WorldWideScience

Sample records for hydrate bearing sediments

  1. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn

    2009-11-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  2. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, D.D.; Martin, A.I.; Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces. Copyright 2009 by the American Geophysical Union.

  3. Methane Recovery from Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  4. Water retention curve for hydrate-bearing sediments

    Science.gov (United States)

    Dai, Sheng; Santamarina, J. Carlos

    2013-11-01

    water retention curve plays a central role in numerical algorithms that model hydrate dissociation in sediments. The determination of the water retention curve for hydrate-bearing sediments faces experimental difficulties, and most studies assume constant water retention curves regardless of hydrate saturation. This study employs network model simulation to investigate the water retention curve for hydrate-bearing sediments. Results show that (1) hydrate in pores shifts the curve to higher capillary pressures and the air entry pressure increases as a power function of hydrate saturation; (2) the air entry pressure is lower in sediments with patchy rather than distributed hydrate, with higher pore size variation and pore connectivity or with lower specimen slenderness along the flow direction; and (3) smaller specimens render higher variance in computed water retention curves, especially at high water saturation Sw > 0.7. Results are relevant to other sediment pore processes such as bioclogging and mineral precipitation.

  5. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  6. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments

    Science.gov (United States)

    Mahabadi, Nariman; Zheng, Xianglei; Jang, Jaewon

    2016-05-01

    The experimental measurement of water retention curve in hydrate-bearing sediments is critically important to understand the behavior of hydrate dissociation and gas production. In this study, tetrahydrofuran (THF) is selected as hydrate former. The pore habit of THF hydrates is investigated by visual observation in a transparent micromodel. It is confirmed that THF hydrates are not wetting phase on the quartz surface of the micromodel and occupy either an entire pore or part of pore space resulting in change in pore size distribution. And the measurement of water retention curves in THF hydrate-bearing sediments with hydrate saturation ranging from Sh = 0 to Sh = 0.7 is conducted for excess water condition. The experimental results show that the gas entry pressure and the capillary pressure increase with increasing hydrate saturation. Based on the experimental results, fitting parameters for van Genuchten equation are suggested for different hydrate saturation conditions.

  7. Geomechanical Performance of Hydrate-Bearing Sediment in Offshore Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; Tad Patzek; Jonny Rutqvist; George Moridis; Richard Plumb

    2008-03-31

    The objective of this multi-year, multi-institutional research project was to develop the knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate-bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus was on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. We have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. We also investigated the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. The objective of the UC Berkeley work was to develop a grain-scale model of hydrate-bearing sediments. Hydrate dissociation alters the strength of HBS. In particular, transformation of hydrate clusters into gas and liquid water weakens the skeleton and, simultaneously, reduces the effective stress by increasing the pore pressure. The large-scale objective of the study is evaluation of geomechanical stability of offshore oil and gas production infrastructure. At Lawrence Berkeley National Laboratory (LBNL), we have developed the numerical model TOUGH + Hydrate + FLAC3D to evaluate how the formation and disassociation of hydrates in seafloor sediments affects seafloor stability. Several technical papers were published using results from this model. LBNL also developed laboratory equipment and methods to produce realistic laboratory samples of sediments containing gas hydrates so that mechanical properties could be measured in the laboratory. These properties are required to run TOUGH + Hydrate + FLAC3D to evaluate seafloor stability issues. At Texas A&M University we performed a detailed literature review to determine what gas hydrate formation properties had been measured and reported in the literature. We

  8. Stability evaluation of hydrate-bearing sediments during thermally-driven hydrate dissociation

    Science.gov (United States)

    Kwon, T.; Cho, G.; Santamarina, J.; Kim, H.; Lee, J.

    2009-12-01

    Hydrate-bearing sediments may destabilize spontaneously as part of geological processes, unavoidably during petroleum drilling/production operations, or intentionally as part of gas extraction from the hydrate itself. In all cases, high pore fluid pressure generation is anticipated during hydrate dissociation. This study examined how thermal changes destabilize gas hydrate-bearing sediments. First, an analytical formulation was derived for predicting fluid pressure evolution in hydrate-bearing sediments subjected to thermal stimulation without mass transfer. The formulation captures the self-preservation behavior, calculates the hydrate and free gas quantities during dissociation, considering effective stress-controlled sediment compressibility and gas solubility in aqueous phase. Pore fluid pressure generation is proportional to the initial hydrate fraction and the sediment bulk stiffness; is inversely proportional to the initial gas fraction and gas solubility; and is limited by changes in effective stress that cause the failure of the sediment. Second, the analytical formulation for hydrate dissociation was incorporated as a user-defined function into a verified finite difference code (FLAC2D). The underlying physical processes of hydrate-bearing sediments, including hydrate dissociation, self-preservation, pore pressure evolution, gas dissolution, and sediment volume expansion, were coupled with the thermal conduction, pore fluid flow, and mechanical response of sediments. We conducted the simulations for a duration of 20 years, assuming a constant-temperature wellbore transferred heat to the surrounding hydrate-bearing sediments, resulting in dissociation of methane hydrate in the well vicinity. The model predicted dissociation-induced excess pore fluid pressures which resulted in a large volume expansion and plastic deformation of the sediments. Furthermore, when the critical stress was reached, localized shear failure of the sediment around the borehole was

  9. Simulation experiments on gas production from hydrate-bearing sediments

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Experiments were made on 58 sediment samples from four sites(1244,1245,1250 and 1251) of ODP204 at five temperature points(25,35,45,55 and 65℃) to simulate methane production from hydrate-bearing sediments.Simulation results from site 1244 show that the gas components consist mainly of methane and carbon dioxide,and heavy hydrocarbons more than C2+ cannot be detected.This site also gives results,similar to those from the other three,that the methane production is controlled by experimental temperatures,generally reaching the maximum gas yields per gram sediment or TOC under lower temperatures(25 and 35 ℃).In other words,the methane amount could be related to the buried depth of sediments,given the close relation between the depth and temperature.Sediments less than 1200 m below seafloor are inferred to still act as a biogenic gas producer to pour methane into the present hydrate zone,while sedimentary layers more than 1200 m below seafloor have become too biogenically exhausted to offer any biogas,but instead they produce thermogenic gas to give additional supply to the hydrate formation in the study area.

  10. Simulation experiments on gas production from hydrate-bearing sediments

    Institute of Scientific and Technical Information of China (English)

    GONG JianMing; CAO ZhiMin; CHEN JianWen; ZHANG Min; LI Jin; YANG GuiFang

    2009-01-01

    Experiments were made on 58 sediment samples from four sites (1244, 1245, 1250 and 1251) of ODP204 at five temperature points (25, 35, 45, 55 and 65℃) to simulate methane production from hy drate-bearing sediments. Simulation results from site 1244 show that the gas components consist mainly of methane and carbon dioxide, and heavy hydrocarbons more than C2+ cannot be detected.This site also gives results, similar to those from the other three, that the methane production is con trolled by experimental temperatures, generally reaching the maximum gas yields per gram sediment or TOC under lower temperatures (25 and 35℃). In other words, the methane amount could be related to the buried depth of sediments, given the close relation between the depth and temperature. Sediments less than 1200 m below seafioor are inferred to still act as a biogenic gas producer to pour methane into the present hydrate zone, while sedimentary layers more than 1200 m below seafloor have become too biogenically exhausted to offer any biogas, but instead they produce thermogenic gas to give ad ditional supply to the hydrate formation in the study area.

  11. Geomechanical Performance of Hydrate-Bearing Sediments in Offshore Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stephen A. Holditch

    2006-12-31

    The main objective of this study is to develop the necessary knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus is on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. To achieve this objective, we have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. To be sure our geomechanical modeling is realistic, we are also investigating the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. In Phase II of the project, we will review all published core data and generate additional core data to verify the models. To generate data for our models, we are using data from the literature and we will be conducting laboratory studies in 2007 that generate data to (1) evaluate the conceptual pore-scale models, (2) calibrate the mathematical models, (3) determine dominant relations and critical parameters defining the geomechanical behavior of HBS, and (4) establish relationships between the geomechanical status of HBS and the corresponding geophysical signature. The milestones for Phase I of this project are given as follows: Literature survey on typical sediments containing gas hydrates in the ocean (TAMU); Recommendations on how to create typical sediments in the laboratory (TAMU); Demonstrate that typical sediments can be created in a repeatable manner in the laboratory and gas hydrates can be created in the pore space (TAMU); Develop a conceptual pore-scale model based on available data and reports (UCB); Test the developed pore-scale concepts on simple configurations and verify the results against known measurements and observations (UCB

  12. Experimental characterization of production behavior accompanying the hydrate reformation in methane hydrate bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.; Kang, J.M.; Nguyen, H.T. [Seoul National Univ., Seoul (Korea, Republic of); Park, C. [Kangwon National Univ., (Korea, Republic of); Lee, J. [Korea Inst., of Geoscience and Mineral Resources (Korea, Republic of)

    2010-07-01

    This study investigated the production behaviour associated with gas hydrate reformation in methane hydrate-bearing sediment by hot-brine injection. A range of different temperature and brine injection rates were used to analyze the pressure and temperature distribution, the gas production behaviour and the movement of the dissociation front. The study showed that hydrate reformation reduces the production rate considerably at an early time. However, gas production increases during the dissociation, near the outlet because the dissociated methane around the inlet is consumed in reforming the hydrate and increases the hydrate saturation around the outlet. Higher temperature also increases the gas production rate and the speed of the dissociation front. 12 refs., 2 tabs., 4 figs.

  13. Water permeability in hydrate-bearing sediments: A pore-scale study

    Science.gov (United States)

    Dai, Sheng; Seol, Yongkoo

    2014-06-01

    Permeability is a critical parameter governing methane flux and fluid flow in hydrate-bearing sediments; however, limited valid data are available due to experimental challenges. Here we investigate the relationship between apparent water permeability (k') and hydrate saturation (Sh), accounting for hydrate pore-scale growth habit and meso-scale heterogeneity. Results from capillary tube models rely on cross-sectional tube shapes and hydrate pore habits, thus are appropriate only for sediments with uniform hydrate distribution and known hydrate pore character. Given our pore network modeling results showing that accumulating hydrate in sediments decreases sediment porosity and increases hydraulic tortuosity, we propose a modified Kozeny-Carman model to characterize water permeability in hydrate-bearing sediments. This model agrees well with experimental results and can be easily implemented in reservoir simulators with no empirical variables other than Sh. Results are also relevant to flow through other natural sediments that undergo diagenesis, salt precipitation, or bio-clogging.

  14. Pore capillary pressure and saturation of methane hydrate bearing sediments

    Institute of Scientific and Technical Information of China (English)

    SUN Shicai; LIU Changling; YE Yuguang; LIU Yufeng

    2014-01-01

    To better understand the relationship between the pore capillary pressure and hydrate saturation in sedi-ments, a new method was proposed. First, the phase equilibria of methane hydrate in fine-grained silica sands were measured. As to the equilibrium data, the pore capillary pressure and saturation of methane hydrate were calculated. The results showed that the phase equilibria of methane hydrates in fine-grained silica sands changed due to the depressed activity of pore water caused by the surface group and negatively charged characteristic of silica particles as well as the capillary pressure in small pores together. The capil-lary pressure increased with the increase of methane hydrate saturation due to the decrease of the available pore space. However, the capillary-saturation relationship could not yet be described quantitatively because of the stochastic habit of hydrate growth.

  15. Seismic velocities for hydrate-bearing sediments using weighted equation

    Science.gov (United States)

    Lee, M.W.; Hutchinson, D.R.; Collett, T.S.; Dillon, William P.

    1996-01-01

    A weighted equation based on the three-phase time-average and Wood equations is applied to derive a relationship between the compressional wave (P wave) velocity and the amount of hydrates filling the pore space. The proposed theory predicts accurate P wave velocities of marine sediments in the porosity range of 40-80% and provides a practical means of estimating the amount of in situ hydrate using seismic velocity. The shear (S) wave velocity is derived under the assumption that the P to S wave velocity ratio of the hydrated sediments is proportional to the weighted average of the P to S wave velocity ratios of the constituent components of the sediment. In the case that all constituent components are known, a weighted equation using multiphase time-average and Wood equations is possible. However, this study showed that a three-phase equation with modified matrix velocity, compensated for the clay content, is sufficient to accurately predict the compressional wave velocities for the marine sediments. This theory was applied to the laboratory measurements of the P and S wave velocities in permafrost samples to infer the amount of ice in the unconsolidated sediment. The results are comparable to the results obtained by repeatedly applying the two-phase wave scattering theory. The theory predicts that the Poisson's ratio of the hydrated sediments decreases as the hydrate concentration increases and the porosity decreases. In consequence, the amplitude versus offset (AVO) data for the bottom-simulating reflections may reveal positive, negative, or no AVO anomalies depending on the concentration of hydrates in the sediments.

  16. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms

    KAUST Repository

    Sánchez, Marcelo

    2016-11-30

    Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.

  17. Model-based temperature measurement system development for marine methane hydrate-bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, Masafumi; Sugiyama, Hitoshi; Igarashi, Juei; Fujii, Kasumi; Shun' etsu, Onodera; Tertychnyi, Vladimir; Shandrygin, Alexander; Pimenov, Viacheslav; Shako, Valery; Matsubayashi, Osamu; Ochiai, Koji

    2005-07-01

    This paper describes the effect of the sensor installation on the temperature of the hydrate-bearing sediments through modeling, how the system was deployed in Nankai Trough area in Japan, and the features of the marine methane hydrate temperature measurement system. (Author)

  18. Experimental study on steam and inhibitor injection into methane hydrate bearing sediments

    Science.gov (United States)

    Kawamura, T.; Sakamoto, Y.; Temma, N.; Yamamoto, Y.; Komai, T.

    2007-12-01

    Natural gas hydrate that exists in the ocean sediment is thought to constitute a large methane gas reservoir and is expected to be an energy resource in the future. In order to make recovery of natural gas from hydrates commercially viable, hydrates must be dissociated in-situ. Inhibitor injection method is thought to be one of the effective dissociation method as well as depressurization and thermal stimulation. Meanwhile, steam injection method is practically used for oil sand to recover heavy oil and recognized as a means that is commercially successful. In this study, the inhibitor injection method and the steam injection method for methane hydrate bearing sediments have been examined and discussed on an experimental basis. New experimental apparatuses have been designed and constructed. Using these apparatuses, inhibitor and steam were successfully injected into artificial methane hydrate bearing sediments that were simulated in laboratory scale. In the case of inhibitor injection, characteristic temperature drop during dissociation was observed. And decreases of permeability that is caused by the reformation of methane hydrate were prevented effectively. In the case of steam injection, the phase transition from vapor water to liquid water in methane hydrate bearing sediments was observed. It can be concluded that roughly 44 % of total hydrate origin gas was produced after steam injection. From these approaches, the applicability of these methods as enhanced gas recovery methods are discussed.

  19. Numerical simulations of sand production in interbedded hydrate-bearing sediments during depressurization

    Science.gov (United States)

    Uchida, Shun; Lin, Jeen-Shang; Myshakin, Evgeniy; Seol, Yongkoo; Collett, Timothy S.; Boswell, Ray

    2017-01-01

    Geomechanical behavior of hydrate-bearing sediments during gas production is complex, involving changes in hydrate-dependent mechanical properties. When interbedded clay layers are present, the complexity is more pronounced because hydrate dissociation tends to occur preferentially in the sediments adjacent to the clay layers due to clay layers acting as a heat source. This would potentially lead to shearing deformation along the sand/clay contacts and may contribute to solid migration, which hindered past field-scale gas production tests. This paper presents a near-wellbore simulation of sand/clay interbedded hydrate-bearing sediments that have been subjected to depressurization and discusses the effect of clay layers on sand production.

  20. Joint Electrical and Seismic Interpretation of Gas Hydrate Bearing Sediments From the Cascadia Margin

    Science.gov (United States)

    Ellis, M.; Minshull, T.; Sinha, M.; Best, A.

    2008-12-01

    Gas hydrates are found in continental margin sediments worldwide. Their global importance as future energy reserves and their potential impact on slope stability and abrupt climate change all require better knowledge of where they occur and how much hydrate is present. However, current estimates of the distribution and volume of gas hydrate beneath the seabed range widely. Improved geophysical methods could provide much better constraints on hydrate concentrations. Geophysical measurements of seismic velocity and electrical resistivity using seabed or borehole techniques are often used to determine the hydrate saturation of sediments. Gas hydrates are well known to affect these physical properties; hydrate increases sediment p-wave velocity and electrical resistivity by replacing the conductive pore fluids, by cementing grains together and by blocking pores. A range of effective medium theoretical models have been developed to interpret these measurements in terms of hydrate content, but uncertainties about the pore-scale distribution of hydrate can lead to large uncertainties in the results. This study developed effective medium models to determine the seismic and electrical properties of hydrate bearing sediments in terms of their porosity, micro-structure and hydrate saturation. The seismic approach combines a Self Consistent Approximation (SCA) and Differential Effective Medium (DEM), which can model a bi-connected effective medium and allows the shape and alignment of the grains to be taken into account. The electrical effective medium method was developed to complement the seismic models and is based on the application of a geometric correction to the Hashin-Shrikman conductive bound. The electrical and seismic models are non-unique and hence it was necessary to develop a joint electrical and seismic interpretation method to investigate hydrate bearing sediments. The joint method allows two variables (taken from porosity, aspect ratio or hydrate saturation

  1. Role of critical state framework in understanding geomechanical behavior of methane hydrate-bearing sediments

    Science.gov (United States)

    Uchida, Shun; Xie, Xiao-Guang; Leung, Yat Fai

    2016-08-01

    A proper understanding of geomechanical behavior of methane hydrate-bearing sediments is crucial for sustainable future gas production. There are a number of triaxial experiments conducted over synthetic and natural methane hydrate (MH)-bearing sediments, and several soil constitutive models have been proposed to describe their behavior. However, the generality of a sophisticated model is questioned if it is tested only for a limited number of cases. Furthermore, it is difficult to experimentally determine the associated parameters if their physical meanings and significance are not elucidated. The objective of this paper is to demonstrate that a simple extension of the critical state framework is sufficient to capture the geomechanical behavior of MH-bearing soils from various sources around the world, while the significance of each parameter is quantified through variance-based global sensitivity analyses. Our results show that the influence of hydrates can be largely represented by one hydrate-dependent parameter, pcd', which controls the expansion of the initial yield surface. This is validated through comparisons with shearing and volumetric response of MH-bearing soils tested at various institutes under different confining stresses and with varying degrees of hydrate saturation. Our study suggests that the behavior of MH-bearing soils can be reasonably predicted based on pcd' and the conventional critical state parameters of the host sediments that can be obtained through typical geotechnical testing procedures.

  2. The Water Retention Curves in THF Hydrate-Bearing Sediments - Experimental Measurement and Pore Scale Simulation

    Science.gov (United States)

    Mahabadi, N.; Zheng, X.; Dai, S.; Seol, Y.; Zapata, C.; Yun, T.; Jang, J.

    2015-12-01

    The water retention curve (WRC) of hydrate-bearing sediments is critically important to understand the behaviour of hydrate dissociation for gas production. Most gas hydrates in marine environment have been formed from an aqueous phase (gas-dissolved water). However, the gas hydrate formation from an aqueous phase in a laboratory requires long period due to low gas solubility in water and is also associated with many experimental difficulties such as hydrate dissolution, difficult hydrate saturation control, and dynamic hydrate dissolution and formation. In this study, tetrahydrofuran (THF) is chosen to form THF hydrate because the formation process is faster than gas hydrate formation and hydrate saturation is easy to control. THF hydrate is formed at water-excess condition. Therefore, there is only water in the pore space after a target THF hydrate saturation is obtained. The pore habit of THF hydrate is investigated by visual observation in a transparent micromodel and X-ray computed tomography images; and the water retention curves are obtained under different THF hydrate saturation conditions. Targeted THF hydrate saturations are Sh=0, 0.2, 0.4, 0.6 and 0.8. Results shown that at a given water saturation the capillary pressure increases as THF hydrate saturation increases. And the gas entry pressure increases with increasing hydrate saturation. The WRC obtained by experiments is also compared with the results of a pore-network model simulation and Lattice Boltzmann Method. The fitting parameters of van Genuchten equation for different hydrate saturation conditions are suggested for the use as input parameters of reservoir simulators.

  3. Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough

    Science.gov (United States)

    Santamarina, J.C.; Dai, Shifeng; Terzariol, M.; Jang, Jeonghwan; Waite, William F.; Winters, William J.; Nagao, J.; Yoneda, J.; Konno, Y.; Fujii, T.; Suzuki, K.

    2015-01-01

    Natural hydrate-bearing sediments from the Nankai Trough, offshore Japan, were studied using the Pressure Core Characterization Tools (PCCTs) to obtain geomechanical, hydrological, electrical, and biological properties under in situ pressure, temperature, and restored effective stress conditions. Measurement results, combined with index-property data and analytical physics-based models, provide unique insight into hydrate-bearing sediments in situ. Tested cores contain some silty-sands, but are predominantly sandy- and clayey-silts. Hydrate saturations Sh range from 0.15 to 0.74, with significant concentrations in the silty-sands. Wave velocity and flexible-wall permeameter measurements on never-depressurized pressure-core sediments suggest hydrates in the coarser-grained zones, the silty-sands where Sh exceeds 0.4, contribute to soil-skeletal stability and are load-bearing. In the sandy- and clayey-silts, where Sh < 0.4, the state of effective stress and stress history are significant factors determining sediment stiffness. Controlled depressurization tests show that hydrate dissociation occurs too quickly to maintain thermodynamic equilibrium, and pressure–temperature conditions track the hydrate stability boundary in pure-water, rather than that in seawater, in spite of both the in situ pore water and the water used to maintain specimen pore pressure prior to dissociation being saline. Hydrate dissociation accompanied with fines migration caused up to 2.4% vertical strain contraction. The first-ever direct shear measurements on never-depressurized pressure-core specimens show hydrate-bearing sediments have higher sediment strength and peak friction angle than post-dissociation sediments, but the residual friction angle remains the same in both cases. Permeability measurements made before and after hydrate dissociation demonstrate that water permeability increases after dissociation, but the gain is limited by the transition from hydrate saturation

  4. Models for Gas Hydrate-Bearing Sediments Inferred from Hydraulic Permeability and Elastic Velocities

    Science.gov (United States)

    Lee, Myung W.

    2008-01-01

    Elastic velocities and hydraulic permeability of gas hydrate-bearing sediments strongly depend on how gas hydrate accumulates in pore spaces and various gas hydrate accumulation models are proposed to predict physical property changes due to gas hydrate concentrations. Elastic velocities and permeability predicted from a cementation model differ noticeably from those from a pore-filling model. A nuclear magnetic resonance (NMR) log provides in-situ water-filled porosity and hydraulic permeability of gas hydrate-bearing sediments. To test the two competing models, the NMR log along with conventional logs such as velocity and resistivity logs acquired at the Mallik 5L-38 well, Mackenzie Delta, Canada, were analyzed. When the clay content is less than about 12 percent, the NMR porosity is 'accurate' and the gas hydrate concentrations from the NMR log are comparable to those estimated from an electrical resistivity log. The variation of elastic velocities and relative permeability with respect to the gas hydrate concentration indicates that the dominant effect of gas hydrate in the pore space is the pore-filling characteristic.

  5. New Approaches for the Production of Hydrocarbons from Hydrate Bearing Sediments

    Directory of Open Access Journals (Sweden)

    Ronny Giese

    2011-01-01

    Full Text Available The presence of natural gas hydrates at all active and passive continental margins has been proven. Their global occurrence as well as the fact that huge amounts of methane and other lighter hydrocarbons are stored in natural gas hydrates has led to the idea of using hydrate bearing sediments as an energy resource. However, natural gas hydrates remain stable as long as they are in mechanical, thermal and chemical equilibrium with their environment. Thus, for the production of gas from hydrate bearing sediments, at least one of these equilibrium states must be disturbed by depressurization, heating or addition of chemicals such as CO2. Depressurization, thermal or chemical stimulation may be used alone or in combination, but the idea of producing hydrocarbons from hydrate bearing sediments by CO2 injection suggests the potential of an almost emission free use of this unconventional natural gas resource. However, up to now there are still open questions regarding all three production principles. Within the framework of the German national research project SUGAR the thermal stimulation method by use of in situ combustion was developed and tested on a pilot plant scale and the CH4-CO2 swapping process in gas hydrates studied on a molecular level. Microscopy, confocal Raman spectroscopy and X-ray diffraction were used for in situ investigations of the CO2-hydrocarbon exchange process in gas hydrates and its driving forces. For the thermal stimulation a heat exchange reactor was designed and tested for the exothermal catalytic oxidation of methane. Furthermore, a large scale reservoir simulator was realized to synthesize hydrates in sediments under conditions similar to nature and to test the efficiency of the reactor. Thermocouples placed in the reservoir simulator with a total volume of 425 L collect data regarding the propagation of the heat front. In addition, CH4 sensors are placed in the water saturated sediment to detect the distribution of CH4

  6. Modeling on the gas-generating amount of sediments hydrate-bearing

    Energy Technology Data Exchange (ETDEWEB)

    Gong, J.M.; Cao, Z.M. [Ocean Univ. of China, Qingdao (China); Jian-Ming, G.; Chen, J.W. [Qingdao Inst. of Marine Geology, Qingdao (China); Zhang, M.; Yang, G.F. [Yangtze Univ., Jingzhou (China); Li, J. [PetroChina, HeBei (China). Langfang Branch, Research Inst. of Petroleum Exploration and Development

    2008-07-01

    Gas hydrate is a form of clean fossil energy. It has the characteristics of extensive distribution, large reserve, high-energy capacity and less pollution after combustion. It also has a great energy value, generating interest from governments and scientists in different countries. This paper discussed a study in which methane generating hydrate-bearing sediments were investigated. A total of 58 sediment samples from 4 sites of ODP Leg 204 were modeled by 5 temperature points. ODP Leg 204 lies offshore western United States, in the Hydrate Ridge region (Oregon) of the Pacific. It is one of the most studied areas and clearest about hydrate distribution in the world. The paper described the study area and sample preparation. It also discussed the modeling and geochemical characteristics of the gas-generating samples. A model section revealed bacteria species, substrate deployment, selection of culture flask, and sample culture. The geochemical characteristics of the gas-generating samples were also described. It was concluded that the sediments within 1,200 meters below the seafloor were the main gas source of the biogenic gas hydrate. The organic matter abundance of the sediments at this depth and the migration passage of the fluids in the strata were important for the formation and preservation of the gas hydrate deposits. 21 refs., 1 tab., 6 figs.

  7. The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation

    Science.gov (United States)

    Mahabadi, Nariman; Dai, Sheng; Seol, Yongkoo; Sup Yun, Tae; Jang, Jaewon

    2016-08-01

    The water retention curve and relative permeability are critical to predict gas and water production from hydrate-bearing sediments. However, values for key parameters that characterize gas and water flows during hydrate dissociation have not been identified due to experimental challenges. This study utilizes the combined techniques of micro-focus X-ray computed tomography (CT) and pore-network model simulation to identify proper values for those key parameters, such as gas entry pressure, residual water saturation, and curve fitting values. Hydrates with various saturation and morphology are realized in the pore-network that was extracted from micron-resolution CT images of sediments recovered from the hydrate deposit at the Mallik site, and then the processes of gas invasion, hydrate dissociation, gas expansion, and gas and water permeability are simulated. Results show that greater hydrate saturation in sediments lead to higher gas entry pressure, higher residual water saturation, and steeper water retention curve. An increase in hydrate saturation decreases gas permeability but has marginal effects on water permeability in sediments with uniformly distributed hydrate. Hydrate morphology has more significant impacts than hydrate saturation on relative permeability. Sediments with heterogeneously distributed hydrate tend to result in lower residual water saturation and higher gas and water permeability. In this sense, the Brooks-Corey model that uses two fitting parameters individually for gas and water permeability properly capture the effect of hydrate saturation and morphology on gas and water flows in hydrate-bearing sediments.

  8. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization

    Science.gov (United States)

    Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-01-01

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed, at least briefly, to non-in situ conditions during recovery. To examine the effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes, and speeds of the original and depressurized/repressurized samples are compared. X-ray computed tomography images track how the gas-hydrate distribution changes in the hydrate-cemented sands owing to the depressurizaton/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  9. Microbial community in the potential gas hydrate area Kaoping Canyon bearing sediment at offshore SW Taiwan

    Science.gov (United States)

    Wu, S. Y.; Hung, C. C.; Lai, S. J.; Ding, J. Y.; Lai, M. C.

    2015-12-01

    The deep sub-seafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass plays a potentially important role in long-term controls of global biogeochemical cycles. The research team from Taiwan, supported by the Central Geological Survey (CGS), has been demonstrated at SW offshore Taiwan that indicated this area is potential gas hydrate region. Therefore, the Gas Hydrate Master Program (GHMP) was brought in the National Energy Program-Phase II (NEP-II) to continue research and development. In this study, the microbial community structure of potential gas hydrate bearing sediments of giant piston core MD-178-10-3291 (KP12N) from the Kaoping Canyon offshore SW of Taiwan were investigated. This core was found many empty spaces and filling huge methane gas (>99.9 %) that might dissociate from solid gas hydrate. 16S rRNA gene clone libraries and phylogenetic analysis showed that the dominant members of Archaea were ANME (13 %), SAGMEG (31 %) and DSAG (20 %), and those of Bacteria were Chloroflexi (13 %), Candidate division JS1 (40 %) and Planctomycetes (15 %). Among them, ANME-3 is only distributed at the sulfate-methane interface (SMI) of 750 cmbsf, and sharing similarity with the Hydrate Ridge clone HydBeg92. ANME-1 and SAGMEG distributed below 750 cmbsf. In addition, DSAG and Candidate division JS1 are most dominant and distributed vertically at all tested depths from 150-3600 cmbsf. Combine the geochemical data and microbial phylotype distribution suggests the potential of gas hydrate bearing sediments at core MD-178-10-3291 (KP12N) from the Kaoping Canyon offshore SW of Taiwan.

  10. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Lixin Kuang

    2011-01-01

    Full Text Available Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na2CO3, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from −8 °C to 15 °C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments.

  11. Experimental study of enhanced gas recovery from gas hydrate bearing sediments by inhibitor and steam injection methods

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, T.; Ohtake, M.; Sakamoto, Y.; Yamamoto, Y.; Haneda, H. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan). Methane Hydrate Research Laboratory; Komai, T. [National Inst. of Advanced Industrial Science and Technoloyg, Tsukuba (Japan). Inst. for Geo-Resource and Environment; Higuchi, S. [Nihon Axis Co. Ltd., Mito (Japan)

    2008-07-01

    Inhibitor and steam injection methods for recovering methane hydrate-bearing sediments were investigated. New apparatus designs were used to inject steam into artificial methane hydrate-bearing sediments. Aqueous methanol was injected into a silica-based hydrate-bearing sediment in order to examine the dissociation behaviour of the methane hydrates. Experiments were conducted to examine the effects of steam injection using pure water; an aqueous methyl alcohol (MeOh) solution at 10 wt per cent; and an aqueous sodium chloride (NaC1) solution at 3 wt per cent. Temperatures for the injected fluids were set at 40 degrees C. Total gas production behaviour was divided into 3 stages: (1) the replacement of the remaining gas with the injected solution in the pore space; (2) gas production by hydrate dissociation; and (3) steady state and gas release. Results showed that cumulative gas production using the inhibitor solutions of MeOH and NaC1 proceeded more rapidly than the pure water samples. Downstream temperatures were not maintained at initial temperatures but decreased following the initiation of hydrate dissociation. Temperature changes were attributed to the coupling effect of the dissociation temperature and changes in inhibitor concentrations at the methane hydrate's surface. The use of inhibitors resulted in higher levels of cumulative gas production and more rapid hydrate dissociation rates. It was concluded that depressurization and steam injection induced hydrate dissociation from both upstream and downstream to the center of the sediment sample. 18 refs., 9 figs.

  12. Testing a coupled hydro-thermo-chemo-geomechanical model for gas hydrate bearing sediments using triaxial compression lab experiments

    CERN Document Server

    Gupta, Shubhangi; Haeckel, Matthias; Helmig, Rainer; Wohlmuth, Barbara

    2015-01-01

    The presence of gas hydrates influences the stress-strain behavior and increases the load-bearing capacity of sub-marine sediments. This stability is reduced or completely lost when gas hydrates become unstable. Since natural gas hydrate reservoirs are considered as potential resources for gas production on industrial scales, there is a strong need for numerical production simulators with geomechanical capabilities. To reliably predict the mechanical behavior of gas hydrate-bearing sediments during gas production, numerical tools must be sufficiently calibrated against data from controlled experiments or field tests, and the models must consider thermo-hydro-chemo-mechanical process coupling in a suitable manner. In this study, we perform a controlled triaxial volumetric strain test on a sediment sample in which methane hydrate is first formed under controlled isotropic effective stress and then dissociated via depressurization under controlled total stress. Sample deformations were kept small, and under thes...

  13. THCM Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments (Marine and Permafrost Settings)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marcelo J. [Texas A & M Univ., College Station, TX (United States); Santamarina, J. Carlos [King Abdullah Univ. of Science and Technology (Saudi Arabia)

    2017-02-14

    Gas hydrates are solid compounds made of water molecules clustered around low molecular weight gas molecules such as methane, hydrogen, and carbon dioxide. Methane hydrates form under pressure (P) and temperature (T) conditions that are common in sub-permafrost layers and in deep marine sediments. Stability conditions constrain the occurrence of gas hydrates to submarine sediments and permafrost regions. The amount of technically recoverable methane trapped in gas hydrate may exceed 104tcf. Gas hydrates are a potential energy resource, can contribute to climate change, and can cause large-scale seafloor instabilities. In addition, hydrate formation can be used for CO2 sequestration (also through CO2-CH4 replacement), and efficient geological storage seals. The experimental study of hydrate bearing sediments has been hindered by the very low solubility of methane in water (lab testing), and inherent sampling difficulties associated with depressurization and thermal changes during core extraction. This situation has prompted more decisive developments in numerical modeling in order to advance the current understanding of hydrate bearing sediments, and to investigate/optimize production strategies and implications. The goals of this research has been to addresses the complex thermo-hydro-chemo-mechanical THCM coupled phenomena in hydrate-bearing sediments, using a truly coupled numerical model that incorporates sound and proven constitutive relations, satisfies fundamental conservation principles. Analytical solutions aimed at verifying the proposed code have been proposed as well. These tools will allow to better analyze available data and to further enhance the current understanding of hydrate bearing sediments in view of future field experiments and the development of production technology.

  14. Fluid-solid coupling model for studying wellbore instability in drilling of gas hydrate bearing sediments

    Institute of Scientific and Technical Information of China (English)

    程远方; 李令东; 崔青

    2013-01-01

    As the oil or gas exploration and development activities in deep and ultra-deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and pressure can destabilize gas hydrate in nearby formation around the borehole, which may reduce the strength of the formation and result in wellbore instability. A non-isothermal, transient, two-phase, and fluid-solid coupling mathematical model is proposed to simulate the complex stability performance of a wellbore drilled in HBS. In the model, the phase transition of hydrate dissociation, the heat exchange between drilling fluid and formation, the change of mechanical and petrophysical properties, the gas-water two-phase seepage, and its interaction with rock deformation are considered. A finite element simulator is developed, and the impact of drilling mud on wellbore instability in HBS is simulated. Results indicate that the re-duction in pressure and the increase in temperature of the drilling fluid can accelerate hydrate decomposition and lead to mechanical properties getting worse tremendously. The cohesion decreases by 25% when the hydrate totally dissociates in HBS. This easily causes the wellbore instability accordingly. In the first two hours after the formation is drilled, the regions of hydrate dissociation and wellbore instability extend quickly. Then, with the soaking time of drilling fluid increasing, the regions enlarge little. Choosing the low temperature drilling fluid and increasing the drilling mud pressure appropriately can benefit the wellbore stability of HBS. The established model turns out to be an efficient tool in numerical studies of the hydrate dissociation behavior and wellbore stability of HBS.

  15. Methane flux in potential hydrate-bearing sediments offshore southwestern Taiwan

    Science.gov (United States)

    Chen, Nai-Chen; Yang, Tsanyao Frank; Chuang, Pei-Chuan; Hong, Wei-Li; Chen, Hsuan-Wen; Lin, Saulwood; Lin, Li-Hung; Mastumoto, Ryo; Hiruta, Akihiro; Sun, Chih-Hsien; Wang, Pei-Ling; Yang, Tau; Jiang, Shao-yong; Wang, Yun-shuen; Chung, San-Hsiung; Chen, Cheng-Hong

    2016-04-01

    Methane in interstitial water of hydrate-bearing marine sediments ascends with buoyant fluids and is discharged into seawater, exerting profound impacts on ocean biogeochemistry and greenhouse effects. Quantifying the exact magnitude of methane transport across different geochemical transitions in different geological settings would provide bases to better constrain global methane discharge to seawater and to assess physio-chemical contexts imposed on microbial methane production and consumption and carbon sequestration in marine environments. Using sediments collected from different geological settings offshore southwestern Taiwan through decadal exploration on gas hydrates, this study analyzed gas and aqueous geochemistry and calculated methane fluxes across different compartments. Three geochemical transitions, including sulfate-methane transition zone (SMTZ), shallow sediments, and sediment-seawater interface were specifically focused for the flux calculation. The results combined with previous published data showed that methane fluxes at three interfaces of 2.71×10-3 to 3.52×10-1, 5.28×10-7 to 1.08×100, and 1.34×10-6 to 3.17×100 mmol m-2 d-1, respectively. The ranges of fluxes suggest that more than 90 % of methane originating from depth was consumed by anaerobic methanotrophy at the SMTZ, and further >90% of the remnant methane was removed by aerobic methanotrophy prior to reaching the sediment-seawater interface. Exceptions are sites at cold seeps where the percentage of methane released into seawater can reach more than 80% of methane at depth. Most sites with such high methane fluxes are located at active margin where thrusts and diapirism are well developed. Carbon mass balance method was applied for the calculation of anaerobic oxidation of methane (AOM) and organotrophic sulfate reduction rates at SMTZ. Results indicated that AOM rates were comparable with fluxes deduced from concentration gradients for most sites. At least 60% of sulfate

  16. Relative water and gas permeability for gas production from hydrate-bearing sediments

    Science.gov (United States)

    Mahabadi, Nariman; Jang, Jaewon

    2014-06-01

    water and gas permeability equations are important for estimating gas and water production from hydrate-bearing sediments. However, experimental or numerical study to determine fitting parameters of those equations is not available in the literature. In this study, a pore-network model is developed to simulate gas expansion and calculate relative water and gas permeability. Based on the simulation results, fitting parameters for modified Stone equation are suggested for a distributed hydrate system where initial hydrate saturations range from Sh = 0.1 to 0.6. The suggested fitting parameter for relative water permeability is nw ≈ 2.4 regardless of initial hydrate saturation while the suggested fitting parameter for relative gas permeability is increased from ng = 1.8 for Sh = 0.1 to ng = 3.5 for Sh = 0.6. Results are relevant to other systems that experience gas exsolution such as pockmark formation due to sea level change, CO2 gas formation during geological CO2 sequestration, and gas bubble accumulation near the downstream of dams.

  17. Methane hydrate-bearing sediments in the Terrebonne basin, northern Gulf of Mexico

    Science.gov (United States)

    Meazell, K.; Flemings, P. B.

    2015-12-01

    We characterize the geological, geophysical, and thermodynamic state of three dipping, hydrate-bearing sands in the Terrebonne mini basin of the northern Gulf of Mexico, and describe three potential drilling locations to sample these hydrate reservoirs. Within the sand bodies, there is a prominent negative polarity seismic reflection (opposite phase to the seafloor reflector) that we interpret to record the boundary between gas hydrate above and free gas below. This anomaly is the Bottom Simulating Reflector (BSR) and the base of the Gas Hydrate Stability Zone (BGHSZ). Above the BSR, reflection seismic data record these reservoirs with a positive polarity while below it, they record the reservoirs with a negative polarity event. Within the sand bodies, seismic amplitudes are generally strongest immediately above and below the BSR and weaken in updip and downdip directions. Beneath the BSR, two of the reservoirs have a strong negative amplitude event that parallels structure that we interpret to record a gas-water contact, while the third reservoir does not clearly record this behavior. Much like the seafloor, the BSR is bowl-shaped, occurring at greatest depths in the northwest and rising near salt bodies in the south and east. In the north east area of previous exploration, the BSR is found at a depth of 2868 meters below sealevel, implying a geothermal gradient of 20.1oC/km for type I hydrates. Logging while drilling data reveal that the sands are composed of numerous thin, hydrocarbon-charged, coarse-grained sediments. Hydrate saturation in these sands is greatest near the BGHSZ. Pressure coring is proposed for three wells that will penetrate the reservoirs at different structural elevations in order to further elucidate reservoir conditions of the sands.

  18. Microbial Diversity in Hydrate-bearing and -free Seafloor Surface Sediments in the Shenhu Area, South China Sea

    Science.gov (United States)

    Su, X.

    2015-12-01

    In 2007, the China's first gas hydrate drilling expedition GMGS-1 in the Shenhu area on the northern continental slope of the South China Sea was performed (Zhang et al., 2007). Six holes (namely Sites SH1B, SH2B, SH3B, SH5B, SH5C and SH7B) were drilled, and gas hydrate samples were recovered at three sites: Sites SH2B, SH3B and SH7B. In order to investigate microbial diversity and community features in correlation to gas hydrate-bearing sediments, a study on microbial diversity in the surface sediments at hydrate-bearing sites (SH3B and SH7B) and -free sites (SH1B, SH5B, SH5C) was carried out by using 16S rRNA gene phylogenetic analysis. The phylogenetic results indicated difference in microbial communities between hydrate-bearing and -free sediments. At the gas hydrate-bearing sites, bacterial communities were dominated by Deltaproteobacteria (30.5%), and archaeal communities were dominated by Miscellaneous Crenarchaeotic Group (33.8%); In contrast, Planctomycetes was the major group (43.9%) in bacterial communities, while Marine Benthic Group-D (MBG-D) (32.4%) took up the largest proportion in the archaeal communities. Moreover, the microbial communities have characteristics different from those in other hydrate-related sediments around the world, indicating that the presence of hydrates could affect the microbial distribution and community composition. In addition, the microbial community composition in the studied sediments has its own uniqueness, which may be resulted by co-effect of geochemical characteristics and presence/absence of gas hydrates.

  19. Evaluation of Different CH4-CO2 Replacement Processes in Hydrate-Bearing Sediments by Measuring P-Wave Velocity

    Directory of Open Access Journals (Sweden)

    Bei Liu

    2013-11-01

    Full Text Available The replacement of methane with carbon dioxide in natural gas hydrate-bearing sediments is considered a promising technology for simultaneously recovering natural gas and entrapping CO2. During the CH4-CO2 replacement process, the variations of geophysical property of the hydrate reservoir need to be adequately known. Since the acoustic wave velocity is an important geophysical property, in this work, the variations of P-wave velocity of hydrate-bearing sediments were measured during different CH4-CO2 replacement processes using pure gaseous CO2 and CO2/N2 gas mixtures. Our experimental results show that P-wave velocity continually decreased during all replacement processes. Compared with injecting pure gaseous CO2, injection of CO2/N2 mixture can promote the replacement process, however, it is found that the sediment experiences a loss of stiffness during the replacement process, especially when using CO2/N2 gas mixtures.

  20. Invasion of drilling mud into gas-hydrate-bearing sediments. Part I: effect of drilling mud properties

    Science.gov (United States)

    Ning, Fulong; Zhang, Keni; Wu, Nengyou; Zhang, Ling; Li, Gang; Jiang, Guosheng; Yu, Yibing; Liu, Li; Qin, Yinghong

    2013-06-01

    To our knowledge, this study is the first to perform a numerical simulation and analysis of the dynamic behaviour of drilling mud invasion into oceanic gas-hydrate-bearing sediment (GHBS) and to consider the effects of such an invasion on borehole stability and the reliability of well logging. As a case study, the simulation background sets up the conditions of mud temperature over hydrate equilibrium temperature and overbalanced drilling, considering the first Chinese expedition to drill gas hydrate (GMGS-1). The results show that dissociating gas may form secondary hydrates in the sediment around borehole by the combined effects of increased pore pressure (caused by mud invasion and flow resistance), endothermic cooling that accompanies hydrate dissociation compounded by the Joule-Thompson effect and the lagged effect of heat transfer in sediments. The secondary hydrate ring around the borehole may be more highly saturated than the in situ sediment. Mud invasion in GHBS is a dynamic process of thermal, fluid (mud invasion), chemical (hydrate dissociation and reformation) and mechanical couplings. All of these factors interact and influence the pore pressure, flow ability, saturation of fluid and hydrates, mechanical parameters and electrical properties of sediments around the borehole, thereby having a strong effect on borehole stability and the results of well logging. The effect is particularly clear in the borehole SH7 of GMGS-1 project. The borehole collapse and resistivity distortion were observed during practical drilling and wireline logging operations in borehole SH7 of the GMGS-1.mud density (i.e. the corresponding borehole pressure), temperature and salinity have a marked influence on the dynamics of mud invasion and on hydrate stability. Therefore, perhaps well-logging distortion caused by mud invasion, hydrate dissociation and reformation should be considered for identifying and evaluating gas hydrate reservoirs. And some suitable drilling

  1. Methane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Joseph P. Smith

    2014-09-01

    Full Text Available In June 2007 sediment cores were collected in Alaminos Canyon, Gulf of Mexico across a series of seismic data profiles indicating rapid transitions between the presence of methane hydrates and vertical gas flux. Vertical profiles of dissolved sulfate, chloride, calcium, magnesium, and dissolved inorganic carbon (DIC concentrations in porewaters, headspace methane, and solid phase carbonate concentrations were measured at each core location to investigate the cycling of methane-derived carbon in shallow sediments overlying the hydrate bearing strata. When integrated with stable carbon isotope ratios of DIC, geochemical results suggest a significant fraction of the methane flux at this site is cycled into the inorganic carbon pool. The incorporation of methane-derived carbon into dissolved and solid inorganic carbon phases represents a significant sink in local carbon cycling and plays a role in regulating the flux of methane to the overlying water column at Alaminos Canyon. Targeted, high-resolution geochemical characterization of the biogeochemical cycling of methane-derived carbon in shallow sediments overlying hydrate bearing strata like those in Alaminos Canyon is critical to quantifying methane flux and estimating methane hydrate distributions in gas hydrate bearing marine sediments.

  2. Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems

    Science.gov (United States)

    Winters, William J.; Wilcox-Cline, R.W.; Long, P.; Dewri, S.K.; Kumar, P.; Stern, Laura A.; Kerr, Laura A.

    2014-01-01

    The sediment characteristics of hydrate-bearing reservoirs profoundly affect the formation, distribution, and morphology of gas hydrate. The presence and type of gas, porewater chemistry, fluid migration, and subbottom temperature may govern the hydrate formation process, but it is the host sediment that commonly dictates final hydrate habit, and whether hydrate may be economically developed.In this paper, the physical properties of hydrate-bearing regions offshore eastern India (Krishna-Godavari and Mahanadi Basins) and the Andaman Islands, determined from Expedition NGHP-01 cores, are compared to each other, well logs, and published results of other hydrate reservoirs. Properties from the hydrate-free Kerala-Konkan basin off the west coast of India are also presented. Coarser-grained reservoirs (permafrost-related and marine) may contain high gas-hydrate-pore saturations, while finer-grained reservoirs may contain low-saturation disseminated or more complex gas-hydrates, including nodules, layers, and high-angle planar and rotational veins. However, even in these fine-grained sediments, gas hydrate preferentially forms in coarser sediment or fractures, when present. The presence of hydrate in conjunction with other geologic processes may be responsible for sediment porosity being nearly uniform for almost 500 m off the Andaman Islands.Properties of individual NGHP-01 wells and regional trends are discussed in detail. However, comparison of marine and permafrost-related Arctic reservoirs provides insight into the inter-relationships and common traits between physical properties and the morphology of gas-hydrate reservoirs regardless of location. Extrapolation of properties from one location to another also enhances our understanding of gas-hydrate reservoir systems. Grain size and porosity effects on permeability are critical, both locally to trap gas and regionally to provide fluid flow to hydrate reservoirs. Index properties corroborate more advanced

  3. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties

    Science.gov (United States)

    Lee, J. Y.; Francisca, F. M.; Santamarina, J. C.; Ruppel, C.

    2010-11-01

    The small-strain mechanical properties (e.g., seismic velocities) of hydrate-bearing sediments measured under laboratory conditions provide reference values for calibration of logging and seismic exploration results acquired in hydrate-bearing formations. Instrumented cells were designed for measuring the compressional (P) and shear (S) velocities of sand, silts, and clay with and without hydrate and subject to vertical effective stresses of 0.01 to 2 MPa. Tetrahydrofuran (THF), which is fully miscible in water, was used as the hydrate former to permit close control over the hydrate saturation Shyd and to produce hydrate from dissolved phase, as methane hydrate forms in most natural marine settings. The results demonstrate that laboratory hydrate formation technique controls the pattern of P and S velocity changes with increasing Shyd and that the small-strain properties of hydrate-bearing sediments are governed by effective stress, σ'v and sediment specific surface. The S velocity increases with hydrate saturation owing to an increase in skeletal shear stiffness, particularly when hydrate saturation exceeds Shyd≈ 0.4. At very high hydrate saturations, the small strain shear stiffness is determined by the presence of hydrates and becomes insensitive to changes in effective stress. The P velocity increases with hydrate saturation due to the increases in both the shear modulus of the skeleton and the bulk modulus of pore-filling phases during fluid-to-hydrate conversion. Small-strain Poisson's ratio varies from 0.5 in soft sediments lacking hydrates to 0.25 in stiff sediments (i.e., subject to high vertical effective stress or having high Shyd). At Shyd ≥ 0.5, hydrate hinders expansion and the loss of sediment stiffness during reduction of vertical effective stress, meaning that hydrate-rich natural sediments obtained through pressure coring should retain their in situ fabric for some time after core retrieval if the cores are maintained within the hydrate

  4. Characterizing electrical properties and permeability changes of hydrate bearing sediments using ERT data

    Science.gov (United States)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Schrötter, Jörg; Abendroth, Sven

    2015-09-01

    A LArge Reservoir Simulator (LARS) was equipped with an electrical resistivity tomography (ERT) array to monitor hydrate formation and dissociation experiments. During two hydrate formation experiments reaching 90 per cent bulk hydrate saturation, frequent measurements of the electrical properties within the sediment sample were performed. Subsequently, several common mixing rules, including two different interpretations of Archie's law, were tested to convert the obtained distribution of the electrical resistivity into the spatial distribution of local hydrate saturation. It turned out that the best results estimating values of local hydrate saturation were obtained using the Archievar-phi approach where the increasing hydrate phase is interpreted as part of the sediment grain framework reducing the sample's porosity. These values of local hydrate saturation were used to determine local permeabilities by applying the Carman-Kozeny relation. The formed hydrates were dissociated via depressurization. The decomposition onset as well as areas featuring hydrates and free gas were inferred from the ERT results. Supplemental consideration of temperature and pressure data granted information on discrete areas of hydrate dissociation.

  5. Elastic velocity models for gas-hydrate-bearing sediments-a comparison

    Science.gov (United States)

    Chand, Shyam; Minshull, Tim A.; Gei, Davide; Carcione, José M.

    2004-11-01

    The presence of gas hydrate in oceanic sediments is mostly identified by bottom-simulating reflectors (BSRs), reflection events with reversed polarity following the trend of the seafloor. Attempts to quantify the amount of gas hydrate present in oceanic sediments have been based mainly on the presence or absence of a BSR and its relative amplitude. Recent studies have shown that a BSR is not a necessary criterion for the presence of gas hydrates, but rather its presence depends on the type of sediments and the in situ conditions. The influence of hydrate on the physical properties of sediments overlying the BSR is determined by the elastic properties of their constituents and on sediment microstructure. In this context several approaches have been developed to predict the physical properties of sediments, and thereby quantify the amount of gas/gas hydrate present from observed deviations of these properties from those predicted for sediments without gas hydrate. We tested four models: the empirical weighted equation (WE); the three-phase effective-medium theory (TPEM); the three-phase Biot theory (TPB) and the differential effective-medium theory (DEM). We compared these models for a range of variables (porosity and clay content) using standard values for physical parameters. The comparison shows that all the models predict sediment properties comparable to field values except for the WE model at lower porosities and the TPB model at higher porosities. The models differ in the variation of velocity with porosity and clay content. The variation of velocity with hydrate saturation is also different, although the range is similar. We have used these models to predict velocities for field data sets from sediment sections with and without gas hydrates. The first is from the Mallik 2L-38 well, Mackenzie Delta, Canada, and the second is from Ocean Drilling Program (ODP) Leg 164 on Blake Ridge. Both data sets have Vp and Vs information along with the composition and

  6. A Counter-Current Heat-Exchange Reactor for the Thermal Stimulation of Hydrate-Bearing Sediments

    Directory of Open Access Journals (Sweden)

    Manja Luzi-Helbing

    2013-06-01

    Full Text Available Since huge amounts of CH4 are bound in natural gas hydrates occurring at active and passive continental margins and in permafrost regions, the production of natural gas from hydrate-bearing sediments has become of more and more interest. Three different methods to destabilize hydrates and release the CH4 gas are discussed in principle: thermal stimulation, depressurization and chemical stimulation. This study focusses on the thermal stimulation using a counter-current heat-exchange reactor for the in situ combustion of CH4. The principle of in situ combustion as a method for thermal stimulation of hydrate bearing sediments has been introduced and discussed earlier [1,2]. In this study we present the first results of several tests performed in a pilot plant scale using a counter-current heat-exchange reactor. The heat of the flameless, catalytic oxidation of CH4 was used for the decomposition of hydrates in sand within a LArge Reservoir Simulator (LARS. Different catalysts were tested, varying from diverse elements of the platinum group to a universal metal catalyst. The results show differences regarding the conversion rate of CH4 to CO2. The promising results of the latest reactor test, for which LARS was filled with sand and ca. 80% of the pore space was saturated with CH4 hydrate, are also presented in this study. The data analysis showed that about 15% of the CH4 gas released from hydrates would have to be used for the successful dissociation of all hydrates in the sediment using thermal stimulation via in situ combustion.

  7. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  8. The assessment of different production methods for hydrate bearing sediments - results from small and large scale experiments

    Science.gov (United States)

    Schicks, Judith; Heeschen, Katja; Spangenberg, Erik; Luzi-Helbing, Manja; Beeskow-Strauch, Bettina; Priegnitz, Mike; Giese, Ronny; Abendroth, Sven; Thaler, Jan

    2017-04-01

    Natural gas hydrates occur at all active and passive continental margins, in permafrost regions, and deep lakes. Since they are supposed to contain enormous amounts of methane, gas hydrates are discussed as an energy resource. For the production of gas from hydrate bearing sediments, three different production methods were tested during the last decade: depressurization, thermal and chemical stimulation as well as combinations of these methods. In the framework of the SUGAR project we developed a Large Scale Reservoir Simulator (LARS) with a total volume of 425L to test these three methods in a pilot plant scale. For this purpose we formed hydrate from methane saturated brine in sediments under conditions close to natural gas hydrate deposits. The obtained hydrate saturations varied between 40-90%. Hydrate saturation and distribution were determined using electrical resistivity tomography (ERT). The volumes of the produced gas and water were determined and the gas phase was analyzed via gas chromatography. Multi-step depressurization, thermal stimulation applying in-situ combustion as well as chemical stimulation via the injection of CO2 and a CO2-N2-mixture were tested. Depressurization and thermal stimulation appear to be less complicated compared to the chemical stimulation. For the understanding of the macroscopically observed processes on a molecular level, we also performed experiments on a smaller scale using microscopic observation, Raman spectroscopy and X-ray diffraction. The results of these experiments are of particular importance for the understanding of the processes occurring during the CO2-CH4 swapping. Under the chosen experimental conditions the observations indicate a (partial) decomposition and reformation of the hydrate structure rather than a diffusion-controlled exchange of the molecules.

  9. Multiple-pressure-tapped core holder combined with X-ray computed tomography scanning for gas-water permeability measurements of methane-hydrate-bearing sediments

    Science.gov (United States)

    Konno, Yoshihiro; Jin, Yusuke; Uchiumi, Takashi; Nagao, Jiro

    2013-06-01

    We present a novel setup for measuring the effective gas-water permeability of methane-hydrate-bearing sediments. We developed a core holder with multiple pressure taps for measuring the pressure gradient of the gas and water phases. The gas-water flooding process was simultaneously detected using an X-ray computed tomography scanner. We successfully measured the effective gas-water permeability of an artificial sandy core with methane hydrate during the gas-water flooding test.

  10. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments, on the Pacific Ocean Margin

    DEFF Research Database (Denmark)

    Inagaki, F.; Nunoura, T.; Nakagawa, S.

    2006-01-01

    The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes and their ......The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes...... in prokaryotic distribution patterns in sediments with or without methane hydrates, we studied > 2,800 clones possessing partial sequences (400-500 bp) of the 16S rRNA gene and 348 representative clone sequences (approximate to 1 kbp) from the two geographically separated subseafloor environments. Archaea...... of the JS1 group, Planctomycetes, and Chloroflexi. Results from cluster and principal component analyses, which include previously reported data from the West and East Pacific Margins, suggest that, For these locations in the Pacific Ocean, prokaryotic communities from methane hydrate-bearing sediment cores...

  11. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    OpenAIRE

    Lixin Kuang; Yibing Yu; Yunzhong Tu; Ling Zhang; Fulong Ning; Guosheng Jiang; Tianle Liu

    2011-01-01

    Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na 2 CO 3 , 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% ...

  12. Water Retention Curve and Relative Permeability for Gas Production from Hydrate-Bearing Sediments

    Science.gov (United States)

    Mahabadi, N.; Dai, S.; Seol, Y.; Jang, J.

    2014-12-01

    Water retention curve (soil water characteristic curve SWCC) and relative permeability equations are important to determine gas and water production for gas hydrate development. However, experimental studies to determine fitting parameters of those equations are not available in the literature. The objective of this research is to obtain reliable parameters for capillary pressure functions and relative permeability equations applicable to hydrate dissociation and gas production. In order to achieve this goal, (1) micro X-ray Computer Tomography (CT) is used to scan the specimen under 10MPa effective stress, (2) a pore network model is extracted from the CT image, (3) hydrate dissociation and gas expansion are simulated in the pore network model, (4) the parameters for the van Genuchten-type soil water characteristic curve and relative permeability equation during gas expansion are suggested. The research outcome will enhance the ability of numerical simulators to predict gas and water production rate.

  13. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 1. Electromagnetic properties

    Science.gov (United States)

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2010-01-01

    The marked decrease in bulk electrical conductivity of sediments in the presence of gas hydrates has been used to interpret borehole electrical resistivity logs and, to a lesser extent, the results of controlled source electromagnetic surveys to constrain the spatial distribution and predicted concentration of gas hydrate in natural settings. Until now, an exhaustive laboratory data set that could be used to assess the impact of gas hydrate on the electromagnetic properties of different soils (sand, silt, and clay) at different effective stress and with different saturations of hydrate has been lacking. The laboratory results reported here are obtained using a standard geotechnical cell and the hydrate-formed tetrahydrofuran (THF), a liquid that is fully miscible in water and able to produce closely controlled saturations of hydrate from dissolved phase. Both permittivity and electrical conductivity are good indicators of the volume fraction of free water in the sediment, which is in turn dependent on hydrate saturation. Permittivity in the microwave frequency range is particularly predictive of free water content since it is barely affected by ionic concentration, pore structure, and surface conduction. Electrical conductivity (or resistivity) is less reliable for constraining water content or hydrate saturation: In addition to fluid-filled porosity, other factors, such as the ionic concentration of the pore fluid and possibly other conduction effects (e.g., surface conduction in high specific surface soils having low conductivity pore fluid), also influence electrical conductivity.

  14. Constraining gas hydrate occurrence in the northern Gulf of Mexico continental slope : fine scale analysis of grain-size in hydrate-bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hangsterfer, A.; Driscoll, N.; Kastner, M. [Scripps Inst. of Oceanography, La Jolla, CA (United States). Geosciences Research Division

    2008-07-01

    Methane hydrates can form within the gas hydrate stability zone (GHSZ) in sea beds. The Gulf of Mexico (GOM) contains an underlying petroleum system and deeply buried, yet dynamic salt deposits. Salt tectonics and fluid expulsion upward through the sediment column result in the formation of fractures, through which high salinity brines migrate into the GHSZ, destabilizing gas hydrates. Thermogenic and biogenic hydrocarbons also migrate to the seafloor along the GOMs northern slope, originating from the thermal and biogenic degradation of organic matter. Gas hydrate occurrence can be controlled by either primary permeability, forming in coarse-grained sediment layers, or by secondary permeability, forming in areas where hydrofracture and faulting generate conduits through which hydrocarbon-saturated fluids flow. This paper presented a study that attempted to determine the relationship between grain-size, permeability, and gas hydrate distribution. Grain-size analyses were performed on cores taken from Keathley Canyon and Atwater Valley in the GOM, on sections of cores that both contained and lacked gas hydrate. Using thermal anomalies as proxies for the occurrence of methane hydrate within the cores, samples of sediment were taken and the grain-size distributions were measured to see if there was a correlation between gas hydrate distribution and grain-size. The paper described the methods, including determination of hydrate occurrence and core analysis. It was concluded that gas hydrate occurrence in Keathley Canyon and Atwater Valley was constrained by secondary permeability and was structurally controlled by hydrofractures and faulting that acted as conduits through which methane-rich fluids flowed. 11 refs., 2 tabs., 5 figs.

  15. Relative permeability of hydrate-bearing sediments from percolation theory and critical path analysis: theoretical and experimental results

    Science.gov (United States)

    Daigle, H.; Rice, M. A.

    2015-12-01

    Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, which may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.

  16. Relative permeability of hydrate-bearing sediments from percolation theory and critical path analysis: theoretical and experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Daigle, Hugh [University of Texas at Austin; Rice, Mary Anna [North Carolina State University; Daigle, Hugh

    2015-12-14

    Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, which may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.

  17. Strengthening mechanism of cemented hydrate-bearing sand at microscales

    Science.gov (United States)

    Yoneda, Jun; Jin, Yusuke; Katagiri, Jun; Tenma, Norio

    2016-07-01

    On the basis of hypothetical particle-level mechanisms, several constitutive models of hydrate-bearing sediments have been proposed previously for gas production. However, to the best of our knowledge, the microstructural large-strain behaviors of hydrate-bearing sediments have not been reported to date because of the experimental challenges posed by the high-pressure and low-temperature testing conditions. Herein, a novel microtriaxial testing apparatus was developed, and the mechanical large-strain behavior of hydrate-bearing sediments with various hydrate saturation values (Sh = 0%, 39%, and 62%) was analyzed using microfocus X-ray computed tomography. Patchy hydrates were observed in the sediments at Sh = 39%. The obtained stress-strain relationships indicated strengthening with increasing hydrate saturation and a brittle failure mode of the hydrate-bearing sand. Localized deformations were quantified via image processing at the submillimeter and micrometer scale. Shear planes and particle deformation and/or rotation were detected, and the shear band thickness decreased with increasing hydrate saturation.

  18. Neural network analysis of crosshole tomographic images: The seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada)

    Science.gov (United States)

    Bauer, K.; Pratt, R. G.; Haberland, C.; Weber, M.

    2008-10-01

    Crosshole seismic experiments were conducted to study the in-situ properties of gas hydrate bearing sediments (GHBS) in the Mackenzie Delta (NW Canada). Seismic tomography provided images of P velocity, anisotropy, and attenuation. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. Application to the Mallik data reveals four major litho-types: (1) GHBS, (2) sands, (3) shale/coal interlayering, and (4) silt. The signature of seismic P wave characteristics distinguished for the GHBS (high velocities, strong anisotropy and attenuation) is new and can be used for new exploration strategies to map and quantify gas hydrates.

  19. HyFlux - Part II: Subsurface sequestration of methane-derived carbon in gas-hydrate- bearing marine sediments

    Science.gov (United States)

    Naehr, T. H.; Asper, V. L.; Garcia, O.; Kastner, M.; Leifer, I.; MacDonald, I. R.; Solomon, E. A.; Yvon-Lewis, S.; Zimmer, B.

    2008-12-01

    The recently funded DOE/NETL study "HyFlux: Remote sensing and sea-truth measurements of methane flux to the atmosphere" (see MacDonald et al.: HyFlux - Part I) will combine sea surface, water column and shallow subsurface observations to improve our estimates of methane flux from submarine seeps and associated gas hydrate deposits to the water column and atmosphere along the Gulf of Mexico continental margin and other selected areas world-wide. As methane-rich fluids rise towards the sediment-water interface, they will interact with sulfate-rich pore fluids derived from overlying bottom water, which results in the formation of an important biogeochemical redox boundary, the so-called sulfate-methane interface, or SMI. Both methane and sulfate are consumed within the SMI and dissolved inorganic carbon, mostly bicarbonate (HCO3-) and hydrogen sulfide are produced, stimulating authigenic carbonate precipitation at and immediately below the SMI. Accordingly, the formation of authigenic carbonates in methane- and gas-hydrate-rich sediments will sequester a portion of the methane-derived carbon. To date, however, little is known about the quantitative aspects of these reactions. Rates of DIC production are not well constrained, but recent biogeochemical models indicate that CaCO3 precipitation rates may be as high as 120 μmol cm-2a-1. Therefore, AOM-driven carbonate precipitation must be considered when assessing the impact of gas-hydrate-derived methane on the global carbon cycle. As part of HyFlux, we will conduct pore water analyses (DOC, DIC, CH4, δ13CDIC, δ13CDOC, δ13CCH4, δ18O, and δD isotope ratios) to evaluate the importance of authigenic carbonate precipitation as a sequestration mechanism for methane- derived carbon. In addition, sediment and seafloor carbonate samples will be analyzed for bulk sedimentary carbonate (δ13C and δ18O) and bulk sedimentary organic matter (δ13C and δ15N), as well as sulfur, bulk mineralogy, texture and morphological

  20. On the path to the digital rock physics of gas hydrate-bearing sediments - processing of in situ synchrotron-tomography data

    Science.gov (United States)

    Sell, Kathleen; Saenger, Erik H.; Falenty, Andrzej; Chaouachi, Marwen; Haberthür, David; Enzmann, Frieder; Kuhs, Werner F.; Kersten, Michael

    2016-08-01

    To date, very little is known about the distribution of natural gas hydrates in sedimentary matrices and its influence on the seismic properties of the host rock, in particular at low hydrate concentration. Digital rock physics offers a unique approach to this issue yet requires good quality, high-resolution 3-D representations for the accurate modeling of petrophysical and transport properties. Although such models are readily available via in situ synchrotron radiation X-ray tomography, the analysis of such data asks for complex workflows and high computational power to maintain valuable results. Here, we present a best-practice procedure complementing data from Chaouachi et al. (2015) with data post-processing, including image enhancement and segmentation as well as exemplary numerical simulations of an acoustic wave propagation in 3-D using the derived results. A combination of the tomography and 3-D modeling opens a path to a more reliable deduction of properties of gas hydrate-bearing sediments without a reliance on idealized and frequently imprecise models.

  1. Reflection and transmission of bottom simulating reflectors in gas hydrate-bearing sediments: Two-phase media models%天然气水合物似海底反射层(BSR)AVA特征:双相介质模型

    Institute of Scientific and Technical Information of China (English)

    麻纪强; 耿建华

    2008-01-01

    The bottom simulating reflector (BSR) in gas hydrate-bearing sediments is a physical interface which is composed of solid, gas, and liquid and is influenced by temperature and pressure. Deep sea floor sediment is a porous, unconsolidated, fluid saturated media. Therefore, the reflection and transmission coefficients computed by the Zoeppritz equation based on elastic media do not match reality. In this paper, a two-phase media model is applied to study the reflection and transmission at the bottom simulating reflector in order to find an accurate wave propagation energy distribution and the relationship between reflection and transmission and fluid saturation on the BSR. The numerical experiments show that the type I compressional (fast) and shear waves are not sensitive to frequency variation and the velocities change slowly over the whole frequency range. However, type II compressional (slow) waves are more sensitive to frequency variation and the velocities change over a large range. We find that reflection and transmission coefficients change with the amount of hydrate and free gas. Frequency, pore fluid saturation, and incident angle have different impacts on the reflection and transmission coefficients. We can use these characteristics to estimate gas hydrate saturation or detect lithological variations in the gas hydrate-bearing sediments.

  2. Chemical and isotopic characteristics of gas hydrate- and pore-water samples obtained from gas hydrate-bearing sediment cores retrieved from a mud volcano in the Kukuy Canyon, Lake Baikal

    Energy Technology Data Exchange (ETDEWEB)

    Minami, H.; Hachikubo, A.; Krylov, A.; Sakagami, H.; Ohashi, M.; Bai, J.; Kataoka, S.; Yamashita, S.; Takahashi, N.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan); Khlystov, O.; Zemskaya, T.; Grachev, M. [Russian Academy of Sciences, Irkutsk (Russian Federation). Limnological Inst.

    2008-07-01

    This paper provided details of a method developed to obtain gas hydrate water samples from a mud volcano in Lake Baikal, Russia. Chemical and isotopic analyses were conducted to examine the hydrate and pore water samples as well as to evaluate the original water involved in shallow gas hydrate accumulations in the region. Lake sediment core samples were retrieved from the bottom of the lake with gravity corers. A squeezer was used to take pore water samples from the sediments. Hydrate samples were taken from a gas hydrate placed on a polyethylene funnel. Dissolved hydrate water was filtered through a membrane into bottles. Both samples were kept under chilled or liquid nitrogen temperatures. Ion chromatography was used to determine concentrations of anions and hydrogen carbonate ions. Sodium and magnesium concentrations were determined using an inductively coupled plasma atomic emission spectrometer. An absorption spectrometer was used to determine potassium and calcium concentrations, and a mass spectrometer was used to analyze stable isotopes of oxygen and hydrogen. Results of the study suggested that the gas dissolved in pore water and adsorbed on the surfaces of sediment particles was not the original gas from the hydrates retrieved at the mud volcano. Original gas hydrate-forming fluids were chemically different from the pore- and lake-water samples. The oxygen isotopic composition of the gas hydrate water samples correlated well with hydrogen values. It was concluded that ascending fluid and water delivered the gas into the gas stability zone, and is the main gas hydrate-forming fluid in the area of study. 12 refs., 1 fig.

  3. 含气水合物沉积物弹塑性损伤本构模型探讨%A constitutive model coupling elastoplasticity and damage for methane hydrate-bearing sediments

    Institute of Scientific and Technical Information of China (English)

    杨期君; 赵春风

    2014-01-01

    天然气水合物的开采会带来一系列的岩土工程问题,为了保障相关工程设施的安全,有必要建立一个合理的水合物沉积物本构模型。通过深入分析水合物沉积物力学特点,从颗粒间的作用机制出发,认为水合物沉积物的力学响应是沉积物中土体颗粒间摩擦与水合物胶结二者共同作用的结果;考虑到摩擦与接触特性不同的力学机制,分别采用修正剑桥模型和弹性损伤模型对土体骨架及水合物胶结的应力-应变关系进行描述;通过假定水合物胶结的损伤演化规律,并认为在受力变形过程中二者的应变始终相等,初步建立了一个水合物沉积物的弹塑性损伤本构模型。不同水合物饱和度沉积物应力-应变曲线的模型预测结果与室内三轴排水试验结果吻合良好,表明了所建模型的可行性和合理性。%The extraction of methane hydrate in the seabed will result in a series of geotechnical engineering problems and disasters. In order to ensure the safety of the related engineering facilities during the extraction, it is necessary to build reasonable constitutive model for methane hydrate bearing sediments. Based on the thorough study of the geomechanical characteristics of hydrate bearing sediments and the contacts between soil grains, the authors suppose that the geomechanical behavior of hydrate bearing sediments resulting from the combination of the friction between soil grains and cementation due to methane hydrate. Considering the different mechanical mechanisms of the friction and cementation, the modified Cam-clay model and elasticity damage model are employed to describe their mechanical responses respectively. By assuming that soil skeleton and cementation have the same strain during the loading, a constitutive model coupling elastoplasticity and damage for methane hydrate bearing sediments is then established based on a simplified damage evolution law. The

  4. Stability Analysis of Methane Hydrate-Bearing Soils Considering Dissociation

    Directory of Open Access Journals (Sweden)

    Hiromasa Iwai

    2015-06-01

    Full Text Available It is well known that the methane hydrate dissociation process may lead to unstable behavior such as large ground deformations, uncontrollable gas production, etc. A linear instability analysis was performed in order to investigate which variables have a significant effect on the onset of the instability behavior of methane hydrate-bearing soils subjected to dissociation. In the analysis a simplified viscoplastic constitutive equation is used for the soil sediment. The stability analysis shows that the onset of instability of the material system mainly depends on the strain hardening-softening parameter, the degree of strain, and the permeability for water and gas. Then, we conducted a numerical analysis of gas hydrate-bearing soil considering hydrate dissociation in order to investigate the effect of the parameters on the system. The simulation method used in the present study can describe the chemo-thermo-mechanically coupled behaviors such as phase changes from hydrates to water and gas, temperature changes and ground deformation. From the numerical results, we found that basically the larger the permeability for water and gas is, the more stable the simulation results are. These results are consistent with those obtained from the linear stability analysis.

  5. 含天然气水合物沉积物损伤统计本构模型%A statistical damage constitutive model of hydrate-bearing sediments

    Institute of Scientific and Technical Information of China (English)

    吴二林; 韦昌富; 魏厚振; 颜荣涛

    2013-01-01

    Hydrate saturation and effective confining pressure can significantly influence the mechanical behaviour of hydrate-bearing sediments. In the case, that the effects of the hydrate type, grain size, and testing conditions are excluded, these two variables are the critical factors that determine their elastic modulus. Based on the relationship between equivalent elastic modulus and hydrate saturation, a power function is established for the damage variable, which takes into account the influence of effective confining pressure. Drucker-Prager failure criterion is adopted to describe the strength of a micro-element of hydrate-bearing sediments. By assuming that the variation of the micro-element strength follows Weibull's distribution, a statistical damage constitutive model of hydrate-bearing sediments is developed. By comparing the simulated results with the experimental data available in the literature, we show that the proposed model can describe the stress-strain behavior of the hydrate-bearing sediments very well under the triaxial shearing condition. The results can provide reference for numerical simulation of engineering properties of gas hydrate sediments.%水合物含量、有效围压是影响含天然气水合物沉积物力学性质的主要因素,在忽略其他次要因素(包括水合物种类、试样颗粒大小、试验条件等)的情况下,水合物含量和有效围压是决定试样弹性模量的两个关键参数.在分析等效弹性模量与水合物含量相互关系的基础上,考虑有效围压的影响,建立了弹性模量与有效围压的幂函数关系;同时采用Drucker-Prager破坏准则来表示含天然气水合物沉积物微元强度,并假设其微元强度服从Weibull分布,从而建立了含天然气水合物沉积物的损伤统计本构模型,与不同有效围压下的试验结果及已有研究成果相比较,表明了所建模型能够很好地模拟三轴剪切条件下含水合物沉积物试样的应力-应变

  6. Electrical properties of methane hydrate + sediment mixtures: The σ of CH4 Hydrate + Sediment

    Energy Technology Data Exchange (ETDEWEB)

    Du Frane, Wyatt L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stern, Laura A. [U. S. Geological Survey, Menlo Park, CA (United States); Constable, Steven [Scripps Institution of Oceanography, La Jolla, CA (United States); Weitemeyer, Karen A. [Scripps Institution of Oceanography, La Jolla, CA (United States); National Oceanography Centre Southampton (United Kingdom), Univ. of Southampton Waterfront Campus, Southampton (United Kingdom); Smith, Megan M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, Jeffery J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-30

    Knowledge of the electrical properties of multicomponent systems with gas hydrate, sediments, and pore water is needed to help relate electromagnetic (EM) measurements to specific gas hydrate concentration and distribution patterns in nature. We built a pressure cell capable of measuring in situ electrical properties of multicomponent systems such that the effects of individual components and mixing relations can be assessed. We first established the temperature-dependent electrical conductivity (σ) of pure, single-phase methane hydrate to be ~5 orders of magnitude lower than seawater, a substantial contrast that can help differentiate hydrate deposits from significantly more conductive water-saturated sediments in EM field surveys. We report σ measurements of two-component systems in which methane hydrate is mixed with variable amounts of quartz sand or glass beads. Sand by itself has low σ but is found to increase the overall σ of mixtures with well-connected methane hydrate. Alternatively, the overall σ decreases when sand concentrations are high enough to cause gas hydrate to be poorly connected, indicating that hydrate grains provide the primary conduction path. Our measurements suggest that impurities from sand induce chemical interactions and/or doping effects that result in higher electrical conductivity with lower temperature dependence. Finally, these results can be used in the modeling of massive or two-phase gas-hydrate-bearing systems devoid of conductive pore water. Further experiments that include a free water phase are the necessary next steps toward developing complex models relevant to most natural systems.

  7. The impact of hydrate saturation on the mechanical, electrical, and thermal properties of hydrate-bearing sand, silts, and clay

    Energy Technology Data Exchange (ETDEWEB)

    Santamarina, J.C. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering; Ruppel, C. [United States Geological Survey, Woods Hole, MA (United States)

    2008-07-01

    A study was conducted to provide an internally-consistent, systematically-acquired database that could help in evaluating gas hydrate reservoirs. Other objectives were to assist in geomechanical analyses, hazards evaluation and the development of methane hydrate production techniques in sandy lithologies and fine-grained sediments that exist in the northern Gulf of Mexico. An understanding of the physical properties of hydrate-bearing sediments facilitates the interpretation of geophysical field data, borehole and slope stability analyses, and reservoir simulation and production models. This paper reported on the key findings derived from 5 years of laboratory experiments conducted on synthetic samples of sand, silts, or clays subjected to various confining pressures. The samples contained controlled saturations of tetrahydrofuran hydrate formed from the dissolved phase. This internally-consistent data set was used to conduct a comprehensive analysis of the trends in geophysical and geotechnical properties as a function of hydrate saturation, soil characteristics, and other parameters. The experiments emphasized measurements of seismic velocities, electrical conductivity and permittivity, large strain deformation and strength, and thermal conductivity. The impact of hydrate formation technique on the resulting physical properties measurements were discussed. The data set was used to identify systematic effects of sediment characteristics, hydrate concentration, and state of stress. The study showed that the electrical properties of hydrate-bearing sediments are less sensitive to the method used to form hydrate in the laboratory than to hydrate saturation. It was concluded that mechanical properties are strongly influenced by both soil properties and the hydrate loci. Since the thermal conductivity depends on the interaction of several factors, it cannot be readily predicted by volume average formulations. 23 refs., 2 tabs., 9 figs.

  8. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates

    Science.gov (United States)

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2008-01-01

    Using an oedometer cell instrumented to measure the evolution of electromagnetic properties, small strain stiffness, and temperature, we conducted consolidation tests on sediments recovered during drilling in the northern Gulf of Mexico at the Atwater Valley and Keathley Canyon sites as part of the 2005 Chevron Joint Industry Project on Methane Hydrates. The tested specimens include both unremolded specimens (as recovered from the original core liner) and remolded sediments both without gas hydrate and with pore fluid exchanged to attain 100% synthetic (tetrahydrofuran) hydrate saturation at any stage of loading. Test results demonstrate the extent to which the electromagnetic and mechanical properties of hydrate-bearing marine sediments are governed by the vertical effective stress, stress history, porosity, hydrate saturation, fabric, ionic concentration of the pore fluid, and temperature. We also show how permittivity and electrical conductivity data can be used to estimate the evolution of hydrate volume fraction during formation. The gradual evolution of geophysical properties during hydrate formation probably reflects the slow increase in ionic concentration in the pore fluid due to ion exclusion in closed systems and the gradual decrease in average pore size in which the hydrate forms. During hydrate formation, the increase in S-wave velocity is delayed with respect to the decrease in permittivity, consistent with hydrate formation on mineral surfaces and subsequent crystal growth toward the pore space. No significant decementation/debonding occurred in 100% THF hydrate-saturated sediments during unloading, hence the probability of sampling hydrate-bearing sediments without disturbing the original sediment fabric is greatest for samples in which the gas hydrate is primarily responsible for maintaining the sediment fabric and for which the time between core retrieval and restoration of in situ effective stress in the laboratory is minimized. In evaluating the

  9. Origin and character of gaseous hydrocarbons in the hydrate and non-hydrate charged sediments on the Norway - Svalbard margins

    Energy Technology Data Exchange (ETDEWEB)

    Vaular, Espen Nesheim

    2011-05-15

    Gas incubated in clathrate water-structures, stabilizes the hydrogen bonded substance termed gas hydrate. In the marine environment vast amount of carbon is stored as gas hydrates within the temperature and pressure zone these ice-like structures are stable. Natural gas hydrate mapping and characterization is important basic research that brings about critical knowledge concerning various topics. Natural gas hydrates is a vital part of the carbon cycle, it is a potential energy resource (and thereby a potential climate agent) and it is a potential geo-hazard. One of the goals the GANS initiative aimed at exploring, was the hydrate bearing sediment of the Norway -Svalbard margins, to investigate the character and expansion of natural gas hydrates. Part of the investigation was to define how the gas in the hydrated sediment was produced and where it came from. As a result this thesis addresses the matter of light hydrocarbon characterization and origin in two Norwegian hydrate deposits. On cruises to Vestnesa on the Svalbard margin and to Nyegga in the mid-Norwegian margin, samples of hydrate charged and non-hydrate charged sediments were obtained and analyzed. Through compositional and isotopic analyses the origin of the hydrate bound gas in the fluid escape feature G11 at Nyegga was determined. The hydrate incubated methane is microbial produced as well as parts of the hydrate bound ethane. The compositional analysis in both the Nyegga area and at the Vestnesa Ridge points at thermogenic contributions in the sediment interstitials and pore water. The two hydrate bearing margins show large differences in hydrocarbon content and microbial activity in the pockmarks investigated. The gravity cores from the penetrated pockmark at Vestnesa showed low hydrocarbon content and thus suggest ceased or periodic venting. The fluid flow escape features at Nyegga show large variety of flux rates based on ROV monitoring and headspace analysis of the sediment and pore water. The

  10. 海底扩散体系含天然气水合物沉积物制样方法与装置%A method and apparatus for formation sample of gas hydrates bearing sediments in marine diffusion system

    Institute of Scientific and Technical Information of China (English)

    魏厚振; 韦昌富; 颜荣涛; 吴二林; 陈盼

    2011-01-01

    Natural gas hydrate is one of the most important potential energy sources distributing in the seabed and continental permafrost; at the same time, the dissociation of hydrate in hydrates bearing layers is a triggering factor of global climate change and geologic hazards. The method and apparatus for formation sample is a basic issue for researching on hydrates-bearing sediments(HBS), which require homogeneity of the sample according with in-situ formation mode as soon as possible. Most marine hadrate formed in diffusion system, which means the gas transferred to the hydrate occur zone by diffusion in water and formed hydrate.Gas-bearing water is moved in cycles by constant-flow pump in this method and apparatus; and gas solubility in water is enlarged through stirred by magnetic stirring apparatus; soil sample could be saturated with gas-bearing water in short time; and then reduce the temperature of soil sample, Gas dissolved in water associates with water to form hydrate filling in the pore of soil sample equably. The experiments show that 1 day is spent to form the hydrates-bearing sediments used by silt and CO2 sample. Homogeneity is testified through observing and testing water-contents of different positions in formed sample. Thereby , heterogeneity caused by hydrate distribution in pore of sample and cost time too long is dissolved well; technological basis is provided for physico-mechanical experiments of hydrates bearing sediments.%天然气水合物是分布在海洋和大陆多年冻土中的一种具有巨大商业开发价值的新型战略性替代能源.同时,含天然气水合物地层中水合物的分解将带来严重的地质灾害和气候问题的关注.试验室内开展含天然气水合物沉积物物理力学性质研究需要首先解决的是制样问题,即在试验室内快速形成符合现场原位形成模式的试样,并且水合物均匀分布于土样孔隙中.海洋天然气水合物主要是在扩散体系中形成的,即溶

  11. MORPHOLOGY OF METHANE HYDRATE HOST SEDIMENTS.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; FENG,H.; TOMOV,S.; WINTER,W.J.; EATON,M.; MAHAJAN,D.

    2004-12-01

    Results from simulated experiments in several laboratories show that host sediments influence hydrate formation in accord with known heterogeneity of host sediments at sites of gas hydrate occurrence (1). For example, in Mackenzie Delta, NWT Canada (Mallik 2L-38 well), coarser-grained units (pore-filling model) are found whereas in the Gulf of Mexico, the found hydrate samples do not appear to be lithologically controlled. We have initiated a systematic study of sediments, initially focusing on samples from various depths at a specific site, to establish a correlation with hydrate occurrence (or variations thereof) to establish differences in their microstructure, porosity, and other associated properties. The synchrotron computed microtomography (CMT) set-up at the X-27A tomography beam line at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory was used as a tool to study sediments from Blake Ridge at three sub bottom depths of 0.2, 50, and 667 meters. Results from the tomographic analysis of the deepest sample (667 m) are presented here to illustrate how tomography can be used to obtain new insights into the structures of methane hydrate host sediments. The investigation shows the internal grain/pore space resolution in the microstructure and a 3-D visualization of the connecting pathways obtained following data segmentation into pore space and grains within the sediment sample. The analysis gives the sample porosity, specific surface area, mean particle size, and tortuosity, as well. An earlier report on the experimental program has been given by Mahajan et al. (2).

  12. A Method to Use Solar Energy for the Production of Gas from Marine Hydrate-Bearing Sediments: A Case Study on the Shenhu Area

    Directory of Open Access Journals (Sweden)

    Fenglin Tang

    2010-12-01

    Full Text Available A method is proposed that uses renewable solar energy to supply energy for the exploitation of marine gas hydrates using thermal stimulation. The system includes solar cells, which are installed on the platform and a distributor with electric heaters. The solar module is connected with electric heaters via an insulated cable, and provides power to the heaters. Simplified equations are given for the calculation of the power of the electric heaters and the solar battery array. Also, a case study for the Shenhu area is provided to illustrate the calculation of the capacity of electric power and the solar cell system under ideal conditions. It is shown that the exploitation of marine gas hydrates by solar energy is technically and economically feasible in typical marine areas and hydrate reservoirs such as the Shenhu area. This method may also be used as a good assistance for depressurization exploitation of marine gas hydrates in the future.

  13. Submarine Slope Failure Primed and Triggered by Bottom Water Warming in Oceanic Hydrate-Bearing Deposits

    Directory of Open Access Journals (Sweden)

    Tae-Hyuk Kwon

    2012-08-01

    Full Text Available Many submarine slope failures in hydrate-bearing sedimentary deposits might be directly triggered, or at least primed, by gas hydrate dissociation. It has been reported that during the past 55 years (1955–2010 the 0–2000 m layer of oceans worldwide has been warmed by 0.09 °C because of global warming. This raises the following scientific concern: if warming of the bottom water of deep oceans continues, it would dissociate natural gas hydrates and could eventually trigger massive slope failures. The present study explored the submarine slope instability of oceanic gas hydrate-bearing deposits subjected to bottom water warming. One-dimensional coupled thermal-hydraulic-mechanical (T-H-M finite difference analyses were performed to capture the underlying physical processes initiated by bottom water warming, which includes thermal conduction through sediments, thermal dissociation of gas hydrates, excess pore pressure generation, pressure diffusion, and hydrate dissociation against depressurization. The temperature rise at the seafloor due to bottom water warming is found to create an excess pore pressure that is sufficiently large to reduce the stability of a slope in some cases. Parametric study results suggest that a slope becomes more susceptible to failure with increases in thermal diffusivity and hydrate saturation and decreases in pressure diffusivity, gas saturation, and water depth. Bottom water warming can be further explored to gain a better understanding of the past methane hydrate destabilization events on Earth, assuming that more reliable geological data is available.

  14. Grain-scale imaging and compositional characterization of cryo-preserved India NGHP 01 gas-hydrate-bearing cores

    Science.gov (United States)

    Stern, Laura A.; Lorenson, T.D.

    2014-01-01

    We report on grain-scale characteristics and gas analyses of gas-hydrate-bearing samples retrieved by NGHP Expedition 01 as part of a large-scale effort to study gas hydrate occurrences off the eastern-Indian Peninsula and along the Andaman convergent margin. Using cryogenic scanning electron microscopy, X-ray spectroscopy, and gas chromatography, we investigated gas hydrate grain morphology and distribution within sediments, gas hydrate composition, and methane isotopic composition of samples from Krishna–Godavari (KG) basin and Andaman back-arc basin borehole sites from depths ranging 26 to 525 mbsf. Gas hydrate in KG-basin samples commonly occurs as nodules or coarse veins with typical hydrate grain size of 30–80 μm, as small pods or thin veins 50 to several hundred microns in width, or disseminated in sediment. Nodules contain abundant and commonly isolated macropores, in some places suggesting the original presence of a free gas phase. Gas hydrate also occurs as faceted crystals lining the interiors of cavities. While these vug-like structures constitute a relatively minor mode of gas hydrate occurrence, they were observed in near-seafloor KG-basin samples as well as in those of deeper origin (>100 mbsf) and may be original formation features. Other samples exhibit gas hydrate grains rimmed by NaCl-bearing material, presumably produced by salt exclusion during original hydrate formation. Well-preserved microfossil and other biogenic detritus are also found within several samples, most abundantly in Andaman core material where gas hydrate fills microfossil crevices. The range of gas hydrate modes of occurrence observed in the full suite of samples suggests a range of formation processes were involved, as influenced by local in situconditions. The hydrate-forming gas is predominantly methane with trace quantities of higher molecular weight hydrocarbons of primarily microbial origin. The composition indicates the gas hydrate is Structure I.

  15. The influence of sedimentation rate variation on the occurrence of methane hydrate crystallized from dissolved methane in marine gas hydrate system

    Science.gov (United States)

    Yuncheng, C.; Chen, D.

    2015-12-01

    Methane is commonly delivered to the gas hydrate stability zone by advection of methane-bearing fluids, diffusion of dissolved methane, and in-situ biogenic methane production (Davie and Buffett, 2003), except at cold vent sites. Burial of pore water and sediment compaction can induce the fluid flux change (Bhatnagar et al., 2007). Sedimentation supply the organic material for methane production. In addition, Gas hydrate can move to below gas hydrate stability zone and decompose via sedimentation. Therefore, sedimentation significantly affect the gas hydrate accumulation. ODP site 997 located at the Blake Ridge. The sedimentation rate is estimated to 48 m/Ma, 245m/Ma, 17.2 m/Ma and 281m/Ma for 0-2.5Ma, 2.5-3.75Ma, 3.75-4.4Ma, and 4.4-5.9Ma, respectively, according to the age-depth profile of biostratigraphic marker of nonnofossils(Paull et al., 1996). We constructed a gas hydrate formation model and apply to ODP sites 997 to evaluate the influence of variation of sedimentation rate on gas hydrate accumulation. Our results show that the gas hydrate format rate varied from 0.013mol/m2-a to 0.017mol/m2-a and the gas hydrate burial to below gas hydrate stability zone varied from 0.001mol/m2-a to 0.018mol/m2-a during recently 5Ma. The gas hydrate formation rate by pore water advection and dissolved methane diffusion would be lower, and the top occurrence of gas hydrate would be shallower, when the sedimentation rate is higher. With higher sedimentation rate, the amount of gas hydrate burial to below stability zone would be larger. The relative high sedimentation rate before 2.5 Ma at ODP site 997 produced the gas hydrate saturation much lower than present value, and over 60% of present gas hydrates are formed during recent 2.5Ma. Reference: Bhatnagar,G., Chapman, W. G.,Dickens, G. R., et al. Generalization of gas hydrate distribution and saturation in marine sediments by scaling of thermodynamic and transport processes. American Journal of Science, 2007, 307, 861

  16. 钻井液侵入海洋含水合物地层的一维数值模拟研究%Invasion of water-based drilling mud into oceanic gas-hydrate-bearing sediment:One-dimensional numerical simulations

    Institute of Scientific and Technical Information of China (English)

    宁伏龙; 张可霓; 吴能友; 蒋国盛; 张凌; 刘力; 余义兵

    2013-01-01

    mud invasion into oceanic gas hydrate bearing sediments (GHBS) by taking hydrate reservoirs in the Gulf of Mexico as a case. Compared with the conventional oil/gas-bearing sediments, hydrate dissociation and reformation are the main characteristics of mud invasion in GHBS when the invasion condition is in an unstable region of gas hydrates phase diagram. The simulation results show that the density (I. E. , corresponding pressure), temperature, and salt content of drilling fluids have great effects on the process of drilling fluid invasion. When the temperature and salt content of drilling fluids are constants, the higher the density of the drilling fluid is, the greater degree of invasion and hydrate dissociation are. The increased pore pressure caused by the mud invasion, endothermic cooling with hydrate dissociation compounded by the Joule-Thompson effect and lagged effect of heat transfer in sediments, together make water and gas forming secondary hydrates. The secondary hydrate together with existing hydrate probably makes the hydrate saturation higher than original hydrate saturation. This high saturation hydrate ring could be attributed to the displacement effect of mud invasion and the permeability reduction because of secondary hydrates forming. Under the same temperature and pressure of drilling fluids, the higher the salt concentration of the drilling fluid, the faster rate and greater degree of hydrate dissociation due to the stronger thermodynamic inhibition effect and heat transfer efficiency. The occurrence of high-saturation hydrate girdle band seems to mainly depend on the temperature and salinity of drilling fluids. The dissociated free gas, the dilution of water salinity associated with hydrate dissociation and the occurrence of high saturation hydrate ring probably cause the calculated hydrate saturation based on well logging is higher than that of actual hydrate-bearing sediments. Our simulations suggest that in order to keep wellbore stability

  17. Composite model to reproduce the mechanical behaviour of methane hydrate bearing soils

    Science.gov (United States)

    De la Fuente, Maria

    2016-04-01

    Methane hydrate bearing sediments (MHBS) are naturally-occurring materials containing different components in the pores that may suffer phase changes under relative small temperature and pressure variations for conditions typically prevailing a few hundreds of meters below sea level. Their modelling needs to account for heat and mass balance equations of the different components, and several strategies already exist to combine them (e.g., Rutqvist & Moridis, 2009; Sánchez et al. 2014). These equations have to be completed by restrictions and constitutive laws reproducing the phenomenology of heat and fluid flows, phase change conditions and mechanical response. While the formulation of the non-mechanical laws generally includes explicitly the mass fraction of methane in each phase, which allows for a natural update of parameters during phase changes, mechanical laws are, in most cases, stated for the whole solid skeleton (Uchida et al., 2012; Soga et al. 2006). In this paper, a mechanical model is proposed to cope with the response of MHBS. It is based on a composite approach that allows defining the thermo-hydro-mechanical response of mineral skeleton and solid hydrates independently. The global stress-strain-temperature response of the solid phase (grains + hydrate) is then obtained by combining both responses according to energy principle following the work by Pinyol et al. (2007). In this way, dissociation of MH can be assessed on the basis of the stress state and temperature prevailing locally within the hydrate component. Besides, its structuring effect is naturally accounted for by the model according to patterns of MH inclusions within soil pores. This paper describes the fundamental hypothesis behind the model and its formulation. Its performance is assessed by comparison with laboratory data presented in the literature. An analysis of MHBS response to several stress-temperature paths representing potential field cases is finally presented. References

  18. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    Science.gov (United States)

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  19. Authigenic gypsum found in gas hydrate-associated sediments from Hydrate Ridge, the eastern North Pacific

    Institute of Scientific and Technical Information of China (English)

    WANG; Jiasheng; Erwin; Suess; Dirk; Rickert

    2004-01-01

    Characteristic gypsum micro-sphere and granular mass were discovered by binocular microscope in the gas hydrate-associated sediments at cores SO143-221 and SO143/TVG40-2A respectively on Hydrate Ridge of Cascadia margin, the eastern North Pacific. XRD patterns and EPA analyses show both micro-sphere and granular mass of the crystals have the typical peaks and the typical main chemical compositions of gypsum, although their weight percents are slightly less than the others in the non-gas hydrate-associated marine regions. SEM pictures show that the gypsum crystals have clear crystal boundaries, planes, edges and cleavages of gypsum in form either of single crystal or of twin crystals. In view of the fact that there are meanwhile gas hydrate-associated authigenic carbonates and SO42(-rich pore water in the same sediment cores, it could be inferred reasonably that the gypsums formed also authigenically in the gas hydrate-associated environment too, most probably at the interface between the downward advecting sulfate-rich seawater and the below gas hydrate, which spilled calcium during its formation on Hydrate Ridge. The two distinct forms of crystal intergrowth, which are the granular mass of series single gypsum crystals at core SO143/TVG40-2A and the microsphere of gypsum crystals accompanied with detrital components at core SO143-221 respectively, indicate that they precipitated most likely in different interstitial water dynamic environments. So, the distinct authigenic gypsums found in gas hydrate-associated sediments on Hydrate Ridge could also be believed as one of the parameters which could be used to indicate the presence of gas hydrate in an unknown marine sediment cores.

  20. TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George; Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    2008-03-01

    TOUGH+HYDRATE v1.0 is a new code for the simulation of the behavior of hydrate-bearing geologic systems. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH{sub 4}-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy's law is valid. TOUGH+HYDRATE v1.0 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH{sub 4}, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is the first member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  1. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 2 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  2. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 1 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  3. Geomechanical, Hydraulic and Thermal Characteristics of Deep Oceanic Sandy Sediments Recovered during the Second Ulleung Basin Gas Hydrate Expedition

    Directory of Open Access Journals (Sweden)

    Yohan Cha

    2016-09-01

    Full Text Available This study investigates the geomechanical, hydraulic and thermal characteristics of natural sandy sediments collected during the Ulleung Basin gas hydrate expedition 2, East Sea, offshore Korea. The studied sediment formation is considered as a potential target reservoir for natural gas production. The sediments contained silt, clay and sand fractions of 21%, 1.3% and 77.7%, respectively, as well as diatomaceous minerals with internal pores. The peak friction angle and critical state (or residual state friction angle under drained conditions were ~26° and ~22°, respectively. There was minimal or no apparent cohesion intercept. Stress- and strain-dependent elastic moduli, such as tangential modulus and secant modulus, were identified. The sediment stiffness increased with increasing confining stress, but degraded with increasing strain regime. Variations in water permeability with water saturation were obtained by fitting experimental matric suction-water saturation data to the Maulem-van Genuchen model. A significant reduction in thermal conductivity (from ~1.4–1.6 to ~0.5–0.7 W·m−1·K−1 was observed when water saturation decreased from 100% to ~10%–20%. In addition, the electrical resistance increased quasi-linearly with decreasing water saturation. The geomechanical, hydraulic and thermal properties of the hydrate-free sediments reported herein can be used as the baseline when predicting properties and behavior of the sediments containing hydrates, and when the hydrates dissociate during gas production. The variations in thermal and hydraulic properties with changing water and gas saturation can be used to assess gas production rates from hydrate-bearing deposits. In addition, while depressurization of hydrate-bearing sediments inevitably causes deformation of sediments under drained conditions, the obtained strength and stiffness properties and stress-strain responses of the sedimentary formation under drained loading conditions

  4. Formation of natural gas hydrates in marine sediments. Gas hydrate growth and stability conditioned by host sediment properties

    Science.gov (United States)

    Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.

    2000-01-01

    The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.

  5. Investigation of gas hydrate-bearing sandstone reservoirs at the Mount Elbert stratigraphic test well, Milne Point, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Hunter, R. [ASRC Energy Services, Anchorage, AK (United States); Collett, T. [United States Geological Survey, Denver, CO (United States); Digert, S.; Weeks, M. [BP Exploration Alaska Inc., Anchorage, AK (United States); Hancock, S. [RPS Energy Canada, Calgary, AB (Canada)

    2008-07-01

    Gas hydrates occur within the shallow sand reservoirs on the Alaska North Slope (ANS). The mean estimate for gas hydrate in-place resources on the ANS is 16.7 trillion cubic metres. In the past, they were viewed primarily as a drilling hazard to be managed during the development of deeper oil resources. In 2002, a cooperative research program was launched to help determine the potential for environmentally-sound and economically-viable production of methane from gas hydrates. Additional objectives were to refine ANS gas hydrate resource potential, improve the geologic and geophysical methods used to locate and asses gas hydrate resources, and develop numerical modeling capabilities that are essential in both planning and evaluating gas hydrate field programs. This paper reviewed the results of the an extensive data collection effort conducted at the Mount Elbert number 1 gas hydrates stratigraphic test well on the ANS. The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. The logging program confirmed the existence of approximately 30 m of gas hydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60 to 75 per cent. Continuous wire-line coring operations achieved 85 per cent recovery. The Mount Elbert field program also involved gas and water sample collection. It demonstrated the ability to safely and efficiently conduct a research-level open-hole data acquisition program in shallow, sub-permafrost sediments and increased confidence in gas hydrate resource assessment methodologies for the ANS. 10 refs., 9 figs.

  6. Heat Transfer Analysis of Methane Hydrate Sediment Dissociation in a Closed Reactor by a Thermal Method

    Directory of Open Access Journals (Sweden)

    Mingjun Yang

    2012-05-01

    Full Text Available The heat transfer analysis of hydrate-bearing sediment involved phase changes is one of the key requirements of gas hydrate exploitation techniques. In this paper, experiments were conducted to examine the heat transfer performance during hydrate formation and dissociation by a thermal method using a 5L volume reactor. This study simulated porous media by using glass beads of uniform size. Sixteen platinum resistance thermometers were placed in different position in the reactor to monitor the temperature differences of the hydrate in porous media. The influence of production temperature on the production time was also investigated. Experimental results show that there is a delay when hydrate decomposed in the radial direction and there are three stages in the dissociation period which is influenced by the rate of hydrate dissociation and the heat flow of the reactor. A significant temperature difference along the radial direction of the reactor was obtained when the hydrate dissociates and this phenomenon could be enhanced by raising the production temperature. In addition, hydrate dissociates homogeneously and the temperature difference is much smaller than the other conditions when the production temperature is around the 10 °C. With the increase of the production temperature, the maximum of ΔToi grows until the temperature reaches 40 °C. The period of ΔToi have a close relation with the total time of hydrate dissociation. Especially, the period of ΔToi with production temperature of 10 °C is twice as much as that at other temperatures. Under these experimental conditions, the heat is mainly transferred by conduction from the dissociated zone to the dissociating zone and the production temperature has little effect on the convection of the water in the porous media.

  7. Testing of pressurised cores containing gas hydrate from deep ocean sediments

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, C.; Kingston, E.; Priest, J. [Southampton Univ., Highfield, Southampton (United Kingdom). School of Civil Engineering and the Environment; Schultheiss, P. [Geotek Ltd., Daventry, Northamptonshire (United Kingdom)]|[Indian National Gas Hydrate Program Expedition 01, New Delhi (India)

    2008-07-01

    The geotechnical properties of hydrate-bearing sediments were investigated given their importance in predicting the stability of wellbores drilled in hydrate bearing sediments. The properties can also be used to assess the potential for submarine slope instability during exploration or development activity or environmental change. This paper reported on a program of laboratory testing conducted on samples obtained using the hydrate autoclave coring equipment (HYACE) pressurized core barrel system, received at Southampton University following the Indian National Gas Hydrate Program (NGHP) 01 Expedition. The paper described the techniques used at Southampton University, the difficulties encountered, and the results obtained from geotechnical testing of these samples. The program involved a number of stages of testing, including initial appraisal of the geometry, disturbance and hydrate content of the frozen cores using computerized tomography scanning; creation of a photographic record of the frozen cores following their removal from plastic liners; identification of different sections and masses of core to be used in subsequent testing; testing of the best preserved core in the GHRC; selection of small sub-samples for moisture content, organic content and salinity testing; unfreezing of core, and collection of dissociating gas; imaging of subsamples using scanning electron microscopy; particle size distribution (PSD) testing of subsamples; analysis of subsamples for moisture content, salinity and organic content; and a combination of samples to provide sufficient mass for subsequent geotechnical testing. Other stages that were discussed in the paper included a geotechnical description of the sediment; plasticity testing at as received salinity; unconsolidated undrained triaxial shear strength testing at as-received salinity; washing to remove salts; and determination of plasticity with zero salinity pore fluid. The results of the geotechnical testing were reported

  8. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 2 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  9. Thermally induced evolution of phase transformations in gas hydrate sediment

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Thermally induced evolution of phase transformations is a basic physical-chemical process in the dissociation of gas hydrate in sediment (GHS). Heat transfer leads to the weakening of the bed soil and the simultaneous establishment of a time varying stress field accompanied by seepage of fluids and deformation of the soil. As a consequence, ground failure could occur causing engineering damage or/and environmental disaster. This paper presents a simplified analysis of the thermal process by assuming that thermal conduction can be decoupled from the flow and deformation process. It is further assumed that phase transformations take place instantaneously. Analytical and numerical results are given for several examples of simplified geometry. Experiments using Tetra-hydro-furan hydrate sediments were carried out in our laboratory to check the theory. By comparison, the theoretical, numerical and experimental results on the evolution of dissociation fronts and temperature in the sediment are found to be in good agreement.

  10. Seismic characterization of hydrates in faulted, fine-grained sediments of Krishna-Godavari basin: Unified imaging

    Digital Repository Service at National Institute of Oceanography (India)

    Jaiswal, P.; Dewangan, P.; Ramprasad, T.; Zelt, C.A.

    ; in coarse-grain sediments, they can reside in pore-spaces, support the sediment framework as load-bearing grains, or bind the sediment grains as cement; in fine-grained sediments, they can create or occupy veins and fractures; on or near the seafloor... of interest to communities investigating climate change (Svensen et al., 2004), energy resources (Collett, 2002), and seafloor stability (Rothwell et al., 1998). When buried below the base of the GHSZ, hydrates become unstable and dissociate from a solid...

  11. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    Science.gov (United States)

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  12. Molecular and Isotopic Composition of Volatiles in Gas Hydrates and in Sediment from the Joetsu Basin, Eastern Margin of the Japan Sea

    Directory of Open Access Journals (Sweden)

    Akihiro Hachikubo

    2015-05-01

    Full Text Available Hydrate-bearing sediment cores were retrieved from the Joetsu Basin (off Joetsu city, Niigata Prefecture at the eastern margin of the Japan Sea during the MD179 gas hydrates cruise onboard R/V Marion Dufresne in June 2010. We measured molecular and stable isotope compositions of volatiles bound in the gas hydrates and headspace gases obtained from sediments to clarify how the minor components of hydrocarbons affects to gas hydrate crystals. The hydrate-bound hydrocarbons at Umitaka Spur (southwestern Joetsu Basin primarily consisted of thermogenic methane, whereas those at Joetsu Knoll (northwestern Joetsu Basin, about 15 km from Umitaka Spur contained both thermogenic methane and a mixture of thermogenic and microbial methane. The depth concentration profiles of methane, ethane, propane, CO2, and H2S in the sediments from the Joetsu Basin area showed shallow sulfate–methane interface (SMI and high microbial methane production beneath the SMI depth. Relatively high concentrations of propane and neopentane (2,2-dimethylpropane were detected in the headspace gases of the hydrate-bearing sediment cores obtained at Umitaka Spur and Joetsu Knoll. Propane and neopentane cannot be encaged in the structure I hydrate; therefore, they were probably excluded from the hydrate crystals during the structure I formation process and thus remained in the sediment and/or released from the small amounts of structure II hydrate that can host such large gas molecules. The lower concentrations of ethane and propane in the sediment, high δ13C of propane and isobutane, and below-detection normal butane and normal pentane at Umitaka Spur and Joetsu Knoll suggest biodegradation in the sediment layers.

  13. A Two-Dimensional Post-Stack Seismic Inversion for Acoustic Impedance of Gas and Hydrate Bearing Deep-Water Sediments Within the Continental Slope of the Ulleung Basin, East Sea, Korea

    Directory of Open Access Journals (Sweden)

    Keumsuk Lee

    2013-01-01

    Full Text Available A post-stack inversion of 2D seismic data was conducted to estimate the spatial distribution of acoustic impedance associated with gas and hydrates in the Ulleung Basin, East Sea, Korea constrained by logs from three boreholes drilled on its continental margin. A model-based inversion was applied to a Plio-Quaternary succession composed of alternations of unconsolidated mass-flow deposits/turbidites. A comparison of seismic reflections and synthetic data computed from impedance logs is shown for two zones. An upper (steep slope zone contains a moderately continuous, possibly bottom-simulating reflector feature along the corresponding section. This feature may be associated with a lithology boundary near a drill site in addition to, or instead of, a stability boundary of gas hydrates (i.e., gas below and hydrates above. The lower (gentle slope zone has locally cross-cutting reflection patterns that are more likely to be attributed to gas- and hydrate-related physical phenomena than to spatiotemporal changes in lithology. This seismic inversion is informative and useful, making a contribution to enhance the interpretability of the seismic profiles for a potential hydrate recovery.

  14. Thessaloniki Mud Volcano, the Shallowest Gas Hydrate-Bearing Mud Volcano in the Anaximander Mountains, Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    C. Perissoratis

    2011-01-01

    Full Text Available A detailed multibeam survey and the subsequent gravity coring carried out in the Anaximander Mountains, Eastern Mediterranean, detected a new active gas hydrate-bearing mud volcano (MV that was named Thessaloniki. It is outlined by the 1315 m bathymetric contour, is 1.67 km2 in area, and has a summit depth of 1260 m. The sea bottom water temperature is 13.7∘C. The gas hydrate crystals generally have the form of flakes or rice, some larger aggregates of them are up to 2 cm across. A pressure core taken at the site contained 3.1 lt. of hydrocarbon gases composed of methane, nearly devoid of propane and butane. The sediment had a gas hydrate occupancy of 0.7% of the core volume. These characteristics place the gas hydrate field at Thessaloniki MV at the upper boundary of the gas hydrate stability zone, prone to dissociation with the slightest increase in sea water temperature, decrease in hydrostatic pressure, or change in the temperature of the advecting fluids.

  15. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling

    Science.gov (United States)

    Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T.

    1999-01-01

    We offer a first-principle-based effective medium model for elastic-wave velocity in unconsolidated, high porosity, ocean bottom sediments containing gas hydrate. The dry sediment frame elastic constants depend on porosity, elastic moduli of the solid phase, and effective pressure. Elastic moduli of saturated sediment are calculated from those of the dry frame using Gassmann's equation. To model the effect of gas hydrate on sediment elastic moduli we use two separate assumptions: (a) hydrate modifies the pore fluid elastic properties without affecting the frame; (b) hydrate becomes a component of the solid phase, modifying the elasticity of the frame. The goal of the modeling is to predict the amount of hydrate in sediments from sonic or seismic velocity data. We apply the model to sonic and VSP data from ODP Hole 995 and obtain hydrate concentration estimates from assumption (b) consistent with estimates obtained from resistivity, chlorinity and evolved gas data. Copyright 1999 by the American Geophysical Union.

  16. Arguments for a Comprehensive Laboratory Research Subprogram on Hydrocarbon Gas Hydrates and Hydrate-Sediment Aggregates in the 2005-2010 DOE Methane Hydrate R & D Program

    Science.gov (United States)

    Kirby, S. H.

    2005-12-01

    Field observations of natural hydrocarbon clathrate hydrates, including responses to drilling perturbations of hydrates, well logging and analysis of drill core, and field geophysics are, combined with theoretical modeling, justifiably key activities of the authorized 2005-2010 DOE Methane Hydrate Program. It is argued in this presentation that sustained fundamental laboratory research amplifies, extends and verifies results obtained from field and modeling investigations and does so in a cost-effective way. Recent developments of hydrocarbon clathrate hydrate and sediment aggregate synthesis methods, applications of in-situ optical cell, Raman, NMR, x-ray tomography and neutron diffraction techniques, and cryogenic x-ray and SEM methods re-enforce the importance of such lab investigations. Moreover, there are large data gaps for hydrocarbon-hydrate and hydrate-sediment-aggregate properties. We give three examples: 1) All natural hydrocarbon hydrates in sediment core have been altered to varying degrees by their transit, storage, depressurization, and subsequent lab investigations, as are well-log observations during drilling operations. Interpretation of drill core properties and structure and well logs are also typically not unique. Emulations of the pressure-temperature-deformation-time histories of synthetic samples offer a productive way of gaining insight into how natural samples and logging measurements may be compositionally and texturally altered during sampling and handling. 2) Rock physics models indicate that the effects of hydrates on sediment properties depend on the manner in which hydrates articulate with the sediment matrix (their conformation). Most of these models have not been verified by direct testing using hydrocarbon hydrates with conformation checked by optical cell observations or cryogenic SEM. Such tests are needed and technically feasible. 3) Modeling the effects of exchanges of heat, multiphase fluid fluxes, and deformation involve

  17. Bacterial dominance in subseafloor sediments characterized by methane hydrates

    Science.gov (United States)

    Briggs, Brandon R.; Inagaki, Fumio; Morono, Yuki; Futagami, Taiki; Huguet, Carme; Rosell-Mele, Antoni; Lorenson, T.D.; Colwell, Frederick S.

    2015-01-01

    The degradation of organic carbon in subseafloor sediments on continental margins contributes to the largest reservoir of methane on Earth. Sediments in the Andaman Sea are composed of ~ 1% marine-derived organic carbon and biogenic methane is present. Our objective was to determine microbial abundance and diversity in sediments that transition the gas hydrate occurrence zone (GHOZ) in the Andaman Sea. Microscopic cell enumeration revealed that most sediment layers harbored relatively low microbial abundance (103–105 cells cm−3). Archaea were never detected despite the use of both DNA- and lipid-based methods. Statistical analysis of terminal restriction fragment length polymorphisms revealed distinct microbial communities from above, within, and below the GHOZ, and GHOZ samples were correlated with a decrease in organic carbon. Primer-tagged pyrosequences of bacterial 16S rRNA genes showed that members of the phylum Firmicutes are predominant in all zones. Compared with other seafloor settings that contain biogenic methane, this deep subseafloor habitat has a unique microbial community and the low cell abundance detected can help to refine global subseafloor microbial abundance.

  18. P-T stability conditions of methane hydrate in sediment from South China Sea

    Institute of Scientific and Technical Information of China (English)

    Shicai Sun; Yuguang Ye; Changling Liu; Fengkui Xiang; Yah Ma

    2011-01-01

    For reasonable assessment and safe exploitation of marine gas hydrate resource,it is important to determine the stability conditions of gas hydrates in marine sediment.In this paper,the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates,and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method.Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment,under any given pressure,is depressed by approximately -1.4 K relative to the pure water system.This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions.

  19. Transport Mechanisms for CO2-CH4 Exchange and Safe CO2 Storage in Hydrate-Bearing Sandstone

    Directory of Open Access Journals (Sweden)

    Knut Arne Birkedal

    2015-05-01

    Full Text Available CO2 injection in hydrate-bearing sediments induces methane (CH4 production while benefitting from CO2 storage, as demonstrated in both core and field scale studies. CH4 hydrates have been formed repeatedly in partially water saturated Bentheim sandstones. Magnetic Resonance Imaging (MRI and CH4 consumption from pump logs have been used to verify final CH4 hydrate saturation. Gas Chromatography (GC in combination with a Mass Flow Meter was used to quantify CH4 recovery during CO2 injection. The overall aim has been to study the impact of CO2 in fractured and non-fractured samples to determine the performance of CO2-induced CH4 hydrate production. Previous efforts focused on diffusion-driven exchange from a fracture volume. This approach was limited by gas dilution, where free and produced CH4 reduced the CO2 concentration and subsequent driving force for both diffusion and exchange. This limitation was targeted by performing experiments where CO2 was injected continuously into the spacer volume to maintain a high driving force. To evaluate the effect of diffusion length multi-fractured core samples were used, which demonstrated that length was not the dominating effect on core scale. An additional set of experiments is presented on non-fractured samples, where diffusion-limited transportation was assisted by continuous CO2 injection and CH4 displacement. Loss of permeability was addressed through binary gas (N2/CO2 injection, which regained injectivity and sustained CO2-CH4 exchange.

  20. Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes

    Science.gov (United States)

    Pohlman, J.W.; Bauer, J.E.; Canuel, E.A.; Grabowski, K.S.; Knies, D.L.; Mitchell, C.S.; Whiticar, Michael J.; Coffin, R.B.

    2009-01-01

    Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (??? 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations. In combination with ??13C- and ??D-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6??m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.

  1. Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne Point, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.M.; Hunter, R. (ASRC Energy Services, Anchorage, AK); Collett, T. (USGS, Denver, CO); Digert, S. (BP Exploration (Alaska) Inc., Anchorage, AK); Hancock, S. (RPS Energy Canada, Calgary, Alberta, Canada); Weeks, M. (BP Exploration (Alaska) Inc., Anchorage, AK); Mt. Elbert Science Team

    2008-01-01

    In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), Inc., and the U.S. Geological Survey conducted an extensive data collection effort at the "Mount Elbert #1" gas hydrates stratigraphic test well on the Alaska North Slope (ANS). The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a full suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. Hole conditions, and therefore log data quality, were excellent due largely to the use of chilled oil-based drilling fluids. The logging program confirmed the existence of approximately 30 m of gashydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60% to 75% largely as a function of reservoir quality. Continuous wire-line coring operations (the first conducted on the ANS) achieved 85% recovery through 153 meters of section, providing more than 250 subsamples for analysis. The "Mount Elbert" data collection program culminated with open-hole tests of reservoir flow and pressure responses, as well as gas and water sample collection, using Schlumberger's Modular Formation Dynamics Tester (MDT) wireline tool. Four such tests, ranging from six to twelve hours duration, were conducted. This field program demonstrated the ability to safely and efficiently conduct a research-level openhole data acquisition program in shallow, sub-permafrost sediments. The program also demonstrated the soundness of the program's pre-drill gas hydrate characterization methods and increased confidence in gas hydrate resource assessment methodologies for the ANS.

  2. Evidence for Freshwater Discharge at a Gas Hydrate-Bearing Seafloor Mound on the Beaufort Sea Continental Slope

    Science.gov (United States)

    Pohlman, J.; Lorenson, T. D.; Hart, P. E.; Ruppel, C. D.; Joseph, C.; Torres, M. E.; Edwards, B. D.

    2011-12-01

    A deep-water (~2.5 km water depth) seafloor mound located ~150 km offshore of the North Slope Alaska, informally named the Canning Seafloor Mound (CSM), contains a documented occurrence of gas hydrate; the first from the Beaufort Sea. Gases and porewater extracted from cores taken at the CSM summit several months after core recovery provided surprisingly consistent and outstanding results. Gases migrating into the structure are likely a mixture of primary microbial gas formed by carbonate reduction and secondary microbial gas formed from degraded thermogenic gases, linking the system to deep oil and gas generation (see companion abstract by Lorenson et al.). Pore fluids extracted from the base of the 572 cm-long hydrate-bearing core had chloride values as low as 160 mM, which equates to an ~80% freshwater contribution. Low chloride values, often interpreted as a product of gas hydrate dissociation in hydrate-bearing cores, were coincident with sulfate values in excess of 1 mM and as high as 22 mM (seawater is ~28mM). High sulfate concentrations generally indicate an absence of methane, and, thus, gas hydrate; therefore, an allochthonous source of freshwater is required. Potential sources are clay mineral dehydration, clay membrane filtration and/or a meteoric water influx. Several lines of evidence indicate the Canning Seafloor Mound is connected to either a deep, landward freshwater aquifer or to an unusually fresh oil field brine. First, Na/Cl ratios decrease from marine (~0.86) near the seafloor to distinctly higher values of 1.20 at the bottom of the core. Second, clay dehydration and ion filtration processes have not, to our knowledge, yielded fluids as fresh as measured in these near-seafloor sediments. Third, and most importantly, δ18O-δD systematics of fluid end members are entirely consistent with a meteoric water source and inconsistent with trends expected for either gas hydrate dissociation, smectite to illite clay dewatering or ion filtration

  3. Determination of the Physical Properties of Sediments Depending on Hydrate Saturation Using a "Quick Look" Method

    Science.gov (United States)

    Strauch, B.; Schicks, J. M.; Spangenberg, E.; Seyberth, K.; Heeschen, K. U.; Priegnitz, M.

    2015-12-01

    Seismic and electromagnetic measurements are promising tools for the detection and quantification of gas hydrate occurrences in nature. The seismic wave velocity depends among others on the hydrate quantity and the quality (e.g. pore filling or cementing hydrate). For a proper interpretation of seismic data the knowledge of the dependency of physical properties as a function of hydrate saturation in a certain scenario is crucial. Within the SUGAR III project we determine such dependencies for various scenarios to support models for joint inversion of seismic and EM data e.g. for the shallow gas hydrate reservoirs in the Danube Delta. Since the formation of artificial lab samples containing pore filling hydrate from methane dissolved in water is a complex and time consuming procedure, we developed an easier alternative. Ice is very similar to hydrate in some of its physical properties. Therefore it might be used as analogous pore fill in a "quick look" experiment to determine the dependency of rock physical properties on hydrate content. We used the freezing point depression of a KCl solution to generate a dependency of ice saturation on temperature. The measured seismic wave velocity in dependence on ice saturation compares very well with data measured on a glass bead sediment sample with methane hydrate formed from methane dissolved in water. We could also observe that ice, formed from a salt solution in the pore space of sediment, behaves similar to methane hydrate as a non-cementing solid pore fill.

  4. Active downhole thermal property measurement system for characterization of gas hydrate-bearing formations

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, Masafumi; Fujii, Kasumi; Tertychnyi, Vladimir; Shandrygin, Alexander; Popov, Yuri; Matsubayashi, Osamu; Kusaka, Koji; Yasuda, Masato

    2005-07-01

    Gas hydrates dissociate or form when temperature and/or pressure conditions cross the equilibrium border. When we consider gas hydrates as an energy resource, understanding those parameters is very important for developing efficient production schemes. Therefore, thermal measurement is one of the key components of the characterization of the gas hydrate-bearing formation, not only statically but also dynamically. To estimate thermal properties such as thermal conductivity and diffusivity of subsurface formations, the conventional method has been to monitor temperature passively at several underground locations and interpret collected information with assumptions such as steady heat flow or relaxation from thermal disturbance by fluid flow, etc. Because the thermal properties are estimated based on several assumptions, these passive measurement methods sometimes leave a lot of uncertainties. On the other hand, active thermal property measurement, which could minimize those uncertainties, is commonly used in a laboratory and many types of equipment exist commercially for the purpose. The concept of measurement is very simple: creating a known thermal disturbance with a thermal source and then monitoring the response of the specimen. However, simply applying this method to subsurface formation measurement has many technical and logistical difficulties. In this paper, newly developed thermal property measurement equipment and its measurement methodology are described. Also discussed are the theoretical background for the application of the methodology to a gas hydrate-bearing formation through numerical simulation and the experimental results of laboratory mockup in a controlled environment. (Author)

  5. HYDRATING CHARACTERISTICS OF MODIFIED PORTLAND WITH Ba-BEARING SULPHOALUMINATE MINERALS

    Directory of Open Access Journals (Sweden)

    Chenchen Gong

    2016-03-01

    Full Text Available The hydrating characteristics of modified Portland cement with Ba-bearing sulphoaluminate minerals were studied in this paper. Scanning Electron Microscopy-Energy Dispersive Spectrometer (SEM-EDS, mercury intrusion porosimeter (MIP and compressive strength were determined to characterize hydrating products and microstructure. Results show that basic physical properties of modified Portland cement with Ba-bearing sulphoaluminate minerals (SMPC are similar with PC except the shorter setting time. Ettringite and C-S-H are the main hydrating produces in SMPC, which is similar to Portland cement (PC. Because of volume expansion of ettringite, SMPC paste structure is denser than PC according to SEM-EDS analysis and the pore size and pore content of SMPC pastes was smaller especially for the harmful pores. Because sulfur aluminum barium calcium was a new early-strength mineral and parts of BaO went into the C₂S lattice and caused lattice distortion to enhance C₂S hydration activity, the compressive strengths of SMPC grew faster and higher than PC.

  6. Indicators of δ13C and δ18O of gas hydrate-associated sediments

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The analyses of δ13C and δ18O of gas hydrate-associated sediments from two cores on Hydrate Ridge in Cascadia convergent margin offshore Oregon, eastern North Pacific show the values of d 13C from -29.81‰ to -48.28‰ (PDB) and d 18O from 2.56‰ to 4.28‰ (PDB), which could be plotted into a group called typical carbonate minerals influenced by the methane in cold venting. Moreover, the values of d 13C and d 18O show a consistent trend in both cores from top to bottom with increasing of d 13C and decreasing of d 18O. This trend could be explained as an effect caused by the anaerobic oxidation of methane (AOM) in depth and the oxygen fraction during the formation of gas hydrate in depth together. These characteristics of d 13C and d 18O indicate that the gas hydrate-associated sediments are significantly different from the normal marine carbonates, and they are deeply influenced by the formation and evolution of gas hydrate. So, the distinct characteristics of d 13C and d 18O of gas hydrate-associated sediments could be undoubtedly believed as one of parameters to determine the presence of gas hydrates in other unknown marine sediment cores.

  7. Geology of quartz and hydrated silica-bearing deposits near Antoniadi Crater, Mars

    Science.gov (United States)

    Smith, Matthew R.; Bandfield, Joshua L.

    2012-06-01

    The only area on Mars where crystalline quartz has been identified from orbit is near Antoniadi Crater, on the northern edge of the Syrtis Major shield volcano. However, the method of quartz formation has remained unknown. In this study, we use high-resolution satellite imagery as well as thermal and near-infrared spectroscopy to construct a geologic history of these deposits and their local context. We find that the quartz-bearing deposits are consistently co-located with hydrated silica. This spatial coherence suggests that the quartz formed as a diagenetic product of amorphous silica, rather than as a primary igneous mineral. Diagenetic quartz is a mature alteration product of hydrated amorphous silica, and indicates more persistent water and/or higher temperatures at this site. Beneath the silica-bearing rocks, we also find spectral evidence for smectites in the lowermost exposed Noachian-aged breccia. A similar stratigraphic sequence — smectite-bearing breccias beneath deposits containing minerals suggesting a greater degree of alteration — has also been found at nearby exposures at Nili Fossae and Toro Crater, suggesting a widespread sequence of alteration. By merging the mineral detections of thermal infrared (quartz, feldspar) and near-infrared spectroscopy (hydrated silica, smectite clays) we are able to construct a more complete geologic history from orbit.

  8. Controls on gas hydrate stability in methane depleted sediments: Laboratory and field measurements

    Science.gov (United States)

    Lapham, L.; Chanton, J.; Martens, C. S.

    2009-12-01

    established, oil and natural sediments with microbial communities were added to determine how these kinetic affects could control hydrate dissolution.

  9. Application of Crunch-Flow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Marta

    2014-01-31

    In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling efforts that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to instruct

  10. Quantifying methane hydrate distribution in worldwide sediments: Comparison between observations and numerical simulations

    Science.gov (United States)

    Bhatnagar, G.; Chapman, W. G.; Dickens, G. D.; Dugan, B.; Hirasaki, G. J.

    2006-12-01

    Models for studying methane hydrate accumulation in marine sediments have previously been developed for specific locations and are valid only for the numerous parameters characteristic of these sites. To understand the general distribution of hydrates and explain the variability of hydrate saturations in different geologic settings, we develop a one-dimensional model that simulates accumulation of hydrates over time. We use results from our numerical model and dimensionless scalings to generate average gas hydrate saturation maps that are valid over a wide range of transport parameters. It is shown that just two saturation contour maps suffice in explaining gas hydrate distributions resulting from methane generated either via in-situ methanogenic reactions or transported through upward fluxes from deeper sources. These contour maps are also relatively insensitive to changes in seafloor properties (like seafloor depth, bottom water temperature and geothermal gradient), making them applicable to any general geologic setting. To test and validate our model, we have evaluated where known and well characterized gas hydrate systems such as Blake Ridge (offshore southeastern USA), Cascadia Margin (offshore northwestern USA), Peru Margin (offshore Peru), Costa Rica Margin and Nankai Trough (offshore Japan) lie on our simulated saturation maps. Average gas hydrate saturations at these locations are predicted to be about 4%, 9%, 8%, 1% and 3%, respectively. These saturations match values inferred from proxy data for most of the ODP Sites. Hence, our contour plots provide an approximate, yet accurate, estimate of gas hydrate saturations at the regional scale.

  11. Permeability of laboratory-formed methane-hydrate-bearing sand: Measurements and observations using x-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T. J.; Seol, Y.; Gupta, A.; Tomutsa, L.

    2010-09-15

    Methane hydrate was formed in two moist sands and a sand/silt mixture under a confining stress in an X-ray-transparent pressure vessel. Three initial water saturations were used to form three different methane-hydrate saturations in each medium. X-ray computed tomography (CT) was used to observe location-specific density changes caused by hydrate formation and flowing water. Gas-permeability measurements in each test for the dry, moist, frozen, and hydrate-bearing states are presented. As expected, the effective permeabilities (intrinsic permeability of the medium multiplied by the relative permeability) of the moist sands decreased with increasing moisture content. In a series of tests on a single sample, the effective permeability typically decreased as the pore space became more filled, in the order of dry, moist, frozen, and hydrate-bearing. In each test, water was flowed through the hydrate-bearing medium and we observed the location-specific changes in water saturation using CT scanning. We compared our data to a number of models, and our relative permeability data compare most favorably with models in which hydrate occupies the pore bodies rather than the pore throats. Inverse modeling (using the data collected from the tests) will be performed to extend the relative permeability measurements.

  12. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2009-06-01

    We used X-ray computed tomography (CT) to image and quantify the effect of a heterogeneous sand grain-size distribution on the formation and dissociation of methane hydrate, as well as the effect on water flow through the heterogeneous hydrate-bearing sand. A 28 cm long sand column was packed with several segments having vertical and horizontal layers with sands of different grain-size distributions. During the hydrate formation, water redistribution occurred. Observations of water flow through the hydrate-bearing sands showed that water was imbibed more readily into the fine sand, and that higher hydrate saturation increased water imbibition in the coarse sand due to increased capillary strength. Hydrate dissociation induced by depressurization resulted in different flow patterns with the different grain sizes and hydrate saturations, but the relationships between dissociation rates and the grain sizes could not be identified using the CT images. The formation, presence, and dissociation of hydrate in the pore space dramatically impact water saturation and flow in the system.

  13. Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI)

    Science.gov (United States)

    Winters, W.J.

    1999-01-01

    As part of an ongoing laboratory study, preliminary acoustic, strength, and hydraulic conductivity results are presented from a suite of tests conducted on four natural-gas-hydrate-containing samples from the Mackenzie Delta JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. The gas hydrate samples were preserved in pressure vessels during transport from the Northwest Territories to Woods Hole, Massachusetts, where multistep tests were performed using GHASTLI (Gas Hydrate And Sediment Test Laboratory Instrument), which recreates pressure and temperature conditions that are stable for gas hydrate. Properties and changes in sediment behaviour were measured before, during, and after controlled gas hydrate dissociation. Significant amounts of gas hydrate occupied the sample pores and substantially increased acoustic velocity and shear strength.

  14. TOUGH+HYDRATE v1.2 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kowalsky, Michael B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    TOUGH+HYDRATE v1.2 is a code for the simulation of the behavior of hydratebearing geologic systems, and represents the second update of the code since its first release [Moridis et al., 2008]. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy’s law is valid. TOUGH+HYDRATE v1.2 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is a member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  15. The Global Inventory of Methane Hydrate in Marine Sediments: A Theoretical Approach

    Directory of Open Access Journals (Sweden)

    Andrew Dale

    2012-07-01

    Full Text Available The accumulation of methane hydrate in marine sediments is controlled by a number of physical and biogeochemical parameters including the thickness of the gas hydrate stability zone (GHSZ, the solubility of methane in pore fluids, the accumulation of particulate organic carbon at the seafloor, the kinetics of microbial organic matter degradation and methane generation in marine sediments, sediment compaction and the ascent of deep-seated pore fluids and methane gas into the GHSZ. Our present knowledge on these controlling factors is discussed and new estimates of global sediment and methane fluxes are provided applying a transport-reaction model at global scale. The modeling and the data evaluation yield improved and better constrained estimates of the global pore volume within the modern GHSZ ( ≥ 44 × 1015 m3, the Holocene POC accumulation rate at the seabed (~1.4 × 1014 g yr−1, the global rate of microbial methane production in the deep biosphere (4−25 × 1012 g C yr−1 and the inventory of methane hydrates in marine sediments ( ≥ 455 Gt of methane-bound carbon.

  16. 900-m high gas plumes rising from marine sediments containing structure II hydrates at Vestnesa Ridge, offshore W-Svalbard

    Science.gov (United States)

    Smith, Andrew J.; Mienert, Jürgen; Bünz, Stefan; Greinert, Jens; Rasmussen, Tine L.

    2013-04-01

    provide hard constraints for bubble-dissolution models (e.g. McGinnis et al., 2006) that can validate whether a gas-hydrate-rimmed bubble can survive the ~900m rise through the water column. Long-term monitoring of such gas-hydrate and fluid-flow systems is important for quantifying methane fluxes to the ocean, for identifying the source(s) of the venting gas, and for better understanding the environmental conditions under which deep-sea biological communities exist. References Bünz, S., Polyanov, S., Vadakkepuliyambatta, S., Consolaro, C., and Mienert, J., 2012, Active gas venting through hydrate-bearing sediments on the Vestnesa Ridge, offshore W-Svalbard. : Marine Geology v. 332-334, p. 189-197. McGinnis, D.F., Greinert, J., Artemov, Y., Beaubien, S.E., and Wüest, A., 2006, The fate of rising methane bubbles in stratified waters: What fraction reaches the atmosphere?: Journal of Geophysical Research, v. 111, C09007, doi:10.1029/2005JC003183. Vogt, P. R., Crane, K., Sundvor, E., Max, M. D., and Pfirman, S. L., 1994, Methane-generated(?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa ridge, Fram strait: Geology, v. 22, no. 3, p. 255-258.

  17. Biomimetic hydration lubrication with various polyelectrolyte layers on cross-linked polyethylene orthopedic bearing materials.

    Science.gov (United States)

    Kyomoto, Masayuki; Moro, Toru; Saiga, Kenichi; Hashimoto, Masami; Ito, Hideya; Kawaguchi, Hiroshi; Takatori, Yoshio; Ishihara, Kazuhiko

    2012-06-01

    Natural joints rely on fluid thin-film lubrication by the hydrated polyelectrolyte layer of cartilage. However, current artificial joints with polyethylene (PE) surfaces have considerably less efficient lubrication and thus much greater wear, leading to osteolysis and aseptic loosening. This is considered a common factor limiting prosthetic longevity in total hip arthroplasty (THA). However, such wear could be mitigated by surface modification to mimic the role of cartilage. Here we report the development of nanometer-scale hydrophilic layers with varying charge (nonionic, cationic, anionic, or zwitterionic) on cross-linked PE (CLPE) surfaces, which could fully mimic the hydrophilicity and lubricity of the natural joint surface. We present evidence to support two lubrication mechanisms: the primary mechanism is due to the high level of hydration in the grafted layer, where water molecules act as very efficient lubricants; and the secondary mechanism is repulsion of protein molecules and positively charged inorganic ions by the grafted polyelectrolyte layer. Thus, such nanometer-scaled hydrophilic polymers or polyelectrolyte layers on the CLPE surface of acetabular cup bearings could confer high durability to THA prosthetics.

  18. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate

    Science.gov (United States)

    Yun, T.S.; Santamarina, C.J.; Ruppel, C.

    2007-01-01

    The mechanical behavior of hydrate-bearing sediments subjected to large strains has relevance for the stability of the seafloor and submarine slopes, drilling and coring operations, and the analysis of certain small-strain properties of these sediments (for example, seismic velocities). This study reports on the results of comprehensive axial compression triaxial tests conducted at up to 1 MPa confining pressure on sand, crushed silt, precipitated silt, and clay specimens with closely controlled concentrations of synthetic hydrate. The results show that the stress-strain behavior of hydrate-bearing sediments is a complex function of particle size, confining pressure, and hydrate concentration. The mechanical properties of hydrate-bearing sediments at low hydrate concentration (probably 50% of pore space), the behavior becomes more independent of stress because the hydrates control both stiffness and strength and possibly the dilative tendency of sediments by effectively increasing interparticle coordination, cementing particles together, and filling the pore space. The cementation contribution to the shear strength of hydrate-bearing sediments decreases with increasing specific surface of soil minerals. The lower the effective confining stress, the greater the impact of hydrate formation on normalized strength.

  19. Nitrogen release from forest soils containing sulfide-bearing sediments

    Science.gov (United States)

    Maileena Nieminen, Tiina; Merilä, Päivi; Ukonmaanaho, Liisa

    2014-05-01

    Soils containing sediments dominated by metal sulfides cause high acidity and release of heavy metals, when excavated or drained, as the aeration of these sediments causes formation of sulfuric acid. Consequent leaching of acidity and heavy metals can kill tree seedlings and animals such as fish, contaminate water, and corrode concrete and steel. These types of soils are called acid sulfate soils. Their metamorphic equivalents, such as sulfide rich black shales, pose a very similar risk of acidity and metal release to the environment. Until today the main focus in treatment of the acid sulfate soils has been to prevent acidification and metal toxicity to agricultural crop plants, and only limited attention has been paid to the environmental threat caused by the release of acidity and heavy metals to the surrounding water courses. Even less attention is paid on release of major nutrients, such as nitrogen, although these sediments are extremely rich in carbon and nitrogen and present a potentially high microbiological activity. In Europe, the largest cover of acid sulfate soils is found in coastal lowlands of Finland. Estimates of acid sulfate soils in agricultural use range from 1 300 to 3 000 km2, but the area in other land use classes, such as managed peatland forests, is presumably larger. In Finland, 49 500 km2 of peatlands have been drained for forestry, and most of these peatland forests will be at the regeneration stage within 10 to 30 years. As ditch network maintenance is often a prerequisite for a successful establishment of the following tree generation, the effects of maintenance operations on the quality of drainage water should be under special control in peatlands underlain by sulfide-bearing sediments. Therefore, identification of risk areas and effective prevention of acidity and metal release during drain maintenance related soil excavating are great challenges for forestry on coastal lowlands of Finland. The organic and inorganic nitrogen

  20. Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations

    Energy Technology Data Exchange (ETDEWEB)

    Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

    2010-07-01

    To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

  1. Methane in shallow subsurface sediments at the landward limit of the gas hydrate stability zone offshore western Svalbard

    Science.gov (United States)

    Graves, Carolyn A.; James, Rachael H.; Sapart, Célia Julia; Stott, Andrew W.; Wright, Ian C.; Berndt, Christian; Westbrook, Graham K.; Connelly, Douglas P.

    2017-02-01

    Offshore western Svalbard plumes of gas bubbles rise from the seafloor at the landward limit of the gas hydrate stability zone (LLGHSZ; ∼400 m water depth). It is hypothesized that this methane may, in part, come from dissociation of gas hydrate in the underlying sediments in response to recent warming of ocean bottom waters. To evaluate the potential role of gas hydrate in the supply of methane to the shallow subsurface sediments, and the role of anaerobic oxidation in regulating methane fluxes across the sediment-seawater interface, we have characterised the chemical and isotopic compositions of the gases and sediment pore waters. The molecular and isotopic signatures of gas in the bubble plumes (C1/C2+ = 1 × 104; δ13C-CH4 = -55 to -51‰; δD-CH4 = -187 to -184‰) are similar to gas hydrate recovered from within sediments ∼30 km away from the LLGHSZ. Modelling of pore water sulphate profiles indicates that subsurface methane fluxes are largely at steady state in the vicinity of the LLGHSZ, providing no evidence for any recent change in methane supply due to gas hydrate dissociation. However, at greater water depths, within the GHSZ, there is some evidence that the supply of methane to the shallow sediments has recently increased, which is consistent with downslope retreat of the GHSZ due to bottom water warming although other explanations are possible. We estimate that the upward diffusive methane flux into shallow subsurface sediments close to the LLGHSZ is 30,550 mmol m-2 yr-1, but it is <20 mmol m-2 yr-1 in sediments further away from the seafloor bubble plumes. While anaerobic oxidation within the sediments prevents significant transport of dissolved methane into ocean bottom waters this amounts to less than 10% of the total methane flux (dissolved + gas) into the shallow subsurface sediments, most of which escapes AOM as it is transported in the gas phase.

  2. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  3. Simulation of gas hydrate dissociation caused by repeated tectonic uplift events

    Science.gov (United States)

    Goto, Shusaku; Matsubayashi, Osamu; Nagakubo, Sadao

    2016-05-01

    Gas hydrate dissociation by tectonic uplift is often used to explain geologic and geophysical phenomena, such as hydrate accumulation probably caused by hydrate recycling and the occurrence of double bottom-simulating reflectors in tectonically active areas. However, little is known of gas hydrate dissociation resulting from tectonic uplift. This study investigates gas hydrate dissociation in marine sediments caused by repeated tectonic uplift events using a numerical model incorporating the latent heat of gas hydrate dissociation. The simulations showed that tectonic uplift causes upward movement of some depth interval of hydrate-bearing sediment immediately above the base of gas hydrate stability (BGHS) to the gas hydrate instability zone because the sediment initially maintains its temperature: in that interval, gas hydrate dissociates while absorbing heat; consequently, the temperature of the interval decreases to that of the hydrate stability boundary at that depth. Until the next uplift event, endothermic gas hydrate dissociation proceeds at the BGHS using heat mainly supplied from the sediment around the BGHS, lowering the temperature of that sediment. The cumulative effects of these two endothermic gas hydrate dissociations caused by repeated uplift events lower the sediment temperature around the BGHS, suggesting that in a marine area in which sediment with a highly concentrated hydrate-bearing layer just above the BGHS has been frequently uplifted, the endothermic gas hydrate dissociation produces a gradual decrease in thermal gradient from the seafloor to the BGHS. Sensitivity analysis for model parameters showed that water depth, amount of uplift, gas hydrate saturation, and basal heat flow strongly influence the gas hydrate dissociation rate and sediment temperature around the BGHS.

  4. Non-Fickian Diffusion Affects the Relation between the Salinity and Hydrate Capacity Profiles in Marine Sediments

    CERN Document Server

    Goldobin, Denis S

    2012-01-01

    On-site measurements of water salinity (which can be directly evaluated from the electrical conductivity) in deep-sea sediments is technically the primary source of indirect information on the capacity of the marine deposits of methane hydrates. We show the relation between the salinity (chlorinity) profile and the hydrate volume in pores to be significantly affected by non-Fickian contributions to the diffusion flux---the thermal diffusion and the gravitational segregation---which have been previously ignored in the literature on the subject and the analysis of surveys data. We provide amended relations and utilize them for an analysis of field measurements for a real hydrate deposit.

  5. Impact of Residual Water on CH4-CO2 Exchange rate in Hydrate bearing Sandstone

    Science.gov (United States)

    Ersland, G.; Birkedal, K.; Graue, A.

    2012-12-01

    It is previously shown that sequestration of CO2 in natural gas hydrate reservoirs may offer stable long term deposition of a greenhouse gas while benefiting from methane production, without adding heat to the process. In this work CH4 hydrate formation and CO2 reformation in sandstone has been quantified in a series of experiments using Magnetic Resonance Imaging. The overall objective was to provide an improved basic understanding of processes involved in formation and production of methane from methane hydrates within porous media, and to provide data for numerical modeling and scaling. CH4 hydrate has been formed repeatedly in Bentheim sandstone rocks to study hydrate growth patterns for various brine salinities and saturations to prepare for subsequent lab-scale methane production tests through carbon dioxide replacement at various residual water saturations. Surface area for CO2 exposure and the role of permeability and diffusion on the CH4-CO2 exchange rate will also be discussed.

  6. Modeling of CO{sub 2}-hydrate formation at the gas-water interface in sand sediment

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T.; Sato, T.; Hirabayashi, S.; Brumby, P.E. [University of Tokyo, Department of Ocean Technology, Policy, and Environment, Kashiwa (Japan); Inui, M. [Mitsubishi Heavy Industries America, Inc., Environmental Systems Division, Austin, TX (United States)

    2012-10-15

    Sub-seabed geological storage of CO{sub 2} in the form of gas hydrate is attractive because clathrate hydrate stably exists at low temperature and high pressure, even if a fault occurs by diastrophism like a big earthquake. For the effective design of the storage system it is necessary to model the formation of CO{sub 2}-hydrate. Here, it is assumed that the formation of gas hydrate on the interface between gas and water consists of two stages: gas diffusion through the CO{sub 2}-hydrate film and consequent CO{sub 2}-hydrate formation on the interface, between film and water. Also proposed is the presence of a fresh reaction interface, which is part of the interface between the gas and aqueous phases and not covered with CO{sub 2}-hydrate. Parameters necessary to model the hydrate formation in sand sediment are derived by comparing the results of the present numerical simulations and the measurements in the literature. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Eukaryotic diversity in late Pleistocene marine sediments around a shallow methane hydrate deposit in the Japan Sea.

    Science.gov (United States)

    Kouduka, M; Tanabe, A S; Yamamoto, S; Yanagawa, K; Nakamura, Y; Akiba, F; Tomaru, H; Toju, H; Suzuki, Y

    2017-09-01

    Marine sediments contain eukaryotic DNA deposited from overlying water columns. However, a large proportion of deposited eukaryotic DNA is aerobically biodegraded in shallow marine sediments. Cold seep sediments are often anaerobic near the sediment-water interface, so eukaryotic DNA in such sediments is expected to be preserved. We investigated deeply buried marine sediments in the Japan Sea, where a methane hydrate deposit is associated with cold seeps. Quantitative PCR analysis revealed the reproducible recovery of eukaryotic DNA in marine sediments at depths up to 31.0 m in the vicinity of the methane hydrate deposit. In contrast, the reproducible recovery of eukaryotic DNA was limited to a shallow depth (8.3 m) in marine sediments not adjacent to the methane hydrate deposit in the same area. Pyrosequencing of an 18S rRNA gene variable region generated 1,276-3,307 reads per sample, which was sufficient to cover the biodiversity based on rarefaction curves. Phylogenetic analysis revealed that most of the eukaryotic DNA originated from radiolarian genera of the class Chaunacanthida, which have SrSO4 skeletons, the sea grass genus Zostera, and the seaweed genus Sargassum. Eukaryotic DNA originating from other planktonic fauna and land plants was also detected. Diatom sequences closely related to Thalassiosira spp., indicative of cold climates, were obtained from sediments deposited during the last glacial period (MIS-2). Plant sequences of the genera Alnus, Micromonas, and Ulmus were found in sediments deposited during the warm interstadial period (MIS-3). These results suggest the long-term persistence of eukaryotic DNA from terrestrial and aquatic sources in marine sediments associated with cold seeps, and that the genetic information from eukaryotic DNA from deeply buried marine sediments associated with cold seeps can be used to reconstruct environments and ecosystems from the past. © 2017 John Wiley & Sons Ltd.

  8. Hydro-geomechanical behaviour of gas-hydrate bearing soils during gas production through depressurization and CO2 injection

    Science.gov (United States)

    Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.

    2015-12-01

    Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.

  9. Unusual Holocene and late Pleistocene carbonate sedimentation in Bear Lake, Utah and Idaho, USA

    Science.gov (United States)

    Dean, W.; Rosenbaum, J.; Skipp, G.; Colman, S.; Forester, R.; Liu, A.; Simmons, K.; Bischoff, J.

    2006-01-01

    Bear Lake (Utah-Idaho, USA) has been producing large quantities of carbonate minerals of varying mineralogy for the past 17,000 years. The history of sedimentation in Bear Lake is documented through the study of isotopic ratios of oxygen, carbon, and strontium, percent organic carbon, percent CaCO3, X-ray diffraction mineralogy, HCl-leach inorganic geochemistry, and magnetic properties on samples from three piston cores. Historically, the Bear River, the main source of water for Great Salt Lake, did not enter Bear Lake until it was artificially diverted into the lake at the beginning of the 20th century. However, during the last glacial interval, the Bear River did enter Bear Lake depositing red, calcareous, silty clay. About 18,000 years ago, the Bear River became disconnected from Bear Lake. A combination of warmer water, increased evaporation, and increased organic productivity triggered the precipitation of calcium carbonate, first as calcite. As the salinity of the lake increased due to evaporation, aragonite began to precipitate about 11,000 years ago. Aragonite is the dominant mineral that accumulated in bottom sediments of the lake during the Holocene, comprising an average of about 70 wt.% of the sediments. Aragonite formation in a large, cold, oligotrophic, high latitude lake is highly unusual. Lacustrine aragonite usually is found in small, saline lakes in which the salinity varies considerably over time. However, Bear Lake contains endemic ostracodes and fish, which indicate that the chemistry of the lake has remained fairly constant for a long time. Stable isotope data from Holocene aragonite show that the salinity of Bear Lake increased throughout the Holocene, but never reached highly evolved values of ??18O in spite of an evaporation-dominated water balance. Bear Lake hydrology combined with evaporation created an unusual situation that produced large amounts of aragonite, but no evaporite minerals.

  10. A transfer function for the prediction of gas hydrate inventories in marine sediments

    Directory of Open Access Journals (Sweden)

    M. Marquardt

    2010-09-01

    Full Text Available A simple prognostic tool for gas hydrate (GH quantification in marine sediments is presented based on a diagenetic transport-reaction model approach. One of the most crucial factors for the application of diagenetic models is the accurate formulation of microbial degradation rates of particulate organic carbon (POC and the coupled formation of biogenic methane. Wallmann et al. (2006 suggested a kinetic formulation considering the ageing effects of POC and accumulation of reaction products (CH4, CO2 in the pore water. This model is applied to data sets of several ODP sites in order to test its general validity. Based on a thorough parameter analysis considering a wide range of environmental conditions, the POC accumulation rate (POCar in g/m2/yr and the thickness of the gas hydrate stability zone (GHSZ in m were identified as the most important and independent controls for biogenic GH formation. Hence, depth-integrated GH inventories in marine sediments (GHI in g of CH4 per cm2 seafloor area can be estimated as:

    GHI = a · POCar · GHSZb · exp (– GHSZc/POCar/d + e

    with a = 0.00214, b = 1.234, c = –3.339,

            d = 0.3148, e = –10.265.

    The transfer function gives a realistic first order approximation of the minimum GH inventory in low gas flux (LGF systems. The overall advantage of the presented function is its simplicity compared to the application of complex numerical models, because only two easily accessible parameters need to be determined.

  11. A transfer function for the prediction of gas hydrate inventories in marine sediments

    Directory of Open Access Journals (Sweden)

    M. Marquardt

    2010-02-01

    Full Text Available A simple prognostic tool for gas hydrate (GH quantification in marine sediments is presented based on a diagenetic transport-reaction model approach. One of the most crucial factors for the application of diagenetic models is the accurate formulation of microbial degradation rates of particulate organic carbon (POC and the coupled biogenic CH4 formation. Wallmann et al. (2006 suggested a kinetic formulation considering the ageing effects of POC and accumulation of reaction products (CH4, CO2 in the pore water. This model is applied to data sets of several ODP sites in order to test its general validity. Based on a thorough parameter analysis considering a wide range of environmental conditions, the POC accumulation rate (POCar in g/cm2/yr and the thickness of the gas hydrate stability zone (GHSZ in m were identified as the most important and independent controls for biogenic GH formation. Hence, depth-integrated GH inventories in marine sediments (GHI in g of CH4 per cm2 seafloor area can be estimated as:

    GHI = a · POCar · GHSZb · exp (−GHSZc/POCar/d + e

    with a = 0.00214, b = 1.234, c = −3.339, d = 0.3148, e = −10.265.

    Several tests indicate that the transfer function gives a realistic approximation of the minimum potential GH inventory of low gas flux (LGF systems. The overall advantage of the presented function is its simplicity compared to complex numerical models: only two easily accessible parameters are needed.

  12. Implementation of subsea system to monitor in-situ temperature and formation pressure in methane hydrates sediments for the production test in 2017, offshore Japan

    Science.gov (United States)

    Nishimoto, K.

    2016-12-01

    The methane hydrates phase changes, from solid to fluid, is governed by pressure drop and heat transportation through a geological formation. For the world's first offshore production test of methane hydrates conducted in 2013, the MH21 research team installed distributed temperature sensing (DTS) cables and array type resistance temperature devices (RTD) behind the casings of the monitoring wells. The temperature monitoring was continued over the period of 18 months. As a result, the thermal response of the methane hydrate-bearing sediment during depressurization was observed, and the obtained data was used to evaluate the methane dissociation behavior and to estimate the dissociation front radius from a producer well. The second offshore production test is planned in the same area in 2017 with the extended period up to one month. Two sets of a pair of monitoring and producer well were drilled in 2016. A pair of monitoring and producer wells is only 20m apart. An improved monitoring system is prepared for the second test with additional pressure measurement capability with new features of subsea system. The planed formation pressure measurement is expected to contribute not only for the evaluation of methane hydrate phase changes and estimation of its areal distribution but also the analyzing the interference in the vicinity of the producer wells from the geo-mechanical point of view. The DTS resolution was improved with longer averaging time than the previously utilized system. To accomplish the continuous acquisition up running over longer than 18 months to cover pre-flow and post-flow periods, the subsea acquisition system was equipped with an exchangeable subsea batteries by ROV. As for the surface communication method, the acoustic transponder was added in the subsea system. In this technical presentation, the improvements on the monitoring system are discussed and the scientific objectives for new measurements such as formation pressure are presented.

  13. Microbial Communities Associated with Phosphorite-bearing Sediments

    Science.gov (United States)

    Zoss, R.; Bailey, J.; Flood, B.; Jones, D. S.

    2016-12-01

    Phosphorus is a limiting nutrient in the environment and is an important component of many biological molecules. Calcium phosphate mineral deposits known as phosphorites, are also the primary source of P for agriculture. Understanding phosphorite formation may improve management of P resources. However, the processes that mediate calcium phosphate mineral precipitation in certain marine pore waters remain poorly understood. Phosphogenesis occurs in sediments beneath some oceanic upwelling zones that harbor polyphosphate-accumulating giant sulfur bacteria (GSB). These bacteria may concentrate phosphate in sediment pore waters - creating supersaturated conditions with respect to apatite. However, the relationship between microbes and phosphogenesis is not fully resolved. To further study this relationship, we examined microbial communities from two sources: sediment cores recovered from the shelf of the Benguela region, and DNA extracted from washed phosphorites recovered from those same sediments. We used itag and clone library sequencing of the 16S rRNA gene to examine the microbial communities and their relationship with the environment. We found that many of our sediments shared large numbers of phylotypes with one another, and that the same metabolic guilds were represented at localities across the shelf. Sulfur-reducing bacteria and sulfur-oxidizing bacteria were abundant in our datasets. Phylotypes that are known to carry out nitrification and/or anammox (anaerobic ammonia oxidation) were also well-represented. Our phosphorite extraction, however, contained a distinct microbial community from those observed in the modern sediments. We observed both an enrichment of certain common microbial classes and a complete absence of others. These results could represent an ancient microbial assemblage that was present when the apatite precipitated. While these taxa may or may not have contributed to apatite precipitation, several groups represented in the phosphorite

  14. The glacial/deglacial history of sedimentation in Bear Lake, Utah and Idaho

    Science.gov (United States)

    Rosenbaum, J.G.; Heil, C.W.

    2009-01-01

    Bear Lake, in northeastern Utah and southern Idaho, lies in a large valley formed by an active half-graben. Bear River, the largest river in the Great Basin, enters Bear Lake Valley ???15 km north of the lake. Two 4-m-long cores provide a lake sediment record extending back ???26 cal k.y. The penetrated section can be divided into a lower unit composed of quartz-rich clastic sediments and an upper unit composed largely of endogenic carbonate. Data from modern fluvial sediments provide the basis for interpreting changes in provenance of detrital material in the lake cores. Sediments from small streams draining elevated topography on the east and west sides of the lake are characterized by abundant dolomite, high magnetic susceptibility (MS) related to eolian magnetite, and low values of hard isothermal remanent magnetization (HIRM, indicative of hematite content). In contrast, sediments from the headwaters of the Bear River in the Uinta Mountains lack carbonate and have high HIRM and low MS. Sediments from lower reaches of the Bear River contain calcite but little dolomite and have low values of MS and HIRM. These contrasts in catchment properties allow interpretation of the following sequence from variations in properties of the lake sediment: (1) ca. 26 cal ka-onset of glaciation; (2) ca. 26-20 cal ka-quasicyclical, millennial-scale variations in the concentrations of hematite-rich glacial fl our derived from the Uinta Mountains, and dolomite- and magnetite-rich material derived from the local Bear Lake catchment (reflecting variations in glacial extent); (3) ca. 20-19 cal ka-maximum content of glacial fl our; (4) ca. 19-17 cal ka-constant content of Bear River sediment but declining content of glacial fl our from the Uinta Mountains; (5) ca. 17-15.5 cal ka-decline in Bear River sediment and increase in content of sediment from the local catchment; and (6) ca. 15.5-14.5 cal ka-increase in content of endogenic calcite at the expense of detrital material. The onset

  15. Gas hydrate formation in deep-sea sediments - on the role of sediment-mechanical process determination; Gashydratbildung in Tiefseesedimenten - zur Rolle der sedimentmechanischen Prozesssteuerung

    Energy Technology Data Exchange (ETDEWEB)

    Feeser, V. [Kiel Univ. (Germany). Geologisch-Palaeontologisches Inst.

    1997-12-31

    Slope failures in gas hydrate regions are encountered throughout the oceans. The stability of seafloor slopes can be assessed and predicted by means of calculation methods based on mechanical laws and parameters which describe the deformation behaviour and/or mechanical strength of the slope-forming sediments. Thermodynamic conditions conducive to the formation of gas hydrates in marine sediments differ from conditions prevailing in exclusively water-filled systems. The present contribution describes the relevant energetic conditions on the basis of a simple spherical model giving due consideration to petrographic parameters. Depending on pore size distribution, lithological stress conditions, pore water pressure, and sediment strength gas hydrates will either develop as a cementing phase or as segregated lenses. (MSK) [Deutsch] In den Weltmeeren ereignen sich immer wieder Hangrutschungen in Gashydratgebieten. Die zur Beurteilung und Prognonse von Hangstabilitaeten zu verwendenden Berechnungsverfahren erfordern Stoffgesetze und Parameter, welche das Deformations-und/oder Festigkeitsverhalten der hangbildenden Sedimente beschreiben. Die thermodynamischen Bildungsbedingungen von Gashydraten in marinen Sedimenten unterscheiden sich von den Bedingungen in ausschliesslich wassergefuellten Systemen. Unter Einbeziehung petrographischer Eigenschaften werden die energetischen Bedingungen beschrieben. Dazu dient ein einfaches Kugelmodell. Je nach vorhandenem Porenraumspektrum, lithostatischen Spannungsverhaeltnissen, Porenwasserdruck und Sedimentfestigkeit wachsen Gashydrate als Porenraumzement oder als segregierte Linsen.

  16. A non-steady-state condition in sediments at the gas hydrate stability boundary off West Spitsbergen: Evidence for gas hydrate dissociation or just dynamic methane transport

    Science.gov (United States)

    Treude, Tina; Krause, Stefan; Bertics, Victoria; Steinle, Lea; Niemann, Helge; Liebetrau, Volker; Feseker, Tomas; Burwicz, Ewa; Krastel, Sebastian; Berndt, Christian

    2015-04-01

    In 2008, a large area with several hundred methane plumes was discovered along the West Spitsbergen continental margin at water depths between 150 and 400 m (Westbrook et al. 2009). Many of the observed plumes were located at the boundary of gas hydrate stability (~400 m water depth). It was speculated that the methane escape at this depth was correlated with gas hydrate destabilization caused by recent increases in water temperatures recorded in this region. In a later study, geochemical analyses of authigenic carbonates and modeling of heat flow data combined with seasonal changes in water temperature demonstrated that the methane seeps were active already prior to industrial warming but that the gas hydrate system nevertheless reacts very sensitive to even seasonal temperature changes (Berndt et al. 2014). Here, we report about a methane seep site at the gas hydrate stability boundary (394 m water depth) that features unusual geochemical profiles indicative for non-steady state conditions. Sediment was recovered with a gravity corer (core length 210 cm) and samples were analyzed to study porewater geochemistry, methane concentration, authigenic carbonates, and microbial activity. Porewater profiles revealed two zones of sulfate-methane transition at 50 and 200 cm sediment depth. The twin zones were confirmed by a double peaking in sulfide, total alkalinity, anaerobic oxidation of methane, and sulfate reduction. d18O values sharply increased from around -2.8 ‰ between 0 and 126 cm to -1.2 ‰ below 126 cm sediment depth. While U/Th isotope measurements of authigenic seep carbonates that were collected from different depths of the core illustrated that methane seepage must be occurring at this site since at least 3000 years, the biogeochemical profiles suggest that methane flux must have been altered recently. By applying a multi-phase reaction-transport model using known initial parameters from the study site (e.g. water depth, temperature profile, salinity

  17. Well log characterization of natural gas hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2011-01-01

    In the last 25 years we have seen significant advancements in the use of downhole well logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From an early start of using wireline electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells drilled in Arctic permafrost environments to today where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. The most established and well known use of downhole log data in gas hydrate research is the use of electrical resistivity and acoustic velocity data (both compressional- and shear-wave data) to make estimates of gas hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. New downhole logging tools designed to make directionally oriented acoustic and propagation resistivity log measurements have provided the data needed to analyze the acoustic and electrical anisotropic properties of both highly inter-bedded and fracture dominated gas hydrate reservoirs. Advancements in nuclear-magnetic-resonance (NMR) logging and wireline formation testing have also allowed for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids (i.e., free-water along with clay and capillary bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas hydrate reservoir properties (i.e., permeabilities) needed to accurately predict gas production rates for various gas hydrate

  18. Sediment composition and texture of Pleistocene deep-sea turbidites in the eastern Nankai Trough gas hydrate field

    Science.gov (United States)

    Egawa, K.; Nishimura, O.; Izumi, S.; Ito, T.; Konno, Y.; Yoneda, J.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Nagao, J.

    2013-12-01

    In the 2012 JOGMEC/JAPEX pressure coring operation, we collected a totally 60-m-long core sample from the interval of gas hydrate concentration zone at the planned site of the world's first offshore production test of natural gas hydrates in the eastern Nankai Trough area. In this contribution, the cored sediments were sedimentologically, mineralogically, and paleontologically analyzed to know sediment composition and texture of reservoir formation, which are known to provide useful geological information to discuss sedimentation, diagenesis, and permeability. The targeted interval belongs to a Middle Pleistocene deep-sea turbidite sequence distributed around the Daini Atsumi Knoll, east of the Kumano forearc basin, and consists of the lower (thick sand-dominant), middle (thin-bedded sand-and-mud alteration), and upper (mud-dominant) formations in ascending order. X-ray powder diffraction analysis and scanning electron microscopic observation revealed that pore space in turbidite sands is commonly filled with clay fractions (mostly phyllosilicates) in the lower formation. Such a pore filling of clay fractions is reflected in particle size distribution showing high standard deviation and clay content, and thus is expected to have an impact on permeability. There is the older Pliocene to Early Pleistocene fossil coccolith record in the middle formation, indicating sediment reworking probably induced by submarine landslide. The coexistence of authigenic siderite and framboidal pyrite in the middle formation strongly suggests anoxic microbial activity under methane oxidation and sulfide reduction conditions at least before the hydrate cementation. This contribution was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI).

  19. Seismic characterization of hydrates in faulted, fine-grained sediments of Krishna-Godavari Basin: Full waveform inversion

    Digital Repository Service at National Institute of Oceanography (India)

    Jaiswal, P.; Dewangan, P.; Ramprasad, T.; Zelt, C.A.

    ; full waveform inversion; P-wave velocity; P-wave attenuation 1. INTRODUCTION Hydrates can play a potentially significant role in climate change (Gu et al., 2011), seafloor stability (Brown et al., 2006), and energy security (Boswell and Collett, 2011... distribution within fine-grained, clay-dominated, and faulted sediments of the Krishna-Godavari (KG) Basin located offshore of eastern continental margin of India (Figure 1). We apply FWI in the frequency domain. The domain choice is driven by a) efficiency...

  20. Hydrofracturing of Sediment and Hydrated MORB's during Subduction of Ocean Crust

    Science.gov (United States)

    Nabelek, P. I.

    2015-12-01

    Dehydration accompanying metamorphism of sediment and hydrated mafic ocean crust during ocean plate subduction can potentially lead to fracturing and intraplate tremors. As rocks are buried, they lose porosity and permeability and eventually pass into the lithostatic pressure regime where the porosity and permeability are thought to be very small. Pore fluid pressure generation stemming from metamorphic reactions was modeled using the program SUTRAMET (Nabelek et al., 2014), which is a modified version of the program SUTRA (Voss & Provost, 2002). The program allows modeling of metamorphic reactions at high pressures and temperatures and incorporates transient porosity and permeability changes due to overpressure and changing volumes of metamorphic assemblages. Permeabilities (k) of 10-18 and 10-20 m2 within the brittle regime were modeled. The model assumes continuous subduction with fluids generated at horizons where specific P-T conditions for reactions exist. Temperature gradient was assumed to be 10°C/km and the vertical component of subduction velocity to be at 0.85 cm/y. The model reactions in sediment (Campito Formation of western California as a proxy) and average MORB were generated by the program Theriak-Domino (de Capitani and Petrakakis, 2010). The initial sediment mineralogy includes albite, K-feldspar, phengite, chlorite, and lawsonite. The final mineralogy for the 10°C/km gradient is quartz, phengite, garnet, and pyroxene with jadeite and acmite components. The initial mineralogy of MORB includes chlorite, amphibole, pumpelyite, albite and quartz and the final eclogite mineralogy includes garnet, cpx, kyanite and quartz. Calculations show that at k = 10-18 m2, pore fluid pressure can reach 450 MPa. Pore pressure is reduced by negative ∆V of mineral assemblages stemming from reactions; nevertheless, for the garnet-forming reaction, pore pressure is about 110 MPa. Assuming a tensile strength of 15 MPa and fracture aperture given by rock

  1. Application of the Split Hopkinson Resonant Bar Test for Seismic Property Characterization of Hydrate-bearing Sand Undergoing Water Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, S.; Kneafsey, T.J.

    2011-05-03

    Conventional resonant bar tests allow the measurement of seismic properties of rocks and sediments at low frequencies (several kilohertz). However, the tests require a long, slender sample which is often difficult to obtain from the deep subsurface and weak and fractured formations. We present an alternative low-frequency measurement technique to the conventional resonant bar tests. This technique involves a jacketed core sample placed between a pair of long, metal extension rods with attached seismic source and receiver—the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the added length and mass to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The proposed “Split Hopkinson Resonant Bar (SHRB)” test is applied in two steps. In the first step, extension and torsion-mode resonance frequencies and attenuation of the system are measured. Then, numerical inversions for the compressional and shear wave velocities and attenuation are performed. We initially applied the SHRB test to synthetic materials (plastics) for testing its accuracy, then used it for measuring the seismic velocities and attenuation of a rock core containing supercritical CO{sub 2}, and a sediment core while methane hydrate formed in the pore space.

  2. Site selection for DOE/JIP gas hydrates drilling in the northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.R.; Ruppel, C. [United States Geological Survey, Woods Hole, MA (United States); Shelander, D.; Dai, J. [Schlumberger, Houston, TX (United States); McConnell, D. [AOA Geophysics Inc., Houston, TX (United States); Shedd, W. [Minerals Management Service, New Orleans, LA (United States); Frye, M. [Minerals Management Service, Herndon, VA (United States); Boswell, R.; Rose, K. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Jones, E.; Latham, T. [Chevron Energy Technology Corp., Houston, TX (United States); Collett, T. [United States Geological Survey, Denver, CO (United States); Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Science; Wood, W. [United States Naval Research Lab, Stennis Space Center, MS (United States)

    2008-07-01

    As drilling operations in the Gulf of Mexico shift from shallow water to deeper water targets, operators are encountering sediments with pressure-temperature regimes for gas hydrate stability. The Chevron-led Joint Industry Project (JIP) on methane hydrates was formed in 2001 to study the hazards associated with drilling these types of hydrate-bearing sediments and to assess the capacity of geological and geophysical tools to predict gas hydrate distributions and concentrations. Selected reservoirs units with high concentrations of gas hydrate were sampled to obtain physical data on hydrate bearing sediments. The JIP work validates methods devised to estimate gas hydrate distribution and concentrations in order to analyze the resource potential of these hydrate-bearing sediments. This paper described the geologic and geophysical setting of 3 sites in the northern Gulf of Mexico that contain hydrate-bearing reservoir sands. The three sites that will undergo exploratory drilling and a logging campaign in late spring 2008 include the Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system characterized with seafloor fluid expulsion features, structural closure associated with uplifted salt, and seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets sheet sands and associated channel deposits within a small basin. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. 39 refs., 1 tab., 4 figs.

  3. Regional versus detailed velocity analysis to quantify hydrate and free gas in marine sediments : the south Shetland margin case study

    Energy Technology Data Exchange (ETDEWEB)

    Tinivella, U.; Loreto, M.F.; Accaino, F. [Inst. Nazionale di Oceanografia di Geofisica Sperimentale, Trieste (Italy)

    2008-07-01

    The presence of gas hydrate and free gas within marine sediments, deposited along the South Shetland margin, offshore the Antarctic Peninsula, was confirmed by low and high resolution geophysical data, acquired during three research cruises in 1989-1990. Seismic data analysis has demonstrated the presence of a bottom simulating reflector that is very strong and continuous in the eastern part of the margin. This seismic dataset was used in the past to extract detailed velocity information of the shallow structures by using traditional tomographic inversion and jointly tomographic inversion and pre-stack depth migration tool. This paper presented a method to obtain a regional seismic velocity field and information about hydrate and free gas presence in the marine sediments, by using an improved method of the standard analysis of the pre-stack depth migration output. The velocity field was obtained with a layer stripping approach and tomographic inversion of the reflections observed in common image gathering. The paper presented the seismic data and regional and detailed velocity analysis. The results of residual semblance analyses were also presented. Gas phase concentrations were then discussed. The velocity analysis revealed the presence of three main layers characterizing the first kilometer of sediments below the sea floor. In addition, velocity models and related gas-phase sections showed that gas was concentrated in different parts of the profile than where the hydrate was concentrated. This observation confirmed that geological structures and sedimentary processes controlled the gas and hydrate distribution, as observed along other margins. 7 refs., 5 figs.

  4. Bear

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The famous physicist made for his scholars this riddle. A fellow encountered a bear in a wasteland. There was nobody else there. Both were frightened and ran away. Fellow to the north, bear to the west. Suddenly the fellow stopped, aimed his gun to the south and shot the bear. What colour was the bear?

  5. Multicomponent seismic forward modeling of gas hydrates beneath the seafloor

    Institute of Scientific and Technical Information of China (English)

    Yang Jia-Jia; He Bing-Shou; Zhang Jian-Zhong

    2014-01-01

    We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation of seismic waves in gas hydrate-bearing sediments beneath the seafloor, and obtained the common receiver gathers of compressional waves (P-waves) and shear waves (S-waves). The numerical results suggest that the interface between sediments containing gas hydrates and free gas produces a large-amplitude bottom-simulating reflector. The analysis of multicomponent common receiver data suggests that ocean-bottom seismometers receive the converted waves of upgoing P-and S-waves, which increases the complexity of the wavefield record.

  6. Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico

    Science.gov (United States)

    Cook, Anne E.; Anderson, Barbara I.; Rasmus, John; Sun, Keli; Li, Qiming; Collett, Timothy S.; Goldberg, David S.

    2012-01-01

    We present new results and interpretations of the electricalanisotropy and reservoir architecture in gashydrate-bearingsands using logging data collected during the Gulf of MexicoGasHydrate Joint Industry Project Leg II. We focus specifically on sandreservoirs in Hole Alaminos Canyon 21 A (AC21-A), Hole Green Canyon 955 H (GC955-H) and Hole Walker Ridge 313 H (WR313-H). Using a new logging-while-drilling directional resistivity tool and a one-dimensional inversion developed by Schlumberger, we resolve the resistivity of the current flowing parallel to the bedding, R| and the resistivity of the current flowing perpendicular to the bedding, R|. We find the sandreservoir in Hole AC21-A to be relatively isotropic, with R| and R| values close to 2 Ω m. In contrast, the gashydrate-bearingsandreservoirs in Holes GC955-H and WR313-H are highly anisotropic. In these reservoirs, R| is between 2 and 30 Ω m, and R| is generally an order of magnitude higher. Using Schlumberger's WebMI models, we were able to replicate multiple resistivity measurements and determine the formation resistivity the gashydrate-bearingsandreservoir in Hole WR313-H. The results showed that gashydrate saturations within a single reservoir unit are highly variable. For example, the sand units in Hole WR313-H contain thin layers (on the order of 10-100 cm) with varying gashydrate saturations between 15 and 95%. Our combined modeling results clearly indicate that the gashydrate-bearingsandreservoirs in Holes GC955-H and WR313-H are highly anisotropic due to varying saturations of gashydrate forming in thin layers within larger sand units.

  7. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    Science.gov (United States)

    Hong, Wei-Li; Torres, Marta E.; Carroll, Jolynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel

    2017-06-01

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.

  8. Paleomagnetism and environmental magnetism of GLAD800 sediment cores from Bear Lake, Utah and Idaho

    Science.gov (United States)

    Heil, C.W.; King, J.W.; Rosenbaum, J.G.; Reynolds, R.L.; Colman, Steven M.

    2009-01-01

    A ???220,000-year record recovered in a 120-m-long sediment core from Bear Lake, Utah and Idaho, provides an opportunity to reconstruct climate change in the Great Basin and compare it with global climate records. Paleomagnetic data exhibit a geomagnetic feature that possibly occurred during the Laschamp excursion (ca. 40 ka). Although the feature does not exhibit excursional behavior (???40?? departure from the expected value), it might provide an additional age constraint for the sequence. Temporal changes in salinity, which are likely related to changes in freshwater input (mainly through the Bear River) or evaporation, are indicated by variations in mineral magnetic properties. These changes are represented by intervals with preserved detrital Fe-oxide minerals and with varying degrees of diagenetic alteration, including sulfidization. On the basis of these changes, the Bear Lake sequence is divided into seven mineral magnetic zones. The differing magnetic mineralogies among these zones reflect changes in deposition, preservation, and formation of magnetic phases related to factors such as lake level, river input, and water chemistry. The occurrence of greigite and pyrite in the lake sediments corresponds to periods of higher salinity. Pyrite is most abundant in intervals of highest salinity, suggesting that the extent of sulfidization is limited by the availability of SO42-. During MIS 2 (zone II), Bear Lake transgressed to capture the Bear River, resulting in deposition of glacially derived hematite-rich detritus from the Uinta Mountains. Millennial-scale variations in the hematite content of Bear Lake sediments during the last glacial maximum (zone II) resemble Dansgaard-Oeschger (D-O) oscillations and Heinrich events (within dating uncertainties), suggesting that the influence of millennial-scale climate oscillations can extend beyond the North Atlantic and influence climate of the Great Basin. The magnetic mineralogy of zones IV-VII (MIS 5, 6, and 7

  9. Geology and geochemistry of the Eocene zeolite bearing volcaniclastic sediments of Metaxades, Thrace, Greece

    Directory of Open Access Journals (Sweden)

    Tsirambides, A.

    1995-04-01

    Full Text Available The Eocene zeolite-bearing volcaniclastic sediments (Ca-rich clinoptilolite 51 % on average of Metaxades, Thrace, Greece, are studied in terms of geology and chemical composition. The alternating formations along a vertical profile in the Metaxades main quarry face are: Discrete horizons of zeolite-bearing volcaniclastic tuffs, zeolite-bearing volcaniclastic tuffs including pebbles, zeolite-bearing volcaniclastic tuffs including thin silica-rich layers, and a calc-clayey horizon. A positive correlation is observed between MgO and CaO in the volcaniclastic tuffs including silica-rich layers. Sr, Rb and Ba are the most abundant trace elements in alllayers; among them, Sr is found to correlate positively with zeolite. The enrichment of sorne trace elements is mainly attributed to mineral abundances, mineral chemistry or leaching processes. The zeolite-bearing volcaniclastic sediments of Metaxades represent an inhomogeneous sequence, which was deposited in a shallow marine environment under turbulent to quiet sedimentary conditions.Los sedimentos eocenos volcanoclásticos con zeolita (51% de media de clinoptilolita rica en Ca de Metaxades, Tracia, Grecia, se estudian desde el punto de vista geológico y de su composición química. Las formaciones alternantes que se pueden observar en un corte vertical en la cantera principal de Metaxades son: horizontes aislados de tufos volcanoclásticos con zeolita y con delgadas capas ricas en sílice, y un horizonte calco-arcilloso. Se observa una correlación positiva entre MgO y CaO en los tufss volcanoclásticos que presentan capas ricas en sílice. El Sr, el Rb y el Ba son los elementos traza más abundantes en todos los horizontes. Entre ellos, el Sr presenta una correlación positiva con la zeolita. El enriquecimiento en algunos elementos traza se atribuye esencialmente a las abundancias de los minerales, la química mineral, o a fenómenos de lixivinción. Los sedimentos volcanoclásticos con zeolita de

  10. Characteristics of shallow gas hydrate in Okhotsk Sea

    Institute of Scientific and Technical Information of China (English)

    LUAN XiWu; JIN YoungKeun; Anatoly OBZHIROV; YUE BaoJing

    2008-01-01

    Multidisciplinary field investigations were carried out in Okhotsk Sea by R/V Akademik M.A. Lavrentyev (LV) of the Russian Academy of Sciences (RAS) in May 2006, supported by funding agencies from Korea, Russia, Japan and China. Geophysical data including echo-sounder, bottom profile, side-scansonar, and gravity core sample were obtained aimed to understand the characteristics and formation mechanism of shallow gas hydrates. Based on the geophysical data, we found that the methane flare detected by echo-sounder was the evidence of free gas in the sediment, while the dome structure detected by side-scan sonar and bottom profile was the root of gas venting. Gas hydrate retrieved from core on top of the dome structure which was interbedded as thin lamination or lenses with thickness varying from a few millimeters to 3 cm. Gas hydrate content in hydrate-bearing intervals visually amounted to 5%-30% of the sediment volume. This paper argued that gases in the sediment core were not all from gas hydrate decomposition during the gravity core lifting process, free gases must existed in the gas hydrate stability zone, and tectonic structure like dome structure in this paper was free gas central, gas hydrate formed only when gases over-saturated in this gas central, away from these struc tures, gas hydrate could not form due to low gas concentration.

  11. Characteristics of shallow gas hydrate in Okhotsk Sea

    Institute of Scientific and Technical Information of China (English)

    Anatoly; OBZHIROV

    2008-01-01

    Multidisciplinary field investigations were carried out in Okhotsk Sea by R/V Akademik M.A. Lavrentyev (LV) of the Russian Academy of Sciences (RAS) in May 2006, supported by funding agencies from Ko- rea, Russia, Japan and China. Geophysical data including echo-sounder, bottom profile, side-scan- sonar, and gravity core sample were obtained aimed to understand the characteristics and formation mechanism of shallow gas hydrates. Based on the geophysical data, we found that the methane flare detected by echo-sounder was the evidence of free gas in the sediment, while the dome structure de- tected by side-scan sonar and bottom profile was the root of gas venting. Gas hydrate retrieved from core on top of the dome structure which was interbedded as thin lamination or lenses with thickness varying from a few millimeters to 3 cm. Gas hydrate content in hydrate-bearing intervals visually amounted to 5%―30% of the sediment volume. This paper argued that gases in the sediment core were not all from gas hydrate decomposition during the gravity core lifting process, free gases must existed in the gas hydrate stability zone, and tectonic structure like dome structure in this paper was free gas central, gas hydrate formed only when gases over-saturated in this gas central, away from these struc- tures, gas hydrate could not form due to low gas concentration.

  12. New Methods for Gas Hydrate Energy and Climate Studies

    Science.gov (United States)

    Ruppel, C. D.; Pohlman, J.; Waite, W. F.; Hunt, A. G.; Stern, L. A.; Casso, M.

    2015-12-01

    Over the past few years, the USGS Gas Hydrates Project has focused on advancements designed to enhance both energy resource and climate-hydrate interaction studies. On the energy side, the USGS now manages the Pressure Core Characterization Tools (PCCTs), which includes the Instrumented Pressure Testing Chamber (IPTC) that we have long maintained. These tools, originally built at Georgia Tech, are being used to analyze hydrate-bearing sediments recovered in pressure cores during gas hydrate drilling programs (e.g., Nankai 2012; India 2015). The USGS is now modifying the PCCTs for use on high-hydrate-saturation and sand-rich sediments and hopes to catalyze third-party tool development (e.g., visualization). The IPTC is also being used for experiments on sediments hosting synthetic methane hydrate, and our scanning electron microscope has recently been enhanced with a new cryo-stage for imaging hydrates. To support climate-hydrate interaction studies, the USGS has been re-assessing the amount of methane hydrate in permafrost-associated settings at high northern latitudes and examined the links between methane carbon emissions and gas hydrate dissociation. One approach relies on the noble gas signature of methane emissions. Hydrate dissociation uniquely releases noble gases partitioned by molecular weight, providing a potential fingerprint for hydrate-sourced methane emissions. In addition, we have linked a DOC analyzer with an IRMS at Woods Hole Oceanographic Institution, allowing rapid and precise measurement of DOC and DIC concentrations and carbon isotopic signatures. The USGS has also refined methods to measure real-time sea-air flux of methane and CO2 using cavity ring-down spectroscopy measurements coupled with other data. Acquiring ~8000 km of data on the Western Arctic, US Atlantic, and Svalbard margins, we have tested the Arctic methane catastrophe hypothesis and the link between seafloor methane emissions and sea-air methane flux.

  13. Detection and Appraisal of Gas Hydrates: Indian Scenario

    Science.gov (United States)

    Sain, K.

    2009-04-01

    Gas hydrates, found in shallow sediments of permafrost and outer continental margins, are crystalline form of methane and water. The carbon within global gas hydrates is estimated two times the carbon contained in world-wide fossil fuels. It is also predicted that 15% recovery of gas hydrates can meet the global energy requirement for the next 200 years. Several parameters like bathymetry, seafloor temperature, sediment thickness, rate of sedimentation and total organic carbon content indicate very good prospect of gas hydrates in the vast offshore regions of India. Methane stored in the form of gas hydrates within the Indian exclusive economic zone is estimated to be few hundred times the country's conventional gas reserve. India produces less than one-third of her oil requirement and gas hydrates provide great hopes as a viable source of energy in the 21st century. Thus identification and quantitative assessment of gas hydrates are very important. By scrutiny and reanalysis of available surface seismic data, signatures of gas hydrates have been found out in the Kerala-Konkan and Saurashtra basins in the western margin, and Krishna-Godavari, Mahanadi and Andaman regions in the eastern margin of India by mapping the bottom simulating reflector or BSR based on its characteristic features. In fact, the coring and drilling in 2006 by the Indian National Gas Hydrate Program have established the ground truth in the eastern margin. It has become all the more important now to identify further prospective regions with or without BSR; demarcate the lateral/areal extent of gas hydrate-bearing sediments and evaluate their resource potential in both margins of India. We have developed various approaches based on seismic traveltime tomography; waveform inversion; amplitude versus offset (AVO) modeling; AVO attributes; seismic attributes and rock physics modeling for the detection, delineation and quantification of gas-hydrates. The blanking, reflection strength, instantaneous

  14. The characteristics of gas hydrates recovered from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lu, H.; Lorenson, T.D.; Moudrakovski, I.L.; Ripmeester, J.A.; Collett, T.S.; Hunter, R.B.; Ratcliffe, C.I.

    2011-01-01

    Systematic analyses have been carried out on two gas hydrate-bearing sediment core samples, HYPV4, which was preserved by CH4 gas pressurization, and HYLN7, which was preserved in liquid-nitrogen, recovered from the BPXA-DOE-USGS Mount Elbert Stratigraphic Test Well. Gas hydrate in the studied core samples was found by observation to have developed in sediment pores, and the distribution of hydrate saturation in the cores imply that gas hydrate had experienced stepwise dissociation before it was stabilized by either liquid nitrogen or pressurizing gas. The gas hydrates were determined to be structure Type I hydrate with hydration numbers of approximately 6.1 by instrumentation methods such as powder X-ray diffraction, Raman spectroscopy and solid state 13C NMR. The hydrate gas composition was predominantly methane, and isotopic analysis showed that the methane was of thermogenic origin (mean ??13C=-48.6??? and ??D=-248??? for sample HYLN7). Isotopic analysis of methane from sample HYPV4 revealed secondary hydrate formation from the pressurizing methane gas during storage. ?? 2010 Elsevier Ltd.

  15. Appraisal of gas hydrate resources based on a P- and S-impedance reflectivity template: case study from the deep sea sediments in Iran

    Science.gov (United States)

    Shoar, Behnam Hosseini; Javaherian, Abdolrahim; Keshavarz Farajkhah, Nasser; Seddigh Arabani, Mojtaba

    2013-12-01

    The occurrence of a bottom simulating reflector (BSR) in the 2D seismic data from Makran's accretionary prism reveals the presence of gas hydrate and free gas several hundred meters below the seafloor of Iran's deep sea. According to the global distribution of marine hydrates, they are widely present in deep sea sediments, where high operational costs and hazards cause a lack of well log information. Therefore, developing a method to quantify the hydrate resources with seismic data is an ultimate goal for unexplored regions. In this study, the so-called reflectivity templates (RTs) are introduced for quantification of the hydrate and free gas near the BSR. These RTs are intuitive crossplots of P-impedance and S-impedance contrasts across the BSR. They are calculated theoretically based on the effective medium theory for different hydrate distribution modes with some assumptions on porosity and mineralogical composition of unconsolidated sediments. This technique suggests the possibility of using the amplitude variation versus offset (AVO) analysis of the BSR for a quantitative interpretation when well log data are not available. By superimposing the AVO-derived P-impedance and S-impedance contrasts across the BSR on these RTs, the saturations of the hydrate and free gas near the BSR could be estimated. Validation of this approach by synthetic data showed that a reliable quantification could be achieved if the model parameters were rearranged to a form in which the AVO inversion was independent of the S-wave to P-wave velocity-ratio assumption. Based on this approach applied on the 2D marine pre-stack time migrated seismic line in offshore Iran, 4% to 28% of the gas hydrate and 1% to 2% of the free gas are expected to be accumulated near the thrusted-ridge and thrusted-footwall types of BSRs.

  16. Zr-in-rutile resetting in aluminosilicate bearing ultra-high temperature granulites: Refining the record of cooling and hydration in the Napier Complex, Antarctica

    Science.gov (United States)

    Mitchell, Ruairidh J.; Harley, Simon L.

    2017-02-01

    The relative validity and closure temperature of the Zr-in-rutile thermometer for recording UHT metamorphism are process dependent and hotly debated. We present an integrated petrological approach to Zr-in-rutile thermometry including phase equilibrium (pseudosection) modelling in complex chemical systems with updated mineral a-X models and systematic in-situ microanalysis of rutile. This study is centred on high-pressure rutile bearing UHT granulites from Mt. Charles, Napier Complex, Antarctica. P-T phase equilibrium modelling of two garnet bearing granulites (samples 49677, 49701) constrains an overall post-peak near isobaric cooling (IBC) evolution for the Napier Complex at Mt. Charles; from 14 kbar, 1100 °C with moderate decompression to 11 kbar, 800-900 °C. Local hydration on cooling over this temperature range is recorded in a kyanite bearing granulite (sample 49688) with an inferred injection of aqueous fluid equivalent to up to 9 mol% H2O from T-MH2O modelling. Further late stage cooling to < 740 °C is recorded by voluminous retrograde mica growth and partial preservation of a ky-pl-kfs-bt-liq bearing equilibrium assemblage. Overall, Zr-in-rutile temperatures at 11 kbar (Tomkins et al., 2007) are reset to between 606 °C and 780 °C across all samples, with flat core-rim Zr concentration profiles in all rutiles. However, zircon precipitates as inclusions, needle exsolutions, or rods along rutile grain boundaries are recrystallised from rutiles in qz/fsp domains. Reintegrating the Zr-in-rutile concentration 'lost' via the recrystallisation of these zircon precipitates (e.g. Pape et al., 2016) can recover maximum concentrations of up to 2.2 wt% and thus maximum peak temperatures of 1149 °C at 11 kbar. Rutile Nb-Ta signatures and rounded rutile grains without zircon precipitates in hydrated mica domains in sample 49688 provide evidence for fluid-mediated mobility of Zr and Nb during retrograde cooling in hydrated lithologies. Aqueous fluid supplemented

  17. Gas hydrates and magnetism : comparative geological settings for diagenetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, L.; Enkin, R.J. [Natural Resources Canada, Sidney, BC (Canada). Geological Survey of Canada; Hamilton, T. [Camosun College, Victoria, BC (Canada)

    2008-07-01

    Geophysical and geochemical methods assist in locating and quantifying natural gas hydrate deposits. They are also useful in understanding these resources, their climate impacts and their potential role in geohazards. In order to understand the mechanisms of gas hydrate formation and its natural distribution in sediments, magnetic studies were conducted on cores from three different geological settings. This paper presented the results of a detailed magnetic investigation, as well as petrological observations, that were conducted on cores from a permafrost setting in the Mackenzie Delta located in the Canadian Northwest Territories Mallik region, and two marine settings, from the Cascadia margin off Vancouver Island and the Indian National Gas Hydrate Program from the Bengal Fan. The paper provided background information on the permafrost setting in Mallik region of the Mackenzie Delta as well as the Cascadia margin. The magnetic properties of gas hydrate bearing sediments were found to be a combination of the original detrital content and the diagenetic transformations of iron minerals caused by the unique environment produced by gas hydrate formation. The availability of methane to provide food for bacteria coupled with the concentration of solutes outside gas hydrate accumulation zones led to the creation of iron sulphides. These new minerals were observable using magnetic techniques, which help in delineating the gas hydrate formation mechanism and may be developed into new geophysical methods of gas hydrate exploration. 7 refs., 7 figs.

  18. Estimation of gas hydrate saturation with temperature calculated from hydrate threshold at C0002 during IODP NanTroSEIZE Stage 1 expeditions in the Nankai Trough

    Science.gov (United States)

    Miyakawa, A.; Yamada, Y.; Saito, S.; Bourlange, S.; Chang, C.; Conin, M.; Tomaru, H.; Kinoshita, M.; Tobin, H.; 314/315/316Scientists, E.

    2008-12-01

    During the IODP Expedition 314, conducted at Nankai trough accretionary prism, gas hydrate was observed at Site C0002. Gas hydrate beneath seafloor is promising energy source and potentially hazardous material during drilling. The precise estimation of gas hydrate saturation is important, but previous works have not considered the effect" of the in-situ temperature. In this study, we propose an estimation method of gas hydrate saturation with temperature calculated from threshold of gas hydrate. Gas hydrate saturation was determined based on the Logging While Drilling (LWD) Expedition 314 data. The gas hydrate bearing zone was located between 218.1 to 400.4 m below seafloor. Archie's relation was used to estimate gas hydrate saturation. This relation requires the porosity, the sea water resistivity and formation resistivity. We determined porosity to be between ~70 to ~30% based on density log. Since the resistivity of sea water is temperature dependent, temperature profile (calculated temperature model) was determined from the thermal conductivity and the temperature at the base of the gas hydrate. In our calculated temperature model, the saturation increases from ~10% at ~220m to ~30% at 400 m below sea floor. Spikes that have a maximum value at 80% at sand layers were observed. We also estimated the gas hydrate saturation from the constant temperature profile in 12°C (temperature constant model). This resulted in almost constant saturation (~15%) with the high saturation spikes. We compared these saturations with the hydrate occupation ratio within sand layers derived from RAB image. The hydrate occupation ratio shows increasing trend with increasing depth, and this trend is similar to the gas hydrate saturation with the calculated temperature model. This result suggests that the temperature profile should be considered to obtain precise gas hydrate saturation. Since the high sedimentation rate can affect thermal condition, we are planning to estimate the

  19. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis

    Science.gov (United States)

    Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  20. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  1. Well log characterization of natural gas-hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2012-01-01

    In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms

  2. Integrated analysis of well logs and seismic data to estimate gas hydrate concentrations at Keathley Canyon, Gulf of Mexico

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2008-01-01

    Accurately detecting and quantifying gas hydrate or free gas in sediments from seismic data require downhole well-log data to calibrate the physical properties of the gas hydrate-/free gas-bearing sediments. As part of the Gulf of Mexico Joint Industry Program, a series of wells were either cored or drilled in the Gulf of Mexico to characterize the physical properties of gas hydrate-bearing sediments, to calibrate geophysical estimates, and to evaluate source and transport mechanisms for gas within the gas hydrates. Downhole acoustic logs were used sparingly in this study because of degraded log quality due to adverse wellbore conditions. However, reliable logging while drilling (LWD) electrical resistivity and porosity logs were obtained. To tie the well-log information to the available 3-D seismic data in this area, a velocity log was calculated from the available resistivity log at the Keathley Canyon 151-2 well, because the acoustic log or vertical seismic data acquired at the nearby Keathley Canyon 151-3 well were either of poor quality or had limited depth coverage. Based on the gas hydrate saturations estimated from the LWD resistivity log, the modified Biot-Gassmann theory was used to generate synthetic acoustic log and a synthetic seismogram was generated with a fairly good agreement with a seismic profile crossing the well site. Based on the well-log information, a faintly defined bottom-simulating reflection (BSR) in this area is interpreted as a reflection representing gas hydrate-bearing sediments with about 15% saturation overlying partially gas-saturated sediments with 3% saturation. Gas hydrate saturations over 30-40% are estimated from the resistivity log in two distinct intervals at 220-230 and 264-300 m below the sea floor, but gas hydrate was not physically recovered in cores. It is speculated that the poor recovery of cores and gas hydrate morphology are responsible for the lack of physical gas hydrate recovery.

  3. The impact of increased sedimentation rates associated with the decay of the Fennoscandian ice-sheet on gas hydrate stability and focused fluid flow at the Nyegga pockmark field, offshore mid-Norway

    Science.gov (United States)

    Karstens, Jens; Haflidason, Haflidi; Becker, Lukas; Petter Sejrup, Hans; Berndt, Christian; Planke, Sverre; Dahlgreen, Torbjørn

    2016-04-01

    Climatic changes since the Last Glacial Maximum (LGM) have affected the stability of gas hydrate systems on glaciated margins by sea-level changes, bottom water temperature changes, isostatic uplift or subsidence and variability in sedimentation rates. While subsidence and sea-level rise stabilize gas hydrate deposits, bottom water temperature warming, uplift and enhanced sedimentation have the opposite effect. The response of gas hydrate systems to post-glaciation warming is therefore a complex phenomenon and highly depends on the timing and magnitude of each of these processes. While the impact of bottom water warming on the dissociation of gas hydrates have been addressed in numerous studies, the potential of methane release due to basal gas hydrate dissociation during periods of warming has received less attention. Here, we present results from numerical simulations which show that rapid sedimentation associated with the decay of the Fennoscandian ice-sheet was capable of causing significant basal gas hydrate dissociation. The modeling is constrained by a high-resolution three-dimensional sedimentation rate reconstruction of the Nyegga pockmark field, offshore mid-Norway, obtained by integrating chrono-stratigraphic information derived from sediments cores and a seismo-stratigraphic framework. The model run covers the period between 28,000 and 15,000 calendar years before present and predict that the maximum sedimentation rate-related gas hydrate dissociation coincides temporally and spatially with enhanced focused fluid flow activity in the study area. Basal gas hydrate dissociation due to rapid sedimentation may have occurred as well in other glaciated continental margins after the LGM and may have caused the release of significant amounts of methane to the hydrosphere and atmosphere. The major post glaciation deposition centers are the location of some of the largest known submarine slide complexes. The release of free gas due to basal gas hydrate

  4. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.

    Science.gov (United States)

    Cooper, D Craig; Picardal, Flynn F; Coby, Aaron J

    2006-03-15

    Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respectto Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a -3x increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by approximately 12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These

  5. The distribution of phenylalkanes in the modern sediment associated with gas hydrate from the Gulf of Mexico

    Institute of Scientific and Technical Information of China (English)

    WANG Cuiping; SUN Hongwen; SONG Zhiguang; ZHANG Tao

    2008-01-01

    Phenylalkanes with carbon numbers between 16 and 19,characterized by the main carbon-18,have been identified in the mod-em sediments collected from gas hydrate area from the Gulf of Mexico.The structure of phenylalkanes with four isomers for ever-y carbon number was determined by means of their mass spectra and previous studies.The distribution of the series character-ized by a low molecular mass was similar to the distribution of n-alkane,alkylcyclohexanes and alkylbenzenes in each sample.There were differences in the distribution of the phenylalkane series between the S - 1,S - 4,S - 7,S - 9 samples and the S -8,S - 10 and S - 11 samples.The phenylalkanes might be derived from Archaea associated with anaerobic oxidation of methane (AOM) processes in S - 1,S - 4,S - 7 and S - 9 samples according to their distribution resembled with the distribution of the extract from a type of Archaea.The distribution of alkylcyclobexanes and alkylbenzenes in S - 1,S - 4,S - 7 and S - 9 sample was found to be similar to each other.The odd-over-even predominance of alkylcyclohexanes was seen as the input of some bac-terial.

  6. Comparison of Archaeal and Bacterial Diversity in Methane Seep Carbonate Nodules and Host Sediments, Eel River Basin and Hydrate Ridge, USA.

    Science.gov (United States)

    Mason, Olivia U; Case, David H; Naehr, Thomas H; Lee, Raymond W; Thomas, Randal B; Bailey, Jake V; Orphan, Victoria J

    2015-10-01

    Anaerobic oxidation of methane (AOM) impacts carbon cycling by acting as a methane sink and by sequestering inorganic carbon via AOM-induced carbonate precipitation. These precipitates commonly take the form of carbonate nodules that form within methane seep sediments. The timing and sequence of nodule formation within methane seep sediments are not well understood. Further, the microbial diversity associated with sediment-hosted nodules has not been well characterized and the degree to which nodules reflect the microbial assemblage in surrounding sediments is unknown. Here, we conducted a comparative study of microbial assemblages in methane-derived authigenic carbonate nodules and their host sediments using molecular, mineralogical, and geochemical methods. Analysis of 16S rRNA gene diversity from paired carbonate nodules and sediments revealed that both sample types contained methanotrophic archaea (ANME-1 and ANME-2) and syntrophic sulfate-reducing bacteria (Desulfobacteraceae and Desulfobulbaceae), as well as other microbial community members. The combination of geochemical and molecular data from Eel River Basin and Hydrate Ridge suggested that some nodules formed in situ and captured the local sediment-hosted microbial community, while other nodules may have been translocated or may represent a record of conditions prior to the contemporary environment. Taken together, this comparative analysis offers clues to the formation regimes and mechanisms of sediment-hosted carbonate nodules.

  7. Effect of Agents on Hydrate Formation and Low-Temperature Rheology of Polyalcohol Drilling Fluid

    Institute of Scientific and Technical Information of China (English)

    Guosheng Jiang; Fulong Ning; Ling Zhang; Yunzhong Tu

    2011-01-01

    In order to ensure safe drilling in deep water and marine gas hydrate bearing sediments,the needed characteristics of drilling fluid system were analyzed.Moreover,the effect of different agents on hydrate formation and the low-temperature rheology of designed polyalcohol drilling fluid were tested,respectively.The results show that clay can promote gas hydrate growth,while modified starch and polyalcohol can inhibit hydrate formation to some extent,and PVP K90 has a good performance on hydrate inhibition.The influence of clay on low-temperature rheology of polyglycols drilling fluid is notable.Therefore,the clay-free polyalcohol drilling fluid is suitable for deep water and marine gas hydrate drilling under optimal conditions.

  8. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  9. Regional Mapping and Resource Assessment of Shallow Gas Hydrates of Japan Sea - METI Launched 3 Years Project in 2013.

    Science.gov (United States)

    Matsumoto, R.

    2014-12-01

    Agency of Natural Resources and Energy of METI launched a 3 years shallow gas hydrate exploration project in 2013 to make a precise resource assessment of shallow gas hydrates in the eastern margin of Japan Sea and around Hokkaido. Shallow gas hydrates of Japan Sea occur in fine-grained muddy sediments of shallow subsurface of mounds and gas chimneys in the form of massive nodular to platy accumulation. Gas hydrate bearing mounds are often associated with active methane seeps, bacterial mats and carbonate concretions and pavements. Gases of gas hydrates are derived either from deep thermogenic, shallow microbial or from the mixed gases, contrasting with totally microbial deep-seated stratigraphically controlled hydrates. Shallow gas hydrates in Japan Sea have not been considered as energy resource due to its limited distribution in narrow Joetsu basin. However recently academic research surveys have demonstrated regional distribution of gas chimney and hydrate mound in a number of sedimentary basins along the eastern margin of Japan Sea. Regional mapping of gas chimney and hydrate mound by means of MBES and SBP surveys have confirmed that more than 200 gas chimneys exist in 100 km x 100 km area. ROV dives have identified dense accumulation of hydrates on the wall of half collapsed hydrate mound down to 30 mbsf. Sequential LWD and shallow coring campaign in the Summer of 2014, R/V Hakurei, which is equipped with Fugro Seacore R140 drilling rig, drilled through hydrate mounds and gas chimneys down to the BGHS (base of gas hydrate stability) level and successfully recovered massive gas hydrates bearing sediments from several horizons.

  10. Experimental Investigations into the Production Behavior of Methane Hydrate in Porous Sediment under Ethylene Glycol Injection and Hot Brine Stimulation

    OpenAIRE

    Li, Xiaosen; Li, Gang

    2010-01-01

    1 2 3 The flowing of hot water or hot brine injected in the vessel can be regarded as the moving of a piston from the inlet to the outlet. The hydrate dissociation process is divided into three stages: free gas production, hydrate dissociation and residual gas production. The process of the hydrate dissociation is a process of the temperature decrease in the presence of the brine solution. The duration of the hydrate dissociation is shortened and the degree of the depth of the temperature dro...

  11. Effects of nature organic matters and hydrated metal oxides on the anaerobic degradation of lindane,p,p'-DDT and HCB in sediments

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xu; QUAN Xie; ZHAO Hui-min; CHEN Jing-wen; CHEN Shou; ZHAO Ya-zhi

    2003-01-01

    Effects of natural organic matters(NOM) and hydrated metal oxides(HMO) in sediments on the anaerobic degradation of γ-666, p,p'-DDT and HCB were investigated by means of removing NOM and HMO in Liaohe River sediments sequentially. The results showed that the anaerobic degradation of γ-666, p,p'-DDT and HCB followed pseudo-first-order kinetics in different sediments; But, the extents and rates of degradation were different, even the other conditions remained the same. Anaerobic degradation rates of γ-666, p,p'-DDT and HCB were 0.020 d-1, 0.009 d-1 and 0.035 month-1 respectively for the sediments without additional carbon resources. However, with addition of carbon resources, the anaerobic degradation rates of γ-666, p, p'-DDT and HCB were 0.071d-1, 0.054d-1 and 0.088 month-1 in the original sediments respectively. After removing NOM, the rates were decreased to 0.047 d-1, 0.037 d-1 and 0.066 month-1; in the sediments removed NOM and HMO, the rates were increased to 0.067d-1, 0.059 d-1 and 0.086 month-1. These results indicated that NOM in the sediments accelerated the anaerobic degradation of γ-666, p,p'-DDT and HCB; the HMO inhibited the anaerobic degradation of γ-666, p,p'-DDT and HCB.

  12. Fracture-driven methane bubble ascent within shallow fine-grained clay-bearing aquatic sediments: dynamics and controlling factors

    Science.gov (United States)

    Tarboush Sirhan, Shahrazad; Katsman, Regina; Ten Brink, Uri

    2017-04-01

    Mature methane gas bubbles in the fine-grained, clay-bearing (cohesive) aquatic sediments, found at many locations throughout the world, are much larger than the characteristic pore size. When gas pressure within the bubble is high enough to overcome compression, friction, and cohesion at grain contacts, gas migrates upward driven by buoyancy, by pushing the grains apart and fracturing the fine-grained sediments. Fracturing of the fine-grained cohesive sediments by the migrating bubbles destabilizes sediment and might result in slope failure. Migrating methane bubbles may bypass processes of oxidation in the upper sediment layers due to their fast rise velocity, release to the water column and eventually to the atmosphere. In this study we use coupled macroscopic single-bubble mechanical/reaction-transport numerical model to explore bubble ascent under various ambient concentration profiles, associated with bio-chemical processes of methane production and consumption below sediment-water interface, as it occurs in nature. Modeling results show that changes in the ambient dissolved-methane concentrations strongly affect bubble ascent velocity. It is demonstrated that bubble migration scenario within fine-grained muddy sediments is controlled dominantly by the internal bubble pressure that manages solute exchange with adjacent porewater. It is significantly affected by the total hydrostatic pressure. For shallow water depths two sequential bubble propagation patterns were observed: (1) Stable (saw-tooth) fracturing, followed by (2) Dynamic (unstable, rising line) fracturing, leading to an ultimate release of the bubble to the water column. However, for a higher water depth, bubble propagation pattern is characterized by stable fracturing only. In this pattern the bubble becomes more sensitive to the ambient field of methane concentrations and may stop below sediment-water interface due solute release caused by the local methanotrophy.

  13. Interactions Between Microbial Iron Reduction and Metal Geochemistry: Effect of Redox Cycling on Transition Metal Speciation in Iron Bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    D. Craig Cooper; Flynn W. Picardal; Aaron J. Coby

    2006-02-01

    Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respect to Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a ~3× increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by ~12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These data suggest

  14. Ocean Bottom Gamma-Ray Anomaly Around Methane Seeps Related to Gas Hydrate- Bearing Zone in The Eastern Margin of Japan Sea and Off Southwest Taiwan

    Science.gov (United States)

    Machiyama, H.; Kinoshita, M.; Lin, S.; Matsumoto, R.; Soh, W.

    2008-12-01

    JAMSTEC has conducted the ocean bottom gamma-ray measurement using ROVs and Submersibles since 1997. Gamma-ray spectrometer utilizes 3-inch spherical NaI(Tl) scintillator and the signal processor including DA converter in a pressure case. After processing data, we get total count rate (intensity value: count per second (cps)) of gamma ray and contents of K, U-, and Th-series radionuclides. The sensor was equipped to the side of the sample basket or foot of ROVs and submersibles, and always touches the seafloor when ROVs completely landed. Their results are posted on JAMSTEC website as a database. On the basis of past achievements, we present the results of the ocean bottom gamma-ray measurement at the methane seep sites related to gas hydrate off Joetsu in the eastern margin of Japan Sea and off southwest Taiwan. Off Joetsu: A number of mounds, large pockmarks (20 - 50 m deep and 200 - 500 m across), gas plumes, and gas hydrate are found at water depth of 900 - 1000 m in the Umitaka Spur and the Joetsu Knoll. Gamma-ray intensity values are 50 - 70 cps in normal muddy seafloor. On the other hand, the intensity values are 100 - 200 cps around methane venting sites, bacteria mats, and 'collapsed hydrate zone' which has an undulating, rugged seafloor with carbonate nodules and gravels. Contents of each radionuclide are also high. Low U/Th ratio suggests that there is less contribution of Rn accompanied with a recent fault activity. Off southwest Taiwan: Large, dense chemosynthetic communities, associated with carbonate pavements, were discovered at water depth of about 1100 - 1200 m on the top of the Formosa Ridge. Gamma-ray intensity values in normal muddy seafloor (120 - 150 cps) are higher than those around Japan. Since Th-series radionuclide easily absorbs other particles, it is commonly included in surface sediments. This may cause higher content of Th-series radionuclide in normal muddy seafloor. On the other hand, anomaly of gamma-ray intensity (200 - 300 cps

  15. Recognition of Gas Hydrate Using AVO-Attribute Crossplots Based on the Porous Medium Theory

    Institute of Scientific and Technical Information of China (English)

    ZhangYuwen; LiuXuewei; YaoChangli

    2005-01-01

    Gas hydrate is gradually considered as a potential energy resource. The presence of gas hydrate is commonly inferred from the appearance of “bottom simulating reflector”(BSR) on seismic section. Understanding the properties of hydrate-bearing sediments and studying the AVO characteristics of BSR are of great significance. Although more and more domestic and international studies have been conducted on the subjects mentioned above, they are still in the primary stage and need a long way to go to be appled in practice, especially in the field of gas hydrate. Aiming at the identification of gas hydrate, we studied the characteristics of the AVO attributes based on the Biot's theory when the sediments were bearing gas hydrate or free gas. The AVO attribute crossplots obtained from seismic sections with the forward simulation by means of staggered-grid finite-difference were compared with that of theoretic models. The coincidence shows that utilization of AVO attribute crossplots is an effective way to recognize gas hydrate and free gas.

  16. Physical Properties and Hydration Resistance of CeO2—and CeO2/Fe2O3—Bearing Dolomite Refractory Products

    Institute of Scientific and Technical Information of China (English)

    XUYanqing; CHENKaixian

    1998-01-01

    Dolomite refractory products with excellent hydration resistance have been produced by using CeO2-and CeO2/Fe2O3-bearing dolomite clinkers,Their physical properties as well as hydration resistance have been investigated,The addition of CeO2 has little harmful effect on the high temperature properties of dolomite refractory products such as hot MOR and slag resistance,And the shelf lives of the dolomite refractory products containing CeO2 and CeO2/Fe2O3 additions at the same condition are two times that of the common dolomite refractory produt.The dolomite refractory product containing CeO2/Fe2O3 combination possesses the best hydration resistance,but gives poor slag resistance.

  17. Evidence of oil and gas hydrates within planet Mars: early biogenic or thermogenic sources from the Martian soils and deeper sediments near the deltas

    Science.gov (United States)

    Mukhopadhyay, Prasanta K.

    2012-10-01

    The presence of water (in liquid form) within the gullies of the Newton Crater from Mars (near the equator), oil-like hydrocarbons on the surface, gas hydrates in the deeper zones on Mars, and a list of publications on the geochemistry and astrobiology of carbonaceous chondrites have indicated that these petroleum hydrocarbons are closely related to the complex biological species similar to our terrestrial environment. Recent evidence of the possible presence of bacterial globule associated with carbonate minerals in the geological history of Mars may have indicated the link between possible bacterial growth and generation of petroleum hydrocarbons on Mars. Recent evidence of the possible presence of bacterially derived source rocks (organic rich black carbonaceous rocks) and heat flow distribution within Eberswalde and Holden areas of Mars during the earlier Martian geological time (possibly within the first 2 Ga) may have been originated from both biogeneic and thermogenic oil and gas hydrates. The thermal evolution of this biological geopolymer (source rock) could be observed in our earlier findings within the carbonaceous chondrites which show three distinct thermal events. Based on the current knowledge gained from carbonaceous chondrites, deltas, and hydrocarbons present within Mars, the methane on Mars may have been derived from the following sources: (1) deeper gas hydrates; (b) from the cracking of oil to gas within deeper oil or gas bearing reservoirs from a higher reservoir temperature; and (c) the high temperature conversion of current bacterial bodies within the upper surface of Mars.

  18. Evaluation of Heat Induced Methane Release from Methane Hydrates

    Science.gov (United States)

    Leeman, J.; Elwood-Madden, M.; Phelps, T. J.; Rawn, C. J.

    2010-12-01

    Clathrates, or gas hydrates, structurally are guest gas molecules populating a cavity in a cage of water molecules. Gas hydrates naturally occur on Earth under low temperature and moderate pressure environments including continental shelf, deep ocean, and permafrost sediments. Large quantities of methane are trapped in hydrates, providing significant near-surface reserves of carbon and energy. Thermodynamics predicts that hydrate deposits may be destabilized by reducing the pressure in the system or raising the temperature. However, the rate of methane release due to varying environmental conditions remains relatively unconstrained and complicated by natural feedback effects of clathrate dissociation. In this study, hydrate dissociation in sediment due to localized increases in temperature was monitored and observed at the mesoscale (>20L) in a laboratory environment. Experiments were conducted in the Seafloor Process Simulator (SPS) at Oak Ridge National Laboratory (ORNL) to simulate heat induced dissociation. The SPS, containing a column of Ottawa sand saturated with water containing 25mg/L Sno-Max to aid nucleation, was pressurized and cooled well into the hydrate stability field. A fiber optic distributed sensing system (DSS) was embedded at four depths in the sediment column. This allowed the temperature strain value (a proxy for temperature) of the system to be measured with high spatial resolution to monitor the clathrate formation/dissociation processes. A heat exchanger embedded in the sediment was heated using hot recirculated ethylene glycol and the temperature drop across the exchanger was measured. These experiments indicate a significant and sustained amount of heat is required to release methane gas from hydrate-bearing sediments. Heat was consumed by hydrate dissociated in a growing sphere around the heat exchanger until steady state was reached. At steady state all heat energy entering the system was consumed in maintaining the temperature profile

  19. Cyclic formation and dissociation of methane hydrate within partially water saturated sand

    Science.gov (United States)

    Kneafsey, T. J.; Nakagawa, S.

    2010-12-01

    For partially water-saturated sediments, laboratory experiments have shown that methane hydrate forms heterogeneously within a sample at the core scale. The heterogeneous distribution of hydrate in combination with grain-scale hydrate location (eg. grain cementing, load bearing, and pore filling), determines the overall mechanical properties of hydrate-bearing sediments including shear strength and seismic properties. For this reason, understanding the heterogeneity of hydrate-bearing sample is essential when the bulk properties of the sample are examined in the laboratory. We present a series of laboratory methane hydrate formation and dissociation experiments with concurrent x-ray CT imaging and low-frequency (near 1 kHz) seismic measurements. The seismic measurements were conducted using a new acoustic resonant bar technique called the Split Hopkinson Resonant Bar method, which allows using a small sediment core (3.75 cm diameter, 7.5 cm length). The experiment was conducted using a jacketed, pre-compacted, fine-grain silica sand sample with a 40% distilled water saturation. Under isotropic confining stress of 6.9 MPa and a temperature 4 oC, the hydrate was formed in the sample by injecting pure methane gas at 5.6 MPa. Once the hydrate formed, it was dissociated by reducing the pore pressure to 2.8 MPa. This cycle was repeated by three times (dissociation test for the third cycle was not done) to examine the resulting changes in the hydrate distribution and seismic signatures. The repeated formation of hydrate resulted in significant changes in its distribution, which resulted in differences in the overall elastic properties of the sample, determined from the seismic measurements. Interestingly, the time intervals between the dissociation and subsequent formation of hydrate affected the rate of hydrate formation, shorter intervals resulting in faster formation. This memory effect, possibly caused by the presence of residual “seed crystals” in the pore water

  20. Modified effective medium model for gas hydrate bearing,clay-dominated sediments in the Krishna-Godavari Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sriram, G.; Dewangan, P.; Ramprasad, T.

    volume fraction qf and cf are related to the original fraction ( if ) as, ( ) ( ) ( ) ( ),11 ,11 φφ φφ −−= −−= ic iq ff ff (6) and ( ) ( ).1 φ−= hh Cf The effective dry bulk )( HMK and shear )( HMG moduli at critical...

  1. Cryopegs as destabilization factor of intra-permafrost gas hydrates

    Science.gov (United States)

    Chuvilin, Evgeny; Bukhanov, Boris; Istomin, Vladimir

    2016-04-01

    A characteristic feature of permafrost soils in the Arctic is widespread intra-permafrost unfrozen brine lenses - cryopegs. They are often found in permafrost horizons in the north part of Western Siberia, in particular, on the Yamal Peninsula. Cryopegs depths in permafrost zone can be tens and hundreds of meters from the top of frozen strata. The chemical composition of natural cryopegs is close to sea waters, but is characterized by high mineralization. They have a sodium-chloride primary composition with a minor amount of sulphate. Mineralization of cryopegs brine is often hundreds of grams per liter, and the temperature is around -6…-8 °C. The formation of cryopegs in permafrost is associated with processes of long-term freezing of sediments and cryogenic concentration of salts and salt solutions in local areas. The cryopegs' formation can take place in the course of permafrost evolution at the sea transgressions and regressions during freezing of saline sea sediments. Very important feature of cryopegs in permafrost is their transformation in the process of changing temperature and pressure conditions. As a result, the salinity and chemical composition are changed and in addition the cryopegs' location can be changed during their migration. The cryopegs migration violates the thermodynamic conditions of existence intra-permafrost gas hydrate formations, especially the relic gas hydrates deposits, which are situated in the shallow permafrost up to 100 meters depth in a metastable state [1]. The interaction cryopegs with gas hydrates accumulations can cause decomposition of intra-permafrost hydrates. Moreover, the increasing of salt and unfrozen water content in sedimentary rocks sharply reduce the efficiency of gas hydrates self-preservation in frozen soils. It is confirmed by experimental investigations of interaction of frozen gas hydrate bearing sediments with salt solutions [2]. So, horizons with elevated pressure can appear, as a result of gas hydrate

  2. 含钡硫铝酸盐水泥的水化动力学与热力学研究%Study on Kinetics and Thermodynamics of Hydration of Ba-bearing Sulphoaluminate Cement

    Institute of Scientific and Technical Information of China (English)

    徐冠立; 孙遥; 林金辉

    2013-01-01

    Kinetics and thermodynamics of Ba-bearing sulphoaluminate cement hydrate reaction had been studied by XRD and isothermal calorimetry methods.The results showed that the rate of the hydration is diffusionally controlled,and its pattern is similar to tri-calcium aluminate and Portland cement.The hydration process could be divided into acceleration,deceleration and decay stages.The hydration is nucleation controlled at acceleration stage which means the reaction is autocatalytic.At deceleration stage,after layers of hydrate develops on the clinker particles causing the increasing obstruction,hydration rate decrease,and finally become controlled totally by diffusion at decay stage.%采用XRD和等温微量热法测试计算含钡硫铝酸盐水泥的水化动力学和热力学过程.结果表明,含钡硫铝酸盐水泥的水化过程主要受扩散过程控制,水化速率变化模式与铝酸钙、硅酸盐水泥类似.水化过程分为加速期、减速期和衰减期:在加速期,水化反应受成核反应控制,属自催化反应;从减速期开始,水化物在颗粒表面形成水化物薄膜,水化反应阻力加大,速率减缓;进入衰减期,水化反应完全受扩散过程控制.

  3. Micro-bond contact model and its parameters for the deep-sea methane hydrate bearing soils%深海能源土微观力学胶结模型及参数研究

    Institute of Scientific and Technical Information of China (English)

    蒋明镜; 肖俞; 朱方园

    2012-01-01

    天然气水合物主要以胶结物形式存在深海能源土颗粒之间,对能源土强度影响显著,因此研究水合物胶结接触力学特性对能源土力学性质研究有重要作用,而其中的关键是水合物胶结模型及胶结参数的确定。首先,引入并讨论了一种微观胶结接触模型及其对于能源土胶结接触力学特性的适用性;其次,通过文献资料系统分析,获取不同温度、压力及水合物密度条件下天然气水合物的强度与弹性模量表达式;最后,进一步研究了水合物微观胶结模型中的胶结参数,该类水合物微观胶结参数取决于能源土中水合物埋藏深度(赋存环境压力)、温度、水合物密度,这些宏观参量容易确定。%Methane hydrate (MH), which has significant influences on the strength of methane hydrate bearing soils, exits mainly in the form of cement materials between soil particles. Hence, the study of bond mechanical behavior of MH between soil particles is significant to the research of methane hydrate bearing soils, of which the keypoint is the determination of the micro-contact model and corresponding bond parameters of MH. First, a micro-bond contact model is introduced to reflect the contact properties of the soil particles. Second, the strengths and elastic modulus of MH (such as the tensile strength, compressive strength, shear strength and torsion strength) are obtained through the literatures about methane hydrate triaxial tests. Finally, micro bond parameters needed by the contact model are obtained. The results show that the micro bond parameters of gas hydrate are determined by the saturation and strength parameters of gas hydrate, which can be obtained through the temperature, density of hydrate and its burial depth which are easy to be determined.

  4. Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan

    Science.gov (United States)

    Kasten, Sabine; Nöthen, Kerstin; Hensen, Christian; Spieß, Volkhard; Blumenberg, Martin; Schneider, Ralph R.

    2012-12-01

    The geochemical cycling of barium was investigated in sediments of pockmarks of the northern Congo Fan, characterized by surface and subsurface gas hydrates, chemosynthetic fauna, and authigenic carbonates. Two gravity cores retrieved from the so-called Hydrate Hole and Worm Hole pockmarks were examined using high-resolution pore-water and solid-phase analyses. The results indicate that, although gas hydrates in the study area are stable with respect to pressure and temperature, they are and have been subject to dissolution due to methane-undersaturated pore waters. The process significantly driving dissolution is the anaerobic oxidation of methane (AOM) above the shallowest hydrate-bearing sediment layer. It is suggested that episodic seep events temporarily increase the upward flux of methane, and induce hydrate formation close to the sediment surface. AOM establishes at a sediment depth where the upward flux of methane from the uppermost hydrate layer counterbalances the downward flux of seawater sulfate. After seepage ceases, AOM continues to consume methane at the sulfate/methane transition (SMT) above the hydrates, thereby driving the progressive dissolution of the hydrates "from above". As a result the SMT migrates downward, leaving behind enrichments of authigenic barite and carbonates that typically precipitate at this biogeochemical reaction front. Calculation of the time needed to produce the observed solid-phase barium enrichments above the present-day depths of the SMT served to track the net downward migration of the SMT and to estimate the total time of hydrate dissolution in the recovered sediments. Methane fluxes were higher, and the SMT was located closer to the sediment surface in the past at both sites. Active seepage and hydrate formation are inferred to have occurred only a few thousands of years ago at the Hydrate Hole site. By contrast, AOM-driven hydrate dissolution as a consequence of an overall net decrease in upward methane flux seems to

  5. Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E. (Chevron); Latham, T. (Chevron); McConnell, D. (AOA Geophysics); Frye, M. (Minerals Management Service); Hunt, J. (Minerals Management Service); Shedd, W. (Minerals Management Service); Shelander, D. (Schlumberger); Boswell, R.M. (NETL); Rose, K.K. (NETL); Ruppel, C. (USGS); Hutchinson, D. (USGS); Collett, T. (USGS); Dugan, B. (Rice University); Wood, W. (Naval Research Laboratory)

    2008-05-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand

  6. Sensitivity Analysis of Gas Production from Class 2 and Class 3 Hydrate Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Matthew; Moridis, George; Zhang, Keni

    2008-05-01

    Gas hydrates are solid crystalline compounds in which gas molecules are lodged within the lattices of an ice-like crystalline solid. The vast quantities of hydrocarbon gases trapped in hydrate formations in the permafrost and in deep ocean sediments may constitute a new and promising energy source. Class 2 hydrate deposits are characterized by a Hydrate-Bearing Layer (HBL) that is underlain by a saturated zone of mobile water. Class 3 hydrate deposits are characterized by an isolated Hydrate-Bearing Layer (HBL) that is not in contact with any hydrate-free zone of mobile fluids. Both classes of deposits have been shown to be good candidates for exploitation in earlier studies of gas production via vertical well designs - in this study we extend the analysis to include systems with varying porosity, anisotropy, well spacing, and the presence of permeable boundaries. For Class 2 deposits, the results show that production rate and efficiency depend strongly on formation porosity, have a mild dependence on formation anisotropy, and that tighter well spacing produces gas at higher rates over shorter time periods. For Class 3 deposits, production rates and efficiency also depend significantly on formation porosity, are impacted negatively by anisotropy, and production rates may be larger, over longer times, for well configurations that use a greater well spacing. Finally, we performed preliminary calculations to assess a worst-case scenario for permeable system boundaries, and found that the efficiency of depressurization-based production strategies are compromised by migration of fluids from outside the system.

  7. A study on gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byoung Jae; Jung, Tae Jin; Sunwoo, Don [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Sufficient documents were reviewed to understand solid components of water and gaseous hydrocarbon known as gas hydrates, which represent an important potential energy resource of the future. The review provides us with valuable information on crystal structures, kinetics, origin and distribution of gas hydrates. In addition, the review increased our knowledge of exploration and development methods of gas hydrates. Large amounts of methane, the principal component of natural gas, in the form of solid gas hydrate are found mainly offshore in outer continental margin sediment and, to a lesser extent, in polar regions commonly associated with permafrost. Natural gas hydrates are stable in some environments where the hydrostatic pressure exerted by overlying water column is sufficient for hydrate formation and stability. The required high pressures generally restrict gas hydrate to sediments beneath water of approximately 400 m. Higher sediment temperatures at greater subbottom depths destabilize gas hydrates. Based on the pressure- temperature condition, the outer continental margin of East Sea where water depth is deep enough to form gas hydrate is considered to have high potential of gas hydrate accumulations. (author). 56 refs., tabs., figs.

  8. Seismic characterization of hydrates in faulted, fine-grained sediments of Krishna-Godavari basin: Full waveform inversion.

    Digital Repository Service at National Institute of Oceanography (India)

    Jaiswal, P.; Dewangan, P.; Ramprasad, T.; Zelt, C.A.

    potentially significant role in climate change (Gu et al., 2011), seafloor stability (Brown et al., 2006), and energy security (Boswell and Collett, 2011). Gas hydrates detection in offshore continental margins is generally guided by a bottom simulating... of eastern continental margin of India (Figure 1). We apply FWI in the frequency domain. The domain choice is driven by a) efficiency in forward modeling (Marfurt, 1984), and b) the possibility of a multiscale implementation (Sirgue and Pratt, 2004) which...

  9. Anomalous preservation of pure methane hydrate at 1 atm

    Science.gov (United States)

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2001-01-01

    Direct measurement of decomposition rates of pure, polycrystalline methane hydrate reveals a thermal regime where methane hydrate metastably `preserves' in bulk by as much as 75 K above its nominal equilibrium temperature (193 K at 1 atm). Rapid release of the sample pore pressure at isothermal conditions between 242 and 271 K preserves up to 93% of the hydrate for at least 24 h, reflecting the greatly suppressed rates of dissociation that characterize this regime. Subsequent warming through the H2O ice point then induces rapid and complete dissociation, allowing controlled recovery of the total expected gas yield. This behavior is in marked contrast to that exhibited by methane hydrate at both colder (193-240 K) and warmer (272-290 K) test conditions, where dissociation rates increase monotonically with increasing temperature. Anomalous preservation has potential application for successful retrieval of natural gas hydrate or hydrate-bearing sediments from remote settings, as well as for temporary low-pressure transport and storage of natural gas.

  10. Persistence of effects of high sediment loading in a salmon-bearing river, northern California

    Science.gov (United States)

    Madej, M.A.; Ozaki, V.

    2009-01-01

    Regional high-magnitude rainstorms have produced several large floods in north coastal California during the last century, which resulted in extensive massmovement activity and channel aggradation. Channel monitoring in Redwood Creek, through the use of cross-sectional surveys, thalweg profi les, and pebble counts, has documented the persistence and routing of channel-stored sediment following these large floods in the 1960s and 1970s. Channel response varied on the basis of timing of peak aggradation. Channel-stored sediment was evacuated rapidly from the upstream third of the Redwood Creek channel, and the channel bed stabilized by 1985 as the bed coarsened. Currently only narrow remnants of flood deposits remain and are well vegetated. In the downstream reach, channel aggradation peaked in the 1990s, and the channel is still incising. Channel-bed elevations throughout the watershed showed an approximate exponential decrease with time, but decay rates were highest in areas with the thickest flood deposits. Pool frequencies and depths generally increased from 1977 to 1995, as did median residual water depths, but a 10 yr flood in 1997 resulted in a moderate reversal of this trend. Channel aggradation generated during 25 yr return interval floods has persisted in Redwood Creek for more than 30 yr and has impacted many life cycles of salmon. Watershed restoration work is currently focused on correcting erosion problems on hillslopes to reduce future sediment supply to Redwood Creek instead of attempting in-channel manipulations. ?? 2009 Geological Society of America.

  11. Physical property changes in hydrate-bearingsediment due to depressurization and subsequent repressurization

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, Timothy; Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-06-01

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed at least briefly to non-in situ conditions during recovery. To examine effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes and speeds are compared between the original and depressurized/repressurized samples. X-ray computed tomography (CT) images track how the gas-hydrate distribution changes in the hydrate-cemented sands due to the depressurization/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  12. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate

    Science.gov (United States)

    Waite, W.F.; Stern, L.A.; Kirby, S.H.; Winters, W.J.; Mason, D.H.

    2007-01-01

    Thermal conductivity, thermal diffusivity and specific heat of sI methane hydrate were measured as functions of temperature and pressure using a needle probe technique. The temperature dependence was measured between −20°C and 17°C at 31.5 MPa. The pressure dependence was measured between 31.5 and 102 MPa at 14.4°C. Only weak temperature and pressure dependencies were observed. Methane hydrate thermal conductivity differs from that of water by less than 10 per cent, too little to provide a sensitive measure of hydrate content in water-saturated systems. Thermal diffusivity of methane hydrate is more than twice that of water, however, and its specific heat is about half that of water. Thus, when drilling into or through hydrate-rich sediment, heat from the borehole can raise the formation temperature more than 20 per cent faster than if the formation's pore space contains only water. Thermal properties of methane hydrate should be considered in safety and economic assessments of hydrate-bearing sediment.

  13. Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates

    Science.gov (United States)

    Andreassen, K.; Hart, P.E.; MacKay, M.

    1997-01-01

    A bottom simulating seismic reflection (BSR) that parallels the sea floor occurs worldwide on seismic profiles from outer continental margins. The BSR coincides with the base of the gas hydrate stability field and is commonly used as indicator of natural submarine gas hydrates. Despite the widespread assumption that the BSR marks the base of gas hydrate-bearing sediments, the occurrence and importance of low-velocity free gas in the sediments beneath the BSR has long been a subject of debate. This paper investigates the relative abundance of hydrate and free gas associated with the BSR by modeling the reflection coefficient or amplitude variation with offset (AVO) of the BSR at two separate sites, offshore Oregon and the Beaufort Sea. The models are based on multichannel seismic profiles, seismic velocity data from both sites and downhole log data from Oregon ODP Site 892. AVO studies of the BSR can determine whether free gas exists beneath the BSR if the saturation of gas hydrate above the BSR is less than approximately 30% of the pore volume. Gas hydrate saturation above the BSR can be roughly estimated from AVO studies, but the saturation of free gas beneath the BSR cannot be constrained from the seismic data alone. The AVO analyses at the two study locations indicate that the high amplitude BSR results primarily from free gas beneath the BSR. Hydrate concentrations above the BSR are calculated to be less than 10% of the pore volume for both locations studied.

  14. 沉积物中水合物形成机理及分解动力学研究进展%ADVANCES IN FORMATION MECHANISM AND DISSOCIATION KINETICS OF GAS HYDRATE IN SEDIMENTS

    Institute of Scientific and Technical Information of China (English)

    李清平; 张旭辉; 鲁晓兵

    2011-01-01

    The study on the formation of gas hydrate in sediments is mainly summarized.Firstly, the formation mechanism and advances in bulk gas hydrate study, including nucleation mechanism, armor effect and memory effect etc., are briefly described.Secondly, the difficulty and advances in the formation of gas hydrate with low-solubility gases, such as methane, and the effects of chief factors, such as pore size, on the formation of gas hydrate in sediments are summarized.Thirdly, the major mathematical models on the kinetics of gas hydrate formation are presented.Finally, several issues to be further studied are highlighted.%对沉积物中水合物形成机理的研究进展作了述评.简述了纯水含物生成的机理及研究进展,包括成核机理、铠甲效应、记忆效戍等现象和机理;阐述了低可溶气体如甲烷生成水合物的难点,以及主要因素如孔隙尺寸对沉积物中水合物生成的影响研究进展;简要介绍了目前关于水合物形成和分解动力学的代表性数学模型;并对今后的研究方向进行了阐述.

  15. Direct Observation of THF Hydrate Formation in Porous Microstructure Using Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Di Liu

    2012-04-01

    Full Text Available The porous microstructure of hydrates governs the mechanical strength of the hydrate-bearing sediment. To investigate the growth law and microstructure of hydrates in porous media, the growth process of tetrahydrofuran (THF hydrate under different concentration of THF solution is directly observed using Magnetic Resonance Imaging (MRI. The images show that the THF hydrate grows as different models under different concentration of THF solution (19%, 11.4% and 5.7% by weight at 1 °C. When the concentration is 19% (stoichiometric molar ratio of THF/H2O = 1:17, the THF hydrate grows as cementing model. However, with the decreasing concentration of THF, the growth model transfers from cementing model to floating model. The results show that the growth of the THF hydrate was influenced by the dissolved quantity of THF in the water. The extension of the observed behavior to methane hydrate could have implications in understanding their role in seafloor and permafrost stability.

  16. Spectroscopic Evidence for Uranium Bearing Precipitates in Vadose Zone Sediments at the Hanford 300-Area Site

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Yuji [Clemson Univ., SC (United States); Marcus, Matthew A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tamura, Nobumichi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davis, James A. [United States Geological Survey, Menlo Park, CA (United States); Zachara, John M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-07-01

    Uranium(U) solid-state speciation in vadose zone sediments collected beneath the former North Process Pond (NPP) in the 300-Area of the Hanford site (WA, USA) was investigated using multi-scale techniques. In 30-day batch experiments, only a small fraction of total U (~7.4%) was released to artificial groundwater solutions equilibrated with 1% pCO2. Synchrotron-based micro X-ray fluorescence spectroscopy analyses showed that U was distributed among at least two types of species: 1) U discrete grains associated with Cu, and 2) areas with intermediate U concentrations on grains and grain coatings. Metatorbernite (Cu[UO2]2[PO4]2•8H2O) and uranophane (Ca[UO2]2[SiO3(OH)]2•5H2O) at some U discrete grains, and muscovite at U intermediate concentration areas were identified in synchrotron-based micro X-ray diffraction. SEM/EDS analyses revealed 8-10 µm size metatorbernite particles that were embedded in C-, Al-, and Si-rich coatings on quartz and albite grains. In μ- and bulk-X-ray Absorption Structure (μ-XAS and XAS) spectroscopy analyses, the structure of metatorbernite with additional U-C and U-U coordination environments were consistently observed at U discrete grains with high U concentrations. The consistency of the μ- and bulk-XAS analyses suggests that metatorbernite may comprise a significant fraction of the total U in the sample. The entrapped, micron-sized metatorbernite particles in C, Al, and Si rich coatings, along with the more soluble precipitated uranyl carbonates and uranophane, likely control the long-term release of U to water associated with the vadose zone sediments.

  17. Authigenic sulfide minerals and their sulfur isotopes in sediments of the northern continental slope of the South China Sea and their implications for methane flux and gas hydrate formation

    Institute of Scientific and Technical Information of China (English)

    PU XiaoQiang; ZHONG ShaoJun; YU WenQuan; TAO XiaoWan

    2007-01-01

    This is a report of the study of the authigenic sulfide minerals and their sulfur isotopes in a sediment core (NH-1) collected on the northern continental slope of the South China Sea, where other geophysical and geochemical evidence seems to suggest gas hydrate formation in the sediments. The study has led to the findings: (1) the pyrite content in sediments was relatively high and its grain size relatively large compared with that in normal pelagic or hemipelagic sediments; (2) the shallowest depth of the acid volatile sulfide (AVS) content maximum was at 437.5 cm (>2 μmol/g), which was deeper than that of the authigenic pyrite content maximum (at 141.5-380.5 cm); (3) δ34S of authigenic pyrite was positive (maximum: +15‰) at depth interval of 250-380 cm; (4) the positive δ34S coincided with pyrite enrichment. Compared with the results obtained from the Black Sea sediments by Jorgensen and coworkers, these observations indicated that at the NH-1 site, the depth of the sulfate-methane interface (SMI) would be or once was at about 437.5-547.5 cm and the relatively shallow SMI depth suggested high upward methane fluxes. This was in good agreement with the results obtained from pore water sulfate gradients and core head-space methane concentrations in sediment cores collected in the area. All available evidence suggested that methane gas hydrate formation may exist or may have existed in the underlying sediments.

  18. Occurrence and palaeoenvironmental significance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada)

    Energy Technology Data Exchange (ETDEWEB)

    Haberer, R.M.; Mangelsdorf, K.; Wilkes, H.; Horsfield, B. [Geoforschungszentrum Potsdam, Potsdam (Germany)

    2006-07-01

    The aromatic hydrocarbon biomarker distributions of thirty Oligocene sediment samples with different lithology (lignite, clay and sand) from the JAPEX/JNOC/GSC et al. Mallik 5L-38 Gas Hydrate Production Research Well, Canada, were analyzed using gas chromatography-mass spectrometry (GC-MS). The compositions vary with lithology, indicating a change in palaeoenvironmental conditions at the time of deposition. Aromatic diterpenoids of the abietane type are more abundant in the lignite samples than in the clay samples and represent a gymnosperm (e.g., conifer) dominated palaeovegetation. In contrast, in the clay samples aromatic triterpenoids are generally preserved as major constituents, indicating angiosperm dominated vegetation. The sand samples contain only minor amounts of aromatic terpenoids, but show a preference for diterpenoid gymnosperm markers. To recognise gymnosperm versus angiosperm dominated palaeoenvironments a new ratio, termed the angiosperm-gymnosperm aromatic ratio (AGAR), has been developed. Thus, the terpenoid distribution in the deltaic sediments provides information on the compositional changes in the plant community at the Mallik site (lignites) and the hinterland (clays) over time. Concomitantly, the changing dominance in the plant communities allows an insight into varying climatic conditions during the late Oligocene in the area.

  19. Pore fluid geochemistry from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Torres, M.E.; Collett, T.S.; Rose, K.K.; Sample, J.C.; Agena, W.F.; Rosenbaum, E.J.

    2011-01-01

    The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled and cored from 606.5 to 760.1. m on the North Slope of Alaska, to evaluate the occurrence, distribution and formation of gas hydrate in sediments below the base of the ice-bearing permafrost. Both the dissolved chloride and the isotopic composition of the water co-vary in the gas hydrate-bearing zones, consistent with gas hydrate dissociation during core recovery, and they provide independent indicators to constrain the zone of gas hydrate occurrence. Analyses of chloride and water isotope data indicate that an observed increase in salinity towards the top of the cored section reflects the presence of residual fluids from ion exclusion during ice formation at the base of the permafrost layer. These salinity changes are the main factor controlling major and minor ion distributions in the Mount Elbert Well. The resulting background chloride can be simulated with a one-dimensional diffusion model, and the results suggest that the ion exclusion at the top of the cored section reflects deepening of the permafrost layer following the last glaciation (???100 kyr), consistent with published thermal models. Gas hydrate saturation values estimated from dissolved chloride agree with estimates based on logging data when the gas hydrate occupies more than 20% of the pore space; the correlation is less robust at lower saturation values. The highest gas hydrate concentrations at the Mount Elbert Well are clearly associated with coarse-grained sedimentary sections, as expected from theoretical calculations and field observations in marine and other arctic sediment cores. ?? 2009 Elsevier Ltd.

  20. Detection of gas-charged sediments and gas hydrate horizons along the western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Veerayya, M.; Karisiddaiah, S.M.; Vora, K.H.; Wagle, B.G.; Almeida, F.

    hyperbolic reflctors occur in places below the BSR, which may suggest the presence of gas-charged sediments. Folds, diapiric features and faults present in the slope-rise areas may probably werve as traps and conduits for upward migration of fluids...

  1. Palaeocology of coal-bearing Eocene sediments in central Anatolia (Turkey) based on quantitative palynological data

    Energy Technology Data Exchange (ETDEWEB)

    Akkiraz, M.S.; Kayseri, M.S.; Akgun, F. [Dokuz Eylul University, Izmir (Turkey). Dept. of Geological Engineering

    2008-04-15

    In this study, the lignite-bearing Yoncali formation between Yozgat and Sorgun, in central Anatolia has been palynologically examined. Based on 37 outcrop samples, quantitative palynological studies recognized 64 genera and 136 palynoflora species in the palynological assemblage, which indicated a Middle-Late Eocene age. This paper also presents a quantitative palaeovegetation and palaeoclimate reconstruction for the Middle-Upper Eocene coal occurrences of Central Anatolia on the basis of palynomorph assemblages. The diversified floral and ecological characteristics of the pollen taxa indicates that the Middle-Upper Eocene formations in central Anatolia were characterized by the presence of a complex mangrove swamp with contributions by Nypa, Pelliciera, Avicennia, Diporites tszkaszentgydrgyi and dinoflagellate cysts which reflect warm climatic conditions. Lowland-riparian and montane elements are characterized by the dominance of Myricaceae, Symplocaceae, Icacinaceae, Quercus, Pinus and Castanea. Swamp-freshwater elements are represented by Sparganjaceae, Nymphaceae, Taxodjaceae, Cupressaceae and Nyssa as well as fern spores such as Osmundaceae and Gleicheniaceae. The calculations were performed with the help of the 'Coexistence Approach' method to climatically evaluate palynoflora from the Yozgat-Sorgun area. The obtained results have been compared to data derived from the application of the Coexistence Approach to other, already published Central Anatolian palynofloras of the same age. The results of the climatic inferences suggest that the palaeoclimatic conditions were in the megathermal zone, megatherm/mesotherm intermediate zone whereas mesothermic conditions prevailed in the montane region. Likewise, the results of mean annual range of temperatures indicate the influence of the Indian ocean, which enabled the development of the mangroves.

  2. Chemical and morphological characteristics of solid metal-bearing phases deposited in snow and stream sediment as indicators of their origin.

    Science.gov (United States)

    Miler, Miloš; Gosar, Mateja

    2015-02-01

    Detailed scanning electron microscopy/energy dispersive spectroscopy of metal-bearing particles in snow deposits and stream sediment from a steelworks area was performed. Identified metal-bearing phases were apportioned according to their chemical and morphological characteristics to anthropogenic phases and secondary weathering products. Anthropogenic metal-bearing phases are the most abundant in both media and are represented by various irregular ferrous oxides, ferrous alloys, spherical ferrous oxides, and ferrous silicates with variable contents of Cr, Mn, Ni, V, W, and Mo. Secondary weathering products are Al silicates, Fe oxy-hydroxides, and Fe oxy-hydroxy sulfates with minor contents of transition metals, resulting from weathering of anthropogenic phases and Pb-Zn ore minerals from a closed Pb-Zn mine located upstream from the study area. Comparison of anthropogenic metal-bearing phases in both media showed agreement in their compositions and morphologies and indicated their sources are high-temperature processes in steel production. It also showed that spherical metal-bearing phases were transported by the same transport medium, which is the atmosphere, while other phases were transported into stream sediment mostly by other pathways, such as precipitation runoff over contaminated surfaces.

  3. Lithological controls on gas hydrate saturation: Insights from signal classification of NMR downhole data

    Science.gov (United States)

    Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik

    2016-04-01

    Nuclear magnetic resonance (NMR) downhole data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). NMR logging is a powerful tool to study geological reservoir formations. The measurements are based on interactions between the magnetic moments of protons in geological formation water and an external magnetic field. Inversion of the measured raw data provides so-called transverse relaxation time (T2) distribution curves or spectra. Different parts of the T2 curve are related with distinct pore radii and corresponding fluid components. A common practice in the analysis of T2 distribution curves is to extract single-valued parameters such as apparent total porosity. Moreover, the derived total NMR apparent porosity and the gamma-gamma density log apparent porosity can be combined to estimate gas hydrate saturation in hydrate-bearing sediments. To avoid potential loss of information, in our new approach we analyze the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. The approach is applied to NMR data measured in gas hydrate research well Mallik 5L-38. We use self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR T2 distribution curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, photo-electric factor, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal

  4. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  5. Seismic detection and quantification of gas hydrates in Alaminos Canyon, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Jianchun, D.; Banik, N.; Shelander, D.; Bunge, G.; Dutta, N. [Schlumberger Data Consulting Services, Houston, TX (United States). Reservoir Seismic Services

    2008-07-01

    Due to the potential of gas hydrates as an alternative energy resource, and as possible sources of shallow hazards for drilling and production of oil and gas, and as an agent of long-term, global climate change, naturally occurring gas hydrates have drawn significant attention from the scientific community and industry around the world. Gas hydrates exist in shallow sediments in Arctic permafrost regions and in the world's deepwater oceans. A large portion of naturally occurring hydrates offer potential for an energy resource. Because the world demand for fossil fuel is ever-increasing and the supply is dwindling, it is crucial to have a methodology for reliable assessment of gas hydrates accumulation in worldwide deepwater basins. Three-dimensional seismic reflection is a possible technology for such efforts. This paper presented the results of a study on the quantitative estimation of gas hydrates in Alaminos Canyon block 818, Gulf of Mexico. A five-step workflow was used for the study, which included high resolution seismic re-processing; prestack full waveform inversion (PSWI) at selected locations; three-dimensional simultaneous inversion; rock physics modeling; and hydrate quantification. The final estimation of gas hydrates saturation was done using both a direct deterministic regression-based transformation method and using Bayesian statistical inversion. Based on these inversion results, a series of prospects were generated within the study area. The study identified a large area, approximately 1 square kilometre in the middle east of the AC818, containing high concentration gas hydrates bearing sediments. 8 refs., 9 figs.

  6. Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 drilling: introduction and overview

    Science.gov (United States)

    Ruppel, C.; Boswell, R.; Jones, E.

    2008-01-01

    The Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) is a consortium of production and service companies and some government agencies formed to address the challenges that gas hydrates pose for deepwater exploration and production. In partnership with the U.S. Department of Energy and with scientific assistance from the U.S. Geological Survey and academic partners, the JIP has focused on studies to assess hazards associated with drilling the fine-grained, hydrate-bearing sediments that dominate much of the shallow subseafloor in the deepwater (>500 m) Gulf of Mexico. In preparation for an initial drilling, logging, and coring program, the JIP sponsored a multi-year research effort that included: (a) the development of borehole stability models for hydrate-bearing sediments; (b) exhaustive laboratory measurements of the physical properties of hydrate-bearing sediments; (c) refinement of new techniques for processing industry-standard 3-D seismic data to constrain gas hydrate saturations; and (d) construction of instrumentation to measure the physical properties of sediment cores that had never been removed from in situ hydrostatic pressure conditions. Following review of potential drilling sites, the JIP launched a 35-day expedition in Spring 2005 to acquire well logs and sediment cores at sites in Atwater Valley lease blocks 13/14 and Keathley Canyon lease block 151 in the northern Gulf of Mexico minibasin province. The Keathley Canyon site has a bottom simulating reflection at ???392 m below the seafloor, while the Atwater Valley location is characterized by seafloor mounds with an underlying upwarped seismic reflection consistent with upward fluid migration and possible shoaling of the base of the gas hydrate stability (BGHS). No gas hydrate was recovered at the drill sites, but logging data, and to some extent cores, suggest the occurrence of gas hydrate in inferred coarser-grained beds and fractures, particularly between 220 and 330 m below the seafloor

  7. Dissociation and specific heats of gas hydrates under submarine and sublacustrine environments

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, R.; Hachikubo, A.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan)

    2008-07-01

    Studies have shown that natural gas hydrates located near a mud volcano in Lake Baikal contain high concentrations of ethane. Gas hydrates absorb and release large amounts of latent heat during their formation and dissociation processes. In this study, the specific heat of synthetic methane and ethane hydrates were measured under high pressure using a heat-flow calorimeter. The aim of the study was to develop an improved understanding of the thermal environment of gas hydrate-bearing sediments in submarine and sublacustrine environments. Ice was placed in 2 sampling cells and pressurized with methane and ethane at 5 MPa and 2 MPa. After the gas hydrates formed, the samples were then heated from 263 K to 288 K. An analysis of data obtained from the experiment showed that large negative heat flow peaks corresponding with methane gas hydrate dissociation occurred in temperature ranges of 279 to 282 K at a pressure of 5 MPa, and at temperatures of 283-286 K at 2 MPa for the ethane gas hydrate. Future experiments with the calorimeter will be conducted at higher pressure ranges. 15 refs., 3 figs.

  8. From Black Hole to Hydrate Hole: Gas hydrates, authigenic carbonates and vent biota as indicators of fluid migration at pockmark sites of the Northern Congo Fan

    Science.gov (United States)

    Kasten, S.; Schneider, R.; Spiess, V.; Cruise Participants Of M56b

    2003-04-01

    A recent high-resolution seismic, echosounder and video survey combined with detailed geological and geochemical sampling of pockmark sites on the Northern Congo Fan was carried out with RV Meteor in November/December 2002 in the frame of the project "CONGO" (BMBF/BEO "Geotechnologien"). These investigations revealed the extensive occurrence of surface and sub-surface gas hydrates as well as characteristic features of fluid venting such as clams (Calyptogena), tube worms (Pogonophera) and huge amounts of authigenic carbonates. In a first approach the patchyness in the occurrence of these features was mapped in relation to pockmark structure and seismic reflectors. Detailed sampling of three pockmarks by gravity corer showed that gas hydrates are present at and close to the sediment surface and often occur as several distinct layers and/or veins intercalated with hemipelagic muds. The depth of the upper boundary of these hydrate-bearing sediments increases from the center towards the edge of the pockmark structures. Pore water concentration profiles of sulfate and methane document the process of anaerobic methane oxidation above the hydrate-bearing layers. For those cores which contained several gas hydrate layers preliminary pore water profiles suggest the occurrence of more than one zone of anaerobic methane oxidation. Authigenic carbonates are found in high abundance, irregularly distributed within the pockmarks close to the sediment surface. These carbonates occur in a wide variety with respect to size, shape, structure and mineralogy. Their formation is associated with high amounts of bicarbonate released by the process of anaerobic methane oxidation. In the gravity cores authigenic carbonates are always present above hydrate-bearing sections. However, the quantities and characteristics of these authigenic minerals in relation to venting and microbial activity as well as to gas hydrate dissociation are not clear yet. Unraveling this relationship will be a major

  9. Depositional environment and source potential of Jurassic coal-bearing sediments (Gresten Formation, Hoflein gas/condensate field, Austria)

    Energy Technology Data Exchange (ETDEWEB)

    Sachsenhofer, R.F.; Bechtel, A.; Kuffner, T.; Rainer, T.; Gratzer, R.; Sauer, R.; Sperl, H. [Mount University of Leoben, Leoben (Austria)

    2006-05-15

    Coal-bearing Jurassic sediments (Gresten Formation; Lower Quartzarenite Member) are discussed as source rocks for gas and minor oil in the basement of the Alpine-Carpathian frontal zone (e.g. Hoflein gas/condensate field). Core material has therefore been analysed to characterize depositional environment and source potential of the Lower Quartzarenite Member (LQM). Geochemical data from the Hoflein condensate are used to establish a Source-condensate correlation. The LQM was deposited in a flood basin with transitions to a delta-plain environment. Coal originated in frequently flooded mires and evolved within an oxygenated and acidic environment. It is inferred from geochemical data that organic matter from aquatic macrophytes and gymnosperms contributed to coal formation. Wildfires were abundant and oxidation of plant remains occurred frequently. This resulted in the formation of dull coal with very high inertinite contents. Bituminous shales were formed in deeper waters under dysoxic conditions. Apart from abundant algae and micro-organisms, it is concluded that there was an increased contribution of higher land plants relative to macrophytes to the biomass of the shales. Despite high inertinite contents, coal within the LQM has a significant oil potential. Bituminous shales contain a Type III-II kerogen. According to pyrolysis-gas chromatography data, coal and shale generate a high wax paraffinic oil. The organic matter is immature to marginal mature (0.55% Rr). Bituminous shales are considered a potential source for the Hoflein condensate. Coal may be the source for gas and minor oil in the Klement Field, but is not the source for the condensate.

  10. Towards Biogeochemical Modeling of Anaerobic Oxidation of Methane: Characterization of Microbial Communities in Methane-bearing North American Continental Margin Sediments

    Science.gov (United States)

    Graw, M. F.; Solomon, E. A.; Chrisler, W.; Krause, S.; Treude, T.; Ruppel, C. D.; Pohlman, J.; Colwell, F. S.

    2015-12-01

    Methane advecting through continental margin sediments may enter the water column and potentially contribute to ocean acidification and increase atmospheric methane concentrations. Anaerobic oxidation of methane (AOM), mediated by syntrophic consortia of anaerobic methanotrophic archaea and sulfate-reducing bacteria (ANME-SRB), consumes nearly all dissolved methane in methane-bearing sediments before it reaches the sediment-water interface. Despite the significant role ANME-SRB play in carbon cycling, our knowledge of these organisms and their surrounding microbial communities is limited. Our objective is to develop a metabolic model of ANME-SRB within methane-bearing sediments and to couple this to a geochemical reaction-transport model for these margins. As a first step towards this goal, we undertook fluorescent microscopic imaging, 16S rRNA gene deep-sequencing, and shotgun metagenomic sequencing of sediments from the US Pacific (Washington) and northern Atlantic margins where ANME-SRB are present. A successful Illumina MiSeq sequencing run yielded 106,257 bacterial and 857,834 archaeal 16S rRNA gene sequences from 12 communities from the Washington Margin using both universal prokaryotic and archaeal-specific primer sets. Fluorescent microscopy confirmed the presence of cells of the ANME-2c lineage in the sequenced communities. Microbial community characterization was coupled with measurements of sediment physical and geochemical properties and, for samples from the US Atlantic margin, 14C-based measurements of AOM rates and 35S-based measurements of sulfate reduction rates. These findings have the potential to increase understanding of ANME-SRB, their surrounding microbial communities, and their role in carbon cycling within continental margins. In addition, they pave the way for future efforts at developing a metabolic model of ANME-SRB and coupling it to geochemical models of the US Washington and Atlantic margins.

  11. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-07-15

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  12. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    Science.gov (United States)

    Boswell, R.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-01-01

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 #1 ("Tigershark") well shows a total gas hydrate occurrence 13??m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8??km2 and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  13. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.J.; Liu, T.J. H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-06-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  14. Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, Timothy J.; Lu, Hailong; Winters, William; Boswell, Ray; Hunter, Robert; Collett, Timothy S.

    2009-09-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  15. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    Science.gov (United States)

    Kneafsey, T.J.; Lu, H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-01-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  16. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea

    Science.gov (United States)

    Wang, Xiujuan; Qiang, Jin; Collett, Timothy S.; Shi, Hesheng; Yang, Shengxiong; Yan, Chengzhi; Li, Yuanping; Wang, Zhenzhen; Chen, Duanxin

    2016-01-01

    A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.

  17. Protocol for Measuring the Thermal Properties of a Supercooled Synthetic Sand-water-gas-methane Hydrate Sample.

    Science.gov (United States)

    Muraoka, Michihiro; Susuki, Naoko; Yamaguchi, Hiroko; Tsuji, Tomoya; Yamamoto, Yoshitaka

    2016-03-21

    Methane hydrates (MHs) are present in large amounts in the ocean floor and permafrost regions. Methane and hydrogen hydrates are being studied as future energy resources and energy storage media. To develop a method for gas production from natural MH-bearing sediments and hydrate-based technologies, it is imperative to understand the thermal properties of gas hydrates. The thermal properties' measurements of samples comprising sand, water, methane, and MH are difficult because the melting heat of MH may affect the measurements. To solve this problem, we performed thermal properties' measurements at supercooled conditions during MH formation. The measurement protocol, calculation method of the saturation change, and tips for thermal constants' analysis of the sample using transient plane source techniques are described here. The effect of the formation heat of MH on measurement is very small because the gas hydrate formation rate is very slow. This measurement method can be applied to the thermal properties of the gas hydrate-water-guest gas system, which contains hydrogen, CO2, and ozone hydrates, because the characteristic low formation rate of gas hydrate is not unique to MH. The key point of this method is the low rate of phase transition of the target material. Hence, this method may be applied to other materials having low phase-transition rates.

  18. Relict gas hydrates as possible reason of gas emission from shallow permafrost at the northern part of West Siberia

    Science.gov (United States)

    Chuvilin, Evgeny; Bukhanov, Boris; Tumskoy, Vladimir; Istomin, Vladimir; Tipenko, Gennady

    2017-04-01

    zone) permafrost horizons. The results show that all investigated frozen hydrate-bearing sandy and silty sand samples in the temperature range from -16 °C to -2 °C are characterized by not complete decomposition of pore hydrate at relieving pressure below the equilibrium. It was observed that at typical north Western Siberian permafrost temperature of -6 ° C the safety of pore hydrate in frozen samples can reach 60% at the pressure reducing below the equilibrium. In was found that with increasing temperature and particle size (dispersity) the efficiency of pore hydrate self-preservation is decreased, but even at the temperature of -2 °C there is residual pore methane hydrate content in non-saline sandy samples. All this suggests about high preservation of methane hydrates in frozen sediments at non-equilibrium thermobaric conditions, close to reservoir conditions. Based on the results of mathematical and experimental simulations about the possibility of relic gas hydrates existence on permafrost depth up to 200 m in the northern part of Western Siberia on the less than 200 m due to geological manifestation of the self-preservation effect of gas hydrates. References. 1.Chuvilin EM, Yakushev VS, Perlova EV. Gas and gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia. // Polarforschung 68: 215-219, 1998. (erschienen 2000). 2.Yakushev V.S., Chuvilin E.M. 2000. Natural gas and hydrate accumulation within permafrost in Russia. Cold Regions Science and Technology. 31: 189-197. These researches are supported by grant RSF №16-17-00051.

  19. Gas hydrate, fluid flow and free gas: Formation of the bottom-simulating reflector

    Science.gov (United States)

    Haacke, R. Ross; Westbrook, Graham K.; Hyndman, Roy D.

    2007-09-01

    Gas hydrate in continental margins is commonly indicated by a prominent bottom-simulating seismic reflector (BSR) that occurs a few hundred metres below the seabed. The BSR marks the boundary between sediments containing gas hydrate above and free gas below. Most of the reflection amplitude is caused by the underlying free gas. Gas hydrate can occur without a BSR, however, and the controls on its formation are not well understood. Here we describe two complementary mechanisms for free gas accumulation beneath the gas hydrate stability zone (GHSZ). The first is the well-recognised hydrate recycling mechanism that generates gas from dissociating hydrate when the base of the GHSZ moves upward relative to hydrate-bearing sediment. The second is a recently identified mechanism in which the relationship between the advection and diffusion of dissolved gas with the local solubility curve allows the liquid phase to become saturated in a thick layer beneath the GHSZ when hydrate is present near its base. This mechanism for gas production (called the solubility-curvature mechanism) is possible in systems where the influence of diffusion becomes important relative to the influence of advection and where the gas-water solubility decreases to a minimum several hundred metres below the GHSZ. We investigate a number of areas in which gas hydrate occurs to determine where gas formation is dominated by the solubility-curvature mechanism and where it is dominated by hydrate recycling. We show that the former is dominant in areas with low rates of upward fluid flow (such as old, rifted continental margins), low rates of seafloor uplift, and high geothermal gradient and/or pressure. Conversely, free-gas formation is dominated by hydrate recycling where there are rapid rates of upward fluid flow and seabed uplift (such as in subduction zone accretionary wedges). Using these two mechanisms to investigate the formation of free gas beneath gas hydrate in continental margins, we are able

  20. Distribution of heavy metals and radionuclides in sediments, water, and fish in an area of Great Bear Lake contaminated with mine wastes.

    Science.gov (United States)

    Moore, J W; Sutherland, D J

    1981-01-01

    The concentrations of heavy metals and radionuclides in the sediments and water of Great Bear Lake were determined during 1978 near an operating silver mine and an abandoned uranium mine. Additional information on the level of mercury in fish tissues were also collected. The mines, situated on the same site, deposited tailings and other waste material directly into the lake. The concentrations of mercury, lead, manganese, and nickel in the sediments were highest near the tailings deposit and decreased significantly as the distance from the mine increased. Although there were also significant positive correlations between these metals and the organic content of the sediments, water depth and slope of the bottom had no impact on metal distribution. Since the concentrations of arsenic, cobalt, copper, 226radium, 210lead and 230thorium varied inconsistently throughout the study area, the distribution of these substances could not be related to any of the environmental factors that were measured. There were, however, significant negative correlations between the concentrations of 232thorium and 228thorium and distance from the mine and organic content of the sediments. Heavy metal and radionuclide levels in water were generally below detectable limits, reflecting the strong chemical bonding characteristics of the sediments. The low concentrations of mercury in the tissues of lake trout Salvelinus namaycush were probably related to low uptake rates and the ability of this species to move into uncontaminated areas of the lake.

  1. Distribution of heavy metals and radionuclides in sediments, water, and fish in an area of Great Bear Lake contaminated with mine wastes

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.W.; Sutherland, D.J.

    1981-01-01

    The concentrations of heavy metals and radionuclides in the sediments and water of Great Bear Lake were determined during 1978 near an operating silver mine and an abandoned uranium mine. Additional information on the level of mercury in fish tissues were also collected. The mines, situated on the same site, deposited tailings and other waste material directly into the lake. The concentrations of mercury, lead, manganese, and nickel in the sediments were highest near the tailings deposit and decreased significantly as the distance from the mine increased. Although there were also significant positive correlations between these metals and the organic content of the sediments, water depth and slope of the bottom had no impact on metal distribution. Since the concentrations of arsenic, cobalt, copper, 226radium, 210lead and 230thorium varied inconsistently throughout the study area, the distribution of these substances could not be related to any of the environmental factors that were measured. There were, however, significant negative correlations between the concentrations of 232thorium and 228thorium and distance from the mine and organic content of the sediments. Heavy metal and radionuclide levels in water were generally below detectable limits, reflecting the strong chemical bonding characteristics of the sediments. The low concentrations of mercury in the tissues of lake trout Salvelinus namaycush were probably related to low uptake rates and the ability of this species to move into uncontaminated areas of the lake.

  2. Relation between relative permeability and hydrate saturation in Shenhu area, South China Sea

    Institute of Scientific and Technical Information of China (English)

    Li Chuan-Hui; Zhao Qian; Xu Hong-Jun; Feng Kai; Liu Xue-Wei

    2014-01-01

    Nuclear magnetic resonance measurements in hydrate-bearing sandstone samples from the Shenhu area, South China Sea were used to study the effect of gas hydrates on the sandstone permeability. The hydrate-bearing samples contain pore-fi lling hydrates. The data show that the pore-fi lling hydrates greatly affect the formation permeability while depending on many factors that also bear on permeability; furthermore, with increasing hydrate saturation, the formation permeability decreases. We used the Masuda model and an exponent N = 7.9718 to formulate the empirical equation that describes the relation between relative permeability and hydrate saturation for the Shenhu area samples.

  3. Hydrate Evolution in Response to Ongoing Environmental Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Alan [Univ. of Oregon, Eugene, OR (United States)

    2015-12-31

    Natural gas hydrates have the potential to become a vital domestic clean-burning energy source. However, past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. This project was designed to fill critical gaps in our understanding of domestic hydrate resources and improve forecasts for their response to environmental shifts. Project work can be separated into three interrelated components, each involving the development of predictive mathematical models. The first project component concerns the role of sediment properties on the development and dissociation of concentrated hydrate anomalies. To this end, we developed numerical models to predict equilibrium solubility of methane in twophase equilibrium with hydrate as a function of measureable porous medium characteristics. The second project component concerned the evolution of hydrate distribution in heterogeneous reservoirs. To this end, we developed numerical models to predict the growth and decay of anomalies in representative physical environments. The third project component concerned the stability of hydrate-bearing slopes under changing environmental conditions. To this end, we developed numerical treatments of pore pressure evolution and consolidation, then used "infinite-slope" analysis to approximate the landslide potential in representative physical environments, and developed a "rate-and-state" frictional formulation to assess the stability of finite slip patches that are hypothesized to develop in response to the dissociation of hydrate anomalies. The increased predictive capabilities that result from this work provide a framework for interpreting field observations of hydrate anomalies in terms of the history of environmental forcing that led to their development. Moreover

  4. Measuring in situ dissolved methane concentrations in gas hydrate-rich systems, Part 1: Investigating the correlation between tectonics and methane release from sediments

    Science.gov (United States)

    Lapham, L.; Wilson, R. M.; Paull, C. K.; Chanton, J.; Riedel, M.

    2010-12-01

    In 2009, an area of extended methane venting at 1200 meters water depth was found with high resolution AUV bathymetry scans on the Northern Cascadia Margin that was previously unknown. When visited by ROV, we found seafloor cracks with active bubble streams and thin bacterial mats suggesting shallow gas and possible pore-fluid saturation. Upon coring into the cracks, a hard-substrate (carbonate or gas hydrate) was punctured and gas flows began. With these observations, we asked the question “is this shallow gas released from the seafloor from regional tectonic activity, and, if so, what is the temporal variability of such release events?” To answer this, we deployed a long term pore-water collection device at one of these gas crack sites, informally named “bubbly gulch”, for 9 months. The device is made up of 4 OsmoSamplers that were each plumbed to a port along a 1-meter probe tip using small diameter tubing. By osmosis, the samplers collected water samples slowly through the ports and maintained them within a 300 meter-long copper tubing coil. Because of the high methane concentrations anticipated, in situ pressures were maintained within the coil by the addition of a high pressure valve. Water samples were collected from the overlying water, at the sediment-water interface, and 6 and 10 cm into the sediments. Bottom water temperatures were also measured over the time series to determine pumping rates of the samplers but also to look for any temporal variability. In May 2010, the samplers were retrieved by ROV during efforts to install seafloor instruments for Neptune Canada. In a land-based lab, the coils were sub-sampled by cutting every 4 meters of tubing. With a pumping rate of 0.5 mL/day, this allowed a temporal resolution of 6 days. To date, one sampler coil has been sub-sampled and measured for methane concentrations and stable carbon isotopes. Preliminary results from this coil show pore-fluids nearly saturated with respect to methane, ~45 m

  5. The status and direction of hydrate research - a discussion

    Science.gov (United States)

    Kneafsey, T. J.

    2016-12-01

    An open discussion will be moderated on the direction of gas hydrate research around the world. Please bring your ideas and thoughts to concisely present and discuss as time allows. Over the past two decades, significant progress has been made in understanding the deposition, location, configuration, and properties of hydrate-bearing sediments. Field, lab, and numerical studies have been performed covering a wide range of interests having geological, energy, safety, and climate foci. As we continue our investigations into the second most common form of solid water on earth, let's take a few minutes to thoughtfully discuss our current position and future important topics. Some questions to inspire thought/discussion: Incredible modeling capabilities have been developed to understand hydrate systems. What is now needed to enhance model reliability? Are the constitutive models adequately supported? How should confidence be built? What physics, chemistry, biology is needed but not included? The ability to locate subsurface and subsea gas hydrate deposits has improved dramatically. What additional developments are needed, and how will those developments be evaluated, selected, and validated? Are we adequately considering climate and environmental impacts? Are our gas production concepts adequate and robust? What processes are missing? What is novel?

  6. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    Science.gov (United States)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  7. Distribution of heavy metals and radionuclides in sediments, water, and fish in an area of Great Bear Lake contaminated with mine wastes

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.W.; Sutherland, D.J.

    1981-01-01

    A study was conducted to measure the concentrations of heavy metals and radionuclides in the sediments and water of Great Bear Lake in Alberta, Canada. The lake is near the operating Echo Bay silver mine and the abandoned Eldorado uranium mine. Additional information on the level of mercury in fish tissues was also collected. Concentrations of mercury, lead, manganese, and nickel in sediments were highest near the tailings deposit, and decreased significantly as the distance from the mine increased. Concentrations of arsenic, cobalt, copper, radium 226, lead 210, and thorium 230 varied inconsistently throughout the study area. Heavy metal and radionuclide levels in water were generally below detectable limits. Mercury levels in the flesh of lake trout averaged 0.03 mg/kg.

  8. Application of the carbon dioxide-barium hydroxide hydrate gas-solid reaction for the treatment of dilute carbon dioxide-bearing gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Haag, G.L.

    1983-09-01

    The removal of trace components from gas streams via irreversible gas-solid reactions in an area of interest to the chemical engineering profession. This research effort addresses the use of fixed beds of Ba(OH)/sub 2/ hydrate flakes for the removal of an acid gas, CO/sub 2/, from air that contains approx. 330 ppM/sub v/ CO/sub 2/. Areas of investigation encompassed: (1) an extensive literature review of Ba(OH)/sub 2/ hydrate chemistry, (2) microscale studies on 0.150-g samples to develop a better understanding of the reaction, (3) process studies at the macroscale level with 10.2-cm-ID fixed-bed reactors, and (4) the development of a model for predicting fixed-bed performance. Experimental studies indicated fixed beds of commercial Ba(OH)/sub 2/.8H/sub 2/O flakes at ambient temperatures to be capable of high CO/sub 2/-removal efficiencies (effluent concentrations <100 ppB), high reactant utilization (>99%), and an acceptable pressure drop (1.8 kPa/m at a superficial gas velocity of 13 cm/s). Ba(OH)/sub 2/.8H/sub 2/O was determined to be more reactive toward CO/sub 2/ than either Ba(OH)/sub 2/.3H/sub 2/O or Ba(OH)/sub 2/.1H/sub 2/O. A key variable in the development of this fixed-bed process was relative humidity. Operation at conditions with effluent relative humidities >60% resulted in significant recrystallization and restructuring of the flake and subsequent pressure-drop problems.

  9. SEISMIC STUDIES OF MARINE GAS HYDRATES

    Institute of Scientific and Technical Information of China (English)

    SONG Haibin

    2003-01-01

    We give a brief introduction of developments of seismic methods in the studies of marine gas hydrates. Then we give an example of seismic data processing for BSRs in western Nankai accretionary prism, a typical gas hydrate distribution region. Seismic data processing is proved to be important to obtain better images of BSRs distribution. Studies of velocity structure of hydrated sediments are useful for better understanding the distribution of gas hydrates. Using full waveform inversion, we successfully derived high-resolution velocity model of a double BSR in eastern Nankai Trough area. Recent survey and research show that gas hydrates occur in the marine sediments of the South China Sea and East China Sea.But we would like to say seismic researches on gas hydrate in China are very preliminary.

  10. Lithological control on gas hydrate saturation as revealed by signal classification of NMR logging data

    Science.gov (United States)

    Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik

    2015-09-01

    In this paper, nuclear magnetic resonance (NMR) downhole logging data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). In NMR logging, transverse relaxation time (T2) distribution curves are usually used to determine single-valued parameters such as apparent total porosity or hydrocarbon saturation. Our approach analyzes the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. We apply self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal amplitudes for all relaxation times. Most importantly, two subtypes of hydrate-bearing shaly sands were identified. They show distinct NMR signals and differ in hydrate saturation and gamma ray values. An inverse linear relationship between hydrate saturation and clay content was concluded. Finally, we infer that the gas hydrate is not grain coating, but rather, pore filling with matrix support is the preferred growth habit model for the studied formation.

  11. Electrical properties of methane hydrate + sediment mixtures

    Science.gov (United States)

    Du Frane, Wyatt L.; Stern, Laura A.; Constable, Steven; Weitemeyer, Karen A.; Smith, Megan M; Roberts, Jeffery J.

    2015-01-01

    Knowledge of the electrical properties of multicomponent systems with gas hydrate, sediments, and pore water is needed to help relate electromagnetic (EM) measurements to specific gas hydrate concentration and distribution patterns in nature. Toward this goal, we built a pressure cell capable of measuring in situ electrical properties of multicomponent systems such that the effects of individual components and mixing relations can be assessed. We first established the temperature-dependent electrical conductivity (σ) of pure, single-phase methane hydrate to be ~5 orders of magnitude lower than seawater, a substantial contrast that can help differentiate hydrate deposits from significantly more conductive water-saturated sediments in EM field surveys. Here we report σ measurements of two-component systems in which methane hydrate is mixed with variable amounts of quartz sand or glass beads. Sand by itself has low σ but is found to increase the overall σ of mixtures with well-connected methane hydrate. Alternatively, the overall σ decreases when sand concentrations are high enough to cause gas hydrate to be poorly connected, indicating that hydrate grains provide the primary conduction path. Our measurements suggest that impurities from sand induce chemical interactions and/or doping effects that result in higher electrical conductivity with lower temperature dependence. These results can be used in the modeling of massive or two-phase gas-hydrate-bearing systems devoid of conductive pore water. Further experiments that include a free water phase are the necessary next steps toward developing complex models relevant to most natural systems.

  12. Experimental Acid Weathering of Fe-Bearing Mars Analog Minerals and Rocks: Implications for Aqueous Origin of Hematite-Bearing Sediments in Meridiani Planum, Mars

    Science.gov (United States)

    Golden, D. C.; Koster, A. M.; Ming, D. W.; Morris, R. V.; Mertzman, S. A.

    2011-01-01

    A working hypothesis for Meridiani evaporite formation involves the evaporation of fluids derived from acid weathering of Martian basalts and subsequent diagenesis [1, 2]. However, there are no reported experimental studies for the formation of jarosite and gray hematite (spherules), which are characteristic of Meridiani rocks from Mars analog precursor minerals. A terrestrial analog for hematite spherule formation from basaltic rocks under acidic hydrothermal conditions has been reported [3], and we have previously shown that the hematite spherules and jarosite can be synthetically produced in the laboratory using Fe3+ -bearing sulfate brines under hydrothermal conditions [4]. Here we expand and extend these studies by reacting Mars analog minerals with sulfuric acid to form Meridiani-like rock-mineral compositions. The objective of this study is to provide environmental constraints on past aqueous weathering of basaltic materials on Mars.

  13. Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan

    Science.gov (United States)

    Glombitza, Clemens; Adhikari, Rishi R.; Riedinger, Natascha; Gilhooly, William P.; Hinrichs, Kai-Uwe; Inagaki, Fumio

    2016-01-01

    Sulfate reduction is the predominant anaerobic microbial process of organic matter mineralization in marine sediments, with recent studies revealing that sulfate reduction not only occurs in sulfate-rich sediments, but even extends to deeper, methanogenic sediments at very low background concentrations of sulfate. Using samples retrieved off the Shimokita Peninsula, Japan, during the Integrated Ocean Drilling Program (IODP) Expedition 337, we measured potential sulfate reduction rates by slurry incubations with 35S-labeled sulfate in deep methanogenic sediments between 1276.75 and 2456.75 meters below the seafloor. Potential sulfate reduction rates were generally extremely low (mostly below 0.1 pmol cm−3 d−1) but showed elevated values (up to 1.8 pmol cm−3 d−1) in a coal-bearing interval (Unit III). A measured increase in hydrogenase activity in the coal-bearing horizons coincided with this local increase in potential sulfate reduction rates. This paired enzymatic response suggests that hydrogen is a potentially important electron donor for sulfate reduction in the deep coalbed biosphere. By contrast, no stimulation of sulfate reduction rates was observed in treatments where methane was added as an electron donor. In the deep coalbeds, small amounts of sulfate might be provided by a cryptic sulfur cycle. The isotopically very heavy pyrites (δ34S = +43‰) found in this horizon is consistent with its formation via microbial sulfate reduction that has been continuously utilizing a small, increasingly 34S-enriched sulfate reservoir over geologic time scales. Although our results do not represent in-situ activity, and the sulfate reducers might only have persisted in a dormant, spore-like state, our findings show that organisms capable of sulfate reduction have survived in deep methanogenic sediments over more than 20 Ma. This highlights the ability of sulfate-reducers to persist over geological timespans even in sulfate-depleted environments. Our study

  14. Trace element-bearing phases during the solid transport: in-situ characterization and temporal variability in the Loire bed-sediments (France)

    Science.gov (United States)

    Grosbois, Cécile; Courtin-Nomade, Alexandra; Dhivert, Elie; Desmet, Marc; Kunz, Martin

    2013-04-01

    As a result of increased of agriculture, land use, urban areas, industry, traffic and population density, trace element inputs have altered considerably fluvial system (sediment, water quality and biota). The Loire River Basin (117,800 km2, total population of 8.4 Mp in 2010), even if it is considered one of the least human-impacted hydrosystem among the 5 large French basins, has been exposed to multiple sources of metals during the last 150 years, originating from major mining districts (coal and non-ferrous metals) and their associated industrial activities (Grosbois et al, 2012; Dhivert et al, 2013). Two major contamination periods were recorded in several core sediments throughout the basin: urban development of the basin. The limited dilution by detrital material (Loire sediment load between1.5 and 3.5 Mt/y) was an additional cause of such severe contamination. After 1950, river eutrophication was well-marked by the general increase of endogenic calcite in the mid and downstream part of the basin, slightly diluting all major and trace element bulk concentrations by 20% (Grosbois et al, 2012). Since 1980, a generalized and gradual decontamination of bed sediments started while mines were gradually closing, urban waste waters collected and treated in addition to new environmental regulations. They aim to limit metallic pollutant dispersion like industrial recycling of metal wastes and to reduce atmospheric emissions and consequently atmospheric fall out wet and dry deposition In-situ chemical and mineralogical techniques (EPMA, SEM-EDS/ACC system and synchrotron based µXRD) were used (i) to highlight anthropogenic activities by a specific mineralogical signature and (ii) to determine potential effects of post-depositional remobilization and access trace element mobility during the solid transport. Trace element-bearing phases were identified at a micron scale during both <1900-1950 and 1950-1980 contamination periods with respect to maximum contamination peaks

  15. Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations.

    Science.gov (United States)

    Ning, F L; Glavatskiy, K; Ji, Z; Kjelstrup, S; H Vlugt, T J

    2015-01-28

    Understanding the thermal and mechanical properties of CH4 and CO2 hydrates is essential for the replacement of CH4 with CO2 in natural hydrate deposits as well as for CO2 sequestration and storage. In this work, we present isothermal compressibility, isobaric thermal expansion coefficient and specific heat capacity of fully occupied single-crystal sI-CH4 hydrates, CO2 hydrates and hydrates of their mixture using molecular dynamics simulations. Eight rigid/nonpolarisable water interaction models and three CH4 and CO2 interaction potentials were selected to examine the atomic interactions in the sI hydrate structure. The TIP4P/2005 water model combined with the DACNIS united-atom CH4 potential and TraPPE CO2 rigid potential were found to be suitable molecular interaction models. Using these molecular models, the results indicate that both the lattice parameters and the compressibility of the sI hydrates agree with those from experimental measurements. The calculated bulk modulus for any mixture ratio of CH4 and CO2 hydrates varies between 8.5 GPa and 10.4 GPa at 271.15 K between 10 and 100 MPa. The calculated thermal expansion and specific heat capacities of CH4 hydrates are also comparable with experimental values above approximately 260 K. The compressibility and expansion coefficient of guest gas mixture hydrates increase with an increasing ratio of CO2-to-CH4, while the bulk modulus and specific heat capacity exhibit the opposite trend. The presented results for the specific heat capacities of 2220-2699.0 J kg(-1) K(-1) for any mixture ratio of CH4 and CO2 hydrates are the first reported so far. These computational results provide a useful database for practical natural gas recovery from CH4 hydrates in deep oceans where CO2 is considered to replace CH4, as well as for phase equilibrium and mechanical stability of gas hydrate-bearing sediments. The computational schemes also provide an appropriate balance between computational accuracy and cost for predicting

  16. Gas and Gas Hydrate Potential Offshore Amasra,Bartin and Zonguldak and Possible Agent for Multiple BSR Occurrence

    Science.gov (United States)

    Mert Küçük, Hilmi; Dondurur, Derman; Özel, Özkan; Sınayuç, Çağlar; Merey, Şükrü; Parlaktuna, Mahmut; Çifçi, Günay

    2015-04-01

    Gas hydrates, shallow gases and mud volcanoes have been studied intensively in the Black Sea in recent years. Researches have shown that the Black Sea region has an important potential about hydrocarbon. BSR reflections in the seismic sections and seabed sampling studies also have proven the formations of hydrates clearly. In this respect, total of 2400 km multichannel seismic reflection, chirp and multibeam bathymetry data were collected along shelf to abyssal plain in 2010 and 2012 offshore Amasra, Bartın, Zonguldak-Kozlu in the central Black Sea.. Collected data represent BSRs, bright spots and transparent zones. It has been clearly observed that possible gas chimneys cross the base of gas hydrate stability zones as a result of possible weak zones in the gas hydrate bearing sediments. Seabed samples were collected closely to possible gas chimneys due to shallow gas anomalies in the data. Head space gas cromatography was applied to seabed samples to observe gas composition and the gas cromatography results represented hydrocarbon gases such as Methane, Ethane, Propane, i-Butane, n-Butane, i-Pentane, n-Pentane and Hexane. Thermogenic gas production by Turkish Petroleum Corp. from Akçakoca-1 and Ayazlı-1 well is just located at the southwest of the study area and the observations of the study area point out there is also thermogenic gas potential at the eastern side of the Akçakoca. In addition, multiple-BSRs were observed in the study area and it is thought the key point of the multiple-BSRs are different gas compositions. This suggests that hydrate formations can be formed by gas mixtures. Changing of the thermobaric conditions can trigger dissociation of the gas hydrates in the marine sediments due to sedimentary load and changing of the water temperature around seabed. Our gas hydrate modelling study suggest that gas hydrates are behaving while their dissociation process if the gas hydrates are generated by gas mixture. Monitoring of our gas hydrate

  17. A continuous 250,000 yr record of oxygen and carbon isotopes in ostracode and bulk-sediment carbonate from Bear Lake, Utah-Idaho

    Science.gov (United States)

    Bright, Jordon; Kaufman, D.S.; Forester, R.M.; Dean, W.E.

    2006-01-01

    Oxygen and carbon isotopes from a continuous, 120-m-long, carbonate-rich core from Bear Lake, Utah-Idaho, document dramatic fluctuations in the hydrologic budget of the lake over the last 250,000 yr. Isotopic analyses of bulk sediment samples capture millennial-scale variability. Ostracode calcite was analyzed from 78 levels, mainly from the upper half of the core where valves are better preserved, to compare the isotopic value of purely endogenic carbonate with the bulk sediment, which comprises both endogenic and detrital components. The long core exhibits three relatively brief intervals with abundant endogenic aragonite (50??10%) and enriched ??18O and ??13C. These intervals are interpreted as warm/dry periods when the lake retracted into a topographically closed basin. We correlate these intervals with the interglacial periods of marine oxygen-isotope stages 1, 5e, and 7a, consistent with the presently available geochronological control. During most of the time represented by the core, the lake was fresher than the modern lake, as evidenced by depleted ??18O and ??13C in bulk-sediment carbonate. ?? 2006 Elsevier Ltd. All rights reserved.

  18. Numerical investigations of the fluid flows at deep oceanic and arctic permafrost-associated gas hydrate deposits

    Science.gov (United States)

    Frederick, Jennifer Mary

    Methane hydrate is an ice-like solid which sequesters large quantities of methane gas within its crystal structure. The source of methane is typically derived from organic matter broken down by thermogenic or biogenic activity. Methane hydrate (or more simply, hydrate) is found around the globe within marine sediments along most continental margins where thermodynamic conditions and methane gas (in excess of local solubility) permit its formation. Hydrate deposits are quite possibly the largest reservoir of fossil fuel on Earth, however, their formation and evolution in response to changing thermodynamic conditions, such as global warming, are poorly understood. Upward fluid flow (relative to the seafloor) is thought to be important for the formation of methane hydrate deposits, which are typically found beneath topographic features on the seafloor. However, one-dimensional models predict downward flow relative to the seafloor in compacting marine sediments. The presence of upward flow in a passive margin setting can be explained by fluid focusing beneath topography when sediments have anisotropic permeability due to sediment bedding layers. Even small slopes (10 degrees) in bedding planes produce upward fluid velocity, with focusing becoming more effective as slopes increase. Additionally, focusing causes high excess pore pressure to develop below topographic highs, promoting high-angle fracturing at the ridge axis. Magnitudes of upward pore fluid velocity are much larger in fractured zones, particularly when the surrounding sediment matrix is anisotropic in permeability. Enhanced flow of methane-bearing fluids from depth provides a simple explanation for preferential accumulation of hydrate under topographic highs. Models of fluid flow at large hydrate provinces can be constrained by measurements of naturally-occurring radioactive tracers. Concentrations of cosmogenic iodine, 129-I, in the pore fluid of marine sediments often indicate that the pore fluid is much

  19. Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea

    Science.gov (United States)

    Bahk, J.-J.; Kim, G.-Y.; Chun, J.-H.; Kim, J.-H.; Lee, J.Y.; Ryu, B.-J.; Lee, J.-H.; Son, B.-K.; Collett, Timothy S.

    2013-01-01

    Examinations of core and well-log data from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) drill sites suggest that Sites UBGH2-2_2 and UBGH2-6 have relatively good gas hydrate reservoir quality in terms of individual and total cumulative thicknesses of gas-hydrate-bearing sand (HYBS) beds. In both of the sites, core sediments are generally dominated by hemipelagic muds which are intercalated with turbidite sands. The turbidite sands are usually thin-to-medium bedded and mainly consist of well sorted coarse silt to fine sand. Anomalies in infrared core temperatures and porewater chlorinity data and pressure core measurements indicate that “gas hydrate occurrence zones” (GHOZ) are present about 68–155 mbsf at Site UBGH2-2_2 and 110–155 mbsf at Site UBGH2-6. In both the GHOZ, gas hydrates are preferentially associated with many of the turbidite sands as “pore-filling” type hydrates. The HYBS identified in the cores from Site UBGH2-6 are medium-to-thick bedded particularly in the lower part of the GHOZ and well coincident with significant high excursions in all of the resistivity, density, and velocity logs. Gas-hydrate saturations in the HYBS range from 12% to 79% with an average of 52% based on pore-water chlorinity. In contrast, the HYBS from Site UBGH2-2_2 are usually thin-bedded and show poor correlations with both of the resistivity and velocity logs owing to volume averaging effects of the logging tools on the thin HYBS beds. Gas-hydrate saturations in the HYBS range from 15% to 65% with an average of 37% based on pore-water chlorinity. In both of the sites, large fluctuations in biogenic opal contents have significant effects on the sediment physical properties, resulting in limited usage of gamma ray and density logs in discriminating sand reservoirs.

  20. A 9000-Year Record of Centennial-to-Multi Centennial Scale Pluvial Events From Lower Bear Lake Sediments (San Bernardino Mtns., Coastal Southwestern North America)

    Science.gov (United States)

    Rivera, J. J.; Kirby, M. E.; Zimmerman, S. R.; Starratt, S.; Patterson, W. P.; Hiner, C.; Monarrez, P.

    2011-12-01

    Lower Bear Lake is located in the San Bernardino Mountains of coastal southwestern North America (CSWNA). This lake is the natural, pre-dam lake where present day Big Bear Reservoir is located. A single drive, 4.8 m-long sediment core was extracted from Lower Bear Lake in 2005. We present a 9000 calendar years before present (cal yr BP) paleohydrologic reconstruction. This new multi-proxy record (LOI 550°C, 950°C; C:N ratios, microfossils counts, grain size) is well-dated (22 AMS 14C dates on discrete organic material) and is characterized by variable sedimentology. Our results indicate two major features: 1) a long-term Holocene drying trend as observed elsewhere in CSWNA with an abrupt shift from wetter to drier conditions about 6200; and, 2) nine centennial-to-multi-centennial pluvial events over the past 9000 cal yr BP superimposed on the long term drying trend. Of these nine inferred pluvial intervals, five are considered major based on their combined proxy interpretations: 9300?-8250, 7000-6400, 3350-3000, 850-700, and 500-??? cal yr BP. To assess our results in terms of broader, regional paleoclimate records, we compare the timing of the major pluvial intervals at Lower Bear Lake to those identified previously at Lake Elsinore and Tulare Lake. This comparison reveals a similar timing between the three sites and the major pluvials. This temporally and spatially coherent signal indicates that a similar climate forcing acted to increase regional wetness at various times during the past 9000 cal yr BP. As a working hypothesis, we contend that small changes in the dominant patterns of Pacific SSTs modulated atmospheric circulation, thus favoring periods of enhanced atmospheric river storm activity across CSWNA.

  1. IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Frank R. Rack; Peter Schultheiss; Melanie Holland

    2005-01-01

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were that: (1) follow-up logging of pressure cores containing hydrate-bearing sediment; and (2) opening of some of these cores to establish ground-truth understanding. The follow-up measurements made on pressure cores in storage are part of a hydrate geriatric study related to ODP Leg 204. These activities are described in detail in Appendices A and B of this report. Work also continued on developing plans for Phase 2 of this cooperative agreement based on evolving plans to schedule a scientific ocean drilling expedition to study marine methane hydrates along the Cascadia margin, in the NE Pacific as part of the Integrated Ocean Drilling Program (IODP) using the R/V JOIDES Resolution.

  2. Apparatus investigates geological aspects of gas hydrates

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Dillon, William P.

    1999-01-01

    The US Geological Survey has developed a laboratory research system which allows the study of the creation and dissociation of gas hydrates under deepwater conditions and with different sediment types and pore fluids. The system called GHASTLI (gas hydrate and sediment test laboratory instrument) comprises a pressure chamber which holds a sediment specimen, and which can simulate water depths to 2,500m and different sediment overburden. Seawater and gas flow through a sediment specimen can be precisely controlled and monitored. It can simulate a wide range of geology and processes and help to improve understanding of gas hydrate processes and aid prediction of geohazards, their control and potential use as an energy source. This article describes GHASTLI and how it is able to simulate natural conditions, focusing on fluid volume, acoustic velocity-compressional and shear wave, electric resistance, temperature, pore pressure, shear strength, and permeability.

  3. Documenting channel features associated with gas hydrates in the Krishna-Godavari Basin, offshore India

    Science.gov (United States)

    Riedel, M.; Collett, T.S.; Shankar, U.

    2011-01-01

    During the India National Gas Hydrate Program (NGHP) Expedition 01 in 2006 significant sand and gas hydrate were recovered at Site NGHP-01-15 within the Krishna-Godavari Basin, East Coast off India. At the drill site NGHP-01-15, a 5-8m thick interval was found that is characterized by higher sand content than anywhere else at the site and within the KG Basin. Gas hydrate concentrations were determined to be 20-40% of the pore volume using wire-line electrical resistivity data as well as core-derived pore-fluid freshening trends. The gas hydrate-bearing interval was linked to a prominent seismic reflection observed in the 3D seismic data. This reflection event, mapped for about 1km2 south of the drill site, is bound by a fault at its northern limit that may act as migration conduit for free gas to enter the gas hydrate stability zone (GHSZ) and subsequently charge the sand-rich layer. On 3D and additional regional 2D seismic data a prominent channel system was imaged mainly by using the seismic instantaneous amplitude attribute. The channel can be clearly identified by changes in the seismic character of the channel fill (sand-rich) and pronounced levees (less sand content than in the fill, but higher than in surrounding mud-dominated sediments). The entire channel sequence (channel fill and levees) has been subsequently covered and back-filled with a more mud-prone sediment sequence. Where the levees intersect the base of the GHSZ, their reflection strengths are significantly increased to 5- to 6-times the surrounding reflection amplitudes. Using the 3D seismic data these high-amplitude reflection edges where linked to the gas hydrate-bearing layer at Site NGHP-01-15. Further south along the channel the same reflection elements representing the levees do not show similarly large reflection amplitudes. However, the channel system is still characterized by several high-amplitude reflection events (a few hundred meters wide and up to ~1km in extent) interpreted as gas

  4. A new geotechnical gas hydrates research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates encapsulate natural gas molecules in a very compact form, as ice-like compounds composed of water molecules. Permafrost environments and offshore areas contain vast quantities of gas hydrates within soil and rock. This paper describes the role played by gas hydrates in submarine slope instability, their potential as a sustainable energy source, and their effects on global climate change. A new state-of-the-art laboratory located at the University of Calgary, which was developed to study the geomechanical behaviour of gas hydrate-sediment mixtures, was also presented. A specialized high pressure low temperature triaxial apparatus capable of performing a suite of tests on gas hydrate-sediment mixtures is housed in this laboratory. Extensive renovations were required in order to enable the use of methane gas to simulate natural hydrate formation conditions. The laboratory is specifically designed to examine the properties and behaviour of reconstituted gas hydrate-sediment mixtures and natural gas hydrate core samples. 26 refs., 9 figs.

  5. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    and the role it plays in the global climate and the future of fuels. Russia, Japan, Nigeria, Peru, Chile, Pakistan, Indonesia, Korea, etc are various countries who are perusing the gas hydrates studies as a future resource for fuel. Indian Initiative..., 1993, Free gas at the base of the gas hydrate zone in the vicinity of the Chile Triple junction: Geology, v. 21, pp. 905-908. Borowski, W.S., C.K. Paull, and U. William, III, 1999, Global and local variations of interstitial sulfate gradients...

  6. Pore-water chemistry of sediment cores off Mahanadi Basin, Bay of Bengal: Possible link to deep seated methane hydrate deposit

    Digital Repository Service at National Institute of Oceanography (India)

    Mazumdar, A.; Peketi, A.; Joao, H; Dewangan, P.; Ramprasad, T.

    ) induced sulfate consumption. The gas rich layers just below the base of hydrate stability zone (BGHSZ) is the possible source of the enhanced diffusive flux of biogenic methane (dalta13CCH4 ranging from -99.7 to - 106.3 percentage...

  7. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204

    Science.gov (United States)

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.

    2004-01-01

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally <2% of the pore space, although this estimate may increase by a factor of 2 when patchy zones of locally higher gas hydrate content are included in the calculation. These patchy zones are structurally and stratigraphically controlled, contain up to 20% hydrate in the pore space when averaged over zones ???10 m thick, and may occur in up to ???20% of the region imaged by 3D seismic data. This heterogeneous gas hydrate distribution is an important constraint on models of gas hydrate formation in marine sediments and the response of the sediments to tectonic and environmental change. ?? 2004 Published by Elsevier B.V.

  8. Overview on Hydrate Coring, Handling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  9. Geological and geochemical survey of gas hydrate deposits. Present status and future problems of R/D program; Gasuhaidoredo kosho no chishitsu {center_dot} chikagaku tansa. Genjo to kadai

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, R. [The Unibersity of Tokyo, Tokyo (Japan)

    1999-11-25

    Recent development of marine geological/geophysical investigations have revealed that (1) gas hydrates are widely distributed in deep shelf to slope sediments and (2) gas-hydrate-bearing sediments are underlain by a relatively thick free gas zone. This implies that [gas hydrate deposits] should be considered as a package of soild hydrate and free gas. An important parameter in resource evaluation is volume assessment of methane reserves, however, there are a number of issues to estimate even the total amount of methane trapped in gas hydrate deposits. There are a number of issues to be solved to estimate recoverable reserves of gas hydrate deposits. The issues include the discrepancy between BSR and BGHS and the nature and origin of double BSRs. Also another urgent and important theme is the generic link between gas hydrate formation and bacterial activity of deep biosphere. Stratigraphic Drilling of [Nankai Trough] by JNOC in 1999 and planned ODP drilling in the western Nankai Trough in 2000 are[expected to give clues to solve these problems. (author)

  10. Gas production potential of disperse low-saturation hydrateaccumulations in oceanic sediments

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J.; Sloan, E. Dendy

    2006-07-19

    In this paper we evaluate the gas production potential ofdisperse, low-saturation (SH<0.1) hydrate accumulations in oceanicsediments. Such hydrate-bearing sediments constitute a significantportion of the global hydrate inventory. Using numerical simulation, weestimate (a) the rates of gas production and gas release from hydratedissociation, (b) the corresponding cumulative volumes of released andproduced gas, as well as (c) the water production rate and the mass ofproduced water from disperse, low-SH hydrate-bearing sediments subject todepressurization-induced dissociation over a 10-year production period.We investigate the sensitivity of items (a) to (c) to the followinghydraulic properties, reservoir conditions, and operational parameters:intrinsic permeability, porosity, pressure, temperature, hydratesaturation, and constant pressure at which the production well is kept.The results of this study indicate that, despite wide variations in theaforementioned parameters (covering the entire spectrum of suchdeposits), gas production is very limited, never exceeding a few thousandcubic meters of gas during the 10-year production period. Such lowproduction volumes are orders of magnitude below commonly acceptedstandards of economic viability, and are further burdened with veryunfavorable gas-to-water ratios. The unequivocal conclusion from thisstudy is that disperse, low-SH hydrate accumulations in oceanic sedimentsare not promising targets for gas production by means ofdepressurization-induced dissociation, and resources for early hydrateexploitation should be focused elsewhere.

  11. Holocene palaeoecological changes recorded in mollusc-bearing cave sediments, the Cave above the Słupska Gate (southern Poland)

    Energy Technology Data Exchange (ETDEWEB)

    Szymanek, M.; Krajcarz, M; Krajcarz, M.T.; Alexandrowicz, W.P.

    2016-07-01

    The Cave above the Słupska Gate (southern Poland) contains about 2m depth of mollusc-bearing deposits. Radiocarbon and archaeological dating indicate that these deposits accumulated during the Holocene (Preboreal to Subatlantic), although the earliest layers may date from the end of the Pleistocene. Eight layers of silts, sands and loess-like deposits were distinguished at the site. Seven of them contained identifiable snail shells, sometimes n large numbers, and sparse remains of vertebrates and archaeological artefacts. The molluscan assemblages retrieved from the cave contain over 40 taxa and 1,200 specimens. The balance of species distributed among 11 oogeographical groups enabled us to identify four assemblages which differ in their ecological structure and in the composition of the fauna. The oldest fauna (Late Glacial/Preboreal and/or Preboreal) with many shade-loving species is typical of a cool climate. Episodes of drying are evidenced by the loess-like deposits and the occurrence of open-country snails such as the glacial relic Vallonia tenuilabris. This species disappeared in the younger part of the Early Holocene, which is the most distinctive feature of the Słupsko Hill sequence. The Middle Holocene climatic optimum is characterised by abundantand diverse fauna which is typical of mixed and deciduous forests with distinct oceanic influences. The critical Discus ruderatus and Discus rotundatus succession reflects the general trends in European malacofaunas. The Late Holocene record may bear some hiatuses, but the shift away from a complete forest fauna is evident. (Author)

  12. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and anaylsis

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of MexicoGasHydrateJointIndustryProjectLegII (GOM JIP LegII) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gashydrates under various geologic conditions and to understand the geologic controls on the occurrence of gashydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gashydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gashydrate in nature: From using electrical resistivity and acoustic logs to identify gashydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gashydrate reservoirs and the distribution and concentration of gashydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gashydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gashydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP LegII effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  13. Estimation of seismic attenuation of gas hydrate bearing sediments from multi-channel seismic data: A case study from Krishna-Godavari offshore basin

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Mandal, R.; Jaiswal, P.; Ramprasad, T.; Sriram, G.

    the quality of the manuscript. This is NIO contribution no. xxx. Appendix A: Peak frequency method (Zhang and Ulrych, 2002) The propagating wavelet at the onset of source (t=0) can be approximated by a Ricker wavelet with dominant frequency fm as...

  14. Gas hydrates distribution in the Shenhu area, northern South China Sea: comparisons between the eight drilling sites with gashydrate petroleum system

    Energy Technology Data Exchange (ETDEWEB)

    Su, M.; Yang, R.; Wang, H.; Sha, Z.; Liang, J.; Wu, N.; Qiao, S.; Cong, X.

    2016-07-01

    The results of the first marine gas hydrate drilling expedition of Guangzhou Marine Geological Survey (GMGS-1) in northern continental slope of the South China Sea revealed a variable distribution of gas hydrates in the Shenhu area. In this study, comparisons between the eight sites with gas-hydrate petroleum system were used to analyze and re-examine hydrate potential. In the Shenhu gas hydrate drilling area, all the sites were located in a suitable low-temperature, high-pressure environment. Biogenic and thermogenic gases contributed to the formation of hydrates. Gas chimneys and some small-scale faults (or micro-scale fractures) compose the migration pathways for gas-bearing fluids. Between these sites, there are three key differences: the seafloor temperatures and pressures; geothermal gradient and sedimentary conditions. Variations of seafloor temperatures and pressures related to water depths and geothermal gradient would lead to changes in the thickness of gas hydrate stability zones. Although the lithology and grain size of the sediments were similar, two distinct sedimentary units were identified for the first time through seismic interpretation, analysis of deep-water sedimentary processes, and the Cm pattern (plotted one-percentile and median values from grain-size analyses), implying the heterogeneous sedimentary conditions above Bottom Simulating Reflectors (BSRs). Based on the analyses of forming mechanisms and sedimentary processes, these two fine-grained sedimentary units have different physical properties. Fine-grained turbidites (Unit I) with thin-bedded chaotic reflectors at the bottom acted as the host rocks for hydrates; whereas, finegrained sediments related to soft-sediment deformation (Unit II) characterized by thick continuous reflectors at the top would serve as regional homogeneous caprocks. Low-flux methane that migrated upwards along chimneys could be enriched preferentially in fine-grained turbidites, resulting in the formation of

  15. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean

    DEFF Research Database (Denmark)

    Treude, T.; Boetius, A.; Knittel, K.;

    2003-01-01

    At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate-reducing...... bacteria, generates high concentrations of hydrogen sulfide in the surface sediments. The production of sulfide supports chemosynthetic communities that gain energy from sulfide oxidation. Depending on fluid flow, the surface communities are dominated either by the filamentous sulfur bacteria Beggiatoa...

  16. Crystallite size distributions of marine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Klapp, S.A.; Bohrmann, G.; Abegg, F. [Bremen Univ., Bremen (Germany). Research Center of Ocean Margins; Hemes, S.; Klein, H.; Kuhs, W.F. [Gottingen Univ., Gottingen (Germany). Dept. of Crystallography

    2008-07-01

    Experimental studies were conducted to determine the crystallite size distributions of natural gas hydrate samples retrieved from the Gulf of Mexico, the Black Sea, and a hydrate ridge located near offshore Oregon. Synchrotron radiation technology was used to provide the high photon fluxes and high penetration depths needed to accurately analyze the bulk sediment samples. A new beam collimation diffraction technique was used to measure gas hydrate crystallite sizes. The analyses showed that gas hydrate crystals were globular in shape. Mean crystallite sizes ranged from 200 to 400 {mu}m for hydrate samples taken from the sea floor. Larger grain sizes in the hydrate ridge samples suggested differences in hydrate formation ages or processes. A comparison with laboratory-produced methane hydrate samples showed half a lognormal curve with a mean value of 40{mu}m. Results of the study showed that a cautious approach must be adopted when transposing crystallite-size sensitive physical data from laboratory-made gas hydrates to natural settings. It was concluded that crystallite size information may also be used to resolve the formation ages of gas hydrates when formation processes and conditions are constrained. 48 refs., 1 tab., 9 figs.

  17. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  18. A fruit wing of Shorea Roxb. from the Early Miocene sediments of Kachchh, Gujarat and its bearing on palaeoclimatic interpretation

    Indian Academy of Sciences (India)

    Anumeha Shukla; J S Guleria; R C Mehrotra

    2012-02-01

    A new fossil fruit wing of Shorea Roxb. belonging to the family Dipterocarpaceae is described from the Early Miocene sediments of Kachchh, Gujarat. It resembles best the extant species Shorea macroptera Dyer, which is a prominent member of the tropical evergreen forests of the Malayan Peninsula. The present finding, along with the other megafossil records described from the same area, indicates a typical tropical vegetation with a warm and humid climate at the time of deposition in contrast to the present day xeric vegetation in the area. As the family Dipterocarpaceae no longer exists in western India, it is essential to discuss the time of its extinction and possible causes, which may include drastic changes in the climate of the region. The present finding also supports the theory of a Malaysian origin for the family in contrast to the hypothesis of a Gondwanan origin.

  19. The interaction of climate change and methane hydrates

    Science.gov (United States)

    Ruppel, Carolyn D.; Kessler, John D.

    2017-01-01

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.

  20. 海洋天然气水合物的地球物理研究(Ⅰ):岩石物性%GEOPHYSICAL RESEARCHES ON MARINE GAS HYDRATES(I): PHYSICAL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    宋海斌; 郝天珧; 松林修; 吴能友

    2001-01-01

    本文综述含水合物沉积物的岩石物性模型,讨论水合物饱和度与岩石物性的关系.关于纵波速度与水合物饱和度的关系,有一些简单模型,如孔隙度降低模型、时间平均方程、时间平均—Wood加权方程,也有复杂模型,如根据弹性模量计算的模型、根据等效介质中地震波传播理论的模型.本文还介绍含水合物沉积物的电阻率、电导率模型与含游离气沉积物的岩石物性.%Physical properties of hydrate-bearing sediments are reviewed and the relationships between physical properties and gas hydrate concentration are discussed. There are some simple models such as porosity-reduction, time-average equation and weighted time-average and Wood's equation and complex models such as elastic moduli model and those based on seismic wave propagation in effective medium. Resistivity and thermal conductivity models of hydrate-bearing sediments are also introduced, and physical properties of gas-bearing sediments are also presented.

  1. Estimating gas escape through taliks in relict submarine permafrost and methane hydrate deposits under natural climate variation

    Science.gov (United States)

    Frederick, J. M.; Buffett, B. A.

    2013-12-01

    Permafrost-associated methane hydrate deposits exist at shallow depths within the sediments of the Arctic continental shelves. This icy carbon reservoir is thought to be a relict of cold glacial periods, when sea levels are much lower, and shelf sediments are exposed to freezing air temperatures. During interglacials, rising sea levels flood the shelf, bringing dramatic warming to the permafrost and gas hydrate bearing sediments. Degradation of this shallow-water reservoir has the potential to release large quantities of methane gas directly to the atmosphere. Although relict permafrost-associated gas hydrate deposits likely make up only a small fraction of the global hydrate inventory, they have received a disproportionate amount of attention recently because of their susceptibility to climate change. This study is motivated by several recent field studies which report elevated methane levels in Arctic coastal waters. While these observations are consistent with methane release as a result of decomposing submarine permafrost and gas hydrates, the source of gas cannot easily be distinguished from other possibilities, including the escape of deep thermogenic gas through permeable pathways such as faults, or microbial activity on thawing organic matter within the shelf sediments. In this study, we investigate the response of relict Arctic submarine permafrost and permafrost-associated gas hydrate deposits to warming with a two-dimensional, finite-volume model for two-phase flow of pore fluid and methane gas within Arctic shelf sediments. We track the evolution of temperature, salinity, and pressure fields with prescribed boundary conditions, and account for latent heat of water ice and methane hydrate formation during growth/decay of permafrost or methane hydrate. The permeability structure of the sediments is coupled to changes in permafrost. We assess the role of taliks (unfrozen portions of continuous permafrost) as a pathway for methane gas escape and make

  2. Effect of permafrost properties on gas hydrate petroleum system in the Qilian Mountains, Qinghai, Northwest China.

    Science.gov (United States)

    Wang, Pingkang; Zhang, Xuhui; Zhu, Youhai; Li, Bing; Huang, Xia; Pang, Shouji; Zhang, Shuai; Lu, Cheng; Xiao, Rui

    2014-12-01

    The gas hydrate petroleum system in the permafrost of the Qilian Mountains, which exists as an epigenetic hydrocarbon reservoir above a deep-seated hydrocarbon reservoir, has been dynamic since the end of the Late Pleistocene because of climate change. The permafrost limits the occurrence of gas hydrate reservoirs by changing the pressure-temperature (P-T) conditions, and it affects the migration of the underlying hydrocarbon gas because of its strong sealing ability. In this study, we reconstructed the permafrost structure of the Qilian Mountains using a combination of methods and measured methane permeability in ice-bearing sediment permafrost. A relationship between the ice saturation of permafrost and methane permeability was established, which permitted the quantitative evaluation of the sealing ability of permafrost with regard to methane migration. The test results showed that when ice saturation is >80%, methane gas can be completely sealed within the permafrost. Based on the permafrost properties and genesis of shallow gas, we suggest that a shallow "gas pool" occurred in the gas hydrate petroleum system in the Qilian Mountains. Its formation was related to a metastable gas hydrate reservoir controlled by the P-T conditions, sealing ability of the permafrost, fault system, and climatic warming. From an energy perspective, the increasing volume of the gas pool means that it will likely become a shallow gas resource available for exploitation; however, for the environment, the gas pool is an underground "time bomb" that is a potential source of greenhouse gas.

  3. Analysis of multicomponent seismic data from the Hydrate Ridge, offshore Oregon

    Science.gov (United States)

    Kumar, Dhananjay

    correlation, and (3) S-wave velocity analysis. P- to S-wave event correlation is done using synthetic seismograms and traveltime tables. Seismic velocities are correlated to gas hydrate and free gas saturation using a Modified Wood equation. I find that Hydrate Ridge is heterogeneous and is weakly anisotropic (maximum of 10%) in some regions caused possibly by the hydrate veins. The P-wave velocity is more sensitive to the saturation of gas hydrates (maximum of 7% of rock volume) and free gas than the S-wave velocity. The S-wave velocity does not show an anomalous increase in the hydrate-bearing sediments. Thus, I conclude that hydrate does not cement sediment grains enough to affect shear properties. It is more likely that the hydrates are formed within the pore space in this region.

  4. Sensitivity of Deep-Towed Marine Electrical Resistivity Imaging Using Two-Dimensional Inversion: A Case Study on Methane Hydrate

    Directory of Open Access Journals (Sweden)

    Chih-Wen Chiang

    2012-01-01

    Full Text Available Uncertain physical properties of methane hydrate (MH above a bottom simulating reflector should be estimated for detecting MH-bearing formations. In contrast to general marine sediments, MH-bearing formations have a relatively high electrical resistivity. Therefore, marine electrical resistivity imaging (MERI is a well-suited method for MH exploration. The authors conducted sensitivity testing of sub-seafloor MH exploration using a two-dimensional (2D inversion algorithm with the Wenner, Pole-Dipole (PD and Dipole-Dipole (DD arrays. The results of the Wenner electrode array show the poorest resolution in comparison to the PD and DD arrays. The results of the study indicate that MERI is an effective geophysical method for exploring the sub-seafloor electrical structure and specifically for delineating resistive anomalies that may be present because of MH-bearing formations at a shallow depth beneath the seafloor.

  5. The Origin of the Terra Meridiani Sediments: Volatile Transport and the Formation of Sulfate Bearing Layered Deposits on Mars

    Science.gov (United States)

    Niles, P.B.

    2008-01-01

    The chemistry, sedimentology, and geology of the Meridiani sedimentary deposits are best explained by eolian reworking of the sublimation residue of a large scale ice/dust deposit. This large ice deposit was located in close proximity to Terra Meridiani and incorporated large amounts of dust, sand, and SO2 aerosols generated by impacts and volcanism during early martian history. Sulfate formation and chemical weathering of the initial igneous material is hypothesized to have occurred inside of the ice when the darker mineral grains were heated by solar radiant energy. This created conditions in which small films of liquid water were created in and around the mineral grains. This water dissolved the SO2 and reacted with the mineral grains forming an acidic environment under low water/rock conditions. Subsequent sublimation of this ice deposit left behind large amounts of weathered sublimation residue which became the source material for the eolian process that deposited the Terra Meridiani deposit. The following features of the Meridiani sediments are best explained by this model: The large scale of the deposit, its mineralogic similarity across large distances, the cation-conservative nature of the weathering processes, the presence of acidic groundwaters on a basaltic planet, the accumulation of a thick sedimentary sequence outside of a topographic basin, and the low water/rock ratio needed to explain the presence of very soluble minerals and elements in the deposit. Remote sensing studies have linked the Meridiani deposits to a number of other martian surface features through mineralogic similarities, geomorphic similarities, and regional associations. These include layered deposits in Arabia Terra, interior layered deposits in the Valles Marineris system, southern Elysium/Aeolis, Amazonis Planitia, and the Hellas basin, Aram Chaos, Aureum Chaos, and Ioni Chaos. The common properties shared by these deposits suggest that all of these deposits share a common

  6. Study of Formation Mechanisms of Gas Hydrate

    Science.gov (United States)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  7. The characteristics of gas hydrates occurring in natural environment

    Science.gov (United States)

    Lu, H.; Moudrakovski, I.; Udachin, K.; Enright, G.; Ratcliffe, C.; Ripmeester, J.

    2009-12-01

    In the past few years, extensive analyses have been carried out for characterizing the natural gas hydrate samples from Cascadia, offshore Vancouver Island; Mallik, Mackenzie Delta; Mount Elbert, Alaska North Slope; Nankai Trough, offshore Japan; Japan Sea and offshore India. With the results obtained, it is possible to give a general picture of the characteristics of gas hydrates occurring in natural environment. Gas hydrate can occur in sediments of various types, from sands to clay, although it is preferentially enriched in sediments of certain types, for example coarse sands and fine volcanic ash. Most of the gas hydrates in sediments are invisible, occurring in the pores of the sediments, while some hydrates are visible, appearing as massive, nodular, planar, vein-like forms and occurring around the seafloor, in the fractures related to fault systems, or any other large spaces available in sediments. Although methane is the main component of most of the natural gas hydrates, C2 to C7 hydrocarbons have been recognized in hydrates, sometimes even in significant amounts. Shallow marine gas hydrates have been found generally to contain minor amounts of hydrogen sulfide. Gas hydrate samples with complex gas compositions have been found to have heterogeneous distributions in composition, which might reflect changes in the composition of the available gas in the surrounding environment. Depending on the gas compositions, the structure type of a natural gas hydrate can be structure I, II or H. For structure I methane hydrate, the large cages are almost fully occupied by methane molecules, while the small cages are only partly occupied. Methane hydrates occurring in different environments have been identified with almost the same crystallographic parameters.

  8. Isotropic, anisotropic, and borehole washout analyses in Gulf of Mexico Gas Hydrate Joint Industry Project Leg II, Alaminos Canyon well 21-A

    Science.gov (United States)

    Lee, Myung W.

    2012-01-01

    Through the use of three-dimensional seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon area of the Gulf of Mexico. Two of the prospects were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Program Leg II in May 2009, and a suite of logging-while-drilling logs was acquired at each well site. Logging-while-drilling logs at the Alaminos Canyon 21–A site indicate that resistivities of approximately 2 ohm-meter and P-wave velocities of approximately 1.9 kilometers per second were measured in a possible gas-hydrate-bearing target sand interval between 540 and 632 feet below the sea floor. These values are slightly elevated relative to those measured in the hydrate-free sediment surrounding the sands. The initial well log analysis is inconclusive in determining the presence of gas hydrate in the logged sand interval, mainly because large washouts in the target interval degraded well log measurements. To assess gas-hydrate saturations, a method of compensating for the effect of washouts on the resistivity and acoustic velocities is required. To meet this need, a method is presented that models the washed-out portion of the borehole as a vertical layer filled with seawater (drilling fluid). Owing to the anisotropic nature of this geometry, the apparent anisotropic resistivities and velocities caused by the vertical layer are used to correct measured log values. By incorporating the conventional marine seismic data into the well log analysis of the washout-corrected well logs, the gas-hydrate saturation at well site AC21–A was estimated to be in the range of 13 percent. Because gas hydrates in the vertical fractures were observed, anisotropic rock physics models were also applied to estimate gas-hydrate saturations.

  9. Assessing fluid-gas expulsion geology and gas hydrate deposits across the Gulf of Mexico with multicomponent and multifrequency seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, B.A.; Sava, D.C.; Murray, P.E.; DeAngelo, M.V.; Backus, M.M.; Graebner, R.J. [Texas Univ., Austin, TX (United States). Bureau of Economic Geology; Roberts, H.H. [Louisiana State Univ., Baton Rouge, LA (United States). Coastal Studies Inst.

    2008-07-01

    This paper reported on a study of 2 fluid-gas expulsion sites across a portion of the Green Canyon area of the Gulf of Mexico, where deep-water fields and oil and gas seeps are numerous. Hydrates are pervasive across the 2 expulsion sites studied at Typhoon and Genesis Fields. The 2 sites GD 237 and GC 204 are positioned on the flank of an intraslope basin containing a thick sedimentary sequence. Major fluid-gas migration pathways occur near the edges of shallow subsurface salt masses. The two-fluid gas expulsion sites were investigated with 4-component ocean-bottom-cable (4C OBC) seismic data and chirp-sonar data acquired by an autonomous underwater vehicle (AUV). The study examined the near-seafloor geology of the deep-water, fluid-gas expulsion features to estimate hydrate concentrations in strata spanned by the hydrate stability zone local to these expulsion sites. In some units, hydrate concentrations were more than 30 per cent of the available pore space of the host sediment. A free-gas layer was discovered immediately under the base of the hydrate stability zone across each expulsion site area. It was revealed by a reduction in V{sub p} velocity. Although the amount of free-gas in this zone has not been estimated, it is expected that the zone has a gas saturation of only a few percentage points. This free-gas zone was not obviously different from hydrate-bearing zones when examining resistivity logs. It was concluded that interpreting the thickness of a hydrate stability zone from resistivity logs alone could result in an overestimation of the thickness of the hydrate stability zone and the amount of hydrate that exists near deep-water expulsion features. 10 refs., 13 figs.

  10. Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation

    Science.gov (United States)

    Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.

    2013-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  11. Critical state soil constitutive model for methane hydrate soil

    National Research Council Canada - National Science Library

    S. Uchida; K. Soga; K. Yamamoto

    2012-01-01

      This paper presents a new constitutive model that simulates the mechanical behavior of methane hydrate-bearing soil based on the concept of critical state soil mechanics, referred to as the Methane...

  12. IODP workshop: developing scientific drilling proposals for the Argentina Passive Volcanic Continental Margin (APVCM) - basin evolution, deep biosphere, hydrates, sediment dynamics and ocean evolution

    Science.gov (United States)

    Flood, Roger D.; Violante, Roberto A.; Gorgas, Thomas; Schwarz, Ernesto; Grützner, Jens; Uenzelmann-Neben, Gabriele; Hernández-Molina, F. Javier; Biddle, Jennifer; St-Onge, Guillaume; Workshop Participants, Apvcm

    2017-05-01

    The Argentine margin contains important sedimentological, paleontological and chemical records of regional and local tectonic evolution, sea level, climate evolution and ocean circulation since the opening of the South Atlantic in the Late Jurassic-Early Cretaceous as well as the present-day results of post-depositional chemical and biological alteration. Despite its important location, which underlies the exchange of southern- and northern-sourced water masses, the Argentine margin has not been investigated in detail using scientific drilling techniques, perhaps because the margin has the reputation of being erosional. However, a number of papers published since 2009 have reported new high-resolution and/or multichannel seismic surveys, often combined with multi-beam bathymetric data, which show the common occurrence of layered sediments and prominent sediment drifts on the Argentine and adjacent Uruguayan margins. There has also been significant progress in studying the climatic records in surficial and near-surface sediments recovered in sediment cores from the Argentine margin. Encouraged by these recent results, our 3.5-day IODP (International Ocean Discovery Program) workshop in Buenos Aires (8-11 September 2015) focused on opportunities for scientific drilling on the Atlantic margin of Argentina, which lies beneath a key portion of the global ocean conveyor belt of thermohaline circulation. Significant opportunities exist to study the tectonic evolution, paleoceanography and stratigraphy, sedimentology, and biosphere and geochemistry of this margin.

  13. Evaluation of contaminant concentrations in water, sediment, and biota at Bear Lake National Wildlife Refuge from historical phosphate mining and agricultural return flows

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Bear Lake National Wildlife Refuge (Refuge) sits at the north end of a large lake called Bear Lake, and is located in southeast Idaho, seven miles southwest of the...

  14. Pathways and regulation of carbon, sulfur and energy transfer in marine sediments overlying methane gas hydrates on the Opouawe Bank (New Zealand)

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Haeckel, M.; Wallmann, K.; Linke, P.; Wegener, G.; Pfannkuche, O.

    2010-10-01

    This study combines sediment geochemical analysis, in situ benthic lander deployments and numerical modeling to quantify the biogeochemical cycles of carbon and sulfur and the associated rates of Gibbs energy production at a novel methane seep. The benthic ecosystem is dominated by a dense population of tube-building ampharetid polychaetes and conspicuous microbial mats were unusually absent. A 1D numerical reaction-transport model, which allows for the explicit growth of sulfide and methane oxidizing microorganisms, was tuned to the geochemical data using a fluid advection velocity of 14 cm yr -1. The fluids provide a deep source of dissolved hydrogen sulfide and methane to the sediment with fluxes equal to 4.1 and 18.2 mmol m -2 d -1, respectively. Chemosynthetic biomass production in the subsurface sediment is estimated to be 2.8 mmol m -2 d -1 of C biomass. However, carbon and oxygen budgets indicate that chemosynthetic organisms living directly above or on the surface sediment have the potential to produce 12.3 mmol m -2 d -1 of C biomass. This autochthonous carbon source meets the ampharetid respiratory carbon demand of 23.2 mmol m -2 d -1 to within a factor of 2. By contrast, the contribution of photosynthetically-fixed carbon sources to ampharetid nutrition is minor (3.3 mmol m -2 d -1 of C). The data strongly suggest that mixing of labile autochthonous microbial detritus below the oxic layer sustains high measured rates of sulfate reduction in the uppermost 2 cm of the sulfidic sediment (100-200 nmol cm -3 d -1). Similar rates have been reported in the literature for other seeps, from which we conclude that autochthonous organic matter is an important substrate for sulfate reducing bacteria in these sediment layers. A system-scale energy budget based on the chemosynthetic reaction pathways reveals that up to 8.3 kJ m -2 d -1 or 96 mW m -2 of catabolic (Gibbs) energy is dissipated at the seep through oxidation reactions. The microorganisms mediating sulfide

  15. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  16. Formation mechanism of authigenic gypsum in marine methane hydrate settings: Evidence from the northern South China Sea

    Science.gov (United States)

    Lin, Qi; Wang, Jiasheng; Algeo, Thomas J.; Su, Pibo; Hu, Gaowei

    2016-09-01

    During the last decade, gypsum has been discovered widely in marine methane hydrate-bearing sediments. However, whether this gypsum is an in-situ authigenic precipitate remains controversial. The GMGS2 expedition carried out in 2013 by the Guangzhou Marine Geological Survey (GMGS) in the northern South China Sea provided an excellent opportunity for investigating the formation of authigenic minerals and, in particular, the relationship between gypsum and methane hydrate. In this contribution, we analyzed the morphology and sulfur isotope composition of gypsum and authigenic pyrite as well as the carbon and oxygen isotopic compositions of authigenic carbonate in a drillcore from Site GMGS2-08. These methane-derived carbonates have characteristic carbon and oxygen isotopic compositions (δ13C: -57.9‰ to -27.3‰ VPDB; δ18O: +1.0‰ to +3.8‰ VPDB) related to upward seepage of methane following dissociation of underlying methane hydrates since the Late Pleistocene. Our data suggest that gypsum in the sulfate-methane transition zone (SMTZ) of this core precipitated as in-situ authigenic mineral. Based on its sulfur isotopic composition, the gypsum sulfur is a mixture of sulfate derived from seawater and from partial oxidation of authigenic pyrite. Porewater Ca2+ ions for authigenic gypsum were likely generated from carbonate dissolution through acidification produced by oxidation of authigenic pyrite and ion exclusion during methane hydrate formation. This study thus links the formation mechanism of authigenic gypsum with the oxidation of authigenic pyrite and evolution of underlying methane hydrates. These findings suggest that authigenic gypsum may be a useful proxy for recognition of SMTZs and methane hydrate zones in modern and ancient marine methane hydrate geo-systems.

  17. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  18. Exploitation of subsea gas hydrate reservoirs

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  19. Clathrate hydrates in nature.

    Science.gov (United States)

    Hester, Keith C; Brewer, Peter G

    2009-01-01

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO2. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves.

  20. Putting the Deep Biosphere and Gas Hydrates on the Map

    Science.gov (United States)

    Sikorski, Janelle J.; Briggs, Brandon R.

    2016-01-01

    Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…

  1. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a drilling hazard by the oil and gas industry for years. Drilling engineers working in Russia, Canada and the USA have documented numerous problems, including drilling kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates as a potential energy source agree that the resource potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained from physical samples taken from actual hydrate-bearing rocks. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The project team drilled and continuously cored the Hot Ice No. 1 well on Anadarko-leased acreage beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and used for determining physical characteristics of hydrates and surrounding rock. After the well was logged, a 3D vertical seismic profile (VSP) was recorded to calibrate the shallow geologic section with seismic data and to investigate techniques to better resolve lateral subsurface variations of potential hydrate-bearing strata. Paulsson Geophysical Services, Inc. deployed their 80 level 3C clamped borehole seismic receiver array in the wellbore to record samples every 25 ft. Seismic vibrators were successively positioned at 1185 different surface positions in a circular pattern around the wellbore. This technique generated a 3D image of the subsurface. Correlations were

  2. Hydrates of nat­ural gas in continental margins

    Science.gov (United States)

    Kvenvolden, K.A.; Barnard, L.A.

    1982-01-01

    Natural gas hydrates in continental margin sediment can be inferred from the widespread occurrence of an anomalous seismic reflector which coincides with the predicted transition boundary at the base of the gas hydrate zone. Direct evidence of gas hydrates is provided by visual observations of sediments from the landward wall of the Mid-America Trench off Mexico and Guatemala, from the Blake Outer Ridge off the southeastern United States, and from the Black Sea in the U.S.S.R. Where solid gas hydrates have been sampled, the gas is composed mainly of methane accompanied by CO2 and low concentrations of ethane and hydrocarbons of higher molecular weight. The molecular and isotopic composition of hydrocarbons indicates that most of the methane is of biolog cal origin. The gas was probably produced by the bacterial alteration of organic matter buried in the sediment. Organic carbon contents of the sediment containing sampled gas hydrates are higher than the average organic carbon content of marine sediments. The main economic importance of gas hydrates may reside in their ability to serve as a cap under which free gas can collect. To be producible, however, such trapped gas must occur in porous and permeable reservoirs. Although gas hydrates are common along continental margins, the degree to which they are associated with significant reservoirs remains to be investigated.

  3. Physical properties of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kliner, J.T.R.; Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates are naturally occurring, solid crystalline compounds (clathrates) that encapsulate gas molecules inside the lattices of hydrogen bonded water molecules within a specific temperature-pressure stability zone. Estimates of the total quantity of available methane gas in natural occurring hydrates are based on twice the energy content of known conventional fossil fuels reservoirs. Accurate and reliable in-situ quantification techniques are essential in determining the economic viability of this potential energy yield, which is dependent upon several factors such as sensitivity of the temperature-pressure stability zone, sediment type, porosity, permeability, concentration/abundance of free gas, spatial distribution in pore spaces, specific cage occupancy, and the influence of inhibitors. Various techniques like acoustic P and S waves, time domain reflectometry, and electrical resistance have been used to analyze the quantity and spatial distribution of the gas hydrate samples. These techniques were reviewed and the results obtained in the course of gas hydrate research were presented. 34 refs., 8 figs.

  4. Simulation of Methane Recovery from Gas Hydrates Combined with Storing Carbon Dioxide as Hydrates

    Directory of Open Access Journals (Sweden)

    Georg Janicki

    2011-01-01

    Full Text Available In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2 from fossil fuel consumption. This idea is supported by the thermodynamics of CO2 and methane (CH4 hydrates and the fact that CO2 hydrates are more stable than CH4 hydrates in a certain P-T range. The potential of producing methane by depressurization and/or by injecting CO2 is numerically studied in the frame of the SUGAR project. Simulations are performed with the commercial code STARS from CMG and the newly developed code HyReS (hydrate reservoir simulator especially designed for hydrate processing in the subsea sediment. HyReS is a nonisothermal multiphase Darcy flow model combined with thermodynamics and rate kinetics suitable for gas hydrate calculations. Two scenarios are considered: the depressurization of an area 1,000 m in diameter and a one/two-well scenario with CO2 injection. Realistic rates for injection and production are estimated, and limitations of these processes are discussed.

  5. Verification and recovery of thick deposits of massive gas hydrate from chimney structures, eastern margin of Japan Sea

    Science.gov (United States)

    Matsumoto, R.; Kakuwa, Y.; Snyder, G. T.; Tanahashi, M.; Yanagimoto, Y.; Morita, S.

    2016-12-01

    The initial scientific research that was carried out between 2004 and 2013 has provided us with invaluable evidence that gas hydrates occur widely on and below the sea floor down to approximately 30 mbsf within gas chimney structures in Japan Sea (Matsumoto, 2005; 2009). In 2013, METI (Ministry of Economy, Trade and Industry) launched a 3-year exploration project to assess the resource potential of shallow gas hydrates in Japan Sea. During the course of the project, Meiji University and AIST conducted: sea-going geophysical surveys with AUV, and high resolution 3D seismic and CSEM. These were followed by LWD and coring down to BSR depths, and coupled with a number of analyses and experiments. Regional mapping by MBES and SBP has confirmed 1742 gas chimneys in an area of 64,000km2 along the eastern margin of Japan Sea and around Hokkaido. Multiple LWD operations have revealed anomalous profiles such as extremely low natural gamma ray, high velocity Vp, and high resistivity Ro down to BSR depths, providing a strong indication that thick and massive gas hydrates exist throughout gas chimneys above the BSR. In several cases, conventional coring using 6-m long core liners recovered nearly 6 m long massive gas hydrates in several horizons adjacent to the anomalous LWD sites.The PCTB pressure coring system (Geotek Ltd) successfully cored 2-m long intervals of undisturbed, pressurized hydrate-bearing cores, providing valuable information about the in-situ occurrence and textural relations of hydrate and surrounding sediments. Full dissociation and slow degassing experiments of pressurized cores were conducted using onboard PCATS (Pressure core analysis and transfer system) to measure the amount of gases from hydrates. The mean volume fraction of gas hydrates in well-developed gas chimney structures is estimated to be 30 to 86 vol.% based on coupled PCATS and chloride anomaly profiles. Such an unusually high accumulation of gas hydrates in gas chimneys is assumed to have

  6. The response of methane hydrate offshore Svalbard to ocean warming during the next three centuries

    Science.gov (United States)

    Marin-Moreno, Hector; Minshull, Tim; Westbrook, Graham; Sinha, Bablu; Sarkar, Sudipta

    2014-05-01

    Large-scale rapid release of methane from hydrate may have contributed to past abrupt climate change inferred from the geological record. The discovery in 2008 of numerous plumes of methane gas escaping from the seabed of the West Svalbard continental margin at ~400 m water depth, and the increase in the temperature of the West Spitsbergen current over the latter part of the 20th century, suggest that hydrate is dissociating in this region. We evaluate the possible effect on this system of future climate change, using output from a range of established climate models to drive a hydrate system model. We model the dynamic response of hydrate-bearing sediments to predicted seabed temperature changes, over the range of water depths for which hydrate destabilisation may be occurring and the periods for which climate model output is available, using the TOUGH + HYDRATE (T+H) v1.2 code. We constrain the present-day sub-seabed distribution of gas and hydrate by using seismic data that image the BSR in water depths of more than 580 m and the upper limit of gas-related reflectors in shallower water. We "grow" this initial distribution by running the T+H model over the past 2 kyr, driven by a model of changing ocean temperature, to provide a present-day sub-seabed distribution of gas and hydrate that is close to that indicated by the seismic data. Our results suggest that the active dissociation area between latitudes of 78°26'N-78°40'N (~25 km length) will extend to ~480 m water depth by 2100 CE and to ~550 m by the 2300 CE. Over the next century, 3.9-6.9 Gg yr-1 of methane may be released on the West Svalbard margin, and over the next three centuries 5.3-29 Gg yr-1. Emissions increase with time because the area over which they occur grows over time. The time of first methane emission at a given water depth is controlled by the rate of warming of the overlying ocean. The methane flux until 2050 CE is relatively insensitive to choice of climate model or scenario, but there

  7. Numerical simulation of gas hydrate exploitation from subsea reservoirs in the Black Sea

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2017-04-01

    Natural gas (methane) is the most environmental friendly source of fossil energy. When coal is replace by natural gas in power production the emission of carbon dioxide is reduced by 50 %. The vast amount of methane assumed in gas hydrate deposits can help to overcome a shortage of fossil energy resources in the future. To increase their potential for energy applications new technological approaches are being discussed and developed worldwide. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e. g. depressurization and/or carbon dioxide injection) is numerically studied in the frame of the German research project »SUGAR - Submarine Gas Hydrate Reservoirs«. In order to simulate the exploitation of hydrate-bearing sediments in the subsea, an in-house simulation model HyReS which is implemented in the general-purpose software COMSOL Multiphysics is used. This tool turned out to be especially suited for the flexible implementation of non-standard correlations concerning heat transfer, fluid flow, hydrate kinetics, and other relevant model data. Partially based on the simulation results, the development of a technical concept and its evaluation are the subject of ongoing investigations, whereby geological and ecological criteria are to be considered. The results illustrate the processes and effects occurring during the gas production from a subsea gas hydrate deposit by depressurization. The simulation results from a case study for a deposit located in the Black Sea reveal that the production of natural gas by simple depressurization is possible but with quite low rates. It can be shown that the hydrate decomposition and thus the gas production strongly depend on the geophysical properties of the reservoir, the mass and heat transport within the reservoir, and

  8. Methane Production and Carbon Capture by Hydrate Swapping

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas

    2016-01-01

    gas molecules in the structural lattice. In this work, we quantitatively investigate the swapping behavior from injection of pure carbon dioxide and the (CO2 + N2) binary gas mixture through artificial hydrate-bearing sandstone samples by use of a core-flooding experimental apparatus. A total of 13...... of pure carbon dioxide in swapping methane from its hydrate phase; the methane recovery efficiency in brine water systems is enhanced relative to pure water systems. The replenishment of a fresh (CO2 + N2) gas mixture into the vapor phase can be considered as an efficient extraction method because 46...... in small hydrate cages, as long as the equilibrium formation pressure of (CO2 + N2) binary gas hydrate is below that of methane hydrate, even though adding nitrogen to carbon dioxide reduces the thermodynamic driving force for the formation of a new hydrate. When other conditions are similar, the methane...

  9. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  10. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-04-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  11. Complete Genome Sequence of Bacillus subtilis Strain 29R7-12, a Piezophilic Bacterium Isolated from Coal-Bearing Sediment 2.4 Kilometers below the Seafloor

    Science.gov (United States)

    Wei, Yuli; Cao, Junwei; Kato, Chiaki; Cui, Weicheng

    2017-01-01

    ABSTRACT Here, we report the genome sequence of Bacillus subtilis strain 29R7-12, a piezophilic bacterium isolated from coal-bearing sediment down to ~2.4 km below the ocean floor in the northwestern Pacific. The strain is a Gram-positive spore-forming bacterium, closely related to Bacillus subtilis within the phylum Firmicutes. This is the first complete genome sequence of a Bacillus subtilis strain from the deep biosphere. The genome sequence will provide a valuable resource for comparative studies of microorganisms from the surface and subsurface environments. PMID:28232436

  12. Gas hydrate detection and mapping on the US east coast

    Energy Technology Data Exchange (ETDEWEB)

    Ahlbrandt, T.S.; Dillon, W.P.

    1993-12-31

    Project objectives are to identify and map gas hydrate accumulations on the US eastern continental margin using remote sensing (seismic profiling) techniques and to relate these concentrations to the geological factors that-control them. In order to test the remote sensing methods, gas hydrate-cemented sediments will be tested in the laboratory and an effort will be made to perform similar physical tests on natural hydrate-cemented sediments from the study area. Gas hydrate potentially may represent a future major resource of energy. Furthermore, it may influence climate change because it forms a large reservoir for methane, which is a very effective greenhouse gas; its breakdown probably is a controlling factor for sea-floor landslides; and its presence has significant effect on the acoustic velocity of sea-floor sediments.

  13. Active seepage and water infiltration in Lake Baikal sediments: new thermal data from TTR-Baikal 2014 (Class@Baikal)

    Science.gov (United States)

    Poort, Jeffrey; Khlystov, Oleg M.; Akhmanov, Grigorii G.; Khabuev, Andrei V.; Belousov, Oleg V.

    2015-04-01

    New thermal data from the sediments of Lake Baikal were collected in July 2014 during the first Training-Through-Research cruise on Lake Baikal (Class@Baikal) organized by MGU and LIN. TTR-Baikal is a comprehensive multidisciplinary program to train students on the field on pertinent scientific topics. The cruise program focused on seafloor sampling, acoustic investigations and heat flow measurements of gas seeps, flares, mud volcanoes, slumps and debris flows, canyons and channels in the coastal proximity. The thermal data were acquired using autonomous temperature sensors on a 3 meter long gravity corer that allowed analysis at the same spot of sediments, pore fluids, hydrates and microbiology. A total of eight thermal measurements were performed in five structures located on the lake floor of the Central Baikal Basin at 333-1530 meter water depths: 3 mud volcanoes (Novosibirsk, Unshuy and Krest), 1 seep site (Seep 13), and one fault outcrop in the Selenga transfer zone. All studied structures show signals of active seepage, water infiltration and/or hydrate dynamics. The strongest thermal gradient has been measured in Seep 13, suggesting a strong upflow of warm fluids similar to the Gorevoy Utes seep. At the three mud volcanoes, hydrate presence have been evidenced and both enhanced and reduced thermal gradients have been observed. This is similar to the hydrate-bearing K-2 mud volcano in Baikal (Poort et al., 2012). A strongly reduced thermal gradient was observed in the Krest mud volcano where the presence of oxidized channels at 30-40 cm under the sediment surface indicate an infiltration of cold lake water. The water infiltration process at hydrate bearing seep sites will be discussed and compared with other seep areas in the world.

  14. Drilling and data acquisition programs for the methane hydrate offshore production test in the Eastern Nankai Trough

    Science.gov (United States)

    Yamamoto, K.; Fujii, T.

    2013-12-01

    Marine methane hydrates are a matter of scientific interests from various viewpoints such as a key player of global carbon cycle, effects on climate change, cause of seafloor instability, and a possible future energy resource. Under the Japanese national research program, the MH21 research consortium (Japan Oil, Gas and Metals National Corporation and National Institute of Advanced Industrial Science and Technology) has conducted survey operations and subsequent analyses of data and samples from methane hydrate-bearing sediments in the Eastern Nankai Trough. The goal of the project was a gas production test from a methane hydrate deposits in sandy intervals of Pleistocene turbidite sediments. The test location was set in Daini Atsumi Knoll that is a ridge between forearc basin and accretionary prism, and the sediments cover the flank of the knoll. The water depth at the test location is approximately 1000m, and 50m thick methane hydrate concentrated zone exists around 300m below seafloor. The main interest of the MH21 research team is to know physical (thermal, hydraulic, and mechanical) parameters of sediments that are necessary to understand gas hydrate dissociation processes during the production test. Core samples and geophysical logging data obtained during past surveys are utilized for this purpose. Sedimentation and tectono-geophysical conditions govern such material properties, so the samples were analyzed from those viewpoints, too. The first drilling at the location was done in 2004 with logging and coring operation including pressure-conserved core sampling. In 2011, shallow geotechnical survey holes were drilled in the area for geo-hazard assessment, and core samples were taken in the holes, along with some in-situ mechanical and hydraulic testings. In early 2012, a well construction operation for the gas production test was conducted with logging operations that contains neutron porosity data using pulse-neutron devices, magnetic resonance log, etc. A

  15. Production behaviour of gas hydrate under hot sea water injection : laboratory case study

    Energy Technology Data Exchange (ETDEWEB)

    Nengkoda, A. [Schlumberger, Calgary, AB (Canada); Budhijanto, B.; Supranto, S.; Prasetyo, I.; Purwono, S.; Sutijan, S. [Gadjah Mada Univ., Yogyakarta (Indonesia)

    2010-07-01

    The gas hydrate potential in Indonesia was discussed, with particular reference to offshore production of gas from deep-water gas-hydrates by injection of hot seawater. In 2004, the Indonesian National Agency for Assessment and Application Technology estimated the gas hydrate resource potential to be 850 trillion cubic feet (tcf). To date, the 3 most reliable scenarios for gas hydrate production are thermal stimulation which involves increasing the temperature until the hydrates break into water and gas; depressurization which involves lowering the pressure by pumping out gas at the base of the hydrate to cause dissociation of hydrates into gas; and injection of a chemical inhibitor such as methanol into the hydrated sediments to cause destabilization, thus releasing gas from hydrates. This study investigated the effect of hot seawater injection on the gas hydrate production under laboratory conditions. The temperature profile distribution was examined along with operational parameters and flow characteristics of the dissociated gas and water from hydrates in porous systems under a synthetic hydrate setup. The study showed that gas production increases with time until a maximum is reached, at which time it begins to decrease. The energy ratio of thermal stimulation production was found to be influenced by the injection water temperature and rate as well as the hydrate content in the synthetic sediment. Scale problems were found to be associated with high temperature seawater injection. 8 refs., 3 tabs., 7 figs.

  16. Efficiency of erosion mitigation strategies in reducing sediment-loading rates from unpaved road networks into coral reef-bearing waters of the Eastern Caribbean

    Science.gov (United States)

    Ramos-Scharron, Carlos; Gray, Sarah; Sears, Whitney

    2014-05-01

    Erosion from unpaved road networks represents a critical source of stress affecting the coral reef systems of the U.S. Virgin Islands in the Northeastern Caribbean. Combined community- and government-driven efforts to reduce sediment contributions from unpaved roads in the island of St. John have consisted in improving road drainage design, paving selected road segments, and constructing sediment retention structures. Here we describe empirical evidence attesting to the efficacy of these mitigation efforts. Road drainage improvements reduced sediment production rates to about a third of pre-treatment levels. Road-segment scale erosion rates following paving ranged from 5-30% of pre-treatment levels, depending on road slope and road grading frequency. A 616-m3 sediment retention pond proved to contain 86 Mg of sediment annually and about 94% of the runoff generated from a 12 ha sub-catchment with an unpaved road density of 19 km km-2. Watershed-scale modeling evaluations suggested that the combination of these three treatments within the 13-km2 Coral Bay watershed resulted in the reduction of annual sediment delivery rates from 445 Mg yr-1 to 327 Mg yr-1. Cost-effectiveness analyses suggest that road drainage improvements and construction of the detention pond provided the greatest reductions in sediment delivery per total amount of funds spent. Even though paving is a proven erosion control method, the high costs involved made it a relatively cost-inefficient method. Marine sedimentation of terrigenous sediment (land-derived) was regularly monitored (every 26 days) at 15 near-shore and reef sites from 2008 to 2013 below the treated and undeveloped watersheds. Sediment composition (% terrigenous) determined by loss on ignition was multiplied by the total sediment accumulation rate in tube sediment traps to obtain terrigenous sediment accumulation rates (in mg cm-2 d-1). Mean terrigenous sediment accumulation rates were over 24 (near-shore) and 6 (reef) times greater

  17. Predominance of Viable Spore-Forming Piezophilic Bacteria in High-Pressure Enrichment Cultures from ~1.5 to 2.4 km-Deep Coal-Bearing Sediments below the Ocean Floor

    Science.gov (United States)

    Fang, Jiasong; Kato, Chiaki; Runko, Gabriella M.; Nogi, Yuichi; Hori, Tomoyuki; Li, Jiangtao; Morono, Yuki; Inagaki, Fumio

    2017-01-01

    Phylogenetically diverse microorganisms have been observed in marine subsurface sediments down to ~2.5 km below the seafloor (kmbsf). However, very little is known about the pressure-adapted and/or pressure-loving microorganisms, the so called piezophiles, in the deep subseafloor biosphere, despite that pressure directly affects microbial physiology, metabolism, and biogeochemical processes of carbon and other elements in situ. In this study, we studied taxonomic compositions of microbial communities in high-pressure incubated sediment, obtained during the Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula, Japan. Analysis of 16S rRNA gene-tagged sequences showed that members of spore-forming bacteria within Firmicutes and Actinobacteria were predominantly detected in all enrichment cultures from ~1.5 to 2.4 km-deep sediment samples, followed by members of Proteobacteria, Acidobacteria, and Bacteroidetes according to the sequence frequency. To further study the physiology of the deep subseafloor sedimentary piezophilic bacteria, we isolated and characterized two bacterial strains, 19R1-5 and 29R7-12, from 1.9 and 2.4 km-deep sediment samples, respectively. The isolates were both low G+C content, gram-positive, endospore-forming and facultative anaerobic piezophilic bacteria, closely related to Virgibacillus pantothenticus and Bacillus subtilis within the phylum Firmicutes, respectively. The optimal pressure and temperature conditions for growth were 20 MPa and 42°C for strain 19R1-5, and 10 MPa and 43°C for strain 29R7-12. Bacterial (endo)spores were observed in both the enrichment and pure cultures examined, suggesting that these piezophilic members were derived from microbial communities buried in the ~20 million-year-old coal-bearing sediments after the long-term survival as spores and that the deep biosphere may host more abundant gram-positive spore-forming bacteria and their spores than hitherto recognized. PMID:28220112

  18. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    Energy Technology Data Exchange (ETDEWEB)

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  19. Preliminary discussion on gas hydrate reservoir system of Shenhu Area, North Slope of South China Sea

    Energy Technology Data Exchange (ETDEWEB)

    Wu, N.; Yang, S.; Liang, J.; Wang, H.; Fu, S. [Guangzhou Marine Geological Survey, Guangzhou (China); Zhang, H. [China Geological Survey, Beijing (China); Su, X. [China Univ. of Geosciences, Beijing (China)

    2008-07-01

    Gas hydrate is a type of ice-like solid substance formed by the combination of certain low-molecular-weight gases such as methane, ethane, and carbon dioxide with water. Gas hydrate primarily occurs naturally in sediments beneath the permafrost and the sediments of the continental slope with the water depth greater than 300 m. Marine gas hydrate geological systems are important because they may be sufficiently concentrated in certain locations to be an economically viable fossil fuel resource. However, gas hydrates can cause geo-hazards through large-scale slope destabilization and can release methane, a potential greenhouse gas, into the environment. This paper discussed the hydrate drilling results from a geological and geophysical investigation of the gas hydrate reservoir system of the Shenhu Area, located in the north slope of South China Sea. The paper identified the basic formation conditions, and discussed the pore-water geochemical features of shallow sediments and their inflected gas sources, gas hydrate distribution and seismic characteristics. It was concluded that the gas hydrate was heterogeneously distributed in space, and mainly distributed in certain ranges above the bottom of the gas hydrate stability zone. It was also concluded that methane gas that formed hydrate was likely from in-situ micro-biogenic methane. Last, it was found that distributed and in-situ micro-biogenic methane resulted in low methane flux, and formed the distributed pattern of gas hydrate system with the features of differential distribution and saturation. 34 refs., 2 tabs., 3 figs.

  20. Dissolution of Hydrocarbon Gas Hydrates in Seawater at 1030-m; Effects of Porosity, Structure, and Compositional Variation as Determined by High-Definition Video and SEM Imaging.

    Science.gov (United States)

    Stern, L. A.; Peltzer, E. T.; Durham, W. B.; Kirby, S. H.; Brewer, P. G.; Circone, S.; Rehder, G.

    2002-12-01

    appropriate to the field site. These calculations assume that dissolution occurred only along the outer (i.e. imaged) surface of the samples. This assumption is now validated by SEM analysis of recovered samples from the second dive, showing little to no internal alteration of compacted material following their partial dissolution. Quantitative comparison of results from the two dives poses challenges due to variations in sample size and orientation. However, both compacted methane hydrate samples from the second dive in fact exhibited comparable behavior to that measured in the previous experiment; the oily sample did not dissolve at a slower rate, as might be expected if a hydrophobic contaminant inhibits seawater contact. Surprisingly, the porous methane hydrate exhibited significantly slower face retreat than its compacted counterparts. The sII methane-ethane hydrate dissolved measurably slower than all other samples, consistent with the solubility properties of its guest components. While these results represent only a first step in emulating the more complex interactions of seawater with naturally occurring hydrate-bearing sediments, such end member studies should aid preliminary modelling investigations of the chemical stability and lifetime of gas hydrates exposed at the seafloor.

  1. Anaerobic methane oxidation in low-organic content methane seep sediments

    Science.gov (United States)

    Pohlman, John W.; Riedel, Michael; Bauer, James E.; Canuel, Elizabeth A.; Paull, Charles K.; Lapham, Laura; Grabowski, Kenneth S.; Coffin, Richard B.; Spence, George D.

    2013-01-01

    Sulfate-dependent anaerobic oxidation of methane (AOM) is the key sedimentary microbial process limiting methane emissions from marine sediments and methane seeps. In this study, we investigate how the presence of low-organic content sediment influences the capacity and efficiency of AOM at Bullseye vent, a gas hydrate-bearing cold seep offshore of Vancouver Island, Canada. The upper 8 m of sediment contains 14C. A fossil origin for the DIC precludes remineralization of non-fossil OM present within the sulfate zone as a significant contributor to pore water DIC, suggesting that nearly all sulfate is available for anaerobic oxidation of fossil seep methane. Methane flux from the SMT to the sediment water interface in a diffusion-dominated flux region of Bullseye vent was, on average, 96% less than at an OM-rich seep in the Gulf of Mexico with a similar methane flux regime. Evidence for enhanced methane oxidation capacity within OM-poor sediments has implications for assessing how climate-sensitive reservoirs of sedimentary methane (e.g., gas hydrate) will respond to ocean warming, particularly along glacially-influenced mid and high latitude continental margins.

  2. Origins of hydration lubrication.

    Science.gov (United States)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-14

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  3. Journal bearing

    Science.gov (United States)

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  4. Infrared spectroscopy for monitoring gas hydrates in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, G.T.; Luzinova, Y.; Mizaikoff, B. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemistry and Biochemistry; Raichlin, Y.; Katzir, A. [Tel-Aviv Univ., Tel-Aviv (Israel). Shool of Physics and Astronomy

    2008-07-01

    This paper introduced the first principles for monitoring gas hydrate formation and dissociation in aqueous solution by evaluating state-responsive infrared (IR) absorption features of water with fiberoptic evanescent field spectroscopy. A first order linear functional relationship was also derived according to Lambert Beer's law in order to quantify the percentage gas hydrate within the volume of water probed via the evanescent field. In addition, spectroscopic studies evaluating seafloor sediments collected from a gas hydrate site in the Gulf of Mexico revealed minimal spectral interferences from sediment matrix components. As such, evanescent field sensing strategies were established as a promising perspective for monitoring the dynamics of gas hydrates in oceanic environments. 21 refs., 5 figs.

  5. Transient seafloor venting on continental slopes from warming-induced methane hydrate dissociation

    Science.gov (United States)

    Darnell, K. N.; Flemings, P. B.

    2015-12-01

    Methane held in frozen hydrate cages within marine sediment comprises one of the largest carbon reservoirs on the planet. Recent submarine observations of widespread methane seepage may record hydrate dissociation due to oceanic warming, which consequently may further amplify climate change. Here we simulate the effect of seafloor warming on marine hydrate deposits using a multiphase flow model. We show that hydrate dissociation, gas migration, and subsequent hydrate formation cangenerate temporary methane venting into the ocean through the hydrate stability zone. Methane seeps venting through the hydrate stability zone on the eastern Atlantic margin may record this process due to warming begun thousands of years ago. Our results contrast with the traditional view that venting occurs only updip of the hydrate stability zone.

  6. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  7. Environmental changes of the last 30,000 years in the gas hydrate area of Joetsu Basin, eastern margin of Japan Sea

    Energy Technology Data Exchange (ETDEWEB)

    Freire, A.F.M.; Sugai, T. [Tokyo Univ., Kashiwanoha Campus, Chiba (Japan). Dept. of Natural Environmental Studies; Takeuchi, E.; Nagasaka, A.; Hiruta, A.; Ishizaki, O.; Matsumoto, R. [Tokyo Univ., Hongo Campus, Bunkyo-ku, Tokyo (Japan). Dept. of Earth and Planetary Science

    2008-07-01

    The Japan Sea is a semi-isolated marginal sea with an average depth of 1350 metres and a maximum water depth of approximately 3700 metres in the northern basin. This paper presented a study that inferred the age and the nature of the environmental events of the last 30 thousand years using geochemical and sedimentary records from piston cores collected on the gas hydrates bearing-sediments of Joetsu Basin, eastern margin of Japan Sea, south of Sado Islands. Interbedded dark gray thinly laminates and dark brown to gray bioturbated units are common throughout the quaternary sediments of the Japan Sea. They have been explained in terms of glacio-eustatic sea-level change. Active methane venting and gas hydrates have also been recognized, which are widely distributed just beneath the sea floor in the Joetsu Basin, in the eastern margin of the Japan Sea. In order to identify the nature of the organic matter present in the study area and to make a correlation with samples collected in the Pacific Ocean, the study utilized total organic carbon contents and carbon isotopic composition of the gas hydrates bearing-sediments. Using X-ray diffraction analysis, these data were used to apply sequence stratigraphy concepts to locate the holocene/pleistocene boundary and to identify key stratigraphic surfaces, and also to recognize methane flux variations and sulfate-methane interfaces. The paper discussed total organic carbon in the Holocene/Pleistocene boundaries; nature of the organic matter and terrestrial versus marine phytoplankton production; and terrigenous material input. Sulfate oxidation of methane was also discussed. It was concluded that the correlation between the Japan Sea and Pacific Ocean was possible using piston cores. 13 refs., 13 figs.

  8. Linking basin-scale and pore-scale gas hydrate distribution patterns in diffusion-dominated marine hydrate systems

    Science.gov (United States)

    Nole, Michael; Daigle, Hugh; Cook, Ann E.; Hillman, Jess I. T.; Malinverno, Alberto

    2017-02-01

    The goal of this study is to computationally determine the potential distribution patterns of diffusion-driven methane hydrate accumulations in coarse-grained marine sediments. Diffusion of dissolved methane in marine gas hydrate systems has been proposed as a potential transport mechanism through which large concentrations of hydrate can preferentially accumulate in coarse-grained sediments over geologic time. Using one-dimensional compositional reservoir simulations, we examine hydrate distribution patterns at the scale of individual sand layers (1-20 m thick) that are deposited between microbially active fine-grained material buried through the gas hydrate stability zone (GHSZ). We then extrapolate to two-dimensional and basin-scale three-dimensional simulations, where we model dipping sands and multilayered systems. We find that properties of a sand layer including pore size distribution, layer thickness, dip, and proximity to other layers in multilayered systems all exert control on diffusive methane fluxes toward and within a sand, which in turn impact the distribution of hydrate throughout a sand unit. In all of these simulations, we incorporate data on physical properties and sand layer geometries from the Terrebonne Basin gas hydrate system in the Gulf of Mexico. We demonstrate that diffusion can generate high hydrate saturations (upward of 90%) at the edges of thin sands at shallow depths within the GHSZ, but that it is ineffective at producing high hydrate saturations throughout thick (greater than 10 m) sands buried deep within the GHSZ. Furthermore, we find that hydrate in fine-grained material can preserve high hydrate saturations in nearby thin sands with burial.Plain Language SummaryThis study combines one-, two-, and three-dimensional simulations to explore one potential process by which methane dissolved in water beneath the seafloor can be converted into solid methane hydrate. This work specifically examines one end-member methane transport

  9. Seismic-Scale Rock Physics of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Amos Nur

    2009-01-08

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  10. Fundamental challenges to methane recovery from gas hydrates

    Science.gov (United States)

    Servio, P.; Eaton, M.W.; Mahajan, D.; Winters, W.J.

    2005-01-01

    The fundamental challenges, the location, magnitude, and feasibility of recovery, which must be addressed to recover methane from dispersed hydrate sources, are presented. To induce dissociation of gas hydrate prior to methane recovery, two potential methods are typically considered. Because thermal stimulation requires a large energy input, it is less economically feasible than depressurization. The new data will allow the study of the effect of pressure, temperature, diffusion, porosity, tortuosity, composition of gas and water, and porous media on gas-hydrate production. These data also will allow one to improve existing models related to the stability and dissociation of sea floor hydrates. The reproducible kinetic data from the planned runs together with sediment properties will aid in developing a process to economically recover methane from a potential untapped hydrate source. The availability of plentiful methane will allow economical and large-scale production of methane-derived clean fuels to help avert future energy crises.

  11. Effects of salinity on methane gas hydrate system

    Institute of Scientific and Technical Information of China (English)

    YANG; DingHui; XU; WenYue

    2007-01-01

    Using an approximately analytical formation,we extend the steady state model of the pure methane hydrate system to include the salinity based on the dynamic model of the methane hydrate system.The top and bottom boundaries of the methane hydrate stability zone (MHSZ) and the actual methane hydrate zone (MHZ),and the top of free gas occurrence are determined by using numerical methods and the new steady state model developed in this paper.Numerical results show that the MHZ thickness becomes thinner with increasing the salinity,and the stability is lowered and the base of the MHSZ is shifted toward the seafloor in the presence of salts.As a result,the thickness of actual hydrate occurrence becomes thinner compared with that of the pure water case.On the other hand,since lower solubility reduces the amount of gas needed to form methane hydrate,the existence of salts in seawater can actually promote methane gas hydrate formation in the hydrate stability zone.Numerical modeling also demonstrates that for the salt-water case the presence of methane within the field of methane hydrate stability is not sufficient to ensure the occurrence of gas hydrate,which can only form when the methane concentration dissolved in solution with salts exceeds the local methane solubility in salt water and if the methane flux exceeds a critical value corresponding to the rate of diffusive methane transport.In order to maintain gas hydrate or to form methane gas hydrate in marine sediments,a persistent supplied methane probably from biogenic or thermogenic processes,is required to overcome losses due to diffusion and advection.

  12. Formation and Dissociation of Methane Hydrates from Seawater in Consolidated Sand: Mimicking Methane Hydrate Dynamics beneath the Seafloor

    Directory of Open Access Journals (Sweden)

    Prasad B. Kerkar

    2013-11-01

    Full Text Available Methane hydrate formation and dissociation kinetics were investigated in seawater-saturated consolidated Ottawa sand-pack under sub-seafloor conditions to study the influence of effective pressure on formation and dissociation kinetics. To simulate a sub-seafloor environment, the pore-pressure was varied relative to confining pressure in successive experiments. Hydrate formation was achieved by methane charging followed by sediment cooling. The formation of hydrates was delayed with increasing degree of consolidation. Hydrate dissociation by step-wise depressurization was instantaneous, emanating preferentially from the interior of the sand-pack. Pressure drops during dissociation and in situ temperature controlled the degree of endothermic cooling within sediments. In a closed system, the post-depressurization dissociation was succeeded by thermally induced dissociation and pressure-temperature conditions followed theoretical methane-seawater equilibrium conditions and exhibited excess pore pressure governed by the pore diameter. These post-depressurization equilibrium values for the methane hydrates in seawater saturated consolidated sand-pack were used to estimate the enthalpy of dissociation of 55.83 ± 1.41 kJ/mol. These values were found to be lower than those reported in earlier literature for bulk hydrates from seawater (58.84 kJ/mol and pure water (62.61 kJ/mol due to excess pore pressure generated within confined sediment system under investigation. However, these observations could be significant in the case of hydrate dissociation in a subseafloor environment where dissociation due to depressurization could result in an instantaneous methane release followed by slow thermally induced dissociation. The excess pore pressure generated during hydrate dissociation could be higher within fine-grained sediments with faults and barriers present in subseafloor settings which could cause shifting in geological layers.

  13. Palynology, age, correlation, and paleoclimatology from JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well and the significance for gas hydrate: a new approach

    National Research Council Canada - National Science Library

    White, J M

    2009-01-01

    A quantitative palynological study of a 480 m section of mid-Cenozoic sediment from the Mallik 2L-38 gas hydrate research borehole, Mackenzie River delta, is based on core and high-quality cuttings...

  14. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans

    OpenAIRE

    Boudreau, B.P.; Luo, Yiming; Filip J R Meysman; J. J. Middelburg; G. R. Dickens

    2015-01-01

    Anthropogenic warming of the oceans can release methane (CH4) currently stored in sediments as gas hydrates. This CH4 will be oxidized to CO2, thus increasing the acidification of the oceans. We employ a biogeochemical model of the multimillennial carbon cycle to determine the evolution of the oceanic dissolved carbonate system over the next 13 kyr in response to CO2 from gas hydrates, combined with a reasonable scenario for long-term anthropogenic CO2 emissions. Hydrate-derived CO2 will appr...

  15. Hydration Assessment of Athletes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ KEY POINTS · Although there is no scientific consensus for 1 ) howbest to assess the hydration status of athletes, 2)what criteria to use as acceptable outcome measurements, or 3) the best time to apply practical assessment methods, there are methods that can be used toprovide athletes with useful feedback about their hydration status

  16. Estimates of future warming-induced methane emissions from hydrate offshore west Svalbard for a range of climate models

    OpenAIRE

    Marin-Moreno, Héctor; MINSHULL, Timothy A.; Westbrook, Graham K.; Sinha, Bablu

    2015-01-01

    Methane hydrate close to the hydrate stability limit in seafloor sediment could represent an important source of methane to the oceans and atmosphere as the oceans warm. We investigate the extent to which patterns of past and future ocean-temperature fluctuations influence hydrate stability in a region offshore West Svalbard where active gas venting has been observed. We model the transient behavior of the gas hydrate stability zone at 400–500 m water depth (mwd) in response to past temperatu...

  17. Estimates of future warming-induced methane emissions from hydrate offshore west Svalbard for a range of climate models

    OpenAIRE

    2015-01-01

    Methane hydrate close to the hydrate stability limit in seafloor sediment could represent an important source of methane to the oceans and atmosphere as the oceans warm. We investigate the extent to which patterns of past and future ocean-temperature fluctuations influence hydrate stability in a region offshore West Svalbard where active gas venting has been observed. We model the transient behavior of the gas hydrate stability zone at 400–500 m water depth (mwd) in response to past temperatu...

  18. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta

    Science.gov (United States)

    Sultan, N.; Marsset, B.; Ker, S.; Marsset, T.; Voisset, M.; Vernant, A. M.; Bayon, G.; Cauquil, E.; Adamy, J.; Colliat, J. L.; Drapeau, D.

    2010-08-01

    Based on acquired geophysical, geological and geotechnical data and modeling, we suggest hydrate dissolution to cause sediment collapse and pockmark formation in the Niger delta. Very high-resolution bathymetry data acquired from the Niger delta reveal the morphology of pockmarks with different shapes and sizes going from a small ring depression surrounding an irregular floor to more typical pockmarks with uniform depression. Geophysical data, in situ piezocone measurements, piezometer measurements and sediment cores demonstrate the presence of a common internal architecture of the studied pockmarks: inner sediments rich in gas hydrates surrounded by overpressured sediments. The temperature, pressure and salinity conditions of the studied area have allowed us to exclude the process of gas-hydrate dissociation (gas hydrate turns into free gas/water mixture) as a trigger of the observed pockmarks. Based on numerical modeling, we demonstrate that gas-hydrate dissolution (gas hydrate becomes mixture of water and dissolved gas) under a local decrease of the gas concentration at the base of the gas-hydrate occurrence zone (GHOZ) can explain the excess pore pressure and fluid flow surrounding the central hydrated area and the sediment collapse at the border of the GHOZ. The different deformation (or development) stages of the detected pockmarks confirm that a local process such as the amount of gas flow through faults rather than a regional one is at the origin of those depressions.

  19. Grizzly bear

    Science.gov (United States)

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  20. 运聚体系--天然气水合物不均匀性分布的关键控制因素初探%Migration and Accumulation System:The Key Control Factors of Heterogeneous Distribution of Gas Hydrate

    Institute of Scientific and Technical Information of China (English)

    乔少华; 吴能友; 苏明; 杨睿; 苏丕波; 匡增桂; 沙志彬; 梁金强; 卢海龙; 徐文跃

    2013-01-01

    occurrence is relatively small, seafloor temperature and pressure are uniform, both thermogenic methane and biogenic methane can be the source gas, and the gas composition in the areas is similar. Therefore, the migration condition providing pathway for gas-bearing fluid move and the favorable sediment body providing potential space for hydrate accumulation are the key control factors of hydrate The accumulation and distribution of marine gas hydrate is obviously heterogeneous. Using the theory and method of-hydrate petroleum system‖, we chose typical international hydrate occurrence area, such as Gulf of Mexico, Blake Plateau, Hydrate Ridge and Nankai Trough, to describe the hydrate distribution characteristic in detail, and analyze the accumulation control factors of hydrate from stable condition, gas composition and source, fluid migration and sediment condition of these areas. Through analysis and comparison of the typical case studies, the control actions of various factors on hydrate heterogeneous distribution were summarized systematically, and -gas hydrate migration and accumulation system‖was proposed. The result indicates that the area of hydrate occurrence is relatively small, seafloor temperature and pressure are uniform, both thermogenic methane and biogenic methane can be the source gas, and the gas composition in the areas is similar. Therefore, the migration condition providing pathway for gas-bearing fluid move and the favorable sediment body providing potential space for hydrate accumulation are the key control factors of hydrate distribution. The theory of -hydrate migration and accumulation system‖ was applied to Shenhu area in northern continental slope of the South China Sea, the fluid migration condition and favorable sediment body were researched, and the hydrate migration and accumulation system in Shenhu area was discussed preliminarily. This study suggests that the analysis of fluid migration pathways and the sedimentological interpretation

  1. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  2. Spectral reflectance properties (0.4-2.5 μm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes

    Science.gov (United States)

    Crowley, J.K.; Williams, D.E.; Hammarstrom, J.M.; Piatak, N.; Chou, I.-Ming; Mars, J.C.

    2003-01-01

    Diffuse reflectance spectra of 15 mineral species commonly associated with sulphide-bearing mine wastes show diagnostic absorption bands related to electronic processes involving ferric and/or ferrous iron, and to vibrational processes involving water and hydroxyl. Many of these absorption bands are relatively broad and overlapping; however, spectral analysis methods, including continuum removal and derivative analysis, permit most of the minerals to be distinguished. Key spectral differences between the minerals are illustrated in a series of plots showing major absorption band centres and other spectral feature positions. Because secondary iron minerals are sensitive indicators of pH, Eh, relative humidity, and other environmental conditions, spectral mapping of mineral distributions promises to have important application to mine waste remediation studies.

  3. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

  4. The connection between natural gas hydrate and bottom-simulating reflectors

    Science.gov (United States)

    Majumdar, Urmi; Cook, Ann E.; Shedd, William; Frye, Matthew

    2016-07-01

    Bottom-simulating reflectors (BSRs) on marine seismic data are commonly used to identify the presence of natural gas hydrate in marine sediments, although the exact relationship between gas hydrate and BSRs is undefined. To clarify this relationship we compile a data set of probable gas hydrate occurrence as appraised from well logs of 788 industry wells in the northern Gulf of Mexico. We combine the well log data set with a data set of BSR distribution in the same area identified from 3-D seismic data. We find that a BSR increases the chances of finding gas hydrate by 2.6 times as opposed to drilling outside a BSR and that the wells within a BSR also contain thicker and higher resistivity hydrate accumulations. Even so, over half of the wells drilled through BSRs have no detectable gas hydrate accumulations and gas hydrate occurrences and BSRs do not coincide in most cases.

  5. Magnetic Bearing

    Science.gov (United States)

    1996-01-01

    AVCON, Inc. produces advanced magnetic bearing systems for industrial use, offering a unique technological approach based on contract work done at Marshall Space Flight Center and Lewis Research Center. Designed for the turbopump of the Space Shuttle main engine, they are now used in applications such as electric power generation, petroleum refining, machine tool operation and natural gas pipelines. Magnetic bearings support moving machinery without physical contact; AVCON's homopolar approach is a hybrid of permanent and electromagnets which are one-third the weight, smaller and more power- efficient than previous magnetic bearings.

  6. Wet hydrate dissolution plant

    OpenAIRE

    Stanković Mirjana S.; Kovačević Branimir T.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with capacity of 50,000 t/y was manufactured, at "Zeolite Mira", Mira (VE), Italy, in 1997, for increasing detergent zeolite production from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate ...

  7. Evaluation of Gas Hydrate at Alaminos Canyon 810, Northern Gulf of Mexico Slope

    Science.gov (United States)

    Yang, C.; Cook, A.; Sawyer, D.; Hillman, J. I. T.

    2016-12-01

    We characterize the gas hydrate reservoir in Alaminos Canyon Block 810 (AC810) on the northern Gulf of Mexico slope, approximately 400 km southeast of Houston, Texas, USA. Three-dimensional seismic data shows a bottom-simulating-reflection (BSR), over 30 km2, which suggests that a significant gas hydrate accumulation may occur at AC810. Furthermore, logging while drilling (LWD) data acquired from a Statoil well located that penetrated the BSR near the crest of the regional anticline indicates two possible gas hydrate units (Hydrate Unit A and Hydrate Unit B). LWD data in this interval are limited to gamma ray and resistivity only. Resistivity curve separations are observed in Hydrate Unit A (131 to 253 mbsf) suggesting hydrate-filled fractures in marine mud. A spiky high resistivity response in Hydrate Unit B (308 to 354 mbsf) could either be a marine mud or a sand-prone interval. The abrupt decrease (from 7 to 1 Ωm) in resistivity logs at 357 mbsf generally corresponds with the interpreted base of hydrate stability, as the BSR is observed near 350 mbsf on the seismic data. To further investigate the formation characteristics, we generate synthetic traces using general velocity and density trends for marine sediments to match the seismic trace extracted at the Statoil well. We consider models with 1) free gas and 2) water only below the base of hydrate stability. In our free gas-below models, we find the velocity of Hydrate Unit A and Hydrate Unit B is generally low and does not deviate significantly from the general velocity trends, suggesting that gas hydrate is present in a marine mud. In the water-below model, the compressional velocity of Hydrate Unit B ranges from 2450 m/s to 3150 m/s. This velocity is similar to the velocity of high hydrate saturation in sand; typically greater than 2500 m/s. This may indicate that Hydrate Unit B is sand with high hydrate saturation; however, to achieve a suitable match between the water-below synthetic seismogram and the

  8. International Methane Hydrate Research and Development Workshop (6th) held in Bergen, Norway on May 13-15, 2008

    Science.gov (United States)

    2009-07-22

    Hydrae in Changing Environments. …………………………………………………………………. 73 3. J. Brugada and K. Soga. Geomechanical Study of Methane Hydrate Soil... geomechanic sediment properties, biogeochemical influence on hydrate formation and stability, and sediment thermodynamics. 5. Theoretical modeling needs...further development in rock physics flow simulations, geomechanical sediment properties, and environmental system cycling. 6. Production testing

  9. Foil bearings

    Science.gov (United States)

    Elrod, David A.

    1993-01-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  10. Foil bearings

    Science.gov (United States)

    Elrod, David A.

    1993-11-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  11. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.

    Science.gov (United States)

    Sujith, K S; Ramachandran, C N

    2017-01-12

    Natural gas extraction from gas hydrate sediments by injection of hydrate inhibitors involves the decomposition of hydrates. The evolution of dissolved gas from the hydrate melt is an important step in the extraction process. Using classical molecular dynamics simulations, we study the evolution of dissolved methane from its hydrate melt in the presence of two thermodynamic hydrate inhibitors, NaCl and CH3OH. An increase in the concentration of hydrate inhibitors is found to promote the nucleation of methane nanobubbles in the hydrate melt. Whereas NaCl promotes bubble formation by enhancing the hydrophobic interaction between aqueous CH4 molecules, CH3OH molecules assist bubble formation by stabilizing CH4 bubble nuclei formed in the solution. The CH3OH molecules accumulate around the nuclei leading to a decrease in the surface tension at their interface with water. The nanobubbles formed are found to be highly dynamic with frequent exchange of CH4 molecules between the bubble and the surrounding liquid. A quantitative analysis of the dynamic behavior of the bubble is performed by introducing a unit step function whose value depends on the location of CH4 molecules with respect to the bubble. It is observed that an increase in the concentration of thermodynamic hydrate inhibitors reduces the exchange process, making the bubble less dynamic. It is also found that for a given concentration of the inhibitor, larger bubbles are less dynamic compared to smaller ones. The dependence of the dynamic nature of nanobubbles on bubble size and inhibitor concentration is correlated with the solubility of CH4 and the Laplace pressure within the bubble. The effect of CO2 on the formation of nanobubble in the CH4-CO2 mixed gas hydrate melt in the presence of inhibitors is also examined. The simulations show that the presence of CO2 molecules significantly reduces the induction time for methane nanobubble nucleation. The role of CO2 in the early nucleation of bubble is explained

  12. Simulation of subsea gas hydrate exploitation

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2014-05-01

    The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within

  13. Studies of Reaction Kinetics of Methane Hydrate Dissocation in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J.; Seol, Yongkoo; Kneafsey, Timothy J.

    2005-03-10

    The objective of this study is the description of the kinetic dissociation of CH4-hydrates in porous media, and the determination of the corresponding kinetic parameters. Knowledge of the kinetic dissociation behavior of hydrates can play a critical role in the evaluation of gas production potential of gas hydrate accumulations in geologic media. We analyzed data from a sequence of tests of CH4-hydrate dissociation by means of thermal stimulation. These tests had been conducted on sand cores partially saturated with water, hydrate and CH4 gas, and contained in an x-ray-transparent aluminum pressure vessel. The pressure, volume of released gas, and temperature (at several locations within the cores) were measured. To avoid misinterpreting local changes as global processes, x-ray computed tomography scans provided accurate images of the location and movement of the reaction interface during the course of the experiments. Analysis of the data by means of inverse modeling (history matching ) provided estimates of the thermal properties and of the kinetic parameters of the hydration reaction in porous media. Comparison of the results from the hydrate-bearing porous media cores to those from pure CH4-hydrate samples provided a measure of the effect of the porous medium on the kinetic reaction. A tentative model of composite thermal conductivity of hydrate-bearing media was also developed.

  14. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  15. Methane hydrates and contemporary climate change

    Science.gov (United States)

    Ruppel, Carolyn D.

    2011-01-01

    As the evidence for warming climate became better established in the latter part of the 20th century (IPCC 2001), some scientists raised the alarm that large quantities of methane (CH4) might be liberated by widespread destabilization of climate-sensitive gas hydrate deposits trapped in marine and permafrost-associated sediments (Bohannon 2008, Krey et al. 2009, Mascarelli 2009). Even if only a fraction of the liberated CH4 were to reach the atmosphere, the potency of CH4 as a greenhouse gas (GHG) and the persistence of its oxidative product (CO2) heightened concerns that gas hydrate dissociation could represent a slow tipping point (Archer et al. 2009) for Earth's contemporary period of climate change.

  16. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans

    NARCIS (Netherlands)

    Boudreau, B.P.; Luo, Y.; Meysman, F.J.R.; Middelburg, J

    2015-01-01

    Anthropogenic warming of the oceans can release methane (CH4) currently stored in sediments as gas hydrates. This CH4 will be oxidized to CO2, thus increasing the acidification of the oceans. We employ a biogeochemical model of the multimillennial carbon cycle to determine the evolution of the ocean

  17. Experimental Study on Mechanism of Depressurizing Dissociation of Methane Hydrate under Saturated Pore Fluid

    Institute of Scientific and Technical Information of China (English)

    Sun Youhong; Su Kai; Guo Wei; Li Bing; Jia Rui

    2016-01-01

    Sediment-hosted hydrate reservoir often contains saturated pore lfuid, which changes the heat transfer and mass transfer characteristics of the hydrate reservoir. The exploitation of hydrate under saturated pore lfuid using depressurization is simulated experimentally to investigate the inlfuence of particle size of porous media, dissociation temperature, pressure drop and injected lfuid type on gas production behavior. Homogeneous methane hydrate was ifrstly formed in frozen quartz sand. With the formed hydrate sample, hydrate dissociation experiments by depressurization were conducted. The test results showed that the gas production rate of hydrate under saturated pore lfuid was substantially inlfuenced by the particle size, the pressure drop and the injected lfuid type, while it was inlfuenced little by the dissociation temperature. The hydrate dissociates faster under larger pressure drop and in the presence of smaller porous media within the experimental region. The dissociation rate increases with an increasing lfuid salinity in the initial stage, while it decreases in the later stage. The increase of gas diffusion resistance resulted from ionic hydration atmosphere in saturated chloride solution impeded the dissociation of hydrate. It can be solved by increasing the pressure drop and decreasing the lfuid salinity in the process of gas recovery from hydrate reservoir.

  18. Development stages of Holocene soils formed in loess and loess bearing sediments at the Roman wall (Limes) in the Wetterau (Hesse, Germany)

    Science.gov (United States)

    Kühn, P.; Felix-Henningsen, P.

    2009-04-01

    About 2000 years ago the Romans built a wall through Europe - named Limes (lat. border) in Middle Europe and Hadrian's wall in UK - with the aim to protect the borders of their empire. In many parts the Limes was constructed by digging a trench and by accumulating the excavated soil material at one side of the trench. The upper decimetres of the wall are mainly made of calcareous sediments, because the trench was dug to a depth of C horizons which are composed of loess with high carbonate content. One prerequisite for research on pedogenesis is to obtain most precise data about the age of the parent material of soil formation. Regarding this, the Limes gives an excellent opportunity to distinguish different stages of Late Holocene soil development. The study area is part of the soilscape of the Wetterau (100 - 250 m asl) situated between Taunus and Vogelsberg in Hesse, Germany. The precipitation is around 500 mm per year. Wetterau's gentle rolling hills were originally covered with loess and periglacial slope deposits. The soilscape is characterized by (Albic) Luvisols, Haplic Phaeozems, Luvic Phaeozems as well as Calcaric Regosols on upper slopes and Anthrosols in footslope positions. Particulary Haplic Phaeozems and Luvic Phaeozems have been of a wider interest of pedogenic research, since they have been formed in the Early and Mid-Holocene and, therefore, they are relic. It is supposed that the Wetterau was a Chernozem soilscape during the Early Holocene changing to a soilscape characterised by (Luvic) Phaeozems and Luvisols during the Atlantic period. Results of archaeological research on the Roman wall in the Wetterau showed that the wall was constructed in the 2nd century AD and that it had different functions over time. In this context soil investigations revealed three different stages of Holocene soil development: (i) a youngest (recent) soil situated in the wall, (ii) a paleosol conserved below the wall and (iii) a soil developed in the area nearby the

  19. Triggers and sources of volatile-bearing plumes in the mantle transition zone

    Institute of Scientific and Technical Information of China (English)

    Inna Safonova; Konstantin Litasov; Shigenori Maruyama

    2015-01-01

    The paper discusses generation of volatile-bearing plumes in the mantle transition zone (MTZ) in terms of mineral-fluid petrology and their related formation of numerous localities of intra-plate bimodal volcanic series in Central and East Asia. The plume generation in the MTZ can be triggered by the tectonic erosion of continental crust at Pacific-type convergent margins and by the presence of water and carbon dioxide in the mantle. Most probable sources of volatiles are the hydrated/carbonated sediments and basalts and serpentinite of oceanic slabs, which can be subducted down to the deep mantle. Tectonic erosion of continental crust supplies crustal material enriched in uranium and thorium into the mantle, which can serve source of heat in the MTZ. The heating in the MTZ induces melting of subducted slabs and continental crust and mantle upwelling, to produce OIB-type mafic and felsic melts, respectively.

  20. Triggers and sources of volatile-bearing plumes in the mantle transition zone

    Directory of Open Access Journals (Sweden)

    Inna Safonova

    2015-09-01

    Full Text Available The paper discusses generation of volatile-bearing plumes in the mantle transition zone (MTZ in terms of mineral-fluid petrology and their related formation of numerous localities of intra-plate bimodal volcanic series in Central and East Asia. The plume generation in the MTZ can be triggered by the tectonic erosion of continental crust at Pacific-type convergent margins and by the presence of water and carbon dioxide in the mantle. Most probable sources of volatiles are the hydrated/carbonated sediments and basalts and serpentinite of oceanic slabs, which can be subducted down to the deep mantle. Tectonic erosion of continental crust supplies crustal material enriched in uranium and thorium into the mantle, which can serve source of heat in the MTZ. The heating in the MTZ induces melting of subducted slabs and continental crust and mantle upwelling, to produce OIB-type mafic and felsic melts, respectively.

  1. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  2. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  3. Evaluation of the geological relationships to gas hydrate formation and stability

    Energy Technology Data Exchange (ETDEWEB)

    Krason, J.; Finley, P.

    1988-01-01

    The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

  4. Examination of Hydrate Formation Methods: Trying to Create Representative Samples

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.

    2011-04-01

    Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas

  5. Formation of porous gas hydrates

    CERN Document Server

    Salamatin, Andrey N

    2015-01-01

    Gas hydrates grown at gas-ice interfaces are examined by electron microscopy and found to have a submicron porous texture. Permeability of the intervening hydrate layers provides the connection between the two counterparts (gas and water molecules) of the clathration reaction and makes further hydrate formation possible. The study is focused on phenomenological description of principal stages and rate-limiting processes that control the kinetics of the porous gas hydrate crystal growth from ice powders. Although the detailed physical mechanisms involved in the porous hydrate formation still are not fully understood, the initial stage of hydrate film spreading over the ice surface should be distinguished from the subsequent stage which is presumably limited by the clathration reaction at the ice-hydrate interface and develops after the ice grain coating is finished. The model reveals a time dependence of the reaction degree essentially different from that when the rate-limiting step of the hydrate formation at...

  6. Deep-ocean field test of methane hydrate formation from a remotely operated vehicle

    Science.gov (United States)

    Brewer, Peter G.; Orr, Franklin M., Jr.; Friederich, Gernot; Kvenvolden, Keith A.; Orange, Daniel L.; McFarlane, James; Kirkwood, William

    1997-05-01

    We have observed the process of formation of clathrate hydrates of methane in experiments conducted on the remotely operated vehicle (ROV) Ventana in the deep waters of Monterey Bay. A tank of methane gas, acrylic tubes containing seawater, and seawater plus various types of sediment were carried down on Ventana to a depth of 910 m where methane gas was injected at the base of the acrylic tubes by bubble stream. Prior calculations had shown that the local hydrographic conditions gave an upper limit of 525 m for the P-T boundary defining methane hydrate formation or dissociation at this site, and thus our experiment took place well within the stability range for this reaction to occur. Hydrate formation in free seawater occurred within minutes as a buoyant mass of translucent hydrate formed at the gas-water interface. In a coarse sand matrix the filling of the pore spaces with hydrate turned the sand column into a solidified block, which gas pressure soon lifted and ruptured. In a fine-grained black mud the gas flow carved out flow channels, the walls of which became coated and then filled with hydrate in larger discrete masses. Our experiment shows that hydrate formation is rapid in natural seawater, that sediment type strongly influences the patterns of hydrate formation, and that the use of ROV technologies permits the synthesis of large amounts of hydrate material in natural systems under a variety of conditions so that fundamental research on the stability and growth of these substances is possible.

  7. Formation process of structure 1 and 2 gas hydrates discovered in Kukuy, Lake Baikal

    Energy Technology Data Exchange (ETDEWEB)

    Hachikubo, A.; Sakagami, H.; Minami, H.; Nunokawa, Y.; Yamashita, S.; Takahashi, N.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan); Kida, M. [Advanced Industrial Science and Technology, Toyohira-ku, Sapporo, Hokkaido (Japan); Krylov, A. [All-Russia Research Inst. for Geology and Mineral Resources of the Ocean, St. Petersburg (Russian Federation); Khlystov, O.; Zemskaya, T. [Limnological Inst., Irkutsk (Russian Federation); Manakov, A. [Nikolaev Inst. of Inorganic Chemistry, Novosibirsk (Russian Federation); Kalmychkov, G. [Vinogradov Inst. of Geochemistry, Irkutsk (Russian Federation); Poort, J. [Ghent Univ., Krijgslaan (Belgium). Renard Centre of Marine Geology

    2008-07-01

    This study investigated the formation process of different crystal structures of gas hydrates found in Kukuy K-2, Lake Baikal, Russia. Gas compositions and isotopic ratios were taken from hydrate-bound gas and from dissolved gas in sediments by a headspace gas method. Structure 1 and 2 gas hydrates were observed in the same sediment cores of a mud volcano in the Kukuy Canyon, Lake Baikal. This paper discussed the results of the observations. The structure 2 gas hydrate contained about 13-15 per cent ethane, whereas the structure 1 gas hydrate contained about 1-5 per cent ethane and was placed beneath the structure 2 gas hydrate. The paper discussed the measurement of isotopic composition of dissociation gas from both type gas hydrates and dissolved gas in pore water. The paper also reported on these results. It was concluded that the current gas dissolved in pore water was not the source of these gas hydrates of both crystal structures in Kukuy K-2 mud volcano in Lake Baikal. In addition, isotopic data also provided useful information on how the double structure gas hydrates formed. 18 refs., 4 figs.

  8. Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, John

    2012-12-31

    Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

  9. An improved constitutive model coupling elastoplasticity and damage for methane hydrate-bearing sediments%一种改进的水合物沉积物弹塑性损伤本构模型

    Institute of Scientific and Technical Information of China (English)

    杨期君; 赵春风

    2014-01-01

    为了全面考虑水合物对沉积物的力学影响,提出了一个改进的水合物沉积物弹塑性损伤本构模型.首先通过分析水合物在沉积物中的存在形式,认为沉积物的力学特性是水合物胶结以及密实两种作用共同影响的结果;然后在弹塑性损伤理论框架内,引入状态相关砂土本构模型来描述水合物填充的影响,从而建立一个能反映体变特性和围压影响的水合物沉积物本构模型;最后,利用已有试验结果对模型进行了验证.此成果可为将来的水合物开采提供参考.

  10. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  11. Combined Studies of ODP log Data and Seismic Reflection Data at Southern Hydrate Ridge

    Science.gov (United States)

    Papenberg, C. A.; Petersen, J.; Klaeschen, D.

    2003-12-01

    In August 2002 Ocean Drilling Program (ODP) Leg 204 (Hydrate Ridge) provided essential borehole data to complement recent seismic studies at Hydrate Ridge to correlate amplitude analysis investigations and to constrain previous results. Seismic data was acquired during cruise SO-150 in September 2000 on the German RV SONNE, aiming at qualitative and quantitative estimates of free gas and gas hydrates within the sediments across Hydrate Ridge. Hydrate Ridge is part of the accretionary complex and is characterized by the presence of extensive gas hydrates, causing a prominent Bottom Simulating Reflector (BSR) in marine seismic records. Several seismic in- and crosslines were shot across the ridge to map the spatial distribution of the BSR. Wide angle reflection data of narrowly spaced Ocean Bottom Seismometers (OBS) allow frequency dependent amplitude variations with offset (AVO) investigations. Seismic reflection data, recorded simultaneously with a single channel surface and deep tow streamer completed the data set. The usage of different sources during acquisition provided additional information of the frequency response of the BSR signature. This data set was used to study the complex seismic behaviour of such gas hydrate environments in detail. The borehole data, collected during ODP Leg 204, now improve recent seismic investigations and support previous results. Within the COLIBRI project log information (Vp, Vs and density) was used for forward modeling to combine seismic investigations with new borehole data. The P wave velocity model of a traveltime inversion and AVO analysis of the seismic OBS sections suggest rather low quantities of gas hydrate or at least the lack of massive hydrate zones. Shear wave phases, identified in the seismic OBS sections, refer to slow S wave velocities in the upper sediment layers above the BSR, which support a model with small amounts of hydrate or patchy hydrate zones within the upper sediments.

  12. Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Moridis, G.J.; Kneafsey, T.J.; Sloan, Jr., E.D.

    2009-08-15

    The numerical simulator TOUGH+HYDRATE (T+H) was used to predict the transient pure methane hydrate (no sediment) dissociation data. X-ray computed tomography (CT) was used to visualize the methane hydrate formation and dissociation processes. A methane hydrate sample was formed from granular ice in a cylindrical vessel, and slow depressurization combined with thermal stimulation was applied to dissociate the hydrate sample. CT images showed that the water produced from the hydrate dissociation accumulated at the bottom of the vessel and increased the hydrate dissociation rate there. CT images were obtained during hydrate dissociation to confirm the radial dissociation of the hydrate sample. This radial dissociation process has implications for dissociation of hydrates in pipelines, suggesting lower dissociation times than for longitudinal dissociation. These observations were also confirmed by the numerical simulator predictions, which were in good agreement with the measured thermal data during hydrate dissociation. System pressure and sample temperature measured at the sample center followed the CH{sub 4} hydrate L{sub w}+H+V equilibrium line during hydrate dissociation. The predicted cumulative methane gas production was within 5% of the measured data. Thus, this study validated our simulation approach and assumptions, which include stationary pure methane hydrate-skeleton, equilibrium hydrate-dissociation and heat- and mass-transfer in predicting hydrate dissociation in the absence of sediments. It should be noted that the application of T+H for the pure methane hydrate system (no sediment) is outside the general applicability limits of T+H.

  13. [Hydration in clinical practice].

    Science.gov (United States)

    Maristany, Cleofé Pérez-Portabella; Segurola Gurruchaga, Hegoi

    2011-01-01

    Water is an essential foundation for life, having both a regulatory and structural function. The former results from active and passive participation in all metabolic reactions, and its role in conserving and maintaining body temperature. Structurally speaking it is the major contributer to tissue mass, accounting for 60% of the basis of blood plasma, intracellular and intersticial fluid. Water is also part of the primary structures of life such as genetic material or proteins. Therefore, it is necessary that the nurse makes an early assessment of patients water needs to detect if there are signs of electrolyte imbalance. Dehydration can be a very serious problem, especially in children and the elderly. Dehydrations treatment with oral rehydration solution decreases the risk of developing hydration disorders, but even so, it is recommended to follow preventive measures to reduce the incidence and severity of dehydration. The key to having a proper hydration is prevention. Artificial nutrition encompasses the need for precise calculation of water needs in enteral nutrition as parenteral, so the nurse should be part of this process and use the tools for calculating the patient's requirements. All this helps to ensure an optimal nutritional status in patients at risk. Ethical dilemmas are becoming increasingly common in clinical practice. On the subject of artificial nutrition and hydration, there isn't yet any unanimous agreement regarding hydration as a basic care. It is necessary to take decisions in consensus with the health team, always thinking of the best interests of the patient.

  14. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  15. FIELD TRIP ROADLOG FOR THE BEAR RIVER LANDSLIDE COMPLEX

    OpenAIRE

    McCalpin, James P.

    1987-01-01

    The Bear River Landslide Complex occurs where the unconsolidated sediments of the Bear River Delta have been incised to a depth of 350 to 490 feet (106-150 m) north of Preston, Idaho. The slides are the result of the high pore pressure in confined aquifers in the deltaic sediments. High but variable volumes of groundwater flow and the laterally discontinuous nature of the deltaic sediments result in the varied types of earth movements found within the Landslide Complex. Landslide activity occ...

  16. Cell aggregation and sedimentation.

    Science.gov (United States)

    Davis, R H

    1995-01-01

    The aggregation of cells into clumps or flocs has been exploited for decades in such applications as biological wastewater treatment, beer brewing, antibiotic fermentation, and enhanced sedimentation to aid in cell recovery or retention. More recent research has included the use of cell aggregation and sedimentation to selectively separate subpopulations of cells. Potential biotechnological applications include overcoming contamination, maintaining plasmid-bearing cells in continuous fermentors, and selectively removing nonviable hybridoma cells from perfusion cultures.

  17. Development of Carbon Sequestration Options by Studying Carbon Dioxide-Methane Exchange in Hydrates

    Science.gov (United States)

    Horvat, Kristine Nicole

    Gas hydrates form naturally at high pressures (>4 MPa) and low temperatures (climate change point of view, a 100 ppm increase in atmospheric carbon dioxide (CO2) levels over the past century is of urgent concern. A potential solution to both of these issues is to simultaneously exchange CH4 with CO 2 in natural hydrate reserves by forming more stable CO2 hydrates. This approach would minimize disturbances to the host sediment matrix of the seafloor while sequestering CO2. Understanding hydrate growth over time is imperative to prepare for large scale CH4 extraction coupled with CO2 sequestration. In this study, we performed macroscale experiments in a 200 mL high-pressure Jerguson cell that mimicked the pressure-temperature conditions of the seafloor. A total of 13 runs were performed under varying conditions. These included the formation of CH4 hydrates, followed by a CO2 gas injection and CO2 hydrate formation followed by a CH4 gas injection. Results demonstrated that once gas hydrates formed, they show "memory effect" in subsequent charges, irrespective of the two gases injected. This was borne out by the induction time data for hydrate formation that reduced from 96 hours for CH4 and 24 hours for CO2 to instant hydrate formation in both cases upon injection of a secondary gas. During the study of CH4-CO2 exchange where CH4 hydrates were first formed and CO2 gas was injected into the system, gas chromatographic (GC) analysis of the cell indicated a pure CH4 gas phase, i.e., all injected CO2 gas entered the hydrate phase and remained trapped in hydrate cages for several hours, though over time some CO2 did enter the gas phase. Alternatively, during the CH 4-CO2 exchange study where CO2 hydrates were first formed, the injected CH4 initially entered the hydrate phase, but quickly gaseous CO2 exchanged with CH4 in hydrates to form more stable CO2 hydrates. These results are consistent with the better thermodynamic stability of CO2 hydrates, and this appears to be a

  18. Gas hydrates: entrance to a methane age or climate threat?

    Energy Technology Data Exchange (ETDEWEB)

    Krey, Volker; Nakicenovic, Nebojsa; Grubler, Arnulf; O' Neill, Brian; Riahi, Keywan [International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361 Laxenburg (Austria); Canadell, Josep G [Global Carbon Project, CSIRO Marine and Atmospheric Research, GPO Box 3023, Canberra, ACT 2601 (Australia); Abe, Yuichi [Social Science Consulting Unit, Japan Nus Co. Ltd, Loop-X Building 7F, 9-15 Kaigan 3-Chome, Minato-ku, Tokyo 108-0022 (Japan); Andruleit, Harald [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, 30655 Hannover (Germany); Archer, David [Department of the Geophysical Sciences at the University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States); Hamilton, Neil T M [WWF International Arctic Programme, Kristian Augusts gate 7a, 0130 Oslo (Norway); Johnson, Arthur [Hydrate Energy International, 612 Petit Berdot Drive, Kenner, LA 70065 (United States); Kostov, Veselin [Department of Physics and Astronomy, Johns Hopkins University, 3400 N Charles Street Baltimore, MD 21218 (United States); Lamarque, Jean-Francois [Atmospheric Chemistry Division, National Center for Atmospheric Research (NCAR), PO Box 3000, Boulder, CO 80307 (United States); Langhorne, Nicholas [US Office of Naval Research Global, Edison House, 223 Old Marylebone Road, London (United Kingdom); Nisbet, Euan G [Department of Geology, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom); Riedel, Michael [Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, QC, H3A 2A7 (Canada); Wang Weihua [Computer Network Information Center, Chinese Academy of Sciences, No. 4, 4th South Street, ZhongGuanCun, PO Box 349, Haidian District, Beijing 100080 (China); Yakushev, Vladimir, E-mail: krey@iiasa.ac.a [Gazprom VNIIGAZ LLC, Razvilka, Leninsky District, Moscow Region, 142717 (Russian Federation)

    2009-09-15

    Methane hydrates, ice-like compounds in which methane is held in crystalline cages formed by water molecules, are widespread in areas of permafrost such as the Arctic and in sediments on the continental margins. They are a potentially vast fossil fuel energy source but, at the same time, could be destabilized by changing pressure-temperature conditions due to climate change, potentially leading to strong positive carbon-climate feedbacks. To enhance our understanding of both the vulnerability of and the opportunity provided by methane hydrates, it is necessary (i) to conduct basic research that improves the highly uncertain estimates of hydrate occurrences and their response to changing environmental conditions, and (ii) to integrate the agendas of energy security and climate change which can provide an opportunity for methane hydrates-in particular if combined with carbon capture and storage-to be used as a 'bridge fuel' between carbon-intensive fossil energies and zero-emission energies. Taken one step further, exploitation of dissociating methane hydrates could even mitigate against escape of methane to the atmosphere. Despite these opportunities, so far, methane hydrates have been largely absent from energy and climate discussions, including global hydrocarbon assessments and the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

  19. Hematite-bearing materials surrounding Candor Mensa in Candor Chasma, Mars: Implications for hematite origin and post-emplacement modification

    Science.gov (United States)

    Fergason, R. L.; Gaddis, L. R.; Rogers, A. D.

    2014-07-01

    The Valles Marineris canyon system on Mars is of enduring scientific interest in part due to the presence of interior mounds that contain extensive layering and water-altered minerals, such as crystalline gray hematite and hydrated sulfates. The presence of hematite and hydrated sulfate minerals is important because their host rock lithologies provide information about past environments that may have supported liquid water and may have been habitable. This work further defines the association and relationship between hematite-bearing materials and low albedo (presumably aeolian) deposits and layered materials, identifies physical characteristics that are strongly correlated with the presence of hematite, and refines hypotheses for the origin and post-emplacement modification (including transport) of these hematite-bearing and associated materials. There are only three regions surrounding Candor Mensa where hematite has been identified, even though morphologic properties are similar throughout the entire mensa. Three possible explanations for why hematite is only exposed in these regions include: (1) the topographic structure of the mensa walls concentrates hematite at the base of the layered deposits, influencing the ability to detect hematite from orbit; (2) the presence of differing amounts of “dark mantling material” and hematite-free erosional sediment; (3) the potential fracturing of the mensa and the influence of these structures on fluid flow and subsequent digenesis. The observations of hematite-bearing materials in this work support the hypothesis that hematite is eroding from a unit in the Candor Mensa interior layered deposits (ILD) and is being concentrated as a lag deposit adjacent to the lower layers of Candor Mensa and at the base in the form of dark aeolian material. Due to the similar geologic context associated with hematite-bearing and ILD materials throughout the Valles Marineris canyon system, the insight gained from studying these

  20. Hematite-bearing materials surrounding Candor Mensa in Candor Chasma, Mars: Implications for hematite origin and post-emplacement modification

    Science.gov (United States)

    Fergason, Robin L.; Gaddis, Lisa R.; Rogers, A. D.

    2014-01-01

    The Valles Marineris canyon system on Mars is of enduring scientific interest in part due to the presence of interior mounds that contain extensive layering and water-altered minerals, such as crystalline gray hematite and hydrated sulfates. The presence of hematite and hydrated sulfate minerals is important because their host rock lithologies provide information about past environments that may have supported liquid water and may have been habitable. This work further defines the association and relationship between hematite-bearing materials and low albedo (presumably aeolian) deposits and layered materials, identifies physical characteristics that are strongly correlated with the presence of hematite, and refines hypotheses for the origin and post-emplacement modification (including transport) of these hematite-bearing and associated materials. There are only three regions surrounding Candor Mensa where hematite has been identified, even though morphologic properties are similar throughout the entire mensa. Three possible explanations for why hematite is only exposed in these regions include: (1) the topographic structure of the mensa walls concentrates hematite at the base of the layered deposits, influencing the ability to detect hematite from orbit; (2) the presence of differing amounts of “dark mantling material” and hematite-free erosional sediment; (3) the potential fracturing of the mensa and the influence of these structures on fluid flow and subsequent digenesis. The observations of hematite-bearing materials in this work support the hypothesis that hematite is eroding from a unit in the Candor Mensa interior layered deposits (ILD) and is being concentrated as a lag deposit adjacent to the lower layers of Candor Mensa and at the base in the form of dark aeolian material. Due to the similar geologic context associated with hematite-bearing and ILD materials throughout the Valles Marineris canyon system, the insight gained from studying these

  1. Geochemical and geologic factors effecting the formulation of gas hydrate: Task No. 5, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kvenvolden, K.A.; Claypool, G.E.

    1988-01-01

    The main objective of our work has been to determine the primary geochemical and geological factors controlling gas hydrate information and occurrence and particularly in the factors responsible for the generation and accumulation of methane in oceanic gas hydrates. In order to understand the interrelation of geochemical/geological factors controlling gas hydrate occurrence, we have undertaken a multicomponent program which has included (1) comparison of available information at sites where gas hydrates have been observed through drilling by the Deep Sea Drilling Project (DSDP) on the Blake Outer Ridge and Middle America Trench; (2) regional synthesis of information related to gas hydrate occurrences of the Middle America Trench; (3) development of a model for the occurrence of a massive gas hydrate as DSDP Site 570; (4) a global synthesis of gas hydrate occurrences; and (5) development of a predictive model for gas hydrate occurrence in oceanic sediment. The first three components of this program were treated as part of a 1985 Department of Energy Peer Review. The present report considers the last two components and presents information on the worldwide occurrence of gas hydrates with particular emphasis on the Circum-Pacific and Arctic basins. A model is developed to account for the occurrence of oceanic gas hydrates in which the source of the methane is from microbial processes. 101 refs., 17 figs., 6 tabs.

  2. Stability of permafrost and gas hydrates in Arctic coastal lowlands and on the Eurasian shelf

    Science.gov (United States)

    Hubberten, H. W.; Lantuit, H.; Overduin, P. P.; Romanovskii, N.; Wetterich, S.

    2011-12-01

    During the last Glacial period thick continuous permafrost developed on the Siberian coastal lowlands and large shelf areas due to the up to 120 m lower sea level and the exposure of these areas to cold temperatures. With the beginning of the Holocene transgression, complex interaction processes of sea water with the permafrost landscape occurred. The occurrence of gas hydrates captured in permafrost is a characteristic feature of the the Eurasian Arctic shelf areas, especially on the shelf of the Kara, Laptev and East Siberia seas. In some of the shelf areas oceanic rift zones stretch to the continent, as for example in the Laptev Sea area where the Gakkel Ridge continues into the land. Great differences in geothermal heat flow values and in the properties of the sediments and rocks have to be assumed in undisturbed lithosphere block and in fault zones like as in continental rifts (such as Momskii and Baikalskii rifts, etc.). As a result differences in the thickness of permafrost and the gas hydrate stability zone (GHSZ) within these structures are expected. The thickness of permafrost and the GHSZ change essentially and irregularly in the stages of regressions and transgressions of the sea. Models show that the thickness of offshore (subsea) permafrost in the stages of climatic warming and transgressions essentially decrease however, rather irregular. The possibilities and the boundary conditions for the occurrence of open taliks, which may result in an emission of greenhouse gases from sub-permafrost gases and hydrates, have been estimated. Ice-bearing and ice-bonded permafrost in the northern regions of Arctic lowlands and in the inner shelf zone, have been preserved during at least four Pleistocene climatic and glacial-eustatic cycles. Presently, they are subjected to degradation from the bottom under the impact of geothermal heat flux as well as from interaction with warmer sea water at the top. Subsea permafrost formed on the arctic continental shelves that

  3. The impact of permafrost-associated microorganisms on hydrate formation kinetics

    Science.gov (United States)

    Luzi-Helbing, Manja; Liebner, Susanne; Spangenberg, Erik; Wagner, Dirk; Schicks, Judith M.

    2016-04-01

    The relationship between gas hydrates, microorganisms and the surrounding sediment is extremely complex: On the one hand, microorganisms producing methane provide the prerequisite for gas hydrate formation. As it is known most of the gas incorporated into natural gas hydrates originates from biogenic sources. On the other hand, as a result of microbial activity gas hydrates are surrounded by a great variety of organic compounds which are not incorporated into the hydrate structure but may influence the formation or degradation process. For gas hydrate samples from marine environments such as the Gulf of Mexico a direct association between microbes and gas hydrates was shown by Lanoil et al. 2001. It is further assumed that microorganisms living within the gas hydrate stability zone produce biosurfactants which were found to enhance the hydrate formation process significantly and act as nucleation centres (Roger et al. 2007). Another source of organic compounds is sediment organic matter (SOM) originating from plant material or animal remains which may also enhance hydrate growth. So far, the studies regarding this relationship were focused on a marine environment. The scope of this work is to extend the investigations to microbes originating from permafrost areas. To understand the influence of microbial activity in a permafrost environment on the methane hydrate formation process and the stability conditions of the resulting hydrate phase we will perform laboratory studies. Thereby, we mimic gas hydrate formation in the presence and absence of methanogenic archaea (e.g. Methanosarcina soligelidi) and other psychrophilic bacteria isolated from permafrost environments of the Arctic and Antarctic to investigate their impact on hydrate induction time and formation rates. Our results may contribute to understand and predict the occurrences and behaviour of potential gas hydrates within or adjacent to the permafrost. Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH

  4. Geological modeling for methane hydrate reservoir characterization in the eastern Nankai Trough, offshore Japan

    Science.gov (United States)

    Tamaki, M.; Komatsu, Y.; Suzuki, K.; Takayama, T.; Fujii, T.

    2012-12-01

    The eastern Nankai trough, which is located offshore of central Japan, is considered as an attractive potential resource field of methane hydrates. Japan Oil, Gas and Metals National Corporation is planning to conduct a production test in early 2013 at the AT1 site in the north slope of Daini-Atsumi Knoll in the eastern Nankai Trough. The depositional environment of methane hydrate-bearing sediments around the production test site is a deep submarine-fan turbidite system, and it is considered that the reservoir properties should show lateral as well as vertical heterogeneity. Since the variations in the reservoir heterogeneity have an impact on the methane hydrate dissociation and gas production performance, precise geological models describing reservoir heterogeneity would be required for the evaluation of reservoir potentials. In preparation for the production test, 3 wells; two monitoring boreholes (AT1-MC and AT1-MT1) and a coring well (AT1-C), were newly acquired in 2012. In addition to a geotechnical hole drilling survey in 2011 (AT1-GT), totally log data from 2 wells and core data from 2 wells were obtained around the production test site. In this study, we conducted well correlations between AT1 and A1 wells drilled in 2003 and then, 3D geological models were updated including AT1 well data in order to refine hydrate reservoir characterization around the production test site. The results of the well correlations show that turbidite sand layers are characterized by good lateral continuity, and give significant information for the distribution morphology of sand-rich channel fills. We also reviewed previously conducted 3D geological models which consist of facies distributions and petrophysical properties distributions constructed from integration of 3D seismic data and a well data (A1 site) adopting a geostatistical approach. In order to test the practical validity of the previously generated models, cross-validation was conducted using AT1 well data. The

  5. Energy from gas hydrates - assessing the opportunities and challenges for Canada: report of the expert panel on gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-09-15

    Gas hydrates form when water and natural gas combine at low temperatures and high pressures in regions of permafrost and in marine subseafloor sediments. Estimates suggest that the total amount of natural gas bound in hydrate form may exceed all conventional gas resources, or even the amount of all combined hydrocarbon energy. Gas from gas hydrate could provide a potentially vast new source of energy to offset declining supplies of conventional natural gas in North America and to provide greater energy security for countries such as Japan and India that have limited domestic sources. However, complex issues would need to be addressed if gas hydrate were to become a large part of the energy future of Canada. Natural Resources Canada asked the Council of Canadian Academies to assemble a panel of experts to examine the challenges for an acceptable operational extraction of gas hydrates in Canada. This report presented an overview of relevant contextual background, including some basic science; the medium-term outlook for supply and demand in markets for natural gas; broad environmental issues related to gas hydrate in its natural state and as a fuel; and an overview of Canada's contribution to knowledge about gas hydrate in the context of ongoing international research activity. The report also presented current information on the subject and what would be required to delineate and quantify the resource. Techniques for extracting gas from gas hydrate were also outlined. The report also addressed safety issues related to gas hydrate dissociation during drilling operations or release into the atmosphere; the environmental issues associated with potential leakage of methane into the atmosphere and with the large volumes of water produced during gas hydrate dissociation; and jurisdictional and local community issues that would need to be resolved in order to proceed with the commercial exploitation of gas hydrate. It was concluded that there does not appear to be

  6. Modeling Hydrates and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Weihua Wang

    2007-06-01

    Full Text Available Natural gas hydrates, as an important potential fuels, flow assurance hazards, and possible factors initiating the submarine geo-hazard and global climate change, have attracted the interest of scientists all over the world. After two centuries of hydrate research, a great amount of scientific data on gas hydrates has been accumulated. Therefore the means to manage, share, and exchange these data have become an urgent task. At present, metadata (Markup Language is recognized as one of the most efficient ways to facilitate data management, storage, integration, exchange, discovery and retrieval. Therefore the CODATA Gas Hydrate Data Task Group proposed and specified Gas Hydrate Markup Language (GHML as an extensible conceptual metadata model to characterize the features of data on gas hydrate. This article introduces the details of modeling portion of GHML.

  7. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  8. Sediment of flus gas in direct reduction treated by zinc-bearing metallurgical dust%含锌冶金尘泥还原烟气沉积特性

    Institute of Scientific and Technical Information of China (English)

    何环宇; 陈振红; 崔一芳; 王杰奇

    2015-01-01

    含锌烟气沉积堵塞是制约转底炉处理冶金尘泥生产的关键所在.采用高温管式炉模拟冶金尘泥球团还原产生的含锌烟气沉积试验,对沉积物的质量分布、形貌及主要组分等沉积特性进行分析,研究了温度、碱金属及烟气气氛对烟气沉积的影响.研究结果表明,温度对烟气沉积特性影响显著,烟气沉积过程从950~1 000℃开始,在600~750℃达到最大沉积量,温度低于600℃后沉积逐渐结束,并且沉积物晶粒尺寸随温度降低逐渐减小,析出物混乱度逐渐增大;沉积富集区域烟尘锌质量分数为58.50%~65.23%,沉积物主要物相为ZnO、NaCl、KCl和Zn5(OH)8Cl2H2O,碱金属氯化物在沉积富集区的物态变化促进了烟尘颗粒的相互聚集、团聚;烟气的氧化性不足,使布袋除尘灰中还存在大量单质锌.%The blocking by zinc-bearing flue gas is the key of restraining the treatment of metallurgical dust in rotary hearth furnace. In the current study,the high-temperature tubular furnace was used to mimic the deposition of flus gas sed-iment produced by the reduction reaction of metallurgical dust,then,the characteristics of depositions including the distri-bution of quality,the morphology and the main components of depositions were analyzed,the effects of temperature,al-kali metal and tail gas atmosphere on the characteristics of flus gas sediment were also studied here. The results showed the deposition started from 950-1 000℃,with the maximum amount of deposition reached at 600~750℃and ended un-der 600℃indicating that the temperature had a significant influence on the characteristics of flus gas sediment. In addi-tion,the lower temperature decreased the size of deposite and increased of the chaos of deposite. The main phase in the enrichment region of dust disposition was composed of ZnO,NaCl,KCl and Zn5(OH)8Cl2H2O,in which the zinc content was 58.50%-65.23%. The state change of the alkali metal chloride in enrichment

  9. 3-D basin-scale reconstruction of natural gas hydrate system of the Green Canyon, Gulf of Mexico

    Science.gov (United States)

    Burwicz, Ewa; Reichel, Thomas; Wallmann, Klaus; Rottke, Wolf; Haeckel, Matthias; Hensen, Christian

    2017-05-01

    Our study presents a basin-scale 3-D modeling solution, quantifying and exploring gas hydrate accumulations in the marine environment around the Green Canyon (GC955) area, Gulf of Mexico. It is the first modeling study that considers the full complexity of gas hydrate formation in a natural geological system. Overall, it comprises a comprehensive basin reconstruction, accounting for depositional and transient thermal history of the basin, source rock maturation, petroleum components generation, expulsion and migration, salt tectonics, and associated multistage fault development. The resulting 3-D gas hydrate distribution in the Green Canyon area is consistent with independent borehole observations. An important mechanism identified in this study and leading to high gas hydrate saturation (>80 vol %) at the base of the gas hydrate stability zone (GHSZ) is the recycling of gas hydrate and free gas enhanced by high Neogene sedimentation rates in the region. Our model predicts the rapid development of secondary intrasalt minibasins situated on top of the allochthonous salt deposits which leads to significant sediment subsidence and an ensuing dislocation of the lower GHSZ boundary. Consequently, large amounts of gas hydrates located in the deepest parts of the basin dissociate and the released free methane gas migrates upward to recharge the GHSZ. In total, we have predicted the gas hydrate budget for the Green Canyon area that amounts to ˜3256 Mt of gas hydrate, which is equivalent to ˜340 Mt of carbon (˜7 × 1011 m3 of CH4 at STP conditions), and consists mostly of biogenic hydrates.

  10. Thermal conductivity measurements in Porous mixtures of methane hydrate and quartz sand

    Science.gov (United States)

    Waite, W.F.; deMartin, B.J.; Kirby, S.H.; Pinkston, J.; Ruppel, C.D.

    2002-01-01

    Using von Herzen and Maxwell's needle probe method, we measured thermal conductivity in four porous mixtures of quartz sand and methane gas hydrate, with hydrate composing 0, 33, 67 and 100% of the solid volume. Thermal conductivities were measured at a constant methane pore pressure of 24.8 MPa between -20 and +15??C, and at a constant temperature of -10??C between 3.5 and 27.6 MPa methane pore pressure. Thermal conductivity decreased with increasing temperature and increased with increasing methane pore pressure. Both dependencies weakened with increasing hydrate content. Despite the high thermal conductivity of quartz relative to methane hydrate, the largest thermal conductivity was measured in the mixture containing 33% hydrate rather than in hydrate-free sand. This suggests gas hydrate enhanced grain-to-grain heat transfer, perhaps due to intergranular contact growth during hydrate synthesis. These results for gas-filled porous mixtures can help constrain thermal conductivity estimates in porous, gas hydrate-bearing systems.

  11. Latest progress in numerical simulations on multiphase flow and thermodynamics in production of natural gas from gas hydrate reservoir

    Institute of Scientific and Technical Information of China (English)

    Lin ZUO; Lixia SUN; Changfu YOU

    2009-01-01

    Natural gas hydrates are promising potential alternative energy resources. Some studies on the multiphase flow and thermodynamics have been conducted to investigate the feasibility of gas production from hydrate dissociation. The methods for natural gas production are analyzed and several models describing the dissociation process are listed and compared. Two prevailing models, one for depressurization and the other for thermal stimulation, are discussed in detail. A comprehensive numerical method considering the multiphase flow and thermodynamics of gas production from various hydrate-bearing reservoirs is required to better understand the dissociation process of natural gas hydrate, which would be of great benefit to its future exploration and exploitation.

  12. Drilling Gas Hydrates on hydrate Ridge, Oregon continental margin

    Science.gov (United States)

    Trehu, A. M.; Bohrmann, G.; Leg 204 Science Party

    2002-12-01

    During Leg 204, we cored and logged 9 sites on the Oregon continental margin to determine the distribution and concentration of gas hydrates in an accretionary ridge and adjacent slope basin, investigate the mechanisms that transport methane and other gases into the gas hydrate stability zone (GHSZ), and obtain constraints on physical properties of hydrates in situ. A 3D seismic survey conducted in 2000 provided images of potential subsurface fluid conduits and indicated the position of the GHSZ throughout the survey region. After coring the first site, we acquired Logging-While-Drilling (LWD) data at all but one site to provide an overview of downhole physical properties. The LWD data confirmed the general position of key seismic stratigraphic horizons and yielded an initial estimate of hydrate concentration through the proxy of in situ electrical resistivity. These records proved to be of great value in planning subsequent coring. The second new hydrate proxy to be tested was infrared thermal imaging of cores on the catwalk as rapidly as possible after retrieval. The thermal images were used to identify hydrate samples and to estimate the distribution and texture of hydrate within the cores. Geochemical analyses of interstitial waters and of headspace and void gases provide additional information on the distribution and concentration of hydrate within the stability zone, the origin and pathway of fluids into and through the GHSZ, and the rates at which gas hydrate is forming. Bio- and lithostratigraphic description of cores, measurement of physical properties, and in situ pressure core sampling and thermal measurements complement the data set, providing ground-truth tests of inferred physical and sedimentological properties. Among the most interesting preliminary results are: 1) that gas hydrates are distributed through a broad depth range within the GHSZ and that different physical and chemical proxies for hydrate distribution and concentration give generally

  13. Norwegian Research Strategies on gas Hydrates and Natural Seeps in the Nordic Seas Region (GANS)

    Science.gov (United States)

    Hjelstuen, B. O.; Sejrup, H. P.; Andreassen, K.; Boe, R.; Eldholm, O.; Hovland, M.; Knies, J.; Kvalstad, T.; Kvamme, B.; Mienert, J.; Pedersen, R. B.

    2004-12-01

    Continuous leakage of methane to the oceans from hydrate reservoirs that partially are exposed towards the seafloor is an increasing international concern, as the greenhouse gas methane is significantly more (c. 20 times) aggressive than CO2. In Norway we have research groups with interest and experience on natural seeps and gas hydrates. These features, and processes related to them, are challenging research targets which demands inputs from different fields if important research breakthroughs shall be made. In February 2004 deep sea researchers from the University of Tromso, Geological Survey of Norway, Norwegian Geotechnical Institute, Statoil and University of Bergen met to obtain an overview of the research effort in the fields of natural seeps and gas hydrates in Norway and to discuss national coordination, research strategies, research infrastructure and international co-operation. The following research strategies were agreed upon: i) Strengthen multidisciplinary research on deep sea systems, ii) develop a strategy for research on natural seeps and gas hydrates, iii) contribute in national coordination of research on natural seeps and gas hydrates, iv) Coordinate the use and development of research infrastructures important for research on natural seeps and gas hydrates, and v) contribute in the international evaluations of strategies for hydrate reservoir exploitation. Proposed research tasks for GANS include: i) Gas and gas hydrate formation processes and conditions for transport, accumulation, preservation and dissociation in sediments, ii) Effect of gas hydrate on physical properties of sediment, iii) Detection and quantification of in situ gas hydrate content and distribution pattern, iv) Effect of dissociation on soil properties, v) Gas hydrates as an energy resource, vi) Rapid methane release and climate change, and vii) Geohazard and environmental impact.

  14. Natural gas hydrates and the mystery of the Bermuda Triangle

    Energy Technology Data Exchange (ETDEWEB)

    Gruy, H.J.

    1998-03-01

    Natural gas hydrates occur on the ocean floor in such great volumes that they contain twice as much carbon as all known coal, oil and conventional natural gas deposits. Releases of this gas caused by sediment slides and other natural causes have resulted in huge slugs of gas saturated water with density too low to float a ship, and enough localized atmospheric contamination to choke air aspirated aircraft engines. The unexplained disappearances of ships and aircraft along with their crews and passengers in the Bermuda Triangle may be tied to the natural venting of gas hydrates. The paper describes what gas hydrates are, their formation and release, and their possible link to the mystery of the Bermuda Triangle.

  15. Trace fossils in coal-bearing sequences

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, J.E.

    1988-03-01

    In the past decade trace fossils have been recorded extensively from coal-bearing sediments, differing widely in facies, age and location. Westphalian or Stephanian 'coal-measures' in Britain, Europe and Eastern Canada contain an ichnofauna produced by invertebrates and/or vertebrates in upper delta plain sediments. This contrasts with the marine-related lower delta plain ichnofaunas known from Pennsylvanian rocks of the United States and Permian Gondwana 'coal-measures' of South Africa. Deltaic complexes of Middle Jurassic age in the North Sea basin and Upper Cretaceous age in North America contain marine trace fossils and dinosaur footprints in coastal coal- bearing facies. These case histories illustrate the importance of trace fossils both in facies analysis of coal-bearing sequences and in recording the presence of animals rarely known as body fossils in such clastic sediments. 80 refs., 5 figs.

  16. Gas Hydrate Research Site Selection and Operational Research Plans

    Science.gov (United States)

    Collett, T. S.; Boswell, R. M.

    2009-12-01

    comprehensive set of logging-while-drilling (LWD) data through expected gas-hydrate-bearing sand reservoirs in seven wells at three sites in the Gulf of Mexico. The discovery of thick hydrate-bearing sands at two of the sites drilled in the Gulf Mexico validated the integrated geological and geophysical approach used in the pre-drill site selection process to identify gas hydrate reservoirs that may be conducive to energy production. The results of the GOM JIP Leg II LWD expedition are also being used to support the selection of sites for a future drilling, logging, and coring program. Operationally, recent drilling programs, such as ODP Leg 204, IODP Expedition 311, the Japanese Toaki-oki to Kumano-nada drilling leg, the Indian NGHP Expedition 01, and the South Korean Gas Hydrate Research and Development Organization Expedition 01 have demonstrated the great benefit of a multi-leg drilling approach, including the initial acquisition of LWD data that was used to then select sites for the drilling of complex core and wireline logging test holes. It is obvious that a fully integrated site selection approach and a “goal based” operational plan, possibly including numerous drill sites and drilling legs, are required considerations for any future gas hydrate research project.

  17. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  18. State of hydration and electrical conductance of ichthyotic skin

    Directory of Open Access Journals (Sweden)

    Gupta A

    1990-01-01

    Full Text Available Dry skin of twelve subjects suffering from ichthyosis vulgaris and the efficacy of a moisturiser-Cotaryl were quantitatively assessed by measuring the skin surface hydration and high frequency (3.5 MHz electrical conductance of skin. The state of hydration and conductance of ichthyotic skin were 86.9 + 24.6 and 11.0 + 5.7 micro-mho respectively, being much less-compared to 132. 0 + 5.3 and 72.5 + 54.0 micro-mho ofnormal subjects. The moisturiser increased the state of hydration and also the electrical conductance of the stratum corneuni to near-normal values and maintained them as long as the application continued. However, both the hydration and the conductance fell sharply within a week of withrawal of the moisturiser. A moisturiser was thus undoubtedly efficacious in ichthyotic skin, but the effect was only temporary. The state of hydration was found, at all stages, to bear a strong positive correlation (r = 0.69 to 0.80 with the skin conductance.

  19. Pre- and post-drill comparison of the Mount Elbert gas hydrate prospect, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Agena, W.F.; Collett, T.S.; Inks, T.L.

    2011-01-01

    In 2006, the United States Geological Survey (USGS) completed a detailed analysis and interpretation of available 2-D and 3-D seismic data, along with seismic modeling and correlation with specially processed downhole well log data for identifying potential gas hydrate accumulations on the North Slope of Alaska. A methodology was developed for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area. The study revealed a total of 14 gas hydrate prospects in this area.In order to validate the gas hydrate prospecting protocol of the USGS and to acquire critical reservoir data needed to develop a longer-term production testing program, a stratigraphic test well was drilled at the Mount Elbert prospect in the Milne Point area in early 2007. The drilling confirmed the presence of two prominent gas-hydrate-bearing units in the Mount Elbert prospect, and high quality well logs and core data were acquired. The post-drill results indicate pre-drill predictions of the reservoir thickness and the gas-hydrate saturations based on seismic and existing well data were 90% accurate for the upper unit (hydrate unit D) and 70% accurate for the lower unit (hydrate unit C), confirming the validity of the USGS approach to gas hydrate prospecting. The Mount Elbert prospect is the first gas hydrate accumulation on the North Slope of Alaska identified primarily on the basis of seismic attribute analysis and specially processed downhole log data. Post-drill well log data enabled a better constraint of the elastic model and the development of an improved approach to the gas hydrate prospecting using seismic attributes. ?? 2009.

  20. Gas hydrates: entrance to a methane age or climate threat?

    OpenAIRE

    2009-01-01

    Methane hydrates, ice-like compounds in which methane is held in crystalline cages formed by water molecules, are widespread in areas of permafrost such as the Arctic and in sediments on the continental margins. They are a potentially vast fossil fuel energy source but, at the same time, could be destabilized by changing pressure-temperature conditions due to climate change, potentially leading to strong positive carbon-climate feedbacks. To enhance our understanding of both the vulnerability...

  1. A Sea Floor Methane Hydrate Displacement Experiment Using N2 Gas

    Science.gov (United States)

    Brewer, P. G.; Peltzer, E. T.; Walz, P. M.; Zhang, X.; Hester, K.

    2009-12-01

    The production of free methane gas from solid methane hydrate accumulations presents a considerable challenge. The presently preferred procedure is pressure reduction whereby the relief of pressure to a condition outside the hydrate phase boundary creates a gas phase. The reaction is endothermic and thus a problematic water ice phase can form if the extraction of gas is too rapid, limiting the applicability of this procedure. Additionally, the removal of the formation water in contact with the hydrate phase is required before meaningful pressure reduction can be attained -- and this can take time. An alternate approach that has been suggested is the injection of liquid CO2 into the formation, thereby displacing the formation water. Formation of a solid CO2 hydrate is thermodynamically favored under these conditions. Competition between CH4 and CO2 for the hydrate host water molecules can occur displacing CH4 from the solid to the gas phase with formation of a solid CO2 hydrate. We have investigated another alternate approach with displacement of the surrounding bulk water phase by N2 gas, resulting in rapid release of CH4 gas and complete loss of the solid hydrate phase. Our experiment was carried out at the Southern Summit of Hydrate Ridge, offshore Oregon, at 780m depth. There we harvested hydrate fragments from surficial sediments using the robotic arm of the ROV Doc Ricketts. Specimens of the hydrate were collected about 1m above the sediment surface in an inverted funnel with a mesh covered neck as they floated upwards. The accumulated hydrate was transferred to an inverted glass cylinder, and N2 gas was carefully injected into this container. Displacement of the water phase occurred and when the floating hydrate material approached the lower rim the gas injection was stopped and the cylinder placed upon a flat metal plate effectively sealing the system. We returned to this site after 7 days to measure progress, and observed complete loss of the hydrate phase

  2. Evaluation of the geological relationships to gas hydrate formation and stability. Progress report, June 16--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Krason, J.; Finley, P.

    1988-12-31

    The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

  3. Hydration and physical performance.

    Science.gov (United States)

    Murray, Bob

    2007-10-01

    There is a rich scientific literature regarding hydration status and physical function that began in the late 1800s, although the relationship was likely apparent centuries before that. A decrease in body water from normal levels (often referred to as dehydration or hypohydration) provokes changes in cardiovascular, thermoregulatory, metabolic, and central nervous function that become increasingly greater as dehydration worsens. Similarly, performance impairment often reported with modest dehydration (e.g., -2% body mass) is also exacerbated by greater fluid loss. Dehydration during physical activity in the heat provokes greater performance decrements than similar activity in cooler conditions, a difference thought to be due, at least in part, to greater cardiovascular and thermoregulatory strain associated with heat exposure. There is little doubt that performance during prolonged, continuous exercise in the heat is impaired by levels of dehydration >or= -2% body mass, and there is some evidence that lower levels of dehydration can also impair performance even during relatively short-duration, intermittent exercise. Although additional research is needed to more fully understand low-level dehydration's effects on physical performance, one can generalize that when performance is at stake, it is better to be well-hydrated than dehydrated. This generalization holds true in the occupational, military, and sports settings.

  4. Some thermodynamical aspects of protein hydration water

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Mallamace, Domenico [Dipartimento SASTAS, Università di Messina, I-98166 Messina (Italy); Vasi, Sebastiano [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Vasi, Cirino [CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  5. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01

    Energy Technology Data Exchange (ETDEWEB)

    Anne Trehu; Peter Kannberg

    2011-06-30

    The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m{sup 2}). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that {approx}50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a 'toe-thrust' ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow

  6. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01

    Energy Technology Data Exchange (ETDEWEB)

    Trehu, Anne; Kannberg, Peter

    2011-06-30

    The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m2). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that ~50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a "toe-thrust" ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in

  7. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  8. Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands.

    Science.gov (United States)

    Kaasik, Ago; Vohla, Christina; Mõtlep, Riho; Mander, Ulo; Kirsimäe, Kalle

    2008-02-01

    The P-retention in hydrated calcareous ash sediment from oil-shale burning thermal power plants in Estonia was studied. Batch experiments indicate good (up to 65 mg P g(-1)) P-binding capacity of the hydrated oil-shale ash sediment, with a removal effectiveness of 67-85%. The high phosphorus sorption potential of hydrated oil-shale ash is considered to be due to the high content of reactive Ca-minerals, of which ettringite Ca6Al2(SO4)3(OH)12.26H2O and portlandite Ca(OH)2 are the most important. The equilibrium dissolution of ettringite provides free calcium ions that act as stable nuclei for phosphate precipitation. The precipitation mechanism of phosphorus removal in hydrated ash plateau sediment is suggested by Ca-phosphate formation in batch experiments at different P-loadings. Treatment with a P-containing solution causes partial-to-complete dissolution of ettringite and portlandite, and precipitation of Ca-carbonate and Ca-phosphate phases, which was confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM)-EDS studies. Thus, the hydrated oil-shale ash sediment can be considered as a potential filtration material for P removal in constructed wetlands for wastewater treatment.

  9. Investigation on Gas Storage in Methane Hydrate

    Institute of Scientific and Technical Information of China (English)

    Zhigao Sun; Rongsheng Ma; Shuanshi Fan; Kaihua Guo; Ruzhu Wang

    2004-01-01

    The effect of additives (anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactant alkyl polysaccharide glycoside (APG), and liquid hydrocarbon cyclopentane (CP)) on hydrate induction time and formation rate, and storage capacity was studied in this work. Micelle surfactant solutions were found to reduce hydrate induction time, increase methane hydrate formation rate and improve methane storage capacity in hydrates. In the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation were reduced. The critical micelle concentrations of SDS and APG water solutions were found to be 300× 10-6 and 500× 10-6 for methane hydrate formation system respectively. The effect of anionic surfactant (SDS) on methane storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduced hydrate induction time and improved hydrate formation rate, but could not improve methane storage in hydrates.

  10. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  11. Radiation tolerance in water bears.

    Science.gov (United States)

    Horikawa, D. D.; Sakashita, T.; Katagiri, C.; Watanabe, M.; Nakahara, Y.; Okuda, T.; Hamada, N.; Wada, S.; Funayama, T.; Kobayashi, Y.

    Tardigrades water bears are tiny invertebrates forming a phylum and inhabit various environments on the earth Terrestrial tardigrades enter a form called as anhydrobiosis when the surrounding water disappears Anhyydrobiosis is defined as an ametabolic dry state and followed by recovering their activity when rehydrated Anhydrobiotic tardigrades show incredible tolerance to a variety of extreme environmental conditions such as temperatures -273 r C to 151 r C vacuum high pressure 600 MPa and chemicals that include alcohols and methyl bromide In these views there have been some discussions about their potential for surviving outer space In the present study we demonstrated the survival limit not merely against gamma-rays but against heavy ions in the tardigrade Milnesium tardigradum in order to evaluate the effects of radiations on them The animals were exposure to 500 to 7000 Gy of gamma-rays or 500 to 8000 Gy of heavy ions 4 He in their hydrated or anhydrobiotic state The results showed that both of hydrated and anhydrobiotic animals have high radio-tolerance median lethal dose LD50 48 h of gamma-rays or heavy ions in M tardigradum was more than 4000 Gy indicating that this species is categorized into the most radio-tolerant animals We suggest that tardigrades will be suitable model animals for extremophilic multicellular organisms and may provide a survival strategy in extraterrestrial environments

  12. The strength and rheology of methane clathrate hydrate

    Science.gov (United States)

    Durham, W.B.; Kirby, S.H.; Stern, L.A.; Zhang, W.

    2003-01-01

    Methane clathrate hydrate (structure I) is found to be very strong, based on laboratory triaxial deformation experiments we have carried out on samples of synthetic, high-purity, polycrystalline material. Samples were deformed in compressional creep tests (i.e., constant applied stress, ??), at conditions of confining pressure P = 50 and 100 MPa, strain rate 4.5 ?? 10-8 ??? ?? ??? 4.3 ?? 10-4 s-1, temperature 260 ??? T ??? 287 K, and internal methane pressure 10 ??? PCH4 ??? 15 MPa. At steady state, typically reached in a few percent strain, methane hydrate exhibited strength that was far higher than expected on the basis of published work. In terms of the standard high-temperature creep law, ?? = A??ne-(E*+PV*)/RT the rheology is described by the constants A = 108.55 MPa-n s-1, n = 2.2, E* = 90,000 J mol-1, and V* = 19 cm3 mol-1. For comparison at temperatures just below the ice point, methane hydrate at a given strain rate is over 20 times stronger than ice, and the contrast increases at lower temperatures. The possible occurrence of syntectonic dissociation of methane hydrate to methane plus free water in these experiments suggests that the high strength measured here may be only a lower bound. On Earth, high strength in hydrate-bearing formations implies higher energy release upon decomposition and subsequent failure. In the outer solar system, if Titan has a 100-km-thick near-surface layer of high-strength, low-thermal conductivity methane hydrate as has been suggested, its interior is likely to be considerably warmer than previously expected.

  13. Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels.

    Science.gov (United States)

    Seo, Yongwon; Lee, Seungmin; Cha, Inuk; Lee, Ju Dong; Lee, Huen

    2009-04-23

    In the present study, we examined the active role of porous silica gels when used as natural gas storage and transportation media. We adopted the dispersed water in silica gel pores to substantially enhance active surface for contacting and encaging gas molecules. We measured the three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria of C(2)H(6) and C(3)H(8) hydrates in 6.0, 15.0, 30.0, and 100.0 nm silica gel pores to investigate the effect of geometrical constraints on gas hydrate phase equilibria. At specified temperatures, the hydrate stability region is shifted to a higher pressure region depending on pore size when compared with those of bulk hydrates. Through application of the Gibbs-Thomson relationship to the experimental data, we determined the values for the C(2)H(6) hydrate-water and C(3)H(8) hydrate-water interfacial tensions to be 39 +/- 2 and 45 +/- 1 mJ/m(2), respectively. By using these values, the calculation values were in good agreement with the experimental ones. The overall results given in this study could also be quite useful in various fields, such as exploitation of natural gas hydrate in marine sediments and sequestration of carbon dioxide into the deep ocean.

  14. Stages of Gas-Hydrate Evolution on the Northern Cascadia Margin

    Directory of Open Access Journals (Sweden)

    the IODP Expedition 311 Scientists

    2006-09-01

    Full Text Available Natural gas hydrate occurs beneath many continental slopes and in arctic permafrost areas. Recent studies have indicated that the largest deposits of gas hydrate might lie in nearly horizontal layers several hundred meters beneath the seafloor of continental slopes, especially in the large, accretionary sedimentary prisms of subduction zones. Expedition 311 of the Integrated Ocean Drilling Program (IODP investigated the formation of gas hydrate in the accretionary prism of the Cascadia subduction zone (Fig. 1. The primary objectives of Expedition 311 were to test and constraingeological models of gas hydrate formation by upward fluidand methane transport in accretionary prisms. We specifi -cally sought to (a determine the mechanisms that controlthe nature, magnitude, and distribution of the gas hydrate,(b find the pathways of the fluid migration required to formlarge concentrations of gas hydrate, (c examine the effectsof gas hydrate on the physical properties of the host sediment,and (d investigate the microbiology and geochemistryassociated with the occurrence of gas hydrate. Furthermore,we concentrated on the contrast between methane transportby focused fl ow in fault zones and by dispersed pervasiveupward flow at various scales of permeability.

  15. Tectonic Controls on Gas Hydrate Distribution off SW Taiwan

    Science.gov (United States)

    Berndt, C.; Chi, W. C.; Jegen, M. D.; Muff, S.; Hölz, S.; Lebas, E.; Sommer, M.; Lin, S.; Liu, C. S.; Lin, A. T.; Klaucke, I.; Klaeschen, D.; Chen, L.; Kunath, P.; McIntosh, K. D.; Feseker, T.

    2015-12-01

    The northern part of the South China Sea is characterized by wide-spread occurrence of bottom simulating reflectors (BSR), indicating the presence of marine gas hydrates. Because the area covers both the tectonically inactive passive margin and the northern termination of the Manila Trench subduction zone while sediment input is broadly similar, this area provides an excellent opportunity to study the influence of tectonic processes on the dynamics of gas hydrate systems. Long-offset multi-channel seismic data show that movement along thrust faults and blind thrust faults caused anticlinal ridges on the active margin, while faults are absent on the passive margin. This coincides with high-hydrate saturations derived from ocean bottom seismometer data and controlled source electromagnetic data, and conspicuous high-amplitude reflections in P-Cable 3D seismic data above the BSR in the anticlinal ridges of the active margin. On the contrary, all geophysical evidence for the passive margin points to normal- to low-hydrate saturations. Geochemical analysis of gas samples collected at seep sites on the active margin show methane with heavy δ13C isotope composition, while gas collected on the passive margin shows highly depleted (light) carbon isotope composition. Thus, we interpret the passive margin as a typical gas hydrate province fuelled by biogenic production of methane and the active margin gas hydrate system as a system that is fuelled not only by biogenic gas production but also by additional advection of thermogenic methane from the subduction system. The location of the highest gas hydrate saturations in the hanging wall next to the thrust faults suggests that the thrust faults represent pathways for the migration of methane. Our findings suggest that the most promising gas hydrate occurrences for exploitation of gas hydrate as an energy source may be found in the core of the active margin roll over anticlines immediately above the BSR and that high

  16. Hydrates fighting tools; Des outils de lutte contre les hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-04-01

    Shell Exploration and Production company (SEPCo) is the operator of the 'Popeye' deep offshore field in the Gulf of Mexico. Thanks to the introduction of a low dosing hydrates inhibitor (LDHI) elaborated by Shell Global Solutions, the company has added a 7.5 Gpc extra volume of gas to its recoverable reserves. This new technology avoids the plugging of pipes by hydrates formation. (J.S.)

  17. Effects of Salinity and Sea Level Change on Permafrost-Hosted Methane Hydrate Reservoirs

    Science.gov (United States)

    Elwood-Madden, M.

    2010-12-01

    Recent observations of methane release from sediments on the circum-arctic continental shelf indicate that arctic warming is likely leading to increased fluxes of methane . Thermodynamics predicts that 2-4 degree increases in global temperature will lead to massive marine hydrate decomposition; however, the rate of warming deep ocean waters and sediments is fairly slow, resulting in modest fluxes of methane over hundreds to thousands of years. In contrast, increasing arctic temperatures and rising sea level may have immediate effects on permafrost-hosted hydrate deposits. Rising sea level affects both the geothermal gradient of the region and the salinity of pore waters, leading to hydrate destabilization (Figure 1). Seawater infiltration of permafrost may be currently dissociating permafrost-hosted methane hydrate through a combination of mechanisms: shifting geothermal gradients to higher temperatures, addition of salts due to seawater encroachment, and the transition from solid state diffusion of methane through overlying ice cemented permafrost to mass transfer through seawater-saturated sediments via aqueous diffusion, advection, or ebullition. Effects of seawater erosion of permafrost have been observed in arctic coastal areas, and degradation of arctic permafrost is predicted to continue, especially in coastal areas. However, the rate at which these processes proceed and their effects on permafrost-hosted methane hydrates have been largely uninvestigated. Changes in geothermal gradient alone take hundreds to thousands of years to affect relatively deep hydrate reservoirs. However, warmer temperatures combined with freezing point depression effects of seawater may lead to rapid melting of permafrost ice, thus accelerating the transfer of heat to the hydrate reservoirs and changing the mass transfer mechanism of methane release from slow solid state diffusion through ice to more rapid aqueous diffusion, advection, or ebullition. Therefore, we hypothesize that

  18. Is Submarine Groundwater Discharge a Gas Hydrate Formation Mechanism on the Circum-Arctic Shelf?

    Science.gov (United States)

    Frederick, J. M.; Buffett, B. A.

    2015-12-01

    Methane hydrate is an ice-like solid that can sequester large quantities of methane gas in marine sediments along most continental margins where thermodynamic conditions permit its formation. Along the circum-Arctic shelf, relict permafrost-associated methane hydrate deposits formed when non-glaciated portions of the shelf experienced subaerial exposure during ocean transgressions. Gas hydrate stability and the permeability of circum-Arctic shelf sediments to gas migration is closely linked with relict submarine permafrost. Heat flow observations on the Alaskan North Slope and Canadian Beaufort Shelf suggest the movement of groundwater offshore, but direct observations of groundwater flow do not exist. Submarine discharge, an offshore flow of fresh, terrestrial groundwater, can affect the temperature and salinity field in shelf sediments, and may be an important factor in submarine permafrost and gas hydrate evolution on the Arctic continental shelf. Submarine groundwater discharge may also enhance the transport of organic matter for methanogenesis within marine sediments. Because it is buoyancy-driven, the velocity field contains regions with a vertical (upward) component as groundwater flows offshore. This combination of factors makes submarine groundwater discharge a potential mechanism controlling permafrost-associated gas hydrate evolution on the Arctic continental shelf. In this study, we quantitatively investigate the feasibility of submarine groundwater discharge as a control on permafrost-associated gas hydrate formation on the Arctic continental shelf, using the Canadian Beaufort Shelf as an example. We have developed a shelf-scale, two-dimensional numerical model based on the finite volume method for two-phase flow of pore fluid and methane gas within Arctic shelf sediments. The model tracks the evolution of the pressure, temperature, salinity, methane gas, methane hydrate, and permafrost fields given imposed boundary conditions, with latent heat of

  19. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada

    Science.gov (United States)

    Moridis, G.J.; Collett, T.S.; Dallimore, S.R.; Satoh, T.; Hancock, S.; Weatherill, B.

    2004-01-01

    The Mallik site represents an onshore permafrost-associated gas hydrate accumulation in the Mackenzie Delta, Northwest Territories, Canada. A gas hydrate research well was drilled at the site in 1998. The objective of this study is the analysis of various gas production scenarios from five methane hydrate-bearing zones at the Mallik site. In Zone #1, numerical simulations using the EOSHYDR2 model indicated that gas production from hydrates at the Mallik site was possible by depressurizing a thin free gas zone at the base of the hydrate stability field. Horizontal wells appeared to have a slight advantage over vertical wells, while multiwell systems involving a combination of depressurization and thermal stimulation offered superior performance, especially when a hot noncondensible gas was injected. Zone #2, which involved a gas hydrate layer with an underlying aquifer, could yield significant amounts of gas originating entirely from gas hydrates, the volumes of which increased with the production rate. However, large amounts of water were also produced. Zones #3, #4 and #5 were lithologically isolated gas hydrate-bearing deposits with no underlying zones of mobile gas or water. In these zones, thermal stimulation by circulating hot water in the well was used to induce dissociation. Sensitivity studies indicated that the methane release from the hydrate accumulations increased with the gas hydrate saturation, the initial formation temperature, the temperature of the circulating water in the well, and the formation thermal conductivity. Methane production appears to be less sensitive to the specific heat of the rock and of the hydrate, and to the permeability of the formation. ?? 2004 Published by Elsevier B.V.

  20. Deep-ocean field test of methane hydrate formation from a remotely operated vehicle

    Science.gov (United States)

    Brewer, P.G.; Orr, F.M.; Friederich, G.; Kvenvolden, K.A.; Orange, D.L.; McFarlane, J.; Kirkwood, W.

    1997-01-01

    We have observed the process of formation of clathrate hydrates of methane in experiments conducted on the remotely operated vehicle (ROY) Ventana in the deep waters of Monterey Bay. A tank of methane gas, acrylic tubes containing seawater, and seawater plus various types of sediment were carried down on Ventana to a depth of 910 m where methane gas was injected at the base of the acrylic tubes by bubble stream. Prior calculations had shown that the local hydrographic conditions gave an upper limit of 525 m for the P-T boundary defining methane hydrate formation or dissociation at this site, and thus our experiment took place well within the stability range for this reaction to occur. Hydrate formation in free sea-water occurred within minutes as a buoyant mass of translucent hydrate formed at the gas-water interface. In a coarse sand matrix the Filling of the pore spaces with hydrate turned the sand column into a solidified block, which gas pressure soon lifted and ruptured. In a fine-grained black mud the gas flow carved out flow channels, the walls of which became coated and then filled with hydrate in larger discrete masses. Our experiment shows that hydrate formation is rapid in natural seawater, that sediment type strongly influences the patterns of hydrate formation, and that the use of ROV technologies permits the synthesis of large amounts of hydrate material in natural systems under a variety of conditions so that fundamental research on the stability and growth of these substances is possible.

  1. Obsidian Hydration: A New Paleothermometer

    Energy Technology Data Exchange (ETDEWEB)

    Anovitz, Lawrence {Larry} M [ORNL; Riciputi, Lee R [ORNL; Cole, David R [ORNL; Fayek, Mostafa [ORNL; Elam, J. Michael [University of Tennessee, Knoxville (UTK)

    2006-01-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  2. Obsidian hydration: A new paleothermometer

    Science.gov (United States)

    Anovitz, Lawrence M.; Riciputi, Lee R.; Cole, David R.; Fayek, Mostafa; Elam, J. Michael

    2006-07-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  3. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  4. Numerical studies of depressurization-induced gas production from an interbedded marine turbidite gas hydrate reservoir model

    Science.gov (United States)

    Myshakin, Evgeniy; Lin, Jeen-Shang; Uchida, Shun; Seol, Yongkoo; Collett, Timothy S.; Boswell, Ray

    2017-01-01

    The numerical simulation of thin hydrate-bearing sand layers interbedded with mud layers is investigated. In this model, the lowest hydrate layer occurs at the base of gas hydrate stability and overlies a thinly-interbedded saline aquifer. The predicted gas rates reach 6.25 MMscf/day (1.77 x 105 m3 /day) after 90 days of continuous depressurization with manageable water production. Development of horizontal dissociating interfaces between hydrate-bearing sand and mud layers is a primary determinant of reservoir performance. A set of simulations has been executed to assess uncertainty in in situ permeability and to determine the impact of the saline aquifer on productivity.

  5. Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.R. (USGS); Shelander, D. (Schlumberger, Houston, TX); Dai, J. (Schlumberger, Hoston, TX); McConnell, D. (AOA Geophysics, Inc., Houston, TX); Shedd, W. (Minerals Management Service); Frye, M. (Minerals Management Service); Ruppel, C. (USGS); Boswell, R.; Jones, E. (Chevron Energy Technology Corp., Houston, TX); Collett, T.S. (USGS); Rose, K.; Dugan, B. (Rice Univ., Houston, TX); Wood, W. (U.S. Naval Research Laboratory); Latham, T. (Chevron Energy Technology Corp., Houston, TX)

    2008-07-01

    In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other

  6. Storing natural gas as frozen hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, J.S.; Khokhar, A.A. (Univ. of Trondheim (Norway)); Parlaktuna, M. (Middle East Technical Univ., Ankara (Turkey))

    1994-02-01

    The formation of natural gas hydrates is a well-known problem in the petroleum and natural gas industries. Hydrates are solid materials that form when liquid water and natural gas are brought in contact under pressure. Hydrate formation need not be a problem. On the contrary, it can be an advantage. The volume of hydrates is much less than that of natural gas. At standard conditions, hydrates occupy 150 to 170 times less volume than the corresponding gas. Typically, natural gas hydrates contain 15% gas and 85% water by mass. It follows that hydrates can be used for large-scale storage of natural gas. Benesh proposed using hydrates to improve the load factor of natural gas supply systems. The author suggested that hydrates could be produced by bringing liquid water into contact with natural gas at the appropriate temperature and high pressure. The hydrate then would be stored at a temperature and pressure where it was stable. When gas was needed for the supply system, the hydrate would be melted at low pressure. The stability of a natural gas hydrate during storage at atmospheric pressure and below-freezing temperatures was studied in the laboratory. The gas hydrate was produced in a stirred vessel at 2- to 6-MPa pressure and temperatures from 0 to 20 C. The hydrate was refrigerated and stored in deep freezers at [minus]5, [minus]10, and [minus]18 C for up to 10 days. The natural gas hydrate remained stable when kept frozen at atmospheric pressure.

  7. Recognition of Gas Hydrate Using AVO-Attribute Crossplots Based on the Porous Medium Theory%基于双相介质理论的AVO属性交汇图识别天然气水合物

    Institute of Scientific and Technical Information of China (English)

    张聿文; 刘学伟; 姚长利

    2005-01-01

    Gas hydrate is gradually considered as a potential energy resource. The presence of gas hydrate is commonly inferred from the appearance of "bottom simulating reflector"(BSR) on seismic section. Understanding the properties of hydrate-bearing sediments and studying the AVO characteristics of BSR are of great significance. Although more and more domestic and international studies have been conducted on the subjects mentioned above, they are still in the primary stage and need a long way to go to be appled in practice, especially in the field of gas hydrate. Aiming at the identification of gas hydrate, we studied the characteristics of the AVO attributes based on the Biot′s theory when the sediments were bearing gas hydrate or free gas. The AVO attribute crossplots obtained from seismic sections with the forward simulation by means of staggered-grid finite-difference were compared with that of theoretic models. The coincidence shows that utilization of AVO attribute crossplots is an effective way to recognize gas hydrate and free gas.%天然气水合物(gas hydrates)作为一种新的潜在能源是目前世界范围内研究的热点和难点之一.目前普遍认为拟海底反射(简称BSR)是天然气水合物存在的重要标志之一,但有关水合物的识别仍有很多问题需要解决.例如世界各地已发现水合物的例证表明在没有BSR的情况下仍然存在水合物,在没有BSR的情况下如何识别水合物仍是没有解决的研究课题.本文以天然气水合物的识别为研究目的,以AVO属性交汇图为研究手段,通过双相介质正演理论模型研究了当地层含有天然气水合物或游离气时的AVO属性特征,并与由双相介质的交错网格有限差分法得到的合成地震记录所反演得出的AVO交汇图进行了对比,得到高度一致的对比结果,表明利用AVO属性交汇图是识别天然气水合物和游离气并能估测其含量的有效技术.

  8. Airway Hydration and COPD

    Science.gov (United States)

    Ghosh, Arunava; Boucher, R.C.; Tarran, Robert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443

  9. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  10. Pressurized laboratory experiments show no stable carbon isotope fractionation of methane during gas hydrate dissolution and dissociation.

    Science.gov (United States)

    Lapham, Laura L; Wilson, Rachel M; Chanton, Jeffrey P

    2012-01-15

    The stable carbon isotopic ratio of methane (δ(13)C-CH(4)) recovered from marine sediments containing gas hydrate is often used to infer the gas source and associated microbial processes. This is a powerful approach because of distinct isotopic fractionation patterns associated with methane production by biogenic and thermogenic pathways and microbial oxidation. However, isotope fractionations due to physical processes, such as hydrate dissolution, have not been fully evaluated. We have conducted experiments to determine if hydrate dissolution or dissociation (two distinct physical processes) results in isotopic fractionation. In a pressure chamber, hydrate was formed from a methane gas source at 2.5 MPa and 4 °C, well within the hydrate stability field. Following formation, the methane source was removed while maintaining the hydrate at the same pressure and temperature which stimulated hydrate dissolution. Over the duration of two dissolution experiments (each ~20-30 days), water and headspace samples were periodically collected and measured for methane concentrations and δ(13)C-CH(4) while the hydrate dissolved. For both experiments, the methane concentrations in the pressure chamber water and headspace increased over time, indicating that the hydrate was dissolving, but the δ(13)C-CH(4) values showed no significant trend and remained constant, within 0.5‰. This lack of isotope change over time indicates that there is no fractionation during hydrate dissolution. We also investigated previous findings that little isotopic fractionation occurs when the gas hydrate dissociates into gas bubbles and water due to the release of pressure. Over a 2.5 MPa pressure drop, the difference in the δ(13)C-CH(4) was dissociates and demonstrated that there is no fractionation when the hydrate dissolves. Therefore, measured δ(13)C-CH(4) values near gas hydrates are not affected by physical processes, and can thus be interpreted to result from either the gas source or

  11. Problems of ecological and technical safety by exploration and production of natural gas hydrates

    Institute of Scientific and Technical Information of China (English)

    V.K. Chistyakov; Youhong SUN; Chen CHEN; Zupei ZHANG

    2006-01-01

    Gas hydrates-the firm crystal connections formed water (water, ice, water vapor) and low-molecular waterproof natural gases (mainly methane) whose crystal structure effectively compresses gas: each cubic meter of hydrate can yield over 160 m3 of methane.In present time exploitation of the Messoyahsk (Russia) and Mallik (Canada) deposits of gas hydrates in is conducted actively. The further perfection of prospecting methods in the field of studying gas hydrates containing sediments in round extent depends on improvement of geophysical and well test research, among which native-state core drilling is one of the major. Sampling native-state core from gas hydrates sediments keeping not only original composition, but structural-textural features of their construction.Despite of appeal of use gas hydrates as the perspective and ecologically pure fuel possessing huge resources, investigation and development of their deposits can lead to a number of the negative consequences connected with arising hazards for maintenance of their technical and ecological safety of carrying out. Scales of arising problems can change from local up to regional and even global.

  12. The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, M. T.; Kowalsky, M B.; Moridis, G. J.; Silpngarmlert, S.

    2010-05-01

    The quantity of hydrocarbon gases trapped in natural hydrate accumulations is enormous, leading to significant interest in the evaluation of their potential as an energy source. Large volumes of gas can be readily produced at high rates for long times from methane hydrate