WorldWideScience

Sample records for hydrate reaction surface

  1. Diffusion and reaction pathways of water near fully hydrated TiO2 surfaces from ab initio molecular dynamics

    Science.gov (United States)

    Agosta, Lorenzo; Brandt, Erik G.; Lyubartsev, Alexander P.

    2017-07-01

    Ab initio molecular dynamics simulations are reported for water-embedded TiO2 surfaces to determine the diffusive and reactive behavior at full hydration. A three-domain model is developed for six surfaces [rutile (110), (100), and (001), and anatase (101), (100), and (001)] which describes waters as "hard" (irreversibly bound to the surface), "soft" (with reduced mobility but orientation freedom near the surface), or "bulk." The model explains previous experimental data and provides a detailed picture of water diffusion near TiO2 surfaces. Water reactivity is analyzed with a graph-theoretic approach that reveals a number of reaction pathways on TiO2 which occur at full hydration, in addition to direct water splitting. Hydronium (H3O+) is identified to be a key intermediate state, which facilitates water dissociation by proton hopping between intact and dissociated waters near the surfaces. These discoveries significantly improve the understanding of nanoscale water dynamics and reactivity at TiO2 interfaces under ambient conditions.

  2. Spectroscopic determination of optimal hydration time of zircon surface

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia R, G. [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Garcia G, N., E-mail: eduardo.ordonez@inin.gob.m [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Av. Colon y Av. Tollocan, 50180 Toluca, Estado de Mexico (Mexico)

    2010-07-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO{sub 4}) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy{sup 3+}, Eu{sup 3+} and Er{sup 3} in the bulk of zircon. The Dy{sup 3+} is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy{sup 3+} has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  3. Reaction of disodium cromoglycate with hydrated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, A.J.; Arroyo, C.M.; Cockerham, L.G.

    1988-01-01

    A possible mechanism by which disodium cromoglycate (DSCG) prevents a decrease in regional cerebral blood flow but not hypotension in primates following whole body gamma-irradiation was studied. Several studies have implicated superoxide radicals (O/sub 2//sup -/.) in intestinal and cerebral vascular disorders following ischemia and ionizing radiation, respectively. O/sub 2//sup -/. is formed during radiolysis in the reaction between hydrated electrons (e-aq) and dissolved oxygen. For this reason, the efficiency of DSCG to scavenge e-q and possibly prevent the formation of O/sub 2//sup -/. was studied. Hydrated electrons were produced by photolysis of potassium ferrocyanide solutions. The rate constant, k = 2.92 x 10(10) M-1s-1 for the reaction between e-aq and DSCG was determined in competition experiments using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). This spin trap reacts rapidly with e-aq followed by protonation to yield the ESR observable DMPO-H spin adduct. The results show that DSCG is an efficient e-aq scavenger and may effectively compete with oxygen for e-aq preventing the radiolytic formation of O/sub 2//sup -/..

  4. The analysis of magnesium oxide hydration in three-phase reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin, E-mail: ntp@dlmu.edu.cn

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.

  5. The analysis of magnesium oxide hydration in three-phase reaction system

    Science.gov (United States)

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas-liquid-solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid-solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH)2 precipitation, Mg(OH)2 peeling off from MgO particle and leaving behind fresh MgO surface.

  6. Reactions at Solid Surfaces

    CERN Document Server

    Ertl, Gerhard

    2009-01-01

    Expanding on the ideas first presented in Gerhard Ertl's acclaimed Baker Lectures at Cornell University, Reactions at Solid Surfaces comprises an authoritative, self-contained, book-length introduction to surface reactions for both professional chemists and students alike. Outlining our present understanding of the fundamental processes underlying reactions at solid surfaces, the book provides the reader with a complete view of how chemistry works at surfaces, and how to understand and probe the dynamics of surface reactions. Comparing traditional surface probes with more modern ones, and brin

  7. Obsidian hydration profile measurements using a nuclear reaction technique

    Science.gov (United States)

    Lee, R.R.; Leich, D.A.; Tombrello, T.A.; Ericson, J.E.; Friedman, I.

    1974-01-01

    AMBIENT water diffuses into the exposed surfaces of obsidian, forming a hydration layer which increases in thickness with time to a maximum depth of 20-40 ??m (ref. 1), this layer being the basic foundation of obsidian dating2,3. ?? 1974 Nature Publishing Group.

  8. Defining reactive sites on hydrated mineral surfaces: Rhombohedral carbonate minerals

    Science.gov (United States)

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Pokrovsky, Oleg S.; Schott, Jacques

    2009-08-01

    Despite the success of surface complexation models (SCMs) to interpret the adsorptive properties of mineral surfaces, their construct is sometimes incompatible with fundamental chemical and/or physical constraints, and thus, casts doubts on the physical-chemical significance of the derived model parameters. In this paper, we address the definition of primary surface sites (i.e., adsorption units) at hydrated carbonate mineral surfaces and discuss its implications to the formulation and calibration of surface equilibria for these minerals. Given the abundance of experimental and theoretical information on the structural properties of the hydrated (10.4) cleavage calcite surface, this mineral was chosen for a detailed theoretical analysis of critical issues relevant to the definition of primary surface sites. Accordingly, a single, generic charge-neutral surface site ( tbnd CaCO 3·H 2O 0) is defined for this mineral whereupon mass-action expressions describing adsorption equilibria were formulated. The one-site scheme, analogous to previously postulated descriptions of metal oxide surfaces, allows for a simple, yet realistic, molecular representation of surface reactions and provides a generalized reference state suitable for the calculation of sorption equilibria for rhombohedral carbonate minerals via Law of Mass Action (LMA) and Gibbs Energy Minimization (GEM) approaches. The one-site scheme is extended to other rhombohedral carbonate minerals and tested against published experimental data for magnesite and dolomite in aqueous solutions. A simplified SCM based on this scheme can successfully reproduce surface charge, reasonably simulate the electrokinetic behavior of these minerals, and predict surface speciation agreeing with available spectroscopic data. According to this model, a truly amphoteric behavior is displayed by these surfaces across the pH scale but at circum-neutral pH (5.8-8.2) and relatively high ΣCO 2 (⩾1 mM), proton/bicarbonate co

  9. Hydration dynamics near a model protein surface

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-09-01

    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces.

  10. Hydration of saccharides: estimation of reaction properties and equilibrium conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lobanova, O.; Mueller, K.; Mokrushina, L.; Arlt, W. [Friedrich-Alexander-University of Erlangen-Nuremberg, Chair of Separation Science and Technology, Erlangen (Germany)

    2012-04-15

    Biomass holds great promise as a renewable source of hydrogen and thus as a zero-emission, carbon-neutral, and nearly inexhaustible energy resource. Thermodynamic analysis of biomass hydration is carried out to study the reaction properties considering a series of saccharides as a model. Equilibrium constants and composition are estimated in dependence on the saccharide chain length and temperature. The latter is also studied as a function of the reactant ratios and in the presence of nonreacting additives. Being highly endothermic, the reaction is thermodynamically favorable due to a high entropic contribution. Increase in the saccharide chain length affects the conversion only slightly, so the results for low-molecular-weight saccharides can be transferred to long-chain ones. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Silica surfaces lubrication by hydrated cations adsorption from electrolyte solutions.

    Science.gov (United States)

    Donose, Bogdan C; Vakarelski, Ivan U; Higashitani, Ko

    2005-03-01

    Adsorption of hydrated cations on hydrophilic surfaces has been related to a variety of phenomena associated with the short-range interaction forces and mechanisms of the adhesive contact between the surfaces. Here we have investigated the effect of the adsorption of cations on the lateral interaction. Using lateral force microscopy (LFM), we have measured the friction force between a silica particle and silica wafer in pure water and in electrolyte solutions of LiCl, NaCl, and CsCl salts. A significant lubrication effect was demonstrated for solutions of high electrolyte concentrations. It was found that the adsorbed layers of smaller and more hydrated cations have a higher lubrication capacity than the layers of larger and less hydrated cations. Additionally, we have demonstrated a characteristic dependence of the friction force on the sliding velocity of surfaces. A mechanism for the observed phenomena based on the microstructures of the adsorbed layers is proposed.

  12. Solid state tungsten oxide hydrate/tin oxide hydrate electrochromic device prepared by electrochemical reactions

    Science.gov (United States)

    Nishiyama, Kentaro; Matsuo, Ryo; Sasano, Junji; Yokoyama, Seiji; Izaki, Masanobu

    2017-03-01

    The solid state electrochromic device composed of tungsten oxide hydrate (WO3(H2O)0.33) and tin oxide hydrate (Sn(O,OH)) has been constructed by anodic deposition of WO3(H2O)0.33 and Sn(O,OH) layers and showed the color change from clear to blue by applying voltage through an Au electrode.

  13. The specific surface area of methane hydrate formed in different conditions and manners

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The specific surface area of methane hydrates, formed both in the presence and absence of sodium dodecyl sulfate (SDS) and processed in different manners (stirring, compacting, holding the hydrates at the formation conditions for different periods of time, cooling the hydrates for different periods of time before depressurizing them), was measured under atmospheric pressure and temperatures below ice point. It was found that the specific surface area of hydrate increased with the decreasing temperature. The methane hydrate in the presence of SDS was shown to be of bigger specific surface areas than pure methane hydrates. The experimental results further demonstrated that the manners of forming and processing hydrates affected the specific surface area of hydrate samples. Stirring or compacting made the hydrate become finer and led to a bigger specific surface area.

  14. Studies of Reaction Kinetics of Methane Hydrate Dissocation in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J.; Seol, Yongkoo; Kneafsey, Timothy J.

    2005-03-10

    The objective of this study is the description of the kinetic dissociation of CH4-hydrates in porous media, and the determination of the corresponding kinetic parameters. Knowledge of the kinetic dissociation behavior of hydrates can play a critical role in the evaluation of gas production potential of gas hydrate accumulations in geologic media. We analyzed data from a sequence of tests of CH4-hydrate dissociation by means of thermal stimulation. These tests had been conducted on sand cores partially saturated with water, hydrate and CH4 gas, and contained in an x-ray-transparent aluminum pressure vessel. The pressure, volume of released gas, and temperature (at several locations within the cores) were measured. To avoid misinterpreting local changes as global processes, x-ray computed tomography scans provided accurate images of the location and movement of the reaction interface during the course of the experiments. Analysis of the data by means of inverse modeling (history matching ) provided estimates of the thermal properties and of the kinetic parameters of the hydration reaction in porous media. Comparison of the results from the hydrate-bearing porous media cores to those from pure CH4-hydrate samples provided a measure of the effect of the porous medium on the kinetic reaction. A tentative model of composite thermal conductivity of hydrate-bearing media was also developed.

  15. Rate constants of reactions of {kappa}-carrageenan with hydrated electron and hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Abad, L.V. [Nuclear Professional School, School of Engineering Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City (Philippines)], E-mail: lvabad@pnri.dost.gov.ph; Saiki, S.; Kudo, H.; Muroya, Y.; Katsumura, Y. [Nuclear Professional School, School of Engineering Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Rosa, A.M. de la [Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City (Philippines)

    2007-12-15

    The rate constants for the reactions of {kappa}-carrageenan with hydrated electron and hydroxyl radical was investigated by pulse radiolysis and laser photolysis. The kinetics of the reaction of hydrated electron indicates no seeming reaction with {kappa}-carrageenan. On the other hand, hydroxyl radical reacts very rapidly with {kappa}-carrageenan at a rate constant of approximately 1.2 x 10{sup 9} M{sup -1} s{sup -1}. This rate constant varies with pH.

  16. Hydration of swelling clay and bacteria interaction. An experimental in situ reaction study; Hydratation des argiles gonflantes et influence des bacteries. Etude experimentale de reaction in situ

    Energy Technology Data Exchange (ETDEWEB)

    Berger, J

    2008-01-15

    This study reports on the physical-chemical behaviour of swelling di-octahedral clays (smectites) and their interaction with aqueous solutions and bacteria (Shewanella putrefaciens). Experimental results are presented for compacted clays, hydrated under confined volume conditions, using a new type of reaction-cell (the 'wet-cell' of Warr and Hoffman, 2004) that was designed for in situ X-ray diffraction (XRD) measurement. For comparison, dispersed clay systems were studied using standard batch solutions subjected to varying degrees of agitation. The combination of time-dependent in situ XRD measurements with gravimetric measurements and calculated diffraction patterns using the CALCMIX software (Plancon and Drits, 1999) allowed to successful quantification of the dynamics of water uptake and storage. This analytical procedure combined with published water vapour adsorption data enabled determination of the abundance of structured water layers, developed in the interlayer space, and the amount of water contained in different storage sites (interlayers, surfaces and pore spaces). Qualitative information on surface area and textural organization was also estimated based on calculated changes in the average particle thickness and the organization of water layer structures (ordering). Abiotic smectite hydration experiments, using a range of natural and industrial bentonites (SWy-2, IBECO, MX80, TIXOTON), focused on defining the role of the interlayer cation, variable clay packing densities and the ionic strength of the infiltrating solution. The rate of smectite hydration, as expected, was seen to be highly dependent on the type of interlayer cation (enhanced for Ca as opposed to Na) and the ionic strength of solution (enhanced uptake rates with saline solutions, particularly as they infiltrate Na-smectite). A range of dynamic changes in micro textural state occurred as a function of packing density. These changes explain the differences in hydration behaviour

  17. Synthesis and reaction behavior of calcium silicate hydrate in basic system

    Institute of Scientific and Technical Information of China (English)

    刘桂华; 贺强; 李小斌; 彭志宏; 周秋生

    2004-01-01

    At the molar ratio of CaO to SiO2 of 1, with calcium hydroxide and sodium silicate, calcium silicate hydrate was synthesized at 50, 100, 170 ℃, respectively. The results show that temperature favors the formation of calcium silicate hydrate with perfect structure. When calcium silicate hydrate reacts with caustic solution, the decomposition rate of calcium silicate hydrate increases with the increasing caustic concentration and decreases with the raising synthesis temperature and the prolongation of reaction time. The decomposition rate is all less than 1.2 % in caustic solution, and XRD pattern of the residue after reaction with caustic solution is found as the same as that of original calcium silicate hydrate, which indicates the stable existence of calcium silicate hydrate in caustic solution.When reacted with soda solution, the decomposition rate increases with the increasing soda concentration and reaction time, while decreases with the synthesis temperature. The decomposition rate is more than 2% because CaO · SiO2 · H2O(CSH( Ⅰ )), except Ca5 (OH)2Si6O16 · 4H2O and Ca6Si6O17 (OH)2, is decomposed. So the synthesis temperature and soda concentration should be controlled in the process of transformation of sodium aluminosilicate hydrate into calcium silicate hydrate.

  18. Termination and hydration of forsteritic olivine (0 1 0) surface

    Science.gov (United States)

    Yan, Hongping; Park, Changyong; Ahn, Gun; Hong, Seungbum; Keane, Denis T.; Kenney-Benson, Curtis; Chow, Paul; Xiao, Yuming; Shen, Guoyin

    2014-11-01

    Termination and hydration of the forsteritic (Fo90Fa10) olivine (0 1 0) surface have been investigated with high-resolution specular X-ray reflectivity and Atomic Force Microscopy. The surface was prepared by polishing a naturally grown {0 1 0} face, from which we found the polished surface in acidic (pH 3.5) alumina suspension exhibits regular steps while the basic (pH 9.5) silica polished surface is irregularly roughened, indicating there are two distinguishable mechanochemical processes for the surface dissolution. The quantitative interpretation of the regular steps from the alumina-polished surface suggests that the observed step heights correspond to multiples of crystallographic unit cell. Only this atomically terraced surface is investigated with the high-resolution X-ray reflectivity (HRXR) to determine the surface termination and hydration. The basic silica paste polished surface turned out too rough to measure with X-ray reflectivity. HRXR reveals that the alumina polished olivine (0 1 0) surface in pure water is terminated at a plane including half-occupied metal ion sites (M1), an oxygen vacancy site, and a silicate tetrahedral unit with one of its apices pointing outward with respect to the surface. An ideal termination with the oxygen vacancy would fulfill the stoichiometry of the formula unit; however, in the observation, the vacancy site is filled by an adsorbed water species and about a quarter of the remaining metal ions are further depleted. The terminating plane generates two distinct atomic layers in the laterally averaged electron density profile, on which two highly ordered adsorbed water layers are formed. The first layer formation is likely through the direct interaction with the M1 plane and the second layer is likely through the hydrogen bonding interaction with the first water layer. With this multilayered adsorbed water structure, the surface metal ion is partially hydrated by the vacancy-filling water species and adsorbed water

  19. Hydration of swelling clay and bacteria interaction. An experimental in situ reaction study; Hydratation des argiles gonflantes et influence des bacteries. Etude experimentale de reaction in situ

    Energy Technology Data Exchange (ETDEWEB)

    Berger, J

    2008-01-15

    This study reports on the physical-chemical behaviour of swelling di-octahedral clays (smectites) and their interaction with aqueous solutions and bacteria (Shewanella putrefaciens). Experimental results are presented for compacted clays, hydrated under confined volume conditions, using a new type of reaction-cell (the 'wet-cell' of Warr and Hoffman, 2004) that was designed for in situ X-ray diffraction (XRD) measurement. For comparison, dispersed clay systems were studied using standard batch solutions subjected to varying degrees of agitation. The combination of time-dependent in situ XRD measurements with gravimetric measurements and calculated diffraction patterns using the CALCMIX software (Plancon and Drits, 1999) allowed to successful quantification of the dynamics of water uptake and storage. This analytical procedure combined with published water vapour adsorption data enabled determination of the abundance of structured water layers, developed in the interlayer space, and the amount of water contained in different storage sites (interlayers, surfaces and pore spaces). Qualitative information on surface area and textural organization was also estimated based on calculated changes in the average particle thickness and the organization of water layer structures (ordering). Abiotic smectite hydration experiments, using a range of natural and industrial bentonites (SWy-2, IBECO, MX80, TIXOTON), focused on defining the role of the interlayer cation, variable clay packing densities and the ionic strength of the infiltrating solution. The rate of smectite hydration, as expected, was seen to be highly dependent on the type of interlayer cation (enhanced for Ca as opposed to Na) and the ionic strength of solution (enhanced uptake rates with saline solutions, particularly as they infiltrate Na-smectite). A range of dynamic changes in micro textural state occurred as a function of packing density. These changes explain the differences in hydration behaviour

  20. Hydration-controlled bacterial motility and dispersal on surfaces

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Wang, G.; Gulez, Gamze

    2010-01-01

    hydrated habitats, where water dynamics result in fragmented aquatic habitats connected by micrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using......Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably...... an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharply within a small range of water potential (0 to −2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly...

  1. The hydrated electron and its reactions at high temperatures

    DEFF Research Database (Denmark)

    Christensen, Hilbert; Sehested, Knud

    1986-01-01

    The spectrum of the hydrated electron was determined in the temperature range 5-300 "C by using strongly alkaline solutions and high hydrogen pressure. At temperatures up to about 150 "C the temperature coefficients of E, and AE1/2 are -2.8 X and 2 X lo4 eV K-', respectively. E,, is the energy ma...

  2. New global estimates of marine gas hydrate accumulations based on POC degradation and reaction-transport modeling

    Science.gov (United States)

    Burwicz, Ewa; Ruepke, Lars; Wallmann, Klaus; Biastoch, Arne

    2010-05-01

    This study provides new estimates for the global methane hydrate inventory based on reaction- transport modeling. A multi-1D model for POC degradation, gas hydrate formation and dissolution is presented. The novel model contains an open three-phase system of two solid (organic carbon, gas hydrates), three dissolved (methane, sulfates, inorganic carbon) and one gaseous (free methane) compounds. The model computes time-resolved concentration profiles for all compounds by accounting for chemical reactions as well as diffusive and advective processes. The reaction module builds upon a kinetic model of POC degradation based on the approach of Wallmann K. et al., 2006. Various chemical reactions such as organic carbon decay, Anaerobic Oxidation of Methane, methanogenesis, and sulfate reduction are resolved using time and space dependent kinetic constants. The solid (and gaseous) phase is buried via sediment deposition and compaction. Fluid expulsion from compacting sediments results in a relative upward migration of dissolved species with respect to the solid phase. Chemical species dissolved in pore waters are able to diffuse through entire sediment profile adequate to their molecular diffusion coefficients. Gas hydrate and free gas formation occur if the concentration of dissolved methane exceeds the pressure, temperature, and salinity-dependent solubility limits of hydrates and/or free gas. Global input grids have been compiled from a variety of oceanographic, geological and geophysical data sets. Bathymetry, bottom water temperatures and salinities are extracted from an Ocean Circulation Model (OCM) simulation run in the ORCA_R025 configuration (Barnier B. et al., 2006) and represent a combination of ETOPO1 and GEBCO data sets. Geothermal gradients are based on the heat flow database provided by International Heat Flow Commission (IHFC). Sediment thicknesses are implemented according to NOAA data. Global TOC distribution is compiled from wide range of sediment cores

  3. Surface Roughness and Porosity of Hydrated Cement Pastes

    Directory of Open Access Journals (Sweden)

    T. Ficker

    2011-01-01

    Full Text Available . Seventy-eight graphs were plotted to describe and analyze the dependences of the height and roughness irregularities on the water-to-cement ratio and on the porosity of the cement hydrates. The results showed unambiguously that the water-to-cement ratio or equivalently the porosity of the specimens has a decisive influence on the irregularities of the fracture surfaces of this material. The experimental results indicated the possibility that the porosity or the value of the water-to-cement ratio might be inferred from the height irregularities of the fracture surfaces. It was hypothesized that there may be a similarly strong correlation between porosity and surface irregularity, on the one hand, and some other highly porous solids, on the other, and thus the same possibility to infer porosity from the surfaces of their fracture remnants.

  4. Molecular modeling of the dissociation of methane hydrate in contact with a silica surface.

    Science.gov (United States)

    Bagherzadeh, S Alireza; Englezos, Peter; Alavi, Saman; Ripmeester, John A

    2012-03-15

    We use constant energy, constant volume (NVE) molecular dynamics simulations to study the dissociation of the fully occupied structure I methane hydrate in a confined geometry between two hydroxylated silica surfaces between 36 and 41 Å apart, at initial temperatures of 283, 293, and 303 K. Simulations of the two-phase hydrate/water system are performed in the presence of silica, with and without a 3 Å thick buffering water layer between the hydrate phase and silica surfaces. Faster decomposition is observed in the presence of silica, where the hydrate phase is prone to decomposition from four surfaces, as compared to only two sides in the case of the hydrate/water simulations. The existence of the water layer between the hydrate phase and the silica surface stabilizes the hydrate phase relative to the case where the hydrate is in direct contact with silica. Hydrates bound between the silica surfaces dissociate layer-by-layer in a shrinking core manner with a curved decomposition front which extends over a 5-8 Å thickness. Labeling water molecules shows that there is exchange of water molecules between the surrounding liquid and intact cages in the methane hydrate phase. In all cases, decomposition of the methane hydrate phase led to the formation of methane nanobubbles in the liquid water phase.

  5. Formation of porous gas hydrates

    CERN Document Server

    Salamatin, Andrey N

    2015-01-01

    Gas hydrates grown at gas-ice interfaces are examined by electron microscopy and found to have a submicron porous texture. Permeability of the intervening hydrate layers provides the connection between the two counterparts (gas and water molecules) of the clathration reaction and makes further hydrate formation possible. The study is focused on phenomenological description of principal stages and rate-limiting processes that control the kinetics of the porous gas hydrate crystal growth from ice powders. Although the detailed physical mechanisms involved in the porous hydrate formation still are not fully understood, the initial stage of hydrate film spreading over the ice surface should be distinguished from the subsequent stage which is presumably limited by the clathration reaction at the ice-hydrate interface and develops after the ice grain coating is finished. The model reveals a time dependence of the reaction degree essentially different from that when the rate-limiting step of the hydrate formation at...

  6. Theoretical Studies of Reaction Surfaces

    Science.gov (United States)

    2007-11-02

    Similar levels of agreement are being found in studies of water clusters12 , the Menshutkin reaction 13 (ion separation reaction ), a prototypical SN2 ...of both reactants and products. These analyses reveal that Bery pseudorotation occurs repeatedly during the side attack, whereas the SN2 reaction H...31 Aug 97 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS AASERT93 THEORETICAL STUDIES OF REACTION SURFACES F49620-93-1-0556 3484/XS 6. AUTHOR(S) 61103D DR

  7. Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces.

    Science.gov (United States)

    Aman, Zachary M; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2014-12-07

    Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall.

  8. Solvated Positron Chemistry. The Reaction of Hydrated Positrons with Chloride Ions

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Shantarovich, V. P.

    1974-01-01

    The reaction of hydrated positrons (caq+ with cloride ions in aqueous solutions has been studied by means of positron annihilation angular correlation measurements. A rate constant of k = (2.5 ± 0.5) × 1010 M−1 s−1 was found. Probably the reacting positrons annihilated from an e+ Cl− bound state...

  9. Pressure induced reactions amongst calcium aluminate hydrate phases

    KAUST Repository

    Moon, Ju-hyuk

    2011-06-01

    The compressibilities of two AFm phases (strätlingite and calcium hemicarboaluminate hydrate) and hydrogarnet were obtained up to 5 GPa by using synchrotron high-pressure X-ray powder diffraction with a diamond anvil cell. The AFm phases show abrupt volume contraction regardless of the molecular size of the pressure-transmitting media. This volume discontinuity could be associated to a structural transition or to the movement of the weakly bound interlayer water molecules in the AFm structure. The experimental results seem to indicate that the pressure-induced dehydration is the dominant mechanism especially with hygroscopic pressure medium. The Birch-Murnaghan equation of state was used to compute the bulk modulus of the minerals. Due to the discontinuity in the pressure-volume diagram, a two stage bulk modulus of each AFm phase was calculated. The abnormal volume compressibility for the AFm phases caused a significant change to their bulk modulus. The reliability of this experiment is verified by comparing the bulk modulus of hydrogarnet with previous studies. © 2011 Elsevier Ltd. All rights reserved.

  10. Electron-induced hydration of an alkene: alternative reaction pathways.

    Science.gov (United States)

    Warneke, Jonas; Wang, Ziyan; Swiderek, Petra; Bredehöft, Jan Hendrik

    2015-03-27

    Electron-induced reactions in condensed mixtures of ethylene and water lead to the synthesis of ethanol, as shown by post-irradiation thermal desorption spectrometry (TDS). Interestingly, this synthesis is not only induced by soft electron impact ionization similar to a previously observed electron-induced hydroamination but also, at low electron energy, by electron attachment to ethylene and a subsequent acid/base reaction with water.

  11. Surface science of heterogeneous reactions.

    Science.gov (United States)

    White, J M

    1982-10-29

    Some of the present and future directions for surface science as a growing and naturally interdisciplinary subject are reviewed. Particular attention is given to surface reaction chemistry as it is related to heterogenous catalysis, a subject area where there are abundant opportunities for detailed measurements of structure and dynamics at the molecular level.

  12. Zirconium fluoride glass - Surface crystals formed by reaction with water

    Science.gov (United States)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  13. Dynamics of hydration water and coupled protein sidechains around a polymerase protein surface

    Science.gov (United States)

    Qin, Yangzhong; Yang, Yi; Wang, Lijuan; Zhong, Dongping

    2017-09-01

    Water-protein coupled interactions are essential to the protein structural stability, flexibility and dynamic functions. The ultimate effects of the hydration dynamics on the protein fluctuations remain substantially unexplored. Here, we investigated the dynamics of both hydration water and protein sidechains at 13 different sites around the polymerase β protein surface using a tryptophan scan with femtosecond spectroscopy. Three types of hydration-water relaxations and two types of protein sidechain motions were determined, reflecting a highly dynamic water-protein interactions fluctuating on the picosecond time scales. The hydration-water dynamics dominate the coupled interactions with higher flexibility.

  14. Hydration Repulsion between Carbohydrate Surfaces Mediated by Temperature and Specific Ions

    Science.gov (United States)

    Chen, Hsieh; Cox, Jason R.; Ow, Hooisweng; Shi, Rena; Panagiotopoulos, Athanassios Z.

    2016-06-01

    Stabilizing colloids or nanoparticles in solution involves a fine balance between surface charges, steric repulsion of coating molecules, and hydration forces against van der Waals attractions. At high temperature and electrolyte concentrations, the colloidal stability of suspensions usually decreases rapidly. Here, we report a new experimental and simulation discovery that the polysaccharide (dextran) coated nanoparticles show ion-specific colloidal stability at high temperature, where we observed enhanced colloidal stability of nanoparticles in CaCl2 solution but rapid nanoparticle-nanoparticle aggregation in MgCl2 solution. The microscopic mechanism was unveiled in atomistic simulations. The presence of surface bound Ca2+ ions increases the carbohydrate hydration and induces strongly polarized repulsive water structures beyond at least three hydration shells which is farther-reaching than previously assumed. We believe leveraging the binding of strongly hydrated ions to macromolecular surfaces represents a new paradigm in achieving absolute hydration and colloidal stability for a variety of materials, particularly under extreme conditions.

  15. Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process

    Science.gov (United States)

    Zhu, Donghai; Nai, Xueying; Lan, Shengjie; Bian, Shaoju; Liu, Xin; Li, Wu

    2016-12-01

    In order to improve the compatibility of magnesium hydroxide sulfate hydrate (MHSH) whiskers with polymers, the surface of MHSH whiskers was modified using vinyltriethoxysilane (VTES) by dry process. The possible mechanism of the surface modification and the interfacial interactions between MHSH whiskers and VTES, as well as the effect of surface modification, were studied. Scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that the agglomerations were effectively separated and a thin layer was formed on the surface of the whiskers after modification. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses showed that the VTES molecules were bound to the surface of MHSH whiskers after modification. Chemical bonds (Sisbnd Osbnd Mg) were formed by the reaction between Sisbnd OC2H5 or Sisbnd OH and the hydroxyl group of MHSH whiskers. The effect of surface modification was evaluated by sedimentation tests, contact angle measurements and thermogravimetric analysis (TGA). The results showed that the surface of MHSH whiskers was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MHSH whiskers were significantly improved in the organic phase. Additionally, the thermal stability of the VTES-modified MHSH whiskers was improved significantly.

  16. Strength development, hydration reaction and pore structure of autoclaved slag cement with added silica fume

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Y. [China Building Materials Academy, Beijing (China); Siemer, D.D. [LITCO, Idaho Falls, ID (United States); Scheetz, B.E. [Pennsylvania State Univ., University Park, PA (United States). Materials Research Lab.

    1997-01-01

    Under continuous hydrothermal treatment the strength of portland cement paste decreases with curing time and the pore structure coarsens. It was found in this study that the compressive strength of slag cement paste containing 67.5 wt.% ggbfs also decreases with time after 24 hour hydrothermal processing, but with a small addition of silica fume to the slag cement, the cement strength increases and the pore structure densifies when processed under comparable conditions. Based on observations XRD and SEM, these changes are attributed to: (1) changes in the hydration reactions and products by highly reactive silica fume, such that amorphous products dominate and the strength reducing phase {alpha}-C{sub 2}SH does not form; (2) slower hydration of slag, partially caused by the decreased pH of the pore solution, favors the formation of a dense pore structure; and (3) the space filling properties of the micro particles of silica fume.

  17. The reaction of CF2Cl2 with gas-phase hydrated electrons.

    Science.gov (United States)

    Lengyel, Jozef; van der Linde, Christian; Fárník, Michal; Beyer, Martin K

    2016-09-14

    The reaction of dichlorodifluoromethane (CF2Cl2) with hydrated electrons (H2O)n(-) (n = 30-86) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The hydrated electron reacts with CF2Cl2, forming (H2O)mCl(-) with a rate constant of (8.6 ± 2.2) × 10(-10) cm(3) s(-1), corresponding to an efficiency of 57 ± 15%. The reaction enthalpy was determined using nanocalorimetry, revealing a strongly exothermic reaction with ΔHr(CF2Cl2, 298 K) = -208 ± 41 kJ mol(-1). The combination of the measured reaction enthalpy with thermochemical data from the condensed phase yields a C-Cl bond dissociation enthalpy (BDE) ΔHC-Cl(CF2Cl2, 298 K) = 355 ± 41 kJ mol(-1) that agrees within error limits with the predicted values from quantum chemical calculations and published BDEs.

  18. Theoretical Investigation on the Adsorption of Ag+ and Hydrated Ag+ Cations on Clean Si(111)Surface

    Institute of Scientific and Technical Information of China (English)

    SHENG Yong-Li; LI Meng-Hua; WANG Zhi-Guo; LIU Yong-Jun

    2008-01-01

    In this paper,the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111)surface were investigated by using cluster(Gaussian 03)and periodic(DMol3)ab initio calculations.Si(111)surface was described with cluster models(Si14H17 and Si22H21)and a four-silicon layer slab with periodic boundary conditions.The effect of basis set superposition error(BSSE)was taken into account by applying the counterpoise correction.The calculated results indicated that the binding energies between hydrated Ag+ cations and clean Si(111)surface are large,suggesting a strong interaction between hydrated Ag+ cations and the semiconductor surface.With the increase of number,water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Ag+ cation.The Ag+ cation in aqueous solution will safely attach to the clean Si(111)surface.

  19. From hydration repulsion to dry adhesion between asymmetric hydrophilic and hydrophobic surfaces.

    Science.gov (United States)

    Kanduč, Matej; Netz, Roland R

    2015-10-01

    Using all-atom molecular dynamics (MD) simulations at constant water chemical potential in combination with basic theoretical arguments, we study hydration-induced interactions between two overall charge-neutral yet polar planar surfaces with different wetting properties. Whether the water film between the two surfaces becomes unstable below a threshold separation and cavitation gives rise to long-range attraction, depends on the sum of the two individual surface contact angles. Consequently, cavitation-induced attraction also occurs for a mildly hydrophilic surface interacting with a very hydrophobic surface. If both surfaces are very hydrophilic, hydration repulsion dominates at small separations and direct attractive force contribution can-if strong enough-give rise to wet adhesion in this case. In between the regimes of cavitation-induced attraction and hydration repulsion we find a narrow range of contact angle combinations where the surfaces adhere at contact in the absence of cavitation. This dry adhesion regime is driven by direct surface-surface interactions. We derive simple laws for the cavitation transition as well as for the transition between hydration repulsion and dry adhesion, which favorably compare with simulation results in a generic adhesion state diagram as a function of the two surface contact angles.

  20. Contrasting reactions of hydrated electron and formate radical with 2-thio analogues of cytosine and uracil.

    Science.gov (United States)

    Prasanthkumar, Kavanal P; Alvarez-Idaboy, Juan R; Kumar, Pavitra V; Singh, Beena G; Priyadarsini, K Indira

    2016-10-19

    2-Thiocytosine (TC) and 2-thiouracil (TU) were subjected to hydrated electron (eaq(-)), formate radical (CO2˙(-)) and 2-hydroxypropan-2-yl radical ((CH3)2˙COH) reactions in aqueous medium. Transients were characterized by absorption spectroscopy and the experimental findings were rationalized by DFT calculations at LC-ωPBE and M06-2X levels using a 6-311+G(d,p) basis set and SMD solvation. In eaq(-) reactions, a ring N-atom protonated radical of TC and an exocyclic O-atom protonated radical of TU were observed via addition of eaq(-) and subsequent protonation by solvent molecules. However, two competing but simultaneous mechanisms are operative in CO2˙(-) reactions with TC and TU. The first one corresponds to formations of N(O)-atom protonated radicals (similar to eaq(-) reactions); the second mechanism led to 2 center-3 electron, sulfur-sulfur bonded neutral dimer radicals, TCdim˙ and TUdim˙. DFT calculations demonstrated that H-abstraction by CO2˙(-) from TC(TU) results in S-centered radical which upon combination with TC(TU) provide the dimer radical. In some cases, DFT energy profiles were further validated by CBS-QB3//M06-2X calculations. This is the first time report for a contradictory behavior in the mechanisms of eaq(-) and CO2˙(-) reactions with any pyrimidines or their thio analogues.

  1. Thermodynamic forward modeling of retrogressive hydration reactions induced by geofluid infiltration

    Science.gov (United States)

    Kuwatani, Tatsu; Toriumi, Mitsuhiro

    2017-01-01

    We have developed a new methodology for forward analysis of retrogressive hydration (rehydration) reactions by an improved thermodynamic forward modeling technique based on a differential thermodynamic approach (Gibbs' method). Based on natural observations and theoretical considerations, the progress of a rehydration reaction is modeled by incorporating a change in the effective bulk composition on account of the breakdown of the non-equilibrated phase and the amount of water infiltration into the system. Forward analyses of rehydration reactions under greenschist-facies conditions show that (1) the reaction progress of rehydration is proportional to the external water supply, and (2) the mineral compositions of equilibrated minerals are mainly controlled by P- T conditions and are similar to those in the global equilibrium model. Calculated results are in accordance with natural observations of rehydration reactions in greenschist-facies rocks, which supports the validity of the proposed model. The proposed model can be used as a basic forward model for various inversion analyses and numerical simulations and thus to understand the distribution and behavior of geofluids.[Figure not available: see fulltext.

  2. Surface reactions in microelectronics process technology.

    Science.gov (United States)

    Levitin, Galit; Hess, Dennis W

    2011-01-01

    Current integrated circuit (IC) manufacturing consists of more than 800 process steps, nearly all of which involve reactions at surfaces that significantly impact device yield and performance. From initial surface preparation through film deposition, patterning, etching, residue removal, and metallization, an understanding of surface reactions and interactions is critical to the successful continuous scaling, yield, and reliability of electronic devices. In this review, some of the most important surface reactions that drive the development of microelectronic device fabrication are described. The reactions discussed do not constitute comprehensive coverage of this topic in IC manufacture but have been selected to demonstrate the importance of surface/interface reactions and interactions in the development of new materials, processing sequences, and process integration challenges. Specifically, the review focuses on surface reactions related to surface cleaning/preparation, semiconductor film growth, dielectric film growth, metallization, and etching (dry and wet).

  3. 2005 Chemical Reactions at Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cynthia M. Friend

    2006-03-14

    The Gordon Research Conference (GRC) on 2005 Chemical Reactions at Surfaces was held at Ventura Beach Marriott, Ventura California from February 13, 2005 through February 18, 2005. The Conference was well-attended with 124 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, 'free time' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  4. Computational studies of the isomerization and hydration reactions of acetaldehyde oxide and methyl vinyl carbonyl oxide.

    Science.gov (United States)

    Kuwata, Keith T; Hermes, Matthew R; Carlson, Matthew J; Zogg, Cheryl K

    2010-09-02

    Alkene ozonolysis is a major source of hydroxyl radical (*OH), the most important oxidant in the troposphere. Previous experimental and computational work suggests that for many alkenes the measured *OH yields should be attributed to the combined impact of both chemically activated and thermalized syn-alkyl Criegee intermediates (CIs), even though the thermalized CI should be susceptible to trapping by molecules such as water. We have used RRKM/master equation and variational transition state theory calculations to quantify the competition between unimolecular isomerization and bimolecular hydration reactions for the syn and anti acetaldehyde oxide formed in trans-2-butene ozonolysis and for the CIs formed in isoprene ozonolysis possessing syn-methyl groups. Statistical rate theory calculations were based on quantum chemical data provided by the B3LYP, QCISD, and multicoefficient G3 methods, and thermal rate constants were corrected for tunneling effects using the Eckart method. At tropospheric temperatures and pressures, all thermalized CIs with syn-methyl groups are predicted to undergo 1,4-hydrogen shifts from 2 to 8 orders of magnitude faster than they react with water monomer at its saturation number density. For thermalized anti acetaldehyde oxide, the rates of dioxirane formation and hydration should be comparable.

  5. Surface characteristics of nanocrystalline apatites: effect of mg surface enrichment on morphology, surface hydration species, and cationic environments.

    Science.gov (United States)

    Bertinetti, Luca; Drouet, Christophe; Combes, Christele; Rey, Christian; Tampieri, Anna; Coluccia, Salvatore; Martra, Gianmario

    2009-05-19

    The incorporation of foreign ions, such as Mg2+, exhibiting a biological activity for bone regeneration is presently considered as a promising route for increasing the bioactivity of bone-engineering scaffolds. In this work, the morphology, structure, and surface hydration of biomimetic nanocrystalline apatites were investigated before and after surface exchange with such Mg2+ ions, by combining chemical alterations (ion exchange, H2O-D2O exchanges) and physical examinations (Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM)). HRTEM data suggested that the Mg2+/Ca2+ exchange process did not affect the morphology and surface topology of the apatite nanocrystals significantly, while a new phase, likely a hydrated calcium and/or magnesium phosphate, was formed in small amount for high Mg concentrations. Near-infrared (NIR) and medium-infrared (MIR) spectroscopies indicated that the samples enriched with Mg2+ were found to retain more water at their surface than the Mg-free sample, both at the level of H2O coordinated to cations and adsorbed in the form of multilayers. Additionally, the H-bonding network in defective subsurface layers was also noticeably modified, indicating that the Mg2+/Ca2+ exchange involved was not limited to the surface. This work is intended to widen the present knowledge on Mg-enriched calcium phosphate-based bioactive materials intended for bone repair applications.

  6. Oil and gas pipelines with hydrophobic surfaces better equipped to deal with gas hydrate flow assurance issues

    DEFF Research Database (Denmark)

    Perfeldt, Christine Malmos; Sharifi, Hassan; von Solms, Nicolas

    2015-01-01

    concerns. Here we show the effect of a hydrophobically coated surface on hydrate formation in the presence of an antifreeze protein type I (AFP I) and a biodegradable synthetic polymer (LuvicapBio) in a high pressure crystallizer setup. The hydrophobic surface increased the hydrate induction time...

  7. The inhibition of methane hydrate formation by water alignment underneath surface adsorption of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ngoc N.; Nguyen, Anh V.; Dang, Liem X.

    2017-06-01

    Sodium dodecyl sulfate (SDS) has been widely shown to strongly promote the formation of methane hydrate. Here we show that SDS displays an extraordinary inhibition effect on methane hydrate formation when the surfactant is used in sub-millimolar concentration (around 0.3 mM). We have also employed Sum Frequency Generation vibrational spectroscopy (SFG) and molecular dynamics simulation (MDS) to elucidate the molecular mechanism of this inhibition. The SFG and MDS results revealed a strong alignment of water molecules underneath surface adsorption of SDS in its sub-millimolar solution. Interestingly, both the alignment of water and the inhibition effect (in 0.3 mM SDS solution) went vanishing when an oppositely-charged surfactant (tetra-n-butylammonium bromide, TBAB) was suitably added to produce a mixed solution of 0.3 mM SDS and 3.6 mM TBAB. Combining structural and kinetic results, we pointed out that the alignment of water underneath surface adsorption of dodecyl sulfate (DS-) anions gave rise to the unexpected inhibition of methane hydration formation in sub-millimolar solution of SDS. The adoption of TBAB mitigated the SDS-induced electrostatic field at the solution’s surface and, therefore, weakened the alignment of interfacial water which, in turn, erased the inhibition effect. We discussed this finding using the concept of activation energy of the interfacial formation of gas hydrate. The main finding of this work is to reveal the interplay of interfacial water in governing gas hydrate formation which sheds light on a universal molecular-scale understanding of the influence of surfactants on gas hydrate formation. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  8. Weakly Hydrated Surfaces and the Binding Interactions of Small Biological Solutes

    Energy Technology Data Exchange (ETDEWEB)

    Brady, J. W.; Tavagnacco, L.; Ehrlich, L.; Chen, M.; Schnupf, U.; Himmel, M. E.; Saboungi, M. L.; Cesaro, A.

    2012-04-01

    Extended planar hydrophobic surfaces, such as are found in the side chains of the amino acids histidine, phenylalanine, tyrosine, and tryptophan, exhibit an affinity for the weakly hydrated faces of glucopyranose. In addition, molecular species such as these, including indole, caffeine, and imidazole, exhibit a weak tendency to pair together by hydrophobic stacking in aqueous solution. These interactions can be partially understood in terms of recent models for the hydration of extended hydrophobic faces and should provide insight into the architecture of sugar-binding sites in proteins.

  9. On the Temperature Dependence of the Rate Constant of the Bimolecular Reaction of two Hydrated Electrons

    Directory of Open Access Journals (Sweden)

    S.L. Butarbutar

    2013-08-01

    Full Text Available It has been a longstanding issue in the radiation chemistry of water that, even though H2 is a molecular product, its “escape” yield g(H2 increases with increasing temperature. A main source of H2 is the bimolecular reaction of two hydrated electrons (eaq. The temperature dependence of the rate constant of this reaction (k1, measured under alkaline conditions, reveals that the rate constant drops abruptly above ~150°C. Recently, it has been suggested that this temperature dependence should be regarded as being independent of pH and used in high-temperature modeling of near-neutral water radiolysis. However, when this drop in the eaq self-reaction rate constant is included in low (isolated spurs and high (cylindrical tracks linear energy transfer (LET modeling calculations, g(H2 shows a marked downward discontinuity at ~150°C which is not observed experimentally. The consequences of the presence of this discontinuity in g(H2 for both low and high LET radiation are briefly discussed in this communication. It is concluded that the applicability of the sudden drop in k1 observed at ~150°C in alkaline water to near-neutral water is questionable and that further measurements of the rate constant in pure water are highly desirable.

  10. Reaction of a hydrated electron with gentamycin and collagen -a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Pietrucha, K. [Technical Univ., Lodz (Poland). Inst. of Applied Radiation Chemistry; Gora, L. [Worcester Poltechnic Inst., MA (United States). Dept. of Chemical Engineering; Doillon, C.J. [Laval Univ., Quebec, PQ (Canada). Dept. of Surgery]|[Saint-Francois d`Assise Hospital, Quebec (Canada)

    1996-01-01

    The reactions of a hydrated electron (e{sub aq}{sup -}) with aminoglycoside antibiotic gentamycin and collagen in aqueous medium at different pH have been investigated employing a pulse radiolysis technique. The pseudo-first order equation of reaction kinetics was used to give an accurate description of the decay of e{sub aq}{sup -} in gentamycin solutions. The rate constant of the e{sub aq}{sup -}decay in collagen solutions was high and reached 3.2 x 10{sup 10} M{sup -1} s{sup -1}. The rate constants for the reaction of the e{sub aq}{sup -}with gentamycin were found to be influenced by pH, decreasing with the deprotonation of the -NH{sub 3} groups, while for pH > pK{sub a} which for gentamycin is equal to 7.8, the rate constant was unchanged. These observations suggest that when the amino groups are protonated, reductive deamination occurs, but for unprotonated non-reactive amino groups, a radical anion is formed on the glycoside moiety. (Author).

  11. Communication: Charge transfer dominates over proton transfer in the reaction of nitric acid with gas-phase hydrated electrons

    Science.gov (United States)

    Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.

    2017-09-01

    The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.

  12. Selected specific rates of reactions of transients from water in aqueous solution. Hydrated electron, supplemental data. [Reactions with transients from water, with inorganic solutes, and with solutes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A.B.

    1975-06-01

    A compilation of rates of reactions of hydrated electrons with other transients and with organic and inorganic solutes in aqueous solution appeared in NSRDS-NBS 43, and covered the literature up to early 1971. This supplement includes additional rates which have been published through July 1973.

  13. Ultrafast Hydration Dynamics Probed by Tryptophan at Protein Surface and Protein-DNA Interface

    Science.gov (United States)

    Qin, Yangzhong

    As we all live in a special water planet Earth, the significance of water to life has been universally recognized. The reason why water is so important to life has intrigued many researchers. This dissertation will focus on the ultrafast dynamics of protein surface water and protein-DNA interfacial water which have direct importance to the protein structure and function. Using tryptophan as an intrinsic fluorescence probe, combined with site-directed mutagenesis and ultrafast fluorescence up-conversion spectroscopy, we can achieve single residue spatial resolution and femtosecond temporal resolution. We can also precisely determine the local hydration water dynamics by monitoring the Stokes shift of tryptophan one at a time. Previously, the protein surface hydration has been extensively studied by our group. In this thesis, we will provide more details on the methods we are using to extract the hydration dynamics, and also validate our methods from both experimental and theoretical perspectives. To further interrogate the interfacial water hydration dynamics relative to the protein surface hydration, we studied two DNA polymerases: DNA Polymerase IV (Dpo4) and DNA Polymerase Beta (Pol beta). Both proteins show typical surface hydration pattern with three distinct time components including: (i) the ultrafast sub-picosecond component reflects the bulk type water motion; (ii) a few picoseconds component shows the inner water relaxation mainly corresponding to the local libration and reorientation; (iii) the tens to hundred picoseconds component represents the water-protein coupled motion involving the whole water network reorganization. Dpo4, a loosely DNA binding protein, exhibits very flexible interfacial water which resembles its surface water yet with a significantly reduced ultrafast component. Such dynamic interfacial water not only maintains interfacial flexibility, but also contributes to the low fidelity of the protein. In contrast to the Dpo4, pol beta

  14. Combined ATR-FTIR and DFT Study of Cyclohexanone Adsorption on Hydrated TiO2 Anatase Surfaces

    NARCIS (Netherlands)

    Almeida, Ana Rita; Calatayud, Monica; Tielens, Frederik; Moulijn, Jacob A.; Mul, Guido

    2011-01-01

    The adsorption of cyclohexanone on different planes ((100), (101), and (001)) of anatase TiO2, with variable level of hydration, was evaluated by density functional theory (DFT) calculations. Surface hydration was found to affect the cyclohexanone adsorption enthalpy and the calculated infrared abso

  15. Epithermal Neutron Evidence for a Diurnal Surface Hydration Process in the Moon's High Latitudes

    Science.gov (United States)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Parsons, A.; Starr, R. D.; Evans, L. G.; Sanin, A.; Litvak, M.; Livengood, T.

    2015-01-01

    We report evidence from epithermal neutron flux observations that show that the Moon's high latitude surfaces are being actively hydrated, dehydrated and rehydrated in a diurnal cycle. The near-surface hydration is indicated by an enhanced suppression of the lunar epithermal neutron leakage flux on the dayside of the dawn terminator on poleward-facing slopes (PFS). At 0600 to 0800 local-time, hydrogen concentrations within the upper 1 meter of PFS are observed to be maximized relative to equivalent equator-facing slopes (EFS). During the lunar day surface hydrogen concentrations diminish towards dusk and then rebuild overnight. Surface hydration is determined by differential comparison of the averaged EFS to PFS epithermal neutron count rates above +/- 75 deg latitude. At dawn the contrast bias towards PFS is consistent with at least 15 to 25 parts-per-million (ppm) hydrogen that dissipates by dusk. We review several lines of evidence derived from temperature and epithermal neutron data by a correlated analysis of observations from the Lunar Reconnaissance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) that were mapped as a function of lunar local-time, Lunar Observing Laser Altimeter (LOLA) topography and Diviner (DLRE) surface temperature.

  16. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  17. Band energy control of molybdenum oxide by surface hydration

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Keith T., E-mail: k.t.butler@bath.ac.uk; Walsh, Aron [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Crespo-Otero, Rachel [School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London E1 4NS (United Kingdom); Buckeridge, John; Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Bovill, Edward; Lidzey, David [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2015-12-07

    The application of oxide buffer layers for improved carrier extraction is ubiquitous in organic electronics. However, the performance is highly susceptible to processing conditions. Notably, the interface stability and electronic structure is extremely sensitive to the uptake of ambient water. In this study we use density functional theory calculations to asses the effects of adsorbed water on the electronic structure of MoO{sub x}, in the context of polymer-fullerene solar cells based on PCDTBT. We obtain excellent agreement with experimental values of the ionization potential for pristine MoO{sub 3} (010). We find that IP and EA values can vary by as much as 2.5 eV depending on the oxidation state of the surface and that adsorbed water can either increase or decrease the IP and EA depending on the concentration of surface water.

  18. Sialic acid-to-urea ratio as a measure of airway surface hydration.

    Science.gov (United States)

    Esther, Charles R; Hill, David B; Button, Brian; Shi, Shuai; Jania, Corey; Duncan, Elizabeth A; Doerschuk, Claire M; Chen, Gang; Ranganathan, Sarath; Stick, Stephen M; Boucher, Richard C

    2017-03-01

    Although airway mucus dehydration is key to pathophysiology of cystic fibrosis (CF) and other airways diseases, measuring mucus hydration is challenging. We explored a robust method to estimate mucus hydration using sialic acid as a marker for mucin content. Terminal sialic acid residues from mucins were cleaved by acid hydrolysis from airway samples, and concentrations of sialic acid, urea, and other biomarkers were analyzed by mass spectrometry. In mucins purified from human airway epithelial (HAE), sialic acid concentrations after acid hydrolysis correlated with mucin concentrations (r(2) = 0.92). Sialic acid-to-urea ratios measured from filters applied to the apical surface of cultured HAE correlated to percent solids and were elevated in samples from CF HAEs relative to controls (2.2 ± 1.1 vs. 0.93 ± 1.8, P gold standard measure of mucus hydration. The method proved robust and has potential to serve as flexible techniques to assess mucin hydration, particularly in samples like BALF in which established methods such as percent solids cannot be utilized.

  19. A Trimeric Surfactant: Surface Micelles, Hydration-Lubrication, and Formation of a Stable, Charged Hydrophobic Monolayer.

    Science.gov (United States)

    Kampf, Nir; Wu, Chunxian; Wang, Yilin; Klein, Jacob

    2016-11-15

    The surface structure of the trimeric surfactant tri(dodecyldimethylammonioacetoxy)diethyltriamine trichloride (DTAD) on mica and the interactions between two such DTAD-coated surfaces were determined using atomic force microscopy and a surface force balance. In an aqueous solution of 3 mM, 5 times the critical aggregation concentration (CAC), the surfaces are coated with wormlike micelles or hemimicelles and larger (∼80 nm) bilayer vesicles. Repulsive normal interactions between the surfaces indicate a net surface charge and a solution concentration of ions close to that expected from the CAC. Moreover, this surface coating is strongly lubricating up to some tens of atmospheres, attributed to the hydration-lubrication mechanism acting at the exposed, highly hydrated surfactant headgroups. Upon replacement of the DTAD solution with surfactant-free water, the surface structures have changed on the DTAD monolayers, which then jump into adhesive contact on approach, both in water and following addition of 0.1 M NaNO3. This trimeric surfactant monolayer, which is highly hydrophobic, is found to be positively charged, which is evident from the attraction between the DTAD monolayer and negatively charged bare mica across water. These monolayers are stable over days even under a salt solution. The stability is attributed to the several stabilization pathways available to DTAD on the mica surface.

  20. Chemical Reactions at Surfaces. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-02-21

    The Gordon Research Conference (GRC) on Chemical Reactions at Surfaces was held at Holiday Inn, Ventura, California, 2/16-21/03. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  1. Screened Thermonuclear Reaction Rates on Magnetar Surfaces

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-Lin; LUO Zhi-Quan; LIU Jing-Jing; LAI Xiang-Jun

    2008-01-01

    Improving Salpeter's method, we discuss the effect of superstrong magnetic fields (such as those of magnetars) on thermonuclear reaction rates. These most interesting reactions, including the hydrogen burning by the CNO cycle and the helium burning by the triple alpha reaction, are investigated as examples on the magnetar surfaces. The obtained result shows that the superstrong magnetic fields can increase the thermonuclear reaction rates by many orders of magnitude. The enhancement may have significant influence for further study research of the magnetars, especially for the x-ray luminosity observation and the evolution of magnetars.

  2. Chemical Reactions at Surfaces [Conference summary report

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Michael; Gray, Nancy Ryan

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  3. Diffusion and Surface Reaction in Heterogeneous Catalysis

    Science.gov (United States)

    Baiker, A.; Richarz, W.

    1978-01-01

    Ethylene hydrogenation on a platinum catalyst, electrolytically applied to a tube wall, is a good system for the study of the interactions between diffusion and surface reaction in heterogeneous catalysis. Theoretical background, apparatus, procedure, and student performance of this experiment are discussed. (BB)

  4. Localized nonequilibrium nanostructures in surface chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, M; Ipsen, M; Mikhailov, A S; Ertl, G [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

    2003-06-01

    Nonequilibrium localized stationary structures of submicrometre and nanometre sizes can spontaneously develop under reaction conditions on a catalytic surface. These self-organized structures emerge because of the coupling between the reaction and a structural phase transition in the substrate. Depending on the reaction conditions they can either correspond to densely covered spots (islands), inside which the reaction predominantly proceeds, or local depletions (holes) in a dense adsorbate layer with a very small reactive output in comparison to the surroundings. The stationary localized solutions are constructed using the singular perturbation approximation. These results are compared with numerical simulations, where special adaptive grid algorithms and numerical continuation of stationary profiles are used. Numerical investigations beyond the singular perturbation limit are also presented.

  5. Microbial Diversity in Hydrate-bearing and -free Seafloor Surface Sediments in the Shenhu Area, South China Sea

    Science.gov (United States)

    Su, X.

    2015-12-01

    In 2007, the China's first gas hydrate drilling expedition GMGS-1 in the Shenhu area on the northern continental slope of the South China Sea was performed (Zhang et al., 2007). Six holes (namely Sites SH1B, SH2B, SH3B, SH5B, SH5C and SH7B) were drilled, and gas hydrate samples were recovered at three sites: Sites SH2B, SH3B and SH7B. In order to investigate microbial diversity and community features in correlation to gas hydrate-bearing sediments, a study on microbial diversity in the surface sediments at hydrate-bearing sites (SH3B and SH7B) and -free sites (SH1B, SH5B, SH5C) was carried out by using 16S rRNA gene phylogenetic analysis. The phylogenetic results indicated difference in microbial communities between hydrate-bearing and -free sediments. At the gas hydrate-bearing sites, bacterial communities were dominated by Deltaproteobacteria (30.5%), and archaeal communities were dominated by Miscellaneous Crenarchaeotic Group (33.8%); In contrast, Planctomycetes was the major group (43.9%) in bacterial communities, while Marine Benthic Group-D (MBG-D) (32.4%) took up the largest proportion in the archaeal communities. Moreover, the microbial communities have characteristics different from those in other hydrate-related sediments around the world, indicating that the presence of hydrates could affect the microbial distribution and community composition. In addition, the microbial community composition in the studied sediments has its own uniqueness, which may be resulted by co-effect of geochemical characteristics and presence/absence of gas hydrates.

  6. Lipase-catalyzed reactions at different surfaces.

    Science.gov (United States)

    Reis, P; Holmberg, K; Debeche, T; Folmer, B; Fauconnot, L; Watzke, H

    2006-09-12

    Starting from gold chips, we have tailor-made three surfaces by the self-assembly monolayer technique: one entirely hydrophobic, one hydrophobic with dispersed carboxyl groups, and one hydrophilic, containing hydroxyl groups. Rhizomucor miehei lipase has been adsorbed to the hydrophobic and the hydrophilic surfaces and covalently bound to the surface containing carboxyl groups. The adsorption of two substrates-capric acid (decanoic acid) and monocaprin-on the lipase-covered surfaces was monitored by the surface plasmon resonance (SPR) technique. Biocatalysis was also performed in the SPR instrument by circulating a solution of the substrate, dissolved in an 85:15 water-glycerol mixture at a(w) = 0.81, through the instrument, thus exposing the capric acid or the monocaprin to the lipase-covered surfaces. The product composition was found to depend on the type of surface used. Lipase adsorbed at the hydrophilic surface favored hydrolysis, and capric acid was the main product formed when monocaprin was used as substrate. Lipase adsorbed at a hydrophobic surface and, in particular, lipase covalently bound to a hydrophobic surface favored condensation. More dicaprin than capric acid was formed in experiments with monocaprin as the substrate. Reactions performed outside the SPR instrument showed that small amounts of triglyceride were also formed under these conditions. We believe that this work constitutes the first example of the SPR instrument being used for in-situ biotransformation.

  7. Metal halide hydrates as lewis acid catalysts for the conjugated friedel-crafts reactions of indoles and activated olefins

    Energy Technology Data Exchange (ETDEWEB)

    Schwalm, Cristiane S.; Ceschi, Marco Antonio; Russowsky, Dennis, E-mail: dennis@iq.ufrgs.b [Universidade Federal do Rio Grande do Sul (IQ/UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica

    2011-07-01

    Metal halide hydrates such as SnCl{sub 2{center_dot}}2H{sub 2}O, MnCl{sub 2{center_dot}}4H{sub 2}O, SrCl{sub 2{center_dot}}6H{sub 2}O, CrCl{sub 2{center_dot}}6H{sub 2}O, CoCl{sub 2{center_dot}}6H{sub 2}O e CeCl{sub 3{center_dot}}7H{sub 2}O were investigated as mild Lewis acids catalysts for the conjugate Friedel-Crafts reaction between indoles and activated olefins. The reactions were carried out with aliphatic unsaturated ketones over a period of days at room temperature, while chalcones reacted only under reflux conditions. The reactions with nitrostyrene s were either performed in solvent or under solventless conditions. In all cases reasonable to good yields were obtained. (author)

  8. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces

    Science.gov (United States)

    Schrader, Alex M.; Cheng, Chi-Yuan; Israelachvili, Jacob N.; Han, Songi

    2016-07-01

    Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhauser dynamic nuclear polarization. We found that glycerol similarly affects the diffusivity of water near the bilayer surface and that in the bulk solution (within 20%), while DMSO substantially increases the diffusivity of surface water relative to bulk water. We compare these measurements of water dynamics with those of equilibrium forces between DPPC bilayers in the same solvent mixtures. DMSO greatly decreases the range and magnitude of the repulsive forces between the bilayers, whereas glycerol increases it. We propose that the differences in hydrogen bonding capability of the two solutes leads DMSO to dehydrate the lipid head groups, while glycerol affects surface hydration only as much as it affects the bulk water properties. The results suggest that the mechanism of the two most common cryoprotectants must be fundamentally different: in the case of DMSO by decoupling the solvent from the lipid surface, and in the case of glycerol by altering the hydrogen bond structure and intermolecular cohesion of the global solvent, as manifested by increased solvent viscosity.

  9. Hydrated salt minerals on Europa's Surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation

    Science.gov (United States)

    McCord, T.B.; Hansen, G.B.; Matson, D.L.; Johnson, T.V.; Crowley, J.K.; Fanale, F.P.; Carlson, R.W.; Smythe, W.D.; Martin, P.D.; Hibbitts, C.A.; Granahan, J.C.; Ocampo, A.

    1999-01-01

    We reported evidence of heavily hydrated salt minerals present over large areas of Europa's surface from analysis of reflectance spectra returned by the Galileo mission near infrared mapping spectrometer (NIMS) [McCord et al., 1997a, b, 1998a, b]. Here we elaborate on this earlier evidence, present spatial distributions of these minerals, examine alternate water-ice interpretations, expand on our hydrated-salts interpretation, consider salt mineral stability on Europa, and discuss the implications. Extensive well-defined areas on Europa show distinct, asymmetric water-related absorption bands in the 1 to 2.5-??m region. Radiative transfer modeling of water ice involving different particle sizes and layers at Europa temperatures does not reproduce the distinctive Europa water bands. However, ice near its melting temperature, such as in terrestrial environments, does have some characteristics of the Europa spectrum. Alternatively, some classes of heavily hydrated minerals do exhibit such water bands. Among plausible materials, heavily hydrated salt minerals, such as magnesium and sodium sulfates, sodium carbonate and their mixtures, are preferred. All Europa spectral features are present in some salt minerals and a very good match to the Europa spectrum can be achieved by mixing several salt spectra. However, no single or mix of salt mineral spectra from the limited library available has so far been found to perfectly match the Europa spectrum in every detail. The material is concentrated at the lineaments and in chaotic terrain, which are technically disrupted areas on the trailing side. Since the spectrum of the material on Europa is nearly the same everywhere so-far studied, the salt or salt-mixture composition may be nearly uniform. This suggests similar sources and processes over at least a near-hemispheric scale. This would suggest that an extensive subsurface ocean containing dissolved salts is the source, and several possible mechanisms for deposit

  10. Conformation and hydration of surface grafted and free polyethylene oxide chains in solutions

    Science.gov (United States)

    Dahal, Udaya; Wang, Zilu; Dormidontova, Elena

    Due to the wide application of polyethylene oxide (PEO), ranging from biomedicine to fuel cells, it is one of the most studied polymers in the scientific world. In order to elucidate detailed molecular-level insights on the impact of surface grafting on PEO conformation, we performed atomistic molecular dynamics simulations of PEO chains in solution and grafted to a flat gold surface in different solvents. We examined the hydration as well as conformation of the free chain compared to the grafted polymer in pure water and mixed solvents. We find that grafted chains are stiffer and have a stronger tendency to form helical structures in isobutyric acid or mixture of isobutyric acid and water solution than the free chains in corresponding solutions. For grafted chains exposed to pure water the random coil conformation is retained at low grafting density, but becomes stretched and more dehydrated as the grafting density or temperature increases. This research is supported by NSF (DMR-1410928).

  11. Molecular dynamics simulation for surface melting and self-preservation effect of methane hydrate

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The surface melting process of structure sI methane hydrate is simulated at T = 240, 260, 280, and 300 K using NVT molecular dynamics method. The simulation results show that a quasi-liquid layer will be formed during the melting process. The density distribution, translation, orientation, and dynamic properties of water molecules in the quasi-liquid layer are calculated as a function of the distance normal to the interface, which indicates the performance of quasi-liquid layer exhibits a continuous change from crystal-like to liquid-like. The quasi-liquid layer plays as a resistance of mass transfer restraining the diffusion of water and methane molecules during the melting process. The resistance of quasi-liquid layer will restrain methane molecules diffuse from hydrate phase to gas phase and slow the melting process, which can be considered as a possible mechanism of self-preservation effect. The performance of quasi-liquid layer is more crystal-like when the temperature is lower than the melt- ing-point of water, which will exhibit an obvious self-preservation. The self-preservation will weaken while the temperature is higher than the melting-point of water because of the liquid-like performance of the quasi-liquid layer.

  12. Using extremely halophilic bacteria to understand the role of surface charge and surface hydration in protein evolution, folding, and function

    Science.gov (United States)

    Hoff, Wouter; Deole, Ratnakar; Osu Collaboration

    2013-03-01

    Halophilic Archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant, and have evolved highly acidic proteomes that only function at high salinity. We examine osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila. We find that H. halophila has an acidic proteome and accumulates molar concentrations of KCl when grown in high salt media. Upon growth of H. halophila in low salt media, its cytoplasmic K + content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. We conclude that proteome acidity is not driven by stabilizing interactions between K + ions and acidic side chains, but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. We propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K + binding sites on an increasingly acidic protein surface.

  13. Thermochemistry of the Reaction of SF6 with Gas-Phase Hydrated Electrons: A Benchmark for Nanocalorimetry.

    Science.gov (United States)

    Akhgarnusch, Amou; Höckendorf, Robert F; Beyer, Martin K

    2015-10-01

    The reaction of sulfur hexafluoride with gas-phase hydrated electrons (H2O)n(-), n ≈ 60-130, is investigated at temperatures T = 140-300 K by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. SF6 reacts with a temperature-independent rate of 3.0 ± 1.0 × 10(-10) cm(3) s(-1) via exclusive formation of the hydrated F(-) anion and the SF5(•) radical, which evaporates from the cluster. Nanocalorimetry yields a reaction enthalpy of ΔHR,298K = 234 ± 24 kJ mol(-1). Combined with literature thermochemical data from bulk aqueous solution, these result in an F5S-F bond dissociation enthalpy of ΔH298K = 455 ± 24 kJ mol(-1), in excellent agreement with all high-level quantum chemical calculations in the literature. A combination with gas-phase literature thermochemistry also yields an experimental value for the electron affinity of SF5(•), EA(SF5(•)) = 4.27 ± 0.25 eV.

  14. A pilot study to investigate the effect of a hydration regime upon immediate and 24 h delayed MRI contrast agent reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, William [Medical Imaging, Leighton Hospital, Mid Cheshire Hospital Trust, Middlewich Road, Crewe, Cheshire CW1 4QJ (United Kingdom)], E-mail: william.bailey@mcht.nhs.uk; Marshall, Gill [Chair of Faculty Academic Standards International Projects Leader, Faculty of Health and Social Care, St. Martin' s College, Lancaster LA1 3JD (United Kingdom); Coals, Jacqui [Medical Imaging, Leighton Hospital, Mid Cheshire Hospital Trust, Middlewich Road, Crewe, Cheshire CW1 4QJ (United Kingdom)

    2007-12-15

    Purpose: Adverse reaction rates to gadolinium based magnetic resonance imaging (MRI) contrast agents which occur immediately post-injection are well documented. However little research has investigated delayed reaction rates (i.e. 30 min-24 h). This study evaluated the rate of immediate and delayed adverse reaction rates to a gadolinium based MRI contrast agent (Dotarem) and investigated the effect of a hydration regime on the rate of adverse events. Method: Fifty-eight patients received no preparation, prior to administration of the contrast agent, whilst another 58 underwent a hydration protocol. The patients had their answers to a questionnaire recorded immediately after the scanning procedure and also via a follow-up telephone call 24 h later. Results: In the unprepared group 9 patients (15.5%) experienced immediate adverse events, i.e. within 0-30 min, whereas 24 (41.4%) experienced delayed reactions (30 min-24 h) after administration of the contrast agent. In the hydrated patient group 6 (10.3%) experienced an immediate adverse event, whilst 8 (13.7%) experienced delayed events post-injection. The difference in the total reaction rates for the unprepared and hydrated groups was statistically significant for immediate and delayed reactions. The difference in the rates of delayed headache, nausea, dizziness and problems with the injection site, for the unprepared and hydrated groups was statistically significant. Conclusion: An oral hydration regime administered to patients, both before and after MRI contrast agent administration significantly reduced the total number of immediate and delayed reactions. It also significantly reduced delayed headache, nausea, dizziness and problems at the injection site. Whilst this pilot study had methodological shortcomings, the strength of the relationship demonstrated are worthy of further investigation.

  15. Inter- and intra-individual differences in skin hydration and surface lipids measured with mid-infrared spectroscopy

    Science.gov (United States)

    Ezerskaia, A.; Pereira, S. F.; Urbach, H. P.; Varghese, B.

    2016-03-01

    Skin health is characterized by heterogeneous system of water and lipids in upper layers providing protection from external environment and preventing loss of vital components of the body. Skin hydration (moisture) and sebum (skin surface lipids) are considered to be important factors in skin health; a right balance between these components is an indication of healthy skin and plays a central role in protecting and preserving skin integrity. In this manuscript we present inter- and intra-individual variation in skin hydration and surface lipids measured with a home-built experimental prototype based on infrared spectroscopy. Results show good agreement with measurements performed by commercially available instruments Corneometer and Sebumeter used for skin hydration and sebum measurements respectively.

  16. A theoretical model of metal surface reactions

    Energy Technology Data Exchange (ETDEWEB)

    Shustorovich, E. (Eastman Kodak Co., Rochester, NY); Baetzold, R.C.; Muetterties, E.L.

    1983-03-31

    Metal surface reactions are modeled with a novel theoretical construct in which periodic trends can be scrutinized. The theoretical model is succinctly presented and a conspectus of periodic trends, based on the model, is explored. Periodic trends are discussed in the contexts of chemisorption bond energies, electron transfer between metal surface and adsorbate, stereochemical features of chemisorption states for closed-shell diatomic and linear X-CN or X-NC molecules, and hydrocarbon reactions. Hydrocarbon C-H bond-breaking processes are analyzed in terms of d-level occupancy, electron transfer, and stereochemistry of intermediates. Conceptually and computationally, the metal surface is characterized as a good electron donor: antibonding molecular orbitals of the adsorbate species appear to be significant contributors to the chemisorption bond and also play a decisive role in bond-breaking processes. No aspect of the model projections is inconsistent with the experimental data although the electronic characterization of some chemisorption states are counter to commonly held perceptions.

  17. Oscillatory electrochemical reactions at corroding silicon surface

    Science.gov (United States)

    Parkhutik, Vitali; Sasano, Junji; Ogata, Yukio; Matveeva, Eugenia

    2003-05-01

    The paper analyses the nature of chaotic and well-ordered oscillations of the anodic potential and open circuit potential of silicon immersed in aqueous electrolytes. These oscillations are observed when experimental conditions are fine tuned in what corresponds to the current flowing through the system, composition of electrolyte, its viscosity, etc. It is assumed that the oscillations are due to the accumulation of mechanical stress in the thin (50-80 nm) oxide film formed at the surface of silicon as a result of electrochemical anodic reaction. The stress is released by local etching of the oxide and its lifting-on from the Si surface. The process repeats again and again yielding long-lasting oscillations of the anodic potential value (amplitude around 1-15 V, period 20-150 s) or of the open circuit potential (several hundreds milli-volts). Along with temporal ordering of the process (oscillations of potential) there occurs a spatial ordering in the system - the surface of corroding Si sample is covered with hexagonally ordered semi-spherical cells (diameter about 700 nm). The effect is well-fit by the general phenomenology of chaos-order transitions in che4mical systems (bifurcations), strange attractors are the intrinsic features of these oscillations) and its kinetics is very similar to that of the Belousov-Zabotinsky reaction. However, oscillatory processes on the corroding Si surface are caused by quite specific physical and chemical mechanisms, which are not well understood presently. We present the microscopic model for the oscillatory behavior which involves, generation of local mechanical stress at the Si/electrolyte interface, non-linear electrochemical etching of Si, localization of the electric field at the etched surface, etc.

  18. Hydration Leads to Efficient Reactions of the Carbonate Radical Anion with Hydrogen Chloride in the Gas Phase.

    Science.gov (United States)

    Tang, Wai Kit; van der Linde, Christian; Siu, Chi-Kit; Beyer, Martin K

    2017-01-12

    The carbonate radical anion CO3(•-) is a key intermediate in tropospheric anion chemistry. Despite its radical character, only a small number of reactions have been reported in the literature. Here we investigate the gas-phase reactions of CO3(•-) and CO3(•-)(H2O) with HCl under ultrahigh vacuum conditions. Bare CO3(•-) forms OHCl(•-) with a rate constant of 4.2 × 10(-12) cm(3) s(-1), which corresponds to an efficiency of only 0.4%. Hydration accelerates the reaction, and ligand exchange of H2O against HCl proceeds with a rate of 2.7 × 10(-10) cm(3) s(-1). Quantum chemical calculations reveal that OHCl(•-) is best described as an OH(•) hydrogen bonded to Cl(-), while the ligand exchange product is Cl(-)(HCO3(•)). Under tropospheric conditions, where CO3(•-)(H2O) is the dominant species, Cl(-)(HCO3(•)) is efficiently formed. These reactions must be included in models of tropospheric anion chemistry.

  19. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein.

    Science.gov (United States)

    Midya, Uday Sankar; Bandyopadhyay, Sanjoy

    2014-05-08

    Molecular dynamics (MD) simulations have been carried out at two different temperatures (300 and 220 K) to study the conformational rigidity of the hyperactive Tenebrio molitor antifreeze protein (TmAFP) in aqueous medium and the structural arrangements of water molecules hydrating its surface. It is found that irrespective of the temperature the ice-binding surface (IBS) of the protein is relatively more rigid than its nonice-binding surface (NIBS). The presence of a set of regularly arranged internally bound water molecules is found to play an important role in maintaining the flat rigid nature of the IBS. Importantly, the calculations reveal that the strategically located hydroxyl oxygens of the threonine (Thr) residues in the IBS influence the arrangements of five sets of ordered waters around it on two parallel planes that closely resemble the basal plane of ice. As a result, these waters can register well with the ice basal plane, thereby allowing the IBS to preferentially bind at the ice interface and inhibit its growth. This provides a possible molecular reason behind the ice-binding activity of TmAFP at the basal plane of ice.

  20. Hydration and hydrogen bond network of water around hydrophobic surface investigated by terahertz spectroscopy.

    Science.gov (United States)

    Shiraga, K; Suzuki, T; Kondo, N; Ogawa, Y

    2014-12-21

    Water conformation around hydrophobic side chains of four amino acids (glycine, L-alanine, L-aminobutyric acid, and L-norvaline) was investigated via changes in complex dielectric constant in the terahertz (THz) region. Each of these amino acids has the same hydrophilic backbone, with successive additions of hydrophobic straight methylene groups (-CH2-) to the side chain. Changes in the degree of hydration (number of dynamically retarded water molecules relative to bulk water) and the structural conformation of the water hydrogen bond (HB) network related to the number of methylene groups were quantitatively measured. Since dielectric responses in the THz region represent water relaxations and water HB vibrations at a sub-picosecond and picosecond timescale, these measurements characterized the water relaxations and HB vibrations perturbed by the methylene apolar groups. We found each successive straight -CH2- group on the side chain restrained approximately two hydrophobic hydration water molecules. Additionally, the number of non-hydrogen-bonded (NHB) water molecules increased slightly around these hydrophobic side chains. The latter result seems to contradict the iceberg model proposed by Frank and Evans, where water molecules are said to be more ordered around apolar surfaces. Furthermore, we compared the water-hydrophilic interactions of the hydrophilic amino acid backbone with those with the water-hydrophobic interactions around the side chains. As the hydrophobicity of the side chain increased, the ordering of the surrounding water HB network was altered from that surrounding the hydrophilic amino acid backbone, thereby diminishing the fraction of NHB water and ordering the surrounding tetrahedral water HB network.

  1. Reaction mechanism between "memory effect" and induction time of gas hydrate formation

    Institute of Scientific and Technical Information of China (English)

    SUN Deng-lin; WU Qiang; ZHANG Bao-yong

    2008-01-01

    Using visual experimental apparatus,one system(T40,1×10-3 mol/L,nonadded with coal)and another system(T40,2×10-3 mol/L,added with coal)were experimented with for three times and two times.respectively.Five groups of P-T experimental parameters were obtained using the data logger system and analyzed combined with the video information of the experiments.Maior conclustions show that the induction time is shortened by 10-20 times in the experimental system containing residual pentahedral ring structures;"memory effect"can accelerate the dynamic progress and improve the thermodynamic conditions of gas hydrate formation.

  2. Exit channel dynamics in a micro-hydrated SN2 reaction of the hydroxyl anion.

    Science.gov (United States)

    Otto, R; Brox, J; Trippel, S; Stei, M; Best, T; Wester, R

    2013-08-29

    We report on the reaction dynamics of the monosolvated SN2 reaction of cold OH(-)(H2O) with CH3I that have been studied using crossed beam ion imaging. Two SN2 reaction channels are possible for this reaction: Formation of unsolvated I(-) and of solvated I(-)(H2O) products. We find a strong preference for the formation of unsolvated I(-) reaction products with respect to the energetically favored reaction toward solvated I(-)(H2O). Angle differential cross section measurements reveal similar velocity and angular distributions for all solvated and parts of the unsolvated reaction products. We furthermore find that the contribution of these two products to the total product flux can be described by the same collision energy dependence. We interpret our findings in terms of a joint reaction mechanism in which a CH3OH(H2O)···I(-) complex is formed that decays into either solvated or unsolvated products. Quantum chemical calculation are used to support this assumption.

  3. Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface

    Directory of Open Access Journals (Sweden)

    Panit Sherdshoopongse

    2005-09-01

    Full Text Available Titanium dioxide was prepared from titanium tetrachloride and diluted ammonia solution at low temperature. The product obtained was characterized by XRD, EDXRF, TGA, DSC, and FT-IR techniques. It was found that the product was in the form of hydrated amorphous titanium dioxide, TiO2·1.6H2O (ha- TiO2. Ha-TiO2 exhibits high BET surface area at 449 m2/g. Adsorptions of metal ions onto the ha-TiO2 surface were investigated in the batch equilibrium experiments, using Mn(II, Fe(III, Cu(II, and Pb(II solutions. The concentrations of metal ions were determined by atomic absorption spectrometer. The adsorption isotherms of all metal ions were studied at pH 7. The adsorption of Mn(II, Cu(II, and Pb(II ions on ha-TiO2 conformed to the Langmuir isotherm while that of Fe(III fit equally well to both Langmuir and Freundlich isotherms.

  4. Cooperation in carbon source degradation shapes spatial self-organization of microbial consortia on hydrated surfaces

    Science.gov (United States)

    Tecon, Robin; Or, Dani

    2017-01-01

    Mounting evidence suggests that natural microbial communities exhibit a high level of spatial organization at the micrometric scale that facilitate ecological interactions and support biogeochemical cycles. Microbial patterns are difficult to study definitively in natural environments due to complex biodiversity, observability and variable physicochemical factors. Here, we examine how trophic dependencies give rise to self-organized spatial patterns of a well-defined bacterial consortium grown on hydrated surfaces. The model consortium consisted of two Pseudomonas putida mutant strains that can fully degrade the aromatic hydrocarbon toluene. We demonstrated that obligate cooperation in toluene degradation (cooperative mutualism) favored convergence of 1:1 partner ratio and strong intermixing at the microscale (10–100 μm). In contrast, competition for benzoate, a compound degraded independently by both strains, led to distinct segregation patterns. Emergence of a persistent spatial pattern has been predicted for surface attached microbial activity in liquid films that mediate diffusive exchanges while permitting limited cell movement (colony expansion). This study of a simple microbial consortium offers mechanistic glimpses into the rules governing the assembly and functioning of complex sessile communities, and points to general principles of spatial organization with potential applications for natural and engineered microbial systems. PMID:28262696

  5. Modeling of stability of gas hydrates under permafrost in an environment of surface climatic change – terrestrial case, Beaufort-Mackenzie basin, Canada

    Directory of Open Access Journals (Sweden)

    J. Majorowicz

    2011-09-01

    Full Text Available Modeling of the onset of permafrost formation and succeeding gas hydrate formation in the changing surface temperature environment has been done for the Beaufort-Mackenzie Basin (BMB. Numerical 1-D modeling is constrained by deep heat flow from deep well bottom hole temperatures, deep conductivity, present permafrost thickness and thickness of Type I gas hydrates. Latent heat effects were applied to the model for the entire ice bearing permafrost and Type I hydrate intervals. Modeling for a set of surface temperature forcing during the glacial-interglacial history including the last 14 Myr was performed. Two scenarios of gas formation were considered; case 1: formation of gas hydrate from gas entrapped under deep geological seals and case 2: formation of gas hydrate from gas in a free pore space simultaneously with permafrost formation. In case 1, gas hydrates could have formed at a depth of about 0.9 km only some 1 Myr ago. In case 2, the first gas hydrate formed in the depth range of 290–300 m shortly after 6 Myr ago when the GST dropped from −4.5 °C to −5.5. °C. The gas hydrate layer started to expand both downward and upward subsequently. These models show that the gas hydrate zone, while thinning persists under the thick body of BMB permafrost through the current interglacial warming periods.

  6. Adsorption of sodium ions and hydrated sodium ions on a hydrophobic graphite surface via cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    Shi Guo-Sheng; Wang Zhi-Gang; Zhao Ji-Jun; Hu Jun; Fang Hai-Ping

    2011-01-01

    Using density functional theory computation, we show that sodium ions and hydrated sodium ions can be strongly adsorbed onto a hydrophobic graphite surface via cation-π interactions. The key to this cation-π interaction is the coupling of the delocalized π states of graphite and the empty orbitals of sodium ions. This finding implies that the property of the graphite surface is extremely dependent on the existence of the ions on the surface, suggesting that the hydrophobic property of the graphite surface may be affected by the existence of the sodium ions.

  7. TC 238-SCM: hydration and microstructure of concrete with SCMs State of the art on methods to determine degree of reaction of SCMs

    OpenAIRE

    Scrivener, Karen; Lothenbach, Barbara; De Belie, Nele; Gruyaert, Elke; Skibsted, Jorgen; Snellings, Ruben; Vollpracht, Anya

    2015-01-01

    This paper is the work of working group 2 of the RILEM TC 238-SCM. Its purpose is to review methods to estimate the degree of reaction of supplementary cementitious materials in blended (or composite) cement pastes. We do not consider explicitly the wider issues of the influence of SCMs on hydration kinetics, nor the measurement of degree of reaction in alkali activated materials. The paper categorises the techniques into direct methods and indirect methods. Direct methods attempt to measure ...

  8. Hydrate film growth on the surface of a gas bubble suspended in water.

    Science.gov (United States)

    Peng, B Z; Dandekar, A; Sun, C Y; Luo, H; Ma, Q L; Pang, W X; Chen, G J

    2007-11-01

    The lateral film growth rate of CH4, C2H4, CO2, CH4 + C2H4, and CH4 + C3H8 hydrates in pure water were measured at four fixed temperatures of 273.4, 275.4, 277.4, and 279.4 K by means of suspending a single gas bubble in water. The results showed that the lateral growth rates of mixed-gas CH4 + C2H4 hydrate films were slower than that of pure gas (CH4 or C2H4) for the same driving force and that of mixed-gas CH4 + C3H8 hydrate film growth was the slowest. The dependence of the thickness of hydrate film on the driving force was investigated, and it was demonstrated that the thickness of hydrate film was inversely proportional to the driving force. It was found that the convective heat transfer control model reported in the literature could be used to formulate the lateral film growth rate v(f) with the driving force DeltaT perfectly for all systems after introduction of the assumption that the thickness of hydrate films is inversely proportional to the driving force DeltaT; i.e., v(f) = psiDeltaT(5/2) is correct and independent of the composition of gas and the type of hydrate. The thicknesses of different gas hydrate films were estimated, and it is demonstrated that the thicknesses of mixed-gas hydrate films were thicker than those of pure gases, which was qualitatively consistent with the experimental result.

  9. Application of Response Surface Methodology in Development of Sirolimus Liposomes Prepared by Thin Film Hydration Technique

    Directory of Open Access Journals (Sweden)

    Saeed Ghanbarzadeh

    2013-04-01

    Full Text Available Introduction: The present investigation was aimed to optimize the formulating process of sirolimus liposomes by thin film hydration method. Methods: In this study, a 32 factorial design method was used to investigate the influence of two independent variables in the preparation of sirolimus liposomes. The dipalmitoylphosphatidylcholine (DPPC /Cholesterol (Chol and dioleoyl phosphoethanolamine(DOPE /DPPC molar ratios were selected as the independent variables. Particle size (PS and Encapsulation Efficiency (EE % were selected as the dependent variables. To separate the un-encapsulated drug, dialysis method was used. Drug analysis was performed with a validated RP-HPLC method. Results: Using response surface methodology and based on the coefficient values obtained for independent variables in the regression equations, it was clear that the DPPC/Chol molar ratio was the major contributing variable in particle size and EE %. The use of a statistical approach allowed us to see individual and/or interaction effects of influencing parameters in order to obtain liposomes with desired properties and to determine the optimum experimental conditions that lead to the enhancement of characteristics. In the prediction of PS and EE % values, the average percent errors are found to be as 3.59 and 4.09%. This value is sufficiently low to confirm the high predictive power of model. Conclusion: Experimental results show that the observed responses were in close agreement with the predicted values and this demonstrates the reliability of the optimization procedure in prediction of PS and EE % in sirolimus liposomes preparation.

  10. Conceptual Tenets of the Theory of Hydration of Heterogeneous Surface with Polar Order of Disperse Ground Layers of Sedimentary Genesis

    Directory of Open Access Journals (Sweden)

    Tamara G. Makeeva

    2012-09-01

    Full Text Available The article, basing on the established regularity defines the basic tenets of the theory of hydration of heterogeneous surface with polar order of disperse ground layers of sedimentary genesis. It offers classification and formula for the associated water density, valid corrections for the associated water density, calculates the water film thickness in disperse ground, develops the reliable physicochemical model of the disperse ground, determines the range of applicability of the existing laboratory and field methods.

  11. Scratching the surface of allergic transfusion reactions.

    Science.gov (United States)

    Savage, William J; Tobian, Aaron A R; Savage, Jessica H; Wood, Robert A; Schroeder, John T; Ness, Paul M

    2013-06-01

    Allergic transfusion reactions (ATRs) are a spectrum of hypersensitivity reactions that are the most common adverse reaction to platelets and plasma, occurring in up to 2% of transfusions. Despite the ubiquity of these reactions, little is known about their mechanism. In a small subset of severe reactions, specific antibody has been implicated as causal, although this mechanism does not explain all ATRs. Evidence suggests that donor, product, and recipient factors are involved, and it is possible that many ATRs are multifactorial. Further understanding of the mechanisms of ATRs is necessary so that rationally designed and cost-effective prevention measures can be developed.

  12. Nanoplate-like tungsten trioxide (hydrate) films prepared by crystal-seed-assisted hydrothermal reaction

    Science.gov (United States)

    Wang, P.; Yang, L.; Dai, B.; Yang, Z.; Guo, S.; Zhu, J.

    2017-07-01

    Vertically-aligned WO3 nanoplates on transparent conducting fluorine-doped tin oxide (FTO) glass were prepared by a facile template-free crystal-seed-assisted hydrothermal method. The effects of the hydrothermal temperature and reaction time on the crystal structure and morphology of the products were investigated by XRD and SEM. The XRD results showed that the as-prepared thin films obtained below 150∘C comprised orthorhombic WO3 ṡ H2O and completely converted to monoclinic WO3 at 180∘C. It was also noted that there was a phase transformation from orthorhombic to monoclinic by increasing the reaction time from 1 to 12 h. SEM analysis revealed that WO3 thin films are composed of plate-like nanostructures.

  13. Density functional theory calculations on the complexation of p-arsanilic acid with hydrated iron oxide clusters: structures, reaction energies, and transition states.

    Science.gov (United States)

    Adamescu, Adrian; Hamilton, Ian P; Al-Abadleh, Hind A

    2014-07-31

    Aromatic organoarsenicals, such as p-arsanilic acid (pAsA), are still used today as feed additives in the poultry and swine industries in developing countries. Through the application of contaminated litter as a fertilizer, these compounds enter the environment and interact with reactive soil components such as iron and aluminum oxides. Little is known about these surface interactions at the molecular level. We report density functional theory (DFT) calculations on the energies, optimal geometries, and vibrational frequencies for hydrated pAsA/iron oxide complexes, as well as changes in Gibbs free energy, enthalpy, and entropy for various types of ligand exchange reactions leading to both inner- and outer-sphere complexes. Similar calculations using arsenate are also shown for comparison, along with activation barriers and transition state geometries between inner-sphere complexes. Minimum energy calculations show that the formation of inner- and outer-sphere pAsA/iron oxide complexes is thermodynamically favorable, with the monodentate mononuclear complexes being the most favorable. Interatomic As-Fe distances are calculated to be between 3.3 and 3.5 Å for inner-sphere complexes and between 5.2 and 5.6 Å for outer-sphere complexes. In addition, transition state calculations show that activation energies greater than 23 kJ/mol are required to form the bidentate binuclear pAsA/iron oxide complexes, and that formation of arsenate bidentate binuclear complexes is thermodynamically -rather than kinetically- driven. Desorption thermodynamics using phosphate ions show that reactions are most favorable using HPO4(2-) species. The significance of our results for the overall surface complexation mechanism of pAsA and arsenate is discussed.

  14. Variation of Skin Surface pH, Sebum Content and Stratum Corneum Hydration with Age and Gender in a Large Chinese Population

    National Research Council Canada - National Science Library

    Man, M.Q; Xin, S.J; Song, S.P; Cho, S.Y; Zhang, X.J; Tu, C.X; Feingold, K.R; Elias, P.M

    2009-01-01

    .... The results to date of studies on skin surface pH, stratum corneum (SC) hydration and sebum content in both genders and at various ages have been inconclusive, which was in part due to small sample size...

  15. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)

    2008-07-01

    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.

  16. Étude des minéraux hydratés à la surface de Mars par les imageurs hyperspectraux OMEGA/MEx et CRISM/MRO

    OpenAIRE

    Carter, John

    2011-01-01

    The planet Mars has experienced an era during which water was stable in its liquid state. In addition to morphological evidence for aqueous activity, the chemical interaction of water with the basaltic crust has led to the formation of hydrated clays and salts both on the surface and at depth. These hydrated minerals were first detected on the surface of Mars in 2004 with the OMEGA near infrared imaging spectrometer, onboard European probe Mars Express. Their study allows us to piece together...

  17. Fast in situ x-ray-diffraction studies of chemical reactions: A synchrotron view of the hydration of tricalcium aluminate

    Science.gov (United States)

    Jupe, A. C.; Turrillas, X.; Barnes, P.; Colston, S. L.; Hall, C.; Häusermann, D.; Hanfland, M.

    1996-06-01

    We report observations on the early hydration of tricalcium aluminate, the most reactive component of Portland cement, using rapid-energy dispersive diffraction on a high brilliance synchrotron source. In situ observations of the hydration process over short time scales, and through bulk samples, reveal an intermediate calcium aluminate hydrate appearing just prior to the formation of the final stable hydrate, demonstrating the nucleating role of this intermediate. The superior quality of the data is sufficient to yield concentration versus time plots for each phase over the whole hydration sequence. This improvement derives from being able to use smaller diffracting volumes and consequent removal of time smearing due to inhomogenetics, and thus now offers the possibility of extending the technique in terms of time resolution and diversity of system.

  18. On the lipid head group hydration of floating surface monolayers bound to self-assembled molecular protein layers

    DEFF Research Database (Denmark)

    Lösche, M.; Erdelen, C.; Rump, E.

    1994-01-01

    with molecular resolution. Emphasis here is placed on the hydration of the lipid head groups in the bound state. For three functionalized lipids with spacers of different lengths between the biotin and their chains it was observed that the head groups were dehydrated in monolayers of the pure lipids, which were...... kept at low surface pressure before protein adsorption. The introduction of dipole moments at the interface by the admixture of phospholipids or the application of lateral pressure on the lipid monolayer before protein adsorption were found to impose an extension of the spacer moieties. The biotin...... groups were thus presented further away from the interface, and a hydration layer between the protein and the functionalized interface was observed in the self-assembled supramolecular structures....

  19. Free Radical Chemistry of Disinfection Byproducts 1: Kinetics of Hydrated Electron and Hydroxyl Radical Reactions with Halonitromethanes in Water

    Energy Technology Data Exchange (ETDEWEB)

    B. J. Mincher; R. V. Fox; S. P. Mezyk; T. Helgeson; S. K. Cole; W. J. Cooper; P. R. Gardinali

    2006-01-01

    Halonitromethanes are disinfection-byproducts formed during ozonation and chlorine/chloramine treatment of waters that contain bromide ion and natural organic matter. In this study, the chemical kinetics of the free-radical-induced degradations of a series of halonitromethanes were determined. Absolute rate constants for hydroxyl radical, OH, and hydrated electron, eaq-, reaction with both chlorinated and brominated halonitromethanes were measured using the techniques of electron pulse radiolysis and transient absorption spectroscopy. The bimolecular rate constants obtained, k (M-1 s-1), for eaq-/OH, respectively, were the following: chloronitromethane (3.01 ± 0.40) × 1010/(1.94 ± 0.32) × 108; dichloronitromethane (3.21 ± 0.17) × 1010/(5.12 ± 0.77) × 108; bromonitromethane (3.13 ± 0.06) × 1010/(8.36 ± 0.57) × 107; dibromonitromethane (3.07 ± 0.40) × 1010/(4.75 ± 0.98) × 108; tribromonitromethane (2.29 ± 0.39) × 1010/(3.25 ± 0.67) × 108; bromochloronitromethane (2.93 ± 0.47) × 1010/(4.2 ± 1.1) × 108; bromodichloronitromethane (2.68 ± 0.13) × 1010/(1.02 ± 0.15) × 108; and dibromochloronitromethane (2.95 ± 0.43) × 1010 / (1.80 ± 0.31) × 108 at room temperature and pH ~7. Comparison data were also obtained for hydroxyl radical reaction with bromoform (1.50 ± 0.05) × 108, bromodichloromethane (7.11 ± 0.26) × 107, and chlorodibromomethane (8.31 ± 0.25) × 107 M-1 s-1, respectively. These rate constants are compared to recently obtained data for trichloronitromethane and bromonitromethane, as well as to other established literature data for analogous compounds.

  20. Origins of hydration lubrication.

    Science.gov (United States)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-14

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  1. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin

    2012-01-01

    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  2. Reaction kinetics of fluorite in flow systems and surface chemistry

    Institute of Scientific and Technical Information of China (English)

    张荣华; 胡书敏

    1996-01-01

    The kinetic experiments of fluorite in water-HCl solution in an open-flow system at the temperatures ≤100℃ reveal that the variation of flow rate (U) can change the reaction rate orders from 0 to 2 or higher. In the far from equilibrium systems, the dissolution rates of fluorite in aqueous solutions have a zero order.The reaction rates are controlled by pH values of input solutions. In fact, the reaction rates are related to the concentrations of the active sites occupied by H+ on fluorite surface [SOH]. X-ray photospectroscopy observations on fluorite surface before and after reaction indicate that surface chemical processes control the reaction rates: Cl- cations attach on and enter into surface of fluorite besides H+ when fluorites react with HCl solutions, which affect the reaction rates.

  3. Confinement of reaction components at electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Luca, Oana R.; Weitekamp, Raymond; Grubbs, Robert H.; Atwater, Harry A.; Mitrovic, Slobodan

    2017-03-14

    A CO.sub.2 reduction electrode includes an active layer on an electrode base. The active layer includes a polymer that includes one or more reaction components selected from a group consisting of a CO.sub.2 reduction catalyst and an activator that bonds CO.sub.2 so as to form a CO.sub.2 reduction intermediate.

  4. Charge transfer reactions between gas-phase hydrated electrons, molecular oxygen and carbon dioxide at temperatures of 80-300 K.

    Science.gov (United States)

    Akhgarnusch, Amou; Tang, Wai Kit; Zhang, Han; Siu, Chi-Kit; Beyer, Martin K

    2016-09-14

    The recombination reactions of gas-phase hydrated electrons (H2O)n˙(-) with CO2 and O2, as well as the charge exchange reaction of CO2˙(-)(H2O)n with O2, were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry in the temperature range T = 80-300 K. Comparison of the rate constants with collision models shows that CO2 reacts with 50% collision efficiency, while O2 reacts considerably slower. Nanocalorimetry yields internally consistent results for the three reactions. Converted to room temperature condensed phase, this yields hydration enthalpies of CO2˙(-) and O2˙(-), ΔHhyd(CO2˙(-)) = -334 ± 44 kJ mol(-1) and ΔHhyd(O2˙(-)) = -404 ± 28 kJ mol(-1). Quantum chemical calculations show that the charge exchange reaction proceeds via a CO4˙(-) intermediate, which is consistent with a fully ergodic reaction and also with the small efficiency. Ab initio molecular dynamics simulations corroborate this picture and indicate that the CO4˙(-) intermediate has a lifetime significantly above the ps regime.

  5. Surface Nano-Structuring by Adsorption and Chemical Reactions

    OpenAIRE

    Ken-ichi Tanaka

    2010-01-01

    Nano-structuring of the surface caused by adsorption of molecules or atoms and by the reaction of surface atoms with adsorbed species are reviewed from a chemistry viewpoint. Self-assembly of adsorbed species is markedly influenced by weak mutual interactions and the local strain of the surface induced by the adsorption. Nano-structuring taking place on the surface is well explained by the notion of a quasi-molecule provided by the reaction of surface atoms with adsorbed species. Self-assembl...

  6. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces.

    Science.gov (United States)

    Gawrisch, K; Ruston, D; Zimmerberg, J; Parsegian, V A; Rand, R P; Fuller, N

    1992-01-01

    We have compared hydration forces, electrical dipole potentials, and structural parameters of dispersions of dipalmitoylphosphatidylcholine (DPPC) and dihexadecylphosphatidylcholine (DHPC) to evaluate the influence of fatty acid carbonyl groups on phospholipid bilayers. NMR and x-ray investigations performed over a wide range of water concentrations in the samples show, that in the liquid crystalline lamellar phase, the presence of carbonyl groups is not essential for lipid structure and hydration. Within experimental error, the two lipids have identical repulsive hydration forces between their bilayers. The higher transport rate of the negatively charged tetraphenylboron over the positively charged tetraphenylarsonium indicates that the dipole potential is positive inside the membranes of both lipids. However, the lack of fatty acid carbonyl groups in the ether lipid DHPC decreased the potential by (118 +/- 15) mV. By considering the sign of the potential and the orientation of carbonyl groups and headgroups, we conclude that the first layer of water molecules at the lipid water interface makes a major contribution to the dipole potential. PMID:1600081

  7. Interpolated lattice Boltzmann boundary conditions for surface reaction kinetics.

    Science.gov (United States)

    Walsh, S D C; Saar, M O

    2010-12-01

    This paper describes a method for implementing surface reaction kinetics in lattice Boltzmann simulations. The interpolated boundary conditions are capable of simulating surface reactions and dissolution at both stationary and moving solid-fluid and fluid-fluid interfaces. Results obtained with the boundary conditions are compared to analytical solutions for first-order and constant-flux kinetic surface reactions in a one-dimensional half space, as well as to the analytical solution for evaporation from the surface of a cylinder. Excellent agreement between analytical and simulated results is obtained for a wide range of diffusivities, lattice velocities, and surface reaction rates. The boundary model's ability to represent dissolution in binary fluid mixtures is demonstrated by modeling diffusion from a rising bubble and dissolution of a droplet near a flat plate.

  8. Reaction mechanisms for on-surface synthesis of covalent nanostructures.

    Science.gov (United States)

    Björk, J

    2016-03-02

    In recent years, on-surface synthesis has become an increasingly popular strategy to form covalent nanostructures. The approach has great prospects for facilitating the manufacture of a range of fascinating materials with atomic precision. However, the on-surface reactions are enigmatic to control, currently restricting its bright perspectives and there is a great need to explore how the reactions are governed. The objective of this topical review is to summarize theoretical work that has focused on comprehending on-surface synthesis protocols through studies of reaction mechanisms.

  9. Chemical reactions on solid surfaces using molecular beam techniques

    Science.gov (United States)

    Palmer, R. L.

    1980-07-01

    Thermal energy molecular beams have been used to study chemical interactions with metal surfaces. Chemisorption of simple molecules such as H2, O2, CH4, C2Hx and CO was investigated on single and polycrystalline surfaces of Pt, Ni, Co, and Ag. Kinetic parameters and reaction mechanisms were determined for model catalytic reactions including CO and C2Hx oxidation and methanation from H2/CO mixtures. Chemical reactions of NOx with CO and D2 on Pt(111) and other surfaces have been surveyed and the kinetics of NO and O2 chemisorption have been measured. The theory of adsorption/desorption kinetics is reviewed and certain deficiencies identified.

  10. The Pore Structure and Hydration Performance of Sulphoaluminate MDF Cement

    Institute of Scientific and Technical Information of China (English)

    HUANG Cong-yun; YUAN Run-zhang; LONG Shi-zong

    2004-01-01

    The hydration and pore structure of sulphoaluminate MDF cement were studied by X-ray diffractometer ( XRD ), scanning electron microscope (SEM) and mercury intrusion porosimeter ( MIP ) etc. The ex-perimental results indicate that hydration products of the materials are entringites ( Aft ), aluminium hydroxide andCSH (Ⅰ) gel etc. Due to its very low water-cement ratio, hydration function is only confined to the surfaces of ce-ment grains, and there is a lot of sulphoaluminate cement in the hardenite which is unhydrated yet. Hydration re-action was rapidly carried under the condition of the heat-pressing. Therefore cement hydrates Aft, CSH (Ⅰ) andaluminium hydroxide gel fill in pores. The expansibility of Aft makes the porosity of MDF cement lower ( less than1 percent ) and the size of pore smaller (80 percent pore was less than 250A), and enhances its strength.

  11. Non-Isothermal, Multi-phase, Multi-component Flows through Deformable Methane Hydrate Reservoirs

    CERN Document Server

    Gupta, Shubhangi; Wohlmuth, Barbara

    2015-01-01

    We present a hydro-geomechanical model for subsurface methane hydrate systems. Our model considers kinetic hydrate phase change and non-isothermal, multi-phase, multi-component flow in elastically deforming soils. The model accounts for the effects of hydrate phase change and pore pressure changes on the mechanical properties of the soil, and also for the effect of soil deformation on the fluid-solid interaction properties relevant to reaction and transport processes (e.g., permeability, capillary pressure, reaction surface area). We discuss a 'cause-effect' based decoupling strategy for the model and present our numerical discretization and solution scheme. We then identify the important model components and couplings which are most vital for a hydro-geomechanical hydrate simulator, namely, 1) dissociation kinetics, 2) hydrate phase change coupled with non-isothermal two phase two component flow, 3) two phase flow coupled with linear elasticity (poroelasticity coupling), and finally 4) hydrate phase change c...

  12. Comparison of hydration reactions for "piano-stool" RAPTA-B and [Ru(η6- arene)(en)Cl]+ complexes: Density functional theory computational study

    Science.gov (United States)

    Chval, Zdeněk; Futera, Zdeněk; Burda, Jaroslav V.

    2011-01-01

    The hydration process for two Ru(II) representative half-sandwich complexes: Ru(arene)(pta)Cl2 (from the RAPTA family) and [Ru(arene)(en)Cl]+ (further labeled as Ru_en) were compared with analogous reaction of cisplatin. In the study, quantum chemical methods were employed. All the complexes were optimized at the B3LYP/6-31G(d) level using Conductor Polarizable Continuum Model (CPCM) solvent continuum model and single-point (SP) energy calculations and determination of electronic properties were performed at the B3LYP/6-311++G(2df,2pd)/CPCM level. It was found that the hydration model works fairly well for the replacement of the first chloride by water where an acceptable agreement for both Gibbs free energies and rate constants was obtained. However, in the second hydration step worse agreement of the experimental and calculated values was achieved. In agreement with experimental values, the rate constants for the first step can be ordered as RAPTA-B > Ru_en > cisplatin. The rate constants correlate well with binding energies (BEs) of the Pt/Ru-Cl bond in the reactant complexes. Substitution reactions on Ru_en and cisplatin complexes proceed only via pseudoassociative (associative interchange) mechanism. On the other hand in the case of RAPTA there is also possible a competitive dissociation mechanism with metastable pentacoordinated intermediate. The first hydration step is slightly endothermic for all three complexes by 3-5 kcal/mol. Estimated BEs confirm that the benzene ligand is relatively weakly bonded assuming the fact that it occupies three coordination positions of the Ru(II) cation.

  13. Towards a Model of Reactive-Cracking: the Role of Reactions, Elasticity and Surface Energy Driven Flow in Poro-elastic Media

    Science.gov (United States)

    Evans, O.; Spiegelman, M. W.; Wilson, C. R.; Kelemen, P. B.

    2016-12-01

    Many critical processes can be described by reactive fluid flow in brittle media, including hydration/alteration of oceanic plates near spreading ridges, chemical weathering, and dehydration/decarbonation of subducting plates. Such hydration reactions can produce volume changes that may induce stresses large enough to drive fracture in the rock, in turn exposing new reactive surface and modifying the permeability. A better understanding of this potentially rich feedback could also be critical in the design of engineered systems for geologic carbon sequestration. To aid understanding of these processes we have developed a macroscopic continuum description of reactive fluid flow in an elastically deformable porous media. We explore the behaviour of this model by considering a simplified hydration reaction (e.g. olivine + H20 -> serpentine + brucite). In a closed system, these hydration reactions will continue to consume available fluids until the permeability reaches zero, leaving behind it a highly stressed residuum. Our model demonstrates this limiting behaviour, and that the elastic stresses generated are large enough to cause failure/fracture of the host rock. Whilst it is understood that `reactive fracture' is an important mechanism for the continued evolution of this process, it is also proposed that imbibition/surface energy driven flow may play a role. Through a simplified set of computational experiments, we investigate the relative roles of elasticity and surface energy in both a non-reactive purely poro-elastic framework, and then in the presence of reaction. We demonstrate that surface energy can drive rapid diffusion of porosity, thus allowing the reaction to propagate over larger areas. As we expect both surface energy and fracture/failure to be of importance in these processes, we plan to integrate the current model into one that allows for fracture once critical stresses are exceeded.

  14. Metal-Free Click Chemistry Reactions on Surfaces

    NARCIS (Netherlands)

    Escorihuela, J.; Marcelis, A.T.M.; Zuilhof, H.

    2015-01-01

    In the last decade, interest in the functionalization of surfaces and materials has increased dramatically. In this regard, click chemistry deserves a central focus because of its mild reaction conditions, high efficiency, and easy post-treatment. Among such novel click reactions, those that do not

  15. Metal-Free Click Chemistry Reactions on Surfaces

    NARCIS (Netherlands)

    Escorihuela, J.; Marcelis, A.T.M.; Zuilhof, H.

    2015-01-01

    In the last decade, interest in the functionalization of surfaces and materials has increased dramatically. In this regard, click chemistry deserves a central focus because of its mild reaction conditions, high efficiency, and easy post-treatment. Among such novel click reactions, those that do not

  16. Exploring the role of water in molecular recognition: predicting protein ligandability using a combinatorial search of surface hydration sites

    Science.gov (United States)

    Vukovic, Sinisa; Brennan, Paul E.; Huggins, David J.

    2016-09-01

    The interaction between any two biological molecules must compete with their interaction with water molecules. This makes water the most important molecule in medicine, as it controls the interactions of every therapeutic with its target. A small molecule binding to a protein is able to recognize a unique binding site on a protein by displacing bound water molecules from specific hydration sites. Quantifying the interactions of these water molecules allows us to estimate the potential of the protein to bind a small molecule. This is referred to as ligandability. In the study, we describe a method to predict ligandability by performing a search of all possible combinations of hydration sites on protein surfaces. We predict ligandability as the summed binding free energy for each of the constituent hydration sites, computed using inhomogeneous fluid solvation theory. We compared the predicted ligandability with the maximum observed binding affinity for 20 proteins in the human bromodomain family. Based on this comparison, it was determined that effective inhibitors have been developed for the majority of bromodomains, in the range from 10 to 100 nM. However, we predict that more potent inhibitors can be developed for the bromodomains BPTF and BRD7 with relative ease, but that further efforts to develop inhibitors for ATAD2 will be extremely challenging. We have also made predictions for the 14 bromodomains with no reported small molecule K d values by isothermal titration calorimetry. The calculations predict that PBRM1(1) will be a challenging target, while others such as TAF1L(2), PBRM1(4) and TAF1(2), should be highly ligandable. As an outcome of this work, we assembled a database of experimental maximal K d that can serve as a community resource assisting medicinal chemistry efforts focused on BRDs. Effective prediction of ligandability would be a very useful tool in the drug discovery process.

  17. Blood coagulation reactions on nanoscale membrane surfaces

    Science.gov (United States)

    Pureza, Vincent S.

    Blood coagulation requires the assembly of several membrane-bound protein complexes composed of regulatory and catalytic subunits. The biomembranes involved in these reactions not only provide a platform for these procoagulant proteins, but can also affect their function. Increased exposure of acidic phospholipids on the outer leaflet of the plasma membrane can dramatically modulate the catalytic efficiencies of such membrane-bound enzymes. Under physiologic conditions, however, these phospholipids spontaneously cluster into a patchwork of membrane microdomains upon which membrane binding proteins may preferentially assemble. As a result, the membrane composition surrounding these proteins is largely unknown. Through the development and use of a nanometer-scale bilayer system that provides rigorous control of the phospholipid membrane environment, I investigated the role of phosphatidylserine, an acidic phospholipid, in the direct vicinity (within nanometers) of two critical membrane-bound procoagulant protein complexes and their respective natural substrates. Here, I present how the assembly and function of the tissue factor˙factor VIIa and factor Va˙factor Xa complexes, the first and final cofactor˙enzyme complexes of the blood clotting cascade, respectively, are mediated by changes in their immediate phospholipid environments.

  18. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  19. Acid-base bifunctional catalytic surfaces for nucleophilic addition reactions.

    Science.gov (United States)

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-09-01

    This article illustrates the modification of oxide surfaces with organic amine functional groups to create acid-base bifunctional catalysts, summarizing our previous reports and also presenting new data. Immobilization of organic amines as bases on inorganic solid-acid surfaces afforded highly active acid-base bifunctional catalysts, which enabled various organic transformations including C--C coupling reactions, though these reactions did not proceed with either the homogeneous amine precursors or the acidic supports alone. Spectroscopic characterization, such as by solid-state MAS NMR and FTIR, revealed not only the interactions between acidic and basic sites but also bifunctional catalytic reaction mechanisms.

  20. Surface sampling concentration and reaction probe

    Science.gov (United States)

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  1. Role of Mechanical Stress in Regulating Airway Surface Hydration and Mucus Clearance Rates

    Science.gov (United States)

    Button, Brian; Boucher, Richard C.

    2008-01-01

    Effective clearance of mucus is a critical innate airway defense mechanism, and under appropriate conditions, can be stimulated to enhance clearance of inhaled pathogens. It has become increasingly clear that extracellular nucleotides (ATP and UTP) and nucleosides (adenosine) are important regulators of mucus clearance in the airways as a result of their ability to stimulate fluid secretion, mucus hydration, and cilia beat frequency (CBF). One ubiquitous mechanism to stimulate ATP release is through external mechanical stress. This article addresses the role of physiologically-relevant mechanical forces in the lung and their effects on regulating mucociliary clearance (MCC). The effects of mechanical forces on the stimulating ATP release, fluid secretion, CBF, and MCC are discussed. Also discussed is evidence suggesting that airway hydration and stimulation of MCC by stress-mediated ATP release may play a role in several therapeutic strategies directed at improving mucus clearance in patients with obstructive lung diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). PMID:18585484

  2. Scanning electron microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice, and comparison to natural hydrates

    Science.gov (United States)

    Stern, L.A.; Kirby, S.H.; Circone, S.; Durham, W.B.

    2004-01-01

    Scanning electron microscopy (SEM) was used to investigate grain texture and pore structure development within various compositions of pure sI and sII gas hydrates synthesized in the laboratory, as well as in natural samples retrieved from marine (Gulf of Mexico) and permafrost (NW Canada) settings. Several samples of methane hydrate were also quenched after various extents of partial reaction for assessment of mid-synthesis textural progression. All laboratory-synthesized hydrates were grown under relatively high-temperature and high-pressure conditions from rounded ice grains with geometrically simple pore shapes, yet all resulting samples displayed extensive recrystallization with complex pore geometry. Growth fronts of mesoporous methane hydrate advancing into dense ice reactant were prevalent in those samples quenched after limited reaction below and at the ice point. As temperatures transgress the ice point, grain surfaces continue to develop a discrete "rind" of hydrate, typically 5 to 30 ??m thick. The cores then commonly melt, with rind microfracturing allowing migration of the melt to adjacent grain boundaries where it also forms hydrate. As the reaction continues under progressively warmer conditions, the hydrate product anneals to form dense and relatively pore-free regions of hydrate grains, in which grain size is typically several tens of micrometers. The prevalence of hollow, spheroidal shells of hydrate, coupled with extensive redistribution of reactant and product phases throughout reaction, implies that a diffusion-controlled shrinking-core model is an inappropriate description of sustained hydrate growth from melting ice. Completion of reaction at peak synthesis conditions then produces exceptional faceting and euhedral crystal growth along exposed pore walls. Further recrystallization or regrowth can then accompany even short-term exposure of synthetic hydrates to natural ocean-floor conditions, such that the final textures may closely mimic

  3. Activation-energy for the reaction h+oh--]eaq- - kinetic determination of the enthalpy and entropy of solvation of the hydrated electron

    DEFF Research Database (Denmark)

    Hickle, B.; Sehested, Knud

    1985-01-01

    The reaction between atomic hydrogen and hydroxide ion in aqueous solutions H + OH- - eaq- + H20 has been studied by pulse radiolysis. The rate constant was measured at pH 11.7 and 12 by following the growth of the hydrated electron absorption at 600 nm. The activation energy of the reaction has...... been determined over the temperature range 15-60 "C as 6.3 f 0.6 kcal/mol(26.4 f 2.5 kJ/mol). From this value and the activation energy of the reverse reaction, the ea; enthalpy of formation AHf = -32.6 f 1.6 kcal/mol (-136.4 f 6.7 kJ/mol) and its standard entropy So = 16.7 f 5.4 cal/(mol deg) (69.8 f...

  4. Activation-energy for the reaction h+oh--]eaq- - kinetic determination of the enthalpy and entropy of solvation of the hydrated electron

    DEFF Research Database (Denmark)

    Hickle, B.; Sehested, Knud

    1985-01-01

    been determined over the temperature range 15-60 "C as 6.3 f 0.6 kcal/mol(26.4 f 2.5 kJ/mol). From this value and the activation energy of the reverse reaction, the ea; enthalpy of formation AHf = -32.6 f 1.6 kcal/mol (-136.4 f 6.7 kJ/mol) and its standard entropy So = 16.7 f 5.4 cal/(mol deg) (69.8 f......The reaction between atomic hydrogen and hydroxide ion in aqueous solutions H + OH- - eaq- + H20 has been studied by pulse radiolysis. The rate constant was measured at pH 11.7 and 12 by following the growth of the hydrated electron absorption at 600 nm. The activation energy of the reaction has...

  5. Controlling surface reactions with nanopatterned surface elastic strain.

    Science.gov (United States)

    Li, Zhisheng; Potapenko, Denis V; Osgood, Richard M

    2015-01-27

    The application of elastic lattice strain is a promising approach for tuning material properties, but the attainment of a systematic approach for introducing a high level of strain in materials so as to study its effects has been a major challenge. Here we create an array of intense locally varying strain fields on a TiO2 (110) surface by introducing highly pressurized argon nanoclusters at 6-20 monolayers under the surface. By combining scanning tunneling microscopy imaging and the continuum mechanics model, we show that strain causes the surface bridge-bonded oxygen vacancies (BBOv), which are typically present on this surface, to be absent from the strained area and generates defect-free regions. In addition, we find that the adsorption energy of hydrogen binding to oxygen (BBO) is significantly altered by local lattice strain. In particular, the adsorption energy of hydrogen on BBO rows is reduced by ∼ 35 meV when the local crystal lattice is compressed by ∼ 1.3%. Our results provide direct evidence of the influence of strain on atomic-scale surface chemical properties, and such effects may help guide future research in catalysis materials design.

  6. Supersonic molecular beam experiments on surface chemical reactions.

    Science.gov (United States)

    Okada, Michio

    2014-10-01

    The interaction of a molecule and a surface is important in various fields, and in particular in complex systems like biomaterials and their related chemistry. However, the detailed understanding of the elementary steps in the surface chemistry, for example, stereodynamics, is still insufficient even for simple model systems. In this Personal Account, I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams demonstrate a significant role of the translational energy of the incident molecules. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths specific for the hyperthermal energy region, and to develop new methods for the fabrication of thin films. On the other hand, oriented molecular beams also demonstrate the possibility of understanding surface chemical reactions in detail by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for finely monitoring the elementary step of the surface chemical reactions and creating new materials on surfaces.

  7. Surface Reactions Studied by Synchrotron Based Photoelectron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hrbek, J.

    1998-11-03

    The goal of this article is to illustrate the use of synchrotron radiation for investigating surface chemical reactions by photoelectron spectroscopy. A brief introduction and background information is followed by examples of layer resolved spectroscopy, oxidation and sulfidation of metallic, semiconducting and oxide surfaces.

  8. Potential energy surfaces and reaction dynamics of polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yan-Tyng.

    1991-11-01

    A simple empirical valence bond (EVB) model approach is suggested for constructing global potential energy surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous potential surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogen atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.

  9. Ultrafast Coherent Control and Characterization of Surface Reactions using FELs

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Hirohito; Nordlund, Dennis a Nilsson, Anders; /SLAC, SSRL

    2005-09-30

    The microscopic understanding of reactions at surfaces requires an in-depth knowledge of the dynamics of elementary processes on an ultrafast timescale. This can be accomplished using an ultrafast excitation to initiate a chemical reaction and then probe the progression of the reaction with an ultrashort x-ray pulse from the FEL. There is a great potential to use atom-specific spectroscopy involving core levels to probe the chemical nature, structure and bonding of species on surfaces. The ultrashort electron pulse obtained in the linear accelerator to feed the X-ray FEL can also be used for generation of coherent synchrotron radiation in the low energy THz regime to be used as a pump. This radiation has an energy close to the thermal excitations of low-energy vibrational modes of molecules on surfaces and phonons in substrates. The coherent THz radiation will be an electric field pulse with a certain direction that can collectively manipulate atoms or molecules on surfaces. In this respect a chemical reaction can be initiated by collective atomic motion along a specific reaction coordinate. If the coherent THz radiation is generated from the same source as the X-ray FEL radiation, full-time synchronization for pump-probe experiments will be possible. The combination of THz and X-ray spectroscopy could be a unique opportunity for FEL facilities to conduct ultrafast chemistry studies at surfaces.

  10. The nature of Mars's surface hydration: converging views from satellite (MEX), surface (MSL) and meteorite (NWA 7034 / 7533 and co) observations.

    Science.gov (United States)

    Beck, P.; Pommerol, A.; Zanda, B.; Remusat, L.; Lorand, J. P.; Gopel, C. H.; Hewins, R.; Pont, S.; Lewin, E.; Quirico, E.; Schmitt, B.; Montes-Hernandez, G.; Garenne, A.; Bonal, L.; Proux, O.; Hazemann, J. L.; Chevrier, V.; Martín-Torres, J.; Zorzano, M. P.; Gasnault, O.; Maurice, S.; Wiens, R. C.

    2014-12-01

    Early infrared observations of the Martian surface have revealed the presence of a deep absorption between 2.6 and 3.5 µm usually referred to as the 3-µm band. Two non-exclusive explanations have been formulated to account for this 3-µm band. The first possibility is that it relates to the presence of some amount of adsorbed atmospheric water, water that would be exchangeable and could play a role in present day Mars water cycle. The alternative is that this absorption is due to an -OH or H2O bearing mineral component within the Martian dust, which would imply that water is involved at some stage of the dust production mechanism. Several lines of evidences seem to converge toward the second hypothesis. First, after 10 years of mapping of the martian surface with OMEGA (MEX), the lack of variation of the 3-µm feature with surface relative humidity suggests that the surface hydration does not exchange with the atmosphere. This is in agreement with laboratory adsorption experiments under Mars conditions. 
More recently the Mars Science Laboratory with unprecedented payload has provided some crucial constraints on the nature of surface hydration. The ChemCam instrument onboard MSL has detected hydrogen in dust and soil, and revealed the lack of variation of H concentration with surface humidity, including nighttime measurements. Also, evolved gas analysis by SAM of Gale crater soils shows that water is released at relatively high-temperature and suggest that -OH or H2O bearing phases are trapped in the amorphous component of soils. 
Finally, the exceptional "black beauty" meteorite might also provide clues to the nature of Mars's surface hydration. This Martian breccia shows elevated amount of water with respect to any other Martian meteorite. By studying the spectral properties of NWA 7533, we were able to show the presence of a 3-µm band and a small red-slope; this Martian breccia seems to contain a fine-oxidized-H-bearing component, possibly similar to that

  11. Hydration and Thermal Expansion in Anatase Nanoparticles.

    Science.gov (United States)

    Zhu, He; Li, Qiang; Ren, Yang; Fan, Longlong; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2016-08-01

    A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.

  12. Hydration and Thermal Expansion in Anatase Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, He [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Li, Qiang [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Ren, Yang [Argonne National Laboratory, X-Ray Science Division, Argonne IL 60439 USA; Fan, Longlong [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Chen, Jun [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Deng, Jinxia [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 China

    2016-06-06

    A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.

  13. Basic reactions of osteoblasts on structured material surfaces

    Directory of Open Access Journals (Sweden)

    B�chter A.

    2005-04-01

    Full Text Available In order to assess how bone substitute materials determine bone formation in vivo it is useful to understand the mechanisms of the material surface/tissue interaction on a cellular level. Artificial materials are used in two applications, as biomaterials alone or as a scaffold for osteoblasts in a tissue engineering approach. Recently, many efforts have been undertaken to improve bone regeneration by the use of structured material surfaces. In vitro studies of bone cell responses to artificial materials are the basic tool to determine these interactions. Surface properties of materials surfaces as well as biophysical constraints at the biomaterial surface are of major importance since these features will direct the cell responses. Studies on osteoblastlike cell reactivity towards materials will have to focus on the different steps of protein and cell reactions towards defined surface properties. The introduction of new techniques allows nowadays the fabrication of materials with ordered surface structures. This paper gives a review of present knowledge on the various stages of osteoblast reactions on material surfaces, focused on basic cell events under in vitro conditions. Special emphasis is given to cellular reactions towards ordered nano-sized topographies.

  14. Unraveling the reaction mechanism on nitrile hydration catalyzed by [Pd(OH2)4]2+: insights from theory.

    Science.gov (United States)

    Tílvez, Elkin; Menéndez, María I; López, Ramón

    2013-07-01

    Density functional theory methodologies combined with continuum and discrete-continuum descriptions of solvent effects were used to investigate the [Pd(OH2)4](2+)-catalyzed acrylonitrile hydration to yield acrylamide. According to our results, the intramolecular hydroxide attack mechanism and the external addition mechanism of a water molecule with rate-determining Gibbs energy barriers in water solution of 27.6 and 28.3 kcal/mol, respectively, are the most favored. The experimental kinetic constants of the hydration started by hydroxide, k(OH), and water, k(H2O), attacks for the cis-[Pd(en)(OH2)2](2+)-catalyzed dichloroacetonitrile hydration rendered Gibbs energy barriers whose energy difference, 0.7 kcal/mol, is the same as that obtained in the present study. Our investigation reveals the nonexistence of the internal attack of a water ligand for Pd-catalyzed nitrile hydration. At the low pHs used experimentally, the equilibrium between [Pd(OH2)3(nitrile)](2+) and [Pd(OH2)2(OH)(nitrile)](+) is completely displaced to [Pd(OH2)3(nitrile)](2+). Experimental studies in these conditions stated that water acts as a nucleophile, but they could not distinguish whether it was a water ligand, an external water molecule, or a combination of both possibilities. Our theoretical explorations clearly indicate that the external water mechanism becomes the only operative one at low pHs. On the basis of this mechanistic proposal it is also possible to ascribe an (1)H NMR signal experimentally detected to the presence of a unidentate iminol intermediate and to explain the influence of nitrile concentration reported experimentally for nitriles other than acrylonitrile in the presence of aqua-Pd(II) complexes. Therefore, our theoretical point of view on the mechanism of nitrile hydration catalyzed by aqua-Pd(II) complexes can shed light on these relevant processes at a molecular level as well as afford valuable information that can help in designing new catalysts in milder and more

  15. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    Science.gov (United States)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  16. Detailed surface reaction mechanism in a three-way catalyst.

    Science.gov (United States)

    Chatterjee, D; Deutschmann, O; Warnatz, J

    2001-01-01

    Monolithic three-way catalysts are applied to reduce the emission of combustion engines. The design of such a catalytic converter is a complex process involving the optimization of different physical and chemical parameters (in the simplest case, e.g., length, cell densities or metal coverage of the catalyst). Numerical simulation can be used as an effective tool for the investigation of the catalytic properties of a catalytic converter and for the prediction of the performance of the catalyst. To attain this goal, a two-dimensional flow-field description is coupled with a detailed surface reaction model (gas-phase reactions can be neglected in three-way catalysts). This surface reaction mechanism (with C3H6 taken as representative of unburnt hydrocarbons) was developed using sub-mechanisms recently developed for hydrogen, carbon monoxide and methane oxidation, literature values for C3H6 oxidation, and estimates for the remaining unknown reactions. Results of the simulation of a monolithic single channel are used to validate the surface reaction mechanism. The performance of the catalyst was simulated under lean, nearly stoichiometric and rich conditions. For these characteristic conditions, the oxidation of propene and carbon monoxide and the reduction of NO on a typical Pt/Rh coated three-way catalyst were simulated as a function of temperature. The numerically predicted conversion data are compared with experimentally measured data. The simulation further reveals the coupling between chemical reactions and transport processes within the monolithic channel.

  17. The amphoteric effect on friction between the bovine cartilage/cartilage surfaces under slightly sheared hydration lubrication mode.

    Science.gov (United States)

    Pawlak, Zenon; Gadomski, Adam; Sojka, Michal; Urbaniak, Wieslaw; Bełdowski, Piotr

    2016-10-01

    The amphoteric effect on the friction between the bovine cartilage/cartilage contacts has been found to be highly sensitive to the pH of an aqueous solution. The cartilage surface was characterized using a combination of the pH, wettability, as well as the interfacial energy and friction coefficient testing methods to support lamellar-repulsive mechanism of hydration lubrication. It has been confirmed experimentally that phospholipidic multi-bilayers are essentially described as lamellar frictionless lubricants protecting the surface of the joints against wear. At the hydrophilicity limit, the low friction would then be due to (a) lamellar slippage of bilayers and (b) a short-range (nanometer-scale) repulsion between the interfaces of negatively charged (PO4(-)) cartilage surfaces, and in addition, contribution of the extracellular matrix (ECM) collagen fibers, hyaluronate, proteoglycans aggregates (PGs), glycoprotein termed lubricin and finally, lamellar PLs phases. In this paper we demonstrate experimentally that the pH sensitivity of cartilage to friction provides a novel concept in joint lubrication on charged surfaces.

  18. The roles of fluid transport and surface reaction in reaction-induced fracturing, with implications for the development of mesh textures in serpentinites

    Science.gov (United States)

    Shimizu, Hiroyuki; Okamoto, Atsushi

    2016-09-01

    The distinct element method was used to simulate chemical-mechanical-hydraulic processes that occur during serpentinization (volume-increasing hydration) within the oceanic lithosphere. The proposed model considers water transported in two ways: advective flow along fractures and through matrices. Variations in fracture pattern and system evolution were examined using two nondimensional parameters: the ratios of the rates of flow in fracture ( Ψ F) and matrix ( Ψ M) to the surface reaction rate. In cases of fixed Ψ F and Ψ M with sufficiently low reaction rates, the fracture pattern is not dependent on the surface reaction rate. Otherwise, the fracture pattern varies systematically as a function of Ψ F and Ψ M. At low Ψ F (≤1) and low Ψ M (≤1), the reaction proceeds from the boundaries inward and forms fine fractures layer by layer. At high Ψ F (≥10,000) and low Ψ M (≤10), the reaction proceeds from the boundaries inward and forms polygonal fracture networks. As Ψ M increases (>100), the reaction tends to proceed homogeneously from the boundaries without fracturing. A comparison of natural and simulated textures reveals that the following conditions are necessary to develop mesh textures during serpentinization in the oceanic lithosphere. (1) The surface reaction rate must be similar to or higher than the fluid flow rate in the matrix (or than the diffusive transport of water), and much lower than the fluid flow rate along fractures. (2) Original olivine grain boundaries act as pathways for fluid transport; these pathways may result from thermal or tectonic stress-induced cracking prior to serpentinization.

  19. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.

    Science.gov (United States)

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji

    2016-09-01

    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  20. Multifunctional Co0.85Se/graphene hybrid nanosheets: controlled synthesis and enhanced performances for the oxygen reduction reaction and decomposition of hydrazine hydrate

    Science.gov (United States)

    Zhang, Lin-Fei; Zhang, Chun-Yang

    2014-01-01

    Ultrathin nanosheets possess novel electronic structures and physical properties as compared with their corresponding bulk samples. However, the controlled synthesis of ultrathin monolayer nanosheets still remains a great challenge due to the lack of an intrinsic driving force for anisotropic growth of two-dimensional (2D) structures. Here we demonstrate, for the first time to our knowledge, the in situ synthesis of large-scale ultrathin single-crystalline Co0.85Se nanosheets on graphene oxide (GO) sheets, with a thickness of 3 nm. Owing to the synergetic chemical coupling effects between GO and Co0.85Se, the Co0.85Se/graphene hybrid nanosheets exhibit the highest catalytic performance among the available cobalt chalcogenide-based catalysts for the oxygen reduction reaction (ORR). Moreover, Co0.85Se/graphene hybrid nanosheets can catalyze the decomposition of hydrazine hydrate rapidly, with 97% of hydrazine hydrate being degraded in 12 min and the degradation rate remaining constant over 10 consecutive cycles, thus having great potential as long-term catalysts in wastewater treatment.Ultrathin nanosheets possess novel electronic structures and physical properties as compared with their corresponding bulk samples. However, the controlled synthesis of ultrathin monolayer nanosheets still remains a great challenge due to the lack of an intrinsic driving force for anisotropic growth of two-dimensional (2D) structures. Here we demonstrate, for the first time to our knowledge, the in situ synthesis of large-scale ultrathin single-crystalline Co0.85Se nanosheets on graphene oxide (GO) sheets, with a thickness of 3 nm. Owing to the synergetic chemical coupling effects between GO and Co0.85Se, the Co0.85Se/graphene hybrid nanosheets exhibit the highest catalytic performance among the available cobalt chalcogenide-based catalysts for the oxygen reduction reaction (ORR). Moreover, Co0.85Se/graphene hybrid nanosheets can catalyze the decomposition of hydrazine hydrate rapidly

  1. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces

    OpenAIRE

    Schrader, Alex M.; Cheng, Chi-Yuan; Israelachvili, Jacob N.; Han, Songi

    2016-01-01

    Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhause...

  2. From hydration repulsion to dry adhesion between asymmetric hydrophilic and hydrophobic surfaces

    OpenAIRE

    Kanduč, Matej; Netz, Roland R.

    2015-01-01

    Besides van der Waals and electrostatic interactions, surfaces in water experience solvation forces arising from the interfacial water structure that become dominant at small surface separations. Using a combination of atomistic simulations and theoretical arguments, we construct a universal adhesion state diagram for two neutral surfaces with different water affinities. We find an intermediate regime of affinity combinations where the surfaces adhere to each other without an intervening wate...

  3. Ultrafast Coherent Control and Characterization of Surface Reactions using FELs

    CERN Document Server

    Ogasawara, Hirohito; Nordlund, Dennis

    2005-01-01

    The microscopic understanding of surface chemistry requires a detailed understanding of the dynamics of elementary processes at surfaces. The ultrashort electron pulse obtained in the linear accelerator to feed the FEL can be used for generation of coherent synchrotron radiation in the low energy THz regime. With the current parameters for LCLS this corresponds to radiation with energy corresponding to excitations of low-energy vibrational modes of molecules on surfaces or phonons in substrates. The coherent radiation can coherently manipulate atoms or molecules on surfaces. In this respect a chemical reaction can be initiated by coherent atomic motion along a specific reaction coordinate. Since the THz radiation is generated from the same source as the FEL radiation full-time synchronization for pump-probe experiments will be possible. The possibility to perform time-resolved X-ray Emission Spectroscopy (XES) and X-ray Photoelectron Spectroscopy (XPS) measurements as a probe of chemical dynamics is an exciti...

  4. The simulation of gas production from oceanic gas hydrate reservoir by the combination of ocean surface warm water flooding with depressurization

    Institute of Scientific and Technical Information of China (English)

    Hao Yang; Yu-Hu Bai; Qing-Ping Li

    2012-01-01

    A new method is proposed to produce gas from oceanic gas hydrate reservoir by combining the ocean surface warm water flooding with depressurization which can efficiently utilize the synthetic effects of thermal,salt and depressurization on gas hydrate dissociation.The method has the advantage of high efficiency,low cost and enhanced safety.Based on the proposed conceptual method,the physical and mathematical models are established,in which the effects of the flow of multiphase fluid,the kinetic process of hydrate dissociation,the endothermic process of hydrate dissociation,ice-water phase equilibrium,salt inhibition,dispersion,convection and conduction on the hydrate dissociation and gas and water production are considered.The gas and water rates,formation pressure for the combination method are compared with that of the single depressurization,which is referred to the method in which only depressurization is used.The results show that the combination method can remedy the deficiency of individual producing methods.It has the advantage of longer stable period of high gas rate than the single depressurization.It can also reduce the geologic hazard caused by the formation deformation due to the maintaining of the formation pressure by injected ocean warm water.

  5. Reactions between monolayer Fe and Si(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M.; Kobayashi, N.; Hayashi, N. [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1997-03-01

    Reactions between 1.5 monolayer(ML) Fe deposited on Si(001)-2x1 and -dihydride surfaces were studied in situ by reflection high-energy electron diffraction and time-of-flight ion scattering spectrometry with the use of 25 keV H ions. The reactions between Fe and Si which were successively deposited on Si(001)-dihydride surface were also studied. After the room temperature deposition Fe reacted with Si(001)-2x1 substrate resulting in the formation of polycrystalline Fe5Si3. By annealing to 560-650degC composite heteroepitaxial layer of both type A and type B {beta}-FeSi2 was formed. On the dihydride surface polycrystalline Fe was observed after 1.5ML Fe deposition at room temperature, and reaction between Fe and Si(001)-dihydride surface is not likely at room temperature. We observed 3D rough surface when we deposited only Fe layer on the dihydride surface and annealed above 700degC. The hydrogen termination of Si(001) surface prevents the deposited Fe from diffusing into the substrate below 500degC, however the annealing above 710degC leads to the diffusion. We obtained 2D ordered surface, which showed 3x3 RHEED pattern as referenced to the primitive unreconstructed Si(001) surface net, when we deposited 2.5ML Fe and 5.8ML Si successively onto Si(001)-dihydride surface and annealed to 470degC. (author)

  6. In Situ Confocal Raman Microscopy of Hydrated Early Stages of Bacterial Biofilm Formation on Various Surfaces in a Flow Cell.

    Science.gov (United States)

    Smith-Palmer, Truis; Lin, Sicheng; Oguejiofor, Ikenna; Leng, Tianyang; Pustam, Amanda; Yang, Jin; Graham, Lori L; Wyeth, Russell C; Bishop, Cory D; DeMont, M Edwin; Pink, David

    2016-02-01

    Bacterial biofilms are precursors to biofouling by other microorganisms. Understanding their initiation may allow us to design better ways to inhibit them, and thus to inhibit subsequent biofouling. In this study, the ability of confocal Raman microscopy to follow the initiation of biofouling by a marine bacterium, Pseudoalteromonas sp. NCIMB 2021 (NCIMB 2021), in a flow cell, using optical and confocal Raman microscopy, was investigated. The base of the flow cell comprised a cover glass. The cell was inoculated and the bacteria attached to, and grew on, the cover glass. Bright field images and Raman spectra were collected directly from the hydrated biofilms over several days. Although macroscopically the laser had no effect on the biofilm, within the first 24 h cells migrated away from the position of the laser beam. In the absence of flow, a buildup of extracellular substances occurred at the base of the biofilm. When different coatings were applied to cover glasses before they were assembled into the flow cells, the growth rate, structure, and composition of the resulting biofilm was affected. In particular, the ratio of Resonance Raman peaks from cytochrome c (CC) in the extracellular polymeric substances, to the Raman phenylalanine (Phe) peak from protein in the bacteria, depended on both the nature of the surface and the age of the biofilm. The ratios were highest for 24 h colonies on a hydrophobic surface. Absorption of a surfactant with an ethyleneoxy chain into the hydrophobic coating created a surface similar to that given with a simple PEG coating, where bacteria grew in colonies away from the surface rather than along the surface, and CC:Phe ratios were initially low but increased at least fivefold in the first 48 h.

  7. Toward understanding the rates of reactions at mineral surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Casey, W.H. [Univ. of California Davis, CA (United States). Dept. of Land, Air and Water Resources and Dept. of Geology; Ludwig, C. [EAWAG, Swiss Federal Institute for Environmental Science and Technolgy, Dubendorf (Switzerland). Dept. of Resources and Waste management; Holmen, B. [Univ. of California Davis, CA (United States). Dept. of Land, Air and Water Resources

    1998-12-31

    Environmental geo chemists are commonly called upon to make predictions over long scales of time and distance. In many cases, these predictions involve disequilibrium reactions, such as the decomposition of ozone-depleting gases or the migration rates of groundwater contaminants. These groundwater contaminants interact with mineral surfaces in a complicated fashion that is not understood quantitatively. However, in a real sense, mineral dissolution studies are to the aqueous geo chemists what Escherichia coli are to microbiologists: an inexpensive model system to map out important kinetic relations that can then be extended qualitatively to other settings. This chapter explains that is enormously useful to draw analogies between reactions at mineral surfaces and at dissolved metal-ligand complexes. In this approach, the reactivities of bond between a metal and a water molecule or ligand in the inner-coordination-sphere of the dissolved complex are proxies for bonds between a metal and oxygen at the mineral surface, which cannot be studied directly.

  8. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    Science.gov (United States)

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    BioAggregate™ is a novel material introduced for use as a root-end filling material. It is tricalcium silicate-based, free of aluminium and uses tantalum oxide as radiopacifier. BioAggregate contains additives to enhance the material performance. The purpose of this research was to characterize the un-hydrated and hydrated forms of BioAggregate using a combination of techniques, verify whether the additives if present affect the properties of the set material and compare these properties to those of MTA Angelus™. Un-hydrated and hydrated BioAggregate and MTA Angelus were assessed. Un-hydrated cement was tested for chemical composition, specific surface area, mineralogy and kinetics of hydration. The set material was investigated for mineralogy, microstructure and bioactivity. Scanning electron microscopy, X-ray energy dispersive spectroscopic analysis, X-ray fluorescence spectroscopy, X-ray diffraction and isothermal calorimetry were employed. The specific surface area was investigated using a gas adsorption method with nitrogen as the probe. BioAggregate was composed of tricalcium silicate, tantalum oxide, calcium phosphate and silicon dioxide and was free of aluminium. On hydration, the tricalcium silicate produced calcium silicate hydrate and calcium hydroxide. The former was deposited around the cement grains, while the latter reacted with the silicon dioxide to form additional calcium silicate hydrate. This resulted in reduction of calcium hydroxide in the aged cement. MTA Angelus reacted in a similar fashion; however, since it contained no additives, the calcium hydroxide was still present in the aged cement. Bioactivity was demonstrated by deposition of hydroxyapatite. BioAggregate exhibited a high specific surface area. Nevertheless, the reactivity determined by isothermal calorimetry appeared to be slow compared to MTA Angelus. The tantalum oxide as opposed to bismuth oxide was inert, and tantalum was not leached in solution. BioAggregate exhibited

  9. Hydration in Lipid Monolayers: Correlation of Water Activity and Surface Pressure.

    Science.gov (United States)

    Disalvo, E Anibal; Hollmann, Axel; Martini, M Florencia

    2015-01-01

    In order to give a physical meaning to each region of the membrane we define the interphase as the region in a lipid membrane corresponding to the polar head groups imbibed in water with net different properties than the hydrocarbon region and the water phase. The interphase region is analyzed under the scope of thermodynamics of surface and solutions based on the definition of Defay-Prigogine of an interphase and the derivation that it has in the understanding of membrane processeses in the context of biological response. In the view of this approach, the complete monolayer is considered as the lipid layer one molecule thick plus the bidimensional solution of the polar head groups inherent to it (the interphase region). Surface water activity appears as a common factor for the interaction of several aqueous soluble and surface active proteins with lipid membranes of different composition. Protein perturbation can be measured by changes in the surface pressure of lipid monolayers at different initial water surface activities. As predicted by solution chemistry, the increase of surface pressure is independent of the particle nature that dissolves. Therefore, membranes give a similar response in terms of the determined surface states given by water activity independent of the protein or peptide.

  10. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons

    National Research Council Canada - National Science Library

    Elçin Külah; Laurent Marot; Roland Steiner; Andriy Romanyuk; Thomas A Jung; Aneliia Wäckerlin; Ernst Meyer

    2017-01-01

    .... Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide...

  11. Ozone - plant surface reactions an important ozone loss term?

    Science.gov (United States)

    Hansel, Armin; Jud, Werner; Fischer, Lukas; Canaval, Eva; Wohlfahrt, Georg; Tissier, Alain

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants responsible for global crop losses with associated economic costs of several billions dollar per year. Plant injuries have been related to the uptake of ozone through stomatal pores and oxidative effects damaging the internal leaf tissue. But a striking question remains: How much ozone enters the plant through open stomata and how much ozone is lost by chemical reactions at the plant surface? Until now surface losses are estimated from measured total ozone deposition fluxes and calculated stomatal conductance values. While stomatal conductance of CO2 and H2O is well understood and extensively used in describing plant atmosphere gas exchange, stomatal conductance of ozone is not well known. Here we use different Nicotiana tabacum varieties and find that surface reactions of ozone with diterpenoids synthesized by glandular trichomes reduce ozone flux through open stomata. Our measurements reveal that fast ozone loss at the plant surface is accompanied with prompt release of oxygenated volatile compounds. In the ozone fumigation experiments of different Nicotiana tabacum varieties the release of specific volatile oxy-VOCs allowed to identify the semi volatile precursor compounds at the plant surface. Ozone fumigation experiments with Norway spruce (Picea abies) and Scots Pine (Pinus sylvestris), two common species in the Northern Hemisphere, show also a significant ozone loss at the plant surface for Picea abies. Fluid dynamic calculations of ozone transport in the diffusive leaf boundary layer reveal a vertical but no horizontal ozone gradient thus reducing ozone fluxes through the pores in case of efficient ozone scavenging plant surfaces. We explain this efficient ozone protection mechanism by the porous surface architecture of plants in combination with unsaturated semi-volatile compounds deposited at the plant surface. These results show that unsaturated semi-volatile compounds at

  12. Hydrated goethite (alpha-FeOOH) (100) interface structure: Ordered water and surface functional groups.

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, S.K.; Waychunas, G.A.; Trainor, T.P.; Eng, P.J.

    2009-12-15

    Goethite({alpha}-FeOOH), an abundant and highly reactive iron oxyhydroxide mineral, has been the subject of numerous stud-ies of environmental interface reactivity. However, such studies have been hampered by the lack of experimental constraints on aqueous interface structure, and especially of the surface water molecular arrangements. Structural information of this type is crucial because reactivity is dictated by the nature of the surface functional groups and the structure or distribution of water and electrolyte at the solid-solution interface. In this study we have investigated the goethite(100) surface using surface diffraction techniques, and have determined the relaxed surface structure, the surface functional groups, and the three dimensional nature of two distinct sorbed water layers. The crystal truncation rod (CTR) results show that the interface structure consists of a double hydroxyl, double water terminated interface with significant atom relaxations. Further, the double hydroxyl terminated surface dominates with an 89% contribution having a chiral subdomain structure on the(100) cleavage faces. The proposed interface stoichiometry is ((H{sub 2}O)-(H{sub 2}O)-OH{sub 2}-OH-Fe-O-O-Fe-R) with two types of terminal hydroxyls; a bidentate (B-type) hydroxo group and a monodentate (A-type) aquo group. Using the bond-valence approach the protonation states of the terminal hydroxyls are predicted to be OH type (bidentate hydroxyl with oxygen coupled to two Fe{sup 3+} ions) and OH{sub 2} type (monodentate hydroxyl with oxygen tied to only one Fe{sup 3+}). A double layer three dimensional ordered water structure at the interface was determined from refinement of fits to the experimental data. Application of bond-valence constraints to the terminal hydroxyls with appropriate rotation of the water dipole moments allowed a plausible dipole orientation model as predicted. The structural results are discussed in terms of protonation and H-bonding at the interface

  13. Application of the carbon dioxide-barium hydroxide hydrate gas-solid reaction for the treatment of dilute carbon dioxide-bearing gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Haag, G.L.

    1983-09-01

    The removal of trace components from gas streams via irreversible gas-solid reactions in an area of interest to the chemical engineering profession. This research effort addresses the use of fixed beds of Ba(OH)/sub 2/ hydrate flakes for the removal of an acid gas, CO/sub 2/, from air that contains approx. 330 ppM/sub v/ CO/sub 2/. Areas of investigation encompassed: (1) an extensive literature review of Ba(OH)/sub 2/ hydrate chemistry, (2) microscale studies on 0.150-g samples to develop a better understanding of the reaction, (3) process studies at the macroscale level with 10.2-cm-ID fixed-bed reactors, and (4) the development of a model for predicting fixed-bed performance. Experimental studies indicated fixed beds of commercial Ba(OH)/sub 2/.8H/sub 2/O flakes at ambient temperatures to be capable of high CO/sub 2/-removal efficiencies (effluent concentrations <100 ppB), high reactant utilization (>99%), and an acceptable pressure drop (1.8 kPa/m at a superficial gas velocity of 13 cm/s). Ba(OH)/sub 2/.8H/sub 2/O was determined to be more reactive toward CO/sub 2/ than either Ba(OH)/sub 2/.3H/sub 2/O or Ba(OH)/sub 2/.1H/sub 2/O. A key variable in the development of this fixed-bed process was relative humidity. Operation at conditions with effluent relative humidities >60% resulted in significant recrystallization and restructuring of the flake and subsequent pressure-drop problems.

  14. Method for Determining the Hydration Reaction Kinetics of Coal Ashes%燃煤灰渣水化反应动力学测定方法研究

    Institute of Scientific and Technical Information of China (English)

    徐惠忠; 宋远明; 刘景相; 王波; 王志娟

    2011-01-01

    煤粉炉粉煤灰、沸腾炉渣和循环流化床固硫灰渣是3种具有代表性的燃煤灰渣.采用氢氧化钙变化量和化学结合水量表征方法,对燃煤灰渣的水化反应动力学进行研究.研究发现,由于燃煤灰渣中游离CaO的存在,用Ca(OH)2反应变化量研究其水化反应动力学时存在较大的干扰和误差;而用化学结合水量法则不受燃煤灰渣中游离CaO和SO3含量的影响,且与28 d抗压强度比方法所得结果相一致.结果表明,随着龄期增长,固硫灰渣或沸腾炉渣-水泥胶凝系统中,水化产物生成量明显高于粉煤灰-水泥胶凝系统;燃煤灰渣的火山灰活性与其CaO或SO3含量不存在必然联系.%Ashes from pulverized coal combustion(PCC) boiler, bubbling fluidized bed combustion(BFBC) boiler and circulating fluidized bed combustion(CFBC) boiler, namely, PC ashes, BFBC ashes and CFBC ashes respectively, are representative coal ashes. The hydration reaction kinetics of coal ashes was investigated by the change of Ca(OH)2 and chemically combined water content. It is found that there are some disturbances and errors for the study of the hydration reaction kinetics of coal ashes by means of the change of Ca(OH)2 content, while the method of chemically combined water content is independent of the content of free lime or SO3, in accordance with the results of 28 d compressive strength ratio. The results confirm that the content of the hydration products of BFBC ashes or CFBC ashes-cement pastes is greater than that of PC ashes-cement pastes, and the pozzolanic activity of coal ashes is not closely related to the content of CaO or SO3.

  15. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons

    Science.gov (United States)

    Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A.; Wäckerlin, Aneliia; Meyer, Ernst

    2017-01-01

    Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect – oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level. PMID:28327642

  16. Recyclable surfaces for amine conjugation chemistry via redox reaction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Inseong; Yeo, Woon Seok [Dept. of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul (Korea, Republic of); Bae, Se Won [Green Materials and Process Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology, Cheonan (Korea, Republic of)

    2017-02-15

    In this study, we extended this strategy to present a switchable surface that allows surface functionalization and removal of functional groups repeatedly. The substrate presenting a benzoquinone acid group is first used to immobilize with an amine-containing (bio)molecule using well-known conjugation chemistry. The benzoquinone group is then converted to the corresponding hydroquinone by treating with a reducing agent. We have described a strategy for the dynamic control of surface properties with recyclability via a simple reduction/ oxidation reaction. A stimuli-responsive quinone derivative was harnessed for the repeated immobilization and release of (bio)molecules, and thus, for the repeated dynamic change of the surface properties according to the characteristics of the immobilized (bio)molecules.

  17. Thermodynamic aspects of dehydrogenation reactions on noble metal surfaces.

    Science.gov (United States)

    Svane, K L; Hammer, B

    2014-11-01

    The reaction free energy for dehydrogenation of phenol, aniline, thiophenol, benzoic acid, and 1,4-benzenediol on the close packed copper, silver, and gold surfaces has been studied by density functional theory calculations. Dehydrogenation of thiophenol is found to be favourable on all three surfaces while aniline does not dehydrogenate on any of them. For phenol, benzenediol and benzoic acid dehydrogenation is favourable on copper and silver only, following the general trend of an increasing reaction free energy when going form gold to silver to copper. This trend can be correlated with the changes in bond lengths within the molecule upon dehydrogenation. While copper is able to replace hydrogen, leaving small changes in the bond lengths of the aromatic ring, the metal-molecule bond is weaker for silver and gold, resulting in a partial loss of aromaticity. This difference in bond strength leads to pronounced differences in adsorption geometries upon multiple dehydrogenations.

  18. Self-activated, self-limiting reactions on Si surfaces

    DEFF Research Database (Denmark)

    Morgen, Per; Hvam, Jeanette; Bahari, Ali

    mechanism for the direct growth of ultrathin films (0-3 nm) of oxides and nitrides under ultrahigh vacuum conditions. Neutral oxygen and a microwave excited nitrogen plasma interact directly with Si surfaces kept at different temperatures during the reaction. The gas pressures are around 10-6 Torr......The direct thermally activated reactions of oxygen and ammonia with Si surfaces in furnaces have been used for a very long time in the semiconductor industry for the growth of thick oxides and nitride layers respectively. The oxidation mechanism was described in the Deal-Grove model as a diffusion......, and the temperatures vary from room temperature to 10000C.The growth is in these cases self-limiting, with the optimal oxide thickness around 0.7-0.8 nm, at 5000C, and up to a few nm for nitride. The self-limiting oxide case was recently predicted by Alex Demkov in a structural optimization to minimise the total...

  19. Advances in understanding hydration of Portland cement

    Energy Technology Data Exchange (ETDEWEB)

    Scrivener, Karen L., E-mail: Karen.scrivener@epfl.ch [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 (Switzerland); Juilland, Patrick [Sika Technology AG, Zürich (Switzerland); Monteiro, Paulo J.M. [Department of Civil and Environmental Engineering, University of California at Berkeley (United States)

    2015-12-15

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C{sub 3}A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed.

  20. Albumin-mediated deposition of bone-like apatite onto nano-sized surfaces: Effect of surface reactivity and interfacial hydration.

    Science.gov (United States)

    D'Elia, Noelia L; Gravina, Noel; Ruso, Juan M; Marco-Brown, Jose L; Sieben, Juan M; Messina, Paula V

    2017-05-15

    The bioactivity of an implant is displayed on its ability to induce heterogeneous nucleation of biogenic apatite onto its surface upon immersion in body fluids; forming, through this layer, a stable bond with the host tissue. The present article evaluates the bioactivity of different nanostructured substrates based on synthetic hydroxyapatite (HA) and titania (TiO2) nanoparticles, where we extend the debate regarding the selective roles played by the presence of albumin on the biogenic apatite coating evolution. The substrates bone-bonding potential was evaluated by keeping the materials in contact with Simulated Body Fluid, while the influence of the presence of Bovine Serum Albumin in bioactivity was analyzed by a spectrophotometric technique. Our results show that materials' surface reactivity and their interfacial hydration are responsible for the bonding-site alteration and surface charge density distribution, which in turn, regulate the protein adsorption process. As a matter of fact, variations on the protein adsorbed density have a directly proportional impact on calcium binding sites, which should be responsible for the initiation of the mineralization process, disturbing the deposition of the interfacial calcium phosphate (Ca-P) mineralized coating. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  2. Variation in Surface Ionization Potentials of Pristine and Hydrated BiVO4.

    Science.gov (United States)

    Crespo-Otero, Rachel; Walsh, Aron

    2015-06-18

    Bismuth vanadate (BiVO4) is a promising material for photoelectrochemical water splitting and photocatalytic degradation of organic moieties. We evaluate the ionization potentials of the (010) surface termination of BiVO4 using first-principles simulations. The electron removal energy of the pristine termination (7.2 eV) validates recent experimental reports. The effect of water absorption on the ionization potentials is considered using static models as well as structures obtained from molecular dynamics simulations. Owing to the large molecular dipole of H2O, adsorption stabilizes the valence band edge (downward band bending), thereby increasing the ionization potentials. These results provide new understanding to the role of polar layers on complex oxide semiconductors, with importance for the design of efficient photoelectrodes for water splitting.

  3. A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Durdziński, Paweł T., E-mail: pawel.durdzinski@gmail.com [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland); Dunant, Cyrille F. [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland); Haha, Mohsen Ben [HeidelbergCement Technology Center GmbH (HeidelbergCement AG), Rohrbacher Str. 95, 69181 Leimen (Germany); Scrivener, Karen L. [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland)

    2015-07-15

    Calcareous fly ashes are high-potential reactive residues for blended cements, but their qualification and use in concrete are hindered by heterogeneity and variability. Current characterization often fails to identify the dominant, most reactive, amorphous fraction of the ashes. We developed an approach to characterize ashes using electron microscopy. EDS element composition of millions of points is plotted in a ternary frequency plot. A visual analysis reveals number and ranges of chemical composition of populations: silicate, calcium-silicate, aluminosilicate, and calcium-rich aluminosilicate. We quantified these populations in four ashes and followed their hydration in two Portland-ash systems. One ash reacted at a moderate rate: it was composed of 70 vol.% of aluminosilicates and calcium-silicates and reached 60% reaction at 90 days. The other reacted faster, reaching 60% at 28 days due to 55 vol.% of calcium-rich aluminosilicates, but further reaction was slower and 15 vol.% of phases, the silica-rich ones, did not react.

  4. Platelet reactions to modified surfaces under dynamic conditions.

    Science.gov (United States)

    Rhodes, N P; Shortland, A P; Rattray, A; Williams, D F

    1998-12-01

    The influence of surfaces on the reactions of platelets in whole blood under laminar flow was investigated in a cone and plate viscometer. Citrated whole blood was exposed to steel, PMMA and PMMA modified with PEO at low (500 s(-1)) and high (4000 s(-1)) wall shear rates at room temperature for a period of 100 s. Treated blood samples were fixed with paraformaldehyde, stained with a monoclonal antibody for CD41 (platelet GPIIb/IIIa) conjugated with phycoerythrin and analyzed by flow cytometry. The reactions of platelets (microparticle generation and formation of platelet-platelet, platelet-red blood cell and red blood cell-microparticle aggregates) to these environments were quantified. Additionally, the size of platelet-platelet aggregates was assessed. The percentage platelet aggregation and numbers of microparticles generated were independent of surface type at any shear rate. The composition of the aggregates formed was influenced by the surface: at low and high shear rates PMMA caused the generation of platelet-platelet aggregates of the greatest size. The numbers of red blood cell-platelet and red blood cell-microparticle aggregates also varied depending on the surface. Fewer red blood cell-platelet aggregates were formed at higher shear rates, whereas the reverse was true for red blood cell-microparticle aggregates. It is concluded that these variations may help to explain the differential effects of surfaces to the induction of distant thrombotic events: microparticles may be protected from loss from the blood stream by their association with red blood cells at high shear rates.

  5. Bifurcation Analysis of Reaction Diffusion Systems on Arbitrary Surfaces.

    Science.gov (United States)

    Dhillon, Daljit Singh J; Milinkovitch, Michel C; Zwicker, Matthias

    2017-04-01

    In this paper, we present computational techniques to investigate the effect of surface geometry on biological pattern formation. In particular, we study two-component, nonlinear reaction-diffusion (RD) systems on arbitrary surfaces. We build on standard techniques for linear and nonlinear analysis of RD systems and extend them to operate on large-scale meshes for arbitrary surfaces. In particular, we use spectral techniques for a linear stability analysis to characterise and directly compose patterns emerging from homogeneities. We develop an implementation using surface finite element methods and a numerical eigenanalysis of the Laplace-Beltrami operator on surface meshes. In addition, we describe a technique to explore solutions of the nonlinear RD equations using numerical continuation. Here, we present a multiresolution approach that allows us to trace solution branches of the nonlinear equations efficiently even for large-scale meshes. Finally, we demonstrate the working of our framework for two RD systems with applications in biological pattern formation: a Brusselator model that has been used to model pattern development on growing plant tips, and a chemotactic model for the formation of skin pigmentation patterns. While these models have been used previously on simple geometries, our framework allows us to study the impact of arbitrary geometries on emerging patterns.

  6. A Sea Floor Methane Hydrate Displacement Experiment Using N2 Gas

    Science.gov (United States)

    Brewer, P. G.; Peltzer, E. T.; Walz, P. M.; Zhang, X.; Hester, K.

    2009-12-01

    The production of free methane gas from solid methane hydrate accumulations presents a considerable challenge. The presently preferred procedure is pressure reduction whereby the relief of pressure to a condition outside the hydrate phase boundary creates a gas phase. The reaction is endothermic and thus a problematic water ice phase can form if the extraction of gas is too rapid, limiting the applicability of this procedure. Additionally, the removal of the formation water in contact with the hydrate phase is required before meaningful pressure reduction can be attained -- and this can take time. An alternate approach that has been suggested is the injection of liquid CO2 into the formation, thereby displacing the formation water. Formation of a solid CO2 hydrate is thermodynamically favored under these conditions. Competition between CH4 and CO2 for the hydrate host water molecules can occur displacing CH4 from the solid to the gas phase with formation of a solid CO2 hydrate. We have investigated another alternate approach with displacement of the surrounding bulk water phase by N2 gas, resulting in rapid release of CH4 gas and complete loss of the solid hydrate phase. Our experiment was carried out at the Southern Summit of Hydrate Ridge, offshore Oregon, at 780m depth. There we harvested hydrate fragments from surficial sediments using the robotic arm of the ROV Doc Ricketts. Specimens of the hydrate were collected about 1m above the sediment surface in an inverted funnel with a mesh covered neck as they floated upwards. The accumulated hydrate was transferred to an inverted glass cylinder, and N2 gas was carefully injected into this container. Displacement of the water phase occurred and when the floating hydrate material approached the lower rim the gas injection was stopped and the cylinder placed upon a flat metal plate effectively sealing the system. We returned to this site after 7 days to measure progress, and observed complete loss of the hydrate phase

  7. Self-activated, self-limiting reactions on Si surfaces

    DEFF Research Database (Denmark)

    Morgen, Per; Hvam, Jeanette; Bahari, Ali

    The direct thermally activated reactions of oxygen and ammonia with Si surfaces in furnaces have been used for a very long time in the semiconductor industry for the growth of thick oxides and nitride layers respectively. The oxidation mechanism was described in the Deal-Grove model as a diffusion...... limited transport of oxygen to the oxide/silicon interface. For thin oxides the deal-Grove growth rate is initially constant, but for ultrathin oxides (a couple of nm thick) this is not true and the Deal-Grove model does not explain the mechanism. In a series of recent reports we have found a new...

  8. Chemo-physical modeling of cement mortar hydration: Role of aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jena, E-mail: jeong@profs.estp.fr [Université Paris-Est, Institut de Recherche en Constructibilité, ESTP, 28 Avenue Président Wilson, 94234 Cachan (France); Ramézani, Hamidréza, E-mail: hamidreza.ramezani@univ-orleans.fr [CRMD, CNRS FRE 3520-Research Center on Divided Materials, École Polytechnique de l’Université d’Orléans, 8 rue Léonrad de Vinci, 45072 Orléans Cedex 2 (France); Leklou, Nordine, E-mail: nordine.leklou@univ-nantes.fr [LUNAM Université, Université de Nantes-IUT Saint-Nazaire, GeM, CNRS UMR 6183, Research Institute in Civil Engineering and Mechanics, 58 rue Michel Ange BP 420 44606 Saint Nazaire Cedex (France); Mounanga, Pierre, E-mail: pierre.mounanga@univ-nantes.fr [LUNAM Université, Université de Nantes-IUT Saint-Nazaire, GeM, CNRS UMR 6183, Research Institute in Civil Engineering and Mechanics, 58 rue Michel Ange BP 420 44606 Saint Nazaire Cedex (France)

    2013-07-20

    Graphical abstract: - Abstract: After mixing of the cement with water, most of the anhydride products sustain the hydration process and this leads to the hydrate products, e.g. CSH, Ca(OH){sub 2}, Afm and Aft. The mentioned hydration process is a highly complex phenomenon involving the chemically based thermo-activation inside the cement mortars during the early age hydration process. The chemo-thermal hydration reactions drasticaly increase at the early age of hydration after the mixing action and then it becomes less important and turns to be nearly asymptotic. The progress of the hydration phenomenon drives the material properties change during the very early age of cement hydration. Regarding the mortar and concrete, such hydration process would not be homogeneous through the cement matrix due to the aggregates presence. These inclusions will affect the temperature distribution as well as degree of hydration. In the current contribution, the chemical and thermal hydration have been firstly investigated by means of SEM observations using replica method and secondly by the 3D-FEM numerical experiments including two different case studies using glass beads as aggregates. The numerical experiments match fairly good the experimental measurements obtained using a pseudo-adiabatic testing setup for the case studies herein. The scanning electron microscopy (SEM) images observation demonstrates the gap spaces around the glass beads next to the external surfaces. These gaps can be essentially seen for the multi-glass beads case study. The role of the temperature and degree of hydration gradients are clearly obtained using the numerical samples. Some fresh routes and outlooks have been afterwards discussed.

  9. Surface Hydrogen and Subsurface Hydrogen: Their Roles in Bulk Absorption and Surface Reaction

    Science.gov (United States)

    Fukutani, Katsuyuki

    Hydrogen adsorbed on metal surfaces possibly penetrates into “subsurface” sites, which might further diffuse into bulk. When temperature is raised, on the other hand, such absorbed hydrogen diffuses back to the surface via the subsurface site eventually desorbing from the surface. The kinetics of these absorption and desorption are ideally expressed by the potential energy surfaces of hydrogen near the surfaces. This article describes how the potential of hydrogen is described, and how the surface and subsurface sites influence the kinetics of absorption and desorption for Pd and Ni as examples. As well as these phenomena, the subsurface sites could serve to promote particular hydrogenation reactions occurring at surfaces. The mechanism of subsurface chemistry is discussed.

  10. Adsorption of hydrated hydroxide and hydronium ions on Ag(1 1 1). A quantum mechanical investigation

    Science.gov (United States)

    Patrito, E. M.; Paredes-Olivera, P.

    2003-03-01

    In this paper we have studied comparatively the adsorption of hydroxide and hydronium ions, extending our previous study on hydronium adsorption [J. Phys. Chem. B. 105 (2001) 7227] and emphasizing the adsorption of hydroxide. The calculations were performed on the 111 surface of silver using ab initio quantum mechanical methods (Hartree-Fock+Moller-Plesset second order perturbation theory). The adsorption was investigated for the bare and the hydrated ions (up to three water molecules). Binding energies, equilibrium structures and charge transfer processes were investigated. While the successive hydration of hydronium detaches the ion from the surface, the hydrated hydroxide anion remains specifically adsorbed. Charge transfer processes between the adsorbates and the surface were studied using electron density difference plots and effective charges obtained from Mulliken populations and from surface-dipole moment curves. The energetics of the surface reactions leading to the formation of the hydrated hydronium and hydroxide ions from the bare adsorbed ions and water molecules was also investigated. Both reactions are exothermic mainly due to the formation of strong hydrogen bonds. The effect of an external homogeneous electric field perpendicular to the surface on different adsorbate properties was investigated for the bare and hydrated hydroxide ion in order to model the environment of the electrical double layer. The electric field affects the orientation of the water molecules on the surface and the hydroxide surface distance.

  11. Effect of surface nanostructure on temperature programmed reaction spectroscopy

    Science.gov (United States)

    Rieger, Michael; Rogal, Jutta; Reuter, Karsten

    2008-03-01

    Using the catalytic CO oxidation at RuO2(110) as a showcase, we employ first-principles kinetic Monte Carlo simulations to illustrate the intricate effects on temperature programmed reaction (TPR) spectroscopy data brought about by the mere correlations between the locations of the active sites at a nanostructured surface. Even in the absence of lateral interactions, this nanostructure alone can cause inhomogeneities that cannot be grasped by prevalent mean-field data analysis procedures, which thus lead to wrong conclusions on the reactivity of the different surface species. The RuO2(110) surface studied here exhibits only two prominent active sites, arranged in simple alternating rows. Yet, the mere neglection of this still quite trivial nanostructure leads mean-field TPR data analysis [1] to extract kinetic parameters that are in error by several orders of magnitude and that do not even reflect the relative reactivity of the different surface species correctly [2].[1] S. Wendt, M. Knapp, and H. Over, JACS 126, 1537 (2004).[2] M. Rieger, J. Rogal, and K. Reuter, Phys. Rev. Lett (in press).

  12. Steric Effects in the Reaction of Aryl Radicals on Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Combellas, Catherine [CNRS-ESPCI; Jiang, Deen [ORNL; Kanoufi, Frederic [CNRS-ESPCI; Pinson, Jean [Alchimer; Podvorica, Fetah [University of Prishtina, Kosovo

    2009-01-01

    Steric effects are investigated in the reaction of aryl radicals with surfaces. The electrochemical reduction of 2-, 3-, 4-methyl, 2-methoxy, 2-ethyl, 2,6-, 2,4-, and 3,5-dimethyl, 4-tert-butyl, 3,5-bis-tert-butyl benzenediazonium, 3,5-bis(trifluoromethyl), and pentafluoro benzenediazonium tetrafluoroborates is examined in acetonitrile solutions. It leads to the formation of grafted layers only if the steric hindrance at the 2- or 2,6-position(s) is small. When the 3,5-positions are crowded with tert-butyl groups, the growth of the organic layer is limited by steric effects and a monolayer is formed. The efficiency of the grafting process is assessed by cyclic voltammetry, X-ray photoelectron spectroscopy, infrared, and ellipsometry. These experiments, together with density functional computations of bonding energies of substituted phenyl groups on a copper surface, are discussed in terms of the reactivity of aryl radicals in the electrografting reaction and in the growth of the polyaryl layer.

  13. Reactions of metal ions at surfaces of hydrous iron oxide

    Science.gov (United States)

    Hem, J.D.

    1977-01-01

    Cu, Ag and Cr concentrations in natural water may be lowered by mild chemical reduction involving ferric hydroxide-ferrous ion redox processes. V and Mo solubilities may be controlled by precipitation of ferrous vanadate or molybdate. Concentrations as low as 10-8.00 or 10-9.00 M are readily attainable for all these metals in oxygen-depleted systems that are relatively rich in Fe. Deposition of manganese oxides such as Mn3O4 can be catalyzed in oxygenated water by coupling to ferrous-ferric redox reactions. Once formed, these oxides may disproportionate, giving Mn4+ oxides. This reaction produces strongly oxidizing conditions at manganese oxide surfaces. The solubility of As is significantly influenced by ferric iron only at low pH. Spinel structures such as chromite or ferrites of Cu, Ni, and Zn, are very stable and if locally developed on ferric hydroxide surfaces could bring about solubilities much below 10-9.00 M for divalent metals near neutral pH. Solubilities calculated from thermodynamic data are shown graphically and compared with observed concentrations in some natural systems. ?? 1977.

  14. Chemical reactions between Venus' surface and atmosphere - An update. (Invited)

    Science.gov (United States)

    Treiman, A. H.

    2013-12-01

    The surface of Venus, at ~740K, is hot enough to allow relatively rapid chemical reactions between it and the atmosphere, i.e. weathering. Venus chemical weathering has been explored in detail [1], to the limits of available data. New data from Venus Express (VEx) and new ideas from exoplanets have sparked a modest renewal of interest in Venus weathering. Venus' surface cannot be observed in visible light, but there are several NIR ';windows' through its atmosphere that allow surface imaging. The VIRTIS spectrometer on VEx viewed the surface through one window [2]; emissivity variations among lava flows on Imdr and Themis Regios have been explained as varying degrees of weathering, and thus age [3]. The VMC camera on VEx also provides images through a NIR window, which suggest variable degrees of weathering on some basaltic plains [4]. Indirect evidence for weathering may come from varying SO2 abundance at Venus' cloud tops; repeated rapid increases and gradual declines may represent volcanic eruptions followed by weathering to form sulfate minerals [5]. Continued geochemical modeling relevant to Venus weathering is motivated by expolanet studies [6]. Models have been extended to hypothetical exo-Venuses of different temperatures and surface compositions [7]. The idea that Venus' atmosphere composition can be buffered by reaction with its surface was explored in detail, and the derived constraint extended to other types of planets [8]. Several laboratories are investigating Venus weathering, motivated in part by the hope that they can provide real constraints on timescales of Venus volcanism [3]. Aveline et al. [9] are extending early studies [10] by reacting rocks and minerals with concentrated SO2 (to accelerate reaction rates to allow detectability of products). Kohler et al. [11] are investigating the stability of metals and chalcogenides as possible causes of the low-emissivity surfaces at high elevations. Berger and Aigouy [12] studied rock alteration on a

  15. Experimental studies for the cyclability of salt hydrates for thermochemical heat storage

    NARCIS (Netherlands)

    Donkers, P.A.J.; Pel, L.; Adan, O.C.G.

    2016-01-01

    Salt hydrates have promising potential as heat storage materials by use of their hydration/dehydration reaction. These hydration/dehydration reactions are studied in this paper for CuCl2, CuSO4, MgCl2 and MgSO4. During a hydration/dehydration reaction, the salt shrinks and expands as a result of the

  16. A statistical mechanical description of biomolecular hydration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    We present an efficient and accurate theoretical description of the structural hydration of biological macromolecules. The hydration of molecules of almost arbitrary size (tRNA, antibody-antigen complexes, photosynthetic reaction centre) can be studied in solution and in the crystal environment. The biomolecular structure obtained from x-ray crystallography, NMR, or modeling is required as input information. The structural arrangement of water molecules near a biomolecular surface is represented by the local water density analogous to the corresponding electron density in an x-ray diffraction experiment. The water-density distribution is approximated in terms of two- and three-particle correlation functions of solute atoms with water using a potentials-of-mean-force expansion.

  17. Experimental techniques for cement hydration studies

    Directory of Open Access Journals (Sweden)

    Andreas Luttge

    2011-10-01

    Full Text Available Cement hydration kinetics is a complex problem of dissolution, nucleation and growth that is still not well understood, particularly in a quantitative way. While cement systems are unique in certain aspects they are also comparable to natural mineral systems. Therefore, geochemistry and particularly the study of mineral dissolution and growth may be able to provide insight and methods that can be utilized in cement hydration research. Here, we review mainly what is not known or what is currently used and applied in a problematic way. Examples are the typical Avrami approach, the application of Transition State Theory (TST to overall reaction kinetics and the problem of reactive surface area. Finally, we suggest an integrated approach that combines vertical scanning interferometry (VSI with other sophisticated analytical techniques such as atomic force microscopy (AFM and theoretical model calculations based on a stochastic treatment.

  18. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    and the role it plays in the global climate and the future of fuels. Russia, Japan, Nigeria, Peru, Chile, Pakistan, Indonesia, Korea, etc are various countries who are perusing the gas hydrates studies as a future resource for fuel. Indian Initiative..., 1993, Free gas at the base of the gas hydrate zone in the vicinity of the Chile Triple junction: Geology, v. 21, pp. 905-908. Borowski, W.S., C.K. Paull, and U. William, III, 1999, Global and local variations of interstitial sulfate gradients...

  19. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments

    Science.gov (United States)

    Mahabadi, Nariman; Zheng, Xianglei; Jang, Jaewon

    2016-05-01

    The experimental measurement of water retention curve in hydrate-bearing sediments is critically important to understand the behavior of hydrate dissociation and gas production. In this study, tetrahydrofuran (THF) is selected as hydrate former. The pore habit of THF hydrates is investigated by visual observation in a transparent micromodel. It is confirmed that THF hydrates are not wetting phase on the quartz surface of the micromodel and occupy either an entire pore or part of pore space resulting in change in pore size distribution. And the measurement of water retention curves in THF hydrate-bearing sediments with hydrate saturation ranging from Sh = 0 to Sh = 0.7 is conducted for excess water condition. The experimental results show that the gas entry pressure and the capillary pressure increase with increasing hydrate saturation. Based on the experimental results, fitting parameters for van Genuchten equation are suggested for different hydrate saturation conditions.

  20. Correlating steric hydration forces with water dynamics through surface force and diffusion NMR measurements in a lipid–DMSO–H2O system

    Science.gov (United States)

    Schrader, Alex M.; Donaldson, Stephen H.; Song, Jinsuk; Cheng, Chi-Yuan; Lee, Dong Woog; Han, Songi; Israelachvili, Jacob N.

    2015-01-01

    Dimethyl sulfoxide (DMSO) is a common solvent and biological additive possessing well-known utility in cellular cryoprotection and lipid membrane permeabilization, but the governing mechanisms at membrane interfaces remain poorly understood. Many studies have focused on DMSO–lipid interactions and the subsequent effects on membrane-phase behavior, but explanations often rely on qualitative notions of DMSO-induced dehydration of lipid head groups. In this work, surface forces measurements between gel-phase dipalmitoylphosphatidylcholine membranes in DMSO–water mixtures quantify the hydration- and solvation-length scales with angstrom resolution as a function of DMSO concentration from 0 mol% to 20 mol%. DMSO causes a drastic decrease in the range of the steric hydration repulsion, leading to an increase in adhesion at a much-reduced intermembrane distance. Pulsed field gradient NMR of the phosphatidylcholine (PC) head group analogs, dimethyl phosphate and tetramethylammonium ions, shows that the ion hydrodynamic radius decreases with increasing DMSO concentration up to 10 mol% DMSO. The complementary measurements indicate that, at concentrations below 10 mol%, the primary effect of DMSO is to decrease the solvated volume of the PC head group and that, from 10 mol% to 20 mol%, DMSO acts to gradually collapse head groups down onto the surface and suppress their thermal motion. This work shows a connection between surface forces, head group conformation and dynamics, and surface water diffusion, with important implications for soft matter and colloidal systems. PMID:26261313

  1. Analysis of reaction rates of single molecules on metal surfaces

    Science.gov (United States)

    Ueba, H.

    2017-10-01

    The experimental results of the action spectra i.e., reaction rate R(V) as a function of a bias voltage V are analyzed for rotation of a single CCH (D) molecule on a Cu (100) surface [5] and hopping of a single H(D)2O molecule on Pd(111) surface [6]. In the former system it is identified that rotation occurs if enough energy stored in the C-H (D) in-plane bending (IPB) mode excited by tunneling electron is transferred to the C-H (D) out of plane bending (OPB) mode (reaction coordinate mode) via the anharmonic mode coupling in a single electron process. The calculated R(V) shows an excellent agreement with the experimental results except at the low bias voltages below V ≃ 60 mV where no experimental data is available for the nonlinear current I dependence of R(I). A reproduction of the experimental R(V) at the higher voltage region allows us to determine the vibrational density of states of the C-H IPB mode and its coupling rate to the C-H (D) OPB mode as well as the inelastic tunneling current to excite IPB mode. A change of a conductance upon excitation of the C-H IPB mode enables us to evaluate the electron-vibration coupling strength inducing the rotation motion of CCH molecule. In the latter system investigated at a high temperature of about 40 K, the constant R(V) due to thermal hopping followed by the rapid increase is satisfactory explained by anharmonic inter-mode coupling between the scissor mode excited by tunneling electrons and the frustrated translation mode for H(D)2O molecule on Pd(111).

  2. CO2 Reaction with Hydrated Class H Well Cement under Geologic Sequestration Conditions: Effects of Flyash Admixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kutchko, Barbara G. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering; Strazisar, Brian R. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Huerta, Nicolas [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Univ. of Texas, Austin, TX (United States); Lowry, Gregory V. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering; Dzombak, David A. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering; Thaulow, Niels [RJ Lee Group, Inc., Monroeville, PA (United States)

    2009-05-15

    The rate and mechanism of reaction of pozzolan-amended Class H cement exposed to both supercritical CO2 and CO2-saturated brine were determined under geologic sequestration conditions to assess the potential impact of cement degradation in existing wells on CO2 storage integrity. The pozzolan additive chosen, Type F flyash, is the most common additive used in cements for well sealing in oil-gas field operations. The 35:65 and 65:35 (v/v) pozzolancement blends were exposed to supercritical CO2 and CO2-saturated brine and underwent cement carbonation. Extrapolation of the carbonation rate for the 35:65 case suggests a penetration depth of 170-180 mm far both the CO2-saturated brine and supercritical CO2 after 30 years. Despite alteration in both pozzolan systems, the reacted cement remained relatively impermeable to fluid flow after exposure to brine solution saturated with CO2, with values well below the American Petroleum Institute recommended maximum well cement permeability of 200 mu D. Analyses of 50:50 pozzolan-cement cores from a production well in a sandstone reservoir exhibited carbonation and low permeability to brine solution saturated with CO2, which are consistent with our laboratory findings.

  3. CO{sub 2} reaction with hydrated class H well cement under geologic sequestration conditions: effects of flyash admixtures

    Energy Technology Data Exchange (ETDEWEB)

    Barbara G. Kutchko; Brian R. Strazisar; Nicolas Huerta; Gregory V. Lowry; David A. Dzombak; Niels Thaulow [United States Department of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory

    2009-05-15

    The rate and mechanism of reaction of pozzolan-amended Class H cement exposed to both supercritical CO{sub 2} and CO{sub 2}-saturated brine were determined under geologic sequestration conditions to assess the potential impact of cement degradation in existing wells on CO{sub 2} storage integrity. The pozzolan additive chosen, Type F flyash, a by-product of coal combustion, is the most common additive used in cements for well sealing in oil-gas field operations. The 35:65 and 65:35 (v/v) pozzolan-cement blends were exposed to supercritical CO{sub 2} and CO{sub 2}-saturated brine and underwent cement carbonation. Extrapolation of the carbonation rate for the 35:65 case suggests a penetration depth of 170-180 mm for both the CO{sub 2}-saturated brine and supercritical CO{sub 2} after 30 years. Despite alteration in both pozzolan systems, the reacted cement remained relatively impermeable to fluid flow after exposure to brine solution saturated with CO{sub 2}, with values well below the American Petroleum Institute recommended maximum well cement permeability of 200 {mu}D. Analyses of 50:50 pozzolan-cement cores from a production well in a sandstone reservoir exhibited carbonation and low permeability to brine solution saturated with CO{sub 2}, which are consistent with our laboratory findings. 16 refs., 4 figs., 1 tab.

  4. CO2 reaction with hydrated class H well cement under geologic sequestration conditions: effects of flyash admixtures.

    Science.gov (United States)

    Kutchko, Barbara G; Strazisar, Brian R; Huerta, Nicolas; Lowry, Gregory V; Dzombak, David A; Thaulow, Niels

    2009-05-15

    The rate and mechanism of reaction of pozzolan-amended Class H cement exposed to both supercritical CO2 and CO2-saturated brine were determined under geologic sequestration conditions to assess the potential impact of cement degradation in existing, wells on CO2 storage integrity. The pozzolan additive chosen, Type F flyash, is the most common additive used in cements for well sealing in oil-gas field operations. The 35:65 and 65:35 (v/v) pozzolan-cement blends were exposed to supercritical CO2 and CO2-saturated brine and underwent cement carbonation. Extrapolation of the carbonation rate for the 35:65 case suggests a penetration depth of 170-180 mm for both the CO2-saturated brine and supercritical CO2 after 30 years. Despite alteration in both pozzolan systems, the reacted cement remained relatively impermeable to fluid flow after exposure to brine solution saturated with CO2, with values well below the American Petroleum Institute recommended maximum well cement permeability of 200 microD. Analyses of 50: 50 pozzolan-cement cores from a production well in a sandstone reservoir exhibited carbonation and low permeability to brine solution saturated with CO2, which are consistent with our laboratory findings.

  5. [Hydration in clinical practice].

    Science.gov (United States)

    Maristany, Cleofé Pérez-Portabella; Segurola Gurruchaga, Hegoi

    2011-01-01

    Water is an essential foundation for life, having both a regulatory and structural function. The former results from active and passive participation in all metabolic reactions, and its role in conserving and maintaining body temperature. Structurally speaking it is the major contributer to tissue mass, accounting for 60% of the basis of blood plasma, intracellular and intersticial fluid. Water is also part of the primary structures of life such as genetic material or proteins. Therefore, it is necessary that the nurse makes an early assessment of patients water needs to detect if there are signs of electrolyte imbalance. Dehydration can be a very serious problem, especially in children and the elderly. Dehydrations treatment with oral rehydration solution decreases the risk of developing hydration disorders, but even so, it is recommended to follow preventive measures to reduce the incidence and severity of dehydration. The key to having a proper hydration is prevention. Artificial nutrition encompasses the need for precise calculation of water needs in enteral nutrition as parenteral, so the nurse should be part of this process and use the tools for calculating the patient's requirements. All this helps to ensure an optimal nutritional status in patients at risk. Ethical dilemmas are becoming increasingly common in clinical practice. On the subject of artificial nutrition and hydration, there isn't yet any unanimous agreement regarding hydration as a basic care. It is necessary to take decisions in consensus with the health team, always thinking of the best interests of the patient.

  6. Modeling adsorption and reactions of organic molecules at metal surfaces.

    Science.gov (United States)

    Liu, Wei; Tkatchenko, Alexandre; Scheffler, Matthias

    2014-11-18

    CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdW(surf) method that accurately accounts for the collective electronic

  7. Structures and Properties of As(OH)3 Adsorption Complexes on Hydrated Mackinawite (FeS) Surfaces: A DFT-D2 Study.

    Science.gov (United States)

    Dzade, Nelson Y; Roldan, Alberto; de Leeuw, Nora H

    2017-03-21

    Reactive mineral-water interfaces exert control on the bioavailability of contaminant arsenic species in natural aqueous systems. However, the ability to accurately predict As surface complexation is limited by the lack of molecular-level understanding of As-water-mineral interactions. In the present study, we report the structures and properties of the adsorption complexes of arsenous acid (As(OH)3) on hydrated mackinawite (FeS) surfaces, obtained from density functional theory (DFT) calculations. The fundamental aspects of the adsorption, including the registries of the adsorption complexes, adsorption energies, and structural parameters are presented. The FeS surfaces are shown to be stabilized by hydration, as is perhaps to be expected because the adsorbed water molecules stabilize the low-coordinated surface atoms. As(OH)3 adsorbs weakly at the water-FeS(001) interface through a network of hydrogen-bonded interactions with water molecules on the surface, with the lowest-energy structure calculated to be an As-up outer-sphere complex. Compared to the water-FeS(001) interface, stronger adsorption was calculated for As(OH)3 on the water-FeS(011) and water-FeS(111) interfaces, characterized by strong hybridization between the S-p and O-p states of As(OH)3 and the surface Fe-d states. The As(OH)3 molecule displayed a variety of chemisorption geometries on the water-FeS(011) and water-FeS(111) interfaces, where the most stable configuration at the water-FeS(011) interface is a bidentate Fe-AsO-Fe complex, but on the water-FeS(111) interface, a monodentate Fe-O-Fe complex was found. Detailed information regarding the adsorption mechanisms has been obtained via projected density of states (PDOS) and electron density difference iso-surface analyses and vibrational frequency assignments of the adsorbed As(OH)3 molecule.

  8. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  9. The synthesis of PdPt/carbon paper via surface limited redox replacement reactions for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Motsoeneng, RG

    2015-09-01

    Full Text Available Surface-limited redox replacement reactions using the electrochemical atomic layer deposition (EC-ALD) technique were used to synthesize PdPt bimetallic electrocatalysts on carbon paper substrate. Electrocatalysts having different Pd:Pt ratio were...

  10. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  11. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  12. SurfKin: an ab initio kinetic code for modeling surface reactions.

    Science.gov (United States)

    Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K

    2014-10-05

    In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts.

  13. Evidence of mud volcanism rooted in gas hydrate-rich cryosphere linking surface and subsurface for the search for life on Mars

    Science.gov (United States)

    De Toffoli, Barbara; Pozzobon, Riccardo; Mazzarini, Francesco; Massironi, Matteo; Cremonese, Gabriele

    2017-04-01

    We mapped around 6000 mounds in three different portions of the Martian surface on an average area of about 90.000 Km2 for each region. The study areas are located in Hellas basin, Utopia basin and a portion of the Northern Plains lying north of Arabia Terra, between Acidalia and Utopia Planitia. The aim of the study was to understand the nature of the observed features, particularly if they could be interpreted as mud volcanoes or not, and improve our knowledge about the Martian mound fields origin. The analysis of Context Camera (onboard Mars Reconnaissance Orbiter) images showed circular, elliptical and coalescent mounds with central and/or distal pits and flow features such as concentric annular lobes around the source pits and apron-like extensions. We produced DTMs and then high-to-diameter morphometric analysis on two groups of mounds located in Utopia and Hellas basins to enhance the geomorphological observations. We inferred, by means of cluster and fractal analyses, the thickness of the medium cracked by connected fractures and, consequently, the depths of reservoirs that fed the mounds. We found that the fields, which are seated at different latitudes, has been fed, at least partially, by reservoirs located at the base of the gas hydrate stability zone according to Clifford et al., 2010. This evidence produces a meaningful relationship between the clathrates distribution underneath the Martian surface and the occurrence of mound fields on the surface leading to the assumption that the involvement of water, ostensibly as a result of gas hydrate dissociation, plays a key role in the subsurface processes that potentially worked as triggers. These outcomes corroborate the hypothesis that the mapped mounds are actually mud volcanoes and make these structures outstanding targets for astrobiology and habitability studies. In fact, mud volcanoes, extruding material from depths that are still not affordable by our present-day instrumentations, could have sampled

  14. Obsidian Hydration: A New Paleothermometer

    Energy Technology Data Exchange (ETDEWEB)

    Anovitz, Lawrence {Larry} M [ORNL; Riciputi, Lee R [ORNL; Cole, David R [ORNL; Fayek, Mostafa [ORNL; Elam, J. Michael [University of Tennessee, Knoxville (UTK)

    2006-01-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  15. Obsidian hydration: A new paleothermometer

    Science.gov (United States)

    Anovitz, Lawrence M.; Riciputi, Lee R.; Cole, David R.; Fayek, Mostafa; Elam, J. Michael

    2006-07-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  16. Growth kinetics and microstructure of methane hydrates formed in porous media

    Science.gov (United States)

    Falenty, A.; Klapproth, A.; Techmer, K.; Murshed, M. M.; Kuhs, W. F.

    2007-12-01

    The occurrence of natural gas hydrates within sediments is known from a large number of locations. They commonly occupy pore spaces cementing sedimentary deposits. Yet, detailed information about the influence of mineral composition on the formation process in porous media is still very limited. Laboratory investigations of the microstructure of gas hydrate in porous media, as a function of p-T conditions, mineral composition and water/gas supersaturation are therefore of considerable interest. Such studies may allow a better understanding of the formation process and even the prediction of accumulation /decomposition rates of some natural gas hydrates in a given geological setting. As a model study, we carried out various reactions with methane gas and water in three types of media: 1) quartz, 2) quartz + kaolinite, 3) quartz + montmorillonite. The progress of the reactions was recorded by gas consumption (pressure drop) at 3°C. Samples recovered at various stages of the formation or decomposition reactions were investigated using field-emission scanning electron microscopes (FE-SEM) equipped with a cryo-stage [1]. In the SEM investigations, methane hydrates appeared between the quartz grains acting as cement. Kaolinite particles were observed as a filigree network on the surface of hydrate cement, while montmorillonite form flakes or crust like features. Each of the minerals may play individual/coupled interaction with water and gas hydrate, and thereby display a characteristic configuration in the SEM images. Dissimilar kinetic features, using different porous media at the investigated conditions, confirm that mineral composition directly influences the progress of gas hydrate formation. Medium 3 shows the fastest hydrate saturation. With increasing water content of the porous media the formation tends to proceed in a multi-stage process with a slower diffusion-limited later stage. Reference: [1] A. Klapproth, K. Techmer, S.A. Klapp, M.M. Murshed and W.F. Kuhs

  17. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn

    2009-11-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  18. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, D.D.; Martin, A.I.; Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces. Copyright 2009 by the American Geophysical Union.

  19. Surface effects on PCR reactions in multichip microfluidic platforms.

    Science.gov (United States)

    Panaro, Nicholas J; Lou, Xing Jian; Fortina, Paolo; Kricka, Larry J; Wilding, Peter

    2004-03-01

    We evaluated the compatibility of several common plastics, commercially available plastic tubing and disposable syringes which might be useful in the construction of microfluidic platforms with respect to the polymerase chain reaction (PCR). A simple and inexpensive plastic test module was constructed in order to evaluate some of the construction plastics. We also investigated the effect of addition of PEG 8000 to PCR reaction mixtures on the compatibility of materials. These studies identified several common plastics, plastic tubing, and disposable syringes which were compatible with the PCR reaction.

  20. A reaction diffusion model of pattern formation in clustering of adatoms on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Trilochan Bagarti

    2012-12-01

    Full Text Available We study a reaction diffusion model which describes the formation of patterns on surfaces having defects. Through this model, the primary goal is to study the growth process of Ge on Si surface. We consider a two species reaction diffusion process where the reacting species are assumed to diffuse on the two dimensional surface with first order interconversion reaction occuring at various defect sites which we call reaction centers. Two models of defects, namely a ring defect and a point defect are considered separately. As reaction centers are assumed to be strongly localized in space, the proposed reaction-diffusion model is found to be exactly solvable. We use Green's function method to study the dynamics of reaction diffusion processes. Further we explore this model through Monte Carlo (MC simulations to study the growth processes in the presence of a large number of defects. The first passage time statistics has been studied numerically.

  1. Capability of LEP-type surfaces to describe noncollinear reactions 2 - Polyatomic systems

    CERN Document Server

    Espinosa-Garcia, Joaquin

    2001-01-01

    In this second article of the series, the popular LEP-type surface for collinear reaction paths and a "bent" surface, which involves a saddle point geometry with a nonlinear central angle, were used to examine the capacity of LEP-type surfaces to describe the kinetics and dynamics of noncollinear reaction paths in polyatomic systems. Analyzing the geometries, vibrational frequencies, curvature along the reaction path (to estimate the tunneling effect and the reaction coordinate-bound modes coupling), and the variational transition- state theory thermal rate constants for the NH//3 + O(**3P) reaction, we found that the "collinear" LEP-type and the "bent" surfaces for this polyatomic system show similar behavior, thus allowing a considerable saving in time and computational effort. This agreement is especially encouraging for this polyatomic system because in the Cs symmetry the reaction proceeds via two electronic states of symmetries **3A prime and **3A double prime , which had to be independently calibrated....

  2. Diagnostics for the Analysis of Surface Chemistry Effects on Composite Energetic Material Reactions

    Science.gov (United States)

    2015-10-30

    Distribution Unlimited Final Report: Diagnostics for the Analysis of Surface Chemistry Effects on Composite Energetic Material Reactions The views...peer-reviewed journals: Final Report: Diagnostics for the Analysis of Surface Chemistry Effects on Composite Energetic Material Reactions Report...2.00 4.00 Evan Vargas, Michelle L. Pantoya, Mohammed A Saed, Brandon L Weeks. Advanced Susceptors for Microwave Heating of Energetic Materials

  3. Dynamics of Surface Exchange Reactions Between Au and Pt for HER and HOR

    DEFF Research Database (Denmark)

    Abrams, Billie; Vesborg, Peter Christian Kjærgaard; Bonde, Jacob Lindner;

    2009-01-01

    Cyclic voltammetric analysis of the Pt-on-Au system for hydrogen evolution and oxidation reactions (HER/HOR) indicates that dynamic surface exchange reactions occur between Pt and Au. HER/HOR activities depend on the dominant surface species present, which is controllable by the potential applied...

  4. Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan

    Science.gov (United States)

    Kasten, Sabine; Nöthen, Kerstin; Hensen, Christian; Spieß, Volkhard; Blumenberg, Martin; Schneider, Ralph R.

    2012-12-01

    The geochemical cycling of barium was investigated in sediments of pockmarks of the northern Congo Fan, characterized by surface and subsurface gas hydrates, chemosynthetic fauna, and authigenic carbonates. Two gravity cores retrieved from the so-called Hydrate Hole and Worm Hole pockmarks were examined using high-resolution pore-water and solid-phase analyses. The results indicate that, although gas hydrates in the study area are stable with respect to pressure and temperature, they are and have been subject to dissolution due to methane-undersaturated pore waters. The process significantly driving dissolution is the anaerobic oxidation of methane (AOM) above the shallowest hydrate-bearing sediment layer. It is suggested that episodic seep events temporarily increase the upward flux of methane, and induce hydrate formation close to the sediment surface. AOM establishes at a sediment depth where the upward flux of methane from the uppermost hydrate layer counterbalances the downward flux of seawater sulfate. After seepage ceases, AOM continues to consume methane at the sulfate/methane transition (SMT) above the hydrates, thereby driving the progressive dissolution of the hydrates "from above". As a result the SMT migrates downward, leaving behind enrichments of authigenic barite and carbonates that typically precipitate at this biogeochemical reaction front. Calculation of the time needed to produce the observed solid-phase barium enrichments above the present-day depths of the SMT served to track the net downward migration of the SMT and to estimate the total time of hydrate dissolution in the recovered sediments. Methane fluxes were higher, and the SMT was located closer to the sediment surface in the past at both sites. Active seepage and hydrate formation are inferred to have occurred only a few thousands of years ago at the Hydrate Hole site. By contrast, AOM-driven hydrate dissolution as a consequence of an overall net decrease in upward methane flux seems to

  5. 温度对MgCl2与Na2CO3反应制备碳酸镁水合物的影响%Effects of Temperature on the Preparation of Magnesium Carbonate Hydrates by Reaction of MgCI2 with Na2CO3

    Institute of Scientific and Technical Information of China (English)

    程文婷; 李志宝; George P. Demopoulos

    2009-01-01

    Homogeneous (unseeded) precipitation of magnesium carbonate hydrates by the reaction of MgCI2 with Na2CO3 in supersaturated solutions between 273 and 363 K was investigated. The compositions, morphologies and filtration characteristics of the precipitates were studied in detail. The magnesium carbonate hydrates obtained at 313 K and in the range of 343-363 K showed good morphologies and filtration characteristics. Magnesium oxides (MgO) with high purity (97.6%-99.4%) were obtained by calcining magnesium carbonate hydrates at 1073 K.

  6. Clathrate hydrates in nature.

    Science.gov (United States)

    Hester, Keith C; Brewer, Peter G

    2009-01-01

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO2. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves.

  7. Computational Study of Field Initiated Surface Reactions for Synthesis of Diamond and Silicon

    Science.gov (United States)

    Musgrave, Charles Bruce

    1999-01-01

    This project involves using quantum chemistry to simulate surface chemical reactions in the presence of an electric field for nanofabrication of diamond and silicon. A field delivered by a scanning tunneling microscope (STM) to a nanometer scale region of a surface affects chemical reaction potential energy surfaces (PES) to direct atomic scale surface modification to fabricate sub-nanometer structures. Our original hypothesis is that the applied voltage polarizes the charge distribution of the valence electrons and that these distorted molecular orbitals can be manipulated with the STM so as to change the relative stabilities of the electronic configurations over the reaction coordinates and thus the topology of the PES and reaction kinetics. Our objective is to investigate the effect of applied bias on surface reactions and the extent to which STM delivered fields can be used to direct surface chemical reactions on an atomic scale on diamond and silicon. To analyze the fundamentals of field induced chemistry and to investigate the application of this technique for the fabrication of nanostructures, we have employed methods capable of accurately describing molecular electronic structure. The methods we employ are density functional theory (DFT) quantum chemical (QC) methods. To determine the effect of applied bias on surface reactions we have calculated the QC PESs in various applied external fields for various reaction steps for depositing or etching diamond and silicon. We have chosen reactions which are thought to play a role in etching and the chemical vapor deposition growth of Si and diamond. The PESs of the elementary reaction steps involved are then calculated under the applied fields, which we vary in magnitude and configuration. We pay special attention to the change in the reaction barriers, and transition state locations, and search for low energy reaction channels which were inaccessible without the applied bias.

  8. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  9. Interactions Between Surface Reactions and Gas-phase Reactions in Catalytic Combustion and Their Influence on Ignition of HCCI Engine

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The catalytic combustion of methane in a microchannel whose surface was coated with platinum(Pt)catalyst was studied by numerical-simulation. The effects of gas-phase reactions on the whole catalytic combustion process were analyzed at a high inlet pressure. A sensitivity analysis of the detailed mechanisms of the surface reaction of methane on Pt revealed that the most sensitive reactions affecting the heterogeneous ignition are oxygen adsorption/desorption and methane adsorption, and the most sensitive reactions affecting the homogeneous ignition are OH and H2O adsorption/desorption. The combustion process of the homogeneous charge compression ignition(HCCI) engine whose piston face was coated with Pt catalyst was simulated. The effects of catalysis and the most sensitive reactions on the ignition timing and the concentration of the main intermediate species during the HCCI engine combustion are discussed. The results show that the ignition timing of the HCCI engine can be increased by catalysis, and the most sensitive reactions affecting the ignition timing of the HCCI engine are OH and H2O adsorption/desorption.

  10. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus.

    Science.gov (United States)

    Camilleri, Josette; Sorrentino, François; Damidot, Denis

    2013-05-01

    Novel root-end filling materials are composed of tricalcium silicate (TCS) and radiopacifier as opposed to the traditional mineral trioxide aggregate (MTA) which is made up of clinker derived from Portland cement and bismuth oxide. The aim of this research was to characterize and investigate the hydration of a tricalcium silicate-based proprietary brand cement (Biodentine™) and a laboratory manufactured cement made with a mixture of tricalcium silicate and zirconium oxide (TCS-20-Z) and compare their properties to MTA Angelus™. The materials investigated included a cement containing 80% of TCS and 20% zirconium oxide (TCS-20-Z), Biodentine™ and MTA Angelus™. The specific surface area and the particle size distribution of the un-hydrated cements and zirconium oxide were investigated using a gas adsorption method and scanning electron microscopy. Un-hydrated cements and set materials were tested for mineralogy and microstructure, assessment of bioactivity and hydration. Scanning electron microscopy, X-ray energy dispersive analysis, X-ray fluorescence spectroscopy, X-ray diffraction, Rietveld refined X-ray diffraction and calorimetry were employed. The radiopacity of the materials was investigated using ISO 6876 methods. The un-hydrated cements were composed of tricalcium silicate and a radiopacifier phase; zirconium oxide for both Biodentine™ and TCS-20-Z whereas bismuth oxide for MTA Angelus™. In addition Biodentine™ contained calcium carbonate particles and MTA Angelus™ exhibited the presence of dicalcium silicate, tricalcium aluminate, calcium, aluminum and silicon oxides. TCS and MTA Angelus™ exhibited similar specific surface area while Biodentine™ had a greater specific surface area. The cements hydrated and produced some hydrates located either as reaction rim around the tricalcium silicate grain or in between the grains at the expense of volume containing the water initially present in the mixture. The rate of reaction of tricalcium

  11. Study of Formation Mechanisms of Gas Hydrate

    Science.gov (United States)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  12. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface.

    Science.gov (United States)

    Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian

    2017-05-01

    Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants. Copyright © 2017. Published by Elsevier Ltd.

  13. Apparatus for testing gas-surface reactions for epicatalysis

    Science.gov (United States)

    Sheehan, D. P.; Zawlacki, T. A.; Helmer, W. H.

    2016-07-01

    Recently, a new mode of gas-surface heterogeneous catalysis (epicatalysis) has been identified, having potential applications ranging from industrial and green chemistry to novel forms of power generation. This article describes an inexpensive, easily constructed, vacuum-compatible apparatus by which multiple candidate gas-surface combinations can be rapidly screened for epicatalytic activity. In exploratory experiments, candidate surfaces (teflon, kapton, glass, and gold) and gases (helium, argon, cyclohexane, water, methanol, formic acid, and acetic acid) were tested for epicatalytic activity. Kapton and teflon displayed small but reproducible differences in formic acid and methanol dimer desorption, thereby demonstrating the first examples of room-temperature epicatalysis. Other gas-surface combinations showed smaller or inconclusive evidence for epicatalysis.

  14. Hydration of fly ash cement

    Energy Technology Data Exchange (ETDEWEB)

    Etsuo Sakai; Shigeyoshi Miyahara; Shigenari Ohsawa; Seung-Heun Lee; Masaki Daimon [Tokyo Institute of Technology, Tokyo (Japan). Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering

    2005-06-01

    It is necessary to establish the material design system for the utilization of large amounts of fly ash as blended cement instead of disposing of it as a waste. Cement blended with fly ash is also required as a countermeasure to reduce the amount of CO{sub 2} generation. In this study, the influences of the glass content and the basicity of glass phase on the hydration of fly ash cement were clarified and hydration over a long curing time was characterized. Two kinds of fly ash with different glass content, one with 38.2% and another with 76.6%, were used. The hydration ratio of fly ash was increased by increasing the glass content in fly ash in the specimens cured for 270 days. When the glass content of fly ash is low, the basicity of glass phase tends to decrease. Reactivity of fly ash is controlled by the basicity of the glass phase in fly ash during a period from 28 to 270 days. However, at an age of 360 days, the reaction ratios of fly ash show almost identical values with different glass contents. Fly ash also affected the hydration of cement clinker minerals in fly ash cement. While the hydration of alite was accelerated, that of belite was retarded at a late stage.

  15. One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces

    Science.gov (United States)

    Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J.

    2017-02-01

    The Huisgen cycloaddition reaction (;click; chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.

  16. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    Science.gov (United States)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing; Gong, Yongkuan

    2016-11-01

    Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH2) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such zwitterion modified PP surface.

  17. Olefin metathesis reaction on GaN (0 0 0 1) surfaces

    Science.gov (United States)

    Makowski, Matthew S.; Zemlyanov, Dmitry Y.; Ivanisevic, Albena

    2011-03-01

    Proof-of-concept reactions were performed on GaN (0 0 0 1) surfaces to demonstrate surface termination with desired chemical groups using an olefin cross-metathesis reaction. To prepare the GaN surfaces for olefin metathesis, the surfaces were hydrogen terminated with hydrogen plasma, chlorine terminated with phosphorous pentachloride, and then terminated with an alkene group via a Grignard reaction. The olefin metathesis reaction then bound 7-bromo-1-heptene. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and water contact angle measurements following each step in the reaction scheme. The XPS data was used to qualitatively identify surface chemical species and to quantitatively determine molecular surface coverage. The bromine atom in 7-bromo-1-heptene served as a heteroatom for identification with XPS. The reaction scheme resulted in GaN substrates with a surface coverage of 0.10 monolayers and excellent stability towards oxidation when exposed to oxygen plasma.

  18. Effect of Some Admixtures on the Hydration of Silica Fume and Hydrated Lime

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of sodium salt of naphthalene formaldehyde sulfonic acid and stearic acid on the hydration of silica fume and Ca(0H)2 have been investigated. The hydration was carried out at 60℃ and W/S ratio of 4 for various time intervals namely, 1, 3, 7 and 28 days and in the presence of 0.2% and 5% superplasticizer and stearic acid. The results of the hydration kinetics show that both admixtures accelerate the hydration reaction of silica fume and calcium hydroxide during the first 7 days. Whereas, after 28 days hydration there is no significant effect. Generally, most of free calcium hydroxide seems to be consumed after 28 days. In addition, the phase composition as well as the microstructure of the formed hydrates was examined by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) respectively.

  19. Influence of amorphous silica on the hydration in ultra-high performance concrete

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, Tina, E-mail: tina.oertel@isc.fraunhofer.de [Fraunhofer–Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Inorganic Chemistry I, Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth (Germany); Helbig, Uta, E-mail: uta.helbig@th-nuernberg.de [Crystallography and X-ray Methods, Technische Hochschule Nürnberg Georg Simon Ohm, Wassertorstraße 10, 90489 Nürnberg (Germany); Hutter, Frank [Fraunhofer–Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Kletti, Holger [Building Materials, Bauhaus–Universität Weimar, Coudraystr. 11, 99423 Weimar (Germany); Sextl, Gerhard [Fraunhofer–Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg (Germany); Chemical Technology of Advanced Materials, Julius Maximilian Universität, Röntgenring 11, 97070 Würzburg (Germany)

    2014-04-01

    Amorphous silica particles (silica) are used in ultra-high performance concretes to densify the microstructure and accelerate the clinker hydration. It is still unclear whether silica predominantly increases the surface for the nucleation of C–S–H phases or dissolves and reacts pozzolanically. Furthermore, varying types of silica may have different and time dependent effects on the clinker hydration. The effects of different silica types were compared in this study by calorimetric analysis, scanning and transmission electron microscopy, in situ X-ray diffraction and compressive strength measurements. The silica component was silica fume, pyrogenic silica or silica synthesized by a wet-chemical route (Stoeber particles). Water-to-cement ratios were 0.23. Differences are observed between the silica for short reaction times (up to 3 days). Results indicate that silica fume and pyrogenic silica accelerate alite hydration by increasing the surface for nucleation of C–S–H phases whereas Stoeber particles show no accelerating effect.

  20. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    Science.gov (United States)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  1. Synchrotron Spectroscopic Studies of the Reaction of Cleaved Pyrite ( {FeS2}) Surfaces with Cr(VI) Solutions

    Science.gov (United States)

    Doyle, C. S.; Kendelewicz, T.; Bostick, B. C.; Brown, G. E.

    2002-12-01

    Pyrite is one of the most common sulfide ores, and the separation of valuable sulfide minerals from it has been an area of considerable interest for a long time. This extraction has led to a large quantity of pyrite waste, typically remaining in mine tailings piles which can interact with oxygen and surface water. The oxidation of pyrite under these conditions leads to the commonly known environmental problem of acid mine drainage, with acidification of surface waters, and the release of potentially toxic metals remaining within the pyrite matrix. A microscopic understanding of this oxidation process is extremely important and has been the aim of a number of studies. We apply the methods of synchrotron based surface science to this problem, utilizing surface sensitive photoemission and X-ray absorption spectroscopy to study the surface species present on the pyrite surface at the initial stages of oxidation. We have reacted pyrite surfaces with solutions containing chromate. Chromium exists in solution in two principal valence states, trivalent Cr(III) and hexavalent Cr(VI). Hexavalent chromium is itself considered an environmental problem due to its high toxicity and solubility, and thus mobility, whilst trivalent chromium is much less toxic and relatively insoluble. Hexavalent chromate is a strong oxidizing agent, and will react rapidly with the pyrite surface allowing the identification of oxidized iron and sulfur surface species. The possibility of using pyrite as a means of reducing chromate, and at the same time using chromate to passivate the pyrite surface to further oxidation through the buildup of a non-reactive iron-chromium (oxy)hydroxide layer will be investigated. The work was performed on rods cut from a natural pyrite single crystal from the Logroño region of Spain. The rods were then fractured over a reaction vessel, producing a fresh (100) surface for each experiment. The pyrite surfaces were reacted with 50 μM Cr(VI) solutions for 5 minutes at

  2. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy.

    Science.gov (United States)

    Chen, Li; Ueta, Hirokazu; Bisson, Régis; Beck, Rainer D

    2013-05-01

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S(θ). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  3. Reactions on the surface and inside of neutron stars

    Directory of Open Access Journals (Sweden)

    Rehm K. E.

    2016-01-01

    Full Text Available Measurements from orbiting X-ray satellites during the last decades have provided us with a wealth of information about nuclear reactions thought to occur in the extreme, highdensity environment of neutron stars. With radioactive ion beams from first-generation facilities we have begun to study some of these processes in the laboratory. In this contribution I report on experiments performed with radioactive beams from the ATLAS accelerator at Argonne. I will discuss the nuclear physics of X-ray bursts and super-bursts, the production of in-flight radioactive beams, as well as novel detectors which are used in these experiments.

  4. Reaction dynamics of small molecules at metal surfaces

    CERN Document Server

    Samson, P A

    1999-01-01

    directed angular distributions suggest the influence of a trapping mechanism, recombining molecules scattering through a molecularly adsorbed state, with a transition state of large d sub N sub N responsible for the product vibrational excitation. Although N sub 2 dissociation on Fe(100) forms a simple overlayer structure, on Fe(110), molecular chemisorption does not occur at or above room temperature and the sticking is extremely small (approx 10 sup - sup 6 to 10 sup - sup 7). Activated nitrogen bombardment can be used to prepare a 'surface nitride' with a structure related to the geometry of bulk Fe sub 4 N. Scanning tunnelling microscopy yields atomic scale features that cannot be explained by simple overlayers. It is proposed that the uppermost iron layer reconstructs to generate quasi-octahedral sites between the top two layers, with sub-surface nitrogen in these sites forming a model for the 'surface nitride' structure. The dissociation-desorption dynamics of D sub 2 upon the Sn/Pt(111) surface alloy a...

  5. Reaction Kinetic Parameters and Surface Thermodynamic Properties of Cu2O Nanocubes

    Directory of Open Access Journals (Sweden)

    Xingxing Li

    2015-07-01

    Full Text Available Cuprous oxide (Cu2O nanocubes were synthesized by reducing Cu(OH2 in the presence of sodium citrate at room temperature. The samples were characterized in detail by field-emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray powder diffraction, and N2 absorption (BET specific surface area. The equations for acquiring reaction kinetic parameters and surface thermodynamic properties of Cu2O nanocubes were deduced by establishment of the relations between thermodynamic functions of Cu2O nanocubes and these of the bulk Cu2O. Combined with thermochemical cycle, transition state theory, basic theory of chemical thermodynamics, and in situ microcalorimetry, reaction kinetic parameters, specific surface enthalpy, specific surface Gibbs free energy, and specific surface entropy of Cu2O nanocubes were successfully determined. We also introduced a universal route for gaining reaction kinetic parameters and surface thermodynamic properties of nanomaterials.

  6. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing, E-mail: shisq@nwu.edu.cn; Gong, Yongkuan

    2016-11-15

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH{sub 2}) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  7. Reaction dynamics of molecular hydrogen on silicon surfaces

    DEFF Research Database (Denmark)

    Bratu, P.; Brenig, W.; Gross, A.

    1996-01-01

    between the two surfaces. These results indicate that tunneling, molecular vibrations, and the structural details of the surface play only a minor role for the adsorption dynamics. Instead, they appear to be governed by the localized H-Si bonding and Si-Si lattice vibrations. Theoretically, an effective...... of the preexponential factor by about one order of magnitude per lateral degree of freedom. Molecular vibrations have practically no effect on the adsorption/desorption dynamics itself, but lead to vibrational heating in desorption with a strong isotope effect. Ab initio calculations for the H-2 interaction......Experimental and theoretical results on the dynamics of dissociative adsorption and recombinative desorption of hydrogen on silicon are presented. Using optical second-harmonic generation, extremely small sticking probabilities in the range 10(-9)-10(-5) could be measured for H-2 and D-2 on Si(111...

  8. Fundamental Studies of Diamond Growth and Surface Reactions

    Science.gov (United States)

    1994-07-01

    the material. In the diamond gem industry, mechanical polishing procedures have been developed to obtain an optical quality finish on small-scale...with unpolished samples. The methodology for the technique is described in two journal articlesl6. 17. I 6.0 Characterization of Spectroscopic...sample. Thedegree of improvement in surface roughness in the diamond films can be seen in the Dektak profiles in Fig. 6. The unpolished film had a

  9. Size dependence of surface thermodynamic properties of nanoparticles and its determination method by reaction rate constant

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenjiao; Xue, Yongqiang, E-mail: xyqlw@126.com; Cui, Zixiang

    2016-08-15

    Surface thermodynamic properties are the fundamental properties of nanomaterials, and these properties depend on the size of nanoparticles. In this paper, relations of molar surface thermodynamic properties and surface heat capacity at constant pressure of nanoparticles with particle size were derived theoretically, and the method of obtaining the surface thermodynamic properties by reaction rate constant was put forward. The reaction of nano-MgO with sodium bisulfate solution was taken as a research system. The influence regularities of the particle size on the surface thermodynamic properties were discussed theoretically and experimentally, which show that the experimental regularities are in accordance with the corresponding theoretical relations. With the decreasing of nanoparticle size, the molar surface thermodynamic properties increase, while the surface heat capacity decreases (the absolute value increases). In addition, the surface thermodynamic properties are linearly related to the reciprocal of nanoparticle diameter, respectively.

  10. Compound Natural Gas Hydrate: A Natural System for Separation of Hydrate-Forming Gases

    Science.gov (United States)

    Max, M. D.; Osegovic, J. P.

    2007-12-01

    Natural processes that separate materials from a mixture may exert a major influence on the development of the atmospheres and surfaces of planets, moons, and other planetary bodies. Natural distillation and gravity separation, amongst others, are well known means of differentiating materials through liquid-gas partitioning. One of the least known attributes of clathrate (gas) hydrates is their potential effect on the evolution of planetary system oceans and atmospheres. Gas hydrates separate gases from mixtures of gases by concentrating preferred hydrate-forming materials (HFM) guests within the water-molecule cage structure of crystalline hydrate. Different HFMs have very different fields of stability. When multiple hydrate formers are present, a preference series based on their selective uptake exists. Compound hydrate, which is formed from two or more species of HFM, extract preferred HFM from a mixture in very different proportions to their relative percentages of the original mixture. These compound hydrates can have different formation and dissociation conditions depending on the evolution of the environment. That is, the phase boundary of the compound hydrate that is required for dissociation lies along a lower pressure - higher temperature course. Compound hydrates respond to variations in temperature, pressure, and HFM composition. On Earth, the primary naturally occurring hydrate of interest to global climate modeling is methane hydrate. Oceanic hydrate on Earth is the largest store of carbon in the biosphere that is immediately reactive to environmental change, and is capable of releasing large amounts of methane into the atmosphere over a short geological time span. Hydrate formation is essentially metastable and is very sensitive to environmental change and to gas flux. Where natural variations in temperature and pressure varies so that hydrate will form and dissociate in some cyclical manner, such as in oceans where sea level is capable of rising and

  11. Equilibrium Geometries, Reaction Pathways, and Electronic Structures of Ethanol Adsorbed on the Si (111) Surface

    CERN Document Server

    Gavrilenko, A V; Gavrilenko, V I

    2008-01-01

    Equilibrium atomic configurations and electron energy structure of ethanol adsorbed on the Si (111) surface are studied by the first-principles density functional theory. Geometry optimization is performed by the total energy minimization method. Several equilibrium atomic configurations of ethanol, both undissociated and dissociated, on the Si (111) surface are found. Reaction pathways and predicted transition states are discussed in comparison with available experimental data in terms of the feasibility of the reactions occurring. Analysis of atom and orbital resolved projected density of states indicate substantial modifications of the Si surface valence and conduction bands due to the adsorption of ethanol affecting the electrical properties of the surface.

  12. Probing anharmonic properties of nuclear surface vibration by heavy-ion fusion reactions

    CERN Document Server

    Takigawa, N; Kuyucak, S

    1997-01-01

    Describing fusion reactions between ^{16}O and ^{154}Dy and, between ^{16}O and ^{144}Sm by the $sd-$ and $sdf-$ interacting boson model, we show that heavy-ion fusion reactions are strongly affected by anharmonic properties of nuclear surface vibrations and nuclear shape, and thus provide a powerful method to study details of nuclear structure and dynamics.

  13. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  14. Potential Energy Surfaces and Quantum Yields for Photochromic Diarylethene Reactions

    Directory of Open Access Journals (Sweden)

    Makoto Hatakeyama

    2013-05-01

    Full Text Available Photochromic diarylethenes (DAEs are among the most promising molecular switching systems for future molecular electronics. Numerous derivatives have been synthesized recently, and experimental quantum yields (QYs have been reported for two categories of them. Although the QY is one of the most important properties in various applications, it is also the most difficult property to predict before a molecule is actually synthesized. We have previously reported preliminary theoretical studies on what determines the QYs in both categories of DAE derivatives. Here, reflecting theoretical analyses of potential energy surfaces and recent experimental results, a rational explanation of the general guiding principle for QY design is presented for future molecular design.

  15. Process of forming catalytic surfaces for wet oxidation reactions

    Science.gov (United States)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  16. Surface site diffusion and reaction on molecular organizates and colloidal catalysts: a geometrical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Politowicz, P.A.; Kozak, J.J.

    1987-12-01

    The authors study surface-mediated, diffusion-controlled reactive processes on particles whose overall geometry is homeomorphic to a sphere. Rather than assuming that a coreactant can diffuse freely over the surface of the particle to a target site (reaction center), they consider the case where the coreactant can migrate only among N-1 satellite sites that are networked to the reaction site by means of a number of pathways or reaction channels. Five distinct lattice topologies are considered and they study the reaction efficiency both for the case where the satellite sites are passive and for the case where reaction may occur with finite probability at these sites. The results obtained for this class of surface problems are compared with those obtained by assuming that the reaction-diffusion process takes place on a planar, two-dimensional surface (lattice). The applicability of their results to surface-mediated processes on organizates (cells, vesicles, micelles) and on colloidally dispersed catalyst particles is brought out in the Introduction, and the correspondence between the lattice-based, Markovian approach developed here and Fickian models of surface diffusion, particularly with regard to the exponentiality of the decay, is discussed in the concluding section.

  17. Polyethylene oxide hydration in grafted layers

    Science.gov (United States)

    Dormidontova, Elena; Wang, Zilu

    Hydration of water soluble polymers is one of the key-factors defining their conformation and properties, similar to biopolymers. Polyethylene oxide (PEO) is one of the most important biomedical-applications polymers and is known for its reverse temperature solubility due to hydrogen bonding with water. As in many practical applications PEO chains are grafted to surfaces, e.g. of nanoparticles or planar surfaces, it is important to understand PEO hydration in such grafted layers. Using atomistic molecular dynamic simulations we investigate the details of molecular conformation and hydration of PEO end-grafted to gold surfaces. We analyze polymer and water density distribution as a function of distance from the surface for different grafting densities. Based on a detailed analysis of hydrogen bonding between polymer and water in grafted PEO layers, we will discuss the extent of PEO hydration and its implication for polymer conformation, mobility and layer properties. This research is supported by NSF (DMR-1410928).

  18. Constrained Broyden Dimer Method with Bias Potential for Exploring Potential Energy Surface of Multistep Reaction Process.

    Science.gov (United States)

    Shang, Cheng; Liu, Zhi-Pan

    2012-07-10

    To predict the chemical activity of new matter is an ultimate goal in chemistry. The identification of reaction pathways using modern quantum mechanics calculations, however, often requires a high demand in computational power and good chemical intuition on the reaction. Here, a new reaction path searching method is developed by combining our recently developed transition state (TS) location method, namely, the constrained Broyden dimer method, with a basin-filling method via bias potentials, which allows the system to walk out from the energy traps at a given reaction direction. In the new method, the reaction path searching starts from an initial state without the need for preguessing the TS-like or final state structure and can proceed iteratively to the final state by locating all related TSs and intermediates. In each elementary reaction step, a reaction direction, such as a bond breaking, needs to be specified, the information of which is refined and preserved as a normal mode through biased dimer rotation. The method is tested successfully on the Baker reaction system (50 elementary reactions) with good efficiency and stability and is also applied to the potential energy surface exploration of multistep reaction processes in the gas phase and on the surface. The new method can be applied for the computational screening of new catalytic materials with a minimum requirement of chemical intuition.

  19. Experimental study on circulation pressurization of carbon dioxide hydration reaction%CO2水合反应循环增压实验研究

    Institute of Scientific and Technical Information of China (English)

    胡祥江; 祁影霞; 施军锞

    2014-01-01

    Based on the excellent cooling characteristics of CO 2 as a natural working substance and development prospects in the field of many hydrate technology ,using the characteristics of pressure rising sharply under the phase equilibrium transition temperature of hydrate ,through the innovation design of process ,the carbon dioxide hydrate formation and decomposition alter-nate process is used to realize the pressurization system .Based on thermodynamic analysis of car-bon dioxide level cascade refrigeration and combining with the phase equilibrium temperature ,the experiment results show that the dynamics of 0 .3w t% SDS additives is more advantageous to promote the formation of carbon dioxide hydrate in double-tube reactor compare with 4w t% T HF thermodynamics additive .The synthesis time is 60 minutes at 1 .4 MPa and -2 ℃ .In SDS solu-tion of 0 .3wt% ,lower temperature is more beneficial to the formation of hydrate ,the critical temperature is close to -2 ℃ .When it is lower than -2 ℃ ,the solution icing may block pipe . When the two sets of tube reactors are used alternately ,the optimum cyclic temperature is as fol-low s :the synthesis temperature is -2 ℃ ,the decomposition temperature is 10 ℃ ,and the shor-test cycle time is 55 minutes .The carbon dioxide gas under high pressure is decomposed by con-densation throttle to a low temperature of -36 ℃ .%针对CO2作为天然工质优越的制冷特性以及水合物技术在多领域的发展前景,利用水合物相平衡转折温度下压力急剧上升的特点,通过流程的创新设计,提出了一种利用CO2水合物交替生成与分解的过程来实现增压的循环系统。基于CO2复叠制冷低温级的热力学分析,结合对相平衡转折温度的考虑,通过实验表明,在套管式反应器中,0.3%(质量分数)SDS的动力学添加剂较之4%(质量分数)T HF热力学添加剂更能促进CO2水合物的生成,在-2℃、1.4 M Pa的

  20. Multifunctional silicon surfaces: reaction of dichlorocarbene generated from Seyferth reagent with hydrogen-terminated silicon (111) surfaces.

    Science.gov (United States)

    Liu, Wenjun; Sharp, Ian D; Tilley, T Don

    2014-01-14

    Insertion of dichlorocarbene (:CCl2), generated by decomposition of the Seyferth reagent PhHgCCl2Br, into the Si-H bond of a tertiary silane to form a Si-CCl2H group is an efficient homogeneous, molecular transformation. A heterogeneous version of this reaction, between PhHgCCl2Br and a silicon (111) surface terminated by tertiary Si-H bonds, was studied using a combination of surface-sensitive infrared and X-ray photoelectron spectroscopies. The insertion of dichlorocarbene into surface Si-H bonds parallels the corresponding reaction of silanes in solution, to produce surface-bound dichloromethyl groups (Si-CCl2H) covering ∼25% of the silicon surface sites. A significant fraction of the remaining Si-H bonds on the surface was converted to Si-Cl/Br groups during the same reaction, with PhHgCCl2Br serving as a halogen atom source. The presence of two distinct environments for the chlorine atoms (Si-CCl2H and Si-Cl) and one type of bromine atom (Si-Br) was confirmed by Cl 2p, Br 3d, and C 1s X-ray photoelectron spectroscopy. The formation of reactive, halogen-terminated atop silicon sites was also verified by reaction with sodium azide or the Grignard reagent (CH3MgBr), to produce Si-N3 or Si-Me functionalities, respectively. Thus, reaction of a hydrogen-terminated silicon (111) surface with PhHgCCl2Br provides a facile route to multifunctional surfaces possessing both stable silicon-carbon and labile silicon-halogen sites, in a single pot synthesis. The reactive silicon-halogen groups can be utilized for subsequent transformations and, potentially, the construction of more complex organic-silicon hybrid systems.

  1. Grain Surface Reactions in Molecular Clouds: The Effect of Cosmic Rays and Quantum Tunneling

    CERN Document Server

    Reboussin, Laura; Guilloteau, Stéphane; Hersant, Franck

    2014-01-01

    Grain-surface reactions play an essential role in interstellar chemistry, since dust grain catalyses reactions at its surface allowing for the formation of molecules. We used a chemical model in which both gas-phase and grain-surface reactions occur and studied particularly the diffusion mechanisms on the surface of the grains. Surface reactions can occur via thermal hopping when species cross over a potential barrier or via quantum tunneling when species cross through this barrier. We show that the thermal diffusion (hopping) can be much more efficient after a cosmic ray particle collides with a dust grain, heating it to a peak temperature of 70K. We present here the results of numerical simulations after including the quantum tunneling mechanism for species H, H2 and O and considering the effect of cosmic ray particle collision on the surface reactions. As a consequence, the gas-phase and grain-surface abundances are affected and we show that more complex molecules can be formed in molecular clouds.

  2. Cyclic Square Wave Voltammetry of Surface-Confined Quasireversible Electron Transfer Reactions.

    Science.gov (United States)

    Mann, Megan A; Bottomley, Lawrence A

    2015-09-01

    The theory for cyclic square wave voltammetry of surface-confined quasireversible electrode reactions is presented and experimentally verified. Theoretical voltammograms were calculated following systematic variation of empirical parameters to assess their impact on the shape of the voltammogram. From the trends obtained, diagnostic criteria for this mechanism were deduced. These criteria were experimentally confirmed using two well-established surface-confined analytes. When properly applied, these criteria will enable non-experts in voltammetry to assign the electrode reaction mechanism and accurately measure electrode reaction kinetics.

  3. Heterogeneous reactions on the surface of fine particles in the atmosphere

    Institute of Scientific and Technical Information of China (English)

    DING Jie; ZHU Tong

    2003-01-01

    Fine particles play an important role in the atmosphere. Research on heterogeneous reactions on the surface of fine particles is one of the frontier areas of atmospheric science. In this paper, physical and chemical characteristics of fine particles in the atmosphere and the interactions between trace gases and fine particles are described, methods used in heterogeneous reactions research are discussed in detail, progress in the study of heterogeneous reactions on the surface of fine particles in the atmosphere is summarized, existing importantquestions are pointed out and future research directions are suggested.

  4. Gas hydrate of Lake Baikal: Discovery and varieties

    Science.gov (United States)

    Khlystov, Oleg; De Batist, Marc; Shoji, Hitoshi; Hachikubo, Akihiro; Nishio, Shinya; Naudts, Lieven; Poort, Jeffrey; Khabuev, Andrey; Belousov, Oleg; Manakov, Andrey; Kalmychkov, Gennаdy

    2013-01-01

    This paper summarizes the results of recent gas-hydrate studies in Lake Baikal, the only fresh-water lake in the world containing gas hydrates in its sedimentary infill. We provide a historical overview of the different investigations and discoveries and highlight some recent breakthroughs in our understanding of the Baikal hydrate system. So far, 21 sites of gas hydrate occurrence have been discovered. Gas hydrates are of structures I and II, which are of thermogenic, microbial, and mixed origin. At the 15 sites, gas hydrates were found in mud volcanoes, and the rest six - near gas discharges. Additionally, depending on type of discharge and gas hydrate structure, they were visually different. Investigations using MIR submersibles allowed finding of gas hydrates at the bottom surface of Lake Baikal at the three sites.

  5. Prediction of Tetraoxygen Reaction Mechanism with Sulfur Atom on the Singlet Potential Energy Surface

    Directory of Open Access Journals (Sweden)

    Ashraf Khademzadeh

    2014-01-01

    Full Text Available The mechanism of S+O4 (D2h reaction has been investigated at the B3LYP/6-311+G(3df and CCSD levels on the singlet potential energy surface. One stable complex has been found for the S+O4 (D2h reaction, IN1, on the singlet potential energy surface. For the title reaction, we obtained four kinds of products at the B3LYP level, which have enough thermodynamic stability. The results reveal that the product P3 is spontaneous and exothermic with −188.042 and −179.147 kcal/mol in Gibbs free energy and enthalpy of reaction, respectively. Because P1 adduct is produced after passing two low energy level transition states, kinetically, it is the most favorable adduct in the 1S+1O4 (D2h atmospheric reactions.

  6. Hydrophobic thickness, lipid surface area and polar region hydration in monounsaturated diacylphosphatidylcholine bilayers: SANS study of effects of cholesterol and beta-sitosterol in unilamellar vesicles.

    Science.gov (United States)

    Gallová, J; Uhríková, D; Kucerka, N; Teixeira, J; Balgavý, P

    2008-11-01

    The influence of a mammalian sterol cholesterol and a plant sterol beta-sitosterol on the structural parameters and hydration of bilayers in unilamellar vesicles made of monounsaturated diacylphosphatidylcholines (diCn:1PC, n=14-22 is the even number of acyl chain carbons) was studied at 30 degrees C using small-angle neutron scattering (SANS). Recently published advanced model of lipid bilayer as a three-strip structure was used with a triangular shape of polar head group probability distribution (Kucerka et al., Models to analyze small-angle neutron scattering from unilamellar lipid vesicles, Physical Review E 69 (2004) Art. No. 051903). It was found that 33 mol% of both sterols increased the thickness of diCn:1PC bilayers with n=18-22 similarly. beta-sitosterol increased the thickness of diC14:1PC and diC16:1PC bilayers a little more than cholesterol. Both sterols increased the surface area per unit cell by cca 12 A(2) and the number of water molecules located in the head group region by cca 4 molecules, irrespective to the acyl chain length of diCn:1PC. The structural difference in the side chain between cholesterol and beta-sitosterol plays a negligible role in influencing the structural parameters of bilayers studied.

  7. Influence of supported gold particles on the surface reactions of diethylamine on TiO2

    Science.gov (United States)

    Sarmiento-Lopez, Adan G.; Berumen-España, Gerardo; Lopez-Serrano, Cesar; Fierro-Gonzalez, Juan C.

    2016-11-01

    The adsorption and reactions of diethylamine on the surfaces of TiO2 and TiO2-supported gold samples were investigated by infrared (IR) spectroscopy and mass spectrometry. IR spectra measured as the samples were treated in flowing diethylamine at room temperature indicate that the amine was preferentially adsorbed molecularly on surface Ti4 + sites. Thermal treatment of the samples with flowing diethylamine led to the formation of ethylene and acetonitrile as dehydrogenation products. The data show that the reactions occurred at lower temperatures in the presence of supported gold samples than on TiO2, and IR spectra recorded under reaction conditions show evidence of amine-derived surface species bonded to gold nanoparticles that could be regarded as reaction intermediates. The results indicate that the gold nanoparticles provide sites for subtraction and recombination of hydrogen atoms from the amine, ensuing its dehydrogenation.

  8. A Noachian source region for the "Black Beauty" meteorite, and a source lithology for Mars surface hydrated dust?

    Science.gov (United States)

    Beck, P.; Pommerol, A.; Zanda, B.; Remusat, L.; Lorand, J. P.; Göpel, C.; Hewins, R.; Pont, S.; Lewin, E.; Quirico, E.; Schmitt, B.; Montes-Hernandez, G.; Garenne, A.; Bonal, L.; Proux, O.; Hazemann, J. L.; Chevrier, V. F.

    2015-10-01

    The Martian surface is covered by a fine-layer of oxidized dust responsible for its red color in the visible spectral range (Bibring et al., 2006; Morris et al., 2006). In the near infrared, the strongest spectral feature is located between 2.6 and 3.6 μm and is ubiquitously observed on the planet (Jouglet et al., 2007; Milliken et al., 2007). Although this absorption has been studied for many decades, its exact attribution and its geological and climatic implications remain debated. We present new lines of evidence from laboratory experiments, orbital and landed missions data, and characterization of the unique Martian meteorite NWA 7533, all converging toward the prominent role of hydroxylated ferric minerals. Martian breccias (so-called "Black Beauty" meteorite NWA7034 and its paired stones NWA7533 and NWA 7455) are unique pieces of the Martian surface that display abundant evidence of aqueous alteration that occurred on their parent planet (Agee et al., 2013). These dark stones are also unique in the fact that they arose from a near surface level in the Noachian southern hemisphere (Humayun et al., 2013). We used IR spectroscopy, Fe-XANES and petrography to identify the mineral hosts of hydrogen in NWA 7533 and compare them with observations of the Martian surface and results of laboratory experiments. The spectrum of NWA 7533 does not show mafic mineral absorptions, making its definite identification difficult through NIR remote sensing mapping. However, its spectra are virtually consistent with a large fraction of the Martian highlands. Abundant NWA 7034/7533 (and paired samples) lithologies might abound on Mars and might play a role in the dust production mechanism.

  9. Monitorizing nitinol alloy surface reactions for biofouling studies

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, C.Z. [Max Planck Institute of Molecular Cell Biology and Genetics, Photenhauerstrasse 108, Dresden (Germany); Dinca, V.C. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania)]. E-mail: valentina.dinca@inflpr.ro; Soare, S. [UNIBUC-MICROGEN, University of Bucharest, Centre for Research, Education and Consulting in Microbiology, Genetics and Biotechnology (MICROGEN), Splaiul Independentei, 91-95, RO 76201 Bucharest (Romania); Moldovan, A. [Max Planck Institute of Molecular Cell Biology and Genetics, Photenhauerstrasse 108, Dresden (Germany); Smarandache, D. [UNIBUC-MICROGEN, University of Bucharest, Centre for Research, Education and Consulting in Microbiology, Genetics and Biotechnology (MICROGEN), Splaiul Independentei, 91-95, RO 76201 Bucharest (Romania); Scarisoareanu, N. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); Barbalat, A. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); Birjega, R. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); DiStefano, V. Ferrari [University of Rome La Sapienza, Department of Electronics, Rome (Italy)

    2007-07-31

    Growth and deposition of unwanted bacteria on implant metal alloys affect their use as biomedical samples. Monitoring any bacterial biofilm accumulation will provide early countermeasures. For a reliable antifouling strategy we prepared nitinol (NiTi) thin films on Ti-derived substrates by using a pulsed laser deposition (PLD) method. As the microstructure of Ti-alloy is dictated by the tensile strength, fatigue and the fracture toughness we tested the use of hydrogen as an alloying element. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigated the crystalline structure, chemical composition and respectively the surface morphology of the nitinol hydrogen and hydrogen-free samples. Moreover, the alloys were integrated and tested using a cellular metric and their responses were systematic evaluated and quantified. Our attractive approach is meant to select the suitable components for an effective and trustworthy anti-fouling strategy. A greater understanding of such processes should lead to novel and effective control methods that would improve in the future implant stability and capabilities.

  10. Monitorizing nitinol alloy surface reactions for biofouling studies

    Science.gov (United States)

    Dinu, C. Z.; Dinca, V. C.; Soare, S.; Moldovan, A.; Smarandache, D.; Scarisoareanu, N.; Barbalat, A.; Birjega, R.; Dinescu, M.; DiStefano, V. Ferrari

    2007-07-01

    Growth and deposition of unwanted bacteria on implant metal alloys affect their use as biomedical samples. Monitoring any bacterial biofilm accumulation will provide early countermeasures. For a reliable antifouling strategy we prepared nitinol (NiTi) thin films on Ti-derived substrates by using a pulsed laser deposition (PLD) method. As the microstructure of Ti-alloy is dictated by the tensile strength, fatigue and the fracture toughness we tested the use of hydrogen as an alloying element. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigated the crystalline structure, chemical composition and respectively the surface morphology of the nitinol hydrogen and hydrogen-free samples. Moreover, the alloys were integrated and tested using a cellular metric and their responses were systematic evaluated and quantified. Our attractive approach is meant to select the suitable components for an effective and trustworthy anti-fouling strategy. A greater understanding of such processes should lead to novel and effective control methods that would improve in the future implant stability and capabilities.

  11. Reaction sampling and reactivity prediction using the stochastic surface walking method.

    Science.gov (United States)

    Zhang, Xiao-Jie; Liu, Zhi-Pan

    2015-01-28

    The prediction of chemical reactivity and thus the design of new reaction systems are the key challenges in chemistry. Here, we develop an unbiased general-purpose reaction sampling method, the stochastic surface walking based reaction sampling (SSW-RS) method, and show that the new method is a promising solution for reactivity prediction of complex reaction systems. The SSW-RS method is capable of sampling both the configuration space of the reactant and the reaction space of pathways, owing to the combination of two recently developed theoretical methods, namely, the stochastic surface walking (SSW) method for potential energy surface (PES) exploration and the double-ended surface walking (DESW) method for building pathways. By integrating with first principles calculations, we show that the SSW-RS method can be applied to investigate the kinetics of complex organic reactions featuring many possible reaction channels and complex hydrogen-bonding networks, as demonstrated here using two examples, epoxypropane hydrolysis in aqueous solution and β-d-glucopyranose decomposition. Our results show that simultaneous sampling of the soft hydrogen-bonding conformations and the chemical reactions involving hard bond making/breaking can be achieved in the SSW-RS simulation, and the mechanism and kinetics can be predicted without a priori information on the system. Unexpected new chemistry for these reactions is revealed and discussed. In particular, despite many possible pathways for β-d-glucopyranose decomposition, the SSW-RS shows that only β-d-glucose and levoglucosan are kinetically preferred direct products and the 5- or 7-member ring products should be secondary products derived from β-d-glucose or levoglucosan. As a general tool for reactivity prediction, the SSW-RS opens a new route for the design of rational reactions.

  12. Reactions of Cg10062, a cis-3-Chloroacrylic Acid Dehalogenase Homologue, with Acetylene and Allene Substrates: Evidence for a Hydration-Dependent Decarboxylation.

    Science.gov (United States)

    Huddleston, Jamison P; Johnson, William H; Schroeder, Gottfried K; Whitman, Christian P

    2015-05-19

    Cg10062 is a cis-3-chloroacrylic acid dehalogenase (cis-CaaD) homologue from Corynebacterium glutamicum with an unknown function and an uninformative genomic context. It shares 53% pairwise sequence similarity with cis-CaaD including the six active site amino acids (Pro-1, His-28, Arg-70, Arg-73, Tyr-103, and Glu-114) that are critical for cis-CaaD activity. However, Cg10062 is a poor cis-CaaD: it lacks catalytic efficiency and isomer specificity. Two acetylene compounds (propiolate and 2-butynoate) and an allene compound, 2,3-butadienoate, were investigated as potential substrates. Cg10062 functions as a hydratase/decarboxylase using propiolate as well as the cis-3-chloro- and 3-bromoacrylates, generating mixtures of malonate semialdehyde and acetaldehyde. The two activities occur sequentially at the active site using the initial substrate. With 2,3-butadienoate and 2-butynoate, Cg10062 functions as a hydratase and converts both to acetoacetate. Mutations of the proposed water-activating residues (E114Q, E114D, and Y103F) have a range of consequences from a reduction in wild type activity to a switch of activities (i.e., hydratase into a hydratase/decarboxylase or vice versa). The intermediates for the hydration and decarboxylation products can be trapped as covalent adducts to Pro-1 when NaCNBH3 is incubated with the E114D mutant and 2,3-butadienoate or 2-butynoate, and the Y103F mutant and 2-butynoate. Three mechanisms are presented to explain these findings. One mechanism involves the direct attack of water on the substrate, whereas the other two mechanisms use covalent catalysis in which a covalent bond forms between Pro-1 and the hydration product or the substrate. The strengths and weaknesses of the mechanisms and the implications for Cg10062 function are discussed.

  13. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  14. To address surface reaction network complexity using scaling relations machine learning and DFT calculations

    Science.gov (United States)

    Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas; Nørskov, Jens K.

    2017-01-01

    Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying these methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations. PMID:28262694

  15. To address surface reaction network complexity using scaling relations machine learning and DFT calculations

    Science.gov (United States)

    Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas; Nørskov, Jens K.

    2017-03-01

    Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying these methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.

  16. Temperature dependent halogen activation by N2O5 reactions on halide-doped ice surfaces

    Directory of Open Access Journals (Sweden)

    J. A. Thornton

    2012-02-01

    Full Text Available We examined the reaction of N2O5 on frozen halide salt solutions as a function of temperature and composition using a coated wall flow tube technique coupled to a chemical ionization mass spectrometer (CIMS. The molar yield of photo-labile halogen compounds was near unity for almost all conditions studied, with the observed reaction products being nitryl chloride (ClNO2 and/or molecular bromine (Br2. The relative yield of ClNO2 and Br2 depended on the ratio of bromide to chloride ions in the solutions used to form the ice. At a bromide to chloride ion molar ratio greater than 1/30 in the starting solution, Br2 was the dominant product otherwise ClNO2 was primarily produced on these near pH-neutral brines. We demonstrate that the competition between chlorine and bromine activation is a function of the ice/brine temperature presumably due to the preferential precipitation of NaCl hydrates from the brine below 250 K. Our results provide new experimental confirmation that the chemical environment of the brine layer changes with temperature and that these changes can directly affect multiphase chemistry. These findings have implications for modeling air-snow-ice interactions in polar regions and likely in polluted mid-latitude regions during winter as well.

  17. Temperature dependent halogen activation by N2O5 reactions on halide-doped ice surfaces

    Directory of Open Access Journals (Sweden)

    J. A. Thornton

    2012-06-01

    Full Text Available We examined the reaction of N2O5 on frozen halide salt solutions as a function of temperature and composition using a coated wall flow tube technique coupled to a chemical ionization mass spectrometer (CIMS. The molar yield of photo-labile halogen compounds was near unity for almost all conditions studied, with the observed reaction products being nitryl chloride (ClNO2 and/or molecular bromine (Br2. The relative yield of ClNO2 and Br2 depended on the ratio of bromide to chloride ions in the solutions used to form the ice. At a bromide to chloride ion molar ratio greater than 1/30 in the starting solution, Br2 was the dominant product otherwise ClNO2 was primarily produced on these near pH-neutral brines. We demonstrate that the competition between chlorine and bromine activation is a function of the ice/brine temperature presumably due to the preferential precipitation of NaCl hydrates from the brine below 250 K. Our results provide new experimental confirmation that the chemical environment of the brine layer changes with temperature and that these changes can directly affect multiphase chemistry. These findings have implications for modeling air-snow-ice interactions in polar regions and likely in polluted mid-latitude regions during winter as well.

  18. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean

    DEFF Research Database (Denmark)

    Treude, T.; Boetius, A.; Knittel, K.;

    2003-01-01

    At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate-reducing...... bacteria, generates high concentrations of hydrogen sulfide in the surface sediments. The production of sulfide supports chemosynthetic communities that gain energy from sulfide oxidation. Depending on fluid flow, the surface communities are dominated either by the filamentous sulfur bacteria Beggiatoa...

  19. Heterogeneous reaction of formaldehyde on the surface of TiO2 particles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The heterogeneous reaction of formaldehyde (HCHO) on the surface of titanium dioxide (TiO2) was investigated in situ using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) combined with ion chromatography (IC),X-ray diffraction (XRD),and transmission electron microscopy (TEM).Formate,dioxymethylene,methoxy,and polyoxymethylene were observed in the infrared spectra of TiO2 particles during the reaction.On the surface of TiO2,the adsorbed HCHO was first oxidized to dioxymethylene and further oxidized to formate.The effects of temperature and ultraviolet radiation (UV) on the reaction products and reactive uptake coefficients were studied,and the results indicate that the reaction rate can be accelerated at increasing temperatures as well as under UV.The heterogeneous reaction mechanisms of HCHO on the surface of TiO2 in the dark and under UV irradiation are proposed.Kinetic measurements show that formate formation on TiO2 is second order in HCHO concentration and the initial reactive uptake coefficients at room temperature calculated with the Brunauer-EmmettTeller specific surface area are (0.5-5) × 10-8 ([HCHO]:1 × 1013-2 × 10 14 molecules/cm3).A linear function relationship exists between the uptake coefficient and the concentration.The apparent activation energy of the reaction was also determined.

  20. Surface reactivity and layer analysis of chemisorbed reaction films in the surface-chemical environment of alkyl octadecenoates

    Indian Academy of Sciences (India)

    R B Choudhary; O N Anand; O S Tyagi

    2009-05-01

    Studies on surface reactivity of substrate iron (Fe-particles) were made in the tribo-chemical environment of alkyl octadecenoates. Two alkyl octadecenoates namely ethyl octadecenoate and methyl 12-hydroxy octadecenoate, slightly different in their chemical nature, were taken for preparing the chemisorbed reaction films (CRF) at the temperature 100 ± 5°C. The reaction products collected in the composite (amorphous) phase were isolated into three different solvent-soluble fractions (sub-layer films) using polar solvents of increasing polar strength. The FTIR analysis of these films showed that these were primarily organic in nature and were composed of alkyl and/or aryl hydroxy ethers, unsaturated hydroxy ketones, and aromatic structures chemically linked with iron surface. These reaction films also contained large amount of iron (Fe). Further, these film fractions also showed varying thermal behaviour during thermal decomposition in the temperature range of 50-800°C when thermally evaluated in the nitrogen environment.

  1. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  2. Surface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts

    OpenAIRE

    Karla Herrera Delgado; Lubow Maier; Steffen Tischer; Alexander Zellner; Henning Stotz; Olaf Deutschmann

    2015-01-01

    An experimental and kinetic modeling study on the Ni-catalyzed conversion of methane under oxidative and reforming conditions is presented. The numerical model is based on a surface reaction mechanism consisting of 52 elementary-step like reactions with 14 surface and six gas-phase species. Reactions for the conversion of methane with oxygen, steam, and CO2 as well as methanation, water-gas shift reaction and carbon formation via Boudouard reaction are included. The mechanism is implemented i...

  3. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  4. Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH and H2O2

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, K.; Løgager, T.

    1994-01-01

    (A) = 14.0 kJ mol-1 (3.3 kcal mol-1). For reaction with OH radicals the corresponding values are, k(20-degrees-C) = 3.1 x 10(10) M-1 s-1 and E(A) = 14.7 kJ mol-1 (3.5 kcal mol-1) determined in the temperature range 5-175-degrees-C. For reaction with H2O2 the values are, k(20-degrees-C) = 1.2 x 10(10) M-1 s......-1 and E(A) = 15.6 kJ mol-1 (3.7 kcal mol-1) measured from 5-150-degrees-C. Thus, the activation energy for all three fast reactions is close to that expected for diffusion controlled reactions. As phosphates were used as buffer system, the rate constant and activation energy for the reaction...

  5. [Raman spectroscopic investigation of hydrogen storage in nitrogen gas hydrates].

    Science.gov (United States)

    Meng, Qing-guo; Liu, Chang-ling; Ye, Yu-guang; Li, Cheng-feng

    2012-08-01

    Recently, hydrogen storage using clathrate hydrate as a medium has become a hotspot of hydrogen storage research In the present paper, the laser Raman spectroscopy was used to study the hydrogen storage in nitrogen hydrate. The synthetic nitrogen hydrate was reacted with hydrogen gas under relatively mild conditions (e.g., 15 MPa, -18 degrees C). The Raman spectra of the reaction products show that the hydrogen molecules have enclathrated the cavities of the nitrogen hydrate, with multiple hydrogen cage occupancies in the clathrate cavities. The reaction time is an important factor affecting the hydrogen storage in nitrogen hydrate. The experimental results suggest that nitrogen hydrates are expected to be an effective media for hydrogen storage.

  6. Theory of the reaction dynamics of small molecules on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Bret [Univ. of Massachusetts, Amherst, MA (United States)

    2016-09-09

    The objective of this project has been to develop realistic theoretical models for gas-surface interactions, with a focus on processes important in heterogeneous catalysis. The dissociative chemisorption of a molecule on a metal is a key step in many catalyzed reactions, and is often the rate-limiting step. We have explored the dissociative chemisorption of H2, H2O and CH4 on a variety of metal surfaces. Most recently, our extensive studies of methane dissociation on Ni and Pt surfaces have fully elucidated its dependence on translational energy, vibrational state and surface temperature, providing the first accurate comparisons with experimental data. We have explored Eley-Rideal and hot atom reactions of H atoms with H- and C-covered metal surfaces. H atom interactions with graphite have also been explored, including both sticking and Eley-Rideal recombination processes. Again, our methods made it possible to explain several experiments studying these reactions. The sticking of atoms on metal surfaces has also been studied. To help elucidate the experiments that study these processes, we examine how the reaction dynamics depend upon the nature of the molecule-metal interaction, as well as experimental variables such as substrate temperature, beam energy, angle of impact, and the internal states of the molecules. Electronic structure methods based on Density Functional Theory are used to compute each molecule-metal potential energy surface. Both time-dependent quantum scattering techniques and quasi-classical methods are used to examine the reaction or scattering dynamics. Much of our effort has been directed towards developing improved quantum methods that can accurately describe reactions, as well as include the effects of substrate temperature (lattice vibration).

  7. The Role of Grain Surface Reactions in the Chemistry of Star Forming Regions

    Science.gov (United States)

    Kress, M. E.; Tielens, A. G. G. M.; Roberge, W. G.

    1998-01-01

    The importance of reactions at the surfaces of dust grains has long been recognized to be one of the two main chemical processes that form molecules in cold, dark interstellar clouds where simple, saturated (fully-hydrogenated) molecules such as H2 water, methanol, H2CO, H2S, ammonia and CH4 are present in quantities far too high to be consistent with their extremely low gas phase formation rates. In cold dark regions of interstellar space, dust grains provide a substrate onto which gas-phase species can accrete and react. Grains provide a "third body" or a sink for the energy released in the exothermic reactions that form chemical bonds. In essence, the surfaces of dust grains open up alternative reaction pathways to form observed molecules whose abundances cannot be explained with gas-phase chemistry alone. This concept is taken one step further in this work: instead of merely acting as a substrate onto which radicals and molecules may physically adsorb, some grains may actively participate in the reaction itself, forming chemical bonds with the accreting species. Until recently, surface chemical reactions had not been thought to be important in warm circumstellar media because adspecies rapidly desorb from grains at very low temperatures; thus, the residence times of molecules and radicals on the surface of grains at all but the lowest temperatures are far too short to allow these reactions to occur. However, if the adspecies could adsorb more strongly, via a true chemical bond with surfaces of some dust grains, then grain surface reactions will play an important role in warm circumstellar regions as well. In this work, the surface-catalyzed reaction CO + 3 H2 yields CH4 + H2O is studied in the context that it may be very effective at converting the inorganic molecule CO into the simplest organic compound, methane. H2 and CO are the most abundant molecules in space, and the reaction converting them to methane, while kinetically inhibited in the gas phase under

  8. Surface reaction rate and probability of ozone and alpha-terpineol on glass, polyvinyl chloride, and latex paint surfaces.

    Science.gov (United States)

    Shu, Shi; Morrison, Glenn C

    2011-05-15

    Ozone can react homogeneously with unsaturated organic compounds in buildings to generate undesirable products. However, these reactions can also occur on indoor surfaces, especially for low-volatility organics. Conversion rates of ozone with α-terpineol, a representative low-volatility compound, were quantified on surfaces that mimic indoor substrates. Rates were measured for α-terpineol adsorbed to beads of glass, polyvinylchloride (PVC), and dry latex paint, in a plug flow reactor. A newly defined second-order surface reaction rate coefficient, k(2), was derived from the flow reactor model. The value of k(2) ranged from 0.68 × 10(-14) cm(4)s(-1)molecule(-1) for α-terpineol adsorbed to PVC to 3.17 × 10(-14) cm(4)s(-1)molecule(-1) for glass, but was insensitive to relative humidity. Further, k(2) is only weakly influenced by the adsorbed mass but instead appears to be more strongly related to the interfacial activity α-terpineol. The minimum reaction probability ranged from 3.79 × 10(-6) for glass at 20% RH to 6.75 × 10(-5) for PVC at 50% RH. The combination of high equilibrium surface coverage and high reactivity for α-terpineol suggests that surface conversion rates are fast enough to compete with or even overwhelm other removal mechanisms in buildings such as gas-phase conversion and air exchange.

  9. Oxygen reduction reaction over silver particles with various morphologies and surface chemical states

    Science.gov (United States)

    Ohyama, Junya; Okata, Yui; Watabe, Noriyuki; Katagiri, Makoto; Nakamura, Ayaka; Arikawa, Hidekazu; Shimizu, Ken-ichi; Takeguchi, Tatsuya; Ueda, Wataru; Satsuma, Atsushi

    2014-01-01

    The oxygen reduction reaction (ORR) in an alkaline solution was carried out using Ag powders having various particle morphologies and surface chemical states (Size: ca. 40-110 nm in crystalline size. Shape: spherical, worm like, and angular. Surface: smooth with easily reduced AgOx, defective with AgOx, and Ag2CO3 surface layer). The various Ag powders were well characterized by X-ray diffraction, X-ray photoelectron spectroscopy, N2 adsorption, scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, and stripping voltammetry of underpotential-deposited lead. Defective and oxidized surfaces enhanced the Ag active surface area during the ORR. The ORR activity was affected by the morphology and surface chemical state: Ag particles with defective and angular surfaces showed smaller electron exchange number between three and four but showed higher specific activity compared to Ag particles with smooth surfaces.

  10. Surface chemical reactions induced by molecules electronically-excited in the gas

    DEFF Research Database (Denmark)

    Petrunin, Victor V.

    2011-01-01

    be readily produced. Products of chemical adsorption and/or chemical reactions induced within adsorbates are aggregated on the surface and observed by light scattering. We will demonstrate how pressure and spectral dependencies of the chemical outcomes, polarization of the light and interference of two laser...... and alignment are taking place, guiding all the molecules towards the intersections with the ground state PES, where transitions to the ground state PES will occur with minimum energy dissipation. The accumulated kinetic energy may be used to overcome the chemical reaction barrier. While recombination chemical...... reactions in a gas phase require participation of a third body, this strong limitation on the reaction rates is removed upon interaction with a surface. To observe the predicted phenomenon, we suggested a new experimental approach, Evanescent Wave Photocatalysis1, based on application of total internal...

  11. Surface reaction network of CO oxidation on CeO2/Au(110) inverse model catalysts.

    Science.gov (United States)

    Ding, Liangbing; Xiong, Feng; Jin, Yuekang; Wang, Zhengming; Sun, Guanghui; Huang, Weixin

    2016-11-30

    CeO2/Au(110) inverse model catalysts were prepared and their activity toward the adsorption and co-adsorption of O2, CO, CO2 and water was studied by means of X-ray photoelectron spectroscopy, low energy electron diffraction, thermal desorption spectra and temperature-programmed reaction spectra. The Au surface of CeO2/Au(110) inverse model catalysts molecularly adsorbs CO, CO2 and water, and the polycrystalline CeO2 surface of CeO2/Au(110) inverse model catalysts molecularly adsorbs O2, and molecularly and reactively adsorbs CO, CO2 and water. By controllably preparing co-adsorbed surface species on CeO2/Au(110) inverse model catalysts, we successfully identified various surface reaction pathways of CO oxidation to produce CO2 with different barriers both on the CeO2 surface and at the Au-CeO2 interface, including CO oxidation by various oxygen species, and water/hydroxyl group-involved CO oxidation. These results establish a surface reaction network of CO oxidation catalyzed by Au/CeO2 catalysts, greatly advancing the fundamental understandings of catalytic CO oxidation reactions.

  12. Reduced Heat Flux Through Preferential Surface Reactions Leading to Vibrationally and Electronically Excited Product States

    Science.gov (United States)

    2016-03-04

    AFRL-AFOSR-VA-TR-2016-0124 Reduced Heat Flux Through Preferential Surface Reactions Leading to Vibrationally and Electronically Excited Product...Reactions Leading to Vibrationally and Electronically Excited Product States 5a. CONTRACT NUMBER FA9550-12-1-0486 5b. GRANT NUMBER 5c. PROGRAM... Leading to Vibrationally and Electronically Excited Product States FINAL TECHNICAL REPORT: Grant #FA9550-12-1-0486 2013 Basic Research Initiative (BRI

  13. Proton percolation on hydrated lysozyme powders

    OpenAIRE

    Careri, G; Giansanti, A; Rupley, John A.

    1986-01-01

    The framework of percolation theory is used to analyze the hydration dependence of the capacitance measured for protein samples of pH 3-10, at frequencies from 10 kHz to 4 MHz. For all samples there is a critical value of the hydration at which the capacitance sharply increases with increase in hydration level. The threshold hc = 0.15 g of water per g of protein is independent of pH below pH 9 and shows no solvent deuterium isotope effect. The fractional coverage of the surface at hc is in cl...

  14. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  15. Highly specific and sensitive electrochemical genotyping via gap ligation reaction and surface hybridization detection.

    Science.gov (United States)

    Huang, Yong; Zhang, Yan-Li; Xu, Xiangmin; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2009-02-25

    This paper developed a novel electrochemical genotyping strategy based on gap ligation reaction with surface hybridization detection. This strategy utilized homogeneous enzymatic reactions to generate molecular beacon-structured allele-specific products that could be cooperatively annealed to capture probes stably immobilized on the surface via disulfide anchors, thus allowing ultrasensitive surface hybridization detection of the allele-specific products through redox tags in close proximity to the electrode. Such a unique biphasic architecture provided a universal methodology for incorporating enzymatic discrimination reactions in electrochemical genotyping with desirable reproducibility, high efficiency and no interferences from interficial steric hindrance. The developed technique was demonstrated to show intrinsic high sensitivity for direct genomic analysis, and excellent specificity with discriminativity of single nucleotide variations.

  16. MHD Homogeneous-Heterogeneous Reactions in a Nanofluid due to a Permeable Shrinking Surface

    Directory of Open Access Journals (Sweden)

    Syahira Mansur

    2016-01-01

    Full Text Available The MHD homogeneous-heterogeneous reaction in a nanofluid flow due to a permeable shrinking surface is studied. The bvp4c program in MATLAB is used to obtain the numerical solutions for several values of parameters such as suction parameter, magnetic parameter, nanoparticle volume fraction, heterogeneous reaction and homogeneous reaction rates. The results show that dual solutions exist and the magnetic parameter and the nanoparticle volume fraction widen the range of the solution domain. Suction parameter, magnetic parameter and nanoparticle volume fraction cause the skin friction coefficient to increase and the velocity to decrease. The concentration increases as the nanoparticle volume fraction increases but decrease as the homogeneous reaction rate and heterogeneous reaction rate increase.

  17. Nonenzymatic Reactions above Phospholipid Surfaces of Biological Membranes: Reactivity of Phospholipids and Their Oxidation Derivatives.

    Science.gov (United States)

    Solís-Calero, Christian; Ortega-Castro, Joaquín; Frau, Juan; Muñoz, Francisco

    2015-01-01

    Phospholipids play multiple and essential roles in cells, as components of biological membranes. Although phospholipid bilayers provide the supporting matrix and surface for many enzymatic reactions, their inherent reactivity and possible catalytic role have not been highlighted. As other biomolecules, phospholipids are frequent targets of nonenzymatic modifications by reactive substances including oxidants and glycating agents which conduct to the formation of advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs). There are some theoretical studies about the mechanisms of reactions related to these processes on phosphatidylethanolamine surfaces, which hypothesize that cell membrane phospholipids surface environment could enhance some reactions through a catalyst effect. On the other hand, the phospholipid bilayers are susceptible to oxidative damage by oxidant agents as reactive oxygen species (ROS). Molecular dynamics simulations performed on phospholipid bilayers models, which include modified phospholipids by these reactions and subsequent reactions that conduct to formation of ALEs and AGEs, have revealed changes in the molecular interactions and biophysical properties of these bilayers as consequence of these reactions. Then, more studies are desirable which could correlate the biophysics of modified phospholipids with metabolism in processes such as aging and diseases such as diabetes, atherosclerosis, and Alzheimer's disease.

  18. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces.

    Science.gov (United States)

    Michaelides, Angelos; Liu, Z-P; Zhang, C J; Alavi, Ali; King, David A; Hu, P

    2003-04-02

    The activation energy to reaction is a key quantity that controls catalytic activity. Having used ab inito calculations to determine an extensive and broad ranging set of activation energies and enthalpy changes for surface-catalyzed reactions, we show that linear relationships exist between dissociation activation energies and enthalpy changes. Known in the literature as empirical Brønsted-Evans-Polanyi (BEP) relationships, we identify and discuss the physical origin of their presence in heterogeneous catalysis. The key implication is that merely from knowledge of adsorption energies the barriers to catalytic elementary reaction steps can be estimated.

  19. Interfacial reaction of eutectic AuSi solder with Si (100) and Si (111) surfaces

    Science.gov (United States)

    Jang, Jin-Wook; Hayes, Scott; Lin, Jong-Kai; Frear, Darrel R.

    2004-06-01

    The dissolution behavior of Si (100) and (111) dies by eutectic AuSi solder was investigated. On the Si (100) surface, the dissolution primarily occurred by the formation of craters resulting in a rough surface. The dissolution of the Si (111) resulted in a relatively smooth surface. The morphology of the Si (100) surface during a AuSi soldering reaction exhibited more time-dependent behavior and the etching craters on a Si (100) surface grew larger with time whereas Si (111) did not significantly change. This difference was ascribed to the surface energy differences between Si (111) and (100) surfaces that resulted in the two- and three-dimensional dissolution behaviors, respectively. This difference plays an important role in the formation of voids during the AuSi die bonding. The etching craters on Si (100) act as a AuSi solder sink and the regions surrounded by etch pits tend to become voids. For Si (111), flat surfaces were observed in the voided regions. Cross section analysis showed that no solder reaction occurred in the voided region of the Si (111) surface. This suggests the possibility of the formation of a thin inert layer in a potentially voided region prior to assembly. To achieve void-free die bonding, different parameters must be adjusted to the Si (100) and Si (111) surfaces with the AuSi alloy.

  20. Synthesis of biscoumarin derivatives by the reaction of aldehydes and 4-hydroxycoumarin using ruthenium (III chloride hydrate as a versatile homogeneous catalyst

    Directory of Open Access Journals (Sweden)

    Tabatabaeian Khalil

    2012-01-01

    Full Text Available The one-pot domino Knoevenagel-type condensation/Michael reaction of aromatic, heteroaromatic and aliphatic aldehydes with 4-hydroxycoumarin in aqueous media in the presence of ruthenium salt as homogeneous catalyst was investigated. It was found that 5 mol% of RuCl3.nH2O catalyzes biscoumarin synthesis in high yields (70-95% under optimised, mild, green and environmentally benign reaction conditions in short times (25-35min.

  1. Modeling of hydrogen evolution reaction on the surface of GaInP2

    Science.gov (United States)

    Choi, Woon Ih; Wood, Brandon; Schwegler, Eric; Ogitsu, Tadashi

    2012-02-01

    GaInP2 is promising candidate material for hydrogen production using sunlight. It reduces solvated proton into hydrogen molecule using light-induced excited electrons in the photoelectrochemical cell. However, it is challenging to model hydrogen evolution reaction (HER) using first-principles molecular dynamics. Instead, we use Anderson-Newns model and generalized solvent coordinate in Marcus-Hush theory to describe adiabatic free energy surface of HER. Model parameters are fitted from the DFT calculations. We model Volmer-Heyrovsky reaction path on the surfaces of CuPt phase of GaInP2. We also discuss effects of surface oxide and catalyst atoms that exist on top of bare surfaces in experimental circumstances.

  2. Towards a green hydrate inhibitor: imaging antifreeze proteins on clathrates.

    Directory of Open Access Journals (Sweden)

    Raimond Gordienko

    Full Text Available The formation of hydrate plugs in oil and gas pipelines is a serious industrial problem and recently there has been an increased interest in the use of alternative hydrate inhibitors as substitutes for thermodynamic inhibitors like methanol. We show here that antifreeze proteins (AFPs possess the ability to modify structure II (sII tetrahydrofuran (THF hydrate crystal morphologies by adhering to the hydrate surface and inhibiting growth in a similar fashion to the kinetic inhibitor poly-N-vinylpyrrolidone (PVP. The effects of AFPs on the formation and growth rate of high-pressure sII gas mix hydrate demonstrated that AFPs are superior hydrate inhibitors compared to PVP. These results indicate that AFPs may be suitable for the study of new inhibitor systems and represent an important step towards the development of biologically-based hydrate inhibitors.

  3. Pore surface engineering in a zirconium metal–organic framework via thiol-ene reaction

    Energy Technology Data Exchange (ETDEWEB)

    Gui, Bo; Hu, Guiping; Zhou, Tailin; Wang, Cheng, E-mail: chengwang@whu.edu.cn

    2015-03-15

    A porous olefin-functionalized Zr(IV)-based metal–organic framework, denoted as UiO-68-allyl, has been constructed. Our results clearly demonstrated that the surface of UiO-68-allyl could be decorated with organic molecule (ethanethiol) via thiol-ene reaction. More importantly, the crystallinity of the framework were maintained during the post-synthetic modification process. However, the microporosity of the framework is retained but the surface area decreased, due to the grafting of ethylthio groups into the pores. From our studies, we can conclude that the strategy of post-synthetic modification of UiO-68-allyl via thiol-ene reaction may be general. Furthermore, we may anchor other desired functional group onto the pore walls in Zr-MOFs via thiol-ene reaction, enabling more potential applications. - graphical abstract: In this manuscript, we reported the post-synthetic modification of an olefin-functionalized Zr(IV)-based metal–organic framework via thiol-ene reaction. - Highlights: • A porous olefin-functionalized Zr(IV)-based metal–organic framework has been constructed. • The surface of olefin-functionalized Zr-MOF could be decorated with organic molecules via thiol-ene reaction. • The crystallinity and permanent porosity of the framework were maintained during the post-synthetic modification process.

  4. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  5. Laboratory simulation of SO2 heterogeneous reactions on hematite surface under different SO2 concentrations

    Institute of Scientific and Technical Information of China (English)

    CUI Huxiong; CHENG Tiantao; YU Xingna; CHEN Jianmin; XU Yongfu; FANG Wen

    2009-01-01

    The variations of sulfate formation and optical coefficients during SO2 heterogeneous reactions on hematite surface under different SO2 concentrations were examined using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and ion chromatograph (IC). Laboratory experiments revealed that within ambient SO2 of 0.51--18.6 ppmv, sulfate product, producing velocity, absorption and backward scattering coefficients showed an increasing trend with SO2 concentration. Under given SO2 concentration, the velocity of sulfate producing performed an evolution of initial increasing, midterm decreasing and final stabilizing. The reactive uptake and Brunauer-Emmett-Teller (BET) uptake coefficients of heterogeneous reactions rose with SO2 and exhibited high reactivities. Considering global warming, this result is important for the knowledge of heterogeneous reactions of SO2 on mineral particle surface in the atmosphere and the assessment of their impacts on radiative forcing.

  6. Surface structure and reaction performances of highly dispersed and supported bimetallic catalysts

    Institute of Scientific and Technical Information of China (English)

    林励吾; 杨维慎; 贾继飞; 徐竹生; 张涛; 范以宁; 寇元; 沈俭一

    1999-01-01

    Surface structures of Pt-Sn and Pt-Fe bimetallic catalysts have been investigated by means of Mssbauer spectroscopy, Pt-LⅢ-edge EXAFS and H2-adsorption. The results showed that the second component, such as Sn or Fe, remained in the oxidative state and dispersed on the γ-Al2O3 surface after reduction, while Pt was completely reduced to the metallic state and dispersed on either the metal oxide surface or the γ-Al2O3 surface. By correlating the distribution of Pt species on different surfaces with the reaction and adsorption performances, it is proposed that two kinds of active Pt species existed on the surfaces of both catalysts, named M1 sites and M2 sites. M1 sites are the sites in which Pt directly anchored on the γ-Al2O3 surface, while M2 sites are those in which Pt anchored on the metal oxide surface. M1 sites are favorable for low temperature H2 adsorption, and responsible for the hydrogenolysis reaction and carbon deposition, while M2 sites which adsorb more H2 at higher tem

  7. Monte Carlo simulations of surface reactions: NO reduction by CO or H2

    Science.gov (United States)

    Álvarez-Falcón, L.; Alas, S. J.; Vicente, L.

    2014-01-01

    The development of surface science has given an opportunity to investigate the process of heterogeneous catalysis at a molecular level. In this way there has been a great progress in understanding the mechanism in NO decomposition. Modeling has been an very important tool in this goal. In this work we analyze the reactions NO+H2 and NO+CO. The extremely narrow production peak of N2 and CO2 which occurs in the reaction of NO+CO on Pt(100), a phenomenon known as "surface explosion," is studied using a dynamic Monte Carlo method on a square lattice at low pressure under isothermal conditions. The catalytic reduction of nitric oxide by hydrogen over a Pt surface is also studied by using a dynamic Monte Carlo. Using a Langmuir-Hinshelwod mechanism of reaction, a simplified model with only four adsorbed species (NO, H, O, and N) is constructed. The effect on NO dissociation rate, the limiting step in the whole reaction, is inhibited by coadsorbed NO and H2 molecules, and is enhanced both by the presence of empty sites and adsorbed N atoms as nearest-neighbors. In these simulations experimental parameters values are included, such as: adsorption, desorption and diffusion of the reactants. The phenomenon is studied changing the temperature in the range of 300-550 K. The modeling reproduces well observed TPD and TPR experimental results and allows a visualization of the spatial development of the surface explosion.

  8. Signal Amplification by Enzymatic Reaction in an Immunosensor Based on Localized Surface Plasmon Resonance (LSPR

    Directory of Open Access Journals (Sweden)

    Yong-Beom Shin

    2010-03-01

    Full Text Available An enzymatic reaction was employed as a means to enhance the sensitivity of an immunosensor based on localized surface plasmon resonance (LSPR. The reaction occurs after intermolecular binding between an antigen and an antibody on gold nano-island (NI surfaces. For LSPR sensing, the gold NI surface was fabricated on glass substrates using vacuum evaporation and heat treatment. The interferon-g (IFN-g capture antibody was immobilized on the gold NIs, followed by binding of IFN-g to the antibody. Subsequently, a biotinylated antibody and a horseradish peroxidase (HRP conjugated with avidin were simultaneously introduced. A solution of 4-chloro-1-naphthol (4-CN was then used for precipitation; precipitation was the result of the enzymatic reaction catalyzed the HRP on gold NIs. The LSPR spectra were obtained after each binding process. Using this method, the enzyme-catalyzed precipitation reaction on the gold NI surface was found to effectively amplify the change in the signal of the LSPR immunosensor after intermolecular binding.

  9. Surface concentration nonuniformities resulting from chronoamperometry of a reversible reaction at an ultramicrodisk electrode

    DEFF Research Database (Denmark)

    Britz, Dieter H.; Strutwolf, Jörg

    2016-01-01

    The chronoamperometric experiment at a disk electrode was simulated, assuming a reversible reaction. When the diffusion coefficients of the two substances involved are different, there appears a surface concentration non- uniformity in the radial direction, exhibiting a maximum effect in time. At...

  10. A Lagrangian particle method for reaction-diffusion systems on deforming surfaces.

    Science.gov (United States)

    Bergdorf, Michael; Sbalzarini, Ivo F; Koumoutsakos, Petros

    2010-11-01

    Reaction-diffusion processes on complex deforming surfaces are fundamental to a number of biological processes ranging from embryonic development to cancer tumor growth and angiogenesis. The simulation of these processes using continuum reaction-diffusion models requires computational methods capable of accurately tracking the geometric deformations and discretizing on them the governing equations. We employ a Lagrangian level-set formulation to capture the deformation of the geometry and use an embedding formulation and an adaptive particle method to discretize both the level-set equations and the corresponding reaction-diffusion. We validate the proposed method and discuss its advantages and drawbacks through simulations of reaction-diffusion equations on complex and deforming geometries.

  11. Ab Initio Calculation of Rate Constants for Molecule–Surface Reactions with Chemical Accuracy

    Science.gov (United States)

    Piccini, GiovanniMaria; Alessio, Maristella

    2016-01-01

    Abstract The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide‐and‐conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction‐type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre‐exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude). PMID:27008460

  12. Kinetics of hydrate formation using gas bubble suspended in water

    Institute of Scientific and Technical Information of China (English)

    马昌峰; 陈光进; 郭天民

    2002-01-01

    An innovative experimental technique, which was devised to study the effects of temperature and pressure on the rate of hydrate formation at the surface of a gas bubble suspended in a stagnant water phase, was adapted in this work. Under such conditions, the hydrate-growth process is free from dynamic mass transfer factors. The rate of hydrate formation of methane and carbon dioxide has been systematically studied. The measured hydrate-growth data were correlated by using the molar Gibbs free energy as driving force. In the course of the experiments, some interesting surface phenomena were observed.

  13. Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2009-01-01

    A density functional theory (DFT)-based, combinatorial search for improved oxygen reduction reaction (ORR) catalysts is presented. A descriptor-based approach to estimate the ORR activity of binary surface alloys, wherein alloying occurs only in the surface layer, is described, and rigorous......, potential-dependent computational tests of the stability of these alloys in aqueous, acidic environments are presented. These activity and stability criteria are applied to a database of DFT calculations on nearly 750 binary transition metal surface alloys; of these, many are predicted to be active...

  14. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  15. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-04-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  16. Carbonation of wollastonite(001) competing hydration: microscopic insights from ion spectroscopy and density functional theory.

    Science.gov (United States)

    Longo, Roberto C; Cho, Kyeongjae; Brüner, Philipp; Welle, Alexander; Gerdes, Andreas; Thissen, Peter

    2015-03-04

    In this paper, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as a model surface of cement and concrete. Total energy calculations based on density functional theory combined with kinetic barrier predictions based on nudge elastic band method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO3(2-)) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (also called early stage hydration) and Ca(2+) ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca(2+) reacts again with CO2 and forms carbonate complexes, ending in a delocalized layer. By means of high-resolution time-of-flight secondary-ion mass spectrometry images, we confirm that hydration can lead to a partially delocalization of Ca(2+) ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by the meaning of low-energy ion-scattering spectroscopy combined with careful discussion about the competing reactions of carbonation vs hydration.

  17. Surface-catalyzed air oxidation reactions of hydrazines: Tubular reactor studies

    Science.gov (United States)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of hydrazine, monomethylhydrazine, unsymmetrical dimethylhydrazine, symmetrical dimethylhydrazine, trimethylhydrazine and tetramethylhydrazine were investigated in a metal-powder packed turbular flow reactor at 55 plus or minus 3 C. Hydrazine was completely reacted on all surfaces studied. The major products of monomethylhydrazine (MMH) oxidation were methanol, methane and methyldiazene. The di-, tri- and tetra-methyl hydrazines were essentially unreactive under these conditions. The relative catalytic reactivities toward MMH are: Fe greater than Al2O3 greater than Ti greater than Zn greater than 316 SS greater than Cr greater than Ni greater than Al greater than 304L SS. A kinetic scheme and mechanism involving adsorption, oxidative dehydrogenation and reductive elimination reactions on a metal oxide surface are proposed.

  18. Comparative temporal analysis of multiwalled carbon nanotube oxidation reactions: Evaluating chemical modifications on true nanotube surface

    Science.gov (United States)

    Pacheco, Flávia G.; Cotta, Alexandre A. C.; Gorgulho, Honória F.; Santos, Adelina P.; Macedo, Waldemar A. A.; Furtado, Clascídia A.

    2015-12-01

    The influence of extensive purification on oxidized multiwalled carbon nanotube surface composition was studied through the characterization and differentiation of the actual surface submitted to three oxidation methods: microwave-assisted acid oxidation, hydrogen peroxide reflux, and Fenton reaction. The oxidized samples were purified by a multi-step procedure including the sequential use of basic reflux and dispersion in dimethylformamide (DMF). The results showed a significant increase in the amount of oxidation debris with hydrogen peroxide and Fenton reaction times longer than 8 h and strong surface characteristic modification. With regard to sample purification, basic reflux led to a reduction in oxygenated group concentration of only 10% in the samples treated by acid oxidation. On the other hand, the subsequent use of DMF led to a further decrease in concentration of 39%, proving to be a more efficient method for the removal of oxidation debris.

  19. Formulating formation mechanism of natural gas hydrates.

    Science.gov (United States)

    Palodkar, Avinash V; Jana, Amiya K

    2017-07-25

    A large amount of energy, perhaps twice the total amount of all other hydrocarbon reserves combined, is trapped within gas hydrate deposits. Despite emerging as a potential energy source for the world over the next several hundred years and one of the key factors in causing future climate change, gas hydrate is poorly known in terms of its formation mechanism. To address this issue, a mathematical formulation is proposed in the form of a model to represent the physical insight into the process of hydrate growth that occurs on the surface and in the irregular nanometer-sized pores of the distributed porous particles. To evaluate the versatility of this rigorous model, the experimental data is used for methane (CH4) and carbon dioxide (CO2) hydrates grown in different porous media with a wide range of considerations.

  20. Hydration process in Portland cement blended with activated coal gangue

    Institute of Scientific and Technical Information of China (English)

    Xian-ping LIU; Pei-ming WANG; Min-ju DING

    2011-01-01

    This paper deals with the hydration of a blend of Portland cement and activated coal gangue in order to determine the relationship between the degree of hydration and compressive strength development.The hydration process was investigated by various means:isothermal calorimetry,thermal analysis,non-cvaporable water measurement,and X-ray diffraction analysis.The results show that the activated coal gangue is a pozzolanic material that contributes to the hydration of the cement blend.The pozzolanic reaction occurs over a period of between 7 and 90 d,consuming portlandite and forming both crystal hydrates and ill-crystallized calcium silicate hydrates.These hydrates are similar to those found in pure Portland cement.The results show that if activated coal gangue is substituted for cement at up to 30% (w/w),it does not significantly affect the final compressive strength of the blend.A long-term compressive strength improvement can in fact be achieved by using activated coal gangue as a supplementary cementing material.The relationship between compressive strength and degree of hydration for both pure Portland cement and blended cement can be described with the same equation.However,the parameters are different since blended cement produces fewer calcium silicate hydrates than pure Portland cement at the same degree of hydration.

  1. STUDY FOR NATURAL GAS HYDRATE CONVERSED FROM ICE

    Institute of Scientific and Technical Information of China (English)

    WANG Shengjie; SHEN Jiandong; HAO Miaoli; LIU Furong

    2003-01-01

    Natural gas hydrates are crystalline clathrate compounds composed of water and gases of small molecular diameters that can be used for storage and transport of natural gas as a novel method. In the paper a series of experiments of aspects and kinetics for hydrate formed from natural gas and ice were carried out on the industrial small scale production apparatus. The experimental results show that formation conditions of hydrate conversed from ice are independent of induction time, and bigger degrees of supersaturation and supercooling improved the driving force and advanced the hydrate formation.Superpressure is also favorable for ice particle conversion to hydrate. In addition, it was found there have an optimal reaction time during hydrate formation.

  2. Oxidation of elemental mercury by chlorine: Gas phase, Surface,and Photo-induced reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

    2004-10-22

    Accurate oxidation rate constants of mercury gas are needed for determining its dispersion and lifetime in the atmosphere. They would also help in developing a technology for the control of mercury emissions from coal-fired power plants. However, it is difficult to establish the accurate rate constants primarily due to the fact that mercury easily adsorbs on solid surface and its reactions can be catalyzed by the surface. We have demonstrated a procedure that allows the determination of gas phase, surface-induced, and photo-induced contributions in the kinetic study of the oxidation of mercury by chlorine gas. The kinetics was studied using reactors with various surface to volume ratios. The effect of the surface and the photo irradiation on the reaction was taken into consideration. The pressure dependent study revealed that the gas phase oxidation was a three-body collision process. The third order rate constant was determined to be 7.5({+-}0.2) x 10{sup -39} mL{sup 2} molecules{sup -2}s{sup -1} with N{sub 2} as the third body at 297 {+-} 1 K. The surface induced reaction on quartz window was second order and the rate constant was 2.7 x 10{sup -17} mL{sup 2} molecules{sup -1} cm{sup -2} sec. Meanwhile, the 253.7 nm photon employed for mercury detection was found to accelerate the reaction. The utilization efficiency of 253.7 nm photon for Hg{sup 0} oxidation was 6.7 x 10{sup -4} molecules photon{sup -1} under the conditions employed in this study.

  3. Hydration Assessment of Athletes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ KEY POINTS · Although there is no scientific consensus for 1 ) howbest to assess the hydration status of athletes, 2)what criteria to use as acceptable outcome measurements, or 3) the best time to apply practical assessment methods, there are methods that can be used toprovide athletes with useful feedback about their hydration status

  4. Use of molecular beams for kinetic measurements of chemical reactions on solid surfaces

    Science.gov (United States)

    Zaera, Francisco

    2017-05-01

    In this review we survey the contributions that molecular beam experiments have provided to our understanding of the dynamics and kinetics of chemical interactions of gas molecules with solid surfaces. First, we describe the experimental details of the different instrumental setups and approaches available for the study of these systems under the ultrahigh vacuum conditions and with the model planar surfaces often used in modern surface-science experiments. Next, a discussion is provided of the most important fundamental aspects of the dynamics of chemical adsorption that have been elucidated with the help of molecular beam experiments, which include the development of potential energy surfaces, the determination of the different channels for energy exchange between the incoming molecules and the surface, the identification of adsorption precursor states, the understanding of dissociative chemisorption, the determination of the contributions of corrugation, steps, and other structural details of the surface to the adsorption process, the effect to molecular steering, the identification of avenues for assisting adsorption, and the molecular details associated with the kinetics of the uptake of adsorbates as a function of coverage. We follow with a summary of the work directed at the determination of kinetic parameters and mechanistic details of surface reactions associated with catalysis, mostly those promoted by late transition metals. This discussion we initiate with an overview of what has been learned about simple bimolecular reactions such as the oxidation of CO and H2 with O2 and the reaction of CO with NO, and continue with the review of the studies of more complex systems such as the oxidation of alcohols, the conversion of organic acids, the hydrogenation and isomerization of olefins, and the oxidative activation of alkanes under conditions of short contact times. Sections 6 and 7 of this review deal with the advances made in the use of molecular beams with

  5. A Reaction-based Diagonalization Approach to Modeling Surface Water Quality

    Science.gov (United States)

    Yu, J.; Yeh, G.; Zhang, F.; Wu, T.; Hu, G.

    2005-12-01

    There are many water quality models (e.g., WASP, QAUL2E/QUAL2K, CE-QUAL-ICM, RCA, RMA11, etc.) that have been employed by practitioners in surface water quality modeling. All of these models are similar to each others. The major differences among them are the number of water quality parameters included and the number of biogeochemical processes considered. Because of the limitation on the number of biogeochemical processes considered and, in a lesser extent, on the number of water quality parameters included, these models often perform only fairly in validation and their predictions may be unreliable, even though they can be adequately calibrated in most occasions and excellently in some occasions. Obviously, there is a need to develop a model that would allow the inclusion of any number of water quality parameters and enable the hypothesis of any number of biogeochemical processes. This paper presents the development of a numerical water quality model using a general paradigm of reaction-based approaches. In a reaction-based approach, all conceptualized biogoechemical processes are transformed into a reaction network. Through the decomposition of species governing equations via Gauss-Jordan column reduction of the reaction network, (1) redundant fast reactions and irrelevant kinetic reactions are removed from the system, which alleviates the problem of unnecessary and erroneous formulation and parameterization of these reactions, and (2) fast reactions and slow reactions are decoupled, which enables robust numerical integrations. The system of species governing equations is transformed into two sets: algebraic equations (either mass action equations or users' specified) of equilibrium variables and differential equations of kinetic variables. As a result, the model alleviates the needs of using simple partitions for fast reactions and uses kinetic-variables instead of biogeochemical species as primary dependent variables. With the diagonalization strategy, it

  6. Surface reactions of molecular and atomic oxygen with carbon phosphide films.

    Science.gov (United States)

    Gorham, Justin; Torres, Jessica; Wolfe, Glenn; d'Agostino, Alfred; Fairbrother, D Howard

    2005-11-01

    The surface reactions of atomic and molecular oxygen with carbon phosphide films have been studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Carbon phosphide films were produced by ion implantation of trimethylphosphine into polyethylene. Atmospheric oxidation of carbon phosphide films was dominated by phosphorus oxidation and generated a carbon-containing phosphate surface film. This oxidized surface layer acted as an effective diffusion barrier, limiting the depth of phosphorus oxidation within the carbon phosphide film to phosphorus atoms as well as the degree of phosphorus oxidation. For more prolonged AO exposures, a highly oxidized phosphate surface layer formed that appeared to be inert toward further AO-mediated erosion. By utilizing phosphorus-containing hydrocarbon thin films, the phosphorus oxides produced during exposure to AO were found to desorb at temperatures >500 K under vacuum conditions. Results from this study suggest that carbon phosphide films can be used as AO-resistant surface coatings on polymers.

  7. Surface photo reaction processes using synchrotron radiation; Hoshako reiki ni yoru hyomenko hanno process

    Energy Technology Data Exchange (ETDEWEB)

    Imaizumi, Y. [Tohoku University, Sendai (Japan). Institute for Materials Research; Yoshigoe, A. [Toyohashi University of Technology, Aichi (Japan); Urisu, T. [Toyohashi University of Technology, Aichi (Japan). Institute for Molecular Science

    1997-08-20

    This paper introduces the surface photo reaction processes using synchrotron radiation, and its application. A synchrotron radiation process using soft X-rays contained in electron synchrotron radiated light as an excited light source has a possibility of high-resolution processing because of its short wave length. The radiated light can excite efficiently the electronic state of a substance, and can induce a variety of photochemical reactions. In addition, it can excite inner shell electrons efficiently. In the aspect of its application, it has been found that, if radiated light is irradiated on surfaces of solids under fluorine-based reaction gas or Cl2, the surfaces can be etched. This technology is utilized practically. With regard to radiated light excited CVD process, it may be said that anything that can be deposited by the ordinary plasma CVD process can be deposited. Its application to epitaxial crystal growth may be said a nano processing application in thickness direction, such as forming an ultra-lattice structure, the application being subjected to expectation. In micromachine fabricating technologies, a possibility is searched on application of a photo reaction process of the radiated light. 5 refs., 6 figs.

  8. Electro-deposition of Pd on carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available Pd nanostructured catalysts were electrodeposited by surface-limited redox replacement reactions usingthe electrochemical atomic layer deposition technique. Carbon paper and Ni foam were used as substratesfor the electrodeposition of the metal...

  9. Comparative analysis of growth characteristics of hydrate formation on the surface of suspended water droplet and bubble%悬垂水滴与悬浮气泡表面气体水合物形成特性对比

    Institute of Scientific and Technical Information of China (English)

    陆引哲; 刘道平; 杨亮

    2015-01-01

    Based on a set of high-pressure visual experiment device used for the natural gas hydrates crystallization and growth on the surface of suspended water droplet and suspended bubble,the influence of factors such as pressure,temperature,water quality on the crystallization and growth are analyzed and discussed respectively.Comparative analysis of the experimental phenomena about the characteristics of hydrate formation on the surface of suspended water droplet and bubble was discussed.Temperature and pressure are the important factors of hydrate crystallization and growth.The decrease of temperature or the increase of pressure will also improve the growth of hydrate.This paper also provides experimental support for the development of spray and bubbling method to improve the hydrate formation.%基于悬垂水滴和悬浮气泡表面形成气体水合物的可视化耐高压实验装置,分析探讨了反应压力、温度、水质等因素对水滴和气泡表面气体水合物成核和生长规律的影响。对已有的关于研究单个静止悬垂水滴和悬浮气泡表面气体水合物生长特性的实验现象及结果进行了对比分析,得出结论:温度和压力是影响表面水合物结晶与生长的重要因素;温度的降低或压力的升高均使水合反应速度加快。研究为发展喷雾法和鼓泡法这两种强化制备水合物的方式提供了有效的实验支撑。

  10. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  11. Efeito do íon comum na reação de hidratação do MgO Common-ion effect on the MgO hydration reaction

    Directory of Open Access Journals (Sweden)

    L. F. Amaral

    2008-03-01

    Full Text Available Concretos refratários contendo óxido de magnésio (MgO apresentam grande interesse tecnológico por unir a versatilidade e a liberdade de design dos refratários monolíticos aos benefícios conferidos pelo MgO, tais como, elevada refratariedade e resistência a escórias básicas. Entretanto, o MgO é facilmente hidratado formando Mg(OH2 e essa reação leva a uma grande expansão volumétrica do material, o que limita sua aplicação em concretos refratários. Para encontrar soluções que minimizem esse efeito, torna-se necessário uma melhor compreensão a respeito dos fatores que afetam essa reação, como a temperatura. Neste trabalho, o impacto do deslocamento de equilíbrio químico conhecido como efeito do íon comum na hidratação do MgO foi avaliado na presença de diversos aditivos (MgCl2, MgSO4, CaCl2 e KOH. Entre os aditivos, o CaCl2 comportou-se como um retardador da reação, enquanto um comportamento oposto foi obtido para o KOH. O MgCl2 e o MgSO4 apresentaram ambos os efeitos dependendo de suas concentrações na suspensão. As possíveis causas para esses comportamentos são discutidas no artigo. Os resultados foram abordados considerando-se a termodinâmica e a cinética da reação, bem como os conseqüentes danos mecânicos causados ao material.MgO based refratory castables present a wide technological interest because they add together the versatility and the installation efficiency of the monolithic refractories to the intrinsic MgO properties, such as high refractoriness and resistance to basic slag corrosion. Nevertheless, MgO is easily hydrated by water generating Mg(OH2 and this reaction causes a volumetric expansion that could lead to material’s breakdown and inhibit its application in refractory castables. In order to develop solutions to minimize this effect, it is necessary a better understanding of the main variables involved in this reaction, such as temperature. In this work, the impact of the chemical

  12. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  13. Origin of Power Laws for Reactions at Metal Surfaces Mediated by Hot Electrons

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2009-01-01

    A wide range of experiments have established that certain chemical reactions at metal surfaces can be driven by multiple hot-electron-mediated excitations of adsorbates. A high transient density of hot electrons is obtained by means of femtosecond laser pulses and a characteristic feature...... of such experiments is the emergence of a power law dependence of the reaction yield on the laser fluence Y similar to F-n. We propose a model of multiple inelastic scattering by hot electrons which reproduces this power law and the observed exponents of several experiments. All parameters are calculated within...

  14. Single-charge-exchange reactions and the neutron density at the surface of the nucleus

    Science.gov (United States)

    Loc, Bui Minh; Auerbach, Naftali; Khoa, Dao T.

    2017-07-01

    In this paper, we study the charge-exchange reaction to the isobaric analog state using two types of transition densities. One transition density is equal to the difference of the total neutron density minus the total proton density and the other one is the density of the excess neutrons only. We show that for projectiles that do not probe the interior of the nucleus but mostly the surface of this nucleus, distinct differences in the cross section arise when two types of transition densities are employed. We demonstrate this by considering the (3He,t ) reaction.

  15. Obsidian hydration profiles measured by sputter-induced optical emission.

    Science.gov (United States)

    Tsong, I S; Houser, C A; Yusef, N A; Messier, R F; White, W B; Michels, J W

    1978-07-28

    The variation of concentrations of hydrogen, sodium, potassium, lithium, calcium, magnesium, silicon, and aluminum as a function of depth in the hydration layer of obsidian artifacts has been determined by sputter-induced optical emission. The surface hydration is accompanied by dealkalization, and there is a buildup of alkaline earths, calcium and magnesium in the outermost layers. These results have clarified the phenomena underlying the obsidian hydration dating technique.

  16. The adsorption and reaction of fluorine on the Si(100) surface

    Science.gov (United States)

    Engstrom, J. R.; Nelson, Mark M.; Engel, Thomas

    1989-05-01

    The adsorption and reaction of both molecular and atomic flourine with the Si(100) surface has been examined under ultraligh vacuum conditions with supersonic molecular beam techniques, X-ray photoelectron spectroscopy (XPS), quadrupole mass spectrometry and low-energy ion scattering spectroscopy. Molecular flourine adsorbs dissociatively on the clean Si(100) surface with an initial (zero-coverage) probability of the adsorption of 0.46±0.02, which is essentially independent of both the incident beam energy (flouride adlayers, produced by exposing the clean Si(100) surface a 120 K to a beam of flourine, yielded SiF 2(g) and SiF 4(g) as the only gas phase reaction products. The relative yield to these two gas phase reaction products dependes strongly on the initial coverage of the flourine adatoms-below ˜ ML, SiF 2(g) in the major reaction product, whereas above ˜3 ML, the yield of SiF 2(g) remains constant while that of SiF 2(g) increases continuously. Above initial coverages of 2 ML, the thermal decomposition is terminated near 800 K by the removal of one monolayer of the silicon substrate in the form of SiF 2(g). A detailed analysis of the decomposition for coverages of 3 ML revealed complex behavior, the kinetics depending sensitively on the initial coverage of flourin adatome. For example, for initial coverages of 1-1.3 ML, zero-order kinetics were found to apply as the coverage decreases from 1.0 to 0.3 ML. A qualitative assessment of the adlayer configuration following partial decomposition suggests that the thermal decomposition in the zero-order regime proceeds inhomogenously, leaving separate domains where the local coverage of flourine is either near saturation or zero. We suggest that the spatially inhomogenous decomposition is a manifestation of preferential reactivity at surface defects such as atomic steps. Investigation of the steady-state reaction of preferential reactivity at surface defects such as atomic steps. Investigation of the steady

  17. Hydration of Acetylene: A 125th Anniversary

    Science.gov (United States)

    Ponomarev, Dmitry A.; Shevchenko, Sergey M.

    2007-01-01

    The year 2006 is the 125th anniversary of a chemical reaction, the discovery of which by Mikhail Kucherov had a profound effect on the development of industrial chemistry in the 19-20th centuries. This was the hydration of alkynes catalyzed by mercury ions that made possible industrial production of acetaldehyde from acetylene. Historical…

  18. Defect-free surface of quartz glass polished in elastic mode by chemical impact reaction

    Institute of Scientific and Technical Information of China (English)

    彭文强; 关朝亮; 李圣怡

    2014-01-01

    Removal of brittle materials in the brittle or ductile mode inevitably causes damaged or strained surface layers containing cracks, scratches or dislocations. Within elastic deformation, the arrangement of each atom can be recovered back to its original position without any defects introduced. Based on surface hydroxylation and chemisorption theory, material removal mechanism of quartz glass in the elastic mode is analyzed to obtain defect-free surface. Elastic contact condition between nanoparticle and quartz glass surface is confirmed from the Hertz contact theory model. Atoms on the quartz glass surface are removed by chemical bond generated by impact reaction in the elastic mode, so no defects are generated without mechanical process. Experiment was conducted on a numerically controlled system for nanoparticle jet polishing, and one flat quartz glass was polished in the elastic mode. Results show that scratches on the sample surface are completely removed away with no mechanical defects introduced, and micro-roughness (Ra) is decreased from 1.23 nm to 0.47 nm. Functional group Ce—O—Si on ceria nanoparticles after polishing was detected directly and indirectly by FTIR, XRD and XPS spectra analysis from which the chemical impact reaction is validated.

  19. Effect of atmospheric oxidative plasma treatments on polypropylenic fibers surface: Characterization and reaction mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Nisticò, Roberto, E-mail: roberto.nistico@unito.it [University of Torino, Department of Chemistry and NIS Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Magnacca, Giuliana [University of Torino, Department of Chemistry and NIS Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Faga, Maria Giulia; Gautier, Giovanna [CNR-IMAMOTER, Strada delle Cacce 73, 10135 Torino (Italy); D’Angelo, Domenico; Ciancio, Emanuele [Clean-NT Lab, Environment Park S.p.A., Via Livorno 60, 10144 Torino (Italy); Lamberti, Roberta; Martorana, Selanna [Herniamesh S.r.l., Via F.lli Meliga 1/C, 10034 Chivasso (Italy)

    2013-08-15

    Atmospheric pressure plasma-dielectric barrier discharge (APP-DBD, open chamber configuration) was used to functionalize polypropylene (PP) fibers surface in order to generate oxidized-reactive groups such as hydroperoxides, alcohols and carbonyl species (i.e. ketones and others). Such a species increased the surface polarity, without causing material degradation. Three different types of plasma mixture (He, He/O{sub 2}, He/O{sub 2}/H{sub 2}O) under three different values of applied power (750, 1050, 1400 W) were investigated. The formed plasma species (O{sub 2}{sup +}, O single atom and OH radical) and their distribution were monitored via optical emission spectrometry (OES) measurements, and the plasma effects on PP surface species formation were followed by X-ray photoemission spectroscopy (XPS). Results allowed to better understand the reaction pathways between plasma phase and PP fibers. In fact, two reaction mechanisms were proposed, the first one concerning the plasma phase reactions and the second one involving material surface modifications.

  20. Investigations of the Fundamental Surface Reactions Involved in the Sorption and Desorption of Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Czerwinski, Ken; Heske, Clemens; Moser, Duane; Misra, Mnoranjan; McMillion, Glen

    2011-04-20

    Models for describing solution- and surface-phase reactions have been used for 30 years, but only recently applicable to complex surfaces. Duff et al., using micro-XANES, found that Pu was concentrated on Mn-oxide and smectite phases of zeolitic tuff, providing an evaluation of contaminant speciation on surfaces for modeling. Experiments at Los Alamos demonstrated that actinides display varying surface residence time distributions, probably reflective of mineral surface heterogeneity. We propose to investigate the sorption/desorption behavior of radionuclides from mineral surfaces, as effected by microorganisms, employing isolates from Nevada Test Site deep alluvium as a model system. Characterizations will include surface area, particle size distribution, x-ray diffraction (XRD), microprobe analysis, extractions, and microbiology. Surface interactions will be assessed by electron spectroscopy (XPS), x-ray absorption fine structure spectroscopy (XAFS), X-ray emission spectroscopy, transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). Desert Research Institute (DRI), University of Nevada, Reno (UNR), and University of Nevada, Las Vegas (UNLV) researchers will collaborate to enhance scientific infrastructure and the understanding of contaminant behavior on surfaces, with broader implications for the management of DOE sites.

  1. Characteristics researches of natural gas hydrate growth on the suspended bubble surface%悬浮气泡表面天然气水合物形成的特性研究

    Institute of Scientific and Technical Information of China (English)

    叶鹏; 刘道平; 张健

    2013-01-01

    基于悬浮气泡表面生成气体水合物的高压可视化实验装置,分析探讨了系统压力、温度、水质因素对天然气水合物的成核和生长规律的影响。研究结果表明,随着反应温度的降低和反应压力的增大,诱导时间和生长时间呈现出缩减的趋势,气泡表面水合物逐渐由粗糙变得光滑;蒸馏水形成的水合物比较规则、密实,而纯净水形成的水合物略显凌乱、松散;相同实验条件下,蒸馏水生成水合物的诱导时间和生长时间较短。%Based on a set of high-pressure visual experiment device built for the investigation of the natural gas hydrates crystallization and grow th on the suspended gas bubble surface ,the in-fluence factors such as pressure ,temperature ,water quality were analyzed and discussed .The results showed that the higher pressure or the lower temperature resulted in the less induction time and growth time ,which led to surface changing from rough to smooth .The surface of hy-drate film in distilled water is smoother and tidier than that in pure water .Under the same exper-imental conditions ,the hydrate film in distilled water grew faster than that in pure water .

  2. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis.

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2016-06-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  3. Influence of Glass Powder on Hydration Kinetics of Composite Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Xiaolin Chang

    2015-01-01

    Full Text Available The influence of glass powder (GP on hydration kinetics of composite cementitious materials has been investigated by isothermal calorimetry test and hydration kinetics methods in this paper. The hydration heat emission rate and hydration heat decrease gradually while the induction and acceleration period increase with the increase of GP content. According to Krstulovic-Dabic model, the hydration process of composite cementitious materials containing GP is controlled by a variety of complicated reaction mechanisms, which can be divided into three periods: nucleation and crystal growth (NG, phase boundary reaction (I, and diffusion (D. The NG and I process are shortened after incorporating GP.

  4. The Role of Gas-Silicate Chemisorption Reactions in Modifying Planetary Crusts and Surfaces

    Science.gov (United States)

    King, P. L.; Henley, R. W.; Wykes, J. L.; Renggli, C.; Troitzsch, U.; Clark, D.; O'Neill, H. S.

    2014-12-01

    Evidence for gas-solid reactions is found throughout the solar system: for example, sulfidation reactions in some meteorites and secondary phases coating lunar pyroclastic glasses. On Earth, the products of gas-solid reactions are documented in volcanic systems, metalliferous mineral deposits, impact craters, and on dust or meteorites after passage through the atmosphere - such reactions are also likely on the surfaces of Mars and Venus. To understand the chemical dynamics of such gas-solid reactions, we are undertaking systematic experiments and thermochemical modelling. Experiments were conducted in a vertical gas-mixing furnace at 600 - 800 °C and 1 bar, using SO2and a range of Ca-bearing materials: labradorite, feldspar glass and anorthosite (rock). In each case, anhydrite formed rapidly. In shorter experiments with labradorite, isolated anhydrite is observed surrounded by 'moats' of Ca-depleted silicate. In longer experiments, anhydrite is found as clusters of crystals that, in some cases, extend from the substrate forming precarious 'towers' (Figure). Anhydrite fills cracks in porous samples. We propose that the nucleation and rapid growth of anhydrite on the surface of these Ca-rich phases occurs by chemisorption of SO2(g) molecules with slightly negatively charged oxygen onto available near-surface calcium with slight positive charge. Anhydrite growth is sustained by SO2(g) chemisorption and Ca migration through the reacting silicate lattice, accelerated by increased bond lengths at high temperature. Significantly, the chemisorption reaction indicates that SO2 disproportionates to form both oxidized sulfur (as anhydrite) and a reduced sulfur species (e.g., an S* radical ion). On Earth, in the presence of H2O, the predominant reduced sulfur species is H2S, through an overall reaction: 3CaAl2Si2O8 + 4 SO2(g)+ H2O(g) → 3CaSO4 + 3Al2SiO5 + 3SiO2 + H2S(g)The reduced sulfur may react with gas phase Fe, Ni, Zn and Cu cluster compounds to form metal sulfides

  5. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  6. Influence of Surface and Bulk Water Ice on the Reactivity of a Water-forming Reaction

    Science.gov (United States)

    Lamberts, Thanja; Kästner, Johannes

    2017-09-01

    On the surface of icy dust grains in the dense regions of the interstellar medium, a rich chemistry can take place. Due to the low temperature, reactions that proceed via a barrier can only take place through tunneling. The reaction {{H}}+{{{H}}}2{{{O}}}2\\longrightarrow {{{H}}}2{{O}}+{OH} is such a case with a gas-phase barrier of ∼26.5 kJ mol‑1. Still, the reaction is known to be involved in water formation on interstellar grains. Here, we investigate the influence of a water ice surface and of bulk ice on the reaction rate constant. Rate constants are calculated using instanton theory down to 74 K. The ice is taken into account via multiscale modeling, describing the reactants and the direct surrounding at the quantum mechanical level with density functional theory (DFT), while the rest of the ice is modeled on the molecular mechanical level with a force field. We find that H2O2 binding energies cannot be captured by a single value, but rather they depend on the number of hydrogen bonds with surface molecules. In highly amorphous surroundings, the binding site can block the routes of attack and impede the reaction. Furthermore, the activation energies do not correlate with the binding energies of the same sites. The unimolecular rate constants related to the Langmuir–Hinshelwood mechanism increase as the activation energy decreases. Thus, we provide a lower limit for the rate constant and argue that rate constants can have values up to two order of magnitude larger than this limit.

  7. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a drilling hazard by the oil and gas industry for years. Drilling engineers working in Russia, Canada and the USA have documented numerous problems, including drilling kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates as a potential energy source agree that the resource potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained from physical samples taken from actual hydrate-bearing rocks. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The project team drilled and continuously cored the Hot Ice No. 1 well on Anadarko-leased acreage beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and used for determining physical characteristics of hydrates and surrounding rock. After the well was logged, a 3D vertical seismic profile (VSP) was recorded to calibrate the shallow geologic section with seismic data and to investigate techniques to better resolve lateral subsurface variations of potential hydrate-bearing strata. Paulsson Geophysical Services, Inc. deployed their 80 level 3C clamped borehole seismic receiver array in the wellbore to record samples every 25 ft. Seismic vibrators were successively positioned at 1185 different surface positions in a circular pattern around the wellbore. This technique generated a 3D image of the subsurface. Correlations were

  8. QUANTUM MECHANICAL STUDY OF THE COMPETITIVE HYDRATION BETWEEN PROTONATED QUINAZOLINE AND LI+, NA+, AND CA2+ IONS

    Science.gov (United States)

    Hydration reactions are fundamental to many biological functions and environmental processes. The energetics of hydration of inorganic and organic chemical species influences their fate and transport behavior in the environment. In this study, gas-phase quantum mechanical calcula...

  9. DNA Polymer Brush Patterning through Photocontrollable Surface-Initiated DNA Hybridization Chain Reaction.

    Science.gov (United States)

    Huang, Fujian; Zhou, Xiang; Yao, Dongbao; Xiao, Shiyan; Liang, Haojun

    2015-11-18

    The fabrication of DNA polymer brushes with spatial resolution onto a solid surface is a crucial step for biochip research and related applications, cell-free gene expression study, and even artificial cell fabrication. Here, for the first time, a DNA polymer brush patterning method is reported based on the photoactivation of an ortho-nitrobenzyl linker-embedded DNA hairpin structure and a subsequent surface-initiated DNA hybridization chain reaction (HCR). Inert DNA hairpins are exposed to ultraviolet light irradiation to generate DNA duplexes with two active sticky ends (toeholds) in a programmable manner. These activated DNA duplexes can initiate DNA HCR to generate multifunctional patterned DNA polymer brushes with complex geometrical shapes. Different multifunctional DNA polymer brush patterns can be fabricated on certain areas of the same solid surface using this method. Moreover, the patterned DNA brush surface can be used to capture target molecules in a desired manner.

  10. The adsorption and reaction of vinyl acetate on Au/Pd(100) alloy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenjun [Pacific Northwest National Laboratory (PNNL); Calaza, Florencia C [ORNL; Tysoe, Wilfred [University of Wisconsin, Milwaukee

    2012-01-01

    The surface chemistry of vinyl acetate monomer (VAM) is studied on Au/Pd(100) alloys as a function of alloy composition using temperature-programmed desorption and reflection adsorption infrared spectroscopy. VAM adsorbs weakly on isolated palladium sites on the alloy with a heat of adsorption of ~55 kJ/mol, with the plane of the VAM adsorbed close to parallel to the surface. The majority of the VAM adsorbed on isolated sites desorbs molecularly with only a small portion decomposing. At lower gold coverages (below ~0.5 ML of gold), where palladium palladium bridge sites are present, VAM binds to the surface in a distorted geometry via a rehybridized vinyl group. A larger proportion of this VAM decomposes and this reaction is initiated by C\\O bond scission in the VAM to form adsorbed acetate and vinyl species. The implication of this surface chemistry for VAM synthesis on Au/Pd(100) alloys is discussed.

  11. Immunoassay utilizing biochemistry reaction product via surface-enhanced Raman scattering in near field

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Haiying; NI; Yi; JIANG; Wei; LUO; Peiqing; HUANG; Mei

    2005-01-01

    We propose here a kind of applications of surface-enhanced Raman scattering (SERS) to immunology. It is a new enzyme immunoassay based on SERS. In the proposed system, antibody immobilized on a solid substrate reacts with antigen, which binds with another antibody labeled with peroxidase. If this immunocomplex is subjected to reaction with o-phenylenediamine and hydrogenperoxide, azoaniline is generated. This azo compound is adsorbed on a silver colloid and only the azo compound gives a strong surface-enhanced resonance Raman (SERRS) spectrum. A linear relationship was observed between the peak intensity of the N=N stretching band and the concentration of antigen, revealing that one can determine the concentration of antigen by the SERRS measurement of the reaction product. The detection limit of this SERS enzyme immunoassay method was found to be about 10-15 mol/L.

  12. Electronic structure and chemical reaction of Ca deposition on regioregular poly(3-hexylthiophene) surfaces

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; GUO YuXian; FENG XueFei; ZHANG Liang; ZHANG WenHua; ZHU JunFa

    2009-01-01

    Conjugated polymer, regioregular poly(3-hexylthiophene) (rr-P3HT), films were prepared by spin-coating the rr-P3HT chloroform solution onto clean silicon wafer surfaces. The chemical re-action and electronic structure of Ca deposition on rr-P3HT surfaces were in situ investigated by synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoemission spectros-copy (XPS). Upon Ca deposition, Ca-induced band bending of rr-P3HT is observed. In addition, Ca atoms preferentially react with S atoms of rr-P3HT. No obvious reaction between Ca and C atoms can be found. Through the investigation of the evolution of valence band spectra and secondary electron cut-off of rr-P3HT during the process of Ca deposition, an energy level alignment diagram at the Ca/rr-P3HT interface is derived.

  13. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways

    Science.gov (United States)

    Mathew, Kiran; Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T. A.; Hennig, Richard G.

    2014-02-01

    Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the SN2 reaction.

  14. Detection of submonolayer oxygen-18 on a gold surface by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S.; Kenny, M.J.; Wieczorek, L. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    A gold substrate is the preferred solid surface for formation of an organic self-assembled monolayer ( SAM ). Device fabrication process may require the gold film to be exposed to photolithographic processing and plasma treatment prior to molecular assembly. It has been observed that oxygen plasma treatment prevents the formation of SAMs; however, subsequent treatment with an argon plasma allows assembly of the organic monolayers. To understand the mechanisms involved, a plasma containing 98% {sup 18}O was used and the film surface was analysed using the {sup 18}O (p,{alpha}){sup 15}N nuclear reaction. 5 refs., 1 tab., 3 figs.

  15. Brominated lipids identify lipid binding sites on the surface of the reaction center from Rhodobacter sphaeroides.

    Science.gov (United States)

    Roszak, Aleksander W; Gardiner, Alastair T; Isaacs, Neil W; Cogdell, Richard J

    2007-03-20

    This study describes the use of brominated phospholipids to distinguish between lipid and detergent binding sites on the surface of a typical alpha-helical membrane protein. Reaction centers isolated from Rhodobacter sphaeroides were cocrystallized with added brominated phospholipids. X-ray structural analysis of these crystals has revealed the presence of two lipid binding sites from the characteristic strong X-ray scattering from the bromine atoms. These results demonstrate the usefulness of this approach to mapping lipid binding sites at the surface of membrane proteins.

  16. In situ electrochemical scanning tunneling microscopy investigation of renewing graphite surface accompanied by electrochemical reaction

    Science.gov (United States)

    Zhang, Jingdong; Zhu, Guoyi; Wang, Erkang

    1996-08-01

    In situ electrochemical scanning tunneling microscopy (ECSTM) has been employed to follow the renewal process of a graphite electrode accompanied by flavin adenine dinucleotide (FAD) electrochemical reaction which involves adsorption of the reduced form (FADH 2) and desorption of the oxidized form (FAD). The renewal process initiates from steps or kinks on the electrode surface, which provide high active sites for adsorption. This renewal depends on the working electrode potential, especially in the range near the FAD redox potential. Our experiment suggests that delamination of the graphite surface is caused by interaction between the substrate and adsorbed molecules. A simple model is proposed to explain this phenomenon.

  17. Influence of virtual height exposure on postural reactions to support surface translations.

    Science.gov (United States)

    Cleworth, Taylor W; Chua, Romeo; Inglis, J Timothy; Carpenter, Mark G

    2016-06-01

    As fear of falling is related to the increased likelihood of falls, it is important to understand the effects of threat-related factors (fear, anxiety and confidence) on dynamic postural reactions. Previous studies designed to examine threat effects on dynamic postural reactions have methodological limitations and lack a comprehensive analysis of simultaneous kinetic, kinematic and electromyographical recordings. The current study addressed these limitations by examining postural reactions of 26 healthy young adults to unpredictable anterior-posterior support-surface translations (acceleration=0.6m/s(2), constant velocity=0.25m/s, total displacement=0.75m) while standing on a narrow virtual surface at Low (0.4cm) and High (3.2m) virtual heights. Standing at virtual height increased fear and anxiety, and decreased confidence. Prior to perturbations, threat led to increased tonic muscle activity in tibialis anterior, resulting in a higher co-contraction index between lower leg muscles. For backward perturbations, muscle activity in the lower leg and arm, and center of pressure peak displacements, were earlier and larger when standing at virtual height. In addition, arm flexion significantly increased while leg, trunk and center of mass displacements remained unchanged across heights. When controlling for leaning, threat-related factors can influence the neuro-mechanical responses to an unpredictable perturbation, causing specific characteristics of postural reactions to be facilitated in young adults when their balance is threatened. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Non-Thermal Effects on CO-NO Surface Catalytic Reaction on Square Surface: Monte Carlo Study

    Institute of Scientific and Technical Information of China (English)

    M. Khalid; A. U. Qaisrani; W. Ahmad

    2005-01-01

    @@ A Monte Carlo simulation of the CO-NO heterogeneous catalytic reaction over a square surface has already been studied with a model based on the Langmuir-Hinshelwood (LH) mechanism. The results of this study are well known. Here we study the effects of transient non-thermal mobility of monomer (CO) based on precursor mechanism, diffusion of adsorbed nitrogen and oxygen atoms, on the phase diagram. The interesting feature of this model is the yield of a steady reactiw window, while simple LH mechanism is not capable of producing a steady reactive state.

  19. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.

    Science.gov (United States)

    Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F

    2010-01-14

    The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.

  20. Controlled silanization-amination reactions on the Ti6Al4V surface for biomedical applications.

    Science.gov (United States)

    Rodríguez-Cano, Abraham; Cintas, Pedro; Fernández-Calderón, María-Coronada; Pacha-Olivenza, Miguel-Ángel; Crespo, Lara; Saldaña, Laura; Vilaboa, Nuria; González-Martín, María-Luisa; Babiano, Reyes

    2013-06-01

    Formation of thin films on titanium alloys incorporating bioactive small molecules or macromolecules is a route to improve their biocompatibility. Aminoalkylsilanes are commonly employed as interface reagents that combine good adhesion properties with an amino tail group susceptible of further functionalization. This article introduces a reproducible methodology to obtain a cross-linked polymer-type brush structure of covalently-bonded aminoalkylsiloxane chains on Ti6Al4V. The experimental protocol can be fine-tuned to provide a high density of surface-coated amino groups (threshold value: 2.1±0.1×10(-8) mol cm(-2)) as proven by chemical and spectrophotometric analyses. Using a model reaction involving the condensation of 3-aminopropyltrimethoxysilane (APTMS) on Ti6Al4V alloy, we herein show the effects of reaction temperature, reaction time and solvent humidity on the composition and structure of the film. The stability of the resulting coating under physiological-like conditions as well as the possibility of surface re-silanization has also been evaluated. To verify if detrimental effects on the biological performance of the Ti6Al4V alloy were induced by this coverage, human primary osteoblasts behavior, Staphylococci adhesion and biofilm formation have been tested and compared to the Ti6Al4V oxidized surface. Reaction with trans-cinnamaldehyde has used in order to determine useful amino groups at aminosilanized surface, XPS and UV analyses of imino derivatives generated reveal that almost a 50% of these groups are actually available at the siloxane chains.

  1. Monte Carlo simulations of surface reactions: NO reduction by CO or H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Falcón, L.; Vicente, L. [Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, 04510 México Distrito Federal (Mexico); Alas, S. J. [Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, 05348 México Distrito Federal (Mexico)

    2014-01-14

    The development of surface science has given an opportunity to investigate the process of heterogeneous catalysis at a molecular level. In this way there has been a great progress in understanding the mechanism in NO decomposition. Modeling has been an very important tool in this goal. In this work we analyze the reactions NO+H{sub 2} and NO+CO. The extremely narrow production peak of N{sub 2} and CO{sub 2} which occurs in the reaction of NO+CO on Pt(100), a phenomenon known as “surface explosion,” is studied using a dynamic Monte Carlo method on a square lattice at low pressure under isothermal conditions. The catalytic reduction of nitric oxide by hydrogen over a Pt surface is also studied by using a dynamic Monte Carlo. Using a Langmuir-Hinshelwod mechanism of reaction, a simplified model with only four adsorbed species (NO, H, O, and N) is constructed. The effect on NO dissociation rate, the limiting step in the whole reaction, is inhibited by coadsorbed NO and H{sub 2} molecules, and is enhanced both by the presence of empty sites and adsorbed N atoms as nearest-neighbors. In these simulations experimental parameters values are included, such as: adsorption, desorption and diffusion of the reactants. The phenomenon is studied changing the temperature in the range of 300–550 K. The modeling reproduces well observed TPD and TPR experimental results and allows a visualization of the spatial development of the surface explosion.

  2. Electrochemical interfacial influences on deoxygenation and hydrogenation reactions in CO reduction on a Cu(100) surface.

    Science.gov (United States)

    Sheng, Tian; Lin, Wen-Feng; Sun, Shi-Gang

    2016-06-01

    Electroreduction of CO2 to hydrocarbons on a copper surface has attracted much attention in the last few decades for providing a sustainable way for energy storage. During the CO2 and further CO electroreduction processes, deoxygenation that is C-O bond dissociation, and hydrogenation that is C-H bond formation, are two main types of surface reactions catalyzed by the copper electrode. In this work, by performing the state-of-the-art constrained ab initio molecular dynamics simulations, we have systematically investigated deoxygenation and hydrogenation reactions involving two important intermediates, COHads and CHOads, under various conditions of (i) on a Cu(100) surface without water molecules, (ii) at the water/Cu(100) interface and (iii) at the charged water/Cu(100) interface, in order to elucidate the electrochemical interfacial influences. It has been found that the electrochemical interface can facilitate considerably the C-O bond dissociation via changing the reaction mechanisms. However, C-H bond formation has not been affected by the presence of water or electrical charge. Furthermore, the promotional roles of an aqueous environment and negative electrode potential in deoxygenation have been clarified, respectively. This fundamental study provides an atomic level insight into the significance of the electrochemical interface towards electrocatalysis, which is of general importance for understanding electrochemistry.

  3. Surface electronic structure and isomerization reactions of alkanes on some transition metal oxides

    Science.gov (United States)

    Katrib, A.; Logie, V.; Saurel, N.; Wehrer, P.; Hilaire, L.; Maire, G.

    1997-04-01

    XP spectra of some reduced transition metal oxides are presented. Different number of free nd,( n + 1)s valence electrons in each case could be observed by the presence of a certain density of states (DOS) at the Fermi-level in the valence band (VB) energy region of the XP spectrum. Catalytic isomerization reactions of 2-methylpentane yielding 3-methylpentane and n-hexane at 350°C have been observed on these reduced valence surface states. The bifunctionel mechanism in terms of metallic and acidic sites required for such reactions is proposed by considering the metallic properties of the rutile deformed structure through the C-axis in the case of MoO 2 and WO 2, while the oxygen atom(s) in the lattice structure exhibit Brönsted acidic properties. On the other hand, highly reduced or clean surfaces of these transition metals yield hydrogenolysis catalytic reactions for the same reactant with methane as the major product. In all cases, the exposure of the lower valence oxidation states of bulk transition metal oxides to air results in the surface partial oxidation to the stable oxides such as MoO 3, WO 3, V 2O 5 and Nb 2O 5.

  4. Surface reactions of dimethyl ether on γ-Al2O3

    Science.gov (United States)

    Bondarenko, G. N.; Volnina, E. A.; Kipnis, M. A.; Rodionov, A. S.; Samokhin, P. V.; Lin, G. I.

    2016-02-01

    The surface reactions of dimethyl ether (DME) on industrial alumina (γ-Al2O3) were studied by chromatographic analysis of the products at the outlet of the flow reactor and (independently) by diffuse reflectance IR spectroscopy. The major products of the reactions at 250°C were found to be methanol formed in the reaction of DME with hydroxyl groups (the 3720 and 3674 cm-1 bands in the diffuse reflectance spectrum) and various methoxy groups (the 1121, 1070, 695, and 670 cm-1 bands in the differential spectra). The presence of molecularly adsorbed methanol was confirmed by experiments with methanol fed in a high-temperature IR cell. The interaction of the resulting methanol molecule with the hydroxyl group led to the formation of a water molecule in the gas phase and a methoxy group on the oxide surface. Strong adsorption of molecular DME was revealed, which was favored by an increase in the temperature of the preliminary calcination of oxide from 250 to 450-500°C; treatment of alumina with water vapor after its preliminary contact with DME led to a recovery of the hydroxyl coating and a replacement of molecularly adsorbed DME with hydroxyl. The thermal effect recorded in a flow reactor was positive during the adsorption of DME and negative during the desorption of weakly bonded DME. Schemes of formation of methoxy groups in the interaction of DME and methanol with surface hydroxyls were suggested.

  5. Optimization of reaction conditions for enzymatic synthesis of palm fatty hydrazides using response surface methodology.

    Science.gov (United States)

    Tuan Noor Maznee, T I; Hazimah, A H; Wan Zin, W Y

    2012-01-01

    Optimization of the enzymatic synthesis of palm fatty hydrazide by the response surface methodology (RSM) was conducted using the Design-Expert 6 software. The palm fatty hydrazide was synthesized from refined, bleached and deodorized palm olein (RBDPOo) and neutralized hydrazine monohydrate in the presence of Rhizomucor miehei lipase, Lipozyme RMIM, an immobilized lipase in n-hexane. The reaction conditions such as the percentage of enzyme, reaction temperature, stirring speed and reaction time were selected as independent variables or studied factors, while the amount of crude palm fatty hydrazide obtained was selected as a dependent variable or response. The study was conducted using a central composite design (CCD) at five coded levels and the experimental data were analyzed using a quadratic model. The analysis of variance (ANOVA) indicates that the model was significant at 95% confidence level with Prob>F of 0.0033, where the regression coefficient value, R² was 0.8415 and lack-of-fit of 0.0984. A percentage of enzyme of 6%, a reaction temperature of 40°C, a stirring speed of 350 rpm and a reaction time of 18 h were found to be the optimum conditions for the conversion of RBDPOo into palm fatty hydrazide.

  6. The role of surface reactions on the active and selective catalyst design for bioethanol steam reforming

    Science.gov (United States)

    Benito, M.; Padilla, R.; Serrano-Lotina, A.; Rodríguez, L.; Brey, J. J.; Daza, L.

    In order to study the role of surface reactions involved in bioethanol steam reforming mechanism, a very active and selective catalyst for hydrogen production was analysed. The highest activity was obtained at 700 °C, temperature at which the catalyst achieved an ethanol conversion of 100% and a selectivity to hydrogen close to 70%. It also exhibited a very high hydrogen production efficiency, higher than 4.5 mol H 2 per mol of EtOH fed. The catalyst was operated at a steam to carbon ratio (S/C) of 4.8, at 700 °C and atmospheric pressure. No by-products, such as ethylene or acetaldehyde were observed. In order to consider a further application in an ethanol processor, a long-term stability test was performed under the conditions previously reported. After 750 h, the catalyst still exhibited a high stability and selectivity to hydrogen production. Based on the intermediate products detected by temperature programmed desorption and reaction (TPD and TPR) experiments, a reaction pathway was proposed. Firstly, the adsorbed ethanol is dehydrogenated to acetaldehyde producing hydrogen. Secondly, the adsorbed acetaldehyde is transformed into acetone via acetic acid formation. Finally, acetone is reformed to produce hydrogen and carbon dioxide, which were the final reaction products. The promotion of such reaction sequence is the key to develop an active, selective and stable catalyst, which is the technical barrier for hydrogen production by ethanol reforming.

  7. The role of surface reactions on the active and selective catalyst design for bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Benito, M. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Ciemat, Av. Complutense 22, 28040 Madrid (Spain); Padilla, R.; Serrano-Lotina, A.; Rodriguez, L.; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Brey, J.J. [Hynergreen Technologies, Av. Buhaira 2, 41018 Sevilla (Spain)

    2009-07-01

    In order to study the role of surface reactions involved in bioethanol steam reforming mechanism, a very active and selective catalyst for hydrogen production was analysed. The highest activity was obtained at 700 C, temperature at which the catalyst achieved an ethanol conversion of 100% and a selectivity to hydrogen close to 70%. It also exhibited a very high hydrogen production efficiency, higher than 4.5 mol H{sub 2} per mol of EtOH fed. The catalyst was operated at a steam to carbon ratio (S/C) of 4.8, at 700 C and atmospheric pressure. No by-products, such as ethylene or acetaldehyde were observed. In order to consider a further application in an ethanol processor, a long-term stability test was performed under the conditions previously reported. After 750 h, the catalyst still exhibited a high stability and selectivity to hydrogen production. Based on the intermediate products detected by temperature programmed desorption and reaction (TPD and TPR) experiments, a reaction pathway was proposed. Firstly, the adsorbed ethanol is dehydrogenated to acetaldehyde producing hydrogen. Secondly, the adsorbed acetaldehyde is transformed into acetone via acetic acid formation. Finally, acetone is reformed to produce hydrogen and carbon dioxide, which were the final reaction products. The promotion of such reaction sequence is the key to develop an active, selective and stable catalyst, which is the technical barrier for hydrogen production by ethanol reforming. (author)

  8. Theoretical study on the initial reaction mechanisms of ansa-metallocene zirconium precursor on hydroxylated Si(1 0 0) surface.

    Science.gov (United States)

    Zhou, Guangfen; Ren, Jie; Zhang, Shaowen

    2016-05-01

    The initial reaction mechanisms for depositing ZrO2 thin films using ansa-metallocene zirconium (Cp2CMe2)ZrMe2 precursor were studied by density functional theory (DFT) calculations. The (Cp2CMe2)ZrMe2 precursor could be absorbed on the hydroxylated Si(1 0 0) surface via physisorption. Possible reaction pathways of (Cp2CMe2)ZrMe2 were proposed. For each reaction, the activation energies and reaction energies were compared, and stationary points along the reaction pathways were shown. In addition, the influence of dispersion effects on the reactions was evaluated by non-local dispersion corrected DFT calculations.

  9. Pore capillary pressure and saturation of methane hydrate bearing sediments

    Institute of Scientific and Technical Information of China (English)

    SUN Shicai; LIU Changling; YE Yuguang; LIU Yufeng

    2014-01-01

    To better understand the relationship between the pore capillary pressure and hydrate saturation in sedi-ments, a new method was proposed. First, the phase equilibria of methane hydrate in fine-grained silica sands were measured. As to the equilibrium data, the pore capillary pressure and saturation of methane hydrate were calculated. The results showed that the phase equilibria of methane hydrates in fine-grained silica sands changed due to the depressed activity of pore water caused by the surface group and negatively charged characteristic of silica particles as well as the capillary pressure in small pores together. The capil-lary pressure increased with the increase of methane hydrate saturation due to the decrease of the available pore space. However, the capillary-saturation relationship could not yet be described quantitatively because of the stochastic habit of hydrate growth.

  10. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    Science.gov (United States)

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  11. Interfacial Cu+ promoted surface reactivity: Carbon monoxide oxidation reaction over polycrystalline copper-titania catalysts

    Science.gov (United States)

    Senanayake, Sanjaya D.; Pappoe, Naa Adokaley; Nguyen-Phan, Thuy-Duong; Luo, Si; Li, Yuanyuan; Xu, Wenqian; Liu, Zongyuan; Mudiyanselage, Kumudu; Johnston-Peck, Aaron C.; Frenkel, Anatoly I.; Heckler, Ilana; Stacchiola, Dario; Rodriguez, José A.

    2016-10-01

    We have studied the catalytic carbon monoxide (CO) oxidation (CO + 0.5O2 → CO2) reaction using a powder catalyst composed of both copper (5 wt.% loading) and titania (CuOx-TiO2). Our study was focused on revealing the role of Cu, and the interaction between Cu and TiO2, by systematic comparison between two nanocatalysts, CuOx-TiO2 and pure CuOx. We interrogated these catalysts under in situ conditions using X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to probe the structure and electronic properties of the catalyst at all stages of the reaction and simultaneously probe the surface states or intermediates of this reaction. With the aid of several ex situ characterization techniques including transmission electron microscopy (TEM), the local catalyst morphology and structure were also studied. Our results show that a CuOx-TiO2 system is more active than bulk CuOx for the CO oxidation reaction due to its lower onset temperature and better stability at higher temperatures. Our results also suggest that surface Cu+ species observed in the CuOx-TiO2 interface are likely to be a key player in the CO oxidation mechanism, while implicating that the stabilization of this species is probably associated with the oxide-oxide interface. Both in situ DRIFTS and XAFS measurements reveal that there is likely to be a Cu(Ti)-O mixed oxide at this interface. We discuss the nature of this Cu(Ti)-O interface and interpret its role on the CO oxidation reaction.

  12. Calibration of mass spectrometric measurements of gas phase reactions on steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Falk, H., E-mail: heinzfalk@unitybox.de [Scientific Consultancy, Kleve (Germany); Falk, M. [Falk Steuerungssysteme GmbH, Stadthagen (Germany); Wuttke, T. [FuE-EV ThyssenKrupp Steel Europe, Dortmund (Germany)

    2015-03-01

    The sampling of the surface-near gas composition using a mass spectrometer (MS-Probe) is a valuable tool within a hot dip process simulator. Since reference samples with well characterized surface coverage are usually not available, steel samples can deliver quantifiable amounts of the process relevant species H{sub 2}O, CO and H{sub 2} using the decarburization reaction with water vapor. Such “artificial calibration samples” (ACS) can be used for the calibration of the MS-Probe measurements. The carbon release rate, which is governed by the diffusion law, was determined by GDOES, since the diffusion coefficients of carbon in steel samples are usually not known. The measured carbon concentration profiles in the ACS after the thermal treatment confirmed the validity of the diffusion model described in this paper. The carbon bulk concentration > 100 ppm is sufficient for the use of a steel material as ACS. The experimental results reported in this paper reveal, that with the MS-Probe the LOQ of less than one monolayer of iron oxide can be achieved. - Highlights: • Gas to surface reactions at steel sheets is monitored with a mass spectrometer on-line. • The experimental data are calibrated in absolute terms as oxide mass densities. • Standard steel samples can be used for the calibration procedure. • Additional GDOES analysis of the carbon depletion in the calibration samples was carried out. • Limits of quantitation below one monolayer of oxide surface coverage were achieved.

  13. Magnetohydrodynamic motion of a colloidal sphere with self-electrochemical surface reactions in a spherical cavity.

    Science.gov (United States)

    Hsieh, Tzu H; Keh, Huan J

    2013-02-21

    An analytical study is presented for the magnetic-field-induced motion of a colloidal sphere with spontaneous electrochemical reactions on its surface situated at the center of a spherical cavity filled with an electrolyte solution at the quasi-steady state. The zeta potential associated with the particle surface may have an arbitrary distribution, whereas the electric double layers adjoining the particle and cavity surfaces are taken to be thin relative to the particle size and the spacing between the solid surfaces. The electric current and magnetic flux density distributions are solved for the particle and fluid phases of arbitrary electric conductivities and magnetic permeabilities. Applying a generalized reciprocal theorem to the Stokes equations with a Lorentz force term resulting from these density distributions for the fluid motion, we obtain explicit formulas for the translational and angular velocities of the colloidal sphere valid for all values of the particle-to-cavity size ratio. The particle velocities decrease monotonically with an increase in this size ratio. For the limiting case of an infinitely large cavity, our result reduces to the relevant solution for an unconfined spherical particle. The boundary effect on the movement of the particle with interfacial self-electrochemical reactions induced by the magnetohydrodynamic force is equivalent to that in sedimentation and much stronger than that in general phoretic motions.

  14. Non-thermal desorption from interstellar dust grains via exothermic surface reactions

    CERN Document Server

    Garrod, R T; Herbst, E

    2007-01-01

    Aims: The gas-phase abundance of methanol in dark quiescent cores in the interstellar medium cannot be explained by gas-phase chemistry. In fact, the only possible synthesis of this species appears to be production on the surfaces of dust grains followed by desorption into the gas. Yet, evaporation is inefficient for heavy molecules such as methanol at the typical temperature of 10 K. It is necessary then to consider non-thermal mechanisms for desorption. But, if such mechanisms are considered for the production of methanol, they must be considered for all surface species. Methods: Our gas-grain network of reactions has been altered by the inclusion of a non-thermal desorption mechanism in which the exothermicity of surface addition reactions is utilized to break the bond between the product species and the surface. Our estimated rate for this process derives from a simple version of classical unimolecular rate theory with a variable parameter only loosely contrained by theoretical work. Results: Our results ...

  15. Wet hydrate dissolution plant

    OpenAIRE

    Stanković Mirjana S.; Kovačević Branimir T.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with capacity of 50,000 t/y was manufactured, at "Zeolite Mira", Mira (VE), Italy, in 1997, for increasing detergent zeolite production from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate ...

  16. Rhythmic chemical reaction of CO on the surface of a SnO 2 gas sensor

    Science.gov (United States)

    Nakata, S.; Kato, Y.; Kaneda, Y.; Yoshikawa, K.

    1996-12-01

    The oscillatory phenomenon of the oxidative reaction of CO on an n-type semiconductor surface is reported. As a semiconductor, we used a SnO 2 gas sensor, which is widely used for practical application. Various characteristics in the time series of the conductance were observed and analyzed with next amplitude mapping and Fourier power spectra. The simultaneous measurement of the temperature on the semiconductor surface and the conductance suggested that the temperature change was a key variable in the oscillatory phenomenon. As a preliminary theoretical model, a simulation was performed using the surface concentration of CO and the temperature as two independent variables. The present study is part of our attempt to use a time-dependent nonlinear response for the development of an intelligent sensor which mimics sensory mechanisms in living organisms.

  17. Investigation of Surface Reaction and Degradation Mechanism of Kapton during Atomic Oxygen Exposure

    Institute of Scientific and Technical Information of China (English)

    Shuwang DUO; Meishuan LI; Yanchun ZHOU; Jingyu TONG; Gang SUN

    2003-01-01

    The erosion behavior of Kapton when exposed to atomic oxygen (AO) environment in the ground-based simulation facility was studied. The chemical and physical changes of sample surfaces after exposed to AO fluxes were investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results indicated that Kapton underwent dramatically degradation, including much mass loss and change of surface morphologies; vacuum outgassing effect of Kapton was the key factor for initial mass loss in the course of atomic oxygen beam exposures. XPS analysis showed that the carbonyl group in Kapton reacted with oxygen atoms to generate CO2, then CO2 desorbed from Kapton surface. In addition, PMDA in the polyimide structure degraded due to the reaction with atomic oxygen of 5 eV.

  18. What happens when iron becomes wet? Observation of reactions at interfaces between liquid and metal surfaces

    CERN Document Server

    Kimura, M

    2003-01-01

    Synchrotron-radiation has been applied to investigation of interfaces between liquid and metal surfaces, with a special attention to corrosion. Three topics are shown: (1) nano structures of rusts formed on steel after atmospheric corrosion. Evolution of 'Fe(O, OH) sub 6 network' is the key to understand how the durable rusts prevent from formation of more rusts. (2) In situ observation of reactions at the interface has been carried out for localized corrosion of stainless steel. It is shown that change in states of Cr sup 3 sup + and Br sup - ions near the interface is deeply related with a breakout of the passivation film. (3) A structural phase transformation on a Cu sub 3 Au(001) surface was investigated. Ordering remains even at a temperature higher than the bulk-critical temperature, showing surface-induced ordering. These approaches gives us crucial information for a new steel-product. (author)

  19. Influence of structure on reaction efficiency in surface catalysis. 1. Sensitivity to multiplet concentration and configuration

    Energy Technology Data Exchange (ETDEWEB)

    Politowicz, P.A.; Kozak, J.J.

    1985-01-01

    A theoretical study of the role of configurational/geometrical factors in influencing the efficiency of diffusion-controlled reactions on surfaces has been initiated. The specific problem dealt with in this paper is to assess how different configurations of reaction centers can, by virtue of their disposition in reaction space, influence the efficiency of the process. The mean number (n) of steps taken by a diffusion coreactant before an irreversible reaction takes place at one of the catalytically active sites defining a multiplet has been calculated. This number (n) is related to the lifetime of the species and thence to the turnover number determined experimentally. Calculations are based on a lattice theory of diffusion-controlled processes proposed recently by the authors in which the theory of finite Markov processes is coupled with group theoretical arguments to yield a method for calculating exactly the mean, variance, skewness, and kurtosis of the underlying probability distribution function defining the process. Once the numerical results for (n) for different multiplet configurations have been presented, trends in the data are identified, and it is indicated how these can be understood in terms of the interplay of two factors: (1) the number and cluster configuration of the reaction centers and (2) a (discretized) correlation length k which specifies the distribution of singlets/ multiplets relative to a conveniently chosen reference point of the reaction space. In order to provide a concrete illustration of the manner in which these results may be used to interpret experiments, the presentation here focused on the work of Sinfelt and co-workers on the catalytic properties of bimetallic systems (and, in particular, on their studies of the hydrogenolysis of ethane and dehydrogenation of cyclohexane on Ni/Cu alloys.)

  20. Mineral Surface after Reaction with Aqueous Solution at High Temperatures and Pressures

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This work presents new experimental results on surface chemistry of reacting minerals and interface kinetics between mineral and aqueous solutions. These experiments were carried out using a flow reactor (packed bed reactor) of an open system as well as a continuous stirred tank reactor, CSTR. The authors measured reaction rates of such minerals as zeolite, albite and carbonate (rhodochrosite, dolomite) in various solutions, and tested corresponding mineral surface by using SEM, XPS, SIMS, etc. This paper mainly presents the experimental results of zeolite dissolution in water and in low pH solutions at room temperature, and dolomite dissolution at elevated temperatures. The results show that the release rates of Si, Al and Na of zeolite are different in most cases. The incongruent dissolution of zeolite is related to surface chemical modifications. The Na, Al and Si release rates for dissolution of albite and zeolite in water and various solutions were measured as a function of temperature, flow velocity, pH and solution composition in the reaction system. In most cases, dissolutions of both albite and zeolite are incongruent. Dissolution of dolomite is also incongruent in most cases and varied with T, pH, and nature of aqueous solutions. For dolomite dissolution, the release rates of Mg are less than those of Ca at high temperatures as T increases from 25 to 300° C. SIMS study indicates that the contents of Al, Na and Si in the leached layer of zeolite or albite surface, change with the distance from the surface, exhibiting a non-linear behaviour within a thickness range of 1000%. The distributions of Ca, Mg, Mn, H and Cl in the leached surface layer of carbonate have a non-linear behaviour too.

  1. The role of advanced reactive surface area characterization in improving predictions of mineral reaction rates

    Science.gov (United States)

    Beckingham, L. E.; Zhang, S.; Mitnick, E.; Cole, D. R.; Yang, L.; Anovitz, L. M.; Sheets, J.; Swift, A.; Kneafsey, T. J.; Landrot, G.; Mito, S.; Xue, Z.; Steefel, C. I.; DePaolo, D. J.; Ajo Franklin, J. B.

    2014-12-01

    Geologic sequestration of CO2 in deep sedimentary formations is a promising means of mitigating carbon emissions from coal-fired power plants but the long-term fate of injected CO2 is challenging to predict. Reactive transport models are used to gain insight over long times but rely on laboratory determined mineral reaction rates that have been difficult to extrapolate to field systems. This, in part, is due to a lack of understanding of mineral reactive surface area. Many models use an arbitrary approximation of reactive surface area, applying orders of magnitude scaling factors to measured BET or geometric surface areas. Recently, a few more sophisticated approaches have used 2D and 3D image analyses to determine mineral-specific reactive surface areas that account for the accessibility of minerals. However, the ability of these advanced surface area estimates to improve predictions of mineral reaction rates has yet to be determined. In this study, we fuse X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB analysis to determine mineral-specific accessible reactive surface areas for a core sample from the Nagaoka pilot CO2 injection site (Japan). This sample is primarily quartz, plagioclase, smectite, K-feldspar, and pyroxene. SEM imaging shows abundant smectite cement and grain coatings that decrease the fluid accessibility of other minerals. However, analysis of FIB-SEM images reveals that smectite nano-pores are well connected such that access to underlying minerals is not occluded by smectite coatings. Mineral-specific accessible surfaces are determined, accounting for the connectivity of the pore space with and without connected smectite nano-pores. The large-scale impact of variations in accessibility and dissolution rates are then determined through continuum scale modeling using grid-cell specific information on accessible surface areas. This approach will be compared with a traditional continuum scale model using mineral abundances and common surface area

  2. Heterogeneous and Photochemical Reactions Involving Surface Adsorbed Organics: Common Lignin Pyrolysis Products With Nitrogen Dioxide.

    Science.gov (United States)

    Hinrichs, R. Z.; Nichols, B. R.; Rapa, C.; Costa, V.

    2009-05-01

    Solid-air interfaces, such as airborne particulate matter and ground level surfaces, provide unique supports for tropospheric heterogeneous chemistry. These interfaces commonly contain surface adsorbed organics, such as lignin pyrolysis products, that can significantly alter their physical and chemical properties. Attenuated total reflectance infrared spectroscopy (ATR-FTIR) provides an ideal tool for monitoring chemical changes in thin organic films during heterogeneous and photochemical reactions. Phenolic compounds, with and without co- adsorbed photosensitizers, were exposed to NO2 concentrations in the parts-per-billion range at 300 K and 20% relative humidity. Catechol, when mixed with benzophenone or dicyclohexylketone, formed 4- nitrocatechol as the dominant product under dark conditions. Deuterating the catechol alcohol groups caused the initial rate of reaction to decrease by a factor of 3.3±0.5, consistent with formation of the ortho- semiquinone radical as the rate determining step. The rate of 4-nitrocatechol formation did not increase under illuminated conditions, even with the presence of benzophenone a well known photosensitizer. UV-A/visible radiation did, however, initiate a photochemical reaction between benzophenone and 4-nitrocatechol, likely forming high molecular weight polymerization products. In contrast, 2-ethoxyphenol displayed no reactivity with NO2, even under illuminated conditions with a photosensitizer. Implications for the fate of lignin pyrolysis products, which are prevalent in biomass combustion smoke, will be discussed.

  3. Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.

    Science.gov (United States)

    Long, Ran; Li, Yu; Song, Li; Xiong, Yujie

    2015-08-26

    Enabled by surface plasmons, noble metal nanostructures can interact with and harvest incident light. As such, they may serve as unique media to generate heat, supply energetic electrons, and provide strong local electromagnetic fields for chemical reactions through different mechanisms. This solar-to-chemical pathway provides a new approach to solar energy utilization, alternative to conventional semiconductor-based photocatalysis. To provide readers with a clear picture of this newly recognized process, this review presents coupling solar energy into chemical reactions through plasmonic nanostructures. It starts with a brief introduction of surface plasmons in metallic nanostructures, followed by a demonstration of tuning plasmonic features by tailoring their physical parameters. Owing to their tunable plasmonic properties, metallic materials offer a platform to trigger and drive chemical reactions at the nanoscale, as systematically overviewed in this article. The design rules for plasmonic materials for catalytic applications are further outlined based on existing examples. At the end of this article, the challenges and opportunities for further development of plasmonic-mediated catalysis toward energy and environmental applications are discussed.

  4. Computational study of ethanol adsorption and reaction over rutile TiO2 (110) surfaces

    KAUST Repository

    Muir, J. N.

    2012-01-01

    Studies of the modes of adsorption and the associated changes in electronic structures of renewable organic compounds are needed in order to understand the fundamentals behind surface reactions of catalysts for future energies. Using planewave density functional theory (DFT) calculations, the adsorption of ethanol on perfect and O-defected TiO 2 rutile (110) surfaces was examined. On both surfaces the dissociative adsorption mode on five-fold coordinated Ti cations (Ti 4+ 5c) was found to be more favourable than the molecular adsorption mode. On the stoichiometric surface E ads was found to be equal to 0.85 eV for the ethoxide mode and equal to 0.76 eV for the molecular mode. These energies slightly increased when adsorption occurred on the Ti 4+ 5c closest to the O-defected site. However, both considerably increased when adsorption occurred at the removed bridging surface O; interacting with Ti 3+ cations. In this case the dissociative adsorption becomes strongly favoured (E ads = 1.28 eV for molecular adsorption and 2.27 eV for dissociative adsorption). Geometry and electronic structures of adsorbed ethanol were analysed in detail on the stoichiometric surface. Ethanol does not undergo major changes in its structure upon adsorption with its C-O bond rotating nearly freely on the surface. Bonding to surface Ti atoms is a σ type transfer from the O2p of the ethanol-ethoxide species. Both ethanol and ethoxide present potential hole traps on O lone pairs. Charge density and work function analyses also suggest charge transfer from the adsorbate to the surface, in which the dissociative adsorptions show a larger charge transfer than the molecular adsorption mode. This journal is © 2012 the Owner Societies.

  5. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement.

    Science.gov (United States)

    Coleman, Nichola J; Li, Qiu

    2013-01-01

    Zirconium oxide has been identified as a candidate radiopacifying agent for use in Portland cement-based biomaterials. During this study, the impact of 20 wt.% zirconium oxide on the hydration and setting reactions of white Portland cement (WPC) was monitored by powder X-ray diffraction (XRD), (29)Si and (27)Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), transmission electron microscopy (TEM) and Vicat apparatus. The presence of 20 wt.% zirconium oxide particles in the size-range of 0.2 to 5 μm was found to reduce the initial and final setting times of WPC from 172 to 147 min and 213 to 191 min, respectively. Zirconium oxide did not formally participate in the chemical reactions of the hydrating cement; however, the surface of the zirconium oxide particles presented heterogeneous nucleation sites for the precipitation and growth of the early C-S-H gel products which accelerated the initial setting reactions. The presence of zirconium oxide was found to have little impact on the development of the calcium (sulpho)aluminate hydrate phases.

  6. A DFT-based comparative equilibrium study of thermal dehydration and hydrolysis of CaCl₂ hydrates and MgCl₂ hydrates for seasonal heat storage.

    Science.gov (United States)

    Pathak, Amar Deep; Nedea, Silvia; Zondag, Herbert; Rindt, Camilo; Smeulders, David

    2016-04-21

    Salt hydrates store solar energy in chemical form via a reversible dehydration-hydration reaction. However, as a side reaction to dehydration, hydrolysis (HCl formation) may occur in chloride based salt hydrates (specially in MgCl2 hydrates), affecting the durability of the storage system. The mixture of CaCl2 and MgCl2 hydrates has been shown experimentally to have exceptional cycle stability and improved kinetics. However, the optimal operating conditions for the mixture are unknown. To understand the appropriate balance between dehydration and hydrolysis kinetics in the mixtures, it is essential to gain in-depth insight into the mixture components. We present a GGA-DFT level study to investigate the various gaseous structures of CaCl2 hydrates and to understand the relative stability of their conformers. The hydration strength and relative stability of conformers are dominated by electrostatic interactions. A wide network of intramolecular homonuclear and heteronuclear hydrogen bonds is observed in CaCl2 hydrates. Equilibrium product concentrations are obtained during dehydration and hydrolysis reactions under various temperature and pressure conditions. The trend of the dehydration curve with temperature in CaCl2 hydrates is similar to the experiments. Comparing these results to those of MgCl2 hydrates, we find that CaCl2 hydrates are more resistant towards hydrolysis in the temperature range of 273-800 K. Specifically, the present study reveals that the onset temperatures of HCl formation, a crucial design parameter for MgCl2 hydrates, are lower than for CaCl2 hydrates except for the mono-hydrate.

  7. The Reaction Mechanism with Free Energy Barriers at Constant Potentials for the Oxygen Evolution Reaction at the IrO2 (110) Surface.

    Science.gov (United States)

    Ping, Yuan; Nielsen, Robert J; Goddard, William A

    2017-01-11

    How to efficiently oxidize H2O to O2 (oxygen evolution reaction, OER) in photoelectrochemical cells (PEC) is a great challenge due to its complex charge transfer process, high overpotential, and corrosion. So far no OER mechanism has been fully explained atomistically with both thermodynamic and kinetics. IrO2 is the only known OER catalyst with both high catalytic activity and stability in acidic conditions. This is important because PEC experiments often operate at extreme pH conditions. In this work, we performed first-principles calculations integrated with implicit solvation at constant potentials to examine the detailed atomistic reaction mechanism of OER at the IrO2 (110) surface. We determined the surface phase diagram, explored the possible reaction pathways including kinetic barriers, and computed reaction rates based on the microkinetic models. This allowed us to resolve several long-standing puzzles about the atomistic OER mechanism.

  8. Adsorption and thin-film adhesion on single-crystalline surfaces: Enthalpies, entropies, and kinetic prefactors for surface reactions

    Science.gov (United States)

    Sellers, Jason R. V.

    Chemical bonding at solid surfaces and interfaces is influential in a wide range of important technological applications including catalysis, fuel cells, batteries, chemical sensors, and device fabrication for microelectronics, computers, solar cells, and all variety of coatings. Adsorption and adhesion energetics are key elements in understanding interfacial properties, and these properties can be used to develop functional industrial materials. First, the properties of single-crystalline oxide surfaces are reviewed in detail, particularly in regards to the adsorption energetics of these surfaces. This includes the largest collection of experimental adsorption data on single-crystalline oxide surfaces ever presented, from which trends in the thermodynamic properties of adsorbates are revealed which greatly expand our understanding of the physical processes occurring on these surfaces. Among these trends is the discovery that the entropy of adsorbed molecules tracks their gas-phase entropy, retaining ~2/3 of that entropy upon adsorption. This allows for a method of predicting not only entropies of adsorption, but also the kinetic prefactors associated with many classes of elementary surface reactions. These estimations of desorption prefactors are then used to improve calculations of adsorption energies from temperature programmed desorption (TPD) measurements for many systems. Metal adsorption on oxide surfaces and the strength of the binding at metal / oxide interfaces are then discussed. The motivation here is to understand oxide-supported transition metal nanoparticles such as those used in industrial heterogeneous catalysis. For metal atom adsorption, adsorption energetics and adhesion energies are directly related to the energy of the adsorbed atoms, which define their stability, sintering rates, and reactivity, and which are found to vary with both the size of the nanoparticle and the nature of the oxide support. The experimental techniques necessary for

  9. PCDD/F Formation mechanism: effect of surface composition on chlorination and condensation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, S.; Nath, P.

    2002-07-01

    The post-combustion zone immediately following the incineration (flame) zone is a potential pollutant formation zone as it contains excess O{sub 2} (3-9%), sufficient residence time (from sub seconds to minutes) and catalytically active fly ash particles. This is an ideal reaction environment for the C{sub 1} and C{sub 2} compounds exiting the flame zone to undergo condensation and chlorination reactions. Heterogeneous reactions of short-chain aliphatic and chlorinated aliphatic combustion products in both high-temperature and low-temperature post-combustion zones can be important in the formation of larger organic pollutants (e. g. polychlorinated biphenyls, polychlorianted dibenzo-p-dioxins/dibenzofurans, chlorohenols, chlorobenzenes, etc). Fly ash formed in the combustion process provides the active surface for chlorination/condensation reactions in the post-combustion zone. The presence of several metals in flay ashes give rise to the question whether there is one specific metal or a complex of metals that is responsoble for the chlorination. Although fly ash contains many metallic species, most researchers investigations the PCDD/F formation mechanisms have used copper as the catalytic surface in their pollutant formation studies because copper is a known commercial oxychloriantion catalyst. The specific catalytic effects of various copper compounds in the formation of PCDD/F from aliphatica and aromatic compounds have been examined by us and a number of other investigators. In limited studies, iron compounds have also been used as PCDD/F formation catalysts, although these iron studies have produced contradictory results. Review of commercially important polymerization reactions shows that at varying temperatures and pressures, c and C{sub 4} olefinic polymerization reactions may be catalyzed by HCI-activated Al{sub 2}O{sub 3} SiO{sub 2} (aromatization also observed), aluminosilicates (1% Al{sub 2}O{sub 3} in SiO{sub 2}), and Fe oxides on aluminosilicates

  10. Solute transport predicts scaling of surface reaction rates in porous media: Applications to silicate weathering

    CERN Document Server

    Hunt, Allen G; Ghanbarian, Behzad

    2013-01-01

    We apply our theory of conservative solute transport, based on concepts from percolation theory, directly and without modification to reactive solute transport. This theory has previously been shown to predict the observed range of dispersivity values for conservative solute transport over ten orders of magnitude of length scale. We now show that the temporal dependence derived for the solute velocity accurately predicts the time-dependence for the weathering of silicate minerals over nine orders of magnitude of time scale, while its predicted length dependence agrees with data obtained for reaction rates over five orders of magnitude of length scale. In both cases, it is possible to unify lab and field results. Thus, net reaction rates appear to be limited by solute transport velocities. We suggest the possible relevance of our results to landscape evolution of the earth's terrestrial surface.

  11. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions.

    Science.gov (United States)

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-03-23

    The reactivity of hydrogenated graphene when treated with oxidising agents, KMnO4 and KIO4 , as well as alkylated with benzyl bromide (BnBr) was studied. The probed reactions are strictly limited to the partly hydrogenated form of graphene in which most of the hydrogen atoms are located in activated benzylic/allylic positions. This, in turn, clearly demonstrates the presence of hydrogen attached to the graphene lattice. Attachment of the benzyl group was also unequivocally demonstrated by characteristic vibrations recorded in the surface-enhanced Raman spectra, and all reactions were shown to proceed solely on hydrogenated graphene as evidenced by the comparison with pristine chemical vapour deposition-grown graphene.

  12. Surface effects of monolayer-protected gold nanoparticles on the redox reactions between ferricyanide and thiosulfate

    Institute of Scientific and Technical Information of China (English)

    LI Di; SUN Chunyan; HUANG Yunjie; LI Jinghong; CHEN Shaowei

    2005-01-01

    Electron transfer through the self-assembled monolayers (SAMs) on gold nanoparticles is investigated by using the monolayer protected gold nanoclusters (MPCs) as electron-transfer mediators. 3-Mercaptopropionic acid (MPA) and 11-meraptoundecanoic acid (MUA) MPCs were employed to catalyze the redox reaction between potassium ferricyanide and sodium thiosulfate. The catalytic mechanism was proposed that the MPCs act as diffusing electron-mediators and electron transfers to and from the MPCs surface. Therefore the electron transfer rate through the capping layers would be proportional to the MPCs catalyzed reaction rate, which was monitored by the UV absorbance of ferricyanide. The calculated apparent rate constant was orders of magnitude smaller than that of the maximum of tunneling current, which was attributed to the splited energy level of the nanoscale particles.

  13. 2014 CHEMICAL REACTIONS AT SURFACES GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR (APRIL 28-MAY 3, 2013 - LES DIABLERETS CONFERENCE CENTER, LES DIABLERETS, SWITZERLAND)

    Energy Technology Data Exchange (ETDEWEB)

    Stair, Peter C.

    2013-02-03

    presentations on chemistry at solid and liquid surfaces of relevance to catalysis, synthesis, photochemistry, environmental science, and tribology. Topics include: Fundamental Surface Chemistry; Catalysis; Solid Liquid and Aerosol Interfaces; Surface Photochemistry; Synthesis of Surfaces; Environmental Interfaces; Hot Topics in Surface Chemical Reactions; Tribology; Gas-Surface Scattering and Reactions; Novel Materials and Environments.

  14. Surface reaction mechanisms during ozone and oxygen plasma assisted atomic layer deposition of aluminum oxide.

    Science.gov (United States)

    Rai, Vikrant R; Vandalon, Vincent; Agarwal, Sumit

    2010-09-07

    We have elucidated the reaction mechanism and the role of the reactive intermediates in the atomic layer deposition (ALD) of aluminum oxide from trimethyl aluminum in conjunction with O(3) and an O(2) plasma. In situ attenuated total reflection Fourier transform infrared spectroscopy data show that both -OH groups and carbonates are formed on the surface during the oxidation cycle. These carbonates, once formed on the surface, are stable to prolonged O(3) exposure in the same cycle. However, in the case of plasma-assisted ALD, the carbonates decompose upon prolonged O(2) plasma exposure via a series reaction kinetics of the type, A (CH(3)) --> B (carbonates) --> C (Al(2)O(3)). The ratio of -OH groups to carbonates on the surface strongly depends on the oxidizing agent, and also the duration of the oxidation cycle in plasma-assisted ALD. However, in both O(3) and O(2) plasma cycles, carbonates are a small fraction of the total number of reactive sites compared to the hydroxyl groups.

  15. Effects of surface tension and electrochemical reactions in Li-ion battery electrode nanoparticles

    Science.gov (United States)

    Stein, Peter; Zhao, Ying; Xu, Bai-Xiang

    2016-11-01

    The size- and shape-dependency of the chemo-mechanical behavior of spherical and ellipsoidal nanoparticles in Li-ion battery electrodes are investigated by a stress-assisted diffusion model and 3D finite element simulations. The model features surface tension, a direct coupling between diffusion and elasticity, concentration-dependent diffusivity, and a Butler-Volmer relation for the description of electrochemical reactions that is modified to account for mechanical effects. Simulation results on spherical particles reveal that surface tension causes additional pressure fields in the particles, shifting the stress state towards the compressive regime. This provides mechanical stabilization, allowing, in principle, for higher charge/discharge rates. However, due to this pressure the attainable lithiation for a given potential difference is reduced during insertion, whereas a higher amount of ions is given off during extraction. Ellipsoidal particles with an aspect ratio deviating from that of a sphere with the same volume expose a larger surface area to the intercalation reactions. Consequently, they exhibit accelerated (dis)charge rates. However, due to the enhanced pressure in regions with high curvature, the accessible capacity of ellipsoidal particles is less than that of spherical particles.

  16. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates.

    Science.gov (United States)

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav

    2016-12-28

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  17. Thermal and Photochemical Reactions of NO2 on a Chromium (III) Oxide Surface

    Science.gov (United States)

    Nishino, N.; Finlayson-Pitts, B. J.

    2011-12-01

    Chromium oxide (Cr2O3) is a major component of the oxide layer on stainless steel surfaces. It is also widely used as pigment in paints and roofs and as a protective coating on various surfaces. While many studies have focused on the catalytic activity of Cr2O3 surfaces for selective catalytic reduction (SCR), less attention has been paid to its surface chemistry involving atmospherically important species such as NO2 under atmospheric conditions. In this study, we have investigated thermal and photochemical reactions of NO2 in the presence and the absence of water vapor, using a thin layer of Cr2O3 as a model for the surface of stainless steel as well as other similarly coated surfaces in the boundary layer. A 30 nm thick Cr2O3 film was deposited on a germanium attenuated total reflectance (ATR) crystal, and the changes in the surface species were monitored by Fourier Transform Infrared (FTIR) spectroscopy. Upon NO2 adsorption, nitrate (NO3-) ions appeared likely coordinated to Cr3+ ion(s). The NO3- peaks reversibly shifted when water vapor was added, suggesting that NO3- become solvated. Irradiation at 311 nm led to a decrease in NO3- ions under both dry and humid conditions. The major gas-phase species formed by the irradiation was NO under dry conditions, while NO2 was mainly formed in the presence of H2O. Possible mechanisms and the implications for heterogeneous NO2 chemistry in the boundary layer will be discussed. The results will also be compared to similar chemistry on other surfaces.

  18. The Surface Reactions of Ethanol over UO2(100) Thin Film

    KAUST Repository

    Senanayake, Sanjaya D.

    2015-10-08

    The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH3CH2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C1s, O1s and U4f to investigate the bonding mode, surface composition, electronic structure and probable chemical changes to the stoichiometric-UO2(100) [smooth-UO2(100)] and Ar+-sputtered UO2(100) [rough-UO2(100)] surfaces. Unlike UO2(111) single crystal and UO2 thin film, Ar-ion sputtering of this UO2(100) did not result in noticeable reduction of U cations. The ethanol molecule has C-C, C-H, C-O and O-H bonds, and readily donates the hydroxyl H while interacting strongly with the UO2 surfaces. Upon ethanol adsorption (saturation occurred at 0.5 ML), only ethoxy (CH3CH2O-) species is formed on smooth-UO2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO-) on the Ar+-sputtered UO2(100) surface. All ethoxy and acetate species are removed from the surface between 600 and 700 K.

  19. Kinetic modeling for thermal dehydration of ferrous oxalate dihydrate polymorphs: a combined model for induction period-surface reaction-phase boundary reaction.

    Science.gov (United States)

    Ogasawara, Haruka; Koga, Nobuyoshi

    2014-04-03

    In this study, ferrous oxalate dihydrate polymorph particles, α- and β-phases, with square bipyramidal and quadratic prismatic shapes, respectively, were synthesized. Thermal dehydration of the samples was subjected to kinetic study as a typical reaction that indicates a significant induction period and a sigmoidal mass-loss behavior. On the basis of the formal kinetic analysis of the mass-loss traces recorded under isothermal, nonisothermal, and constant transformation rate conditions and the morphological observations of the surface textures of the partially reacted sample particles, a combined kinetic model for the induction period-surface reaction-phase boundary reaction was developed. The sigmoidal mass-loss behavior after the significant induction period under isothermal conditions was satisfactorily simulated by the combined kinetic model. The kinetic parameters for the component processes of induction period, surface reaction, and phase boundary reaction were separately determined from the kinetic simulation. The differences in the kinetic behaviors of the induction period and the phase boundary reaction between α- and β-phase samples were well described by the kinetic parameters. The applicability of the combined kinetic model to practical systems was demonstrated through characterizing the physicogeometrical kinetics of the thermal dehydration of ferrous oxalate dihydrate polymorphs.

  20. Hydration behaviour of polyhydroxylated fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Zavala, J G [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de Los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon S/N, 47460 Jalisco (Mexico); Barajas-Barraza, R E [Departamento de Matematicas y Fisica, Instituto Tecnologico y de Estudios Superiores de Occidente, Periferico Sur, Manuel Gomez MorIn No 8585, 45604 Jalisco (Mexico); Padilla-Osuna, I; Guirado-Lopez, R A, E-mail: jgrz@culagos.udg.mx, E-mail: ebarajas@iteso.mx, E-mail: ismael@ifisica.uaslp.mx, E-mail: guirado@ifisica.uaslp.mx [Instituto de Fisica ' Manuel Sandoval Vallarta' , Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi (Mexico)

    2011-10-28

    We have performed semi-empirical as well as density functional theory calculations in order to analyse the hydration properties of both bare C{sub 60} and highly hydroxylated C{sub 60}(OH){sub 26} fullerenes. In all of our calculations, a total of 42 and 98 water molecules are always surrounding our here-considered carbon nanostructures. We found different wetting properties as a function of the chemical composition and structure of the OH-molecular over-layer covering the fullerene surface. In the case of bare C{sub 60}, water adsorption reveals that the H{sub 2}O species are not uniformly arranged around the carbon network but rather forms water droplets of different sizes, clearly revealing the hydrophobic nature of the C{sub 60} structure. In contrast, in the polyhydroxylated C{sub 60}(OH){sub 26} fullerenes, the degree of wetting is strongly influenced by the precise location of the hydroxyl groups. We found that different adsorbed configurations for the OH-molecular coating can lead to the formation of partially hydrated or completely covered C{sub 60}(OH){sub 26} compounds, a result that could be used to synthesize fullerene materials with different degrees of wettability. By comparing the relative stability of our hydroxylated structures in both bare and hydrated conditions we obtain that the energy ordering of the C{sub 60}(OH){sub 26} isomers can change in the presence of water. The radial distribution function of our hydrated fullerenes reveals that water near these kinds of surfaces is densely packed. In fact, by counting the number of H{sub 2}O molecules which are adsorbed, by means of hydrogen bonds, to the surface of our more stable C{sub 60}(OH){sub 26} isomer, we found that it varies in the range of 5-10, in good agreement with experiments. Finally, by comparing the calculated optical absorption spectra of various C{sub 60}(OH){sub 26} structures in the presence and absence of water molecules, we note that only slight variations in the position and

  1. Novel multiparametric approach to elucidate the surface amine-silanization reaction profile on fluorescent silica nanoparticles.

    Science.gov (United States)

    Roy, Shibsekhar; Dixit, Chandra K; Woolley, Robert; MacCraith, Brian D; O'Kennedy, Richard; McDonagh, Colette

    2010-12-07

    This Article addresses the important issue of the characterization of surface functional groups for optical bioassay applications. We use a model system consisting of spherical dye-doped silica nanoparticles (NPs) that have been functionalized with amine groups whereby the encapsulated cyanine-based near-infrared dye fluorescence acts as a probe of the NP surface environment. This facilitates the identification of the optimum deposition parameters for the formation of a stable ordered amine monolayer and also elucidates the functionalization profile of the amine-silanization process. Specifically, we use a novel approach where the techniques of fluorescence correlation spectroscopy (FCS) and fluorescence lifetime measurement (FL) are used in conjunction with the more conventional analytical techniques of zeta potential measurement and Fourier transfer infrared spectroscopy (FTIR). The dynamics of the ordering of the amine layer in different stages of the reaction have been characterized by FTIR, FL, and FCS. The results indicate an optimum reaction time for the formation of a stable amine layer, which is optimized for further biomolecular conjugation, whereas extended reaction times lead to a disordered cross-linked layer. The results have been validated using an immunoglobulin (IgG) plate-based direct binding assay where the maximum number of IgG-conjugated aminated NPs were captured by immobilized anti-IgG antibodies for the NP sample corresponding to the optimized amine-silanization condition. Importantly, these results point to the potential of FCS and FL as useful analytical tools in diverse fields such as characterization of surface functionalization.

  2. Electrochemical detection of point mutation based on surface ligation reaction and biometallization.

    Science.gov (United States)

    Zhang, Peng; Chu, Xia; Xu, Xiangmin; Shen, Guoli; Yu, Ruqin

    2008-05-15

    A highly sensitive electrochemical method for point mutation detection based on surface enzymatic ligation reaction and biometallization is demonstrated. In this method the surface-immobilized allele-specific probe, complementary to the mutant target, undergoes allele-specific ligation with the 5'-phosphorylated ligation probe in the presence of the mutant oligonucleotide target and E. coli DNA ligase. If there is an allele mismatch, no ligation takes place. After thermal treatment at 90 degrees C, the formed duplex melts apart, which merely allows the ligation product to remain on the electrode surface. Then, biotinylated detection probes hybridize with the ligation product. With the binding of streptavidin-alkaline phosphatase (SA-ALP) to the biotinylated probes, a non-reductive substrate of alkaline phosphatase, ascorbic acid 2-phosphate (AA-P), can be converted into ascorbic acid (AA) at the electrode surface. Silver ions in solution are then reduced by AA, resulting in the deposition of silver metal onto the electrode surface. Linear sweep voltammetry (LSV) is used to detect the amount of deposited silver. The proposed approach has been successfully implemented for the identification of single base mutation in codon 12 of K-ras oncogene target with a detection limit of 80fM, demonstrating that this method provides a highly specific, sensitive and cost-efficient approach for point mutation detection.

  3. Performing chemical reactions in virtual capillary of surface tension-confined microfluidic devices

    Indian Academy of Sciences (India)

    Angshuman Nag; Biswa Ranjan Panda; Arun Chattopadhyay

    2005-10-01

    In this paper we report a new method of fabrication of surface tension-confined microfluidic devices on glass. We have also successfully carried out some well-known chemical reactions in these fluidic channels to demonstrate the usefulness of these wall-less microchannels. The confined flow path of liquid was achieved on the basis of extreme differences in hydrophobic and hydrophilic characters of the surface. The flow paths were fabricated by making parallel lines using permanent marker pen ink or other polymer on glass surfaces. Two mirror image patterned glass plates were then sandwiched one on top of the other, separated by a thin gap - created using a spacer. The aqueous liquid moves between the surfaces by capillary forces, confined to the hydrophilic areas without wetting the hydrophobic lines, achieving liquid confinement without physical side-walls. We have shown that the microfluidic devices designed in such a way can be very useful due to their simplicity and low fabrication cost. More importantly, we have also demonstrated that the minimum requirement of such a working device is a hydrophilic line surrounded by hydrophobic environment, two walls of which are constituted of air and the rest is made of a hydrophobic surface.

  4. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate

    Science.gov (United States)

    Yun, T.S.; Santamarina, C.J.; Ruppel, C.

    2007-01-01

    The mechanical behavior of hydrate-bearing sediments subjected to large strains has relevance for the stability of the seafloor and submarine slopes, drilling and coring operations, and the analysis of certain small-strain properties of these sediments (for example, seismic velocities). This study reports on the results of comprehensive axial compression triaxial tests conducted at up to 1 MPa confining pressure on sand, crushed silt, precipitated silt, and clay specimens with closely controlled concentrations of synthetic hydrate. The results show that the stress-strain behavior of hydrate-bearing sediments is a complex function of particle size, confining pressure, and hydrate concentration. The mechanical properties of hydrate-bearing sediments at low hydrate concentration (probably 50% of pore space), the behavior becomes more independent of stress because the hydrates control both stiffness and strength and possibly the dilative tendency of sediments by effectively increasing interparticle coordination, cementing particles together, and filling the pore space. The cementation contribution to the shear strength of hydrate-bearing sediments decreases with increasing specific surface of soil minerals. The lower the effective confining stress, the greater the impact of hydrate formation on normalized strength.

  5. Mechanistic Details of Surface Reactions in Atomic Layer Deposition (ALD) Processes

    Institute of Scientific and Technical Information of China (English)

    Menno; Bouman; Christopher; Clark; Hugo; Tiznado; Francisco; Zaera

    2007-01-01

    1 Results The reaction mechanisms of the atomic layer deposition (ALD) processes used for thin-film growth have been characterized by a combination of surface sensitive techniques. Our early studies focused on the deposition of TiN films from TiCl4 and ammonia,starting with the independent characterization of each of the two half steps comprising the ALD process. It was found that exposure of the substrate to TiCl4 leads to the initial deposition of titanium in the +3 oxidation state; only at a later st...

  6. Surface Properties of Titanium dioxide and its Structural Modifications by Reactions with Transition Metals

    Science.gov (United States)

    Halpegamage, Sandamali

    Surfaces of metal oxides play a vital role in many technologically important applications. The surfaces of titanium dioxide, in particular, show quite promising properties that can be utilized in solid-state gas sensing and photocatalysis applications. In the first part of this dissertation we investigate these properties of TiO2 surfaces through a vigorous surface scientific approach. In the second part, we investigate the possibilities of modifying the TiO2 surfaces by depositing multi-component transition metal oxide monolayers so that the properties of bare TiO2 surface can be influenced in a beneficial way. For instance, via formation of new surface sites or cations that have different valance states, the chemisorption and catalytic properties can be modified. We use sophisticated experimental surface science techniques that are compatible with ultra-high vacuum technology for surface characterization. All the experimental results, except for the photocatalysis experiments, were compared to and verified by supporting DFT-based theoretical results produced by our theory collaborators. TiO2 based solid-state gas sensors have been used before for detecting trace amounts of explosives such as 2,4-dinitrololuene (DNT), a toxic decomposition product of the explosive 2,4,6-trinitrotoluene (TNT) that have very low vapor pressure. However, the adsorption, desorption and reaction mechanism were not well- understood. Here, we investigate 2,4-DNT adsorption on rutile-TiO2(110) surface in order to gain insight about these mechanisms in an atomistic level and we propose an efficient way of desorbing DNT from the surface through UV-light induced photoreactions. TiO2 exists in different polymorphs and the photocatalytic activity differs from one polymorph to another. Rutile and anatase are the most famous forms of TiO2 in photocatalysis and anatase is known to show higher activity than rutile. The photoactivity also varies depending on the surface orientation for the same

  7. Stereodynamics of the He + D+2→ HeD+ + D Reaction on the PALMIERI Surface

    Institute of Scientific and Technical Information of China (English)

    KONG Hao; LIU Xin-Guo; XU Wen-Wu; ZHANG Qing-Gang

    2009-01-01

    Using the quasi-classical trajectory method, the product rotational polarization of the ion-molecule reaction He+D+2 has been calculated at different collision energies on the PALMIERI potential energy surface [Palmieri et al. Mol. Phys. 98 (2000) 1835]. The distribution angle between k and j', P(θr), the distribution of the dihedral angle P(φr), and the angular distribution of product rotational vectors in the form of polar plots in θr and φr are calculated. In addition, four polarization-dependent differential cross sections are also presented in the center-of-mass frame, respectively. The results indicate that the rotational polarization of the product HeD+presents different characters for different collision energies. These discrepancies may be ascribed to the different collision energies and constructions of the potential energy surface.

  8. STM observation of the chemical reaction of atomic hydrogen on the N-adsorbed Cu(001) surface

    Science.gov (United States)

    Hattori, Takuma; Yamada, Masamichi; Komori, Fumio

    2017-01-01

    Chemical reaction of atomic hydrogen with the N-adsorbed Cu(001) surfaces was investigated at room temperature by scanning tunnel microscopy. At the low exposure of atomic hydrogen, it reacted with the N atoms and turned to be the NH species on the surface. The reaction rate is proportional to the amount of the unreacted N atoms. By increasing the exposure of atomic hydrogen from this condition, the amount of nitrogen species on the surface decreased. This is attributed to the formation of ammonia and its desorption from the surface. The NH species on the surface turn to NH3 through the surface NH2 species by atomic hydrogen. Coexistence of the clean Cu surface enhances the rate of ammonia formation owing to atomic hydrogen migrating on the clean surface.

  9. Preparation of reaction-bonded porous silicon carbide with denser surface layer in one-pot process

    National Research Council Canada - National Science Library

    SHIMAMURA, Akihiro; FUKUSHIMA, Manabu; HOTTA, Mikinori; OHJI, Tatsuki; KONDO, Naoki

    2015-01-01

    Macro-porous silicon carbide with high porosity around 70 vol %, comprising micrometer-sized spherical porosities and a relatively denser surface layer, was fabricated by a direct blowing and reaction bonding method...

  10. Preparation of reaction-bonded porous silicon carbide with denser surface layer in one-pot process

    National Research Council Canada - National Science Library

    Akihiro SHIMAMURA; Manabu FUKUSHIMA; Mikinori HOTTA; Tatsuki OHJI; Naoki KONDO

    2015-01-01

      Macro-porous silicon carbide with high porosity around 70 vol %, comprising micrometer-sized spherical porosities and a relatively denser surface layer, was fabricated by a direct blowing and reaction bonding method...

  11. Response surface methodology for optimizing the glycerolysis reaction of olive oil by Candida rugosa lipase

    Directory of Open Access Journals (Sweden)

    Singh Kumar Abhishek

    2014-01-01

    Full Text Available In the present work, solvent free olive oil glycerolysis for the monoglycerides (MG and diglycerides (DG production with an immobilized Candida rugosa lipase was studied. MG and DG production were optimized using experiment design techniques and response surface methodology (RSM. RSM based on five-level, a five-variable central composite design (CCD was used to optimize MG and DG production: reaction time, temperature, molar ratio of glycerol to oil, amount of lipase, and water content in glycerol. The reaction time, temperature, and amount of lipase were observed to be the most significant factors on the process response. The immobilized Candida rugosa lipase revealed optimum yield of MG and DG as 38.71 and 40.45 wt% respectively following a 5h reaction time with 0.025 g of lipase and 5% water content in glycerol at 40°C temperature. The yield of MG and DG production can be enhanced 1.5 fold by RSM.

  12. Influence of structure on reaction efficiency in surface catalysis. 3. Entropic and dynamical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Politowicz, P.A. (Australian National Univ., Canberra (Australia)); Kozak, J.J. (Univ. of Georgia, Athens (USA))

    1990-09-06

    The authors introduce a general method for calculating (and predicting) the rate constant for a kinetic process in which a coreactant, migrating on the surface of a catalyst (or molecular organizate) having clusters of stationary reaction centers, undergoes an irreversible reaction upon first encounter. The authors method is based on the relationship between the first moment of the underlying probability distribution function governing the process (the mean walk length (n) of the diffusing coreactant), the (zero-mode) relaxation time of the system (the reciprocal of the smallest eigenvalue {lambda}{sub 1} of the stochastic mater equation for the problem) and a statistical (also information theoretic) expression for the entropy. Extensive calculations are reported for a wide variety of configurations of active sites (monomers, dimers, triplets, quartets, hexamers, and (binary and ternary) combinations thereof), and the efficiency of the diffusion-controlled reactive process is studied as a function of the concentration C{sub T} of reaction centers and a statistical order parameter {delta}.

  13. TEOS-based SiO{sub 2} chemical vapor deposition: Reaction kinetics and related surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Bartram, M.E.; Moffat, H.K.

    1995-11-01

    We have developed a comprehensive understanding of thermal TEOS (tetracthylorthosificate, Si(OCH{sub 2}CH{sub 3}){sub 4}) surface chemistry at CVD (chemical vapor deposition) temperatures and pressures. This was accomplished by examining how TEOS reaction rate are influenced by factors critical to the heterogeneous reaction. This includes determining the TEOS pressure dependence, testing if reaction by-products inhibit TEOS decomposition, identifying reaction sites on the surface, and establishing the reaction sites coverage dependencies. We evaluated the pressure dependencies and by-product inhibition with GCMS. The experiments in a cold-wall research reactor revealed that the TEOS surface reaction at 1000K (1) was first-order with respect to TEOS pressure (0.10 to 1.50Torr) and (2) was not inhibited by surface reaction by-products (ethylene, ethanol, and water). Reactivities of surface sites and their coverage dependencies were compared with FTIR. Our experiments demonstrated that two-membered siloxane ((Si-O){sub 2}) rings on the SiO{sub 2} surface were consumed almost instantaneously when exposed to TEOS. Our FTIR experiments also revealed that TEOS decomposition was zero-order with respect to coverages of hydroxyl groups and (by indirect evidence) three-membered siloxane ((Si-O){sub 3}) rings. This type of site-independent reactivity is consistent with TEOS reacting with hydroxyl groups and (Si-O){sub 3} rings via a common rate-determining step at 1000K. With respect to deposition uniformity, our results predict that deposition rates will be insensitive to the relative coverages of (Si-O){sub 3} rings and hydroxyls on SiO{sub 2} as well as the re-adsorbed by-products of the surface reaction. Therefore, it is likely that nonuniform SiO{sub 2} depositions from TEOS reactions are due to depletion of TEOS in the gas-phase and/or thermal gradients.

  14. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  15. Development of an FTIR in situ reactor for real time study of surface reactions in photocatalysis

    Science.gov (United States)

    Hauchecorne, Birger

    For many years, photocatalysis has been proposed as one of the promising techniques to abate environmental pollutants. To improve the catalytic efficiency, it is vital to know the reaction mechanisms of the photocatalytic degradation. Different methods are therefore described in literature to study these mechanisms at the gaseous phase/photocatalyst interface with Fourier transform infrared (FTIR) spectroscopy as a commonly used method. The reactors described in literature and/or available on the market experience some technical and scientific difficulties. Generally, the catalyst can only be investigated after the reactions have occurred, or it is only possible to look at the changes in the gas phase concentrations while the reactions are taking place. It is thus a major challenge to develop a reactor which makes it possible to detect changes on the catalyst surface at the moment the reactions are happening. In this work, a new reactor is developed that makes it possible to study the catalytic surface at the moment the reactions occur, by means of transmission-absorption FTIR spectroscopy. Moreover, by using UV LEDs, it was possible to install the UV light inside the reactor area, so that no harmful UV light can leave the reactor, inherently making it a safer method. It was also opted to construct the reactor in a modular way, so that every part was interchangeable and could easily be replaced according to the needs of the researcher. A special screw cap is designed to hold the UV LEDs on a printed circuit board and to fit in every standard FTIR spectrometer. This study provides exciting new insights in the photocatalytic degradation mechanism of ethylene and acetaldehyde. It is for instance found that OH radicals are used as the oxidising agents to abate these pollutants. For ethylene it was proven that the molecular orbitals play an important role, resulting in the formation of both formaldehyde and formic acid as intermediates before complete mineralisation

  16. Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.

    Science.gov (United States)

    Favaro, Marco; Abdi, Fatwa F; Lamers, Marlene; Crumlin, Ethan J; Liu, Zhi; van de Krol, Roel; Starr, David E

    2017-09-18

    Bismuth vanadate has recently drawn significant research attention as a light-absorbing photoanode due to its performance for photoelectrochemical water splitting. In this study, we use in situ ambient pressure X-ray photoelectron spectroscopy with "tender" X-rays (4.0 keV) to investigate a polycrystalline bismuth vanadate (BiVO4) electrode in contact with an aqueous potassium phosphate (KPi) solution at open circuit potential under both dark and light conditions. This is facilitated by the creation of a 25 to 30 nm thick electrolyte layer using the "dip-and-pull" method. We observe that under illumination bismuth phosphate forms on the BiVO4 surface leading to an increase of the surface negative charge. The bismuth phosphate layer may act to passivate surface states observed in photoelectrochemical measurements. The repulsive interaction between the negatively charged surface under illumination and the phosphate ions in solution causes a shift in the distribution of ions in the thin aqueous electrolyte film, which is observed as an increase in their photoelectron signals. Interestingly, we find that such changes at the BiVO4/KPi electrolyte interface are reversible upon returning to dark conditions. By measuring the oxygen 1s photoelectron peak intensities from the phosphate ions and liquid water as a function of time under dark and light conditions, we determine the time scales for the forward and reverse reactions. Our results provide direct evidence for light-induced chemical modification of the BiVO4/KPi electrolyte interface.

  17. Infrared emission associated with chemical reactions on Shuttle and SIRTF surfaces

    Science.gov (United States)

    Hollenbach, D. J.; Tielens, Alexander G. G. M.

    1984-01-01

    The infrared intensities which would be observed by the Shuttle Infrared Telescope Facility (SIRTF), and which are produced by surface chemistry following atmospheric impact on SIRTF and the shuttle are estimated. Three possible sources of reactants are analyzed: (1) direct atmospheric and scattered contaminant fluxes onto the shuttle's surface; (2) direct atmospheric and scattered contaminant fluxes onto the SIRTF sunshade; and (3) scattered fluxes onto the cold SIRTF mirror. The chemical reactions are primarily initiated by the dominent flux of reactive atomic oxygen on the surfaces. Using observations of the optical glow to constrain theoretical parameters, it is estimated for source (1) that the infrared glow on the SIRTF mirror will be comparable to the zodiacal background between 1 and 10 micron wavelengths. It is speculated that oxygen reacts with the atoms and the radicals bound in the organic molecules that reside on the shuttle and the Explorer surfaces. It is concluded that for source (2) that with suitable construction, a warm sunshade will produce insignificant infrared glow. It is noted that the atomic oxygen flux on the cold SIRTF mirror (3) is insufficient to produce significant infrared glow. Infrared absorption by the ice buildup on the mirror is also small.

  18. Adsorption and reaction of silver on an oxidized Si(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, S., E-mail: sohno@ynu.ac.jp [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Tanaka, H. [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Takahashi, K.; Kamada, M. [Synchrotron Light Application Center, Saga University, Honjo 1, Saga 840-8502 (Japan); Tanaka, M. [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2015-08-15

    Highlights: • Electronic states associated with silver adsorption processes on oxidized silicon surfaces were investigated. • Characterization of oxide thin films on Si surfaces was performed using photoelectron spectroscopy with synchrotron radiation. • The changes in the Si 2p oxide components upon silver adsorption are ascribed to charge transfer rather than a conformation change. - Abstract: The adsorption and reaction of silver on an oxidized Si(0 0 1) surface were investigated on the basis of Si 2p, Ag 3d and O 1s core-level photoemission measurements at room temperature (RT). We compared the present results with those obtained in the case of titanium in our previous study. We found that silver on an oxidized Si(0 0 1) surface at RT causes a reduction in the intensity of the Si{sup 1+} and Si{sup 2+} states and an increase in the intensity of the Si{sup 3+} and Si{sup 4+} states. Based on an analysis of the Ag 3d and O 1s states, we concluded that the change in the Si 2p oxidized states upon silver adsorption is due to charge transfer rather than conformation change, although the applicability of the charge transfer scheme may be dependent on the thickness of the silver layer. We also deduced that penetration of silver atoms through a thin silicon oxide film occurs.

  19. Effect of defects on reaction of NiO surface with Pb-contained solution

    Science.gov (United States)

    Kim, Jongjin; Hou, Binyang; Park, Changyong; Bahn, Chi Bum; Hoffman, Jason; Black, Jennifer; Bhattacharya, Anand; Balke, Nina; Hong, Hawoong; Kim, Ji Hyun; Hong, Seungbum

    2017-01-01

    In order to understand the role of defects in chemical reactions, we used two types of samples, which are molecular beam epitaxy (MBE) grown NiO(001) film on Mg(001) substrate as the defect free NiO prototype and NiO grown on Ni(110) single crystal as the one with defects. In-situ observations for oxide-liquid interfacial structure and surface morphology were performed for both samples in water and Pb-contained solution using high-resolution X-ray reflectivity and atomic force microscopy. For the MBE grown NiO, no significant changes were detected in the high-resolution X-ray reflectivity data with monotonic increase in roughness. Meanwhile, in the case of native grown NiO on Ni(110), significant changes in both the morphology and atomistic structure at the interface were observed when immersed in water and Pb-contained solution. Our results provide simple and direct experimental evidence of the role of the defects in chemical reaction of oxide surfaces with both water and Pb-contained solution. PMID:28317881

  20. Chemistry in Disks. IV. Benchmarking gas-grain chemical models with surface reactions

    CERN Document Server

    Semenov, D; Wakelam, V; Dutrey, A; Chapillon, E; Guilloteau, St; Henning, Th; Launhardt, R; Pietu, V; Schreyer, K

    2010-01-01

    Abridged: We detail and benchmark two sophisticated chemical models developed by the Heidelberg and Bordeaux astrochemistry groups. The main goal of this study is to elaborate on a few well-described tests for state-of-the-art astrochemical codes covering a range of physical conditions and chemical processes, in particular those aimed at constraining current and future interferometric observations of protoplanetary disks. We consider three physical models: a cold molecular cloud core, a hot core, and an outer region of a T Tauri disk. Our chemical network (for both models) is based on the original gas-phase osu_03_2008 ratefile and includes gas-grain interactions and a set of surface reactions for the H-, O-, C-, S-, and N-bearing molecules. The benchmarking is performed with the increasing complexity of the considered processes: (1) the pure gas-phase chemistry, (2) the gas-phase chemistry with accretion and desorption, and (3) the full gas-grain model with surface reactions. Using atomic initial abundances ...

  1. Effect of surface functionalisation on the interaction of iron oxide nanoparticles with polymerase chain reaction.

    Science.gov (United States)

    Aysan, Ayse Beyza; Knejzlík, Zdeněk; Ulbrich, Pavel; Šoltys, Marek; Zadražil, Aleš; Štěpánek, František

    2017-05-01

    The combination of nanoparticles with the polymerase chain reaction (PCR) can have benefits such as easier sample handling or higher sensitivity, but also drawbacks such as loss of colloidal stability or inhibition of the PCR. The present work systematically investigates the interaction of magnetic iron oxide nanoparticles (MIONs) with the PCR in terms of colloidal stability and potential PCR inhibition due to interaction between the PCR components and the nanoparticle surface. Several types of MIONs with and without surface functionalisation by sodium citrate, dextran and 3-aminopropyl-triethoxysilane (APTES) were prepared and characterised by Transmission Electron Microscopy (TEM), dynamic light scattering (DLS) and Fourier Transform Infrared (FT-IR) spectroscopy. Colloidal stability in the presence of the PCR components was investigated both at room temperature and under PCR thermo-cycling. Dextran-stabilized MIONs show the best colloidal stability in the PCR mix at both room and elevated temperatures. Citrate- and APTES-stabilised as well as uncoated MIONs show a comparable PCR inhibition near the concentration 0.1mgml(-1) while the inhibition of dextran stabilized MIONs became apparent near 0.5mgml(-1). It was demonstrated that the PCR could be effectively carried out even in the presence of elevated concentration of MIONs up to 2mgml(-1) by choosing the right coating approach and supplementing the reaction mix by critical components, Taq DNA polymerase and Mg(2+) ions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  3. Kinetic study on the H + SiH4 abstraction reaction using an ab initio potential energy surface.

    Science.gov (United States)

    Cao, Jianwei; Zhang, Zhijun; Zhang, Chunfang; Bian, Wensheng; Guo, Yin

    2011-01-14

    Variational transition state theory calculations with the correction of multidimensional tunneling are performed on a 12-dimensional ab initio potential energy surface for the H + SiH(4) abstraction reaction. The surface is constructed using a dual-level strategy. For the temperature range 200-1600 K, thermal rate constants are calculated and kinetic isotope effects for various isotopic species of the title reaction are investigated. The results are in very good agreement with available experimental data.

  4. Heterogeneous Reactions of Surface-Adsorbed Catechol: A Comparison of Tropospheric Aerosol Surrogates

    Science.gov (United States)

    Hinrichs, R. Z.; Woodill, L. A.

    2009-12-01

    Surface-adsorbed organics can alter the chemistry of tropospheric solid-air interfaces, such as aerosol and ground level surfaces, thereby impacting photochemical cycles and altering aerosol properties. The nature of the surface can also influence the chemistry of the surface-adsorbed organic. We employed diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to monitor the adsorption of gaseous catechol on several tropospheric aerosol surrogates and to investigate the subsequent reactivity of adsorbed-catechol with nitrogen dioxide and, in separate preliminary experiments, ozone. Graphite, kaolinite, and sodium halide (NaF, NaCl, NaBr) powders served as carbonaceous, mineral and sea salt aerosol surrogates, respectively. Broad OH stretching bands for adsorbed catechol shifted to lower wavenumber with peak frequencies following the trend NaBr > NaCl > NaF ≈ kaolinite, consistent with the increasing basicity of the halide anions and basic Brønsted sites on kaolinite. The dark heterogeneous reaction of NO2 with NaCl-adsorbed catechol at relative humidity (RH) 4-nitrocatechol and oxidation forming 1,2-benzoquinone and the ring cleavage product muconic acid, with product yields of 88%, 8%, and 4%, respectively. 4-Nitrocatechol was the dominant product for catechol adsorbed on NaF and kaolinite, while NaBr-adsorbed catechol produced less 4-nitrocatechol and more 1,2-benzoquinone and muconic acid. For all three sodium halides, the reactions of NO2 with adsorbed catechol were orders of magnitude faster than between NO2 and each NaX substrate. 4-Nitrocatechol rates and product yields were consistent with the relative ability of each substrate to enhance the deprotonated nature of adsorbed-catechol. Increasing the relative humidity caused the rate of each product channel to decrease and also altered the product branching ratios. Most notably, 1,2-benzoquinone formation decreased significantly even at 13% RH. The dramatic reactivity of surface

  5. The effect of polymethylsiloxanes on hydration of clinker phases

    Science.gov (United States)

    Stoch, A.; Zdaniewicz, M.; Paluszkiewicz, Cz.

    1999-11-01

    The effect of the polydimethylsiloxane (PDMS) admixture on hydration of pure clinker phases: alite, belite or tricalcium aluminate was studied by means of FTIR spectroscopy. It was shown that PDMS, introduced to a clinker phase paste during the hydration process reduces the carbonation reaction, improves the crystallization of hydrates in tricalcium aluminate and considerably increases water resistance without significantly changing the mechanical parameters. Our FTIR results were also confirmed by XRD, DTA and SEM study of the morphology of the newly formed phases. Introduction of as much as 5 wt.% of the PDMS increases the wetting angle by up to 80-120°.

  6. Hydration study of mechanically activated mixtures of Portland cement and fly ash

    Directory of Open Access Journals (Sweden)

    GORDANA STEFANOVIC

    2007-06-01

    Full Text Available Fly ash (FA can be used in cement mixtures with certain limitations. The problem of the mentioned mixtures lies in the insufficient activity of the particles of FA in the reactions which are important for the establishment of the mechanical characteristics of cement. This is particularly true for the hydration reactions. As a result of this, cement pastes formed by mixing ash and clinker have worse characteristics compared to those of pure Portland cement (PC, especially in the early period of setting. As is well known, FA can be a good solution for the neutralization of the negative effects generated due to the creation of free Ca(OH2 during the hydration of PC, provided that the problems with the low activity of FAare overcome. For the experiments in this study, a mixture of Portland cement and fly ash was used, the content of ash in the mixture being 30 % and 50 %. Mechanical activation was performed in a vibrating ring mill. The goal of this study was to demonstrate, through experimental results, that during the mechanical activation of a PC and FAmixture, the components in the mixture which mostly affect the direction, rate and range of hydration reactions occurring in the mixture had been activated. The values of the compressive strength of the activated and non-activated mixtures and the changes of their specific surface area proved that during the grinding process, the mixture PC+FA had been mechanically activated. The highest increase of compressivestrength was achieved in the early period of setting, which indicates an improvement in the early hydration of the mixture. XRD, DTA and TG analyses showed that the alite (C3S and belite (C2S from the PC and a part of the fly ash were activated.

  7. Surface modification of poly(ethylene terephthalate) fabric via photo-chemical reaction of dimethylaminopropyl methacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nasser H. [Deutsches Textilforschungszentrum Nord-West e.V., Adlerstr. 1, 47798 Krefeld (Germany); Bahners, Thomas, E-mail: bahners@dtnw.de [Deutsches Textilforschungszentrum Nord-West e.V., Adlerstr. 1, 47798 Krefeld (Germany); Wego, Andreas [Deutsches Textilforschungszentrum Nord-West e.V., Adlerstr. 1, 47798 Krefeld (Germany); Gutmann, Jochen S. [Deutsches Textilforschungszentrum Nord-West e.V., Adlerstr. 1, 47798 Krefeld (Germany); Universitaet Duisburg-Essen, Physikalische Chemie, Universitaetsstr. 2, 45141 Essen (Germany); Ulbricht, Mathias [Deutsches Textilforschungszentrum Nord-West e.V., Adlerstr. 1, 47798 Krefeld (Germany); Universitaet Duisburg-Essen Technische Chemie II, Essen (Germany)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer PET fibers were UV-grafted with dimethylaminopropyl methacrylamide (DMAPMA). Black-Right-Pointing-Pointer The graft yield could be controlled by irradiation time and monomer concentration. Black-Right-Pointing-Pointer The tertiary amino groups of the grafted PDMAPMA were quaternized with alkyl bromides. Black-Right-Pointing-Pointer The quaternization reaction had a high yield, when bromides with shorter alkyl chain were employed. Black-Right-Pointing-Pointer The antimicrobial effect was highest, when samples were quaternized with 1-bromohexane and 1-bromooctane. - Abstract: Photo-chemical reactions and surface modifications of poly(ethylene terephthalate) (PET) fabrics with the monomer dimethylaminopropyl methacrylamide (DMAPMA) and benzophenone (BP) as photo-initiator using a broad-band UV lamp source were investigated. The tertiary amino groups of the grafted poly(DMAPMA) chains were subsequently quaternized with alkyl bromides of different chain lengths to establish antibacterial activity. The surface composition, structure and morphology of modified PET fabrics were characterized by Fourier transform infrared spectroscopy (FTIR/ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). To evaluate the amount of quaternary and tertiary ammonium groups on the modified surface, PET was dyed with an acid dye which binds to the ammonium groups. Therefore, the color depth is a direct indicator of the amount of ammonium groups. The resulting antibacterial activity of the modified PET fabrics was tested with Escherichia coli. The results of all experiments show that a photochemical modification of PET is possible using DMAPMA, benzophenone and UV light. Also, the quaternization of tertiary amino groups as well as the increase in antibacterial activity of the modified PET by the established quaternary ammonium groups were successful.

  8. Production of Organic Grain Coatings by Surface-Mediated Reactions and the Consequences of This Process for Meteoritic Constituents

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2011-01-01

    When hydrogen, nitrogen and CO are exposed to amorphous iron silicate surfaces at temperatures between 500 - 900K, a carbonaceous coating forms via Fischer-Tropsch type reactions. Under normal circumstances such a catalytic coating would impede or stop further reaction. However, we find that this coating is a better catalyst than the amorphous iron silicates that initiate these reactions. The formation of a self-perpetuating catalytic coating on grain surfaces could explain the rich deposits of macromolecular carbon found in primitive meteorites and would imply that protostellar nebulae should be rich in organic material. Many more experiments are needed to understand this chemical system and its application to protostellar nebulae.

  9. Investigating Reaction-Driven Cracking

    Science.gov (United States)

    Kelemen, P. B.; Hirth, G.; Savage, H. M.

    2013-12-01

    Many metamorphic reactions lead to large volume changes, and potentially to reaction-driven cracking [1,2]. Large-scale hydration of mantle peridotite to produce serpentine or talc is invoked to explain the rheology of plate boundaries, the nature of earthquakes, and the seismic properties of slow-spread ocean crust and the 'mantle wedge' above subduction zones. Carbonation of peridotite may be an important sink in the global carbon cycle. Zones of 100% magnesite + quartz replacing peridotite, up to 200 m thick, formed where oceanic mantle was thrust over carbonate-bearing metasediments in Oman. Talc + carbonate is an important component of the matrix in subduction mélanges at Santa Catalina Island , California, and the Sanbagawa metamorphic belt, Japan. Engineered systems to emulate natural mineral carbonation could provide relatively inexpensive CO2 capture and storage [3]. More generally, engineered reaction-driven cracking could supplement or replace hydraulic fracture in geothermal systems, solution mining, and extraction of tight oil and gas. The controls on reaction-driven cracking are poorly understood. Hydration and carbonation reactions can be self-limiting, since they potentially reduce permeability and armor reactive surfaces [4]. Also, in some cases, hydration or carbonation may take place at constant volume. Small changes in volume due to precipitation of solid products increases stress, destabilizing solid reactants, until precipitation and dissolution rates become equal at a steady state stress [5]. In a third case, volume change due to precipitation of solid products causes brittle failure. This has been invoked on qualitative grounds to explain, e.g., complete serpentinization of mantle peridotite [6]. Below ~ 300°C, the available potential energy for hydration and carbonation of olivine could produce stresses of 100's of MPa [2], sufficient to fracture rocks to 10 km depth or more, causing brittle failure below the steady state stress required

  10. Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.

    Science.gov (United States)

    Xu, Chen; Hu, Xin; Wang, Jie; Zhang, Ye-Min; Liu, Xiao-Jiu; Xie, Bin-Bin; Yao, Chen; Li, Yi; Li, Xin-Song

    2015-08-12

    Biofouling is of great concern in numerous applications ranging from ophthalmological implants to catheters, and from bioseparation to biosensors. In this report, a general and facile strategy to combat surface fouling is developed by grafting of amino acids onto polymer substrates to form zwitterionic structure through amino groups induced epoxy ring opening click reaction. First of all, a library of poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) hydrogels with zwitterionic surfaces were prepared, resulting in the formation of pairs of carboxyl anions and protonated secondary amino cations. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the successful immobilization of amino acids on the hydrogel surfaces. After that, the contact angle and equilibrium water content of the modified hydrogels showed that the hydrogels exhibited improved hydrophilicity compared with the parent hydrogel. Furthermore, the protein deposition was evaluated by bicinchoninic acid assay using bovine serum albumin (BSA) and lysozyme as models. The results indicated that the performance of the hydrogels was determined by the nature of incorporated amino acid: the hydrogels incorporated with neutral amino acids had nonspecific antiadsorption capability to both BSA and lysozyme; the hydrogels incorporated with charged amino acids showed antiadsorption behaviors against protein with same charge and enhanced adsorption to the protein with opposite charge; the optimal antiadsorption performance was observed on the hydrogels incorporated with polar amino acids with a hydroxyl residual. The improvement of antiprotein fouling of the neutral amino acids grafted hydrogels can be ascribed to the formation of zwitterionic surfaces. Finally, a couple of soft contact lenses grafted with amino acids were fabricated having improved antifouling property and hydrophilicity. The result demonstrated the success of

  11. Volatile inventories in clathrate hydrates formed in the primordial nebula

    CERN Document Server

    Mousis, O; Picaud, S; Cordier, D

    2010-01-01

    Examination of ambient thermodynamic conditions suggest that clathrate hydrates could exist in the martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems. In this work, we use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in each clathrate hydrate formed at given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically a...

  12. Final Report Theoretical Studies of Surface Reactions on Metals and Electronic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jerry L. Whitten

    2012-04-23

    This proposal describes the proposed renewal of a theoretical research program on the structure and reactivity of molecules adsorbed on transition metal surfaces. A new direction of the work extends investigations to interfaces between solid surfaces, adsorbates and aqueous solutions and includes fundamental work on photoinduced electron transport into chemisorbed species and into solution. The goal is to discover practical ways to reduce water to hydrogen and oxygen using radiation comparable to that available in the solar spectrum. The work relates to two broad subject areas: photocatalytic processes and production of hydrogen from water. The objective is to obtain high quality solutions of the electronic structure of adsorbate-metal-surface-solution systems so as to allow activation barriers to be calculated and reaction mechanisms to be determined. An ab initio embedding formalism provides a route to the required accuracy. New theoretical methods developed during the previous grant period will be implemented in order to solve the large systems involved in this work. Included is the formulation of a correlation operator that is used to treat localized electron distributions such as ionic or regionally localized distributions. The correlation operator which is expressed as a two-particle projector is used in conjunction with configuration interaction.

  13. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.

    Science.gov (United States)

    Tang, Mingjin; Larish, Whitney A; Fang, Yuan; Gankanda, Aruni; Grassian, Vicki H

    2016-07-21

    We have investigated the heterogeneous uptake of gaseous acetic acid on different oxides including γ-Al2O3, SiO2, and CaO under a range of relative humidity conditions. Under dry conditions, the uptake of acetic acid leads to the formation of both acetate and molecularly adsorbed acetic acid on γ-Al2O3 and CaO and only molecularly adsorbed acetic acid on SiO2. More importantly, under the conditions of this study, dimers are the major form for molecularly adsorbed acetic acid on all three particle surfaces investigated, even at low acetic acid pressures under which monomers are the dominant species in the gas phase. We have also determined saturation surface coverages for acetic acid adsorption on these three oxides under dry conditions as well as Langmuir adsorption constants in some cases. Kinetic analysis shows that the reaction rate of acetic acid increases by a factor of 3-5 for γ-Al2O3 when relative humidity increases from 0% to 15%, whereas for SiO2 particles, acetic acid and water are found to compete for surface adsorption sites.

  14. Synthesis of high surface area nanometer magnesia by solid-state chemical reaction

    Institute of Scientific and Technical Information of China (English)

    GUAN Hongbo; WANG Pei; ZHAO Biying; ZHU Yuexiang; XIE Youchang

    2007-01-01

    Nanometer MgO samples with high surface area,small crystal size and mesoporous texture were synthesized tion process accelerated the sintering of MgO,and MgO with calcining its precursor in flowing dry nitrogen at 520℃ for 4 h.The samples were characterized by X-ray diffraction,N2 adsorption,transmission electron microscopy,thermogravimetry,and differential thermal analysis.The as-prepared MgO was composed of nanocrystals with a size of about 4-5 nm and formed a wormhole-like porous structure.The MgO also had good thermal stability,and its surface areas remained at 357 and 153 m2.g-1 after calcination at 600 and 800℃ for 2 h,respectively.Compared with the MgO sample prepared by the precipitation method,MgO prepared by solid-state chemical reaction has uniform pore size distribution,surface area,and crystal size.The solid-state chemical method has the advantages of low cost,low pollution,and high yield,therefore it appears to be a promising method in the industrial manufacture of nanometer MgO.

  15. Surface modification of poly(ethylene terephthalate) fabric via photo-chemical reaction of dimethylaminopropyl methacrylamide

    Science.gov (United States)

    Mohamed, Nasser H.; Bahners, Thomas; Wego, Andreas; Gutmann, Jochen S.; Ulbricht, Mathias

    2012-10-01

    Photo-chemical reactions and surface modifications of poly(ethylene terephthalate) (PET) fabrics with the monomer dimethylaminopropyl methacrylamide (DMAPMA) and benzophenone (BP) as photo-initiator using a broad-band UV lamp source were investigated. The tertiary amino groups of the grafted poly(DMAPMA) chains were subsequently quaternized with alkyl bromides of different chain lengths to establish antibacterial activity. The surface composition, structure and morphology of modified PET fabrics were characterized by Fourier transform infrared spectroscopy (FTIR/ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). To evaluate the amount of quaternary and tertiary ammonium groups on the modified surface, PET was dyed with an acid dye which binds to the ammonium groups. Therefore, the color depth is a direct indicator of the amount of ammonium groups. The resulting antibacterial activity of the modified PET fabrics was tested with Escherichia coli. The results of all experiments show that a photochemical modification of PET is possible using DMAPMA, benzophenone and UV light. Also, the quaternization of tertiary amino groups as well as the increase in antibacterial activity of the modified PET by the established quaternary ammonium groups were successful.

  16. Final Report Theoretical Studies of Surface Reactions on Metals and Electronic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jerry L. Whitten

    2012-04-23

    This proposal describes the proposed renewal of a theoretical research program on the structure and reactivity of molecules adsorbed on transition metal surfaces. A new direction of the work extends investigations to interfaces between solid surfaces, adsorbates and aqueous solutions and includes fundamental work on photoinduced electron transport into chemisorbed species and into solution. The goal is to discover practical ways to reduce water to hydrogen and oxygen using radiation comparable to that available in the solar spectrum. The work relates to two broad subject areas: photocatalytic processes and production of hydrogen from water. The objective is to obtain high quality solutions of the electronic structure of adsorbate-metal-surface-solution systems so as to allow activation barriers to be calculated and reaction mechanisms to be determined. An ab initio embedding formalism provides a route to the required accuracy. New theoretical methods developed during the previous grant period will be implemented in order to solve the large systems involved in this work. Included is the formulation of a correlation operator that is used to treat localized electron distributions such as ionic or regionally localized distributions. The correlation operator which is expressed as a two-particle projector is used in conjunction with configuration interaction.

  17. Surface damage of metallic implants due to mechanical loading and chemical reactions

    Science.gov (United States)

    Ryu, Jaejoong

    indicate that surface roughness undergoes continuous evolution during alternating contact loading and exposure to etchant. Surface roughness evolution is governed by the residual stress induced due to contact loading. Two different stress-assisted dissolution driven instabilities in roughness evolution have been identified. In order to investigate stressed surface damage by electrochemical reaction during active contact loading, in the first stage, surface failure due to sliding contact was investigated as a function of different residual stress states from compressive to tensile. Residual stress is usually developed during manufacturing process or former mechanical interactions playing an important role on service life of the surface. The wear mechanism of fatigue contact in the presence of residual stresses was explored by analytical model of fatigue crack growth by utilizing modified delamination wear theory with surface layer spalling model. Fatigue stress intensity factors (DeltaKI) loaded by contact stress and combined residual stress implied that buckling of subsurface crack with compressive residual stress opens crack-tip and consequently increase wear rate during sliding contact. As for the experimental verification of the modified delamination model, cyclic sliding contact experiment on metallic implant materials in ambient was conducted by utilizing atomic force microscope (AFM) and four-point-bending set up by which well characterized pre-stress was established on rectangular specimen. In addition, complex mechanism of corrosion on the damaged surface illustrated strong stress-dependent effects on wear rate in repassivating environment and dissolution rates in reactive environment.

  18. Surface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts

    Directory of Open Access Journals (Sweden)

    Karla Herrera Delgado

    2015-05-01

    Full Text Available An experimental and kinetic modeling study on the Ni-catalyzed conversion of methane under oxidative and reforming conditions is presented. The numerical model is based on a surface reaction mechanism consisting of 52 elementary-step like reactions with 14 surface and six gas-phase species. Reactions for the conversion of methane with oxygen, steam, and CO2 as well as methanation, water-gas shift reaction and carbon formation via Boudouard reaction are included. The mechanism is implemented in a one-dimensional flow field description of a fixed bed reactor. The model is evaluated by comparison of numerical simulations with data derived from isothermal experiments in a flow reactor over a powdered nickel-based catalyst using varying inlet gas compositions and operating temperatures. Furthermore, the influence of hydrogen and water as co-feed on methane dry reforming with CO2 is also investigated.

  19. Ab initio atomic recombination reaction energetics on model heat shield surfaces

    Science.gov (United States)

    Senese, Fredrick; Ake, Robert

    1992-01-01

    Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.

  20. Progress in Nanoscale Studies of Hydrogen Reactions in Construction Materials

    Science.gov (United States)

    Schweitzer, J. S.; Livingston, R. A.; Cheung, J.; Rolfs, C.; Becker, H.-W.; Kubsky, S.; Spillane, T.; Zickefoose, J.; Castellote, M.; Bengtsson, N.; Galan, I.; de Viedma, P. G.; Brendle, S.; Bumrongjaroen, W.; Muller, I.

    Nuclear resonance reaction analysis (NRRA) has been applied to measure the nanoscale distribution of hydrogen with depth in the hydration of cementitious phases. This has provided a better understanding of the mechanisms and kinetics of cement hydration during the induction period that is critical to improved concrete technology. NRRA was also applied to measure the hydrogen depth profiles in other materials used in concrete construction such as fly ash and steel. By varying the incident beam energy one measures a profile with a depth resolution of a few nanometers. Time-resolved measurements are achieved by stopping the chemical reactions at specific times. Effects of temperature, sulfate concentration, accelerators and retarders, and superplasticizers have been investigated. Hydration of fly ashes has been studied with synthetic glass specimens whose chemical compositions are modeled on those of actual fly ashes. A combinatorial chemistry approach was used where glasses of different compositions are hydrated in various solutions for a fixed time. The resulting hydrogen depth profiles show significant differences in hydrated phases, rates of depth penetration and amount of surface etching. Hydrogen embrittlement of steel was studied on slow strain rate specimens under different corrosion potentials.

  1. Electrodeposition of Pd based binary catalysts on Carbon paper via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available -replacement reaction (SLR3) with Cu as a sacrificial metal. Co-deposition of the two metals on carbon paper was also performed. ECALD is the appropriate fabrication methodology because the resultant catalysts showed good dispersion of the nanoclusters on the carbon...

  2. Critical evaluation of the potential energy surface of the CH3 + HO2reaction system

    Science.gov (United States)

    Faragó, E. P.; Szőri, M.; Owen, M. C.; Fittschen, C.; Viskolcz, B.

    2015-02-01

    The CH3 + HO2 reaction system was studied theoretically by a newly developed, HEAT345-(Q) method based CHEAT1 protocol and includes the combined singlet and triplet potential energy surfaces. The main simplification is based on the CCSDT(Q)/cc-pVDZ calculation which is computationally inexpensive. Despite the economic and black-box treatment of higher excitations, the results are within 0.6 kcal/mol of the highly accurate literature values. Furthermore, the CHEAT1 surpassed the popular standard composite methods such as CBS-4M, CBS-QB3, CBS-APNO, G2, G3, G3MP2B3, G4, W1U, and W1BD mainly due to their poor performance in characterizing transition states (TS). For TS structures, various standard DFT and MP2 method have also been tested against the resulting CCSD/cc-pVTZ geometry of our protocol. A fairly good agreement was only found in the cases of the B2PLYP and BHandHLYP functionals, which were able to reproduce the structures of all TS studied within a maximum absolute deviation of 7%. The complex reaction mechanism was extended by three new low lying reaction channels. These are indirect water elimination from CH3OOH resulted formaldehyde, H2 elimination yielded methylene peroxide, and methanol and reactive triplet oxygen were formed via H-shift in the third channel. CHEAT1 protocol based on HEAT345-(Q) method is a robust, general, and cheap alternative for high accurate kinetic calculations.

  3. NATO Advanced Research Workshop on the Mechanisms of Reactions of Organometallic Compounds with Surfaces

    CERN Document Server

    Williams, J

    1989-01-01

    A NATO Advanced Research Workshop on the "Mechanisms of Reactions of Organometallic Compounds with Surfaces" was held in St. Andrews, Scotland in June 1988. Many of the leading international researchers in this area were present at the workshop and all made oral presentations of their results. In addition, significant amounts of time were set aside for Round Table discussions, in which smaller groups considered the current status of mechanistic knowledge, identified areas of dispute or disagreement, and proposed experiments that need to be carried out to resolve such disputes so as to advance our understanding of this important research area. All the papers presented at the workshop are collected in this volume, together with summaries of the conclusions reached at the Round Table discussions. The workshop could not have taken place without financial support from NATO, and donations were also received from Associated Octel, Ltd., STC Ltd., and Epichem Ltd., for which the organisers are very grateful. The orga...

  4. Controlling an electron-transfer reaction at a metal surface by manipulating reactant motion and orientation.

    Science.gov (United States)

    Bartels, Nils; Krüger, Bastian C; Auerbach, Daniel J; Wodtke, Alec M; Schäfer, Tim

    2014-12-08

    The loss or gain of vibrational energy in collisions of an NO molecule with the surface of a gold single crystal proceeds by electron transfer. With the advent of new optical pumping and orientation methods, we can now control all molecular degrees of freedom important to this electron-transfer-mediated process, providing the most detailed look yet into the inner workings of an electron-transfer reaction and showing how to control its outcome. We find the probability of electron transfer increases with increasing translational and vibrational energy as well as with proper orientation of the reactant. However, as the vibrational energy increases, translational excitation becomes unimportant and proper orientation becomes less critical. One can understand the interplay of all three control parameters from simple model potentials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Pt-modified molybdenum carbide for the hydrogen evolution reaction: From model surfaces to powder electrocatalysts

    Science.gov (United States)

    Kelly, Thomas G.; Lee, Kevin X.; Chen, Jingguang G.

    2014-12-01

    This work explores the opportunity to substantially reduce the cost of hydrogen evolution reaction (HER) electrocatalysts by supporting one monolayer (ML) of platinum (Pt) on low-cost molybdenum carbide (Mo2C) substrate. These efforts were primarily directed towards scaling a thin-film catalyst to high surface area particles. Electrochemical experiments investigated single-phase Mo2C thin films modified by different coverages of Pt for the HER. The ML Pt-Mo2C thin film showed Pt-like HER activity while displaying excellent stability under HER conditions. The promising results on thin films were then extended to more practical powder catalysts. Samples of various Pt loadings on Mo2C powders were synthesized using the co-impregnation method and were evaluated for HER activity. The ability to successfully link electrochemical activity on thin films and powder catalysts was thus demonstrated.

  6. Comparison of Dissolution and Surface Reactions Between Calcite and Aragonite in L-Glutamic and L-Aspartic Acid Solutions

    Directory of Open Access Journals (Sweden)

    Kwangsuk You

    2010-01-01

    Full Text Available We have investigated dissolution and surface reaction of calcite and aragonite in amino acid solutions of L-glutamic (L-glu and L-aspartic acid (L-asp at weak acidity of above pH 3. The surface reactions of calcite and aragonite were related with the dissolution. Calcite was dissolved in both solutions but the dissolution was limited by an adsorption of Ca-carboxylate salt. Aragonite was neither dissolved nor reacted in amino acid solutions because the crystal surface consisted of a hard to dissolve structure.

  7. Theoretical Study of the Scattering Resonance State, Reaction Mechanism and Partial Potential Energy Surface of the F+CH4→HF +CH3 Reaction

    Institute of Scientific and Technical Information of China (English)

    Qiang WANG; Zheng Ting CAI; Da Cheng FENG

    2006-01-01

    The partial potential energy surface was constructed by ab initio method [QCISD(T)/6-311++G(2df,2pd)]for F+CH4→HF+CH3 reaction system. It not only explained the reaction mechanism brought forward by Diego Troya by means of quasiclassical trajectory (QCT) but also successfully validated Kopin Liu's experimental phenomena about the existence of the reactive resonance. The lifetime of the scattering resonance state was about 0.07 ps. All these were in agreement with the experiments.

  8. Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces

    Science.gov (United States)

    Gil-Lozano, C.; Davila, A. F.; Losa-Adams, E.; Fairén, A. G.; Gago-Duport, L.

    2017-03-01

    Oxidation of pyrite (FeS2) plays a significant role in the redox cycling of iron and sulfur on Earth and is the primary cause of acid mine drainage (AMD). It has been established that this process involves multi-step electron-transfer reactions between surface defects and adsorbed O2 and H2O, releasing sulfoxy species (e.g., S2O32-, SO42-) and ferrous iron (Fe2+) to the solution and also producing intermediate by-products, such as hydrogen peroxide (H2O2) and other reactive oxygen species (ROS), however, our understanding of the kinetics of these transient species is still limited. We investigated the kinetics of H2O2 formation in aqueous suspensions of FeS2 microparticles by monitoring, in real time, the H2O2 and dissolved O2 concentration under oxic and anoxic conditions using amperometric microsensors. Additional spectroscopic and structural analyses were done to track the dependencies between the process of FeS2 dissolution and the degradation of H2O2 through the Fenton reaction. Based on our experimental results, we built a kinetic model which explains the observed trend of H2O2, showing that FeS2 dissolution can act as a natural Fenton reagent, influencing the oxidation of third-party species during the long term evolution of geochemical systems, even in oxygen-limited environments.

  9. Numerical study of chemical reactions in a surface microdischarge tube with mist flow based on experiment

    Science.gov (United States)

    Shibata, T.; Nishiyama, H.

    2014-03-01

    Recently, a water treatment method of spraying solution into a discharge region has been developed and shows high energy efficiency. In this study, a simulation model of a water treatment method using a surface microdischarge (SMD) tube with mist flow is proposed for further understanding the detailed chemical reactions. Our model has three phases (plasma, gas and liquid) and three simulation steps. The carrier gas is humid air including 2% or 3% water vapour. The chemical species diffusion characteristics in the SMD tube and the concentrations in a droplet are clarified in a wide pH interval. The simulation results show that the chemical species generated on the SMD tube inner wall are diffused to the central axis and dissolved into fine droplets. Especially, OH radicals dissolve into droplets a few mm away from the SMD tube wall because of acidification of the droplets. Furthermore, the hydrogen peroxide density, which is the most important indicator of a radical reaction in water, is influenced by the initial solution pH. This pH dependence results from ozone self-decomposition in water.

  10. Enhanced Electrocatalytic Activity of Ethanol Oxidation Reaction on Palladium-Silver Nanoparticles via Removable Surface Ligands.

    Science.gov (United States)

    Zhang, Hucheng; Shang, Yingying; Zhao, Jing; Wang, Jianji

    2017-05-17

    This work developed a facile colloidal route to synthesize BH4(-)-capped PdxAgy nanoparticles (NPs) in water using the reducing ionic liquids of [Cnmim]BH4, and the resulting NPs were prone to form the nanocomposites with [amim](+)-modified reduced graphene (RG). The removal of the metal-free inorganic ions of BH4(-) can create the profoundly exposed interfaces on the PdxAgy NPs during the electrooxidation, and favor the ethanol oxidation reaction (EOR) in lowering energy barrier. The counterions of [Cnmim](+) can gather ethanol, OH(-) ions, and the reaction intermediates on catalysts, and synergistically interact with RG to facilitate the charge transfer in nanocomposites. The interface-modified RG nanosheets can effectively segregate the PdxAgy NPs from aggregation during the EOR. Along with the small size of 4.7 nm, the high alloying degree of 60.2%, the large electrochemical active surface area of 64.1 m(2) g(-1), and the great peak current density of 1501 mA cm(-2) mg(-1), Pd1Ag2@[C2mim]BH4-amimRG nanocomposite exhibits the low oxidation potentials, strong poison resistance, and stable catalytic activity for EOR in alkaline media, and hence can be employed as a promising anodic catalyst in ethanol fuel cells.

  11. Hydrogen-deuterium substitution in solid ethanol by surface reactions at low temperatures

    Science.gov (United States)

    Oba, Yasuhiro; Osaka, Kazuya; Chigai, Takeshi; Kouchi, Akira; Watanabe, Naoki

    2016-10-01

    Ethanol (CH3CH2OH) is one of the most abundant complex organic molecules in star-forming regions. Despite its detection in the gas phase only, ethanol is believed to be formed by low-temperature grain-surface reactions. Methanol, the simplest alcohol, has been a target for observational, experimental, and theoretical studies in view of its deuterium enrichment in the interstellar medium; however, the deuterium chemistry of ethanol has not yet been an area of focus. Recently, deuterated dimethyl ether, a structural isomer of ethanol, was found in star-forming regions, indicating that deuterated ethanol can also be present in those environments. In this study, we performed laboratory experiments on the deuterium fractionation of solid ethanol at low temperatures through a reaction with deuterium (D) atoms at 10 K. Hydrogen (H)-D substitution, which increases the deuteration level, was found to occur on the ethyl group but not on the hydroxyl group. In addition, when deuterated ethanol (e.g. CD3CD2OD) solid was exposed to H atoms at 10 K, D-H substitution that reduced the deuteration level occurred on the ethyl group. Based on the results, it is likely that deuterated ethanol is present even under H-atom-dominant conditions in the interstellar medium.

  12. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.

    Science.gov (United States)

    Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar

    2015-04-01

    When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.

  13. H+CH4 → H2 + CH3 initial state-selected reaction probabilities on different potential energy surfaces

    Science.gov (United States)

    Ellerbrock, Roman; Manthe, Uwe

    2017-01-01

    Initial state-selected reaction probabilities for the H +CH4 →H2 +CH3 reaction on a recently developed potential energy surface which employs neutral network fitting based on permutational invariant polynomials are reported. The quantum dynamics calculations use the quantum transition state concept and the multi-layer multi-configurational time-dependent Hartree approach and study the reaction process in full-dimensionality for vanishing total angular momentum. A detailed comparison with previous results obtained on other high-level potential energy surfaces is given. The connection between the level of quantum state resolution and the sensitivity of the results on differences in the potential energy surfaces is highlighted. Employing a decomposition of the total reactivity into contributions of the different vibrational states of the activated complex, it is found that differences between the potential energy surfaces are mainly related to the umbrella motion of the methyl group.

  14. Hydration characteristics of Biodentine and Theracal used as pulp capping materials.

    Science.gov (United States)

    Camilleri, Josette

    2014-07-01

    Investigation of the hydration and characterization of Theracal and Biodentine used for pulp capping. The setting mechanism and characterization of set Biodentine and Theracal after immersion in Hank's balanced salt solution (HBSS) for 28 days was investigated by scanning electron microscopy (SEM) of polished specimens and X-ray diffraction (XRD) analysis. The bioactivity and surface microstructure of cements immersed in HBSS or water was also assessed by similar techniques together with leaching in solution investigated by ion chromatography (IC). Biodentine hydration resulted in the formation of calcium hydroxide which was present in the material matrix and also on the material surface. Theracal was composed of large cement particles which showed some evidence of reaction rims on hydration. The material matrix included a barium zirconate phase as radiopacifier and also a glass phase composed of strontium, silicon and aluminum. This phase could not be detected in XRD analysis. Formation of a calcium phosphate phase was demonstrated on Theracal immersed in HBSS. Both materials leached calcium ions in solution. The presence of a resin matrix modifies the setting mechanism and calcium ion leaching of Theracal. The clinical implications of these findings need to be investigated. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Surface reactions of iron - enriched smectites: adsorption and transformation of hydroxy fatty acids and phenolic acids

    Science.gov (United States)

    Polubesova, Tamara; Olshansky, Yaniv; Eldad, Shay; Chefetz, Benny

    2014-05-01

    Iron-enriched smectites play an important role in adsorption and transformation of soil organic components. Soil organo-clay complexes, and in particular humin contain hydroxy fatty acids, which are derived from plant biopolymer cutin. Phenolic acids belong to another major group of organic acids detected in soil. They participate in various soil processes, and are of concern due to their allelopathic activity. We studied the reactivity of iron-enriched smectites (Fe(III)-montmorillonite and nontronite) toward both groups of acids. We used fatty acids- 9(10),16-dihydroxypalmitic acid (diHPA), isolated from curtin, and 9,10,16-trihydroxypalmitic acid (triHPA); the following phenolic acids were used: ferulic, p-coumaric, syringic, and vanillic. Adsorption of both groups of acids was measured. The FTIR spectra of fatty acid-mineral complexes indicated inner-sphere complexation of fatty acids with iron-enriched smectites (versus outer-sphere complexation with Ca(II)-montmorillonite). The LC-MS results demonstrated enhanced esterification of fatty acids on the iron-enriched smectite surfaces (as compared to Ca(II)-montmorillonite). This study suggests that fatty acids can be esterified on the iron-enriched smectite surfaces, which results in the formation of stable organo-mineral complexes. These complexes may serve as a model for the study of natural soil organo-clay complexes and humin. The reaction of phenolic acids with Fe(III)-montmorillonite demonstrated their oxidative transformation by the mineral surfaces, which was affected by molecular structure of acids. The following order of their transformation was obtained: ferulic >syringic >p-coumaric >vanillic. The LC-MS analysis demonstrated the presence of dimers, trimers, and tetramers of ferulic acid on the surface of Fe(III)-montmorillonite. Oxidation and transformation of ferulic acid were more intense on the surface of Fe(III)-montmorillonite as compared to Fe(III) in solution due to stronger complexation on

  16. Profiling transition-state configurations on the Trypanosoma cruzi trans-sialidase free-energy reaction surfaces.

    Science.gov (United States)

    Rogers, Ian L; Naidoo, Kevin J

    2015-01-22

    Enzymatically catalyzed reactions pass from reactants to products via transition states that are short-lived and potentially characterized from free-energy reaction surfaces. We compute the reaction surface for Trypanosoma cruzi trans-sialidase using the Free Energy from Adaptive Reaction Coordinate Forces method. The reaction coordinates are the bonds between the sialic acid and the leaving group (TYR342) and the sialic acid and the nucpleophile (ASP59). We are able to track progress of the reaction trajectories up to (incomplete), about (recrossed), and across (crossed) the col that divides the reactant (covalent intermediate) and product (Michaelis complex) surfaces. More than 40 transition state configurations were isolated from these trajectories, and the sialic acid substrate conformations were analyzed as well as the substrate interactions with the nucleophile and catalytic acid/base. A successful barrier crossing requires that the substrate passes through a family of E5, (4)H5, and (6)H5 pucker conformations. These puckers interact slightly differently with the enzyme. The E5 and (4)H5 conformations have a high-frequency hydrogen bonding with Asp96, while (6)H5 puckers show increased hydrogen bonding between sialic acid O-8-Glu230. Our analysis of Trypanosoma cruzi trans-sialidase configurations that populate the col separating the reactant from product surfaces brings new evidence to the prevailing premise that there are several pathways from reactant to product passing through the saddle and successful product formation is not restricted to the minimum energy path and transition state.

  17. Portland cement hydration in the presence of admixtures: black gram pulse and superplasticizer

    Directory of Open Access Journals (Sweden)

    Viveka Nand Dwivedi

    2008-12-01

    Full Text Available Effect of admixtures such as black gram pulse (BGP and sulfonated naphthalene based superplasticizer (SP on the hydration of Portland cement has been studied. The hydration characteristics of OPC in the presence of BGP and SP were studied with the help of non evaporable water content determinations, calorimetric method, Mössbauer spectroscopic and atomic force microscopic techniques. Results have shown that both BGP and SP get adsorbed at the surface of cement and its hydration products. The hydration of Portland cement is retarded in the presence of both the admixtures and nanosize hydration products are formed.

  18. NO-CO-O2 Reaction on a Metal Catalytic Surface using Eley-Rideal Mechanism

    Institute of Scientific and Technical Information of China (English)

    Waqar Ahmad

    2008-01-01

    Interactions among the reacting species NO, CO and O2 on metal catalytic surfaces are studied by means of Monte Carlo simulation using the Eley-Rideal (ER) mechanism. The study of this three-component system is important for understanding of the reaction kinetics by varying the relative ratios of the reactants. It is found that contrary to the conventional Langmuir-Hinshelwood (LH) thermal mechanism in which two irreversible phase transitions are obtained between active states and poisoned states, a single phase transition is observed when the ER mechanism is combined with the LH mechanism. The phase diagrams of the surface coverage and the steady state production of CO2, N2 and N2O are evaluated as a function of the partial pressures of the reactants in the gas phase. The continuous production of CO2 starts as soon as the CO pressure is switched on and the second order phase transition at the first critical point is eliminated, which is in agreement with the experimental findings.

  19. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.

    Science.gov (United States)

    Sujith, K S; Ramachandran, C N

    2017-01-12

    Natural gas extraction from gas hydrate sediments by injection of hydrate inhibitors involves the decomposition of hydrates. The evolution of dissolved gas from the hydrate melt is an important step in the extraction process. Using classical molecular dynamics simulations, we study the evolution of dissolved methane from its hydrate melt in the presence of two thermodynamic hydrate inhibitors, NaCl and CH3OH. An increase in the concentration of hydrate inhibitors is found to promote the nucleation of methane nanobubbles in the hydrate melt. Whereas NaCl promotes bubble formation by enhancing the hydrophobic interaction between aqueous CH4 molecules, CH3OH molecules assist bubble formation by stabilizing CH4 bubble nuclei formed in the solution. The CH3OH molecules accumulate around the nuclei leading to a decrease in the surface tension at their interface with water. The nanobubbles formed are found to be highly dynamic with frequent exchange of CH4 molecules between the bubble and the surrounding liquid. A quantitative analysis of the dynamic behavior of the bubble is performed by introducing a unit step function whose value depends on the location of CH4 molecules with respect to the bubble. It is observed that an increase in the concentration of thermodynamic hydrate inhibitors reduces the exchange process, making the bubble less dynamic. It is also found that for a given concentration of the inhibitor, larger bubbles are less dynamic compared to smaller ones. The dependence of the dynamic nature of nanobubbles on bubble size and inhibitor concentration is correlated with the solubility of CH4 and the Laplace pressure within the bubble. The effect of CO2 on the formation of nanobubble in the CH4-CO2 mixed gas hydrate melt in the presence of inhibitors is also examined. The simulations show that the presence of CO2 molecules significantly reduces the induction time for methane nanobubble nucleation. The role of CO2 in the early nucleation of bubble is explained

  20. Behavior of calcium silicate hydrate in aluminate solution

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-bin; ZHAO Zhuo; LIU Gui-hua; ZHOU Qiu-sheng; PENG Zhi-hong

    2005-01-01

    Using calcium hydroxide and sodium silicate as starting materials, two kinds of calcium silicate hydrates, CaO · SiO2 · H2O and 2CaO · SiO2 · 1.17H2O, were hydro-thermally synthesized at 120 ℃. The reaction rule of calcium silicate hydrate in aluminate solution was investigated. The result shows that CaO · SiO2 · H2O is more stable than 2CaO · SiO2 · 1.17H2 O in aluminate solution and its stability increases with the increase of reaction temperature but decreases with the increase of caustic concentration. The reaction between calcium silicate hydrate and aluminate solution is mainly through two routes. In the first case, Al replaces partial Si in calcium silicate hydrate, meanwhile 3CaO · Al2 O3 · xSiO2 · (6-2x) H2 O (hydro-garnet) is formed and some SiO2 enters the solution. In the second case, calcium silicate hydrate can react directly with aluminate solution, forming hydro-garnet and Na2O · Al2O3 · 2SiO2 · nH2O (DSP). The desilication reaction of aluminate solution containing silicate could contribute partially to forming DSP.

  1. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Evora, M.C., E-mail: cecilia@ieav.cta.br [Institute for Advanced Studies-IEAV/DCTA, Av. Cel Jose Alberto Albano do Amarante, 1-Putim, 12228-001 São Jose dos Campos, SP (Brazil); Araujo, J.R., E-mail: jraraujo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Ferreira, E.H.M. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Strohmeier, B.R. [Thermo Fisher Scientific, 5225 Verona Road, Madison, WI 53711 (United States); Silva, L.G.A., E-mail: lgasilva@ipen.br [Institute for Nuclear and Energy Research- IPEN, Av. Prof lineu Prestes, 2242- Cidade Universitaria, 05508-000 SP (Brazil); Achete, C.A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil)

    2015-04-30

    Graphical abstract: - Highlights: • Methodology for the functionalization of carbon nanofibers was investigated. • Two radiation sources were used to promote grafting reactions: gamma and electron beam. • We report the optimum inhibitor concentration to achieve the functionalization. • Surface of carbon nanofibers showed an increase of oxygen content after irradiation. • The radiation-induced graphitization did not damage the overall sp{sup 2} structure. - Abstract: Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO{sub 4}·7H{sub 2}O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful.

  2. Modeling Hydrates and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Weihua Wang

    2007-06-01

    Full Text Available Natural gas hydrates, as an important potential fuels, flow assurance hazards, and possible factors initiating the submarine geo-hazard and global climate change, have attracted the interest of scientists all over the world. After two centuries of hydrate research, a great amount of scientific data on gas hydrates has been accumulated. Therefore the means to manage, share, and exchange these data have become an urgent task. At present, metadata (Markup Language is recognized as one of the most efficient ways to facilitate data management, storage, integration, exchange, discovery and retrieval. Therefore the CODATA Gas Hydrate Data Task Group proposed and specified Gas Hydrate Markup Language (GHML as an extensible conceptual metadata model to characterize the features of data on gas hydrate. This article introduces the details of modeling portion of GHML.

  3. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  4. A study on gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byoung Jae; Jung, Tae Jin; Sunwoo, Don [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Sufficient documents were reviewed to understand solid components of water and gaseous hydrocarbon known as gas hydrates, which represent an important potential energy resource of the future. The review provides us with valuable information on crystal structures, kinetics, origin and distribution of gas hydrates. In addition, the review increased our knowledge of exploration and development methods of gas hydrates. Large amounts of methane, the principal component of natural gas, in the form of solid gas hydrate are found mainly offshore in outer continental margin sediment and, to a lesser extent, in polar regions commonly associated with permafrost. Natural gas hydrates are stable in some environments where the hydrostatic pressure exerted by overlying water column is sufficient for hydrate formation and stability. The required high pressures generally restrict gas hydrate to sediments beneath water of approximately 400 m. Higher sediment temperatures at greater subbottom depths destabilize gas hydrates. Based on the pressure- temperature condition, the outer continental margin of East Sea where water depth is deep enough to form gas hydrate is considered to have high potential of gas hydrate accumulations. (author). 56 refs., tabs., figs.

  5. Toward 4D Nanoprinting with Tip-Induced Organic Surface Reactions.

    Science.gov (United States)

    Carbonell, Carlos; Braunschweig, Adam B

    2017-02-21

    Future nanomanufacturing tools will prepare organic materials with complex four-dimensional (4D) structure, where the position (x, y, z) and chemical composition within a volume is controlled with sub-1 μm spatial resolution. Such tools could produce substrates that mimic biological interfaces, like the cell surface or the extracellular matrix, whose topology and chemical complexity combine to direct some of the most sophisticated biological events. The control of organic materials at the nanoscale-level of spatial resolution could revolutionize the assembly of next generation optical and electronic devices or substrates for tissue engineering or enable fundamental biological or material science investigations. Organic chemistry provides the requisite control over the orientation and position of matter within a nanoscale reference frame through the formation of new covalent bonds. Several challenges however preclude the integration of organic chemistry with conventional nanomanufacturing approaches, namely most nanolithography platforms would denature or destroy delicate organic and biologically active matter, confirming covalent bond formation at interfaces remains difficult, and finally, only a small handful of the reactions used to transform molecules in solution have been validated on surfaces. Thus, entirely new approaches, where organic transformations and spatial control are considered equally important contributors, are needed to create 4D organic nanoprinting platforms. This Account describes efforts from our group to reconcile nanolithography, and specifically massively parallel scanning probe lithography (SPL), with organic chemistry to further the goal of 4D organic nanoprinting. Massively parallel SPL involves arrays of elastomeric pyramids mounted onto piezoelectric actuators, and creates patterns with feature diameters below 50 nm by using the pyramidal tips for either the direct deposition of ink or the localized delivery of energy to a surface

  6. Applications of computer simulation, nuclear reactions and elastic scattering to surface analysis of materials

    Directory of Open Access Journals (Sweden)

    Pacheco de Carvalho, J. A.

    2008-08-01

    Full Text Available This article involves computer simulation and surface analysis by nuclear techniques, which are non-destructive. Both the “energy method of analysis” for nuclear reactions and elastic scattering are used. Energy spectra are computer simulated and compared with experimental data, giving target composition and concentration profile information. The method is successfully applied to thick flat targets of graphite, quartz and sapphire and targets containing thin films of aluminium oxide. Depth profiles of 12C and 16O nuclei are determined using (d,p and (d,α deuteron induced reactions. Rutherford and resonance elastic scattering of (4He+ ions are also used.

    Este artículo trata de simulación por ordenador y del análisis de superficies mediante técnicas nucleares, que son no destructivas. Se usa el “método de análisis en energia” para reacciones nucleares, así como el de difusión elástica. Se simulan en ordenador espectros en energía que se comparan com datos experimentales, de lo que resulta la obención de información sobre la composición y los perfiles de concentración de la muestra. Este método se aplica con éxito em muestras espesas y planas de grafito, cuarzo y zafiro y muestras conteniendo películas finas de óxido de aluminio. Se calculan perfiles en profundidad de núcleos de 12C y de 16O a través de reacciones (d,p y (d,α inducidas por deuterones. Se utiliza también la difusión elástica de iones (4He+, tanto a Rutherford como resonante.

  7. Reaction kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gokcen, Dincer; Bae, Sang-Eun [Electrical and Computer Engineering, University of Houston, Houston, TX 772004-4005 (United States); Brankovic, Stanko R., E-mail: Stanko.Brankovic@mail.uh.edu [Electrical and Computer Engineering, University of Houston, Houston, TX 772004-4005 (United States); Chemical and Biomolecular Engineering, University of Houston, Houston, TX 772004-4005 (United States); Chemistry Department, University of Houston, Houston, TX 772004-4005 (United States)

    2011-06-30

    The study of the kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers is presented. The model system was Pt submonolayer deposition on Au(1 1 1) via red-ox replacement of Pb and Cu UPD monolayers on Au(1 1 1). The kinetics of a single replacement reaction was studied using the formalism of the comprehensive analytical model developed to fit the open circuit potential transients from deposition experiments. The practical reaction kinetics parameters like reaction half life, reaction order and reaction rate constant are determined and discussed with their relevance to design and control of deposition experiments. The effects of transport limitation and the role of the anions/electrolyte on deposition kinetics are investigated and their significance to design of effective deposition process is discussed.

  8. Intrinsic activation barriers and coadsorption effects for reactions on metal surfaces: unified formalism within the UBI-QEP approach

    Science.gov (United States)

    Sellers, Harrell; Shustorovich, Evgeny

    2002-04-01

    We present a unified formulation of the unity bond index-quadratic exponential potential method (UBI-QEP, formerly known as the BOC-MP method) of determining metal surface reaction energetics. We give a unified treatment of enthalpies and intrinsic activation barriers for dissociation and recombination reactions as particular cases of disproportionation reactions. We discuss numerous examples of elementary reactions, which form a database for various reaction mechanisms. We start with the zero coverage limit and then focus on coadsorption effects on reaction energetics on monometallic and bimetallic (alloy) surfaces. We consider first the full treatment and then develop the “uniform scaling” approximation, with guidelines (and examples) where it may be efficiently used. We provide tables of numerical values covering most of practically important cases of coadsorption effects on fcc(1 1 1) and fcc(1 0 0) surfaces, which allow one to easily estimate coverage effects on activation barriers by simple interpolation. We also clarify the nature of basic UBI-QEP parameters and correlation between local and global adsorbate coverage. These developments, illustrated by various examples, make applications of the UBI-QEP method much easier for practitioners, particularly those who have no UBI-model computer program and make calculations by hand.

  9. Investigation Into Accessible Surface Vinyl Concentrations of Nonstoichiometric PDMS Microspheres from Hydrosilylation Reactions and Their Further Crosslinking Reactions

    DEFF Research Database (Denmark)

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren

    2015-01-01

    The introduction of surface vinyl groups to PDMS microspheres broadens the latter's applicability range since the microspheres can be further functionalized or crosslinked into elastomers. Quantification of the surface vinyl concentration of PDMS microspheres is therefore essential. Here, a novel...... for cured silicones. Vinyl functional PDMS microspheres are mixed with a hydride crosslinker and non-reactive silicone oil to create a system which allows for extensive crosslinking. Both visual observations and rheological studies show that a robust macroscopic PDMS elastomer is obtained upon crosslinking....... Furthermore, the influence of stoichiometric imbalance, and the weight fraction of silicone oil on the terminal storage modulus of the macroscopic PDMS elastomer, is investigated. The wide range of stoichiometries facilitating crosslinking between the PDMS microspheres and the hydride crosslinker found...

  10. Predicting hydration energies for multivalent ions

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Stipp, Susan Louise Svane

    2014-01-01

    (TZVP) level. Agreement with experimental data for monovalent and divalent ions is good and shows no significant systematic errors. Predictions are noticeably better than with standard COSMO. The agreement with experimental data for trivalent and tetravalent ions is slightly worse and shows systematic...... errors. Our results indicate that quantum chemical calculations combined with COSMO-RS solvent treatment is a reliable method for treating multivalent ions in solution, provided one hydration shell of explicit water molecules is included for metal cations. The accuracy is not high enough to allow...... absolute predictions of hydration energies but could be used to investigate trends for several ions, thanks to the low computational cost, in particular for ligand exchange reactions....

  11. Drilling Gas Hydrates on hydrate Ridge, Oregon continental margin

    Science.gov (United States)

    Trehu, A. M.; Bohrmann, G.; Leg 204 Science Party

    2002-12-01

    During Leg 204, we cored and logged 9 sites on the Oregon continental margin to determine the distribution and concentration of gas hydrates in an accretionary ridge and adjacent slope basin, investigate the mechanisms that transport methane and other gases into the gas hydrate stability zone (GHSZ), and obtain constraints on physical properties of hydrates in situ. A 3D seismic survey conducted in 2000 provided images of potential subsurface fluid conduits and indicated the position of the GHSZ throughout the survey region. After coring the first site, we acquired Logging-While-Drilling (LWD) data at all but one site to provide an overview of downhole physical properties. The LWD data confirmed the general position of key seismic stratigraphic horizons and yielded an initial estimate of hydrate concentration through the proxy of in situ electrical resistivity. These records proved to be of great value in planning subsequent coring. The second new hydrate proxy to be tested was infrared thermal imaging of cores on the catwalk as rapidly as possible after retrieval. The thermal images were used to identify hydrate samples and to estimate the distribution and texture of hydrate within the cores. Geochemical analyses of interstitial waters and of headspace and void gases provide additional information on the distribution and concentration of hydrate within the stability zone, the origin and pathway of fluids into and through the GHSZ, and the rates at which gas hydrate is forming. Bio- and lithostratigraphic description of cores, measurement of physical properties, and in situ pressure core sampling and thermal measurements complement the data set, providing ground-truth tests of inferred physical and sedimentological properties. Among the most interesting preliminary results are: 1) that gas hydrates are distributed through a broad depth range within the GHSZ and that different physical and chemical proxies for hydrate distribution and concentration give generally

  12. Surface reactivity of Ge[111] for organic functionalization by means of a radical-initiated reaction: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Pereda, Pamela, E-mail: rubio.pereda@gmail.com [Centro de Investigación Científica y de Educación Superior de Ensenada 3918, Código Postal 22860, Ensenada, Baja California (Mexico); Takeuchi, Noboru, E-mail: takeuchi@cnyn.unam.mx [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Apartado Postal 14, Código Postal 22800, Ensenada, Baja California (Mexico)

    2016-08-30

    Highlights: • The surface reactivity of the Ge [111] surface is studied with DFT for the attachment of organic molecules by means of a radical-initiated reaction. • A hydrogen vacancy in the hydrogen terminated Ge [111] surface exhibits an accumulation of charge and electron pairing. • These characteristics make the hydrogen vacancy less reactive for the attachment of unsaturated organic molecules. • The adsorption of acetylene is probable to occur while the adsorption of ethylene and styrene is substantially less probable to occur. • The hydrogen terminated Ge [111] surface is found to be less reactive than its two-dimensional analogue, the hydrogen-terminated germanene. - Abstract: The study of interfacial chemistry at semiconductor surfaces has become an important area of research. Functionalities such as molecular recognition, biocompatibility of surfaces, and molecular computing, could be achieved by the combinations of organic chemistry with the semiconductor technology. One way to accomplish this goal is by means of organic functionalization of semiconductor surfaces such as the bulk-terminated germanium surfaces, more specifically the Ge[111]. In this work, we theoretically study, by applying density functional theory, the surface reactivity of the bulk-terminated Ge[111] surface for organic functionalization by means of a radical-initiated reaction of unsaturated molecules such as acetylene, ethylene and styrene with a hydrogen vacancy on a previously hydrogen-terminated Ge[111] surface. Results derived from this work are compared with those obtained in our previous calculations on the germanene surface, following the same chemical route. Our calculations show an accumulation of electronic charge at the H-vacancy having as a result electron pairing due to strong lattice-electron coupling and therefore a diminished surface reactivity. Calculation of the transition states for acetylene and ethylene indicates that the surface reactivity of the

  13. Coverage profile simulation in proportion to the nonlinear surface reaction; Hisenkei hyomen hanno ni taio shita kabarejji keijo shumyureshon

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Yasunobu; Imaishi, Nobuyuki [Kyushu University, Fukuoka (Japan)

    1999-06-05

    The simulation algorithm of step/hole coverage shape which could be applied at the Chemical Vapor Deposition (CVD) system with the nonlinear surface reaction speed was devised. By combining with the conventional simple Monte Carlo calculation technique, the code which could simulate the coverage shape at high speed was made. It was quantitatively explainable in respect of raw material density dependence (fluoridation tungsten (6); WF{sub 6}) of the coverage shape, when this code was applied to the thermal CVD of tungsten (W) with nonlinear surface reaction. (translated by NEDO)

  14. CO2 hydrate: Synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate

    Science.gov (United States)

    Circone, S.; Stern, L.A.; Kirby, S.H.; Durham, W.B.; Chakoumakos, B.C.; Rawn, C.J.; Rondinone, A.J.; Ishii, Y.

    2003-01-01

    Structure I (sI) carbon dioxide (CO2) hydrate exhibits markedly different dissociation behavior from sI methane (CH4) hydrate in experiments in which equilibrated samples at 0.1 MPa are heated isobarically at 13 K/h from 210 K through the H2O melting point (273.15 K). The CO2 hydrate samples release only about 3% of their gas content up to temperatures of 240 K, which is 22 K above the hydrate phase boundary. Up to 20% is released by 270 K, and the remaining CO2 is released at 271.0 plusmn; 0.5 K, where the sample temperature is buffered until hydrate dissociation ceases. This reproducible buffering temperature for the dissociation reaction CO2??nH2O = CO2(g) + nH2O(1 to s) is measurably distinct from the pure H2O melting point at 273.15 K, which is reached as gas evolution ceases. In contrast, when si CH4 hydrate is heated at the same rate at 0.1 MPa, >95% of the gas is released within 25 K of the equilibrium temperature (193 K at 0.1 MPa). In conjunction with the dissociation study, a method for efficient and reproducible synthesis of pure polycrystalline CO2 hydrate with suitable characteristics for material properties testing was developed, and the material was characterized. CO2 hydrate was synthesized from CO2 liquid and H2O solid and liquid reactants at pressures between 5 and 25 MPa and temperatures between 250 and 281 K. Scanning electron microscopy (SEM) examination indicates that the samples consist of dense crystalline hydrate and 50-300 ??m diameter pores that are lined with euhedral cubic hydrate crystals. Deuterated hydrate samples made by this same procedure were analyzed by neutron diffraction at temperatures between 4 and 215 K; results confirm that complete conversion of water to hydrate has occurred and that the measured unit cell parameter and thermal expansion are consistent with previously reported values. On the basis of measured weight gain after synthesis and gas yields from the dissociation experiments, approximately all cages in the

  15. Effect of Reactivity of Quick Lime on the Properties of Hydrated Lime Sorbent for SO2 Removal

    Institute of Scientific and Technical Information of China (English)

    H.G.Shin; H.Kim; Y.N.Kim; H.S.Lee

    2009-01-01

    The hydration of quick lime and the sulfation of hydrated lime were carried out for verification of relationship between the reactivity of quick lime and the properties of hydrated lime as a sorbent.The effect of reactivity of quick lime was investigated with the change of calcination temperature and time.Results obtained showed that the temperature rise during the hydration of quick limes varied from 31 to 69℃ with the variation of calcination temperature and time.The specific surface area and the sulfation ability of hydrated lime prepared by hydration of quick lime showed a proportional relationship with the reactivity of quick lime.The hydrated lime which was prepared by hydration of quick lime calcined at 1100℃ had the highest reactivity and showed 41.53 m2/g of the specific surface area, 0.16 cm3/g of the pore volume and 87% of the removal efficiency for SO2 removal.

  16. Mechanisms of the reactions of 1,3-dicarbonyl compounds with nucleophilic reagents. IV. Kinetics of the hydration of 4-aroyl-5-methoxycarbonyl-1-phenyl-2,3-dihydropyrrole-2,3-diones in toluene

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A.P.; Perevozchikov, L.A.; Maslivets, A.N.; Smirnova, L.I.; Andreichikov, Yu.S.

    1988-03-20

    The kinetics of the hydration of 4-aroyl-5-methoxycarbonyl-1-phenyl-2,3-dihydropyrrole-2,3-diones in toluene, uncatalyzed and catalyzed by carboxylic acids, was studied. With decrease in the pK/sub a/ values of the catalysts the mechanism of catalysis changes from bifunctional to general-acid, and this leads to reversal of the reactivity of the substrates.

  17. Methane storage in dry water gas hydrates.

    Science.gov (United States)

    Wang, Weixing; Bray, Christopher L; Adams, Dave J; Cooper, Andrew I

    2008-09-03

    Dry water stores 175 v(STP)/v methane at 2.7 MPa and 273.2 K in a hydrate form which is close to the Department of Energy volumetric target for methane storage. Dry water is a silica-stabilized free-flowing powder (95% wt water), and fast methane uptakes were observed (90% saturation uptake in 160 min with no mixing) as a result of the relatively large surface-to-volume ratio of this material.

  18. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    Science.gov (United States)

    Zheng, Liange; Samper, Javier; Montenegro, Luis; Fernández, Ana María

    2010-05-01

    SummaryUnsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed on a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl - data is excellent except for the data near the heater. The largest deviations of the model from inferred

  19. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.; Fernandez, A.M.

    2010-05-01

    Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed on a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the model from inferred aqueous

  20. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.; Fernandez, A.M.

    2010-05-01

    Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed on a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the model from inferred aqueous

  1. Infrared thermoimages display of body surface temperature reaction in experimental cholecystitis

    Institute of Scientific and Technical Information of China (English)

    Dong Zhang; Yuan-Gen Zhu; Shu-You Wang; Hui-Min Ma; Yan-Yan Ye; Wei-Xing Fu; Wei-Guo Hu

    2002-01-01

    AIM: To display the thermoirnages of the body surface inexperimental cholecystitis, to observe the body surfacetemperature reaction in visceral disorders, and to study if the theory of body surface-viscera correlation is true and the mechanism of temperature changes along the meridians. METHODS: By injecting bacteria ssuspension into the stricturebile duct and gallbladder, 21 rabbits were prepared as acutepyogenic cholangiocholecystitis models, with another 8rabbits prepared by the same process except withoutinjection of bacteria suspension as control. The body surfaceinfrared thermoimages were continuously observed on thehair shaven rabbit skin with AGA-782 thermovision 24 hbefore, 1-11 d after and (2,3 wk) 4 wk after the operation witha total of over 10 records of thermoimages.RESULTS: Twelve cases out of 21 rabbits with cholecystitisrevealed bi-lsteral longitudinal high temperature lines in itstrunk; with negative findings in the control group. The high-temperature line appeared on d l-d2, first in the right trunk,after the preparation of the model, about 7 d after the modelpreparation, the lines appeared at the left side too,persisting for 4 wk. The hyper-temperature line revealed 1.1-2.7 ℃ higher than before the model preparation, 0.7-2.5 ℃higher than the surrounding skin. The length of the hightemperature line might reach a half length of the body trunk,or as long as the whole body itself.CONCLUSION: The appearance of the longitudinal hightemperature lines st the lateral aspects of the trunk in theexperimental group is directly bound up with theexperimental animals pyogenic cholecystitis, with itsrunning course quite similar to that of the GallbladderChannel of Foot Shaoyang, but different to the zones ofhyperalgesia and site of referred pain in cholecystitis.

  2. Cation coordination reactions on nanocrystals: surface/interface, doping control and advanced photocatalysis applications (Conference Presentation)

    Science.gov (United States)

    Zhang, Jiatao

    2016-10-01

    Abstract: Including the shape and size effect, the controllable doping, hetero-composite and surface/interface are the prerequisite of colloidal nanocrystals for exploring their optoelectronic properties, such as fluorescence, plasmon-exciton coupling, efficient electron/hole separation, and enhanced photocatalysis applications. By controlling soft acid-base coordination reactions between cation molecular complexes and colloidal nanocrystals, we showed that chemical thermodynamics could drive nanoscale monocrystalline growth of the semiconductor shell on metal nano-substrates and the substitutional heterovalent doping in semiconductor nanocrystals. We have demonstrated evolution of relative position of Au and II-VI semiconductor in Au-Semi from symmetric to asymmetric configuration, different phosphines initiated morphology engineering, oriented attachment of quantum dots into micrometer nanosheets with synergistic control of surface/interface and doing, which can further lead to fine tuning of plasmon-exciton coupling. Therefore, different hydrogen photocatalytic performance, Plasmon enhanced photocatalysis properties have been achieved further which lead to the fine tuning of plasmon-exciton coupling. Substitutional heterovalent doping here enables the tailoring of optical, electronic properties and photocatalysis applications of semiconductor nanocrystals because of electronic impurities (p-, n-type doping) control. References: (1) J. Gui, J. Zhang*, et al. Angew. Chem. Int. Ed. 2015, 54, 3683. (2) Q. Zhao, J. Zhang*, etc., Adv. Mater. 2014, 26, 1387. (3) J. Liu, Q. Zhao, S. G. Wang*, J. Zhang*, etc., Adv. Mater. 2015, 27-2753-2761. (4) H. Qian, J. Zhang*, etc., NPG Asia Mater. (2015) 7, e152. (5) M. Ji, M. Xu, etc., J. Zhang*, Adv. Mater. 2016, in proof. (6) S. Yu, J. T. Zhang, Y. Tang, M. Ouyang*, Nano Lett. 2015, 15, 6282-6288. (7) J. Zhang, Y. Tang, K. Lee and M. Ouyang*, Science 2010, 327, 1634. (8) J. Zhang, Y. Tang, K. Lee, M. Ouyang*, Nature 2010, 466

  3. Investigation Into Accessible Surface Vinyl Concentrations of Nonstoichiometric PDMS Microspheres from Hydrosilylation Reactions and Their Further Crosslinking Reactions

    DEFF Research Database (Denmark)

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren;

    2015-01-01

    titration method, which is based on efficiently and covalently bonding mono-functional hydride to vinyl, is employed to determine surface vinyl concentration. The titration method exhibits good reproducibility in detection, thereby underlining its potential applicability as a general titration method...... for cured silicones. Vinyl functional PDMS microspheres are mixed with a hydride crosslinker and non-reactive silicone oil to create a system which allows for extensive crosslinking. Both visual observations and rheological studies show that a robust macroscopic PDMS elastomer is obtained upon crosslinking...

  4. Exothermic Surface Reactions in Alumina-Aluminum Shell-Core Nanoparticles with Iodine Oxide Decomposition Fragments

    Science.gov (United States)

    2014-02-22

    16:2310 1 3 reaction and coined it a pre-ignition reaction (PIR). They showed that the alumina shell surrounding the Al particle was fluorinated by...Chem C 114:9191 9195 Clark BR, Pantoya ML (2010) The aluminium and iodine pentoxide reaction for the destruction of spore forming bacteria . Phys Chem

  5. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    Science.gov (United States)

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  6. Evaluation of Immunomagnetic Separation for the Detection of Salmonella in Surface Waters by Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Chao-Yu Hsu

    2014-09-01

    Full Text Available Salmonella spp. is associated with fecal pollution and capable of surviving for long periods in aquatic environments. Instead of the traditional, time-consuming biochemical detection, polymerase chain reaction (PCR allows rapid identification of Salmonella directly concentrated from water samples. However, prevalence of Salmonella may be underestimated because of the vulnerability of PCR to various environmental chemicals like humic acid, compounded by the fact that various DNA polymerases have different susceptibility to humic acid. Because immunomagnetic separation (IMS theoretically could isolate Salmonella from other microbes and facilitate removal of aquatic PCR inhibitors of different sizes, this study aims to compare the efficiency of conventional PCR combined with immunomagnetic separation (IMS for Salmonella detection within a moderately polluted watershed. In our study, the positive rate was increased from 17.6% to 47% with nearly ten-fold improvement in the detection limit. These results suggest the sensitivity of Salmonella detection could be enhanced by IMS, particularly in low quality surface waters. Due to its effects on clearance of aquatic pollutants, IMS may be suitable for most DNA polymerases for Salmonella detection.

  7. Determination of hydration film thickness using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    PENG Changsheng; SONG Shaoxian; GU Qingbao

    2005-01-01

    Dispersion of a solid particle in water may lead to the formation of hydration film on the particle surface, which can strongly increase the repulsive force between the particles and thus strongly affect the stability of dispersions. The hydration film thickness, which varies with the variation of property of suspension particles, is one of the most important parameters of hydration film, and is also one of the most difficult parameters that can be measured accurately. In this paper, a method, based on force-distance curve of atomic force microscopy, for determining the hydration film thickness of particles is developed. The method utilizes the difference of cantilever deflection before, between and after penetrating the hydration films between tip and sample, which reflect the difference of slope on the force-distance curve. 3 samples, mica, glass and stainless steel, were used for hydration thickness determination, and the results show that the hydration film thickness between silicon tip and mica, glass and stainless steel are 30.0(2.0, 29.0(1.0 and 32.5(2.5 nm, respectively.

  8. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O3, NO3, and OH, on organic surfaces

    OpenAIRE

    Chapleski, Robert C.; Zhang, Yafen; Troya, Diego; Morris, John R.

    2015-01-01

    Heterogeneous chemistry of the most important atmospheric oxidants, O3, NO3, and OH, plays a central role in regulating atmospheric gas concentrations, processing aerosols, and aging materials. Recent experimental and computational studies have begun to reveal the detailed reaction mechanisms and kinetics for gas-phase O3, NO3, and OH when they impinge on organic surfaces. Through new research approaches that merge the fields of traditional surface science with atmospheric chemistry, research...

  9. Final Report: Molecular Basis for Microbial Adhesion and Geochemical Surface Reactions: A Study Across Scales

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David Adams [The University of Alabama

    2013-06-27

    Computational chemistry was used to help provide a molecular level description of the interactions of Gram-negative microbial membranes with subsurface materials. The goal is to develop a better understanding of the molecular processes involved in microbial metal binding, microbial attachment to mineral surfaces, and, eventually, oxidation/reduction reactions (electron transfer) that can occur at these surfaces and are mediated by the bacterial exterior surface. The project focused on the interaction of the outer microbial membrane, which is dominated by an exterior lipopolysaccharide (LPS) portion, of Pseudomonas aeruginosa with the mineral goethite and with solvated ions in the environment. This was originally a collaborative project with T.P. Straatsma and B. Lowery of the Pacific Northwest National Laboratory. The University of Alabama effort used electronic structure calculations to predict the molecular behavior of ions in solution and the behavior of the sugars which form a critical part of the LPS. The interactions of the sugars with metal ions are expected to dominate much of the microscopic structure and transport phenomena in the LPS. This work, in combination with the molecular dynamics simulations of Straatsma and the experimental electrochemistry and microscopy measurements of Lowry, both at PNNL, is providing new insights into the detailed molecular behavior of these membranes in geochemical environments. The effort at The University of Alabama has three components: solvation energies and structures of ions in solution, prediction of the acidity of the critical groups in the sugars in the LPS, and binding of metal ions to the sugar anions. An important aspect of the structure of the LPS membrane as well as ion transport in the LPS is the ability of the sugar side groups such as the carboxylic acids and the phosphates to bind positively charged ions. We are studying the acidity of the acidic side groups in order to better understand the ability of

  10. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates

    Science.gov (United States)

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2008-01-01

    Using an oedometer cell instrumented to measure the evolution of electromagnetic properties, small strain stiffness, and temperature, we conducted consolidation tests on sediments recovered during drilling in the northern Gulf of Mexico at the Atwater Valley and Keathley Canyon sites as part of the 2005 Chevron Joint Industry Project on Methane Hydrates. The tested specimens include both unremolded specimens (as recovered from the original core liner) and remolded sediments both without gas hydrate and with pore fluid exchanged to attain 100% synthetic (tetrahydrofuran) hydrate saturation at any stage of loading. Test results demonstrate the extent to which the electromagnetic and mechanical properties of hydrate-bearing marine sediments are governed by the vertical effective stress, stress history, porosity, hydrate saturation, fabric, ionic concentration of the pore fluid, and temperature. We also show how permittivity and electrical conductivity data can be used to estimate the evolution of hydrate volume fraction during formation. The gradual evolution of geophysical properties during hydrate formation probably reflects the slow increase in ionic concentration in the pore fluid due to ion exclusion in closed systems and the gradual decrease in average pore size in which the hydrate forms. During hydrate formation, the increase in S-wave velocity is delayed with respect to the decrease in permittivity, consistent with hydrate formation on mineral surfaces and subsequent crystal growth toward the pore space. No significant decementation/debonding occurred in 100% THF hydrate-saturated sediments during unloading, hence the probability of sampling hydrate-bearing sediments without disturbing the original sediment fabric is greatest for samples in which the gas hydrate is primarily responsible for maintaining the sediment fabric and for which the time between core retrieval and restoration of in situ effective stress in the laboratory is minimized. In evaluating the

  11. MORPHOLOGY OF METHANE HYDRATE HOST SEDIMENTS.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; FENG,H.; TOMOV,S.; WINTER,W.J.; EATON,M.; MAHAJAN,D.

    2004-12-01

    Results from simulated experiments in several laboratories show that host sediments influence hydrate formation in accord with known heterogeneity of host sediments at sites of gas hydrate occurrence (1). For example, in Mackenzie Delta, NWT Canada (Mallik 2L-38 well), coarser-grained units (pore-filling model) are found whereas in the Gulf of Mexico, the found hydrate samples do not appear to be lithologically controlled. We have initiated a systematic study of sediments, initially focusing on samples from various depths at a specific site, to establish a correlation with hydrate occurrence (or variations thereof) to establish differences in their microstructure, porosity, and other associated properties. The synchrotron computed microtomography (CMT) set-up at the X-27A tomography beam line at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory was used as a tool to study sediments from Blake Ridge at three sub bottom depths of 0.2, 50, and 667 meters. Results from the tomographic analysis of the deepest sample (667 m) are presented here to illustrate how tomography can be used to obtain new insights into the structures of methane hydrate host sediments. The investigation shows the internal grain/pore space resolution in the microstructure and a 3-D visualization of the connecting pathways obtained following data segmentation into pore space and grains within the sediment sample. The analysis gives the sample porosity, specific surface area, mean particle size, and tortuosity, as well. An earlier report on the experimental program has been given by Mahajan et al. (2).

  12. The formation of diethyl ether via the reaction of iodoethane with atomic oxygen on the Ag(110) surface

    Science.gov (United States)

    Jones, G. Scott; Barteau, Mark A.; Vohs, John M.

    1999-01-01

    The reactions of iodoethane (ICH 2CH 3) on clean and oxygen-covered Ag(110) surfaces were investigated using temperature-programmed desorption (TPD) and high-resolution electron energy-loss spectroscopy (HREELS). Iodoethane adsorbs dissociatively at 150 K to produce surface ethyl groups on both clean and oxygen-covered Ag(110) surfaces. The ethyl species couple to form butane on both surfaces, with the desorption peak maximum located between 218 and 238 K, depending on the ethyl coverage. In addition to butane, a number of oxidation products including diethyl ether, ethanol, acetaldehyde, surface acetate, ethylene, carbon dioxide and water were formed on the oxygen-dosed Ag(110) surface. Diethyl ether was the major oxygenate produced at all ethyl:oxygen ratios, and the peak temperature for ether evolution varied from 220 to 266 K depending on the relative coverages of these reactants. The total combustion products, CO 2 and H 2O, were primarily formed at low ethyl coverages in the presence of excess oxygen. The formation of ethylene near 240 K probably involves an oxygen-assisted dehydrogenation pathway since ethylene is not formed from ethyl groups on the clean surface. Acetaldehyde and ethanol evolve coincidentally with a peak centered at 270-280 K, and are attributed to the reactions of surface ethoxide species. The surface acetate which decomposes near 620 K is formed from subsequent reactions of acetaldehyde with oxygen atoms. The addition of ethyl to oxygen to form surface ethoxides was verified by HREELS results. The yields of all products exhibited a strong dependence on the relative coverages of ethyl and oxygen.

  13. Controls on gas hydrate stability in methane depleted sediments: Laboratory and field measurements

    Science.gov (United States)

    Lapham, L.; Chanton, J.; Martens, C. S.

    2009-12-01

    Gas hydrate deposits are the Earth’s largest reservoir of the powerful greenhouse gas methane and thus a key future energy resource. However, hydrate stability in sedimentary environments featuring highly variable methane concentrations needs to be understood to allow resource estimation and recovery. Hydrates are at chemical equilibrium and therefore stable where high pressures, low temperatures, and moderate salinities coexist with methane-saturated pore waters. When all of these conditions are not met, hydrates should dissociate or dissolve, releasing methane to the overlying water and possibly the atmosphere. In addition, other natural factors may control the kinetics of their degradation complicating models for hydrate stability and occurrence. Our measurements indicate that the pore-waters surrounding some shallow buried hydrates are not methane-saturated suggesting that dissolution should occur relatively rapidly. Yet, these hydrate deposits are known to persist relatively unchanged for years. We hypothesize that, once formed, hydrate deposits may be stabilized by natural factors inhibiting dissolution, including oil or microbial biofilm coatings. While most studies have focused on pressure and temperature changes where hydrates occur, relatively few have included measurements of in situ methane concentration gradients because of the difficulties inherent to making such measurements. Here we present recent measurements of methane concentration and stable carbon isotope gradients immediately adjacent to undisturbed hydrate surfaces obtained through deployments of novel seafloor instruments. Our results suggest that the hydrates studied are relatively stable when exposed to overlying and pore-waters that are undersaturated with methane. Concurrent laboratory measurements of methane concentration gradients next to artificial hydrate surfaces were utilized to test our protective coating hypothesis. After a stable dissolution rate for hydrate samples was

  14. Optimum Conditions for Introducing Free Radical Polymerizable Methacrylate Groups on the MWCNT Surface by Michael Addition Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunghoon; Park, Seonghwan; Kwon, Jaebeom; Ha, KiRyong [Keimyung University, Daegu (Korea, Republic of)

    2015-02-15

    In this study, we investigated optimum conditions for the introduction of a lot of free radical polymerizable methacrylate groups on the multi-walled carbon nanotube (MWCNT) surface. Carboxyl groups were introduced first on MWCNT surfaces by treating with a mixture of sulfuric acid and nitric acid with ultrasonic bath for 2 hours, and oxidized MWCNTs were reacted further with thionyl chloride followed by triethylenetetramine (TETA) to introduce amino groups on the oxidized MWCNT surface, to make MWCNT-NH{sub 2}. To introduce free radical polymerizable methacrylate groups on the MWCNT-NH{sub 2}, MWCNT-NH{sub 2} was reacted with 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) by Michael addition reaction. We investigated progress of modification reactions for MWCNT by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and elemental analysis (EA). We found maximum degree of Michael addition reactions between AHM and TETA grafted on MWCNT-NH{sub 2} for 10:1 mol ratio and 8 hour reaction time in our reaction conditions.

  15. Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II)

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2001-01-01

    The purpose of the present study was to compare bone reactions adjacent to titanium implants with either a titanium plasma-sprayed (TPS) or a machined surface subjected to lateral static loading induced by an expansion force. In 3 labrador dogs, the 2nd, 3rd and 4th mandibular premolars were extr...

  16. Design of a multi-enzyme reaction on an electrode surface for an L-glutamate biofuel anode.

    Science.gov (United States)

    Sakamoto, Hiroaki; Komatsu, Tomohiro; Yamasaki, Koji; Satomura, Takenori; Suye, Shin-Ichiro

    2017-02-01

    To design and construct a novel bio-anode electrode based on the oxidation of glutamic acid to produce 2-oxoglutarate, generating two electrons from NADH. Efficient enzyme reaction and electron transfer were observed owing to immobilization of the two enzymes using a mixed self-assembled monolayer. The ratio of the immobilized enzymes was an important factor affecting the efficiency of the system; thus, we quantified the amounts of immobilized enzyme using a quartz crystal microbalance to further evaluate the electrochemical reaction. The electrochemical reaction proceeded efficiently when approximately equimolar amounts of the enzyme were on the electrode. The largest oxidation peak current increase (171 nA) was observed under these conditions. Efficient multi-enzyme reaction on the electrode surface has been achieved which is applicable for biofuel cell application.

  17. Heterogeneous chemistry related to Antarctic ozone depletion: Reaction of ClONO2 and N2O5 on ice surfaces

    Science.gov (United States)

    Tolbert, Margaret A.; Rossi, Michel J.; Golden, David M.

    1988-01-01

    Laboratory studies of heterogeneous reactions of possible importance for Antarctic ozone depletion were performed. In particular, the reactions of chlorine nitrate (ClONO2) and dinitrogen pentoxide (N2O5) were investigated on ice and HCl/ice surfaces. These reactions occur on the surfaces of polar stratospheric clouds (PSCs) over Antarctica. One reaction transforms the stable chlorine reservoir species (ClONO2 and HCl) into photochemically active chlorine in the form of HOCl and Cl2. Condensation of HNO3 in the reactions removes odd nitrogen from the stratosphere, a requirement in nearly all models of Antarctic ozone depletion. Other reactions may also be important for Antarctic ozone depletion. Like the reactions of chlorine nitrate, these reactions deplete odd nitrogen through HNO3 condensation. In addition, one reaction converts a stable chlorine reservior species (HCl) into photochemically active chlorine (ClNO2). These reactions were studied with a modified version of a Knudsen cell flow reactor.

  18. Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces.

    Science.gov (United States)

    Maeda, Satoshi; Harabuchi, Yu; Takagi, Makito; Taketsugu, Tetsuya; Morokuma, Keiji

    2016-10-01

    In this account, a technical overview of the artificial force induced reaction (AFIR) method is presented. The AFIR method is one of the automated reaction-path search methods developed by the authors, and has been applied extensively to a variety of chemical reactions, such as organocatalysis, organometallic catalysis, and photoreactions. There are two modes in the AFIR method, i.e., a multicomponent mode and a single-component mode. The former has been applied to bimolecular and multicomponent reactions and the latter to unimolecular isomerization and dissociation reactions. Five numerical examples are presented for an Aldol reaction, a Claisen rearrangement, a Co-catalyzed hydroformylation, a fullerene structure search, and a nonradiative decay path search in an electronically excited naphthalene molecule. Finally, possible applications of the AFIR method are discussed.

  19. Generalized Temporal Acceleration Scheme for Kinetic Monte Carlo Simulations of Surface Catalytic Processes by Scaling the Rates of Fast Reactions.

    Science.gov (United States)

    Dybeck, Eric Christopher; Plaisance, Craig Patrick; Neurock, Matthew

    2017-02-14

    A novel algorithm has been developed to achieve temporal acceleration during kinetic Monte Carlo (KMC) simulations of surface catalytic processes. This algorithm allows for the direct simulation of reaction networks containing kinetic processes occurring on vastly disparate timescales which computationally overburden standard KMC methods. Previously developed methods for temporal acceleration in KMC have been designed for specific systems and often require a priori information from the user such as identifying the fast and slow processes. In the approach presented herein, quasi-equilibrated processes are identified automatically based on previous executions of the forward and reverse reactions. Temporal acceleration is achieved by automatically scaling the intrinsic rate constants of the quasi-equilibrated processes, bringing their rates closer to the timescales of the slow kinetically relevant non-equilibrated processes. All reactions are still simulated directly, although with modified rate constants. Abrupt changes in the underlying dynamics of the reaction network are identified during the simulation and the reaction rate constants are rescaled accordingly. The algorithm has been utilized here to model the Fischer-Tropsch synthesis reaction over ruthenium nanoparticles. This reaction network has multiple timescale-disparate processes which would be intractable to simulate without the aid of temporal acceleration. The accelerated simulations are found to give reaction rates and selectivities indistinguishable from those calculated by an equivalent mean-field kinetic model. The computational savings of the algorithm can span many orders of magnitude in realistic systems and the computational cost is not limited by the magnitude of the timescale disparity in the system processes. Furthermore, the algorithm has been designed in a generic fashion and can easily be applied to other surface catalytic processes of interest.

  20. Surface reactivity of Ge[111] for organic functionalization by means of a radical-initiated reaction: A DFT study

    Science.gov (United States)

    Rubio-Pereda, Pamela; Takeuchi, Noboru

    2016-08-01

    The study of interfacial chemistry at semiconductor surfaces has become an important area of research. Functionalities such as molecular recognition, biocompatibility of surfaces, and molecular computing, could be achieved by the combinations of organic chemistry with the semiconductor technology. One way to accomplish this goal is by means of organic functionalization of semiconductor surfaces such as the bulk-terminated germanium surfaces, more specifically the Ge[111]. In this work, we theoretically study, by applying density functional theory, the surface reactivity of the bulk-terminated Ge[111] surface for organic functionalization by means of a radical-initiated reaction of unsaturated molecules such as acetylene, ethylene and styrene with a hydrogen vacancy on a previously hydrogen-terminated Ge[111] surface. Results derived from this work are compared with those obtained in our previous calculations on the germanene surface, following the same chemical route. Our calculations show an