, and Cl(-)H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20,000 coupled cluster CCSD(T) energies (awCVTZ basis for Na(+) and aVTZ basis for Cl(-) and F(-)), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  18. Introduction of the 2007-2008 JOGMEC/NRCan/Aurora Mallik Gas Hydrate Production Research Program, NWT, Canada

    Science.gov (United States)

    Yamamoto, K.; Dallimore, S. R.; Numasawa, M.; Yasuda, M.; Fujii, T.; Fujii, K.; Wright, J.; Nixon, F.

    2007-12-01

    Japan Oil, Gas and Metals National Corporation (JOGMEC) and Natural Resource Canada (NRCan) have embarked on a new research program to study the production potential of gas hydrates. The program is being carried out at the Mallik gas hydrate field in the Mackenzie Delta, a location where two previous scientific investigations have been carried in 1998 and 2002. In the 2002 program that was undertaken by seven partners from five countries, 468m3 of gas flow was measured during 124 hours of thermal stimulation using hot warm fluid. Small-scale pressure drawdown tests were also carried out using Schlumberger's Modular Dynamics Tester (MDT) wireline tool, gas flow was observed and the inferred formation permeabilities suggested the possible effectiveness of the simple depressurization method. While the testing undertaken in 2002 can be cited as the first well constrained gas production from a gas hydrate deposit, the results fell short of that required to fully calibrate reservoir simulation models or indeed establish the technical viability of long term production from gas hydrates. The objectives of the current JOGMEC/NRCan/Aurora Mallik production research program are to undertake longer term production testing to further constrain the scientific unknowns and to demonstrate the technical feasibility of sustained gas hydrate production using the depressurization method. A key priority is to accurately measure water and gas production using state-of-art production technologies. The primary production test well was established during the 2007 field season with the re-entry and deepening of JAPEX/JNOC/GSC Mallik 2L-38 well, originally drilled in 1998. Production testing was carried out in April of 2007 under a relatively low drawdown pressure condition. Flow of methane gas was measured from a 12m perforated interval of gas-hydrate-saturated sands from 1093 to 1105m. The results establish the potential of the depressurization method and provide a basis for future

  19. Potential International Approaches to Ownership/Control of Human Genetic Resources.

    Science.gov (United States)

    Rhodes, Catherine

    2016-09-01

    In its governance activities for genetic resources, the international community has adopted various approaches to their ownership, including: free access; common heritage of mankind; intellectual property rights; and state sovereign rights. They have also created systems which combine elements of these approaches. While governance of plant and animal genetic resources is well-established internationally, there has not yet been a clear approach selected for human genetic resources. Based on assessment of the goals which international governance of human genetic resources ought to serve, and the implications for how they will be accessed and utilised, it is argued that common heritage of mankind will be the most appropriate approach to adopt to their ownership/control. It does this with the aim of stimulating discussion in this area and providing a starting point for deeper consideration of how a common heritage of mankind, or similar, regime for human genetic resources would function and be implemented.

  20. Geoinformation evaluation of soil resource potential for horticulture in Krasnodar region and the Republic of Adygea

    Science.gov (United States)

    Savin, I. Yu.; Dragavtseva, I. A.; Mironenko, N. Ya.; Sergeeva, N. N.; Domozhirova, V. V.; Morenets, A. S.; Ovechkin, S. V.

    2016-04-01

    A geoinformation database for assessing soil resource potential for horticulture in Krasnodar region and Adygea has been developed. The results of geoinformation analysis indicate that only 55-60% of soils in these regions are suitable for growing horticultural crops without limitations; about 35-40% of the total soil area is unsuitable for horticultural purposes. For plum trees, the area of unsuitable soils is somewhat lower than for other horticultural crops. Geographically, the areas of soils suitable and unsuitable for horticulture are close to one another. The thickness of the loose earthy soil material, the gravel content, the degree of salinization, the soil texture, and the degree of soil hydromorphism are the major soil properties imposing considerable limitations for the development of fruit-growing industry in the studied regions. The highest portions of soils suitable for horticulture are found in Eiskii, Kushchevskii, Krylovskii, Shcherbinovskii, and Novokubanskii districts of Krasnodar region. The development of horticulture in Tuapsinskii, Slavyanskii, and Primorsko-Akhtarskii districts is limited because of the unsuitability of soils for this purpose. About 8% of the existing orchards are found on soils recognized as unsuitable for horticulture, and only about 20% of the existing orchards are found on soils suitable for fruit growing without limitations. About 70% of the existing fruit orchards are located on degraded soils or on soils with certain limitations for horticulture. The profitability of fruit orchards on such soils is lower than that of the orchards planted on soils without limitations for horticulture. This information is necessary for the adequate economic evaluation of the degree of soil degradation.

  1. A potential approach for low flow selection in water resource supply and management

    Science.gov (United States)

    Ouyang, Ying

    2012-08-01

    SummaryLow flow selections are essential to water resource management, water supply planning, and watershed ecosystem restoration. In this study, a new approach, namely the frequent-low (FL) approach (or frequent-low index), was developed based on the minimum frequent-low flow or level used in minimum flows and/or levels program in northeast Florida, USA. This FL approach was then compared to the conventional 7Q10 approach for low flow selections prior to its applications, using the USGS flow data from the freshwater environment (Big Sunflower River, Mississippi) as well as from the estuarine environment (St. Johns River, Florida). Unlike the FL approach that is associated with the biological and ecological impacts, the 7Q10 approach could lead to the selections of extremely low flows (e.g., near-zero flows) that may hinder its use for establishing criteria to prevent streams from significant harm to biological and ecological communities. Additionally, the 7Q10 approach could not be used when the period of data records is less than 10 years by definition while this may not the case for the FL approach. Results from both approaches showed that the low flows from the Big Sunflower River and the St. Johns River decreased as time elapsed, demonstrating that these two rivers have become drier during the last several decades with a potential of salted water intrusion to the St. Johns River. Results from the FL approach further revealed that the recurrence probability of low flow increased while the recurrence interval of low flow decreased as time elapsed in both rivers, indicating that low flows occurred more frequent in these rivers as time elapsed. This report suggests that the FL approach, developed in this study, is a useful alternative for low flow selections in addition to the 7Q10 approach.

  2. Resource availability hypothesis: Perceived financial and caloric status affect individuals' height preferences for potential partners.

    Science.gov (United States)

    Sun, Qingzhou; Lou, Liandi; Lu, Jingyi; Wang, Xiaoming; Zhong, Jun; Tan, Xuyun; Li, Yanxia; Liu, Yongfang

    2016-10-01

    Height is an important concern in human mate choices. Prior research indicates that people who live in areas with abundant resources differ from those who live in areas with scarce resources regarding height preferences. Based on a health-maximizing principle, we propose a resource availability account for such differences. Compared with women's height preferences, men's height preferences are hypothesized to be more dependent on either financial or caloric resource availability. Specifically, taller females would be more preferred by males who are poor in resources than those who are rich in resources. Results from three studies supported these hypotheses. In Study 1, men from remote areas of China who had lower family income preferred taller women more than those from eastern China who had higher family income. In Study 2, men who were financially dissatisfied preferred taller women more than those who were financially satisfied. In Study 3, men with low caloric status preferred taller women more than men with high caloric status. In addition, women's height preferences in Studies 1, 2 and 3 were less determined by resource availability. These findings suggest that height preferences are changeable, depending on financial or caloric status.

  3. Proposal of experimental device for the continuous accumulation of primary energy in natural gas hydrates

    Science.gov (United States)

    Siažik, Ján; Malcho, Milan; Lenhard, Richard

    2016-11-01

    Hydrates of the natural gas in the lithosphere are a very important potential source of energy that will be probably used in the coming decades. It seems as promising accumulation of the standard gas to form hydrates synthetically, stored, and disengage him when is peak demand. Storage of natural gas or biomethane in hydrates is advantageous not only in terms of storage capacity, but also from the aspect of safety storage hydrates. The gas stored in such form may occurs at relatively high temperatures and low pressures in comparison to other Technologies of gas- storage. In one cubic meter of hydrate can be stored up to 150 m3 of natural gas, depending on the conditions of thermobaric hydrate generation. This article discusses the design of the facility for the continuous generation of hydrates of natural gas measurement methodology and optimal conditions for their generation.

  4. Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources (External Review Draft)

    Science.gov (United States)

    This assessment provides a review and synthesis of available scientific literature and data to assess the potential for hydraulic fracturing for oil and gas to impact the quality or quantity of drinking water resources, and identifies factors affecting the frequency or severity o...

  5. Path-integral molecular dynamics simulations of hydrated hydrogen chloride cluster HCl(H{sub 2}O){sub 4} on a semiempirical potential energy surface

    Energy Technology Data Exchange (ETDEWEB)

    Takayanagi, Toshiyuki, E-mail: tako@mail.saitama-u.ac.jp [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Takahashi, Kenta; Kakizaki, Akira [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Shiga, Motoyuki [Center for Computational Science and E-systems, Japan Atomic Energy Agency, Higashi-Ueno 6-9-3, Taito-ku, Tokyo 110-0015 (Japan); Tachikawa, Masanori [Quantum Chemistry Division, International Graduate School of Arts and Sciences, Yokohama-City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan)

    2009-04-22

    Path-integral molecular dynamics simulations for the HCl(H{sub 2}O){sub 4} cluster have been performed on the ground-state potential energy surface directly obtained on-the-fly from semiempirical PM3-MAIS molecular orbital calculations. It is found that the HCl(H{sub 2}O){sub 4} cluster has structural rearrangement above the temperature of 300 K showing a liquid-like behavior. Quantum mechanical fluctuation of hydrogen nuclei plays a significant role in structural arrangement processes in this cluster.

  6. Path-integral molecular dynamics simulations of hydrated hydrogen chloride cluster HCl(H 2O) 4 on a semiempirical potential energy surface

    Science.gov (United States)

    Takayanagi, Toshiyuki; Takahashi, Kenta; Kakizaki, Akira; Shiga, Motoyuki; Tachikawa, Masanori

    2009-04-01

    Path-integral molecular dynamics simulations for the HCl(H 2O) 4 cluster have been performed on the ground-state potential energy surface directly obtained on-the-fly from semiempirical PM3-MAIS molecular orbital calculations. It is found that the HCl(H 2O) 4 cluster has structural rearrangement above the temperature of 300 K showing a liquid-like behavior. Quantum mechanical fluctuation of hydrogen nuclei plays a significant role in structural arrangement processes in this cluster.

  7. P-T stability conditions of methane hydrate in sediment from South China Sea

    Institute of Scientific and Technical Information of China (English)

    Shicai Sun; Yuguang Ye; Changling Liu; Fengkui Xiang; Yah Ma

    2011-01-01

    For reasonable assessment and safe exploitation of marine gas hydrate resource,it is important to determine the stability conditions of gas hydrates in marine sediment.In this paper,the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates,and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method.Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment,under any given pressure,is depressed by approximately -1.4 K relative to the pure water system.This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions.

  8. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  9. SCHEMES OF GAS PRODUCTION FROM NATURAL GAS HYDRATES

    Institute of Scientific and Technical Information of China (English)

    李淑霞; 陈月明; 杜庆军

    2003-01-01

    Natural gas hydrates are a kind of nonpolluting and high quality energy resources for future, the reserves of which are about twice of the carbon of the current fossil energy (petroleum, natural gas and coal) on the earth. And it will be the most important energy for the 21st century. The energy balance and numerical simulation are applied to study the schemes of the natural gas hydrates production in this paper,and it is considered that both depressurization and thermal stimulation are effective methods for exploiting natural gas hydrates, and that the gas production of the thermal stimulation is higher than that of the depressurization. But thermal stimulation is non-economic because it requires large amounts of energy.Therefore the combination of the two methods is a preferable method for the current development of the natural gas hydrates. The main factors which influence the production of natural gas hydrates are: the temperature of injected water, the injection rate, the initial saturation of the hydrates and the initial temperature of the reservoir which is the most important factor.

  10. Sustainable High-Potential Career Development: A Resource-Based View.

    Science.gov (United States)

    Iles, Paul

    1997-01-01

    In the current economic climate, fast-track career models pose problems for individuals and organizations. An alternative model uses a resource-based view of the company and principles of sustainable development borrowed from environmentalism. (SK)

  11. Sustainable High-Potential Career Development: A Resource-Based View.

    Science.gov (United States)

    Iles, Paul

    1997-01-01

    In the current economic climate, fast-track career models pose problems for individuals and organizations. An alternative model uses a resource-based view of the company and principles of sustainable development borrowed from environmentalism. (SK)

  12. USGS Map Service Showing Petroleum Resource Potential GIS of Northern Afghanistan

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map service includes energy related datasets presenting the results of a petroleum resource assessment of Northern Afghanistan, and other data used in the...

  13. Hydration and physical performance.

    Science.gov (United States)

    Murray, Bob

    2007-10-01

    There is a rich scientific literature regarding hydration status and physical function that began in the late 1800s, although the relationship was likely apparent centuries before that. A decrease in body water from normal levels (often referred to as dehydration or hypohydration) provokes changes in cardiovascular, thermoregulatory, metabolic, and central nervous function that become increasingly greater as dehydration worsens. Similarly, performance impairment often reported with modest dehydration (e.g., -2% body mass) is also exacerbated by greater fluid loss. Dehydration during physical activity in the heat provokes greater performance decrements than similar activity in cooler conditions, a difference thought to be due, at least in part, to greater cardiovascular and thermoregulatory strain associated with heat exposure. There is little doubt that performance during prolonged, continuous exercise in the heat is impaired by levels of dehydration >or= -2% body mass, and there is some evidence that lower levels of dehydration can also impair performance even during relatively short-duration, intermittent exercise. Although additional research is needed to more fully understand low-level dehydration's effects on physical performance, one can generalize that when performance is at stake, it is better to be well-hydrated than dehydrated. This generalization holds true in the occupational, military, and sports settings.

  14. Global Assessment of Methane Gas Hydrates: Outreach for the public and policy makers

    Science.gov (United States)

    Beaudoin, Yannick

    2010-05-01

    The United Nations Environment Programme (UNEP), via its official collaborating center in Norway, GRID-Arendal, is in the process of implementing a Global Assessment of Methane Gas Hydrates. Global reservoirs of methane gas have long been the topic of scientific discussion both in the realm of environmental issues such as natural forces of climate change and as a potential energy resource for economic development. Of particular interest are the volumes of methane locked away in frozen molecules known as clathrates or hydrates. Our rapidly evolving scientific knowledge and technological development related to methane hydrates makes these formations increasingly prospective to economic development. In addition, global demand for energy continues, and will continue to outpace supply for the foreseeable future, resulting in pressure to expand development activities, with associated concerns about environmental and social impacts. Understanding the intricate links between methane hydrates and 1) natural and anthropogenic contributions to climate change, 2) their role in the carbon cycle (e.g. ocean chemistry) and 3) the environmental and socio-economic impacts of extraction, are key factors in making good decisions that promote sustainable development. As policy makers, environmental organizations and private sector interests seek to forward their respective agendas which tend to be weighted towards applied research, there is a clear and imminent need for a an authoritative source of accessible information on various topics related to methane gas hydrates. The 2008 United Nations Environment Programme Annual Report highlighted methane from the Arctic as an emerging challenge with respect to climate change and other environmental issues. Building upon this foundation, UNEP/GRID-Arendal, in conjunction with experts from national hydrates research groups from Canada, the US, Japan, Germany, Norway, India and Korea, aims to provide a multi-thematic overview of the key

  15. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  16. The Economic Evaluation Model of the Use of the Intangible Resources Potential on the Example of Russian Regions

    Directory of Open Access Journals (Sweden)

    Elena V. Mikhalkina

    2016-12-01

    Full Text Available The paper presents the problem of assessing the potential use of intangible resources. The relevance of the research is determined by the necessity of innovation-based economy, the growing role of intangible resources (human, social, organizational, intellectual and other kinds of capital in promoting economic development of individual regions and the country as a whole. The paper proposes a verification method of the factors that characterize the potential use of intangible resources, affecting productivity. For a description of dependencies linear regression model was selected, also there was carried out an assessment of its parameters and performed Quality check of model. In the course of a capacity assessment intangible resource model constructing at the regional level was used regression analysis (the choice of indicator system, data collection and analysis, the calculation of the correlation coefficient, the choice of models and numerical estimation of its parameters, quality control model, assessment of the certain factors impact on the basis of the model. Also the factor analysis is used (matrix of factor loadings, and the classification on the basis of the factors selected regions is carried out. The regional clusterization of the intangible resources capacity will allow to make correct management decisions in the future.

  17. Some thermodynamical aspects of protein hydration water

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Mallamace, Domenico [Dipartimento SASTAS, Università di Messina, I-98166 Messina (Italy); Vasi, Sebastiano [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Vasi, Cirino [CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  18. Hydrate prevention in petroleum production sub sea system

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Paula L.F.; Rocha, Humberto A.R. [Universidade Estacio de Sa (UNESA), Rio de Janeiro, RJ (Brazil); Rodrigues, Antonio P. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2012-07-01

    In spite of the merits of the several hydrate prevention techniques used nowadays, such as: chemical product injection for inhibition and use of thick thermal insulate lines; hydrates per times happen and they are responsible for considerable production losses. Depressurization techniques can be used so much for prevention as in the remediation. Some hydrate removal techniques need a rig or vessel, resources not readily available and with high cost, reason that limits such techniques just for remediation and not for prevention. In the present work it is proposed and described an innovative depressurization system, remote and resident, for hydrate prevention and removal, applicable as for individual sub sea wells as for grouped wells by manifold. Based on low cost jet pumps, without movable parts and with a high reliability, this technique allows hydrate prevention or remediation in a fast and remote way, operated from the production unit. The power fluid line and fluid return line can be integrated in the same umbilical or annulus line structure, without significant increase in the construction costs and installation. It is not necessary to wait for expensive resource mobilization, sometimes not available quickly, such as: vessels or rigs. It still reduces the chemical product consumption and permits to depressurized stopped lines. Other additional advantage, depressurization procedure can be used in the well starting, removing fluid until riser emptying. (author)

  19. Potential mineral resources, Payette National Forest, Idaho: description and probabilistic estimation

    Science.gov (United States)

    Bookstrom, Arthur A.; Johnson, Bruce R.; Cookro, Theresa M.; Lund, Karen; Watts, Kenneth C.; King, Harley D.; Kleinkopf, Merlin D.; Pitkin, James A.; Sanchez, J. David; Causey, J. Douglas

    1998-01-01

    The Payette National Forest (PNF), in west-central Idaho, is geologically diverse and contains a wide variety of mineral resources. Mineral deposit types are grouped into locatable, leasable, and salable categories. The PNF has substantial past production and identified resources of locatable commodities, including gold, silver, copper, zinc, tungsten, antimony, mercury, and opal. Minor lignitic coal is the only leasable mineral resource known to be present in the PNF. Resources of salable commodities in the PNF include sand-and-gravel, basalt for crushed-rock aggregate, and minor gypsum. Locatable mineral resources are geographically divided between eastern and western parts of the PNF. The western PNF lies west of the Riggins-to-Cascade highway (US 95 - Idaho 55), and the eastern PNF is east of that highway. The western and eastern parts of the PNF are geologically distinctive and have different types of locatable mineral deposits, so their locatable mineral resources are described separately. Within the western and eastern parts of the PNF, locatable deposit types generally are described in order of decreasing geologic age. An expert panel delineated tracts considered geologically permissive and (or) favorable for the occurrence of undiscovered mineral deposits of types that are known to be present within or near the PNF. The panel also estimated probabilities for undiscovered deposits, and used numerical simulation, based on tonnage-grade distribution models, to derive estimates of in-situ metals contained. These estimates are summarized in terms of mean and median measures of central tendency. Most grade and tonnage distributions appear to be log-normal, with the median lower than the mean. Inasmuch as the mean is influenced by the largest deposits in the model tonnage-grade distribution, the median provides a lower measure of central tendency and a more conservative estimation of undiscovered resources.

  20. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  1. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  2. Potentialities of the urban volume: mapping underground resource potential and deciphering spatial economies and configurations of multi-level urban spaces

    OpenAIRE

    Doyle, Michael Robert

    2016-01-01

    This dissertation looks at the urban volume, in its natural and artificial materiality, as a source of potential for future urbanization. Underground resources—for buildable space, geomaterials, groundwater and geothermal energy—tend to be addressed only as needs arise. This has historically led to conflicts between uses: basements and tunnels flooded by rising aquifers; drinking water sources endangered by infrastructures that carry pollutants into groundwater systems. The work was carri...

  3. Investigation on Gas Storage in Methane Hydrate

    Institute of Scientific and Technical Information of China (English)

    Zhigao Sun; Rongsheng Ma; Shuanshi Fan; Kaihua Guo; Ruzhu Wang

    2004-01-01

    The effect of additives (anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactant alkyl polysaccharide glycoside (APG), and liquid hydrocarbon cyclopentane (CP)) on hydrate induction time and formation rate, and storage capacity was studied in this work. Micelle surfactant solutions were found to reduce hydrate induction time, increase methane hydrate formation rate and improve methane storage capacity in hydrates. In the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation were reduced. The critical micelle concentrations of SDS and APG water solutions were found to be 300× 10-6 and 500× 10-6 for methane hydrate formation system respectively. The effect of anionic surfactant (SDS) on methane storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduced hydrate induction time and improved hydrate formation rate, but could not improve methane storage in hydrates.

  4. Robber Barons Rising: The Potential for Resource Conflict in Ghazni, Afghanistan

    Directory of Open Access Journals (Sweden)

    Matthew P Dearing

    2014-02-01

    Full Text Available Security and governance in Ghazni Province, Afghanistan are threatened by resource conflict dynamics: groups focus on exploiting lootable resources in the short term while weak institutions and conflict persist. Elements within the Afghan government and insurgent organizations alike expand their power and influence in this manner. Understanding how criminal organizations operate within the regional political economy is essential to reducing the leverage these networks, associated criminal syndicates, and corrupt government officials have on the community. We proffer three hypotheses for development and stability practitioners to monitor as transition approaches in 2014, as well as recommendations for mitigating the onset of resource conflict in Ghazni as the province experiences a downgrade in foreign security forces. Adopting effective, anti-insurgency policies will be fundamental to mitigating the malicious effects on the population and providing incentives for peace, rather than continuing conflict.

  5. The use of conservation biomass feedstocks as potential bioenergy resources in the United Kingdom.

    Science.gov (United States)

    Phillips, D; Mitchell, E J S; Lea-Langton, A R; Parmar, K R; Jones, J M; Williams, A

    2016-07-01

    A number of countries have introduced energy policies to reduce the emission of carbon dioxide which, in the case of bio-heat, has resulted in increased use of small wood burning stoves and boilers, particularly in Europe. There are issues surrounding the supply of sustainable wood feedstock, prompting a desire to utilise local biomass resources. This includes biomass generated through the management of natural woodlands in nature reserves and conservation areas. These management practices can also extend to other areas, such as raised bog wildernesses and estuary Reed beds. We term the biomass from this resource as conservation biomass. This study is concerned with the viability of this resource as a fuel within the United Kingdom, and combustion tests were carried out using a small domestic stove. It was concluded that there is as much as 500kty(-1) that could be used in this way.

  6. Harmonising bioenergy resource potentials-Methodological lessons from review of state of the art bioenergy potential assessments

    NARCIS (Netherlands)

    Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    Published estimates of the potential of bioenergy vary widely, mainly due to the heterogeneity of methodologies, assumptions and datasets employed. These discrepancies are confusing for policy and it is thus important to have scientific clarity on the basis of the assessment outcomes. Such clear

  7. Harmonising bioenergy resource potentials-Methodological lessons from review of state of the art bioenergy potential assessments

    NARCIS (Netherlands)

    Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    Published estimates of the potential of bioenergy vary widely, mainly due to the heterogeneity of methodologies, assumptions and datasets employed. These discrepancies are confusing for policy and it is thus important to have scientific clarity on the basis of the assessment outcomes. Such clear ins

  8. Methane Hydrates: More Than a Viable Aviation Fuel Feedstock Option

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    Demand for hydrocarbon fuels is steadily increasing, and greenhouse gas emissions continue to rise unabated with the energy demand. Alternate fuels will be coming on line to meet that demand. This report examines the recovering of methane from methane hydrates for fuel to meet this demand rather than permitting its natural release into the environment, which will be detrimental to the planet. Some background on the nature, vast sizes, and stability of sedimentary and permafrost formations of hydrates are discussed. A few examples of the severe problems associated with methane recovery from these hydrates are presented along with the potential impact on the environment and coastal waters. Future availability of methane from hydrates may become an attractive option for aviation fueling, and so future aircraft design associated with methane fueling is considered.

  9. Interaction Study of Guest with Host in Clathrate Hydrate

    Institute of Scientific and Technical Information of China (English)

    Lin Wang; Shunle Dong

    2007-01-01

    Lattice dynamical simulations of noble gas hydrate structures I and II have been performed. Potential energies were investigated to study the influence of guest species on the stability of the hydrate structure. Results show that when the diameter of inclusion molecules is between 3 A and 4.2 A, such as Ar and Kr, the critical role of the 512 cage in the stabilization of hydrates becomes effective. For Xe hydrates SI and SII, with the help of lattice dynamical calculations, the modes attributions are identified directly. We proposed the resonant effect of the fingerprint frequency at about 7 meV and 10 meV which arise from the coupling of Xe molecules in the 512 cage with the host lattice.

  10. Strategic relationship between innovation development and management of human resources potential in the region

    Directory of Open Access Journals (Sweden)

    Anastasiya Nikolaevna Kozitsina

    2015-03-01

    Full Text Available The modern concept for modernization of Russia’s economy, put forward by the federal executive authorities, provides for an innovation development model. It is believed that only innovation is able to solve many problems that the Russian economy faces, and first of all, the enhancement of its competitiveness. One of the problems of Russia’s innovation system consists in the lack of resources and in their inefficient use in certain directions of development of innovation activity: outdated production capacities and facilities and equipment at research organizations; ageing of staff; limited access to financial resources. The availability and condition of these resources, the opportunities for their usage – in other words, the choice of innovation development strategy, all these factors determine the effectiveness of innovation activity in the region. The article provides a classification of the region’s innovation strategies. Due to the fact that the most important factor in achieving innovation economic development is the improvement of the quality of human resources, the authors highlight the issue of strategic compliance between the innovation development of the region and human resources management. The authors define the strategy for innovative development of Krasnoyarsk Krai on the basis of the proposed methodology according to the methodology of strategic compliance; they also give recommendations on human resources management in the region. The authors use analytical and statistical methods of research, and they take into consideration relevant scientific publications of domestic and foreign scientists. The research findings can be applied in the implementation of the concept for innovation development of the region

  11. Gas hydrates: entrance to a methane age or climate threat?

    Energy Technology Data Exchange (ETDEWEB)

    Krey, Volker; Nakicenovic, Nebojsa; Grubler, Arnulf; O' Neill, Brian; Riahi, Keywan [International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361 Laxenburg (Austria); Canadell, Josep G [Global Carbon Project, CSIRO Marine and Atmospheric Research, GPO Box 3023, Canberra, ACT 2601 (Australia); Abe, Yuichi [Social Science Consulting Unit, Japan Nus Co. Ltd, Loop-X Building 7F, 9-15 Kaigan 3-Chome, Minato-ku, Tokyo 108-0022 (Japan); Andruleit, Harald [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, 30655 Hannover (Germany); Archer, David [Department of the Geophysical Sciences at the University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States); Hamilton, Neil T M [WWF International Arctic Programme, Kristian Augusts gate 7a, 0130 Oslo (Norway); Johnson, Arthur [Hydrate Energy International, 612 Petit Berdot Drive, Kenner, LA 70065 (United States); Kostov, Veselin [Department of Physics and Astronomy, Johns Hopkins University, 3400 N Charles Street Baltimore, MD 21218 (United States); Lamarque, Jean-Francois [Atmospheric Chemistry Division, National Center for Atmospheric Research (NCAR), PO Box 3000, Boulder, CO 80307 (United States); Langhorne, Nicholas [US Office of Naval Research Global, Edison House, 223 Old Marylebone Road, London (United Kingdom); Nisbet, Euan G [Department of Geology, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom); Riedel, Michael [Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, QC, H3A 2A7 (Canada); Wang Weihua [Computer Network Information Center, Chinese Academy of Sciences, No. 4, 4th South Street, ZhongGuanCun, PO Box 349, Haidian District, Beijing 100080 (China); Yakushev, Vladimir, E-mail: krey@iiasa.ac.a [Gazprom VNIIGAZ LLC, Razvilka, Leninsky District, Moscow Region, 142717 (Russian Federation)

    2009-09-15

    Methane hydrates, ice-like compounds in which methane is held in crystalline cages formed by water molecules, are widespread in areas of permafrost such as the Arctic and in sediments on the continental margins. They are a potentially vast fossil fuel energy source but, at the same time, could be destabilized by changing pressure-temperature conditions due to climate change, potentially leading to strong positive carbon-climate feedbacks. To enhance our understanding of both the vulnerability of and the opportunity provided by methane hydrates, it is necessary (i) to conduct basic research that improves the highly uncertain estimates of hydrate occurrences and their response to changing environmental conditions, and (ii) to integrate the agendas of energy security and climate change which can provide an opportunity for methane hydrates-in particular if combined with carbon capture and storage-to be used as a 'bridge fuel' between carbon-intensive fossil energies and zero-emission energies. Taken one step further, exploitation of dissociating methane hydrates could even mitigate against escape of methane to the atmosphere. Despite these opportunities, so far, methane hydrates have been largely absent from energy and climate discussions, including global hydrocarbon assessments and the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

  12. A statistical mechanical description of biomolecular hydration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    We present an efficient and accurate theoretical description of the structural hydration of biological macromolecules. The hydration of molecules of almost arbitrary size (tRNA, antibody-antigen complexes, photosynthetic reaction centre) can be studied in solution and in the crystal environment. The biomolecular structure obtained from x-ray crystallography, NMR, or modeling is required as input information. The structural arrangement of water molecules near a biomolecular surface is represented by the local water density analogous to the corresponding electron density in an x-ray diffraction experiment. The water-density distribution is approximated in terms of two- and three-particle correlation functions of solute atoms with water using a potentials-of-mean-force expansion.

  13. Deep-sea ferromanganese deposits and their resource potentials for India

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.

    Indian Ocean. Nearly 700 million tonnes of nodule resources are estimated in this mine site, which are expected to contain around 14 million tonnes of combined Cu and Ni metals valued approximately over Rs. 1000 billion at current average market rate...

  14. Potential demand for recoverable resources from Indonesian wastewater and solid waste

    NARCIS (Netherlands)

    Kerstens, S.M.; Priyanka, A.; Dijk, Van K.C.; Ruijter, De F.J.; Leusbrock, I.; Zeeman, G.

    2016-01-01

    Projected population growth and urbanization will become a challenge for finite natural resources, their distribution and local availability. At the same time, 2.5 billion people do not have access to sanitation facilities. Indonesia is one of these rapidly growing countries with a poorly develop

  15. Climate Change Impacts on Oklahoma Wind Resources: Potential Energy Output Changes

    Directory of Open Access Journals (Sweden)

    Stephen Stadler

    2015-04-01

    Full Text Available An extensive literature on climate change modeling points to future changes in wind climates. Some areas are projected to gain wind resources, while others are projected to lose wind resources. Oklahoma is presently wind rich with this resource extensively exploited for power generation. Our work examined the wind power implications under the IPCC’s A2 scenario for the decades 2040–2049, 2050–2059 and 2060–2069 as compared to model reanalysis and Oklahoma Mesonetwork observations for the base decade of 1990–1999. Using two western Oklahoma wind farms as examples, we used North American Regional Climate Change Assessment Program (NARCCAP modeling outputs to calculate changes in wind power generation. The results show both wind farms to gain in output for all decades as compared to 1990–1999. Yet, the results are uneven by seasons and with some decades exhibiting decreases in the fall. These results are of interest in that it is clear that investors cannot count on wind studies of the present to adequately characterize future productivity. If our results are validated over time, Oklahoma stands to gain wind resources through the next several decades.

  16. Capitalizing on the Overlap between Instructional Technology and Human Resource Development: A Potential Opportunity

    Science.gov (United States)

    Demps, Elaine L.

    2008-01-01

    This article explores the apparent overlap between the fields of instructional technology (IT) and human resource development (HRD) and offers a preliminary conceptualization of how to capitalize on the overlap through graduate academic curricula, where IT and HRD practitioners and scholars are developed. This conceptualization was formed by first…

  17. Analysis of potential RDF resources from solid waste and their energy values in the largest industrial city of Korea.

    Science.gov (United States)

    Dong, Trang T T; Lee, Byeong-Kyu

    2009-05-01

    The production potential of refuse derived fuel (RDF) in the largest industrial city of Korea is discussed. The purpose of this study is to evaluate the energy potential of the RDF obtained from utilizing combustible solid waste as a fuel resource. The total amount of generated solid waste in the industrial city was more than 3.3 million tonnes, which is equivalent to 3.0tonnes per capita in a single year. The highest amount of solid waste was generated in the city district with the largest population and the biggest petrochemical industrial complex (IC) in Korea. Industrial waste accounted for 89% of the total amount of the solid waste in the city. Potential RDF resources based on combustible solid wastes including wastepaper, wood, rubber, plastic, synthetic resins and industrial sludge were identified. The amount of combustible solid waste that can be used to produce RDF was 635,552tonnes/yr, consisting of three types of RDF: 116,083tonnes/yr of RDF-MS (RDF from municipal solid waste); 146,621tonnes/yr of RDF-IMC (RDF from industrial, municipal and construction wastes); and 372,848tonnes/yr of RDF-IS (RDF from industrial sludge). The total obtainable energy value from the RDF resources in the industrial city was more than 2,240,000x10(6)kcal/yr, with the following proportions: RDF-MS of 25.6%, RDF-IMC of 43.5%, and RDF-IS of 30.9%. If 50% or 100% of the RDF resources are utilized as fuel resources, the industrial city can save approximately 17.6% and 35.2%, respectively, of the current total disposal costs.

  18. The Gabbs Valley, Nevada, geothermal prospect: Exploring for a potential blind geothermal resource

    Science.gov (United States)

    Payne, J.; Bell, J. W.; Calvin, W. M.

    2012-12-01

    The Gabbs Valley prospect in west-central Nevada is a potential blind geothermal resource system. Possible structural controls on this system were investigated using high-resolution LiDAR, low sun-angle aerial (LSA) photography, exploratory fault trenching and a shallow temperature survey. Active Holocene faults have previously been identified at 37 geothermal systems with indication of temperatures greater than 100° C in the western Nevada region. Active fault controls in Gabbs Valley include both Holocene and historical structures. Two historical earthquakes occurring in 1932 and 1954 have overlapping surface rupture patterns in Gabbs Valley. Three active fault systems identified through LSA and LiDAR mapping have characteristics of Basin and Range normal faulting and Walker Lane oblique dextral faulting. The East Monte Cristo Mountains fault zone is an 8.5 km long continuous NNE striking, discrete fault with roughly 0.5 m right-normal historic motion and 3 m vertical Quaternary separation. The Phillips Wash fault zone is an 8.2 km long distributed fault system striking NE to N, with Quaternary fault scarps of 1-3 m vertical separation and a 500 m wide graben adjacent to the Cobble Cuesta anticline. This fault displays ponded drainages, an offset terrace riser and right stepping en echelon fault patterns suggestive of left lateral offset, and fault trenching exposed non-matching stratigraphy typical of a significant component of lateral offset. The unnamed faults of Gabbs Valley are a 10.6 km long system of normal faults striking NNE and Quaternary scarps are up to 4 m high. These normal faults largely do not have historic surface rupture, but a small segment of 1932 rupture has been identified. A shallow (2 m deep) temperature survey of 80 points covering roughly 65 square kilometers was completed. Data were collected over approximately 2 months, and continual base station temperature measurements were used to seasonally correct temperature measurements. A 2

  19. Hydrates fighting tools; Des outils de lutte contre les hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-04-01

    Shell Exploration and Production company (SEPCo) is the operator of the 'Popeye' deep offshore field in the Gulf of Mexico. Thanks to the introduction of a low dosing hydrates inhibitor (LDHI) elaborated by Shell Global Solutions, the company has added a 7.5 Gpc extra volume of gas to its recoverable reserves. This new technology avoids the plugging of pipes by hydrates formation. (J.S.)

  20. Geological characteristics and resource potentials of oil shale in Ordos Basin, Center China

    Energy Technology Data Exchange (ETDEWEB)

    Yunlai, Bai; Yingcheng, Zhao; Long, Ma; Wu-jun, Wu; Yu-hu, Ma

    2010-09-15

    It has been shown that not only there are abundant oil, gas, coal, coal-bed gas, groundwater and giant uranium deposits but also there are abundant oil shale resources in Ordos basin. It has been shown also that the thickness of oil shale is, usually, 4-36m, oil-bearing 1.5%-13.7%, caloric value 1.66-20.98MJ/kg. The resource amount of oil shale with burial depth less than 2000 m is over 2000x108t (334). Within it, confirmed reserve is about 1x108t (121). Not only huge economic benefit but also precious experience in developing oil shale may be obtained in Ordos basin.

  1. Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

    1979-09-01

    Environmental baseline data for the Snake River Plain known geothermal resource areas (KGRAs) are evaluated for geothermal development. The objective is to achieve a sound data base prior to geothermal development. These KGRAs are: Vulcan Hot Springs, Crane Creek, Castle Creek, Bruneau, Mountain Home, Raft River, Island Park, and Yellowstone. Air quality, meteorology, hydrology, water quality, soils, land use, geology, subsidence, seismicity, terrestrial and aquatic ecology, demography, socioeconomics, and heritage resources are analyzed. This program includes a summary of environmental concerns related to geothermal development in each of the KGRAs, an annotated bibliography of reference materials (Volume II), detailed reports on the various program elements for each of the KGRAs, a program plan identifying future research needs, and a comprehensive data file.

  2. Canada ocean energy atlas phase 1 : potential tidal current energy resources analysis background

    Energy Technology Data Exchange (ETDEWEB)

    Tarbotton, M.; Larson, M. [Triton Consultants Ltd., Vancouver, BC (Canada)

    2006-05-15

    This report was prepared as a background document for a preliminary tidal current resource inventory for Canadian waters. Energy calculations in the study were based on preliminary estimates of known tidal flows. The inventory was based on nautical charts, Canadian sailing directions, tide and tidal current constituent data, and numerical tidal modelling data. A finite element harmonic tidal model tool was used to provide tidal height and current velocities data for a varying number of tidal constituents. The study identified several major tidal current power resources throughout Canada. It was concluded that modelling studies should concentrate on Minas Basin in Nova Scotia; Georgia and Johnstone Straits in British Columbia; and Hudson's Strait and Ungava Bay. Modelling studies should provide estimates of extractable energy as well as provide initial assessments of the environmental impacts of tidal energy extraction in all 3 regions. 3 refs., 8 tabs., 16 figs.

  3. Potential effects of energy development on environmental resources of the Williston Basin in Montana, North Dakota, and South Dakota

    Science.gov (United States)

    Post van der Burg, Max; Vining, Kevin C.; Frankforter, Jill D.

    2017-09-28

    The Williston Basin, which includes parts of Montana, North Dakota, and South Dakota in the United States, has been a leading domestic oil and gas producing area. To better understand the potential effects of energy development on environmental resources in the Williston Basin, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, and in support of the needs identified by the Bakken Federal Executive Group (consisting of representatives from 13 Federal agencies and Tribal groups), began work to synthesize existing information on science topics to support management decisions related to energy development. This report is divided into four chapters (A–D). Chapter A provides an executive summary of the report and principal findings from chapters B–D. Chapter B provides a brief compilation of information regarding the history of energy development, physiography, climate, land use, demographics, and related studies in the Williston Basin. Chapter C synthesizes current information about water resources, identifies potential effects from energy development, and summarizes water resources research and information needs in the Williston Basin. Chapter D summarizes information about ecosystems, species of conservation concern, and potential effects to those species from energy development in the Williston Basin.

  4. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.

    Science.gov (United States)

    Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland

    2015-11-01

    Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. © The Author(s) 2015.

  5. Unlocking the resource potential of organic waste: a South African perspective

    CSIR Research Space (South Africa)

    Greben, HA

    2009-10-01

    Full Text Available outcome of that study indicated that landfill was identified as the management option with the least benefits. Discussion This study clearly indicated that OFMSW is a valuable resource for energy production. In Europe the biological treatment... the emphasis from disposal to minimization, recov- ery, recycling and treatment (Sakai et al. 1996, DEAT 1999a). Anaerobic digestion as a biological treatment technology applied to the organic fraction of municipal solid waste (OFMSW), has become...

  6. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource.

    Science.gov (United States)

    White, Jeremy T.; Karakhanian, Arkadi; Connor, Chuck; Connor, Laura; Hughes, Joseph D.; Malservisi, Rocco; Wetmore, Paul

    2015-01-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  7. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  8. Mineral resource potential map of the Cohutta Wilderness and the Hemp Top Roadless Area, northern Georgia and southeastern Tennessee

    Science.gov (United States)

    Gair, Jacob E.; Gazdik, Gertrude C.; Dunn, Maynard L.

    1982-01-01

    The Cohutta Wilderness and the Hemp Top Roadless Area have minor occurrences of metallic minerals, but no known resource potential for such minerals in the forseeable future, judging by available data, and only a very minor potential for stone for aggregate, road construction, and similar nondimension use. The rocks of the Ducktown massive sulfide district to the northeast do not appear to extend into the study area, and geochemical data derived from samples of rock, soil, and alluvium do not reveal any anomalously high concentrations of trace elements that could be representative of hidden mineral deposits. Sedimentary rocks underlying the metamorphic rocks exposed at the surface have an unknown potential for hydrocarbons in the form of natural gas. No reasonable estimate of the potential can be made until some test drilling is done in the area.

  9. Anomalous preservation of pure methane hydrate at 1 atm

    Science.gov (United States)

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2001-01-01

    Direct measurement of decomposition rates of pure, polycrystalline methane hydrate reveals a thermal regime where methane hydrate metastably `preserves' in bulk by as much as 75 K above its nominal equilibrium temperature (193 K at 1 atm). Rapid release of the sample pore pressure at isothermal conditions between 242 and 271 K preserves up to 93% of the hydrate for at least 24 h, reflecting the greatly suppressed rates of dissociation that characterize this regime. Subsequent warming through the H2O ice point then induces rapid and complete dissociation, allowing controlled recovery of the total expected gas yield. This behavior is in marked contrast to that exhibited by methane hydrate at both colder (193-240 K) and warmer (272-290 K) test conditions, where dissociation rates increase monotonically with increasing temperature. Anomalous preservation has potential application for successful retrieval of natural gas hydrate or hydrate-bearing sediments from remote settings, as well as for temporary low-pressure transport and storage of natural gas.

  10. Development of Carbon Sequestration Options by Studying Carbon Dioxide-Methane Exchange in Hydrates

    Science.gov (United States)

    Horvat, Kristine Nicole

    Gas hydrates form naturally at high pressures (>4 MPa) and low temperatures (climate change point of view, a 100 ppm increase in atmospheric carbon dioxide (CO2) levels over the past century is of urgent concern. A potential solution to both of these issues is to simultaneously exchange CH4 with CO 2 in natural hydrate reserves by forming more stable CO2 hydrates. This approach would minimize disturbances to the host sediment matrix of the seafloor while sequestering CO2. Understanding hydrate growth over time is imperative to prepare for large scale CH4 extraction coupled with CO2 sequestration. In this study, we performed macroscale experiments in a 200 mL high-pressure Jerguson cell that mimicked the pressure-temperature conditions of the seafloor. A total of 13 runs were performed under varying conditions. These included the formation of CH4 hydrates, followed by a CO2 gas injection and CO2 hydrate formation followed by a CH4 gas injection. Results demonstrated that once gas hydrates formed, they show "memory effect" in subsequent charges, irrespective of the two gases injected. This was borne out by the induction time data for hydrate formation that reduced from 96 hours for CH4 and 24 hours for CO2 to instant hydrate formation in both cases upon injection of a secondary gas. During the study of CH4-CO2 exchange where CH4 hydrates were first formed and CO2 gas was injected into the system, gas chromatographic (GC) analysis of the cell indicated a pure CH4 gas phase, i.e., all injected CO2 gas entered the hydrate phase and remained trapped in hydrate cages for several hours, though over time some CO2 did enter the gas phase. Alternatively, during the CH 4-CO2 exchange study where CO2 hydrates were first formed, the injected CH4 initially entered the hydrate phase, but quickly gaseous CO2 exchanged with CH4 in hydrates to form more stable CO2 hydrates. These results are consistent with the better thermodynamic stability of CO2 hydrates, and this appears to be a

  11. A decision analysis framework for estimating the potential hazards for drinking water resources of chemicals used in hydraulic fracturing fluids.

    Science.gov (United States)

    Yost, Erin E; Stanek, John; Burgoon, Lyle D

    2017-01-01

    Despite growing concerns over the potential for hydraulic fracturing to impact drinking water resources, there are limited data available to identify chemicals used in hydraulic fracturing fluids that may pose public health concerns. In an effort to explore these potential hazards, a multi-criteria decision analysis (MCDA) framework was employed to analyze and rank selected subsets of these chemicals by integrating data on toxicity, frequency of use, and physicochemical properties that describe transport in water. Data used in this analysis were obtained from publicly available databases compiled by the United States Environmental Protection Agency (EPA) as part of a larger study on the potential impacts of hydraulic fracturing on drinking water. Starting with nationwide hydraulic fracturing chemical usage data from EPA's analysis of the FracFocus Chemical Disclosure Registry 1.0, MCDAs were performed on chemicals that had either noncancer toxicity values (n=37) or cancer-specific toxicity values (n=10). The noncancer MCDA was then repeated for subsets of chemicals reported in three representative states (Texas, n=31; Pennsylvania, n=18; and North Dakota, n=20). Within each MCDA, chemicals received scores based on relative toxicity, relative frequency of use, and physicochemical properties (mobility in water, volatility, persistence). Results show a relative ranking of these chemicals based on hazard potential, and provide preliminary insight into chemicals that may be more likely than others to impact drinking water resources. Comparison of nationwide versus state-specific analyses indicates regional differences in the chemicals that may be of more concern to drinking water resources, although many chemicals were commonly used and received similar overall hazard rankings. Several chemicals highlighted by these MCDAs have been reported in groundwater near areas of hydraulic fracturing activity. This approach is intended as a preliminary analysis, and represents one

  12. Assessment of renewable energy resources potential for large scale and standalone applications in Ethiopia

    NARCIS (Netherlands)

    Tucho, Gudina Terefe; Weesie, Peter D.M.; Nonhebel, Sanderine

    2014-01-01

    This study aims to determine the contribution of renewable energy to large scale and standalone application in Ethiopia. The assessment starts by determining the present energy system and the available potentials. Subsequently, the contribution of the available potentials for large scale and

  13. Storing natural gas as frozen hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, J.S.; Khokhar, A.A. (Univ. of Trondheim (Norway)); Parlaktuna, M. (Middle East Technical Univ., Ankara (Turkey))

    1994-02-01

    The formation of natural gas hydrates is a well-known problem in the petroleum and natural gas industries. Hydrates are solid materials that form when liquid water and natural gas are brought in contact under pressure. Hydrate formation need not be a problem. On the contrary, it can be an advantage. The volume of hydrates is much less than that of natural gas. At standard conditions, hydrates occupy 150 to 170 times less volume than the corresponding gas. Typically, natural gas hydrates contain 15% gas and 85% water by mass. It follows that hydrates can be used for large-scale storage of natural gas. Benesh proposed using hydrates to improve the load factor of natural gas supply systems. The author suggested that hydrates could be produced by bringing liquid water into contact with natural gas at the appropriate temperature and high pressure. The hydrate then would be stored at a temperature and pressure where it was stable. When gas was needed for the supply system, the hydrate would be melted at low pressure. The stability of a natural gas hydrate during storage at atmospheric pressure and below-freezing temperatures was studied in the laboratory. The gas hydrate was produced in a stirred vessel at 2- to 6-MPa pressure and temperatures from 0 to 20 C. The hydrate was refrigerated and stored in deep freezers at [minus]5, [minus]10, and [minus]18 C for up to 10 days. The natural gas hydrate remained stable when kept frozen at atmospheric pressure.

  14. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.

    Science.gov (United States)

    Park, Hanwool; Lee, Choul-Gyun

    2016-11-01

    Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break-even point and may not be sustainable at a large-scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non-conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Potentials for Improvement of Resource Efficiency in Printed Circuit Board Manufacturing: A Case Study Based on Material Flow Cost Accounting

    Directory of Open Access Journals (Sweden)

    Yi-Xuan Wang

    2017-05-01

    Full Text Available The pursuit of sustainable resource use by manufacturing companies is driven by resource scarcity, environmental awareness, and cost savings potentials. To address these issues, Material Flow Cost Accounting (MFCA has been developed and applied as an effective environmental management tool. Within MFCA’s general allocation, the accounts of products and losses are overrated by weight or volume. However, such a method is incompatible with Printed Circuit Board (PCB manufacturing because of industry characteristics in which primary inputs and products are measured by area. Based on MFCA, this case study systematically established several linear cost calculation models along the production process for capturing the actual waste flows as well as performing cost-benefit analysis. The recognition of previously ignored losses offered the incentive to find appropriate indicators to conduct cost-benefit analysis on hotspots for losses. Loss identification and analysis indicated that machining and wiring are the necessities and priorities of process optimization for resource efficiency improvement measures. Therefore, this research could not only advance the achievement of a profitable and sustainable production while improving resource efficiency at the source but could also provide support for decision making in PCB manufacturing.

  16. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae

    Science.gov (United States)

    Park, Hanwool

    2016-01-01

    Abstract Microalgae have long been considered as one of most promising feedstocks with better characteristics for biofuels production over conventional energy crops. There have been a wide range of estimations on the feasibility of microalgal biofuels based on various productivity assumptions and data from different scales. The theoretical maximum algal biofuel productivity, however, can be calculated by the amount of solar irradiance and photosynthetic efficiency (PE), assuming other conditions are within the optimal range. Using the actual surface solar irradiance data around the world and PE of algal culture systems, maximum algal biomass and biofuel productivities were calculated, and feasibility of algal biofuel were assessed with the estimation. The results revealed that biofuel production would not easily meet the economic break‐even point and may not be sustainable at a large‐scale with the current algal biotechnology. Substantial reductions in the production cost, improvements in lipid productivity, recycling of resources, and utilization of non‐conventional resources will be necessary for feasible mass production of algal biofuel. Among the emerging technologies, cultivation of microalgae in the ocean shows great potentials to meet the resource requirements and economic feasibility in algal biofuel production by utilizing various marine resources. PMID:27782372

  17. Biological ensemble modeling to evaluate potential futures of living marine resources

    DEFF Research Database (Denmark)

    Gårdmark, Anna; Lindegren, Martin; Neuenfeldt, Stefan

    2013-01-01

    trajectories carried through to uncertainty of cod responses. Models ignoring the feedback from prey on cod showed large interannual fluctuations in cod dynamics and were more sensitive to the underlying uncertainty of climate forcing than models accounting for such stabilizing predator–prey feedbacks. Yet......Natural resource management requires approaches to understand and handle sources of uncertainty in future responses of complex systems to human activities. Here we present one such approach, the “biological ensemble modeling approach,” using the Eastern Baltic cod (Gadus morhua callarias...

  18. Potential Impacts of Climate Change on Water Resources in the Kunhar River Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Rashid Mahmood

    2016-01-01

    Full Text Available Pakistan is one of the most highly water-stressed countries in the world and its water resources are greatly vulnerable to changing climatic conditions. The present study investigates the possible impacts of climate change on the water resources of the Kunhar River basin, Pakistan, under A2 and B2 scenarios of HadCM3, a global climate model. After successful development of the hydrological modeling system (HEC-HMS for the basin, streamflow was simulated for three future periods (2011–2040, 2041–2070, and 2071–2099 and compared with the baseline period (1961–1990 to explore the changes in different flow indicators such as mean flow, low flow, median flow, high flow, flow duration curves, temporal shift in peaks, and temporal shifts in center-of-volume dates. From the results obtained, an overall increase in mean annual flow was projected in the basin under both A2 and B2 scenarios. However, while summer and autumn showed a noticeable increase in streamflow, spring and winter showed decreased streamflow. High and median flows were predicted to increase, but low flow was projected to decrease in the future under both scenarios. Flow duration curves showed that the probability of occurrence of flow is likely to be more in the future. It was also noted that peaks were predicted to shift from June to July in the future, and the center-of-volume date—the date at which half of the annual flow passes—will be delayed by about 9–17 days in the basin, under both A2 and B2 scenarios. On the whole, the Kunhar basin will face more floods and droughts in the future due to the projected increase in high flow and decrease in low flow and greater temporal and magnitudinal variations in peak flows. These results highlight how important it is to take cognizance of the impact of climate change on water resources in the basin and to formulate suitable policies for the proper utilization and management of these resources.

  19. Framework for estimating potential wastes and secondary resources accumulated within an economy--a case study of construction minerals in Japan.

    Science.gov (United States)

    Hashimoto, Seiji; Tanikawa, Hiroki; Moriguchi, Yuichi

    2009-11-01

    Material stocks in economic society are considered to represent a reserve for wastes and secondary resources. From the viewpoints of proper disposal and reutilization of stocked materials, accurate estimation of the amount of materials that will emerge as wastes or secondary resources in the future is important. We defined materials that have a high probability of emerging as wastes or secondary resources as "potential wastes and secondary resources" and estimated that amount for construction minerals in Japan as a case study. The following conclusions were drawn. (1) We classified materials that are input into economic society into four categories: potential wastes and secondary resources, potential dissipated materials, dissipatively used materials, and permanent structures. By clarifying the latter three non-potential wastes and secondary resources, we performed a more accurate assessment of the wastes and secondary resources that will emerge in the future. (2) The share of potential wastes and secondary resources was estimated to be about 30% of all construction minerals that have been input into and accumulated in Japanese economic society. (3) Information related to potential dissipated materials and dissipatively used materials will provide fundamental knowledge to support analyses of the environmental impacts and resource losses which these materials might generate.

  20. Airway Hydration and COPD

    Science.gov (United States)

    Ghosh, Arunava; Boucher, R.C.; Tarran, Robert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443

  1. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  2. Basin-Wide Temperature Constraints On Gas Hydrate Stability In The Gulf Of Mexico

    Science.gov (United States)

    MacDonald, I. R.; Reagan, M. T.; Guinasso, N. L.; Garcia-Pineda, O. G.

    2012-12-01

    Gas hydrate deposits commonly occur at the seafloor-water interface on marine margins. They are especially prevalent in the Gulf of Mexico where they are associated with natural oil seeps. The stability of these deposits is potentially challenged by fluctuations in bottom water temperature, on an annual time-scale, and under the long-term influence of climate change. We mapped the locations of natural oil seeps where shallow gas hydrate deposits are known to occur across the entire Gulf of Mexico basin based on a comprehensive review of synthetic aperture radar (SAR) data (~200 images). We prepared a bottom water temperature map based on the archive of CTD casts from the Gulf (~6000 records). Comparing the distribution of gas hydrate deposits with predicted bottom water temperature, we find that a broad area of the upper slope lies above the theoretical stability horizon for structure 1 gas hydrate, while all sites where gas hydrate deposits occur are within the stability horizon for structure 2 gas hydrate. This is consistent with analytical results that structure 2 gas hydrates predominate on the upper slope (Klapp et al., 2010), where bottom water temperatures fluctuate over a 7 to 10 C range (approx. 600 m depth), while pure structure 1 hydrates are found at greater depths (approx. 3000 m). Where higher hydrocarbon gases are available, formation of structure 2 gas hydrate should significantly increase the resistance of shallow gas hydrate deposits to destabilizing effects variable or increasing bottom water temperature. Klapp, S.A., Bohrmann, G., Kuhs, W.F., Murshed, M.M., Pape, T., Klein, H., Techmer, K.S., Heeschen, K.U., and Abegg, F., 2010, Microstructures of structure I and II gas hydrates from the Gulf of Mexico: Marine and Petroleum Geology, v. 27, p. 116-125.Bottom temperature and pressure for Gulf of Mexico gas hydrate outcrops and stability horizons for sI and sII hydrate.

  3. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2006-09-30

    The objectives of the study were: (1) to perform resource assessment of the thermogenic gas resources in deeply buried (>15,000 ft) natural gas reservoirs of the onshore interior salt basins of the north central and northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling; and (2) to use the petroleum system based resource assessment to estimate the volume of the deep thermogenic gas resource that is available for potential recovery and to identify those areas in the interior salt basins with high potential for this thermogenic gas resource. Petroleum source rock analysis and petroleum system characterization and modeling, including thermal maturation and hydrocarbon expulsion modeling, have shown that the Upper Jurassic Smackover Formation served as the regional petroleum source rock in the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin. Thus, the estimates of the total hydrocarbons, oil, and gas generated and expelled are based on the assumption that the Smackover Formation is the main petroleum source rock in these basins and subbasins. The estimate of the total hydrocarbons generated for the North Louisiana Salt Basin in this study using a petroleum system approach compares favorably with the total volume of hydrocarbons generated published by Zimmermann (1999). In this study, the estimate is 2,870 billion barrels of total hydrocarbons generated using the method of Schmoker (1994), and the estimate is 2,640 billion barrels of total hydrocarbons generated using the Platte River software application. The estimate of Zimmermann (1999) is 2,000 to 2,500 billion barrels of total hydrocarbons generated. The estimate of gas generated for this basin is 6,400 TCF using the Platte River software application, and 12,800 TCF using the method of Schmoker (1994). Barnaby (2006) estimated that the total gas volume generated for this basin ranges from 4,000 to 8,000 TCF. Seventy

  4. Designing a potential game via pricing for optimal resource management in non-cooperative Cognitive Radio networks

    Directory of Open Access Journals (Sweden)

    M.F. Sabahi

    2013-12-01

    Full Text Available In this paper, based on the game theory, an optimized resource management algorithm for cognitive radio networks has been presented. Considering the personal interests, each user selects its own desired utility function and competes for channel and power selection. This non-cooperative approach is controlled through an appropriate pricing method. We have shown that if the profit function in a cooperative potential game is used as the pricing function in a non-cooperative network, the game governing the non-cooperative network will also become potential and will thus converge to Nash equilibrium. If the network is designed based on the cooperation of the users, the existence of selfish users among them will make the network be unstable. Besides, it decreases resource utilization gain. Using the recommended pricing has been shown to equilibrate the network. In simulations, by studying parameters like sum-rate of network and its total interference, it is shown that the resource utilization will be improved. Simulation results show that the equilibrium points also enjoy some optimality criteria such as Pareto optimality.

  5. Mineral and geothermal resource potential of the Mount Hood Wilderness, Clackamas and Hood River Counties, Oregon. Summary report and map

    Energy Technology Data Exchange (ETDEWEB)

    Keith, T.E.C.; Causey, J.D.

    1982-01-01

    The potential for near-surface mineral resources in the Mount Hood Wilderness is low. Geochemical data suggest two areas of weak epithermal mineralization in the Zigzag Mountain part of the wilderness: (1) the Lost Creek-Burnt Lake-Cast Creek-Short Creek area on the north side of Zigzag Mountain where vein-type lead-zinc-silver mineralization occurs; and (2) the Lady Creek-Laurel Hill area on the south side of Zigzag Mountain where the upper part of a quartz diorite pluton has associated propylitic alteration resulting in some porphyry-type copper, gold, silver, lead, and zinc mineralization. Geothermal-resource potential for low- to intermediate-temperature (less than 248/sup 0/F, 120/sup 0/C) hot-water systems in the wilderness is moderate to high. Part of the wilderness is classified as a Known Geothermal Resources Area (KGRA) and two parts have been included in geothermal lease areas. Rock and gravel sources are present within the wilderness; however, quantities of similar and more accessible deposits are available outside the wilderness. Deposits outside the wilderness are large enough to supply local demand in the foreseeable future.

  6. Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale.

    Science.gov (United States)

    Davis, Ryan E; Fishman, Daniel B; Frank, Edward D; Johnson, Michael C; Jones, Susanne B; Kinchin, Christopher M; Skaggs, Richard L; Venteris, Erik R; Wigmosta, Mark S

    2014-05-20

    Costs, emissions, and resource availability were modeled for the production of 5 billion gallons yr(-1) (5 BGY) of renewable diesel in the United States from Chlorella biomass by hydrothermal liquefaction (HTL). The HTL model utilized data from a continuous 1-L reactor including catalytic hydrothermal gasification of the aqueous phase, and catalytic hydrotreatment of the HTL oil. A biophysical algae growth model coupled with weather and pond simulations predicted biomass productivity from experimental growth parameters, allowing site-by-site and temporal prediction of biomass production. The 5 BGY scale required geographically and climatically distributed sites. Even though screening down to 5 BGY significantly reduced spatial and temporal variability, site-to-site, season-to-season, and interannual variations in productivity affected economic and environmental performance. Performance metrics based on annual average or peak productivity were inadequate; temporally and spatially explicit computations allowed more rigorous analysis of these dynamic systems. For example, 3-season operation with a winter shutdown was favored to avoid high greenhouse gas emissions, but economic performance was harmed by underutilized equipment during slow-growth periods. Thus, analysis of algal biofuel pathways must combine spatiotemporal resource assessment, economic analysis, and environmental analysis integrated over many sites when assessing national scale performance.

  7. Diagnosis of primary ciliary dyskinesia: potential options for resource-limited countries

    Directory of Open Access Journals (Sweden)

    Nisreen Rumman

    2017-01-01

    Full Text Available Primary ciliary dyskinesia is a genetic disease of ciliary function leading to chronic upper and lower respiratory tract symptoms. The diagnosis is frequently overlooked because the symptoms are nonspecific and the knowledge about the disease in the primary care setting is poor. Additionally, none of the available tests is accurate enough to be used in isolation. These tests are expensive, and need sophisticated equipment and expertise to analyse and interpret results; diagnosis is therefore only available at highly specialised centres. The diagnosis is particularly challenging in countries with limited resources due to the lack of such costly equipment and expertise. In this review, we discuss the importance of early and accurate diagnosis especially for countries where the disease is clinically prevalent but diagnostic tests are lacking. We review the diagnostic tests available in specialised centres (nasal nitric oxide, high-speed video microscopy, transmission electron microscopy, immunofluorescence and genetics. We then consider modifications that might be considered in less well-resourced countries whilst maintaining acceptable accuracy.

  8. Integrated Evaluation of Cost, Emissions, and Resource Potential for Algal Biofuels at the National Scale

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan; Fishman, Daniel; Frank, Edward D.; Johnson, Michael C.; Jones, Susanne B.; Kinchin, Christopher; Skaggs, Richard; Venteris, Erik R.; Wigmosta, Mark S.

    2014-04-21

    Costs, emissions, and resource availability were modeled for the production of 5 billion gallons yr-1 (5 BGY) of renewable diesel in the United States from Chlorella biomass by hydrothermal liquefaction (HTL). The HTL model utilized data from a continuous 1-L reactor including catalytic hydrothermal gasification of the aqueous phase, and catalytic hydrotreatment of the HTL oil. A biophysical algae growth model coupled with weather and pond simulations predicted biomass productivity from experimental growth parameters, allowing site-by-site and temporal prediction of biomass production. The 5 BGY scale required geographically and climatically distributed sites. Even though screening down to 5 BGY significantly reduced spatial and temporal variability, site-to-site, season-to-season, and inter-annual variations in productivity affected economic and environmental performance. Performance metrics based on annual average or peak productivity were inadequate; temporally and spatially explicit computations allowed more rigorous analysis of these dynamic systems. For example, 3-season operation with a winter shutdown was favored to avoid high greenhouse gas emissions, and economic performance was harmed by underutilized equipment during slow-growth periods. Thus, analysis of algal biofuel pathways must combine spatiotemporal resource assessment, economic analysis, and environmental analysis integrated over many sites when assessing national scale performance.

  9. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    Science.gov (United States)

    Hong, Wei-Li; Torres, Marta E.; Carroll, Jolynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel

    2017-06-01

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.

  10. Recycling potential of secondary phosphorus resources as assessed by integrating substance flow analysis and plant-availability.

    Science.gov (United States)

    Hamilton, Helen A; Brod, Eva; Hanserud, Ola; Müller, Daniel B; Brattebø, Helge; Haraldsen, Trond K

    2017-01-01

    The plant-availability of phosphorus (P) plays a central role in the ability of secondary P resources to replace mineral fertilizer. This is because secondary P plant-availability varies, often with large fractions of residual P that has no immediate fertilization effect. Therefore, if low quality secondary P fertilizers are applied, they will accumulate in soils that, in the long run, may increase the risk of P runoff and eutrophication. Substance flow analyses (SFA), used to identify potentials for improved P management, have not considered this well-known quality barrier. We, therefore, argue that traditional SFA over-estimates the fertilizer potential of secondary P resources. Using Norway as a case, we present a plant-availability extended SFA methodology that integrates SFA and the concept of relative agronomic efficiency. To account for the plant-available soil P stock and long-term soil interactions, we adjust the Norwegian P fertilization demand based on soil P values. We found that, while the method has uncertainties particularly for long-term estimations, it more realistically estimates secondary P fertilizer potentials and is adaptable to other countries. For Norway, we found the overall secondary P fertilizer potential reduced by 6-55% when considering plant-availability. The most important secondary resource was manure, which had the highest P plant-availability and quantities large enough (10.9kt plant-available P/yr) to meet Norway's entire P fertilization demand (5.8kt plant-available P/yr). However, barriers related to its transportability need to be overcome to efficiently use this resource. Fish sludge was also an important product, with 6.1kt plant-available P/yr but with uncertain plant-availability data. We argue that high quality secondary P resources can theoretically meet Norway's P fertilization demand and, therefore, make Norway mineral P independent. However, it is important that their use is carefully regulated based on plant

  11. Oil & Natural Gas Technology A new approach to understanding the occurrence and volume of natural gas hydrate in the northern Gulf of Mexico using petroleum industry well logs

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Ann [The Ohio State Univ., Columbus, OH (United States); Majumdar, Urmi [The Ohio State Univ., Columbus, OH (United States)

    2016-03-31

    The northern Gulf of Mexico has been the target for the petroleum industry for exploration of conventional energy resource for decades. We have used the rich existing petroleum industry well logs to find the occurrences of natural gas hydrate in the northern Gulf of Mexico. We have identified 798 wells with well log data within the gas hydrate stability zone. Out of those 798 wells, we have found evidence of gas hydrate in well logs in 124 wells (15% of wells). We have built a dataset of gas hydrate providing information such as location, interval of hydrate occurrence (if any) and the overall quality of probable gas hydrate. Our dataset provides a wide, new perspective on the overall distribution of gas hydrate in the northern Gulf of Mexico and will be the key to future gas hydrate research and prospecting in the area.

  12. Aquaculture, Biotechnological and Seafood Resource Potential of Sea Cucumbers from the Peniche coast (Portugal)

    OpenAIRE

    Rita Alves Santos

    2014-01-01

    Sea cucumbers are highly marketable as food and medicinal product. This has resulted in an increasing overfishing and in a new interest in European species. In this work, the reproductive biology of Holothuria forskali and Holothuria mammata was performed by evaluating the gonadosomatic index and histological analyzes of the gonadal tubules. The biotechnological potential was assessed through the evaluation of the antioxidant, antimicrobial and antitumor potential. The antioxidant activity wa...

  13. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    Energy Technology Data Exchange (ETDEWEB)

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  14. Exploring the potential of digital resources as a source of social support in first time pregnancy

    Directory of Open Access Journals (Sweden)

    Nikki Newhouse

    2015-10-01

    First-time pregnancy is a time of huge physical and emotional change and women often need support. One way of providing this is to provide wellbeing information. However, pregnant women are bombarded with information, much of it generic, conflicting or anecdotal. Large numbers of women look for information and advice online, increasingly engaging with alternative forms of ‘expert’ information, in the form of other people’s experiences. This context provides a unique opportunity for digital resources to act as preventative medicine: bringing women together in a safe online environment allows them to speak freely, develop practical skills and feel supported as they become parents. This in turn relieves healthcare burden by preventing negative maternal and neonatal outcomes. This project will determine the context-driven user needs and requirements of a unique group of people and demonstrates the importance of a multidisciplinary approach to the development of pragmatic digital health solutions.

  15. Tetrahydrofuran hydrate decomposition characteristics in porous media

    Science.gov (United States)

    Song, Yongchen; Wang, Pengfei; Wang, Shenglong; Zhao, Jiafei; Yang, Mingjun

    2016-12-01

    Many tetrahydrofuran (THF) hydrate properties are similar to those of gas hydrates. In the present work THF hydrate dissociation in four types of porous media is studied. THF solution was cooled to 275.15 K with formation of the hydrate under ambient pressure, and then it dissociated under ambient conditions. THF hydrate dissociation experiments in each porous medium were conducted three times. Magnetic resonance imaging (MRI) was used to obtain images. Decomposition time, THF hydrate saturation and MRI mean intensity (MI) were measured and analyzed. The experimental results showed that the hydrate decomposition time in BZ-4 and BZ-3 was similar and longer than that in BZ-02. In each dissociation process, the hydrate decomposition time of the second and third cycles was shorter than that of the first cycle in BZ-4, BZ-3, and BZ-02. The relationship between THF hydrate saturation and time is almost linear.

  16. Healthier land, healthier farmers: considering the potential of natural resource management as a place-focused farmer health intervention.

    Science.gov (United States)

    Schirmer, Jacki; Berry, Helen L; O'Brien, Léan V

    2013-11-01

    Farmers have particular wellbeing-related vulnerabilities that conventional health interventions struggle to address. We consider the potential of natural resource management (NRM) programs, which reach large numbers of farmers, as non-conventional place-focused wellbeing interventions. Although designed to address environmental degradation, NRM can influence the wellbeing of farmers. We used qualitative meta-synthesis to reanalyse studies examining social dimensions of NRM in Australia and generate a theoretical framework identifying potential pathways between NRM and wellbeing, intended to inform subsequent empirical work. Our results suggest NRM programs influence several important determinants of farmer wellbeing, in particular social capital, self-efficacy, social identity, material wellbeing, and health itself. The pathways by which NRM influences these determinants are mediated by distal factors such as changes in land conditions, farmer skills and knowledge and resources accessible to farmers. These, in turn, are moderated by the design and delivery of NRM programs, suggesting potential to enhance the health benefits of NRM through specific attention to program design.

  17. Language as Whose Resource?: When Global Economics Usurp the Local Equity Potentials of Dual Language Education

    Science.gov (United States)

    Delavan, M. Garrett; Valdez, Verónica E.; Freire, Juan A.

    2017-01-01

    Utah's public schools are home to an increasing number of K/1-6 dual language (DL) programs established through a state-centralized model that has sparked interest domestically and internationally. We theorize three potential constituencies of DL--maintenance, heritage, and world language--then use critical discourse analysis to examine how…

  18. Evaluating potential renewable energy resources in Poultney, Vermont: A GIS-based approach to supporting rural community energy planning

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, John; Letendre, Steven (Green Mountain College, One Brennan Circle, Poultney, VT 05764, US)

    2010-09-15

    The current electricity infrastructure in the United States relies on a centralized distribution network that carries a heavy carbon footprint and is susceptible to disruption and failure. Rural communities are more susceptible to longer term interruption and should strive towards a local distributed energy model. This transition will require municipalities to engage with and seek input from community stakeholders. This paper describes a possible model for supporting rural community energy projects using a Geographic Information System (GIS), which was used to develop an inventory of energy resource potential in a rural Vermont town for biomass, wind, and solar technologies. (author)

  19. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.;

    1999-01-01

    Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...... and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6...

  20. Norwegian Research Strategies on gas Hydrates and Natural Seeps in the Nordic Seas Region (GANS)

    Science.gov (United States)

    Hjelstuen, B. O.; Sejrup, H. P.; Andreassen, K.; Boe, R.; Eldholm, O.; Hovland, M.; Knies, J.; Kvalstad, T.; Kvamme, B.; Mienert, J.; Pedersen, R. B.

    2004-12-01

    Continuous leakage of methane to the oceans from hydrate reservoirs that partially are exposed towards the seafloor is an increasing international concern, as the greenhouse gas methane is significantly more (c. 20 times) aggressive than CO2. In Norway we have research groups with interest and experience on natural seeps and gas hydrates. These features, and processes related to them, are challenging research targets which demands inputs from different fields if important research breakthroughs shall be made. In February 2004 deep sea researchers from the University of Tromso, Geological Survey of Norway, Norwegian Geotechnical Institute, Statoil and University of Bergen met to obtain an overview of the research effort in the fields of natural seeps and gas hydrates in Norway and to discuss national coordination, research strategies, research infrastructure and international co-operation. The following research strategies were agreed upon: i) Strengthen multidisciplinary research on deep sea systems, ii) develop a strategy for research on natural seeps and gas hydrates, iii) contribute in national coordination of research on natural seeps and gas hydrates, iv) Coordinate the use and development of research infrastructures important for research on natural seeps and gas hydrates, and v) contribute in the international evaluations of strategies for hydrate reservoir exploitation. Proposed research tasks for GANS include: i) Gas and gas hydrate formation processes and conditions for transport, accumulation, preservation and dissociation in sediments, ii) Effect of gas hydrate on physical properties of sediment, iii) Detection and quantification of in situ gas hydrate content and distribution pattern, iv) Effect of dissociation on soil properties, v) Gas hydrates as an energy resource, vi) Rapid methane release and climate change, and vii) Geohazard and environmental impact.

  1. Hydration of fly ash cement

    Energy Technology Data Exchange (ETDEWEB)

    Etsuo Sakai; Shigeyoshi Miyahara; Shigenari Ohsawa; Seung-Heun Lee; Masaki Daimon [Tokyo Institute of Technology, Tokyo (Japan). Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering

    2005-06-01

    It is necessary to establish the material design system for the utilization of large amounts of fly ash as blended cement instead of disposing of it as a waste. Cement blended with fly ash is also required as a countermeasure to reduce the amount of CO{sub 2} generation. In this study, the influences of the glass content and the basicity of glass phase on the hydration of fly ash cement were clarified and hydration over a long curing time was characterized. Two kinds of fly ash with different glass content, one with 38.2% and another with 76.6%, were used. The hydration ratio of fly ash was increased by increasing the glass content in fly ash in the specimens cured for 270 days. When the glass content of fly ash is low, the basicity of glass phase tends to decrease. Reactivity of fly ash is controlled by the basicity of the glass phase in fly ash during a period from 28 to 270 days. However, at an age of 360 days, the reaction ratios of fly ash show almost identical values with different glass contents. Fly ash also affected the hydration of cement clinker minerals in fly ash cement. While the hydration of alite was accelerated, that of belite was retarded at a late stage.

  2. Aquaculture, Biotechnological and Seafood Resource Potential of Sea Cucumbers from the Peniche coast (Portugal

    Directory of Open Access Journals (Sweden)

    Rita Alves Santos

    2014-06-01

    Full Text Available Sea cucumbers are highly marketable as food and medicinal product. This has resulted in an increasing overfishing and in a new interest in European species. In this work, the reproductive biology of Holothuria forskali and Holothuria mammata was performed by evaluating the gonadosomatic index and histological analyzes of the gonadal tubules. The biotechnological potential was assessed through the evaluation of the antioxidant, antimicrobial and antitumor potential. The antioxidant activity was evaluated through the quantification of the total phenolic content, DPPH radical scavenging activity and ORAC method. The antimicrobial activity was evaluated against Staphylococcus aureus, Candida albicans, Saccharomyces cerevisiae, Bacillus subtilis, Salmonella enteritidis, Pseudomonas aeruginosa and Escherichia coli through growth inhibition tests. The antitumor potential was performed on HepG-2 and MCF-7 human cells lines using the MTT and Calcein - AM methods. Finally, the fatty acid profile was evaluated through gas-chromatography analysis. The gonadosomatic index and histology revealed that the range from February to April corresponds to the peak of gonad maturation for both species. No significant antioxidant activity was detected. The methanolic fraction of H. forskali revealed the highest antimicrobial potential against Candida albicans with an IC50 of 233.2 µg ml-1 and also presented the highest cytotoxic and anti-proliferative activities through the MTT method in both cells lines, with an IC50 of 238.2 and 396.0 µg ml-1 for MCF-7 cells, respectively and 260.3 and 218.7 µg ml-1 for HepG-2 cells, respectively. Regarding the fatty acid profile, the total fat content was 1%, 3.36% and 4.83% for H. forskali, H. mammata and S. regalis, respectively and the highest values were obtained for C16:0 (9.96% and ARA (20.36% for H. forskali and C18:0 (12.43%, C18:1 n-7 (5.13%, EPA (12.49% and DHA (7.35% for S. regalis. These findings showed the potential

  3. The impact of permafrost-associated microorganisms on hydrate formation kinetics

    Science.gov (United States)

    Luzi-Helbing, Manja; Liebner, Susanne; Spangenberg, Erik; Wagner, Dirk; Schicks, Judith M.

    2016-04-01

    The relationship between gas hydrates, microorganisms and the surrounding sediment is extremely complex: On the one hand, microorganisms producing methane provide the prerequisite for gas hydrate formation. As it is known most of the gas incorporated into natural gas hydrates originates from biogenic sources. On the other hand, as a result of microbial activity gas hydrates are surrounded by a great variety of organic compounds which are not incorporated into the hydrate structure but may influence the formation or degradation process. For gas hydrate samples from marine environments such as the Gulf of Mexico a direct association between microbes and gas hydrates was shown by Lanoil et al. 2001. It is further assumed that microorganisms living within the gas hydrate stability zone produce biosurfactants which were found to enhance the hydrate formation process significantly and act as nucleation centres (Roger et al. 2007). Another source of organic compounds is sediment organic matter (SOM) originating from plant material or animal remains which may also enhance hydrate growth. So far, the studies regarding this relationship were focused on a marine environment. The scope of this work is to extend the investigations to microbes originating from permafrost areas. To understand the influence of microbial activity in a permafrost environment on the methane hydrate formation process and the stability conditions of the resulting hydrate phase we will perform laboratory studies. Thereby, we mimic gas hydrate formation in the presence and absence of methanogenic archaea (e.g. Methanosarcina soligelidi) and other psychrophilic bacteria isolated from permafrost environments of the Arctic and Antarctic to investigate their impact on hydrate induction time and formation rates. Our results may contribute to understand and predict the occurrences and behaviour of potential gas hydrates within or adjacent to the permafrost. Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH

  4. Induced Mutations Unleash the Potentials of Plant Genetic Resources for Food and Agriculture

    Directory of Open Access Journals (Sweden)

    Chikelu Mba

    2013-03-01

    Full Text Available The options for increasing food production by at least 70% over the next four decades so as to keep pace with a rapidly increasing human population are bedeviled by erratic climatic conditions, depleted arable lands, dwindling water resources and by the significant environmental and health costs for increasing the use of agrochemicals. Enhanced productivities through “smart” crop varieties that yield more with fewer inputs is a viable option. However, the genetic similarities amongst crop varieties—which render entire cropping systems vulnerable to the same stresses—coupled with unvarying parental materials limit the possibilities for uncovering novel alleles of genes and, hence, assembling new gene combinations to break yield plateaux and enhance resilience. Induced mutation unmasks novel alleles that are harnessed to breed superior crop varieties. The historical antecedents, theoretical and practical considerations, and the successes of induced mutations in crop improvement are reviewed along with how induced mutagenesis underpins plant functional genomics. The roles of cell and molecular biology techniques in enhancing the efficiencies for the induction, detection and deployment of mutation events are also reviewed. Also, the integration of phenomics into induced mutagenesis and the use of pre-breeding for facilitating the incorporation of mutants into crop improvement are advocated.

  5. Potential pharmaceutical resources of the Qinling Mountain in central China:medicinal fungi

    Institute of Scientific and Technical Information of China (English)

    Qi SHEN; Wei CHEN; Zhuyun YAN; Zhenfeng XIE

    2009-01-01

    The present investigation on fungal diversity shows that there were rich fungal resources of up to 196 species,belonging to 41 families and 90 genera,in the Qinling Mountainous Range of central China.The dominant families were Polyporaceae,Russulaceae,Tricholomatacea and Lycoperdaceae,which comprised 107 species,54.59% of the total species.The dominant genera were Russula, Lactarius, Trametes, Phellinus, Coprinus,Lycoperdon,Suillu,and Calvatia,which consisted of 59 species,30.09% of the total species.According to the geographical characteristics,the genera were grouped into:cosmopolitan element (74.98%),pantropical element (3.57%),tropical element (1.02%) and north temperate element (21.43%),with the cosmopolitan element constituting the majority.Among these,the cosmopolitan and North Temperate Zone were characteristic of this region.Based on relevant literature review,the primary pharmaceutical action of the medicinal fungi in Qinling Mountain can be classified as follows:anti-cancer,anti-bacteria,anti-inflammation,relief of muscle rigidity and activation of collaterals,hemostasis,immunological regulation,as well as nourishing the stomach and tonification which means enhancing the body system.

  6. Soil Fungal Resources in Annual Cropping Systems and Their Potential for Management

    Directory of Open Access Journals (Sweden)

    Walid Ellouze

    2014-01-01

    Full Text Available Soil fungi are a critical component of agroecosystems and provide ecological services that impact the production of food and bioproducts. Effective management of fungal resources is essential to optimize the productivity and sustainability of agricultural ecosystems. In this review, we (i highlight the functional groups of fungi that play key roles in agricultural ecosystems, (ii examine the influence of agronomic practices on these fungi, and (iii propose ways to improve the management and contribution of soil fungi to annual cropping systems. Many of these key soil fungal organisms (i.e., arbuscular mycorrhizal fungi and fungal root endophytes interact directly with plants and are determinants of the efficiency of agroecosystems. In turn, plants largely control rhizosphere fungi through the production of carbon and energy rich compounds and of bioactive phytochemicals, making them a powerful tool for the management of soil fungal diversity in agriculture. The use of crop rotations and selection of optimal plant genotypes can be used to improve soil biodiversity and promote beneficial soil fungi. In addition, other agronomic practices (e.g., no-till, microbial inoculants, and biochemical amendments can be used to enhance the effect of beneficial fungi and increase the health and productivity of cultivated soils.

  7. The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource.

    Science.gov (United States)

    Wi, Seung Gon; Kim, Hyun Joo; Mahadevan, Shobana Arumugam; Yang, Duck-Joo; Bae, Hyeun-Jong

    2009-12-01

    Sea weed (Ceylon moss) possesses comparable bioenergy production potential to that of land plants. Ceylon moss has high content of carbohydrates, typically galactose (23%) and glucose (20%). We have explored the possibility of sodium chlorite in Ceylon moss pretreatment that can ultimately increase the efficiency of enzymatic saccharification. In an acidic medium, chlorite generates ClO(2) molecules that transform lignin into soluble compounds without any significant loss of carbohydrate content and this procedure is widely used as an analytical method for holocellulose determination. Sodium chlorite-pretreated samples resulted in glucose yield up to 70% with contrast of only 5% was obtained from non-pretreated samples. The efficiency of enzymatic hydrolysis is significantly improved by sodium chlorite pretreatment, and thus sodium chlorite pretreatment is potentially a very useful tool in the utilisation of Ceylon moss biomass for ethanol production or bioenergy purposes.

  8. Untapped Resources: Biotechnological Potential of Peptides and Secondary Metabolites in Archaea

    Science.gov (United States)

    Charlesworth, James C.; Burns, Brendan P.

    2015-01-01

    Archaea are an understudied domain of life often found in “extreme” environments in terms of temperature, salinity, and a range of other factors. Archaeal proteins, such as a wide range of enzymes, have adapted to function under these extreme conditions, providing biotechnology with interesting activities to exploit. In addition to producing structural and enzymatic proteins, archaea also produce a range of small peptide molecules (such as archaeocins) and other novel secondary metabolites such as those putatively involved in cell communication (acyl homoserine lactones), which can be exploited for biotechnological purposes. Due to the wide array of metabolites produced there is a great deal of biotechnological potential from antimicrobials such as diketopiperazines and archaeocins, as well as roles in the cosmetics and food industry. In this review we will discuss the diversity of small molecules, both peptide and nonpeptide, produced by archaea and their potential biotechnological applications. PMID:26504428

  9. Potential health implications of water resources depletion and sewage discharges in the Republic of Macedonia.

    Science.gov (United States)

    Hristovski, Kiril D; Pacemska-Atanasova, Tatjana; Olson, Larry W; Markovski, Jasmina; Mitev, Trajce

    2016-08-01

    Potential health implications of deficient sanitation infrastructure and reduced surface water flows due to climate change are examined in the case study of the Republic of Macedonia. Changes in surface water flows and wastewater discharges over the period 1955-2013 were analyzed to assess potential future surface water contamination trends. Simple model predictions indicated a decline in surface water hydrology over the last half century, which caused the surface waters in Macedonia to be frequently dominated by >50% of untreated sewage discharges. The surface water quality deterioration is further supported by an increasing trend in modeled biochemical oxygen demand trends, which correspond well with the scarce and intermittent water quality data that are available. Facilitated by the climate change trends, the increasing number of severe weather events is already triggering flooding of the sewage-dominated rivers into urban and non-urban areas. If efforts to develop a comprehensive sewage collection and treatment infrastructure are not implemented, such events have the potential to increase public health risks and cause epidemics, as in the 2015 case of a tularemia outbreak.

  10. A Model of Carbon Capture and Storage with Demonstration of Global Warming Potential and Fossil Fuel Resource Use Efficiency

    Science.gov (United States)

    Suebsiri, Jitsopa

    Increasing greenhouse gas concentration in the atmosphere influences global climate change even though the level of impact is still unclear. Carbon dioxide capture and storage (CCS) is increasingly seen as an important component of broadly based greenhouse gas reduction measures. Although the other greenhouse gases are more potent, the sheer volume of CO 2 makes it dominant in term of its effect in the atmosphere. To understand the implications, CCS activities should be studied from a full life cycle perspective. This thesis outlines the successful achievement of the objectives of this study in conducting life cycle assessment (LCA), reviewing the carbon dioxide implications only, combining two energy systems, coal-fired electrical generations and CO2 used for enhanced oil recovery (EOR). LCA is the primary approach used in this study to create a tool for CCS environmental evaluation. The Boundary Dam Power Station (BDPS) and the Weyburn-Midale CO 2 EOR Project in Saskatchewan, Canada, are studied and adopted as case scenarios to find the potential for effective application of CCS in both energy systems. This study demonstrates two levels of retrofitting of the BDPS, retrofit of unit 3 or retrofit of all units, combined with three options for CO 2 geological storage: deep saline aquifer, CO2 EOR, and a combination of deep saline aquifer storage and CO2 EOR. Energy output is considered the product of combining these two energy resources (coal and oil). Gigajoules (GJ) are used as the fundamental unit of measurement in comparing the combined energy types. The application of this tool effectively demonstrates the results of application of a CCS system concerning global warming potential (GWP) and fossil fuel resource use efficiency. Other environmental impacts could be analyzed with this tool as well. In addition, the results demonstrate that the GWP reduction is directly related to resource use efficiency. This means the lower the GWP of CCS, the lower resource use

  11. Comparison of stromal hydration techniques for clear corneal cataract incisions: conventional hydration versus anterior stromal pocket hydration.

    Science.gov (United States)

    Mifflin, Mark D; Kinard, Krista; Neuffer, Marcus C

    2012-06-01

    Anterior stromal pocket hydration was compared with conventional hydration for preventing wound leak after 2.8 mm uniplanar clear corneal incisions (CCIs) in patients having routine cataract surgery. Conventional hydration involves hydration of the lateral walls of the main incision with visible whitening of the stroma. The anterior stromal pocket hydration technique involves creation of an additional supraincisional stromal pocket overlying the main incision, which is then hydrated instead of the main incision. Sixty-six eyes of 48 patients were included in the data analysis with 33 assigned to each study group. The anterior stromal pocket hydration technique was significantly better than conventional hydration in preventing wound leak due to direct pressure on the posterior lip of the incision. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Perspectives of the utilization of methane hydrates as an energy source. An inventory; Perspektiven der Nutzung von Methanhydraten als Energietraeger. Eine Bestandsaufnahme

    Energy Technology Data Exchange (ETDEWEB)

    Groth, Markus

    2008-02-15

    Methane hydrates are the largest existing carbon resource, and their broad geographic distribution, especially in comparison to oil and conventional gas, make them a promising future source of energy. On the other hand, there is a danger of forcing the greenhouse effect in the event of a release of methane in the atmosphere as well as causing a destabilisation of the oceanic sediments. Also the technical difficulties in the extraction of methane are not yet fully resolved. Nevertheless, the research on methane hydrates has been forced both based on political as well as economic considerations in recent years and methane hydrates have practical advantages, which make them a noteworthy transitional solution on the way to a renewable energy based future energy supply. The knowledge of the potentials and risks of methane hydrates, however, is still poor; especially in the German-speaking public and policy. This deficiency will be solved by a focused analysis of the current state of research and an outlook, based on the most important findings. (orig.)

  13. Experimental study on steam and inhibitor injection into methane hydrate bearing sediments

    Science.gov (United States)

    Kawamura, T.; Sakamoto, Y.; Temma, N.; Yamamoto, Y.; Komai, T.

    2007-12-01

    Natural gas hydrate that exists in the ocean sediment is thought to constitute a large methane gas reservoir and is expected to be an energy resource in the future. In order to make recovery of natural gas from hydrates commercially viable, hydrates must be dissociated in-situ. Inhibitor injection method is thought to be one of the effective dissociation method as well as depressurization and thermal stimulation. Meanwhile, steam injection method is practically used for oil sand to recover heavy oil and recognized as a means that is commercially successful. In this study, the inhibitor injection method and the steam injection method for methane hydrate bearing sediments have been examined and discussed on an experimental basis. New experimental apparatuses have been designed and constructed. Using these apparatuses, inhibitor and steam were successfully injected into artificial methane hydrate bearing sediments that were simulated in laboratory scale. In the case of inhibitor injection, characteristic temperature drop during dissociation was observed. And decreases of permeability that is caused by the reformation of methane hydrate were prevented effectively. In the case of steam injection, the phase transition from vapor water to liquid water in methane hydrate bearing sediments was observed. It can be concluded that roughly 44 % of total hydrate origin gas was produced after steam injection. From these approaches, the applicability of these methods as enhanced gas recovery methods are discussed.

  14. Analysis of the potential contamination risk of groundwater resources circulating in areas with anthropogenic activities

    Directory of Open Access Journals (Sweden)

    M. Spizzico

    2005-01-01

    Full Text Available The area investigated is located in the province of Brindisi (Italy. It is a generally flat area separated from the nearby carbonatic plateau of the Murgia by quite indistinct and high fault scarps. As regards the geological features, carbonatic basement rocks and post-cretaceous terrains made up of calabrian calcarenites and middle-upper Pleistocenic marine terraced deposits can be distinguished. In the examined area there are two different hydrogeological environments. The first is represented by deep groundwater, the main groundwater resource in Apulia. The second hydrogeological environment, now of lesser importance than the deep aquifer in terms of size and use, is made up of some small shallow groundwater systems situated in post-calabrian sands and located in the eastern area. During some sampling cycles carried out in the studied area, water was withdrawn from both the deep aquifer and from the shallow groundwater. For every sample, the necessary parameters were determined for the physical and chemical characterisation of two different hydrogeological environments. Moreover, some chemical parameters indicating anthropogenic activities were determined. Analysis of the aerial distribution of the measured parameters has shown some main areas subject to different conditions of contamination risk, in accordance with the hydrogeological and geological features of the investigated area. In the south-eastern part of the investigated area, the important action performed by the surface aquifer for protecting the deep groundwater from contamination of anthropogenic origin is clear. On the other hand, in the shallow groundwater, areas of nitrate and nitrite contamination have been identified, which result from the extensive use of fertilizers.

  15. Groundwater Resources Potential in the Coastal Plain Sands Aquifers, Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    E.O. Longe

    2011-01-01

    Full Text Available The hydraulic properties of the aquifers located in the coastal plain sands, Lagos, Nigeria had been investigated. A review of both the theoretical and practical applications of pumping tests in groundwater resource evaluation for coastal plain sands aquifer was carried out. The main activities involved collation of information related to well logs, step-drawdown and constant rate pumping tests from existing database on borehole drilling in seven wells to an average depth of 100 m. Graphical methods based on Rorabaugh’s Hantush-Bierschenk’s analyses were used to determine the components of drawdown due to well and aquifer losses from the step-drawdown pumping tests. Conventional analytical methods based on non-equilibrium equation were used to assess the local hydraulic regime of the groundwater system using constant rate pumping tests data. Data from 11 controlled pumping tests in Shomolu area of Lagos metropolis were analyzed. The transmissivity values of the multi-layered aquifer system range between 345.6 and 2,332 m2/day while the storage coefficient values range between 2.8x10-4 and 4.5x10-4. Both results indicate confined aquifers of artesian conditions. The step-drawdown pumping tests results indicate that well losses constituted a significant component of drawdown in the pumped wells, a phenomenon due to poor well design, well development; and non-Darcian flow in the multi-layered aquifer. The pumping test results allowed for theoretical and practical prediction of aquifer and well yields in the study area.

  16. Maximum Regional Emission Reduction Potential in Residential Sector Based on Spatial Distribution of Population and Resources

    Science.gov (United States)

    Winijkul, E.; Bond, T. C.

    2011-12-01

    In the residential sector, major activities that generate emissions are cooking and heating, and fuels ranging from traditional (wood) to modern (natural gas, or electricity) are used. Direct air pollutant emissions from this sector are low when natural gas or electricity are the dominant energy sources, as is the case in developed countries. However, in developing countries, people may rely on solid fuels and this sector can contribute a large fraction of emissions. The magnitude of the health loss associated with exposure to indoor smoke as well as its concentration among rural population in developing countries have recently put preventive measures high on the agenda of international development and public health organizations. This study focuses on these developing regions: Central America, Africa, and Asia. Current and future emissions from the residential sector depend on both fuel and cooking device (stove) type. Availability of fuels, stoves, and interventions depends strongly on spatial distribution. However, regional emission calculations do not consider this spatial dependence. Fuel consumption data is presented at country level, without information about where different types of fuel are used. Moreover, information about stove types that are currently used and can be used in the future is not available. In this study, we first spatially allocate current emissions within residential sector. We use Geographic Information System maps of temperature, electricity availability, forest area, and population to determine the distribution of fuel types and availability of stoves. Within each country, consumption of different fuel types, such as fuelwood, coal, and LPG is distributed among different area types (urban, peri-urban, and rural area). Then, the cleanest stove technologies which could be used in the area are selected based on the constraints of each area, i.e. availability of resources. Using this map, the maximum emission reduction compared with

  17. The significance of SAR remote sensing in volcano-geology for hazard and resource potential mapping

    Science.gov (United States)

    Saepuloh, Asep; Bakker, Erwin; Suminar, Wulan

    2017-07-01

    Geological mapping at volcanic terrain is crucial for providing accurate information related to the distribution of volcanic products and volcano-related structures. The volcano-geology map is basis information, not only for hazard mitigation related to volcanic activity, but also for resource exploration as well as scientific purposes. Therefore, the accurate detection and observation of volcanic products and their genetics are necessary for volcano-geology mapping. The classical problem at Torrid Zone such as cloud, dense vegetation, heavy weathering, and erosion usually hamper the detection and observation of volcanic products and their structures. Moreover, the stratigraphic of volcanic products generally follows paleo-topography which was buried by the products. Overcoming the problem, we exploited the applicability of remotely sensed data to provide the great assistance for field based observations at volcanic field in Indonesia. The Geomorphologic and Structural Features (GSF) of the Synthetic Aperture Radar (SAR) are the selected parameters to define the distribution of the volcanic products. We explained about the significant of SAR identification to detect and interpret volcano-geology parameters such as eruption centers, volcanic products, depositional mechanisms, and volcanic structures especially at complex of volcanoes. The fall and flowing mechanisms controlled the depositional process were also analyzed to obtain the genetic of volcanic products. For young volcanoes, the quantitative techniques based on SAR surface roughness and polarized signatures are effective to identify volcanic formations and their sources. However, for old volcanoes the visual analyses of GSF is superior to identify the volcanic units and structures. We selected two volcanic complexes at Mts. Guntur and Malabar in West Java (Indonesia) presenting the young and old volcanic field characteristics under Torrid Zone condition.

  18. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  19. Pre- and post-drill comparison of the Mount Elbert gas hydrate prospect, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Agena, W.F.; Collett, T.S.; Inks, T.L.

    2011-01-01

    In 2006, the United States Geological Survey (USGS) completed a detailed analysis and interpretation of available 2-D and 3-D seismic data, along with seismic modeling and correlation with specially processed downhole well log data for identifying potential gas hydrate accumulations on the North Slope of Alaska. A methodology was developed for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area. The study revealed a total of 14 gas hydrate prospects in this area.In order to validate the gas hydrate prospecting protocol of the USGS and to acquire critical reservoir data needed to develop a longer-term production testing program, a stratigraphic test well was drilled at the Mount Elbert prospect in the Milne Point area in early 2007. The drilling confirmed the presence of two prominent gas-hydrate-bearing units in the Mount Elbert prospect, and high quality well logs and core data were acquired. The post-drill results indicate pre-drill predictions of the reservoir thickness and the gas-hydrate saturations based on seismic and existing well data were 90% accurate for the upper unit (hydrate unit D) and 70% accurate for the lower unit (hydrate unit C), confirming the validity of the USGS approach to gas hydrate prospecting. The Mount Elbert prospect is the first gas hydrate accumulation on the North Slope of Alaska identified primarily on the basis of seismic attribute analysis and specially processed downhole log data. Post-drill well log data enabled a better constraint of the elastic model and the development of an improved approach to the gas hydrate prospecting using seismic attributes. ?? 2009.

  20. Kinetics of formation and dissociation of sII hydrogen clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, A.R.C. [Delft Univ. of Technology, Delft (Netherlands). Dept. of Physical Chemistry and Molecular Thermodynamics; Peters, C. [Delft Univ. of Technology, Delft (Netherlands). Dept. of Physical Chemistry and Molecular Thermodynamics]|[Delft Univ. of Technology, Delft (Netherlands). Dept. of Process and Energy Laboratory for Process Equipment; Zevenbergen, J. [TNO Defense, Security and Safety, Rijswijk (Netherlands)

    2008-07-01

    The potential for storing hydrogen in its molecular form in clathrate hydrates was investigated in order to explore the possibility of using these solids as a safe hydrogen storing method for the transportation sector. This paper presented experimental data on the kinetics of hydrogen clathrate hydrate formation, with particular reference to the formation and decomposition of the hydrate in a pressure range from 5.5 to 15.0 MPa. Experiments were performed for a binary system using hydrogen (H{sub 2}) and tetrahydrofuran (THF), which forms structures sII clathrate hydrate. Pressure was shown to have a strong influence on induction time, the rate of hydrate formation, the number of moles consumed and the temperature at which the gas hydrates are formed. The time required for the hydrate to be formed was lower for high pressures, and the temperature needed for the first crystals to appear was higher. The rate of hydrate formation was also higher when the driving forces increased. The number of moles of hydrogen entrapped in the solid phase increased as the experimental pressure increased, indicating that higher pressures are preferable for the formation of hydrogen clathrate hydrate. For a finite period of time, more hydrate was formed when the pressure was high. The results of this study may be useful in determining the viability of hydrogen clathrate hydrates as a storage medium in the transportation sector. The entrapment of hydrogen in clathrate hydrates may provide a clean and environmentally sound alternative to metal hydrides. In addition, it is a reversible process that avoids the need for a chemical reaction for hydrogen uptake and release. 8 refs., 2 tabs., 8 figs.

  1. International Society of Nephrology-Hydration and Kidney Health Initiative - Expanding Research and Knowledge.

    Science.gov (United States)

    Moist, Louise M; Clark, William F; Segantini, Luca; Damster, Sandrine; Le Bellego, Laurent; Wong, Germaine; Tonelli, Marcello

    2016-01-01

    The purpose of this manuscript is to describe a collaborative research initiative to explore the role of hydration in kidney health. Our understanding of the effects of hydration in health and disease is surprisingly limited, particularly when we consider the vital role of hydration in basic human physiology. Recent initiatives and research outcomes have challenged the global medical community to expand our knowledge about hydration, including the differences between water, sugared beverages and other consumables. Identification of the potential mechanisms contributing to the benefits of hydration has stimulated the global nephrology community to advance research regarding hydration for kidney health. Hydration and kidney health has been a focus of research for several research centers with a rapidly expanding world literature and knowledge. The International Society of Nephrology has collaborated with Danone Nutricia Research to promote development of kidney research initiatives, which focus on the role of hydration in kidney health and the global translation of this new information. This initiative supports the use of existing data in different regions and countries to expand dialogue among experts in the field of hydration and health, and to increase scientific interaction and productivity with the ultimate goal of improving kidney health. © 2016 The Author(s) Published by S. Karger AG, Basel.

  2. Studies of Reaction Kinetics of Methane Hydrate Dissocation in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J.; Seol, Yongkoo; Kneafsey, Timothy J.

    2005-03-10

    The objective of this study is the description of the kinetic dissociation of CH4-hydrates in porous media, and the determination of the corresponding kinetic parameters. Knowledge of the kinetic dissociation behavior of hydrates can play a critical role in the evaluation of gas production potential of gas hydrate accumulations in geologic media. We analyzed data from a sequence of tests of CH4-hydrate dissociation by means of thermal stimulation. These tests had been conducted on sand cores partially saturated with water, hydrate and CH4 gas, and contained in an x-ray-transparent aluminum pressure vessel. The pressure, volume of released gas, and temperature (at several locations within the cores) were measured. To avoid misinterpreting local changes as global processes, x-ray computed tomography scans provided accurate images of the location and movement of the reaction interface during the course of the experiments. Analysis of the data by means of inverse modeling (history matching ) provided estimates of the thermal properties and of the kinetic parameters of the hydration reaction in porous media. Comparison of the results from the hydrate-bearing porous media cores to those from pure CH4-hydrate samples provided a measure of the effect of the porous medium on the kinetic reaction. A tentative model of composite thermal conductivity of hydrate-bearing media was also developed.

  3. Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, John

    2012-12-31

    Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

  4. Evaluating greywater reuse potential for sustainable water resources management in Oman.

    Science.gov (United States)

    Jamrah, Ahmad; Al-Futaisi, Ahmed; Prathapar, Sanmugan; Harrasi, Ali Al

    2008-02-01

    This study aims to evaluate the potential of greywater availability in Muscat Governorate in the Sultanate of Oman, to establish a methodology for greywater quantity estimation, to test greywater quality in order to assess reuse potential, and to examine public acceptance for reuse.Total fresh water consumption and greywater generation from different household sources were measured by water meters in five selected households during summer and winter. Additionally, a survey was designed and conducted in five administrative areas of Muscat Governorate, with the objective of testing a methodology for estimating greywater generation potential in these areas. Collected data were compared with that used by the Ministry of Housing, Electricity and Water, Sultanate of Oman. The survey covered a total of 169 houses and 1,365 people. Greywater samples were collected and analyzed from showers, laundries, kitchens and sinks in some of these households to determine their water quality parameters. Statistical analysis results indicated that there is no significant variance in the total fresh water consumption between data used by the ministry and those measured and estimated during this study, highlighting the applicability of the tested method. The study concluded that the average per capita greywater generation rate is 151 Lpcd. Greywater production ranged from 80 to 83% of the total fresh water consumption and most of the greywater is generated from showers. Further, 55 to 57% of the greywater generated in a typical Omani household originated from the shower, 28 to 33% originated from the kitchen, 6 to 9% originated from laundry, and 5 to 7% originated from sink, which constitutes approximately 81% of the total fresh water consumption. The physical, chemical, and biological analyses of the grab samples revealed that greywater contains significant levels of suspended solids, inorganic constituents, total organic carbon, chemical and biochemical oxygen demands, total Coliforms

  5. Distribution and potential of bioenergy resources from agricultural activities in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Valdez-Vazquez, Idania; Acevedo-Benitez, Jorge A. [Lab. of Environmental Biotechnology and Biofuels, Deparment of Marine Biotechnology, CICESE. Km 107 Carretera Tijuana-Ensenada, 22860 Ensenada, Baja California (Mexico); Hernandez-Santiago, Cuitlahuac [Universidad del Mar, Ciudad Universitaria, Puerto Angel, San Pedro Pochutla 70902, Oaxaca (Mexico)

    2010-09-15

    Biomass is the most abundant and versatile form of renewable energy in the world. The bioenergy production from crop residues is compatible with both food and energy production. Currently, several technologies are available for transforming crop residues into utilizable energy such as direct combustion and fermentation. Mexico is the third largest country in LAC in terms of the cropland area and would become a central focus of attention for the production of biofuels. In this paper we examined the type, location and quantities of various crop residues in Mexico to evaluate their potential for conversion into bioenergy through combustion and fermentation. It was estimated that 75.73 million tons of dry matter was generated from 20 crops in Mexico. From this biomass, 60.13 million tons corresponds to primary crop residues mainly from corn straw, sorghum straw, tops/leaves of sugarcane and wheat straw. The generation of secondary crop residues accounted for 15.60 million tons to which sugarcane bagasse, corncobs, maguey bagasse and coffee pulp were the main contributors. The distribution of this biomass showed that several Mexican municipalities had very high by-product potentials where each municipality could have an installed capacity of 78 MW (via direct combustion) or 0.3 million m{sup 3} of bioethanol per year (via anaerobic fermentation). The identification of these municipalities where the biomass potential is high is important since it constitutes the first step towards evaluating the current biomass availability and accurately estimating the bioenergy production capacity from crop residues. (author)

  6. CO2 + N2O mixture gas hydrate formation kinetics and effect of soil minerals on mixture-gas hydrate formation process

    Science.gov (United States)

    Enkh-Amgalan, T.; Kyung, D.; Lee, W.

    2012-12-01

    CO2 mitigation is one of the most pressing global scientific topics in last 30 years. Nitrous oxide (N2O) is one of the main greenhouse gases (GHGs) defined by the Kyoto Protocol and its global warming potential (GWP) of one metric ton is equivalent to 310 metric tons of CO2. They have similar physical and chemical properties and therefore, mixture-gas (50% CO2 + 50% N2O) hydrate formation process was studied experimentally and computationally. There were no significant research to reduce N20 gas and we tried to make hydrate to mitigate N20 and CO2 in same time. Mixture gas hydrate formation periods were approximately two times faster than pure N2O hydrate formation kinetic in general. The fastest induction time of mixture-gas hydrate formation observed in Illite and Quartz among various soil mineral suspensions. It was also observed that hydrate formation kinetic was faster with clay mineral suspensions such as Nontronite, Sphalerite and Montmorillonite. Temperature and pressure change were not significant on hydrate formation kinetic; however, induction time can be significantly affected by various chemical species forming under the different suspension pHs. The distribution of chemical species in each mineral suspension was estimated by a chemical equilibrium model, PHREEQC, and used for the identification of hydrate formation characteristics in the suspensions. With the experimental limitations, a study on the molecular scale modeling has a great importance for the prediction of phase behavior of the gas hydrates. We have also performed molecular dynamics computer simulations on N2O and CO2 hydrate structures to estimate the residual free energy of two-phase (hydrate cage and guest molecule) at three different temperature ranges of 260K, 273K, and 280K. The calculation result implies that N2O hydrates are thermodynamically stable at real-world gas hydrate existing condition within given temperature and pressure. This phenomenon proves that mixture-gas could be

  7. Turning waste into valuable resource: potential of electric arc furnace dust as photocatalytic material.

    Science.gov (United States)

    Sapiña, M; Jimenez-Relinque, E; Castellote, M

    2014-10-01

    This paper explores the potential of a hazardous waste of difficult management, electric arc furnace dust (EAFD), as photocatalytic material. Starting from a real waste coming from a Spanish steel factory, chemical, mineralogical, and optical characterizations have been carried out. Direct trials on EAFD and mortar containing this waste have been performed to evaluate its potential as photocatalyst itself and within a cementitious material. The analysis of photocatalytic properties has been done by two different methods: degradation of NO x and degradation of rhodamine (RhB). As a result, it can be said that EAFD exhibited photocatalytic activity for both configurations with UV and visible light, having the mortar enhanced photocatalytic activity for NO x with respect to the EAFD itself. Additionally, in direct trials on the EAFD, it has been able to degrade RhB even in the dark, which has been attributed to transfer of electrons between the adsorbed RhB and the conduction band of some oxides in the dust.

  8. "Belgian black and red marbles" as potential candidates for Global Heritage Stone Resource

    Science.gov (United States)

    Tourneur, Francis; Pereira, Dolores

    2016-04-01

    examples of historical buildings are known around the world, for examples the decoration of the harem of Topkapi in Istanbul in the 19th c. or in the floors of the St-Pieter basilica in Rom. Today, only one quarry is active, in Vodelée, a village close to Philippeville but all the varieties of colors and textures can be obtained from this unique source. Both referred materials present the characteristics needed to be candidates to the Global Heritage Stone Resource designation.

  9. Hydration of highly charged ions.

    Science.gov (United States)

    Hofer, Thomas S; Weiss, Alexander K H; Randolf, Bernhard R; Rode, Bernd M

    2011-08-01

    Based on a series of ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulations, the broad spectrum of structural and dynamical properties of hydrates of trivalent and tetravalent ions is presented, ranging from extreme inertness to immediate hydrolysis. Main group and transition metal ions representative for different parts of the periodic system are treated, as are 2 threefold negatively charged anions. The results show that simple predictions of the properties of the hydrates appear impossible and that an accurate quantum mechanical simulation in cooperation with sophisticated experimental investigations seems the only way to obtain conclusive results.

  10. Wastewater sludge - the challenges. What are the potentials of utilising the resources in sludge?

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, Helmut

    2003-07-01

    The actual best practice of urban water management has developed during the last 200 years and consists of: safe and reliable drinking water supply, sewerage to prevent hygienic problems and flooding in the settlements, mechanical -biological waste water treatment for receiving water protection. The hygienic and environmental goals of the urban water system have to be attained with a minimum of costs. Most of the drinking water supplied is used for the transport of pollution originating from human metabolism, washing and cleaning. Waste water contains all the substances which enter human metabolism as food, beverages, pharmaceuticals, a great variety of household chemicals and the substances discharged from trade and industry to the sewer system. Rain water is already contaminated by air pollution when it reaches the soil or other surfaces. Whatever material the rainwater gets into contact can be found in the waste water. As a consequence the composition of the waste water is a mirror of our civilisation and of human and urban metabolism. Waste water treatment results in two products which are closely related in their chemical composition: (1) treated waste water to be discharged to the receiving water, (2) wastewater sludge to be treated and disposed or (re)used without creating new (environmental) problems. All the compounds entering the waste water which are not completely degraded can be found in both products. The transfer coefficients between water and sludge differ widely and depend on physical and chemical equilibriums. The potentially hazardous compounds in the effluent and in the sludge belong to these compounds. Source control therefore is necessary for water protection and at the same time for low concentrations of potentially hazardous compounds in the sludge. It is also clear that improved biological treatment efficiency (longer sludge age) also results in lower loads of organic pollutants in the sludge, while physical-chemical treatment steps result

  11. Toward Effective Application of Potential Field Studies to Resource Appraisal: Case Studies From Alaska and the Circum-Arctic

    Science.gov (United States)

    Saltus, R. W.; Phillips, J. D.; Brown, P. J.; Shah, A. K.

    2008-12-01

    We present examples of the application of gravity and magnetic interpretation to USGS evaluation of undiscovered mineral and hydrocarbon resources in Alaska and the circum-Arctic and highlight the connection of these efforts to the earlier work of Tom Hildenbrand. Effective application of gravity and magnetic data generally involves (1) development of interpretation methods, (2) assembly and processing of potential field data, and (3) application of potential field interpretation constructively to the quantitative assessment of resource potential. Tom influenced and improved all three of these aspects of the science. Much of his interpretive work emphasized the importance of connecting potential field results to real geologic questions. Several examples underscore the continuing challenges in this regard. For example, assessing the possibility of deep hydrocarbon plays within the National Petroleum Reserve, Alaska, requires an understanding and mapping of depth to basement and basement character. This analysis requires the application of Fourier filtering techniques improved by Tom. A key responsibility of USGS scientists is the stewardship of data collected with public money. For example, the assembly and public release of regional magnetic compilations for Alaska and the circum-Arctic are important to fair and open evaluation of hydrocarbon potential and for geologic studies leading to "Law of the Sea" territorial claims. These compilations depend on innovative ways to level regional data developed in part by Tom. Regional geophysical data play an important role in the geologic and tectonic study of frontier areas devoid of other geophysical and geological datasets. For example, interpretation of a prominent regional aeromagnetic high in northern Alaska was influenced by Tom's detailed studies of the rift structure in the New Madrid seismic zone. Considering the legacy of Tom's work it is fair to say that he recognized and participated actively in the major

  12. Potential ground water resources of Hat Yai Basin in Peninsular Thailand by gravity study

    Directory of Open Access Journals (Sweden)

    Warawutti Lohawijarn

    2005-05-01

    Full Text Available Residual gravity anomaly with a minimum of about -140 mm s-2 with approximately NS trend and a limited axial length was observed over Hat Yai Basin in Peninsular Thailand. The modeled Hat Yai basin is about 1 km deep at its deepest, 60 km long and 20 km wide. The porosity of basin sediment and the amount of potential ground water reserves within the basin are estimated to be 39% and 121.7±0.8 km3 respectively, assuming full saturation. Within the topmost 80 m of ground where the present extraction is concentrated, the estimated ground water reserve is 12.5±0.5 km3.

  13. Methods to determine hydration states of minerals and cement hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  14. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  15. Precambrian uranium-bearing quartz-pebble conglomerates: exploration model and United States resource potential

    Energy Technology Data Exchange (ETDEWEB)

    Houston, R.S.; Karlstrom, K.E.

    1979-11-01

    Uranium has been discovered in fluvial quartz-pebble conglomerates in most of the Precambrian shield areas of the world, including the Canadian, African, South American, Indian, Baltic, and Australian shields. Occurrences in these and other areas are shown. Two of these occurrences, the Huronian supergroup of Canada and the Witwatersrand deposit of South Africa contain 20 to 30 percent of the planet's known uranium reserves. Thus it is critical that we understand the origin of these deposits and develop exploration models that can aid in finding new deposits. Inasmuch as these uranium-bearing conglomerates are confined almost entirely to rocks of Precambrian age, Part I of this review begins with a discussion of Precambrian geology as it applies to the conglomerates. This is followed by a discussion of genetic concepts, a discussion of unresolved problems, and finally a suggested exploration model. Part II summarizes known and potential occurrences of Precambrian fossil placers in the world and evaluates them in terms of the suggested exploration model. Part III discusses the potential for important Precambrian fossil-placer uranium deposits in the United States and includes suggestions that may be helpful in establishing an exploration program in this country. Part III also brings together new (1975-1978) data on uranium occurrences in the Precambrian of the Wyoming Province. Part IV is a complete bibliography of Precambrian fossil placers, divided according to geographical areas. In total, this paper is designed to be a comprehensive review of Precambrian uranium-bearing fossil placers which will be of use to uranium explorationists and to students of Precambrian geology.

  16. Potential Teachers' Appropriate and Inappropriate Application of Pedagogical Resources in a Model-Based Physics Course: A "Knowledge in Pieces" Perspective on Teacher Learning

    Science.gov (United States)

    Harlow, Danielle B.; Bianchini, Julie A.; Swanson, Lauren H.; Dwyer, Hilary A.

    2013-01-01

    We used a "knowledge in pieces" perspective on teacher learning to document undergraduates' pedagogical resources in a model-based physics course for potential teachers. We defined pedagogical resources as small, discrete ideas about teaching science that are applied appropriately or inappropriately in specific contexts. Neither…

  17. Potential Teachers' Appropriate and Inappropriate Application of Pedagogical Resources in a Model-Based Physics Course: A "Knowledge in Pieces" Perspective on Teacher Learning

    Science.gov (United States)

    Harlow, Danielle B.; Bianchini, Julie A.; Swanson, Lauren H.; Dwyer, Hilary A.

    2013-01-01

    We used a "knowledge in pieces" perspective on teacher learning to document undergraduates' pedagogical resources in a model-based physics course for potential teachers. We defined pedagogical resources as small, discrete ideas about teaching science that are applied appropriately or inappropriately in specific contexts. Neither…

  18. Short- and long-term effects on fuels, forest structure, and wildfire potential from prescribed fire and resource benefit fire in southwestern forests, USA

    Science.gov (United States)

    Molly E. Hunter; Jose M. Iniguez; Leigh B. Lentile

    2011-01-01

    Prescribed and resource benefit fires are used to manage fuels in fire-prone landscapes in the Southwest. These practices, however, typically occur under different conditions, potentially leading to differences in fire behavior and effects. The objectives of this study were to investigate the effects of recent prescribed fires, resource benefit fires, and repeated...

  19. Molecular Dynamics Modeling of Hydrated Calcium-Silicate-Hydrate (CSH) Cement Molecular Structure

    Science.gov (United States)

    2014-08-30

    properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown...public release; distribution is unlimited. Molecular Dynamics Modeling of Hydrated Calcium-Silicate- Hydrate (CSH) Cement Molecular Structure The views... Cement Molecular Structure Report Title Multi-scale modeling of complex material systems requires starting from fundamental building blocks to

  20. Hydration and Thermal Expansion in Anatase Nanoparticles.

    Science.gov (United States)

    Zhu, He; Li, Qiang; Ren, Yang; Fan, Longlong; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2016-08-01

    A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.

  1. Hydration and Thermal Expansion in Anatase Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, He [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Li, Qiang [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Ren, Yang [Argonne National Laboratory, X-Ray Science Division, Argonne IL 60439 USA; Fan, Longlong [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Chen, Jun [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Deng, Jinxia [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China

    2016-06-06

    A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.

  2. Acoustical method of whole-body hydration status monitoring

    Science.gov (United States)

    Sarvazyan, A. P.; Tsyuryupa, S. N.; Calhoun, M.; Utter, A.

    2016-07-01

    An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

  3. Characterization of gas hydrates provinces off Norway-Svalbard

    Energy Technology Data Exchange (ETDEWEB)

    Vanneste, M.; Kvalstad, T.J.; Forsberg, C.F.; Pfaffhuber, A. [NGI, Oslo (Norway); ICG, Oslo (Norway); Bunz, S.; Mienert, J. [Tromso Univ., Tromso (Norway)

    2010-07-01

    The characterization of gas hydrates provinces off Norway-Svalbard were discussed in this presentation. Relevant research and development projects and activities were listed. Bottom simulating reflectors as a key seismic proxy were discussed. Seismic techniques such as p-waves and s-waves were identified. The quantification and saturation from velocity anomalies were illustrated along with the gas hydrate reservoir potential off Norway-Svalbard. Some interesting cases were presented, including the Nankai; Lake Baikal in Siberia; and the Black Sea. The presentation concluded with a discussion of lessons learned. The presentation noted that mapping and quantification requires integration of methods and techniques. figs.

  4. Compositional characteristics and hydration behavior of mineral trioxide aggregates

    Directory of Open Access Journals (Sweden)

    Wen-Hsi Wang

    2010-06-01

    Full Text Available Mineral trioxide aggregate (MTA was one of most popular biomaterials for endodontic treatment in the past decade. Its superb biocompatibility, sealing ability and surface for tissue adhesion all make MTA a potential candidate for many dental applications, such as apexification, perforation repair, repair of root resorption, and as a root-end filling material. There are many review articles regarding the physical, chemical and biological properties of MTA. However, there are few reviews discussing the relationship between the composition and hydration behavior of MTA. The aim of this article was to provide a systematic review regarding the compositional characteristics and hydration behavior of MTA.

  5. Frozen heat: Global outlook on methane gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Beaudoin, Yannick;