WorldWideScience

Sample records for hydrate bearing sediments

  1. Strength Estimation for Hydrate-Bearing Sediments From Direct Shear Tests of Hydrate-Bearing Sand and Silt

    Science.gov (United States)

    Liu, Zhichao; Dai, Sheng; Ning, Fulong; Peng, Li; Wei, Houzhen; Wei, Changfu

    2018-01-01

    Safe and economic methane gas production, as well as the replacement of methane while sequestering carbon in natural hydrate deposits, requires enhanced geomechanical understanding of the strength and volume responses of hydrate-bearing sediments during shear. This study employs a custom-made apparatus to investigate the mechanical and volumetric behaviors of carbon dioxide hydrate-bearing sediments subjected to direct shear. The results show that both peak and residual strengths increase with increased hydrate saturation and vertical stress. Hydrate contributes mainly the cohesion and dilatancy constraint to the peak strength of hydrate-bearing sediments. The postpeak strength reduction is more evident and brittle in specimens with higher hydrate saturation and under lower stress. Significant strength reduction after shear failure is expected in silty sediments with high hydrate saturation Sh ≥ 0.65. Hydrate contribution to the residual strength is mainly by increasing cohesion at low hydrate saturation and friction at high hydrate saturation. Stress state and hydrate saturation are dominating both the stiffness and the strength of hydrate-bearing sediments; thus, a wave velocity-based peak strength prediction model is proposed and validated, which allows for precise estimation of the shear strength of hydrate-bearing sediments through acoustic logging data. This method is advantageous to geomechanical simulators, particularly when the experimental strength data of natural samples are not available.

  2. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  3. Impacts of Hydrate Distribution on the Hydro-Thermo-Mechanical Properties of Hydrate-Bearing Sediments

    Science.gov (United States)

    Dai, S.; Seol, Y.

    2015-12-01

    In general, hydrate makes the sediments hydraulically less conductive, thermally more conductive, and mechanically stronger; yet the dependency of these physical properties on hydrate saturation varies with hydrate distribution and morphology. Hydrate distribution in sediments may cause the bulk physical properties of their host sediments varying several orders of magnitude even with the same amount of hydrate. In natural sediments, hydrate morphology is inherently governed by the burial depth and the grain size of the host sediments. Compare with patchy hydrate, uniformly distributed hydrate is more destructive to fluid flow, yet leads to higher gas and water permeability during hydrate dissociation due to the easiness of forming percolation paths. Water and hydrate have similar thermal conductivity values; the bulk thermal conductivity of hydrate-bearing sediments depends critically on gas-phase saturation. 60% of gas saturation may result in evident thermal conductivity drop and hinder further gas production. Sediments with patchy hydrate yield lower stiffness than that with cementing hydrate but higher stiffness than that with pore filling and loading bearing hydrate. Besides hydrate distribution, the stress state and loading history also play an important role in the mechanical behavior of hydrate-bearing sediments.

  4. Thermal conductivity measurements in unsaturated hydrate-bearing sediments

    Science.gov (United States)

    Dai, Sheng; Cha, Jong-Ho; Rosenbaum, Eilis J.; Zhang, Wu; Seol, Yongkoo

    2015-08-01

    Current database on the thermal properties of hydrate-bearing sediments remains limited and has not been able to capture their consequential changes during gas production where vigorous phase changes occur in this unsaturated system. This study uses the transient plane source (TPS) technique to measure the thermal conductivity of methane hydrate-bearing sediments with various hydrate/water/gas saturations. We propose a simplified method to obtain thermal properties from single-sided TPS signatures. Results reveal that both volume fraction and distribution of the pore constituents govern the thermal conductivity of unsaturated specimens. Thermal conductivity hysteresis is observed due to water redistribution and fabric change caused by hydrate formation and dissociation. Measured thermal conductivity increases evidently when hydrate saturation Sh > 30-40%, shifting upward from the geometric mean model prediction to a Pythagorean mixing model. These observations envisage a significant drop in sediment thermal conductivity when residual hydrate/water saturation falls below ~40%, hindering further gas production.

  5. Hydrate-CASM for modeling Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    De La Fuente Ruiz, M.; Vaunat, J.; Marin Moreno, H.

    2017-12-01

    A clear understanding of the geomechanical behavior of methane hydrate-bearing sediments (MHBS) is crucial to assess the stability of the seafloor and submarine infrastructures to human and natural loading changes. Here we present the Hydrate-CASM, a new elastoplastic constitutive model to predict the geomechanical behavior of MHBS. Our model employs the critical state model CASM (Clay and Sand Model) because of its flexibility in describing the shape of the yield surface and its proven ability to predict the mechanical behavior of sands, the most commercially viable hydrate reservoirs. The model considers MHBS as a deformable elastoplastic continuum, and hydrate-related changes in the stress-strain behavior are predicted by a densification mechanism. The densification attributes the mechanical contribution of hydrate to; a reduction of the available void ratio; a decrease of the swelling line slope; and an increase of the volumetric yield stress. It is described by experimentally derived physical parameters except from the swelling slope coefficient that requires empirical calibration. The Hydrate-CASM is validated against published triaxial laboratory tests performed at different confinement stresses, hydrate saturations, and hydrate morphologies. During the validation, we focused on capturing the mechanical behavior of the host sediment and consider perturbations of the sediment's mechanical properties that could result from the sample preparation. Our model successfully captures the experimentally observed influence of hydrate saturation in the magnitude and trend of the stiffness, shear strength, and dilatancy of MHBS. Hence, we propose that hydrate-related densification changes might be a major factor controlling the geomechanical response of MHBS.

  6. Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [Georgia Tech Research Corporation, Atlanta, GA (United States); Santamarina, J. Carlos [King Abdulaziz Univ., Jeddah (Saudi Arabia)

    2017-12-30

    Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. However, hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate lens topology, system connectivity, and physical macro-scale properties of clay-dominated hydrate-bearing sediments. This situation hinders further analyses of the global carbon budget as well as engineering challenges/solutions related to hydrate instability and production. This project studies hydrate-bearing clay-dominated sediments with emphasis on the enhanced fundamental understanding of hydrate formation and resulting morphology, the development laboratory techniques to emulate natural hydrate formations, the assessment of analytical tools to predict physical properties, the evaluation of engineering and geological implications, and the advanced understanding of gas production potential from finegrained sediments.

  7. Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough

    Science.gov (United States)

    Santamarina, J.C.; Dai, Shifeng; Terzariol, M.; Jang, Jeonghwan; Waite, William F.; Winters, William J.; Nagao, J.; Yoneda, J.; Konno, Y.; Fujii, T.; Suzuki, K.

    2015-01-01

    Natural hydrate-bearing sediments from the Nankai Trough, offshore Japan, were studied using the Pressure Core Characterization Tools (PCCTs) to obtain geomechanical, hydrological, electrical, and biological properties under in situ pressure, temperature, and restored effective stress conditions. Measurement results, combined with index-property data and analytical physics-based models, provide unique insight into hydrate-bearing sediments in situ. Tested cores contain some silty-sands, but are predominantly sandy- and clayey-silts. Hydrate saturations Sh range from 0.15 to 0.74, with significant concentrations in the silty-sands. Wave velocity and flexible-wall permeameter measurements on never-depressurized pressure-core sediments suggest hydrates in the coarser-grained zones, the silty-sands where Sh exceeds 0.4, contribute to soil-skeletal stability and are load-bearing. In the sandy- and clayey-silts, where Sh < 0.4, the state of effective stress and stress history are significant factors determining sediment stiffness. Controlled depressurization tests show that hydrate dissociation occurs too quickly to maintain thermodynamic equilibrium, and pressure–temperature conditions track the hydrate stability boundary in pure-water, rather than that in seawater, in spite of both the in situ pore water and the water used to maintain specimen pore pressure prior to dissociation being saline. Hydrate dissociation accompanied with fines migration caused up to 2.4% vertical strain contraction. The first-ever direct shear measurements on never-depressurized pressure-core specimens show hydrate-bearing sediments have higher sediment strength and peak friction angle than post-dissociation sediments, but the residual friction angle remains the same in both cases. Permeability measurements made before and after hydrate dissociation demonstrate that water permeability increases after dissociation, but the gain is limited by the transition from hydrate saturation

  8. Maximum Recoverable Gas from Hydrate Bearing Sediments by Depressurization

    KAUST Repository

    Terzariol, Marco

    2017-11-13

    The estimation of gas production rates from hydrate bearing sediments requires complex numerical simulations. This manuscript presents a set of simple and robust analytical solutions to estimate the maximum depressurization-driven recoverable gas. These limiting-equilibrium solutions are established when the dissociation front reaches steady state conditions and ceases to expand further. Analytical solutions show the relevance of (1) relative permeabilities between the hydrate free sediment, the hydrate bearing sediment, and the aquitard layers, and (2) the extent of depressurization in terms of the fluid pressures at the well, at the phase boundary, and in the far field. Close form solutions for the size of the produced zone allow for expeditious financial analyses; results highlight the need for innovative production strategies in order to make hydrate accumulations an economically-viable energy resource. Horizontal directional drilling and multi-wellpoint seafloor dewatering installations may lead to advantageous production strategies in shallow seafloor reservoirs.

  9. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon; Santamarina, Carlos

    2016-01-01

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  10. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  11. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms

    KAUST Repository

    Sánchez, Marcelo

    2016-11-30

    Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.

  12. An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments

    Science.gov (United States)

    Chand, S.; Minshull, T.A.; Priest, J.A.; Best, A.I.; Clayton, C.R.I.; Waite, W.F.

    2006-01-01

    The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L–38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.

  13. Borehole Tool for the Comprehensive Characterization of Hydrate-bearing Sediments

    KAUST Repository

    Dai, Sheng; Santamarina, Carlos

    2018-01-01

    Reservoir characterization and simulation require reliable parameters to anticipate hydrate deposits responses and production rates. The acquisition of the required fundamental properties currently relies on wireline logging, pressure core testing, and/or laboratory ob-servations of synthesized specimens, which are challenged by testing capabilities and in-nate sampling disturbances. The project reviews hydrate-bearing sediments, properties, and inherent sampling effects, albeit lessen with the developments in pressure core technology, in order to develop robust correlations with index parameters. The resulting information is incorporated into a tool for optimal field characterization and parameter selection with un-certainty analyses. Ultimately, the project develops a borehole tool for the comprehensive characterization of hydrate-bearing sediments at in situ, with the design recognizing past developments and characterization experience and benefited from the inspiration of nature and sensor miniaturization.

  14. Borehole Tool for the Comprehensive Characterization of Hydrate-bearing Sediments

    KAUST Repository

    Dai, Sheng

    2018-02-01

    Reservoir characterization and simulation require reliable parameters to anticipate hydrate deposits responses and production rates. The acquisition of the required fundamental properties currently relies on wireline logging, pressure core testing, and/or laboratory ob-servations of synthesized specimens, which are challenged by testing capabilities and in-nate sampling disturbances. The project reviews hydrate-bearing sediments, properties, and inherent sampling effects, albeit lessen with the developments in pressure core technology, in order to develop robust correlations with index parameters. The resulting information is incorporated into a tool for optimal field characterization and parameter selection with un-certainty analyses. Ultimately, the project develops a borehole tool for the comprehensive characterization of hydrate-bearing sediments at in situ, with the design recognizing past developments and characterization experience and benefited from the inspiration of nature and sensor miniaturization.

  15. Borehole Tool for the Comprehensive Characterization of Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [Georgia Inst. of Technology, Atlanta, GA (United States); Santamarina, J. Carlos [Georgia Inst. of Technology, Atlanta, GA (United States); King Abdullah Univ. of Science and Technology (KAUST), Thuwal (Saudi Arabia)

    2017-12-30

    Reservoir characterization and simulation require reliable parameters to anticipate hydrate deposits responses and production rates. The acquisition of the required fundamental properties currently relies on wireline logging, pressure core testing, and/or laboratory observations of synthesized specimens, which are challenged by testing capabilities and innate sampling disturbances. The project reviews hydrate-bearing sediments, properties, and inherent sampling effects, albeit lessen with the developments in pressure core technology, in order to develop robust correlations with index parameters. The resulting information is incorporated into a tool for optimal field characterization and parameter selection with uncertainty analyses. Ultimately, the project develops a borehole tool for the comprehensive characterization of hydrate-bearing sediments at in situ, with the design recognizing past developments and characterization experience and benefited from the inspiration of nature and sensor miniaturization.

  16. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo, E-mail: Yongkoo.Seol@netl.doe.gov; Choi, Jeong-Hoon; Dai, Sheng [National Energy Technology Laboratory, U.S. Department of Energy, Morgantown, West Virginia 26507 (United States)

    2014-08-01

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field.

  17. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments

    International Nuclear Information System (INIS)

    Seol, Yongkoo; Choi, Jeong-Hoon; Dai, Sheng

    2014-01-01

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field

  18. Geomechanical Performance of Hydrate-Bearing Sediment in Offshore Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; Tad Patzek; Jonny Rutqvist; George Moridis; Richard Plumb

    2008-03-31

    The objective of this multi-year, multi-institutional research project was to develop the knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate-bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus was on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. We have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. We also investigated the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. The objective of the UC Berkeley work was to develop a grain-scale model of hydrate-bearing sediments. Hydrate dissociation alters the strength of HBS. In particular, transformation of hydrate clusters into gas and liquid water weakens the skeleton and, simultaneously, reduces the effective stress by increasing the pore pressure. The large-scale objective of the study is evaluation of geomechanical stability of offshore oil and gas production infrastructure. At Lawrence Berkeley National Laboratory (LBNL), we have developed the numerical model TOUGH + Hydrate + FLAC3D to evaluate how the formation and disassociation of hydrates in seafloor sediments affects seafloor stability. Several technical papers were published using results from this model. LBNL also developed laboratory equipment and methods to produce realistic laboratory samples of sediments containing gas hydrates so that mechanical properties could be measured in the laboratory. These properties are required to run TOUGH + Hydrate + FLAC3D to evaluate seafloor stability issues. At Texas A&M University we performed a detailed literature review to determine what gas hydrate formation properties had been measured and reported in the literature. We

  19. Squirt flow due to interfacial water films in hydrate bearing sediments

    Directory of Open Access Journals (Sweden)

    K. Sell

    2018-05-01

    Full Text Available Sediments containing gas hydrate dispersed in the pore space are known to show a characteristic seismic anomaly which is a high attenuation along with increasing seismic velocities. Currently, this observation cannot be fully explained albeit squirt-flow type mechanisms on the microscale have been speculated to be the cause. Recent major findings from in situ experiments, using the gas in excess and water in excess formation method, and coupled with high-resolution synchrotron-based X-ray micro-tomography, have revealed the systematic presence of thin water films between the quartz grains and the encrusting hydrate. The data obtained from these experiments underwent an image processing procedure to quantify the thicknesses and geometries of the aforementioned interfacial water films. Overall, the water films vary from sub-micrometer to a few micrometers in thickness. In addition, some of the water films interconnect through water bridges. This geometrical analysis is used to propose a new conceptual squirt flow model for hydrate bearing sediments. A series of numerical simulations is performed considering variations of the proposed model to study seismic attenuation caused by such thin water films. Our results support previous speculation that squirt flow can explain high attenuation at seismic frequencies in hydrate bearing sediments, but based on a conceptual squirt flow model which is geometrically different than those previously considered.

  20. THCM Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments (Marine and Permafrost Settings)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marcelo J. [Texas A & M Univ., College Station, TX (United States); Santamarina, J. Carlos [King Abdullah Univ. of Science and Technology (Saudi Arabia)

    2017-02-14

    Gas hydrates are solid compounds made of water molecules clustered around low molecular weight gas molecules such as methane, hydrogen, and carbon dioxide. Methane hydrates form under pressure (P) and temperature (T) conditions that are common in sub-permafrost layers and in deep marine sediments. Stability conditions constrain the occurrence of gas hydrates to submarine sediments and permafrost regions. The amount of technically recoverable methane trapped in gas hydrate may exceed 104tcf. Gas hydrates are a potential energy resource, can contribute to climate change, and can cause large-scale seafloor instabilities. In addition, hydrate formation can be used for CO2 sequestration (also through CO2-CH4 replacement), and efficient geological storage seals. The experimental study of hydrate bearing sediments has been hindered by the very low solubility of methane in water (lab testing), and inherent sampling difficulties associated with depressurization and thermal changes during core extraction. This situation has prompted more decisive developments in numerical modeling in order to advance the current understanding of hydrate bearing sediments, and to investigate/optimize production strategies and implications. The goals of this research has been to addresses the complex thermo-hydro-chemo-mechanical THCM coupled phenomena in hydrate-bearing sediments, using a truly coupled numerical model that incorporates sound and proven constitutive relations, satisfies fundamental conservation principles. Analytical solutions aimed at verifying the proposed code have been proposed as well. These tools will allow to better analyze available data and to further enhance the current understanding of hydrate bearing sediments in view of future field experiments and the development of production technology.

  1. Coupled numerical modeling of gas hydrates bearing sediments from laboratory to field-scale conditions

    Science.gov (United States)

    Sanchez, M. J.; Santamarina, C.; Gai, X., Sr.; Teymouri, M., Sr.

    2017-12-01

    Stability and behavior of Hydrate Bearing Sediments (HBS) are characterized by the metastable character of the gas hydrate structure which strongly depends on thermo-hydro-chemo-mechanical (THCM) actions. Hydrate formation, dissociation and methane production from hydrate bearing sediments are coupled THCM processes that involve, amongst other, exothermic formation and endothermic dissociation of hydrate and ice phases, mixed fluid flow and large changes in fluid pressure. The analysis of available data from past field and laboratory experiments, and the optimization of future field production studies require a formal and robust numerical framework able to capture the very complex behavior of this type of soil. A comprehensive fully coupled THCM formulation has been developed and implemented into a finite element code to tackle problems involving gas hydrates sediments. Special attention is paid to the geomechanical behavior of HBS, and particularly to their response upon hydrate dissociation under loading. The numerical framework has been validated against recent experiments conducted under controlled conditions in the laboratory that challenge the proposed approach and highlight the complex interaction among THCM processes in HBS. The performance of the models in these case studies is highly satisfactory. Finally, the numerical code is applied to analyze the behavior of gas hydrate soils under field-scale conditions exploring different features of material behavior under possible reservoir conditions.

  2. Effects of Attenuation of Gas Hydrate-bearing Sediments on Seismic Data: Example from Mallik, Northwest Territories, Canada

    Science.gov (United States)

    Bellefleur, G.; Riedel, M.; Brent, T.

    2007-05-01

    Wave attenuation is an important physical property of hydrate-bearing sediments that is rarely taken into account in site characterization with seismic data. We present a field example showing improved images of hydrate- bearing sediments on seismic data after compensation of attenuation effects. Compressional quality factors (Q) are estimated from zero-offset Vertical Seismic Profiling data acquired at Mallik, Northwest Territories, Canada. During the last 10 years, two internationally-partnered research drilling programs have intersected three major intervals of sub-permafrost gas hydrates at Mallik, and have successfully extracted core samples containing significant amount of gas hydrates. Individual gas hydrate intervals are up to 40m in thickness and are characterized by high in situ gas hydrate saturation, sometimes exceeding 80% of pore volume of unconsolidated clastic sediments having average porosities ranging from 25% to 40%. The Q-factors obtained from the VSP data demonstrate significant wave attenuation for permafrost and hydrate- bearing sediments. These results are in agreement with previous attenuation estimates from sonic logs and crosshole data at different frequency intervals. The Q-factors obtained from VSP data were used to compensate attenuation effects on surface 3D seismic data acquired over the Mallik gas hydrate research wells. Intervals of gas hydrate on surface seismic data are characterized by strong reflectivity and effects from attenuation are not perceptible from a simple visual inspection of the data. However, the application of an inverse Q-filter increases the resolution of the data and improves correlation with log data, particularly for the shallowest gas hydrate interval. Compensation of the attenuation effects of the permafrost likely explains most of the improvements for the shallow gas hydrate zone. Our results show that characterization of the Mallik gas hydrates with seismic data not corrected for attenuation would tend to

  3. Micromechanical investigation of sand migration in gas hydrate-bearing sediments

    Science.gov (United States)

    Uchida, S.; Klar, A.; Cohen, E.

    2017-12-01

    Past field gas production tests from hydrate bearing sediments have indicated that sand migration is an important phenomenon that needs to be considered for successful long-term gas production. The authors previously developed the continuum based analytical thermo-hydro-mechanical sand migration model that can be applied to predict wellbore responses during gas production. However, the model parameters involved in the model still needs to be calibrated and studied thoroughly and it still remains a challenge to conduct well-defined laboratory experiments of sand migration, especially in hydrate-bearing sediments. Taking the advantage of capability of micromechanical modelling approach through discrete element method (DEM), this work presents a first step towards quantifying one of the model parameters that governs stresses reduction due to grain detachment. Grains represented by DEM particles are randomly removed from an isotropically loaded DEM specimen and statistical analyses reveal that linear proportionality exists between the normalized volume of detached solids and normalized reduced stresses. The DEM specimen with different porosities (different packing densities) are also considered and statistical analyses show that there is a clear transition between loose sand behavior and dense sand behavior, characterized by the relative density.

  4. Methane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Joseph P. Smith

    2014-09-01

    Full Text Available In June 2007 sediment cores were collected in Alaminos Canyon, Gulf of Mexico across a series of seismic data profiles indicating rapid transitions between the presence of methane hydrates and vertical gas flux. Vertical profiles of dissolved sulfate, chloride, calcium, magnesium, and dissolved inorganic carbon (DIC concentrations in porewaters, headspace methane, and solid phase carbonate concentrations were measured at each core location to investigate the cycling of methane-derived carbon in shallow sediments overlying the hydrate bearing strata. When integrated with stable carbon isotope ratios of DIC, geochemical results suggest a significant fraction of the methane flux at this site is cycled into the inorganic carbon pool. The incorporation of methane-derived carbon into dissolved and solid inorganic carbon phases represents a significant sink in local carbon cycling and plays a role in regulating the flux of methane to the overlying water column at Alaminos Canyon. Targeted, high-resolution geochemical characterization of the biogeochemical cycling of methane-derived carbon in shallow sediments overlying hydrate bearing strata like those in Alaminos Canyon is critical to quantifying methane flux and estimating methane hydrate distributions in gas hydrate bearing marine sediments.

  5. Hydraulic and Mechanical Effects from Gas Hydrate Conversion and Secondary Gas Hydrate Formation during Injection of CO2 into CH4-Hydrate-Bearing Sediments

    Science.gov (United States)

    Bigalke, N.; Deusner, C.; Kossel, E.; Schicks, J. M.; Spangenberg, E.; Priegnitz, M.; Heeschen, K. U.; Abendroth, S.; Thaler, J.; Haeckel, M.

    2014-12-01

    The injection of CO2 into CH4-hydrate-bearing sediments has the potential to drive natural gas production and simultaneously sequester CO2 by hydrate conversion. The process aims at maintaining the in situ hydrate saturation and structure and causing limited impact on soil hydraulic properties and geomechanical stability. However, to increase hydrate conversion yields and rates it must potentially be assisted by thermal stimulation or depressurization. Further, secondary formation of CO2-rich hydrates from pore water and injected CO2 enhances hydrate conversion and CH4 production yields [1]. Technical stimulation and secondary hydrate formation add significant complexity to the bulk conversion process resulting in spatial and temporal effects on hydraulic and geomechanical properties that cannot be predicted by current reservoir simulation codes. In a combined experimental and numerical approach, it is our objective to elucidate both hydraulic and mechanical effects of CO2 injection and CH4-CO2-hydrate conversion in CH4-hydrate bearing soils. For the experimental approach we used various high-pressure flow-through systems equipped with different online and in situ monitoring tools (e.g. Raman microscopy, MRI and ERT). One particular focus was the design of triaxial cell experimental systems, which enable us to study sample behavior even during large deformations and particle flow. We present results from various flow-through high-pressure experimental studies on different scales, which indicate that hydraulic and geomechanical properties of hydrate-bearing sediments are drastically altered during and after injection of CO2. We discuss the results in light of the competing processes of hydrate dissociation, hydrate conversion and secondary hydrate formation. Our results will also contribute to the understanding of effects of temperature and pressure changes leading to dissociation of gas hydrates in ocean and permafrost systems. [1] Deusner C, Bigalke N, Kossel E

  6. Physical and Mechanical Properties of Surface Sediments and methane hydrate-bearing sediments in the Shenhu area of South China Sea

    Science.gov (United States)

    Jiang, J.; Shen, Z.; Jia, Y.

    2017-12-01

    Methane hydrates are superior energy resources and potential predisposing factors of geohazard. With the success in China's persistent exploitation of methane hydrates in the Shenhu area of South China Sea for 60 days, there is an increasing demand for detailed knowledge of sediment properties and hazard assessment in this area. In this paper, the physical and mechanical properties of both the surface sediments and methane hydrate-bearing sediments (MHBS) in the exploitation area, the Shenhu area of South China Sea, were investigated using laboratory geotechnical experiments, and triaxial tests were carried out on remolded sediment samples using a modified triaxial apparatus. The results show that sediments in this area are mainly silt with high moisture content, high plasticity, low permeability and low shear strength. The moisture content and permeability decrease while the shear strength increases with the increasing depth. The elastic modulus and peak strength of MHBS increase with the increasing effective confining pressure and higher hydrate saturation. The cohesion increases with higher hydrate saturation while the internal friction angle is barely affected by hydrate saturation. The obtained results demonstrate clearly that methane hydrates have significant impacts on the physical and mechanical properties of sediments and there is still a wide gap in knowledge about MHBS.

  7. Pressurized subsampling system for pressured gas-hydrate-bearing sediment: Microscale imaging using X-ray computed tomography

    International Nuclear Information System (INIS)

    Jin, Yusuke; Konno, Yoshihiro; Nagao, Jiro

    2014-01-01

    A pressurized subsampling system was developed for pressured gas hydrate (GH)-bearing sediments, which have been stored under pressure. The system subsamples small amounts of GH sediments from cores (approximately 50 mm in diameter and 300 mm in height) without pressure release to atmospheric conditions. The maximum size of the subsamples is 12.5 mm in diameter and 20 mm in height. Moreover, our system transfers the subsample into a pressure vessel, and seals the pressure vessel by screwing in a plug under hydraulic pressure conditions. In this study, we demonstrated pressurized subsampling from artificial xenon-hydrate sediments and nondestructive microscale imaging of the subsample, using a microfocus X-ray computed tomography (CT) system. In addition, we estimated porosity and hydrate saturation from two-dimensional X-ray CT images of the subsamples

  8. The structure of hydrate bearing fine grained marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Priest, J.; Kingston, E.; Clayton, C. [Southampton Univ., Highfield (United Kingdom). School of Civil Engineering and the Environment; Schultheiss, P.; Druce, M. [Geotek Ltd., Daventry (United Kingdom)

    2008-07-01

    This paper discussed the structure of naturally occurring methane gas hydrates in fine-grained sediments from core samples recovered using in situ pressures from the eastern margin of the Indian Ocean. High resolution X-ray computed tomography (CT) images were taken of gas hydrate cores. The hydrate structure was examined and comparisons were made between low resolution X-ray images obtained on the cores prior to sub-sectioning and depressurization procedures. The X-ray images showed the presence of high-angle, sub-parallel veins within the recovered sediments. The scans indicated that the hydrates occurred as fracture filing veins throughout the core. Fracture orientation was predominantly sub-vertical. Thick millimetric hydrate veins were composed of sub-millimetric veins with variations in fracture angle. The analysis indicated that hydrate formation was episodic in nature and subject to changes in the stress regime. Results of the study showed that depressurization and subsequent freezing alter the structure of the sediment even when the gas hydrate has not been altered. A large proportion of the hydrate survived when outside of its stability region. The self-preserving behaviour of the hydrate was attributed to the endothermic nature of gas hydrate dissociation. It was concluded that the accurate physical characterization of gas hydrates can only be conducted when the core section remains under in situ stress conditions. 13 refs., 9 figs.

  9. Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yanxin; Cheng Yipik [Department of Civil, Environmental and Geomatic Engineering, University College London (UCL), Gower Street, London, WC1E 6BT (United Kingdom); Xu Xiaomin; Soga, Kenichi [Geotechnical and Environmental Research Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)

    2013-06-18

    Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.

  10. Methane Recycling During Burial of Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    You, K.; Flemings, P. B.

    2017-12-01

    We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with

  11. Modified effective medium model for gas hydrate bearing,clay-dominated sediments in the Krishna-Godavari Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sriram, G.; Dewangan, P.; Ramprasad, T.

    .D., 1990. Nonlinear elasticity and pressure-dependent wave speeds in granular media. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 430, 105–131. Guerin, G., Goldberg, D., 2005. Modeling of acoustic wave dissipation in gas hydrate-bearing sediments...

  12. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  13. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments, on the Pacific Ocean Margin

    DEFF Research Database (Denmark)

    Inagaki, F.; Nunoura, T.; Nakagawa, S.

    2006-01-01

    The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes and their ......The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes...... of the uncultivated Deep-Sea Archaeal Group were consistently the dominant phylotype in sediments associated with methane hydrate. Sediment cores lacking methane hydrates displayed few or no Deep-Sea Archaeal Group phylotypes. Bacterial communities in the methane hydrate-bearing sediments were dominated by members...

  14. Investigation of the mechanical behaviour of gas-hydrate bearing clayey sediments from the Gulf of Guinea using in-situ geotechnical measurements

    Science.gov (United States)

    Taleb, F.; Garziglia, S.; Sultan, N.

    2017-12-01

    Expanding needs for energy resources and concerns about climate change have moved industrial and academic interests towards regions where specific thermobaric conditions allow the formation of gas hydrates (GH). While significant advances have been made to characterize the fabric and structure of these metastable geo-compounds, considerable uncertainty remains regarding the impact of their mechanical properties on the seafloor morphology and stability. This is particularly true for gas hydrates-bearing fine-grained sediments, which remain challenging to preserve or synthesise prior to laboratory testing. As a step towards understanding the mechanical consequences of the concentration and distribution of GH in this type of sediments, this work uses acoustic and geotechnical in situ measurements collected in a high gas flux system offshore Nigeria. Acoustic measurements of compressional wave velocity were shown to be convenient means of both detecting and quantifying gas hydrates in marine sediments. Geotechnical data derived from piezocone readings and their distribution in normalised soil classification charts allowed identifying distinct features of gas hydrates-bearing clayey sediments; such as a mechanical behaviour sharing similarities with that of cemented clays. Correlations between acoustic and piezocone data showed that the stiffness and strength tend to generally increase with increasing GH concentrations. However, several sediment intervals sharing the same hydrates concentration have revealed different features of mechanical behaviour. This was linked to the presence of various GH morphologies within the marine sediments such as groups of hydrate veins or massive hydrate nodules. This in-situ approach allowing both understanding the heterogeneous distribution of GH and characterising their host sediment seems key to assess the potential link between seafloor stability and GH dissociation/dissolution caused by human activities or by natural environmental

  15. Impact of pore-water freshening on clays and the compressibility of hydrate-bearing reservoirs during production

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Junbong [U.S. Geological Survey, Woods Hole, MA; Cao, Shuang [Louisiana State University, Baton Rouge, LA; Waite, William [U.S. Geological Survey, Woods Hole, MA; Jung, Jongwon [Chungbuk National University, Cheongju-si, Chungbuk, South Korea

    2017-06-25

    Gas production efficiency from natural hydrate-bearing sediments depends in part on geotechnical properties of fine-grained materials, which are ubiquitous even in sandy hydrate-bearing sediments. The responses of fine-grained material to pore fluid chemistry changes due to freshening during hydrate dissociation could alter critical sediment characteristics during gas production activities. We investigate the electrical sensitivity of fine grains to pore fluid freshening and the implications of freshening on sediment compression and recompression parameters.

  16. Investigation of mechanical properties of hydrate-bearing pressure core sediments recovered from the Eastern Nankai Trough using transparent acrylic cell triaxial testing system (TACTT-system)

    Science.gov (United States)

    Yoneda, J.; Masui, A.; Konno, Y.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Tenma, N.; Nagao, J.

    2014-12-01

    Natural gas hydrate-bearing pressure core sediments have been sheared in compression using a newly developed Transparent Acrylic Cell Triaxial Testing (TACTT) system to investigate the geophysical and geomechanical behavior of sediments recovered from the deep seabed in the Eastern Nankai Trough, the first Japanese offshore production test region. The sediments were recovered by hybrid pressure core system (hybrid PCS) and pressure cores were cut by pressure core analysis tools (PCATs) on board. These pressure cores were transferred to the AIST Hokkaido centre and trimmed by pressure core non-destructive analysis tools (PNATs) for TACTT system which maintained the pressure and temperature conditions within the hydrate stability boundary, through the entire process of core handling from drilling to the end of laboratory testing. An image processing technique was used to capture the motion of sediment in a transparent acrylic cell, and digital photographs were obtained at every 0.1% of vertical strain during the test. Analysis of the optical images showed that sediments with 63% hydrate saturation exhibited brittle failure, although nonhydrate-bearing sediments exhibited ductile failure. In addition, the increase in shear strength with hydrate saturation increase of natural gas hydrate is in agreement with previous data from synthetic gas hydrate. This research was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) that carries out Japan's Methane Hydrate R&D Program by the Ministry of Economy, Trade and Industry (METI).

  17. In situ thermal conductivity of gas-hydrate-bearing sediments of the Mallik 5L-38 well

    Science.gov (United States)

    Henninges, J.; Huenges, E.; Burkhardt, H.

    2005-11-01

    Detailed knowledge about thermal properties of rocks containing gas hydrate is required in order to quantify processes involving gas hydrate formation and decomposition in nature. In the framework of the Mallik 2002 program, three wells penetrating a continental gas hydrate occurrence under permafrost were successfully equipped with permanent fiber-optic distributed temperature sensing cables. Temperature data were collected over a 21-month period after completing the wells. Thermal conductivity profiles were calculated from the geothermal data as well as from a petrophysical model derived from the available logging data and application of mixing law models. Results indicate that thermal conductivity variations are mainly lithologically controlled with a minor influence from hydrate saturation. Average thermal conductivity values of the hydrate-bearing sediments range between 2.35 and 2.77 W m-1 K-1. Maximum gas hydrate saturations can reach up to about 90% at an average porosity of 0.3.

  18. Faulting of gas-hydrate-bearing marine sediments - contribution to permeability

    Science.gov (United States)

    Dillon, William P.; Holbrook, W.S.; Drury, Rebecca; Gettrust, Joseph; Hutchinson, Deborah; Booth, James; Taylor, Michael

    1997-01-01

    Extensive faulting is observed in sediments containing high concentrations of methane hydrate off the southeastern coast of the United States. Faults that break the sea floor show evidence of both extension and shortening; mud diapirs are also present. The zone of recent faulting apparently extends from the ocean floor down to the base of gas-hydrate stability. We infer that the faulting resulted from excess pore pressure in gas trapped beneath the gas hydrate-beating layer and/or weakening and mobilization of sediments in the region just below the gas-hydrate stability zone. In addition to the zone of surface faults, we identified two buried zones of faulting, that may have similar origins. Subsurface faulted zones appear to act as gas traps.

  19. Polyethylene glycol drilling fluid for drilling in marine gas hydrates-bearing sediments: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, G.; Liu, T.; Ning, F.; Tu, Y.; Zhang, L.; Yu, Y.; Kuang, L. [China University of Geosciences, Faculty of Engineering, Wuhan (China)

    2011-07-01

    Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na{sub 2}CO{sub 3}, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from -8 {sup o}C to 15 {sup o}C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments. (authors)

  20. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Lixin Kuang

    2011-01-01

    Full Text Available Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na2CO3, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from −8 °C to 15 °C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments.

  1. Characterization of methane-hydrate formation inferred from insitu Vp-density relationship for hydrate-bearing sediment cores obtained off the eastern coast of India

    Science.gov (United States)

    Kinoshita, M.; Hamada, Y.; Hirose, T.; Yamada, Y.

    2017-12-01

    In 2015, the Indian National Gas Hydrate Program (NGHP) Drilling Expedition 02 was carried out off the eastern margin of the Indian Peninsula in order to investigate distribution and occurrence of gas hydrates. From 25 drill sites, downhole logging data, cored samples, and drilling performance data were collected. One of the target areas (area B) is located on the axial and flank of an anticline, where the BSR is identified 100 m beneath the summit of anticline. 3 sites were drilled in the crest. The lower potential hydrate zone II was suggested by downhole logging (LWD) at 270-290 m below seafloor across the top of anticline. Core samples from this interval is characterized by a higher natural gamma radiation, gamma-ray-based higher bulk density and lower porosity, and higher electrical resistivity. All these features are in good agreement with LWD results. During this expedition, numerous special core sampling operations (PCAT) were carried out, keeping its insitu pressure in a pressure-tight vessel. They enabled acquiring insitu P-wave velocity and gamma-ray attenuation density measurements. In-situ X-CT images exhibit very clear hydrate distribution as lower density patches. Hydrate-bearing sediments exhibit a Vp-density trend that is clearly different from the ordinary formation. Vp values are significantly higher than 2 km/s whereas the density remains constant at 2-2.2 g/cm3 in hydrate zones. At some hydrate-bearing sediments, we noticed that Vp is negatively correlated to the density in the deeper portion (235-285 mbsf). On the other hand, in the shallower portion they are positively correlated. From lithostratigraphy the shallower portion consists of sand, whereas deeper portion are silty-clay dominant. We infer that the sand-dominant, shallower hydrate is a pore-filling type, and Vp is correlated positively to density. On the other hand, the clay-dominant, deeper hydrate is filled in vertical veins, and Vp is negatively correlated to density. Negative

  2. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms

    KAUST Repository

    Sá nchez, Marcelo; Gai, Xuerui; Santamarina, Carlos

    2016-01-01

    , hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical

  3. Microbial diversity in methane hydrate-bearing deep marine sediments core preserved in the original pressure.

    Science.gov (United States)

    Takahashi, Y.; Hata, T.; Nishida, H.

    2017-12-01

    In normal coring of deep marine sediments, the sampled cores are exposed to the pressure of the atmosphere, which results in dissociation of gas-hydrates and might change microbial diversity. In this study, we analyzed microbial composition in methane hydrate-bearing sediment core sampled and preserved by Hybrid-PCS (Pressure Coring System). We sliced core into three layers; (i) outside layer, which were most affected by drilling fluids, (ii) middle layer, and (iii) inner layer, which were expected to be most preserved as the original state. From each layer, we directly extracted DNA, and amplified V3-V4 region of 16S rRNA gene. We determined at least 5000 of nucleotide sequences of the partial 16S rDNA from each layer by Miseq (Illumina). In the all layers, facultative anaerobes, which can grow with or without oxygen because they can metabolize energy aerobically or anaerobically, were detected as majority. However, the genera which are often detected anaerobic environment is abundant in the inner layer compared to the outside layer, indicating that condition of drilling and preservation affect the microbial composition in the deep marine sediment core. This study was conducted as a part of the activity of the Research Consortium for Methane Hydrate Resources in Japan [MH21 consortium], and supported by JOGMEC (Japan Oil, Gas and Metals National Corporation). The sample was provided by AIST (National Institute of Advanced Industrial Science and Technology).

  4. Direct observation of characteristic dissociation behaviors of hydrate-bearing cores by rapid-scanning X-ray CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebinuma, T.; Oyama, H.; Utiumi, T.; Nagao, J.; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohiraku, Sapporo (Japan)

    2008-07-01

    Methane hydrate has significant potential as a new source of energy. Major considerations in developing production methods of methane from hydrates are the fundamental properties of hydrate-bearing sediments, and the dissociation behavior of methane hydrate and the gas and water flow generated by its dissociation in sediments. Marine methane hydrates occur several hundred meters below the sea floor, in a variety of forms. The pore-space filling-type is considered to be the most suited to exploitation, as it is contained within the pore spaces of sandy sediments, and has relatively larger gas permeability compared to other forms. However, shallow sandy sediments are not usually consolidated, and methane hydrate is unstable at normal pressure and temperature. Therefore, common methods are not suitable, and new experimental methods have been developed to study the properties of hydrate-bearing sediment and its dissociation process. This paper presented the results of an experimental study involving the dissociation of artificial methane-hydrate-bearing sediments. The experiment was performed using X-ray computed tomography in order to directly observe dissociation behavior in the sediments and the gas and water flows generated by dissociation. The paper described the depressurization process and presented a schematic diagram of rapid scanning X-ray computed tomography scanner and core holder with tri-axial structure. The experimental apparatus for dissociation of methane hydrate was also illustrated. The thermal stimulation process and hot water injection process were explained. It was concluded that dissociation by depressurization demonstrated that the temperature reduction induced by depressurization depended on the phase equilibrium state of methane hydrate, and that dissociation preferentially occurred at the periphery of the core. This behavior was due to the heat flux from the outside of the core, where the heat flux controlled the dissociation rate. 10 refs

  5. Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand

    Science.gov (United States)

    Mountjoy, Joshu J.; Pecher, Ingo; Henrys, Stuart; Crutchley, Gareth; Barnes, Philip M.; Plaza-Faverola, Andreia

    2014-11-01

    Morphological and seismic data from a submarine landslide complex east of New Zealand indicate flow-like deformation within gas hydrate-bearing sediment. This "creeping" deformation occurs immediately downslope of where the base of gas hydrate stability reaches the seafloor, suggesting involvement of gas hydrates. We present evidence that, contrary to conventional views, gas hydrates can directly destabilize the seafloor. Three mechanisms could explain how the shallow gas hydrate system could control these landslides. (1) Gas hydrate dissociation could result in excess pore pressure within the upper reaches of the landslide. (2) Overpressure below low-permeability gas hydrate-bearing sediments could cause hydrofracturing in the gas hydrate zone valving excess pore pressure into the landslide body. (3) Gas hydrate-bearing sediment could exhibit time-dependent plastic deformation enabling glacial-style deformation. We favor the final hypothesis that the landslides are actually creeping seafloor glaciers. The viability of rheologically controlled deformation of a hydrate sediment mix is supported by recent laboratory observations of time-dependent deformation behavior of gas hydrate-bearing sands. The controlling hydrate is likely to be strongly dependent on formation controls and intersediment hydrate morphology. Our results constitute a paradigm shift for evaluating the effect of gas hydrates on seafloor strength which, given the widespread occurrence of gas hydrates in the submarine environment, may require a reevaluation of slope stability following future climate-forced variation in bottom-water temperature.

  6. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures.

    Science.gov (United States)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  7. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures

    Science.gov (United States)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  8. Gas hydrate geohazards in shallow sediments and their impact on the design of subsea systems

    Energy Technology Data Exchange (ETDEWEB)

    Peters, D.; Hatton, G. [Shell Global Solutions Inc., Houston, TX (United States); Mehta, A. [Shell Malaysia Exploration and Production, Sarawak (Malaysia); Hadley, C. [Shell Exploration and Production Inc., Houston, TX (United States)

    2008-07-01

    This paper described the challenges that exist in producing gas hydrates in deepwater and Arctic environments as a potential source of methane gas. In order to safely produce hydrocarbon reservoirs far beneath near-mudline hydrates, it is important to understand and manage the geohazard risks associated with wells that pass through hydrate-bearing sediments. Since these wells may produce for decades, the temperature of near-mudline sediments may increase above the hydrate dissociation temperature for hundreds of meters from the well. This can result in the release of large quantities of gas causing a volume change that can impact the subsea system in many ways. As the fluids of an underlying reservoir flow to the mudline, heat carried by the fluids warms nearwell sediments and dissociates hydrates, which releases gas that can displace and fracture near well soil. This gas release may be calculated with numerical simulations that model heat and mass transfer in hydrate-bearing sediments. The model simulations require information on the nature and distribution of hydrates within the sediments, the melting behaviour of the hydrates, the thermal and mechanical properties of these shallow sediments, and the amount of hydrates contained in the sediments. However, this information is costly to acquire and characterize with certainty for an offshore development. Therefore, it is important to understand what information, processes, and calculations are needed in order to ensure safe, robust systems to produce the hydrocarbon reservoirs far below the hydrates. It was concluded that the relation between the quantity of gas released and dissociated gas quantities must be well understood. The hydrate concentration is a critical reservoir parameter for reservoirs with severe geohazard risk. 6 refs., 6 figs.

  9. Enhancement of the surface methane hydrate-bearing layer based on the specific microorganisms form deep seabed sediment in Japan Sea.

    Science.gov (United States)

    Hata, T.; Yoneda, J.; Yamamoto, K.

    2017-12-01

    A methane hydrate-bearing layer located near the Japan Sea has been investigated as a new potential energy resource. In this study examined the feasibility of the seabed surface sediment strength located in the Japan Sea improvement technologies for enhancing microbial induced carbonate precipitation (MICP) process. First, the authors cultivated the specific urease production bacterium culture medium from this surface methane hydrate-bearing layer in the seabed (-600m depth) of Japan Sea. After that, two types of the laboratory test (consolidated-drained triaxial tests) were conducted using this specific culture medium from the seabed in the Japan Sea near the Toyama Prefecture and high urease activities bacterium named Bacillus pasteurii. The main outcomes of this research are as follows. 1) Specific culture medium focused on the urease production bacterium can enhancement of the urease activities from the methane hydrate-bearing layer near the Japan Sea side, 2) This specific culture medium can be enhancement of the surface layer strength, 3) The microbial induced carbonate precipitation process can increase the particle size compared to that of the original particles coating the calcite layer surface, 4) The mechanism for increasing the soil strength is based on the addition of cohesion like a cement stabilized soil.

  10. Sedimentological Properties of Natural Gas Hydrates-Bearing Sands in the Nankai Trough and Mallik Areas

    Science.gov (United States)

    Uchida, T.; Tsuji, T.; Waseda, A.

    2009-12-01

    The Nankai Trough parallels the Japanese Island, where extensive BSRs have been interpreted from seismic reflection records. High resolution seismic surveys have definitely indicated gas hydrate distributions, and drilling the MITI Nankai Trough wells in 2000 and the METI Tokai-oki to Kumano-nada wells in 2004 have revealed subsurface gas hydrate in the eastern part of Nankai Trough. In 1998 and 2002 Mallik wells were drilled at Mackenzie Delta in the Canadian Arctic that also clarified the characteristics of gas hydrate-dominant sandy layers at depths from 890 to 1110 m beneath the permafrost zone. During the field operations, the LWD and wire-line well log data were continuously obtained and plenty of gas hydrate-bearing sand cores were recovered. Subsequence sedimentological and geochemical analyses performed on those core samples revealed the crucial geologic controls on the formation and preservation of natural gas hydrate in sediments. Pore-space gas hydrates reside in sandy sediments mostly filling intergranular porosity. Pore waters chloride anomalies, core temperature depression and core observations on visible gas hydrates confirm the presence of pore-space gas hydrates within moderate to thick sandy layers, typically 10 cm to a meter thick. Sediment porosities and pore-size distributions were obtained by mercury porosimetry, which indicate that porosities of gas hydrate-bearing sandy strata are approximately 45 %. According to grain size distribution curves, gas hydrate is dominant in fine- to very fine-grained sandy strata. Gas hydrate saturations are typically up to 80 % in pore volume throughout most of the hydrate-dominant sandy layers, which are estimated by well log analyses as well as pore water chloride anomalies. It is necessary for investigating subsurface fluid flow behaviors to evaluate both porosity and permeability of gas hydrate-bearing sandy sediments, and the measurements of water permeability for them indicated that highly saturated

  11. Velocity analysis of LWD and wireline sonic data in hydrate-bearing sediments on the Cascadia Margin

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, D.; Guerin, G.; Malinverno, A.; Cook, A. [Columbia Univ., Palisades, NY (United States)

    2008-07-01

    Sonic velocity logs provide an ideal method to study the physical properties and porosity of drilled sequences and to tie logging data with seismic and core measurements. These measurements are increasingly required for geotechnical and shallow seismic exploration in shallow marine sediments where P-wave velocity is extremely low, often close to the fluid velocity. Because of the strong effects of wave modes linked to the presence of a logging tool in the borehole, such as leaky-P modes, low velocity values make the analysis of sonic logs from logging-while-drilling (LWD) measurements challenging. This paper presented the results from LWD and wireline sonic tools deployed in shallow gas hydrate bearing hemipelagic muds on the Cascadia margin. Five sites were drilled through a fairly heterogeneous section of hemipelagic sediments with generally high core recovery. The study also examined the frequency dispersion of borehole leaky-P modes and established a minimum depth of about 50-100 metres beneath the seafloor at each site where preliminary compressional velocity logs could be accurately estimated using LWD data. Hydrate saturation was derived using published models and the best estimate of Vp at these sites was also derived. Results were compared with independent resistivity-derived saturations. The saturation estimates from various hydrate occurrence zones were found to be in good agreement when using velocity and resistivity logs with established model assumptions, and when using both wireline and LWD data, considering lateral variability between holes drilled on the Cascadia margin. 9 refs., 1 tab., 6 figs.

  12. Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough, Japan

    Science.gov (United States)

    Konno, Y.; Yoneda, J.; Egawa, K.; Ito, T.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Nagao, J.

    2013-12-01

    Effective and absolute permeability are key parameters for gas production from methane-hydrate-bearing sandy sediments. Effective and/or absolute permeability have been measured using methane-hydrate-bearing sandy cores and clayey and silty cores recovered from Daini Atsumi Knoll in the Eastern Nankai Trough during the 2012 JOGMEC/JAPEX Pressure coring operation. Liquid-nitrogen-immersed cores were prepared by rapid depressurization of pressure cores recovered by a pressure coring system referred to as the Hybrid PCS. Cores were shaped cylindrically on a lathe with spraying of liquid nitrogen to prevent hydrate dissociation. Permeability was measured by a flooding test or a pressure relaxation method under near in-situ pressure and temperature conditions. Measured effective permeability of hydrate-bearing sediments is less than tens of md, which are order of magnitude less than absolute permeability. Absolute permeability of clayey cores is approximately tens of μd, which would perform a sealing function as cap rocks. Permeability reduction due to a swelling effect was observed for a silty core during flooding test of pure water mimicking hydrate-dissociation-water. Swelling effect may cause production formation damage especially at a later stage of gas production from methane hydrate deposits. This study was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) that carries out Japan's Methane Hydrate R&D Program conducted by the Ministry of Economy, Trade and Industry (METI).

  13. Physical Properties of Gas Hydrates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

    2010-01-01

    Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

  14. Microstructure of natural hydrate host sediments

    International Nuclear Information System (INIS)

    Jones, K.W.; Kerkar, P.B.; Mahajan, D.; Lindquist, W.B.; Feng, H.

    2007-01-01

    There is worldwide interest in the study of natural gas hydrate because of its potential impact on world energy resources, control on seafloor stability, significance as a drilling hazard and probable impact on climate as a reservoir of a major greenhouse gas. Gas hydrates can (a) be free floating in the sediment matrix (b) contact, but do not cement, existing sediment grains, or (c) actually cement and stiffen the bulk sediment. Seismic surveys, often used to prospect for hydrates over a large area, can provide knowledge of the location of large hydrate concentrations because the hydrates within the sediment pores modify seismic properties. The ability to image a sample at the grain scale and to determine the porosity, permeability and seismic profile is of great interest since these parameters can help in determining the location of hydrates with certainty. We report here on an investigation of the structure of methane hydrate sediments at the grain-size scale using the synchrotron radiation-based computed microtomography (CMT) technique. Work has started on the measurements of the changes occurring as tetrahydrofuran hydrate, a surrogate for methane hydrate, is formed in the sediment

  15. Constraining gas hydrate occurrence in the northern Gulf of Mexico continental slope : fine scale analysis of grain-size in hydrate-bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hangsterfer, A.; Driscoll, N.; Kastner, M. [Scripps Inst. of Oceanography, La Jolla, CA (United States). Geosciences Research Division

    2008-07-01

    Methane hydrates can form within the gas hydrate stability zone (GHSZ) in sea beds. The Gulf of Mexico (GOM) contains an underlying petroleum system and deeply buried, yet dynamic salt deposits. Salt tectonics and fluid expulsion upward through the sediment column result in the formation of fractures, through which high salinity brines migrate into the GHSZ, destabilizing gas hydrates. Thermogenic and biogenic hydrocarbons also migrate to the seafloor along the GOMs northern slope, originating from the thermal and biogenic degradation of organic matter. Gas hydrate occurrence can be controlled by either primary permeability, forming in coarse-grained sediment layers, or by secondary permeability, forming in areas where hydrofracture and faulting generate conduits through which hydrocarbon-saturated fluids flow. This paper presented a study that attempted to determine the relationship between grain-size, permeability, and gas hydrate distribution. Grain-size analyses were performed on cores taken from Keathley Canyon and Atwater Valley in the GOM, on sections of cores that both contained and lacked gas hydrate. Using thermal anomalies as proxies for the occurrence of methane hydrate within the cores, samples of sediment were taken and the grain-size distributions were measured to see if there was a correlation between gas hydrate distribution and grain-size. The paper described the methods, including determination of hydrate occurrence and core analysis. It was concluded that gas hydrate occurrence in Keathley Canyon and Atwater Valley was constrained by secondary permeability and was structurally controlled by hydrofractures and faulting that acted as conduits through which methane-rich fluids flowed. 11 refs., 2 tabs., 5 figs.

  16. Impacts of variability in geomechanical properties on hydrate bearing sediment responses

    Science.gov (United States)

    Lin, J. S.; Uchida, S.; Choi, J. H.; Seol, Y.

    2017-12-01

    Hydrate bearing sediments (HBS) may become unstable during the gas production operation, or from natural processes such as change in the landform or temperature. The geomechanical modeling is a rational way to assess HBS stability regardless of the process involved. At the present time, such modeling is laced with uncertainties. The uncertainties come from many sources that include the adequacy of a modeling framework to accurately project the response of HBS, the gap in the available field information, and the variability in the laboratory test results from limited samples. For a reasonable stability assessment, the impact of the various uncertainties have to be addressed. This study looks into one particular aspect of the uncertainty, namely, the uncertainty caused by the scatter in the laboratory tests and the ability of a constitutive model to adequately represent them. Specifically this study focuses on the scatter in the results from laboratory tests on high quality pressured core samples from a marine site, and use a critical state constitutive model to represent them. The study investigates how the HBS responses shift when the parameters of the constitutive model are varied to reflect the different aspects of experimental results. Also investigated are impacts on the responses by altering certain formulations of the constitutive model to suit particular sets of results.

  17. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate

    Science.gov (United States)

    Winters, W.J.; Pecher, I.A.; Waite, W.F.; Mason, D.H.

    2004-01-01

    This paper presents results of shear strength and acoustic velocity (p-wave) measurements performed on: (1) samples containing natural gas hydrate from the Mallik 2L-38 well, Mackenzie Delta, Northwest Territories; (2) reconstituted Ottawa sand samples containing methane gas hydrate formed in the laboratory; and (3) ice-bearing sands. These measurements show that hydrate increases shear strength and p-wave velocity in natural and reconstituted samples. The proportion of this increase depends on (1) the amount and distribution of hydrate present, (2) differences, in sediment properties, and (3) differences in test conditions. Stress-strain curves from the Mallik samples suggest that natural gas hydrate does not cement sediment grains. However, stress-strain curves from the Ottawa sand (containing laboratory-formed gas hydrate) do imply cementation is present. Acoustically, rock physics modeling shows that gas hydrate does not cement grains of natural Mackenzie Delta sediment. Natural gas hydrates are best modeled as part of the sediment frame. This finding is in contrast with direct observations and results of Ottawa sand containing laboratory-formed hydrate, which was found to cement grains (Waite et al. 2004). It therefore appears that the microscopic distribution of gas hydrates in sediment, and hence the effect of gas hydrate on sediment physical properties, differs between natural deposits and laboratory-formed samples. This difference may possibly be caused by the location of water molecules that are available to form hydrate. Models that use laboratory-derived properties to predict behavior of natural gas hydrate must account for these differences.

  18. Authigenic rhodochrosite from a gas hydrate-bearing structure in Lake Baikal

    Science.gov (United States)

    Krylov, Alexey A.; Hachikubo, Akihiro; Minami, Hirotsugu; Pogodaeva, Tatyana V.; Zemskaya, Tamara I.; Krzhizhanovskaya, Mariya G.; Poort, Jeffrey; Khlystov, Oleg M.

    2018-02-01

    Early diagenetic carbonates are rare in Lake Baikal. Siderite (Fe carbonate) concretions in the sediments were discovered only recently. Here, we discuss the first finding of rhodochrosite concretions (Mn carbonate) discovered in the near-bottom sediments of the gas hydrate-bearing seepage structure St. Petersburg-2 in the deep water environment of the Central Baikal Basin. The crystal lattice of rhodochrosite contains iron and calcium substituting to manganese. Based on pore water geochemistry and of δ 13C values of rhodochrosite (- 23.3 and - 29.4‰), carbon dioxide (+ 3.8 to - 16.1‰) and methane (- 63.2 to - 67.8‰), we show that carbonate crystallization most likely occurred during microbial anaerobic oxidation of organic matter, and that part of the oxygen making up the rhodochrosite seems to be derived from the 18O-rich water released from dissociating gas hydrates.

  19. Simulation of microwave stimulation for the production of gas from methane hydrate sediment

    International Nuclear Information System (INIS)

    Zhao, Jiafei; Fan, Zhen; Wang, Bin; Dong, Hongsheng; Liu, Yu; Song, Yongchen

    2016-01-01

    Graphical abstract: Schematic diagram illustrating the process of gas production in hydrate-bearing sediment induced by microwave stimulation. Temperature gradients caused by the drop of microwave penetration depth appear in the sediment, leading to a rapid dissociation rate at the upper part of reservoir. - Highlights: • Hydrate dissociation behavior was analyzed in porous media by microwave stimulation. • Microwave stimulation provides sufficient energy conversion for hydrate dissociation. • Hydrate saturation and specific heat capacity of sediment mainly affect efficiency. • Heat conduction decreases temperature gradients promoting homogeneous dissociation. - Abstract: Natural gas hydrates dissociate via an endothermic process. One of the key requirements for any production technique is to supply the heat necessary for this dissociation. In this study, first, a microwave stimulation model for the production of gas from methane hydrate sediment is developed, which includes mass transport, energy conversion and conservation, and intrinsic kinetic reactions as the governing equations. In addition, the theoretical mixing rule of Lichtenecker and Rother is introduced for calculating the average dielectric data of the sediment containing methane hydrates, which affects the penetration of microwaves into the sediment. Next, simulations are performed for investigating gas production, as well as effects of initial water saturation, initial hydrate saturation, and sediment thermal properties induced by microwave stimulation. Moreover, the energy efficiency ratio is employed in the simulation. The simulation results show that microwave stimulation provides timely energy conversion sufficient for promoting the dissociation of hydrates, with rapid, continuous gas production. Temperature gradients caused by the decrease of the microwave penetration depth appear in the reservoir, leading to a rapid dissociation rate in the upper part of the sediment. The energy

  20. Hydro-mechanical properties of pressure core sediments recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02

    Science.gov (United States)

    Yoneda, J.; Oshima, M.; Kida, M.; Kato, A.; Konno, Y.; Jin, Y.; Waite, W. F.; Jang, J.; Kumar, P.; Tenma, N.

    2017-12-01

    Pressure coring and analysis technology allows for gas hydrate to be recovered from the deep seabed, transferred to the laboratory and characterized while continuously maintaining gas hydrate stability. For this study, dozens of hydrate-bearing pressure core sediment subsections recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02 were tested with Pressure Core Non-destructive Analysis Tools (PNATs) through a collaboration between Japan and India. PNATs, originally developed by AIST as a part of the Japanese National hydrate research program (MH21, funded by METI) conducted permeability, compression and consolidation tests under various effective stress conditions, including the in situ stress state estimated from downhole bulk density measurements. At the in situ effective stress, gas hydrate-bearing sediments had an effective permeability range of 0.01-10mD even at pore-space hydrate saturations above 60%. Permeability increased by 10 to 100 times after hydrate dissociation at the same effective stress, but these post-dissociation gains were erased when effective stress was increased from in situ values ( 1 MPa) to 10MPa in a simulation of the depressurization method for methane extraction from hydrate. Vertical-to-horizontal permeability anisotropy was also investigated. First-ever multi-stage loading tests and strain-rate alternation compression tests were successfully conducted for evaluating sediment strengthening dependence on the rate and magnitude of effective confining stress changes. In addition, oedometer tests were performed up to 40MPa of consolidation stress to simulate the depressurization method in ultra-deep sea environments. Consolidation curves measured with and without gas hydrate were investigated over a wide range of effective confining stresses. Compression curves for gas hydrate-bearing sediments were convex downward due to high hydrate saturations. Consolidation tests show that

  1. Grain-scale imaging and compositional characterization of cryo-preserved India NGHP 01 gas-hydrate-bearing cores

    Science.gov (United States)

    Stern, Laura A.; Lorenson, T.D.

    2014-01-01

    We report on grain-scale characteristics and gas analyses of gas-hydrate-bearing samples retrieved by NGHP Expedition 01 as part of a large-scale effort to study gas hydrate occurrences off the eastern-Indian Peninsula and along the Andaman convergent margin. Using cryogenic scanning electron microscopy, X-ray spectroscopy, and gas chromatography, we investigated gas hydrate grain morphology and distribution within sediments, gas hydrate composition, and methane isotopic composition of samples from Krishna–Godavari (KG) basin and Andaman back-arc basin borehole sites from depths ranging 26 to 525 mbsf. Gas hydrate in KG-basin samples commonly occurs as nodules or coarse veins with typical hydrate grain size of 30–80 μm, as small pods or thin veins 50 to several hundred microns in width, or disseminated in sediment. Nodules contain abundant and commonly isolated macropores, in some places suggesting the original presence of a free gas phase. Gas hydrate also occurs as faceted crystals lining the interiors of cavities. While these vug-like structures constitute a relatively minor mode of gas hydrate occurrence, they were observed in near-seafloor KG-basin samples as well as in those of deeper origin (>100 mbsf) and may be original formation features. Other samples exhibit gas hydrate grains rimmed by NaCl-bearing material, presumably produced by salt exclusion during original hydrate formation. Well-preserved microfossil and other biogenic detritus are also found within several samples, most abundantly in Andaman core material where gas hydrate fills microfossil crevices. The range of gas hydrate modes of occurrence observed in the full suite of samples suggests a range of formation processes were involved, as influenced by local in situconditions. The hydrate-forming gas is predominantly methane with trace quantities of higher molecular weight hydrocarbons of primarily microbial origin. The composition indicates the gas hydrate is Structure I.

  2. Distribution of the dominant microbial communities in marine sediments containing high concentrations of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.; Colwell, F.; Carini, P.; Torres, M. [Oregon State Univ., Corvallis, OR (United States); Hangsterfer, A.; Kastner, M. [California Univ., San Diego, CA (United States). Scripps Inst. of Oceanography; Brodie, E. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Center for Environmental Biotechnology; Daly, R. [California Univ., Berkeley, CA (United States); Holland, M. [GeoTek, Daventry, Northants (United Kingdom); Long, P.; Schaef, H. [Pacific Northwest National Laboratory, Richland, WA (United States). Environmental Technology; Delwiche, M. [Idaho National Laboratory, Idaho Falls, ID (United States). Biotechnology; Winters, W. [United States Geological Survey, Woods Hole, MA (United States). Woods Hole Science Center; Riedel, M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences

    2008-07-01

    Methane produced by microorganisms represents a large portion of the methane that occurs in marine sediments where gas hydrates are present. The diverse communities that populate these formations have been documented by cultures or through molecular traces. Previous studies have explored the biogeography of hydrate-bearing systems by comparing clone libraries developed from sediments where hydrates are abundant with those developed from sediments that lack hydrates. There is a distinct microbial community present in sediments that have methane hydrates. This paper presented an investigation into finer-scale biogeography, in order to determine how factors such as the presence or absence of hydrates, grain size, and the depositional environment in marine sediments may control the number, type and distribution of microbial communities in sediments. The purpose of the study was to understand the controls on the distribution and activity of all microbes that contribute to the conversion of organic matter to methane. To this aim, DNA was extracted from deep marine sediments cored from continental slope locations including offshore India and the Cascadia Margin. The data from the study was used to refine computational models that require biological rate terms that are consistent with sediment conditions in order to accurately describe the dynamics of this large methane reservoir. The paper discussed the materials and methods used for the study, including the sample site, sample collection and microbiological analysis. Results were presented in terms of DNA extractions; microbial diversity; and biofilm analyses. It was concluded that the findings from the study complemented previously reported studies which indicated the presence of diverse microbial communities in sediments containing methane hydrates. 9 refs., 5 figs.

  3. Hydrate-bearing Submarine Landslides in the Orca Basin, Gulf of Mexico

    Science.gov (United States)

    Sawyer, D.; Mason, A.; Cook, A.; Portnov, A.; Hillman, J.

    2017-12-01

    The co-occurrence of submarine landslides and hydrate-bearing sediment suggests that hydrates may play a role in landslide triggering and/or the mobility and dynamic characteristics of the submarine landslide. In turn, the removal of large sections of seafloor perturbs the hydrate stability field by removing overburden pressure and disturbing the temperature field. These potential hydrate-landslide feedbacks are not well understood. Here we combine three-dimensional seismic and petrophysical logs to characterize the deposits of submarine landslides that failed from hydrate-bearing sediments in the Orca Basin in the northern Gulf of Mexico. The Orca Basin contains a regionally mappable bottom simulating reflector, hydrate saturations within sands and muds, as well as numerous landslides. In addition, the Orca Basin features a well-known 123 km2 anoxic hypersaline brine pool that is actively being fed by outcropping salt. Lying at the bottom of the brine pool are deposits of submarine landslides. Slope instability in the Orca Basin is likely associated with near-seafloor salt tectonics. The most prominent landslide scar observable on the seafloor has a correlative deposit that now lies at the bottom of the brine pool 11.6 km away. The headwall is amphitheater-shaped with an average height of 80 meters and with only a minor amount of rubble remaining near the headwall. A total of 8.7 km3 of material was removed and deposited between the lower slopes of the basin and the base of the brine pool. Around the perimeter of the landslide headwall, two industry wells were drilled and well logs show elevated resistivity that are likely caused by gas hydrate. The slide deposits have a chaotic seismic facies with large entrained blocks and the headwall area does not retain much original material, which together suggests a relatively mobile style of landslide and therefore may have generated a wave upon impacting the brine pool. Such a slide-induced wave may have sloshed

  4. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    International Nuclear Information System (INIS)

    Moridis, George J.; Sloan, E. Dendy

    2007-01-01

    In this paper, we evaluate the gas production potential of disperse, low-saturation (S H H hydrate-bearing sediments subject to depressurization-induced dissociation over a 10-year production period. We investigate the sensitivity of items (a)-(c) to the following hydraulic properties, reservoir conditions, and operational parameters: intrinsic permeability, porosity, pressure, temperature, hydrate saturation, and constant pressure at which the production well is kept. The results of this study indicate that, despite wide variations in the aforementioned parameters (covering the entire spectrum of such deposits), gas production is very limited, never exceeding a few thousand cubic meters of gas during the 10-year production period. Such low production volumes are orders of magnitude below commonly accepted standards of economic viability, and are further burdened with very unfavorable gas-to-water ratios. The unequivocal conclusion from this study is that disperse, low-S H hydrate accumulations in oceanic sediments are not promising targets for gas production by means of depressurization-induced dissociation, and resources for early hydrate exploitation should be focused elsewhere

  5. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.; Santamarina, Carlos

    2018-01-01

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  6. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.

    2018-04-02

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  7. Geomechanical, Hydraulic and Thermal Characteristics of Deep Oceanic Sandy Sediments Recovered during the Second Ulleung Basin Gas Hydrate Expedition

    Directory of Open Access Journals (Sweden)

    Yohan Cha

    2016-09-01

    Full Text Available This study investigates the geomechanical, hydraulic and thermal characteristics of natural sandy sediments collected during the Ulleung Basin gas hydrate expedition 2, East Sea, offshore Korea. The studied sediment formation is considered as a potential target reservoir for natural gas production. The sediments contained silt, clay and sand fractions of 21%, 1.3% and 77.7%, respectively, as well as diatomaceous minerals with internal pores. The peak friction angle and critical state (or residual state friction angle under drained conditions were ~26° and ~22°, respectively. There was minimal or no apparent cohesion intercept. Stress- and strain-dependent elastic moduli, such as tangential modulus and secant modulus, were identified. The sediment stiffness increased with increasing confining stress, but degraded with increasing strain regime. Variations in water permeability with water saturation were obtained by fitting experimental matric suction-water saturation data to the Maulem-van Genuchen model. A significant reduction in thermal conductivity (from ~1.4–1.6 to ~0.5–0.7 W·m−1·K−1 was observed when water saturation decreased from 100% to ~10%–20%. In addition, the electrical resistance increased quasi-linearly with decreasing water saturation. The geomechanical, hydraulic and thermal properties of the hydrate-free sediments reported herein can be used as the baseline when predicting properties and behavior of the sediments containing hydrates, and when the hydrates dissociate during gas production. The variations in thermal and hydraulic properties with changing water and gas saturation can be used to assess gas production rates from hydrate-bearing deposits. In addition, while depressurization of hydrate-bearing sediments inevitably causes deformation of sediments under drained conditions, the obtained strength and stiffness properties and stress-strain responses of the sedimentary formation under drained loading conditions

  8. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 1 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  9. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 2 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  10. Implication of seismic attenuation for gas hydrate resource characterization, Mallik, Mackenzie Delta, Canada

    Science.gov (United States)

    Bellefleur, G.; Riedel, M.; Brent, T.; Wright, F.; Dallimore, S. R.

    2007-10-01

    Wave attenuation is an important physical property of hydrate-bearing sediments that is rarely taken into account in site characterization with seismic data. We present a field example showing improved images of hydrate-bearing sediments on seismic data after compensation of attenuation effects. Compressional quality factors estimated from zero-offset Vertical Seismic Profiling data acquired at Mallik, Northwest Territories, Canada, demonstrate significant wave attenuation for hydrate-bearing sediments. These results are in agreement with previous attenuation estimates obtained from sonic logs and crosshole data at different frequency intervals. The application of an inverse Q-filter to compensate attenuation effects of permafrost and hydrate-bearing sediments improved the resolution of surface 3D seismic data and its correlation with log data, particularly for the shallowest gas hydrate interval. Compensation of the attenuation effects of the permafrost likely explains most of the improvements for the shallow gas hydrate zone. Our results show that characterization of the Mallik gas hydrates with seismic data not corrected for attenuation would tend to overestimate thicknesses and lateral extent of hydrate-bearing strata and hence, the volume of hydrates in place.

  11. MORPHOLOGY OF METHANE HYDRATE HOST SEDIMENTS

    International Nuclear Information System (INIS)

    JONES, K.W.; FENG, H.; TOMOV, S.; WINTER, W.J.; EATON, M.; MAHAJAN, D.

    2004-01-01

    Results from simulated experiments in several laboratories show that host sediments influence hydrate formation in accord with known heterogeneity of host sediments at sites of gas hydrate occurrence (1). For example, in Mackenzie Delta, NWT Canada (Mallik 2L-38 well), coarser-grained units (pore-filling model) are found whereas in the Gulf of Mexico, the found hydrate samples do not appear to be lithologically controlled. We have initiated a systematic study of sediments, initially focusing on samples from various depths at a specific site, to establish a correlation with hydrate occurrence (or variations thereof) to establish differences in their microstructure, porosity, and other associated properties. The synchrotron computed microtomography (CMT) set-up at the X-27A tomography beam line at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory was used as a tool to study sediments from Blake Ridge at three sub bottom depths of 0.2, 50, and 667 meters. Results from the tomographic analysis of the deepest sample (667 m) are presented here to illustrate how tomography can be used to obtain new insights into the structures of methane hydrate host sediments. The investigation shows the internal grain/pore space resolution in the microstructure and a 3-D visualization of the connecting pathways obtained following data segmentation into pore space and grains within the sediment sample. The analysis gives the sample porosity, specific surface area, mean particle size, and tortuosity, as well. An earlier report on the experimental program has been given by Mahajan et al. (2)

  12. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 1. Electromagnetic properties

    Science.gov (United States)

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2010-01-01

    The marked decrease in bulk electrical conductivity of sediments in the presence of gas hydrates has been used to interpret borehole electrical resistivity logs and, to a lesser extent, the results of controlled source electromagnetic surveys to constrain the spatial distribution and predicted concentration of gas hydrate in natural settings. Until now, an exhaustive laboratory data set that could be used to assess the impact of gas hydrate on the electromagnetic properties of different soils (sand, silt, and clay) at different effective stress and with different saturations of hydrate has been lacking. The laboratory results reported here are obtained using a standard geotechnical cell and the hydrate-formed tetrahydrofuran (THF), a liquid that is fully miscible in water and able to produce closely controlled saturations of hydrate from dissolved phase. Both permittivity and electrical conductivity are good indicators of the volume fraction of free water in the sediment, which is in turn dependent on hydrate saturation. Permittivity in the microwave frequency range is particularly predictive of free water content since it is barely affected by ionic concentration, pore structure, and surface conduction. Electrical conductivity (or resistivity) is less reliable for constraining water content or hydrate saturation: In addition to fluid-filled porosity, other factors, such as the ionic concentration of the pore fluid and possibly other conduction effects (e.g., surface conduction in high specific surface soils having low conductivity pore fluid), also influence electrical conductivity.

  13. Neural network analysis of crosshole tomographic images: The seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada)

    Science.gov (United States)

    Bauer, K.; Pratt, R. G.; Haberland, C.; Weber, M.

    2008-10-01

    Crosshole seismic experiments were conducted to study the in-situ properties of gas hydrate bearing sediments (GHBS) in the Mackenzie Delta (NW Canada). Seismic tomography provided images of P velocity, anisotropy, and attenuation. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. Application to the Mallik data reveals four major litho-types: (1) GHBS, (2) sands, (3) shale/coal interlayering, and (4) silt. The signature of seismic P wave characteristics distinguished for the GHBS (high velocities, strong anisotropy and attenuation) is new and can be used for new exploration strategies to map and quantify gas hydrates.

  14. CO2 injection into submarine, CH4-hydrate bearing sediments: Parameter studies towards the development of a hydrate conversion technology

    Science.gov (United States)

    Deusner, Christian; Bigalke, Nikolaus; Kossel, Elke; Haeckel, Matthias

    2013-04-01

    the reservoir is minimized. Our results clearly indicate that the formation of mixed CH4-CO2-hydrates is an important aspect in the conversion process. The experimental studies have shown that the injection of heated CO2 into the hydrate reservoir induces a variety of spatial and temporal processes which result in substantial bulk heterogeneity. Current numerical simulators are not able to predict these process dynamics and it is important to improve available transport-reaction models (e.g. to include the effect of bulk sediment permeability on the conversion dynamics). Our results confirm that experimental studies are important to better understand the mechanisms of hydrate dissociation and conversion at CO2-injection conditions as a basis towards the development of a suitable hydrate conversion technology. The application of non-invasive analytical methods such as Magnetic Resonance Imaging (MRI) and Raman microscopy are important tools, which were applied to resolve process dynamics on the pore scale. Additionally, the NESSI system is being modified to allow high-pressure flow-through experiments under triaxial loading to better simulate hydrate-sediment mechanics. This aspect is important for overall process development and evaluation of process safety issues.

  15. Observed gas hydrate morphologies in marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M. [Geotek Ltd., Daventry, Northamptonshire (United Kingdom)

    2008-07-01

    The morphology of gas hydrate in marine sediments determines the basic physical properties of the sediment-hydrate matrix and provides information regarding the formation of gas hydrate deposits, and the nature of the disruption that will occur on dissociation. Small-scale morphology is useful in estimating the concentrations of gas hydrate from geophysical data. It is also important for predicting their response to climate change or commercial production. Many remote techniques for gas hydrate detection and quantification depend on hydrate morphology. In this study, morphology of gas hydrate was examined in HYACINTH pressure cores from recent seagoing expeditions. Visual and infrared observations from non-pressurized cores were also used. The expeditions and pressure core analysis were described in detail. This paper described the difference between two types of gas hydrate morphologies, notably pore-filling and grain-displacing. Last, the paper addressed the impact of hydrate morphology. It was concluded that a detailed morphology of gas hydrate is an essential component for a full understanding of the past, present, and future of any gas hydrate environment. 14 refs., 4 figs.

  16. Carbon dioxide gas hydrates accumulation in freezing and frozen sediments

    Energy Technology Data Exchange (ETDEWEB)

    Chuvilin, E.; Guryeva, O. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geology

    2008-07-01

    Carbon dioxide (CO{sub 2}) hydrates and methane hydrates can be formed, and exist under natural conditions. The permafrost area has been considered as an environment for the potential disposal of CO{sub 2}. The favorable factors for preserving CO{sub 2} in liquid and gas hydrate states in frozen sediments and under permafrost horizons are great thickness of frozen sediments; low permeability in comparison with thawed sediments; and favourable conditions for hydrates formation. Therefore, research on the formation and existence conditions of CO{sub 2} gas hydrates in permafrost and under permafrost sediments are of great importance for estimation of CO{sub 2} disposal conditions in permafrost, and for working out specific sequestration schemes. This paper presented the results of an experimental study on the process of carbon dioxide (CO{sub 2}) gas hydrates formation in the porous media of sediments under positive and negative temperatures. Sediment samples of various compositions including those selected in the permafrost area were used. The research was conducted in a special pressure chamber, which allowed to monitor pressure and temperature. The study used the monitoring results in order to make quantitative estimation of the kinetics of CO{sub 2} hydrates accumulation in the model sediments. Results were presented in terms of kinetics of CO{sub 2} hydrates accumulation in the porous media at positive and negative temperatures; kinetics of CO{sub 2} hydrates accumulation in various porous media; gas hydrate-former influence on kinetics of hydrates accumulation in frozen sediments; and influence of freezing on CO{sub 2} hydrates accumulation in porous media. It was concluded that hydrate accumulation took an active place in porous media not only under positive, but also under high negative temperatures, when the water was mainly in the form of ice in porous media. 27 refs., 3 tabs., 5 figs.

  17. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea

    Science.gov (United States)

    Wang, Xiujuan; Hutchinson, Deborah R.; Wu, Shiguo; Yang, Shengxiong; Guo, Yiqun

    2011-01-01

    Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190–221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone.

  18. Comparison of Physical Properties of Marine and Arctic Gas-Hydrate-Bearing Deposits

    Science.gov (United States)

    Winters, W. J.; Walker, M.; Collett, T. S.; Bryant, S. L.; Novosel, I.; Wilcox-Cline, R.; Bing, J.; Gomes, M. L.

    2009-12-01

    Gas hydrate (GH) occurs in both marine settings and in arctic environments within a wide variety of sediment types. Grain-size analyses from both environments indicate that intrinsic host-sediment properties have a strong influence on gas-hydrate distribution and morphologic characteristics. Depending on the amount formed or dissociated, gas hydrate can significantly change in situ sediment acoustic, mechanical, and hydraulic properties. The U.S. Geological Survey, in cooperation with the U.S. Dept. of Energy, BP Expl.-Alaska, Nat. GH Prog. of India, Canadian Geological Survey, Int. Ocean Drilling Program, Japan Oil Gas and Metals Nat. Corp., Japan Pet. Expl. Co., Int. Marine Past Global Changes Study (IMAGES) program, and Paleoceanography of the Atlantic and Geochemistry (PAGE) program, determined physical properties from marine and arctic sediments and their relation to the presence of GH. At two arctic sites, the Mount Elbert well on the Alaskan North Slope and the Mallik wells on the Mackenzie Delta, NWT, >10-m thick gas-hydrate-bearing (GHB) sandy deposits are capped by finer-grained sediments that may reduce gas migration. In the Mount Elbert well, average median grain sizes (MGS) for the two thickest GHB deposits are 65 and 60 µm. Finer-grained (average MGS of 9 and 28 µm) sediments have plug permeabilities that are 300 and 14 times smaller than underlying GHB sediment. Average MGS of GHB sediment from the Mallik 2L well is ~ 111 µm, compared to overlying sediment with an average MGS of ~ 32 µm. Gas hydrate morphology in the Gulf of Mexico (GOM) and offshore India is substantially more complex than in the arctic, and is related to pervasive, although not exclusive, finer-grained deposits. Massive, several-cm thick, GH layers were recovered in piston cores in the northern GOM, in sediment with little visible lithologic variability (average MGS ~ 0.8 µm). In wells off the east coast of India, GH was present in sand-rich, fractured clay, and reservoirs

  19. Phase behavior of methane hydrate in silica sand

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang; Liu, Yu-Feng

    2014-01-01

    Highlights: • Hydrate p-T trace in coarse-grained sediment is consistent with that in bulk water. • Fine-grained sediment affects hydrate equilibrium for the depressed water activity. • Hydrate equilibrium in sediment is related to the pore size distribution. • The application of hydrate equilibrium in sediment depends on the actual condition. -- Abstract: Two kinds of silica sand powder with different particle size were used to investigate the phase behavior of methane hydrate bearing sediment. In coarse-grained silica sand, the measured temperature and pressure range was (281.1 to 284.2) K and (5.9 to 7.8) MPa, respectively. In fine-grained silica sand, the measured temperature and pressure range was (281.5 to 289.5) K and (7.3 to 16.0) MPa, respectively. The results show that the effect of coarse-grained silica sand on methane hydrate phase equilibrium can be ignored; however, the effect of fine-grained silica sand on methane hydrate phase equilibrium is significant, which is attributed to the depression of water activity caused by the hydrophilicity and negatively charged characteristic of silica particle as well as the pore capillary pressure. Besides, the analysis of experimental results using the Gibbs–Thomson equation shows that methane hydrate phase equilibrium is related to the pore size distribution of silica sand. Consequently, for the correct application of phase equilibrium data of hydrate bearing sediment, the geological condition and engineering requirement should be taken into consideration in gas production, resource evaluation, etc

  20. Seismic modeling of multidimensional heterogeneity scales of Mallik gas hydrate reservoirs, Northwest Territories of Canada

    Science.gov (United States)

    Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd

    2009-07-01

    In hydrate-bearing sediments, the velocity and attenuation of compressional and shear waves depend primarily on the spatial distribution of hydrates in the pore space of the subsurface lithologies. Recent characterizations of gas hydrate accumulations based on seismic velocity and attenuation generally assume homogeneous sedimentary layers and neglect effects from large- and small-scale heterogeneities of hydrate-bearing sediments. We present an algorithm, based on stochastic medium theory, to construct heterogeneous multivariable models that mimic heterogeneities of hydrate-bearing sediments at the level of detail provided by borehole logging data. Using this algorithm, we model some key petrophysical properties of gas hydrates within heterogeneous sediments near the Mallik well site, Northwest Territories, Canada. The modeled density, and P and S wave velocities used in combination with a modified Biot-Gassmann theory provide a first-order estimate of the in situ volume of gas hydrate near the Mallik 5L-38 borehole. Our results suggest a range of 528 to 768 × 106 m3/km2 of natural gas trapped within hydrates, nearly an order of magnitude lower than earlier estimates which did not include effects of small-scale heterogeneities. Further, the petrophysical models are combined with a 3-D finite difference modeling algorithm to study seismic attenuation due to scattering and leaky mode propagation. Simulations of a near-offset vertical seismic profile and cross-borehole numerical surveys demonstrate that attenuation of seismic energy may not be directly related to the intrinsic attenuation of hydrate-bearing sediments but, instead, may be largely attributed to scattering from small-scale heterogeneities and highly attenuate leaky mode propagation of seismic waves through larger-scale heterogeneities in sediments.

  1. TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George; Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    2008-03-01

    TOUGH+HYDRATE v1.0 is a new code for the simulation of the behavior of hydrate-bearing geologic systems. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH{sub 4}-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy's law is valid. TOUGH+HYDRATE v1.0 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH{sub 4}, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is the first member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  2. Gas Hydrate-Sediment Morphologies Revealed by Pressure Core Analysis

    Science.gov (United States)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M.

    2006-12-01

    Analysis of HYACINTH pressure cores collected on IODP Expedition 311 and NGHP Expedition 1 showed gas hydrate layers, lenses, and veins contained in fine-grained sediments as well as gas hydrate contained in coarse-grained layers. Pressure cores were recovered from sediments on the Cascadia Margin off the North American West Coast and in the Krishna-Godavari Basin in the Western Bay of Bengal in water depths of 800- 1400 meters. Recovered cores were transferred to laboratory chambers without loss of pressure and nondestructive measurements were made at in situ pressures and controlled temperatures. Gamma density, P-wave velocity, and X-ray images showed evidence of grain-displacing and pore-filling gas hydrate in the cores. Data highlights include X-ray images of fine-grained sediment cores showing wispy subvertical veins of gas hydrate and P-wave velocity excursions corresponding to grain-displacing layers and pore-filling layers of gas hydrate. Most cores were subjected to controlled depressurization experiments, where expelled gas was collected, analyzed for composition, and used to calculate gas hydrate saturation within the core. Selected cores were stored under pressure for postcruise analysis and subsampling.

  3. Modeling dissociation behaviour of methane hydrate in porous soil media

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, A.G.; Grozic, J.L.H. [Calgary Univ., AB (Canada). Dept. of Civil Engineering

    2008-07-01

    Gas hydrates, or clathrates, exist in the form of crystalline solid structures of hydrogen bonded water molecules where the lattice cages are occupied by guest gas molecules. Methane gas hydrates are the most common. As such, hydrate bearing sediments are considered to be a potential future energy resource. Gas hydrates also function as a source or sink for atmospheric methane, which may influence global warming. The authors emphasized that an understanding of the behaviour of soils containing gas hydrates is necessary in order to develop ways of recovering the vast gas resources that exist in the form of hydrates, particularly since hydrates are also suspected to be a potential factor in the initiation and propagation of submarine slope failures. Gas hydrate dissociation occurs when water and gas are released, resulting in an increase in pore fluid pressure, thereby causing significant reductions in effective stress leading to sediment failure. Dissociation may occur as a result of pressure reductions or increases in temperature. This study focused on the strength and deformation behaviour of hydrate bearing soils associated with temperature induced dissociation. Modeling the dissociation behavior of hydrates in porous soil media involves an understanding of the geomechanics of hydrate dissociation. This paper addressed the issue of coupling the hydrate dissociation problem with the soil deformation problem. A mathematical framework was constructed in which the thermally stimulated hydrate dissociation process in porous soil media under undrained conditions was considered with conduction heat transfer. It was concluded that a knowledge of geomechanical response of hydrate bearing sediments will enable better estimates of benefits and risks associated with the recovery process, thereby ensuring safe and economical exploration. 20 refs., 1 fig., 1 appendix.

  4. Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media

    Science.gov (United States)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2011-08-01

    An experimental study was performed using X-ray computed tomography (CT) scanning to capture three-dimensional (3-D) methane hydrate distributions and potential discrete flow pathways in a sand pack sample. A numerical study was also performed to develop and analyze empirical relations that describe the impacts of hydrate accumulation habits within pore space (e.g., pore filling or grain cementing) on multiphase fluid migration. In the experimental study, water was injected into a hydrate-bearing sand sample that was monitored using an X-ray CT scanner. The CT images were converted into numerical grid elements, providing intrinsic sample data including porosity and phase saturations. The impacts of hydrate accumulation were examined by adapting empirical relations into the flow simulations as additional relations governing the evolution of absolute permeability of hydrate bearing sediment with hydrate deposition. The impacts of pore space hydrate accumulation habits on fluid migration were examined by comparing numerical predictions with experimentally measured water saturation distributions and breakthrough curves. A model case with 3-D heterogeneous initial conditions (hydrate saturation, porosity, and water saturation) and pore body-preferred hydrate accumulations best captured water migration behavior through the hydrate-bearing sample observed in the experiment. In the best matching model, absolute permeability in the hydrate bearing sample does not decrease significantly with increasing hydrate saturation until hydrate saturation reaches about 40%, after which it drops rapidly, and complete blockage of flow through the sample can occur as hydrate accumulations approach 70%. The result highlights the importance of permeability modification due to hydrate accumulation habits when predicting multiphase flow through high-saturation, reservoir quality hydrate-bearing sediments.

  5. Instrumented Pressure Testing Chamber (IPTC) Characterization of Methane Gas Hydrate-Bearing Pressure Cores Collected from the Methane Production Test Site in the Eastern Nankai Trough, Offshore Japan

    Science.gov (United States)

    Waite, W. F.; Santamarina, J. C.; Dai, S.; Winters, W. J.; Yoneda, J.; Konno, Y.; Nagao, J.; Suzuki, K.; Fujii, T.; Mason, D. H.; Bergeron, E.

    2014-12-01

    Pressure cores obtained at the Daini-Atsumi Knoll in the eastern Nankai Trough, the site of the methane hydrate production test completed by the Methane Hydrate Resources in Japan (MH21) project in March 2013, were recovered from ~300 meters beneath the sea floor at close to in situ pressure. Cores were subsequently stored at ~20 MPa and ~5°C, which maintained hydrate in the cores within stability conditions. Pressure core physical properties were measured at 10 MPa and ~6°C, also within the methane hydrate stability field, using the IPTC and other Pressure Core Characterization Tools (PCCTs). Discrete IPTC measurements were carried out in strata ranging from silty sands to clayey silts within the turbidite sequences recovered in the cores. As expected, hydrate saturations were greatest in more permeable coarser-grained layers. Key results include: 1) Where hydrate saturation exceeded 40% in sandy sediments, the gas hydrate binds sediment grains within the matrix. The pressure core analyses yielded nearly in situ mechanical properties despite the absence of effective stress in the IPTC. 2) In adjacent fine-grained sediment (hydrate saturation < 15%), hydrate did not significantly bind the sediment. IPTC results in these locations were consistent with the zero effective-stress limit of comparable measurements made in PCCT devices that are designed to restore the specimen's in situ effective stress. In sand-rich intervals with high gas hydrate saturations, the measured compressional and shear wave velocities suggest that hydrate acts as a homogeneously-distributed, load-bearing member of the bulk sediment. The sands with high gas hydrate saturations were prone to fracturing (brittle failure) during insertion of the cone penetrometer and electrical conductivity probes. Authors would like to express their sincere appreciation to MH21 and the Ministry of Economy, Trade and Industry for permitting this work to be disclosed at the 2014 Fall AGU meeting.

  6. Estimating pore-space gas hydrate saturations from well log acoustic data

    Science.gov (United States)

    Lee, Myung W.; Waite, William F.

    2008-07-01

    Relating pore-space gas hydrate saturation to sonic velocity data is important for remotely estimating gas hydrate concentration in sediment. In the present study, sonic velocities of gas hydrate-bearing sands are modeled using a three-phase Biot-type theory in which sand, gas hydrate, and pore fluid form three homogeneous, interwoven frameworks. This theory is developed using well log compressional and shear wave velocity data from the Mallik 5L-38 permafrost gas hydrate research well in Canada and applied to well log data from hydrate-bearing sands in the Alaskan permafrost, Gulf of Mexico, and northern Cascadia margin. Velocity-based gas hydrate saturation estimates are in good agreement with Nuclear Magneto Resonance and resistivity log estimates over the complete range of observed gas hydrate saturations.

  7. A 2D Micromodel Study of Fines Migration and Clogging Behavior in Porous Media: Implications of Fines on Methane Extraction from Hydrate-Bearing Sediments

    Science.gov (United States)

    Cao, S. C.; Jang, J.; Waite, W. F.; Jafari, M.; Jung, J.

    2017-12-01

    Fine-grained sediment, or "fines," exist nearly ubiquitously in natural sediment, even in the predominantly coarse-grained sediments that host gas hydrates. Fines within these sandy sediments can play a crucial role during gas hydrate production activities. During methane extraction, several processes can alter the mobility and clogging potential of fines: 1) fluid flow as the formation is depressurized to release methane from hydrate; 2) pore-fluid chemistry shifts as pore-fluid brine freshens due to pure water released from dissociating hydrate; 3) the presence of a moving gas/water interface as gas evolves from dissociating hydrate and moves through the reservoir toward the production well. To evaluate fines migration and clogging behavior changes resulting from methane gas production and pore-water freshening during hydrate dissociation, 2D micromodel experiments have been conducted on a selection of pure fines, pore-fluids, and micromodel pore-throat sizes. Additionally, tests have been run with and without an invading gas phase (CO2) to test the significance of a moving meniscus on fines mobility and clogging. The endmember fine particles chosen for this research include silica silt, mica, calcium carbonate, diatoms, kaolinite, illite, and bentonite (primarily made of montmorillonite). The pore fluids include deionized water, sodium chloride brine (2M concentration), and kerosene. The microfluidic pore models, used as porous media analogs, were fabricated with pore-throat widths of 40, 60, and 100 µm. Results from this research show that in addition to the expected dependence of clogging on the ratio of particle-to-pore-throat size, pore-fluid chemistry is also a significant factor because the interaction between a particular type of fine and pore fluid influences that fine's capacity to cluster, clump together and effectively increase its particle "size" relative to the pore-throat width. The presence of a moving gas/fluid meniscus increases the clogging

  8. Maximum Recoverable Gas from Hydrate Bearing Sediments by Depressurization

    KAUST Repository

    Terzariol, Marco; Goldsztein, G.; Santamarina, Carlos

    2017-01-01

    financial analyses; results highlight the need for innovative production strategies in order to make hydrate accumulations an economically-viable energy resource. Horizontal directional drilling and multi-wellpoint seafloor dewatering installations may lead

  9. Detailed evaluation of gas hydrate reservoir properties using JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well downhole well-log displays

    Science.gov (United States)

    Collett, T.S.

    1999-01-01

    The JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well project was designed to investigate the occurrence of in situ natural gas hydrate in the Mallik area of the Mackenzie Delta of Canada. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas-hydrate-bearing sediments. Downhole logging tool strings deployed in the Mallik 2L-38 well included the Schlumberger Platform Express with a high resolution laterolog, Array Induction Imager Tool, Dipole Shear Sonic Imager, and a Fullbore Formation Microlmager. The downhole log data obtained from the log- and core-inferred gas-hydrate-bearing sedimentary interval (897.25-1109.5 m log depth) in the Mallik 2L-38 well is depicted in a series of well displays. Also shown are numerous reservoir parameters, including gas hydrate saturation and sediment porosity log traces, calculated from available downhole well-log and core data. The gas hydrate accumulation delineated by the Mallik 2L-38 well has been determined to contain as much as 4.15109 m3 of gas in the 1 km2 area surrounding the drill site.

  10. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    McDonnell, S.L.; Cherkis, N.Z.; Czarnecki, M.F. [Naval Research Lab., Washington, DC (United States); Max, M.D. [MDS Research, Washington, DC (United States)

    2000-09-01

    Marine sediments on the continental slope of the NE South China Sea have appropriate thickness, methane-generating potential, and occur in a suitable pressure-temperature regime to host gas hydrate. Evidence for gas hydrate, the bottom simulating reflector (BSR), is observed to the south of Taiwan on reflection seismic records, and can be used to suggest that gas hydrates are widely distributed. The tectono-sedimentary framework south of Taiwan bears directly upon methane generation and the likelihood of the presence of significant gas hydrate deposits. Three zones of probable hydrate occurrence have been delineated along the margins of the NE South China Sea: (1) in a thick accumulation of sediment along the northern passive margin; (2) along a more thinly sedimented eastern active collisional margin, and especially; (3) in a zone of thick originally passive margin sedimentation into which the collisional margin has encroached obliquely. (author)

  11. Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI)

    Science.gov (United States)

    Winters, W.J.

    1999-01-01

    As part of an ongoing laboratory study, preliminary acoustic, strength, and hydraulic conductivity results are presented from a suite of tests conducted on four natural-gas-hydrate-containing samples from the Mackenzie Delta JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. The gas hydrate samples were preserved in pressure vessels during transport from the Northwest Territories to Woods Hole, Massachusetts, where multistep tests were performed using GHASTLI (Gas Hydrate And Sediment Test Laboratory Instrument), which recreates pressure and temperature conditions that are stable for gas hydrate. Properties and changes in sediment behaviour were measured before, during, and after controlled gas hydrate dissociation. Significant amounts of gas hydrate occupied the sample pores and substantially increased acoustic velocity and shear strength.

  12. Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations

    Energy Technology Data Exchange (ETDEWEB)

    Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

    2010-07-01

    To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

  13. Formation of submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V.; Ginsburg, G.D. (Reserch Institute of Geology and Mineral Resources of the Ocean ' ' VNII Okeangeologia' ' , St. Petersburg (Russian Federation))

    1994-03-01

    Submarine gas hydrates have been discoverd in the course of deep-sea drilling (DSDP and ODP) and bottom sampling in many offshore regions. This paper reports on expeditions carried out in the Black, Caspian and Okhotsk Seas. Gas hydrate accumulations were discovered and investigated in all these areas. The data and an analysis of the results of the deep-sea drilling programme suggest that the infiltration of gas-bearing fluids is a necessary condition for gas hydrate accumulation. This is confirmed by geological observations at three scale levels. Firstly, hydrates in cores are usually associated with comparatively coarse-grained, permeable sediments as well as voids and fractures. Secondly, hydrate accumulations are controlled by permeable geological structures, i.e. faults, diapirs, mud volcanos as well as layered sequences. Thirdly, in the worldwide scale, hydrate accumulations are characteristic of continental slopes and rises and intra-continental seas where submarine seepages also are widespread. Both biogenic and catagenic gas may occur, and the gas sources may be located at various distances from the accumulation. Gas hydrates presumably originate from water-dissolved gas. The possibility of a transition from dissolved gas into hydrate is confirmed by experimental data. Shallow gas hydrate accumulations associated with gas-bearing fluid plumes are the most convenient features for the study of submarine hydrate formation in general. These accumulations are known from the Black, Caspian and Okhotsk Seas, the Gulf of Mexico and off northern California. (au) (24 refs.)

  14. Methane accumulation and forming high saturations of methane hydrate in sandy sediments

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T.; Waseda, A. [JAPEX Research Center, Chiba (Japan); Fujii, T. [Japan Oil, Gas and Metals National Corp., Chiba (Japan). Upstream Technology Unit

    2008-07-01

    Methane supplies for marine gas hydrates are commonly attributed to the microbial conversion of organic materials. This study hypothesized that methane supplies were related to pore water flow behaviours and microscopic migration in intergranular pore systems. Sedimentology and geochemistry analyses were performed on sandy core samples taken from the Nankai trough and the Mallik gas hydrate test site in the Mackenzie Delta. The aim of the study was to determine the influence of geologic and sedimentolic controls on the formation and preservation of natural gas hydrates. Grain size distribution curves indicated that gas hydrate saturations of up to 80 per cent in pore volume occurred throughout the hydrate-dominant sand layers in the Nankai trough and Mallik areas. Water permeability measurements showed that the highly gas hydrate-saturated sands have a permeability of a few millidarcies. Pore-space gas hydrates occurred primarily in fine and medium-grained sands. Core temperature depression, core observations, and laboratory analyses of the hydrates confirmed the pore-spaces as intergranular pore fillings. Results of the study suggested that concentrations of gas hydrates may require a pore space large enough to occur within a host sediments, and that the distribution of porous and coarser-grained sandy sediments is an important factor in controlling the occurrence of gas hydrates. 11 refs., 4 figs.

  15. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K

    1996-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  16. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  17. Well log characterization of natural gas-hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2012-01-01

    In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms

  18. Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes

    Science.gov (United States)

    Pohlman, J.W.; Bauer, J.E.; Canuel, E.A.; Grabowski, K.S.; Knies, D.L.; Mitchell, C.S.; Whiticar, Michael J.; Coffin, R.B.

    2009-01-01

    Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (??? 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations. In combination with ??13C- and ??D-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6??m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.

  19. Amount of gas hydrate estimated from compressional- and shear-wave velocities at the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    Science.gov (United States)

    Lee, M.W.

    1999-01-01

    The amount of in situ gas hydrate concentrated in the sediment pore space at the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well was estimated by using compressional-wave (P-wave) and shear-wave (S-wave) downhole log measurements. A weighted equation developed for relating the amount of gas hydrate concentrated in the pore space of unconsolidated sediments to the increase of seismic velocities was applied to the acoustic logs with porosities derived from the formation density log. A weight of 1.56 (W=1.56) and the exponent of 1 (n=1) provided consistent estimates of gas hydrate concentration from the S-wave and the P-wave logs. Gas hydrate concentration is as much as 80% in the pore spaces, and the average gas hydrate concentration within the gas-hydrate-bearing section from 897 m to 1110 m (excluding zones where there is no gas hydrate) was calculated at 39.0% when using P-wave data and 37.8% when using S-wave data.

  20. Heat Transfer Analysis of Methane Hydrate Sediment Dissociation in a Closed Reactor by a Thermal Method

    Directory of Open Access Journals (Sweden)

    Mingjun Yang

    2012-05-01

    Full Text Available The heat transfer analysis of hydrate-bearing sediment involved phase changes is one of the key requirements of gas hydrate exploitation techniques. In this paper, experiments were conducted to examine the heat transfer performance during hydrate formation and dissociation by a thermal method using a 5L volume reactor. This study simulated porous media by using glass beads of uniform size. Sixteen platinum resistance thermometers were placed in different position in the reactor to monitor the temperature differences of the hydrate in porous media. The influence of production temperature on the production time was also investigated. Experimental results show that there is a delay when hydrate decomposed in the radial direction and there are three stages in the dissociation period which is influenced by the rate of hydrate dissociation and the heat flow of the reactor. A significant temperature difference along the radial direction of the reactor was obtained when the hydrate dissociates and this phenomenon could be enhanced by raising the production temperature. In addition, hydrate dissociates homogeneously and the temperature difference is much smaller than the other conditions when the production temperature is around the 10 °C. With the increase of the production temperature, the maximum of ΔToi grows until the temperature reaches 40 °C. The period of ΔToi have a close relation with the total time of hydrate dissociation. Especially, the period of ΔToi with production temperature of 10 °C is twice as much as that at other temperatures. Under these experimental conditions, the heat is mainly transferred by conduction from the dissociated zone to the dissociating zone and the production temperature has little effect on the convection of the water in the porous media.

  1. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis

    Science.gov (United States)

    Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  2. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test

    Science.gov (United States)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven

    2014-05-01

    The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase

  3. A hydrous Ca-bearing magnesium carbonate from playa lake sediments, Salines Lake, Spain

    Science.gov (United States)

    Queralt, I.; Julia, R.; Plana, F.; Bischoff, J.L.

    1997-01-01

    Sediments of playa Lake Salines, SE, Spain, contain a carbonate mineral characterized by X-ray diffraction peaks very similar to, but systematically shifted from those of pure magnesite. Analyses (SEM, IR and Raman spectroscopy, DTA, TGA, and ICP) indicate the mineral is a hydrous Ca-bearing magnesium carbonate with the chemical formula (Mg0.92,Ca0.08)CO3??3H2O. Thermal characteristics of the mineral are similar to those of other known hydrated magnesium carbonates. X-ray and electron diffraction data suggests a monoclinic system (P21/n space group) with unit-cell parameters of a = 6.063(6), b = 10.668(5), and c = 6.014(4) A?? and ?? = 107.28??.

  4. Microbial diversity in the hydrate-containing and -free surface sediments in the Shenhu area, South China Sea

    Directory of Open Access Journals (Sweden)

    Lu Jiao

    2015-07-01

    Full Text Available Microbial diversity in the hydrate-containing (sites SH3B and SH7B and -free (sites SH1B, SH5B, SH5C sediments collected from the Shenhu area of the South China Sea (SCS was investigated using 16S rRNA gene phylogenetic analysis. The phylogenetic results indicate difference in microbial communities between hydrate-containing and -free sediments. At the gas hydrate-containing sites, bacterial communities were dominated by Deltaproteobacteria (30.5%, and archaeal communities were dominated by Miscellaneous Crenarchaeotic Group (33.8%; In contrast, Planctomycetes was the major group (43.9% in bacterial communities, while Marine Benthic Group-D (MBG-D (32.4% took up the largest proportion in the archaeal communities. Moreover, the microbial communities have characteristics different from those in other hydrate-related sediments around the world, indicating that the presence of hydrates can affect the microbial distribution. In addition, the microbial community composition in the studied sediments has its own uniqueness, which may result from co-effect of geochemical characteristics and presence/absence of hydrate.

  5. Deep-Subsurface Marine Methane Hydrate Microbial Communities: Who's There and What Are They Doing?

    Science.gov (United States)

    Colwell, F.; Reed, D.; Fujita, Y.; Delwiche, M.; Blackwelder, D.; Uchida, T.; Fujii, T.; Lu, H.

    2001-12-01

    Natural gas hydrates are crystalline deposits of freshwater and primarily methane. They are estimated to represent a potentially vast reservoir of energy. Relatively little is known regarding microbial communities surrounding deep [>100 meters below sea floor (mbsf)] hydrate-bearing sediments. Deep sediment cores were collected in zones above, within, and below the hydrate bearing strata in an accretionary prism off the coast of Japan. Microorganisms were characterized using cultivation- and non-cultivation-based microbiological techniques to better understand the role that they play in the production and distribution of methane in gas hydrates. Direct counts show cell density at 105 cells/g throughout the hydrate strata. Lipid and 16S rDNA analyses indicate that diverse bacterial and archaeal microorganisms are represented throughout the strata. Acetate and hydrogen were utilized as an energy source for methane-producing microorganisms from each sediment depth. Although the methanogenic biomarker coenzyme M was not present above the detection limit in any of the samples, cloning and characterization of amplified 16S ribosomal RNA genes indicated the presence of methanogenic microorganisms related to the Methanobacteriales and Methanococcales. In addition, archaeal clones closely related to the hyperthermophilic Pyrodictiales were detected. Analysis of eubacterial clones indicated a more diverse eubacterial community compared to the archaea, including members from the groups of cyanobacteria, proteobacteria, gram positive bacteria, and flexibacter-cytophaga-bacteriodes. This study suggests that the diversity of microbial communities associated with the presence of methane in gas hydrate-rich deep marine sediments is greater than previously estimated.

  6. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea

    Science.gov (United States)

    Xiujuan Wang,; ,; Collett, Timothy S.; Lee, Myung W.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo

    2014-01-01

    Multi-channel seismic reflection data, well logs, and recovered sediment cores have been used in this study to characterize the geologic controls on the occurrence of gas hydrate in the Shenhu area of the South China Sea. The concept of the "gas hydrate petroleum system" has allowed for the systematic analysis of the impact of gas source, geologic controls on gas migration, and the role of the host sediment in the formation and stability of gas hydrates as encountered during the 2007 Guangzhou Marine Geological Survey Gas Hydrate Expedition (GMGS-1) in the Shenhu area. Analysis of seismic and bathymetric data identified seventeen sub-linear, near-parallel submarine canyons in this area. These canyons, formed in the Miocene, migrated in a northeasterly direction, and resulted in the burial and abandonment of canyons partially filled by coarse-grained sediments. Downhole wireline log (DWL) data were acquired from eight drill sites and sediment coring was conducted at five of these sites, which revealed the presence of suitable reservoirs for the occurrence of concentrated gas hydrate accumulations. Gas hydrate-bearing sediment layers were identified from well log and core data at three sites mainly within silt and silt clay sediments. Gas hydrate was also discovered in a sand reservoir at one site as inferred from the analysis of the DWL data. Seismic anomalies attributed to the presence of gas below the base of gas hydrate stability zone, provided direct evidence for the migration of gas into the overlying gas hydrate-bearing sedimentary sections. Geochemical analyses of gas samples collected from cores confirmed that the occurrence of gas hydrate in the Shenhu area is controlled by the presence thermogenic methane gas that has migrated into the gas hydrate stability zone from a more deeply buried source.

  7. The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space

    Science.gov (United States)

    Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M.

    2018-02-01

    Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used magnetic resonance imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D finite element method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.

  8. Deep-towed CSEM survey of gas hydrates in the Gulf of Mexico

    Science.gov (United States)

    Kannberg, P.; Constable, S.

    2017-12-01

    Controlled source electromagnetic (CSEM) surveys are increasingly being used to remotely detect hydrate deposits in seafloor sediments. CSEM methods are sensitive to sediment pore space resistivity, such as when electrically resistive hydrate displaces the electrically conductive pore fluid, increasing the bulk resistivity of the sediment. In July 2017, a two-week research cruise using an upgraded and expanded "Vulcan" towed receiver system collected over 250 line km of data at four sites in the Gulf of Mexico (GoM) thought to have hydrate bearing sediments. Hydrate bearing horizons at the survey sites ranged from 400-700 m below seafloor. Modeling suggested an array with source receiver offsets of up to 1600 m would be needed to properly image the deep hydrate. A deep towed electromagnetic transmitter outputting 270 Amps was towed 100 m above seafloor. Six Vulcan receivers, each recording three-axis electric field data, were towed at 200 m intervals from 600-1600 m behind the transmitter. The four sites surveyed, Walker Ridge 313, Orca Basin, Mad Dog, and Green Canyon 955, are associated with the upcoming GOM^2 coring operation scheduled for 2020. Wells at WR313 and GC955 were logged as part of a joint industry drilling project in 2009 and will be used to ground truth our inversion results. In 2008, WR313 and GC955 were surveyed using traditional CSEM seafloor receivers, accompanied by a single prototype Vulcan towed receiver. This prior survey will allow comparison of results from a seafloor receiver survey with those from a towed receiver survey. Seismic data has been collected at all the sites, which will be used to constrain inversions. In addition to the four hydrate sites surveyed, two lines were towed over Green Knoll, a deep-water salt dome located between Mad Dog and GC955. Presented here are initial results from our recent cruise.

  9. Methane Hydrate Formation from Enhanced Organic Carbon Burial During Glacial Lowstands: Examples from the Gulf of Mexico

    Science.gov (United States)

    Malinverno, A.; Cook, A.; Daigle, H.; Oryan, B.

    2017-12-01

    Methane hydrates in fine-grained marine sediments are often found within veins and fractures occupying discrete depth intervals that are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the methane hydrate stability zone (MHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. We investigate here the hypothesis that these hydrate deposits form in sediments that were deposited during glacial lowstands and contain higher amounts of labile particulate organic carbon (POC), leading to enhanced microbial methanogenesis. During Pleistocene lowstands, river loads are deposited near the steep top of the continental slope and turbidity currents transport organic-rich, fine-grained sediments to deep waters. Faster sedimentation rates during glacial periods result in better preservation of POC because of decreased exposure times to oxic conditions. The net result is that more labile POC enters the methanogenic zone and more methane is generated in these sediments. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent deposition of labile POC at the seafloor controlled by glacioeustatic sea level variations in the last 250 kyr. The model is run for parameters estimated at three sites drilled by the 2009 Gulf of Mexico Joint Industry Project: Walker Ridge in the Terrebonne Basin (WR313-G and WR313-H) and Green Canyon near the canyon embayment into the Sigsbee Escarpment (GC955-H). In the model, gas hydrate forms in sediments with higher labile POC content deposited during the glacial cycle between 230 and 130 kyr (marine isotope stages 6 and 7). The corresponding depth intervals in the three sites contain hydrates, as shown by high bulk electrical resistivities and resistive subvertical fracture fills. This match supports the hypothesis that enhanced POC burial during glacial lowstands can result in hydrate formation from in situ

  10. Methane Hydrate Formation from Enhanced Organic Carbon Burial During Glacial Lowstands: Examples from the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Malinverno, Alberto; Cook, Ann; Daigle, Hugh; Oryan, Bar

    2017-12-15

    Methane hydrates in fine-grained marine sediments are often found within veins and fractures occupying discrete depth intervals that are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the methane hydrate stability zone (MHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. We investigate here the hypothesis that these hydrate deposits form in sediments that were deposited during glacial lowstands and contain higher amounts of labile particulate organic carbon (POC), leading to enhanced microbial methanogenesis. During Pleistocene lowstands, river loads are deposited near the steep top of the continental slope and turbidity currents transport organic-rich, fine-grained sediments to deep waters. Faster sedimentation rates during glacial periods result in better preservation of POC because of decreased exposure times to oxic conditions. The net result is that more labile POC enters the methanogenic zone and more methane is generated in these sediments. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent deposition of labile POC at the seafloor controlled by glacioeustatic sea level variations in the last 250 kyr. The model is run for parameters estimated at three sites drilled by the 2009 Gulf of Mexico Joint Industry Project: Walker Ridge in the Terrebonne Basin (WR313-G and WR313-H) and Green Canyon near the canyon embayment into the Sigsbee Escarpment (GC955-H). In the model, gas hydrate forms in sediments with higher labile POC content deposited during the glacial cycle between 230 and 130 kyr (marine isotope stages 6 and 7). The corresponding depth intervals in the three sites contain hydrates, as shown by high bulk electrical resistivities and resistive subvertical fracture fills. This match supports the hypothesis that enhanced POC burial during glacial lowstands can result in hydrate formation from in situ

  11. Application of Crunch-Flow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Marta [Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Sciences

    2014-01-31

    In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling efforts that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to instruct

  12. Geochemical evidences of methane hydrate dissociation in Alaskan Beaufort Margin during Holocene

    Science.gov (United States)

    Uchida, M.; Rella, S.; Kubota, Y.; Kumata, H.; Mantoku, K.; Nishino, S.; Itoh, M.

    2017-12-01

    Alaskan Beaufort margin bear large abundances of sub-sea and permafrost methane hydrate[Ruppel, 2016]. During the Last Glacial, previous reported direct and indirect evidences accumulated from geochemical data from marginal sea sediment suggests that methane episodically released from hydrate trapped in the seafloor sediments[Kennett et al., 2000; Uchida et al., 2006, 2008; Cook et al, 2011]. Here we analyzed stable isotopes of foraminifera and molecular marker derived from the activity of methanotrophic bacteria from piston cores collected by the 2010 R/V Mirai cruise in Alaskan Beaufort Margin. Our data showed highly depleted 13C compositions of benthic foraminifera, suggesting indirect records of enhanced incorporation of 13C-depleted CO2 formed by methanotrophic process that use 12C-enriched methane as their main source of carbon. This is the first evidence of methane hydrate dissociation in Alaskan margin. Here we discussed timing of signals of methane dissociation with variability of sea ice and intermediate Atlantic water temperature. The dissociation of methane hydrate in the Alaskan Margin may be modulated by Atlantic warm intermediate water warming. Our results suggest that Arctic marginal regions bearing large amount methane hydrate may be a profound effect on future warming climate changes.

  13. Estimation of Gas Hydrate Saturation Using Constrained Sparse Spike Inversion: Case Study from the Northern South China Sea

    Directory of Open Access Journals (Sweden)

    Xiujuan Wang

    2006-01-01

    Full Text Available Bottom-simulating reflectors (BSRs were observed beneath the seafloor in the northern continental margin of the South China Sea (SCS. Acoustic impedance profile was derived by Constrained Sparse Spike Inversion (CSSI method to provide information on rock properties and to estimate gas hydrate or free gas saturations in the sediments where BSRs are present. In general, gas hydrate-bearing sediments have positive impedance anomalies and free gas-bearing sediments have negative impedance anomalies. Based on well log data and Archie's equation, gas hydrate saturation can be estimated. But in regions where well log data is not available, a quantitative estimate of gas hydrate or free gas saturation is inferred by fitting the theoretical acoustic impedance to sediment impedance obtained by CSSI. Our study suggests that gas hydrate saturation in the Taixinan Basin is about 10 - 20% of the pore space, with the highest value of 50%, and free gas saturation below BSR is about 2 - 3% of the pore space, that can rise to 8 - 10% at a topographic high. The free gas is non-continuous and has low content in the southeastern slope of the Dongsha Islands. Moreover, BSR in the northern continental margin of the SCS is related to the presence of free gas. BSR is strong where free gas occurs.

  14. Transport Mechanisms for CO2-CH4 Exchange and Safe CO2 Storage in Hydrate-Bearing Sandstone

    Directory of Open Access Journals (Sweden)

    Knut Arne Birkedal

    2015-05-01

    Full Text Available CO2 injection in hydrate-bearing sediments induces methane (CH4 production while benefitting from CO2 storage, as demonstrated in both core and field scale studies. CH4 hydrates have been formed repeatedly in partially water saturated Bentheim sandstones. Magnetic Resonance Imaging (MRI and CH4 consumption from pump logs have been used to verify final CH4 hydrate saturation. Gas Chromatography (GC in combination with a Mass Flow Meter was used to quantify CH4 recovery during CO2 injection. The overall aim has been to study the impact of CO2 in fractured and non-fractured samples to determine the performance of CO2-induced CH4 hydrate production. Previous efforts focused on diffusion-driven exchange from a fracture volume. This approach was limited by gas dilution, where free and produced CH4 reduced the CO2 concentration and subsequent driving force for both diffusion and exchange. This limitation was targeted by performing experiments where CO2 was injected continuously into the spacer volume to maintain a high driving force. To evaluate the effect of diffusion length multi-fractured core samples were used, which demonstrated that length was not the dominating effect on core scale. An additional set of experiments is presented on non-fractured samples, where diffusion-limited transportation was assisted by continuous CO2 injection and CH4 displacement. Loss of permeability was addressed through binary gas (N2/CO2 injection, which regained injectivity and sustained CO2-CH4 exchange.

  15. Recent increases in sediment and nutrient accumulation in Bear Lake, Utah/Idaho, USA

    Science.gov (United States)

    Smoak, J.M.; Swarzenski, P.W.

    2004-01-01

    This study examines historical changes in sediment and nutrient accumulation rates in Bear Lake along the northeastern Utah/Idaho border, USA. Two sediment cores were dated by measuring excess 210Pb activities and applying the constant rate of supply (CRS) dating model. Historical rates of bulk sediment accumulation were calculated based on the ages within the sediment cores. Bulk sediment accumulation rates increased throughout the last 100 years. According to the CRS model, bulk sediment accumulation rates were TOC) were calculated by multiplying bulk sediment accumulation rates times the concentrations of these nutrients in the sediment. Accumulation rates of TP, TN, TIC, and TOC increased as a consequence of increased bulk sediment accumulation rates after the re-connection of Bear River with Bear Lake.

  16. Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E. (Chevron); Latham, T. (Chevron); McConnell, D. (AOA Geophysics); Frye, M. (Minerals Management Service); Hunt, J. (Minerals Management Service); Shedd, W. (Minerals Management Service); Shelander, D. (Schlumberger); Boswell, R.M. (NETL); Rose, K.K. (NETL); Ruppel, C. (USGS); Hutchinson, D. (USGS); Collett, T. (USGS); Dugan, B. (Rice University); Wood, W. (Naval Research Laboratory)

    2008-05-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand

  17. Magnetic Signature of Glacial Flour in Sediments From Bear Lake, Utah/Idaho

    Science.gov (United States)

    Rosenbaum, J. G.; Dean, W. E.; Colman, S. M.; Reynolds, R. L.

    2002-12-01

    Variations in magnetic properties within an interval of Bear Lake sediments correlative with oxygen isotope stage 2 (OIS 2) and OIS 3 provide a record of glacial flour production for the Uinta Mountains. Like sediments of the same age from Upper Klamath Lake (OR), these Bear Lake sediments have high magnetic susceptibilities (MS) relative to non-glacial-age sediments and contain well-defined millennial-scale variations in magnetic properties. In contrast to glacial flour derived from volcanic rocks surrounding Upper Klamath Lake, glacial flour derived from the Uinta Mountains and deposited in Bear Lake by the Bear River has low magnetite content but high hematite content. The relatively low MS values of younger and older non-glacial-age sediments are due entirely to dilution by non-magnetic endogenic carbonate and to the effects of sulfidic alteration of detrital Fe-oxides. Analysis of samples from streams entering Bear Lake and from along the course of the Bear River demonstrates that, in comparison to other areas of the catchment, sediment derived from the Uinta Mountains is rich in hematite (high HIRM) and aluminum, and poor in magnetite (low MS) and titanium. Within the glacial-age lake sediments, there are strong positive correlations among HIRM, Al/Ti, and fine sediment grain size. MS varies inversely with theses three variables. These relations indicate that the observed millennial-scale variations in magnetic and chemical properties arise from varying proportions of two detrital components: (1) very fine-grained glacial flour derived from Proterozoic metasedimentary rocks in the Uinta Mountains and characterized by high HIRM and low MS, and (2) somewhat coarser material, characterized by higher MS and lower HIRM, derived from widespread sedimentary rocks along the course of the Bear River and around Bear Lake. Measurement of glacial flour incorporated in lake sediments can provide a continuous history of alpine glaciation, because the rate of accumulation

  18. Thermal properties of methane hydrate by experiment and modeling and impacts upon technology

    Energy Technology Data Exchange (ETDEWEB)

    Warzinski, R.P.; Gamwo, I.K.; Rosenbaum, E.J. [United States Dept. of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory; Myshakin, E.M. [NETL Support Contractor, South Park, PA (United States); Jiang, H.; Jordan, K.D. [Pittsburgh Univ., Pittsburgh, PA (United States). Dept. of Chemistry; English, N.J. [Dublin University College, Dublin (Ireland). Conway Inst. of Biomolecular and Biomedical Research, Centre for Synthesis and Chemical Biology; Shaw, D.W. [Geneva College, Beaver Falls, PA (United States). Dept. of Engineering

    2008-07-01

    The current hydrate research at the National Energy Technology Laboratory (NETL) involves both experimental and theoretical work on developing models and methods for predicting the behaviour of gas hydrates in their natural environment under production of climate change scenarios. The modeling efforts include both fundamental and reservoir scale simulations and economic modeling. The thermal properties of methane hydrate are important for hydrate production, seafloor stability and climate change scenarios. A new experimental technique and advanced molecular dynamics simulation (MDS) have determined the thermal properties of pure methane hydrate under conditions similar to naturally occurring hydrate-bearing sediments. The thermal conductivity and thermal diffusivity values of low-porosity methane hydrate formed in the laboratory were measured using an innovative single-sided, Transient Plane Source (TPS) technique. The results were in good agreement with results from an equilibrium MDS method using in-plane polarization of the water molecules. MDS was also performed using a non-equilibrium model with a fully polarizable force field for water. The Tough+Hydrate reservoir simulator was also used to evaluate the impact of thermal conductivity on gas production from a hydrate-bearing reservoir. 42 refs., 1 tab., 5 figs.

  19. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data

    Science.gov (United States)

    Collett, T.S.; Ladd, J.

    2000-01-01

    Let 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Site 994, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m3 of gas.

  20. Relating gas hydrate saturation to depth of sulfate-methane transition

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, G.; Chapman, W.G.; Hirasaki, G.J. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Dickens, G.R.; Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Sciences

    2008-07-01

    The stability of gas hydrates which often form in pore spaces of marine sediment along continental margins, depends on temperature, pressure, salinity and gas composition. Gas hydrate can precipitate in pore space of marine sediment when gas concentrations exceed solubility conditions within a gas hydrate stability zone (GHSZ). The amount of gas hydrate present in the GHSZ can vary significantly because it relates to dynamic inputs and outputs of gas, primarily methane, over a long timescale. In anoxic marine sediments, depletion of pore water sulfate occurs when sulfate is reduced through bacteria or when anaerobic oxidation of methane occurs. The presence of gas hydrates in shallow sediments implies a significant methane flux towards the seafloor, which can make the second route for sulfate depletion significant. This paper presented a numerical model that incorporates a dynamic sulfate-methane transition (SMT) for gas hydrate systems where methane is supplied from depth. The approach has the advantage of needing only pore water data from shallow piston cores. The analytical expressions are only valid for steady-state systems in which all gas is methane, all methane enters the GHSZ from the base, and no methane escapes the top through seafloor venting. These constraints mean that anaerobic oxidation of methane (AOM) is the only sink of gas, allowing a direct coupling of SMT depth to net methane flux. This study showed that a basic gas hydrate saturation profile can be determined from the SMT depth via analytical expressions if site-specific parameters such as sedimentation rate, methane solubility and porosity are known. This analytical model was verified at gas hydrate bearing sites along the Cascadia margin where methane is mostly sourced from depth. It was concluded that the analytical expressions provides a fast and convenient method to calculate gas hydrate saturation for a given geologic setting, including deep-source systems. 28 refs., 2 tabs., 5 figs., 1

  1. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    Science.gov (United States)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  2. Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface

    Science.gov (United States)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2018-04-01

    We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface—controlled by a crossover in how methane is supplied from the gas and liquid phases—which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.

  3. Description of gas hydrates equilibria in sediments using experimental data of soil water potential

    Energy Technology Data Exchange (ETDEWEB)

    Istomin, V. [NOVATEK, Moscow (Russian Federation); Chuvilin, E. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geology; Makhonina, N.; Kvon, V. [VNIIGAZ, Moscow (Russian Federation); Safonov, S. [Schlumberger Moscow Research, Moscow (Russian Federation)

    2008-07-01

    Analytical relationships have been developed between hydrate dissociation pressure and vapor pressure above the pore water surface. In addition, experiments have been discussed in numerous publications on the effect of narrow interconnected throats between pores on clathrate dissociation conditions in porous media. This paper presented an approach that improved upon the available thermodynamic methods for calculation of hydrate phase equilibria. The approach took into account the properties of pore water in natural sediments including three-phase equilibrium of gas-pore water-gas hydrate in a similar way as for unfrozen water in geocryology science. The purpose of the paper was to apply and adapt geocryology and soil physics method to the thermodynamic calculation of non-clathrated water content in sediments. It answered the question of how to estimate the non-clathrated water content if pore water potential was known. The paper explained the thermodynamics of water phase in porous media including the thermodynamic properties of supercooled water, the thermodynamic properties of pore water and pore ice in sediments, and the phase equilibria of pore water. The paper also discussed the quantitative techniques that were utilized for determination of unfrozen water content in sediments and its dependence on temperature variation. These included contact-saturation, calorimetric, dielectric, nuclear magnetic resonance, and others. The thermodynamic calculations of pore water phase equilibria were also presented. 30 refs., 5 tabs., 8 figs.

  4. Physical properties of sediments from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    Science.gov (United States)

    Winters, W.J.

    1999-01-01

    A 1150 m deep gas hydrate research well was drilled in the Canadian Arctic in February and March 1998 to investigate the interaction between the presence of gas hydrate and the natural conditions presented by the host sediments. Profiles of the following measured and derived properties are presented from that investigation: water content, sediment wet bulk density, grain size, porosity, gas hydrate quantity, and salinity. These data indicate that the greatest concentration of gas hydrate is located within sand and gravel deposits between 897 m and 922 m. American Society for Testing and Materials 1997: Standard test method for specific gravity of soil solids by gas pycnometer D 5550-94; in American Society for Testing and Materials, Annual Book of ASTM Standards, v. 04.09, Soil and Rock, West Conshohocken, Pennsylvania, p. 380-383.

  5. Stress and gas hydrate-filled fracture distribution, Krishna-Godavari Basin, India

    Energy Technology Data Exchange (ETDEWEB)

    Cook, A.; Goldberg, D. [Lamont-Doherty Earth Observatory of Columbia Univ., Palisades, NY (United States)

    2008-07-01

    The first expedition of the Indian National Gas Hydrate Program (NGHP) was launched in the summer of 2006 to characterize the presence of gas hydrates on the continental margins of India. This paper presented a study from the NGHP expedition that found high resistivity fractures in unconsolidated clay sediments on logging-while-drilling (LWD) borehole resistivity images. Gas hydrate-filled and conductive fractures appearing on LWD resistivity images in holes 5A, 5B, 6A, 7A and 10 were analysed and discussed. Fracture orientation and shallow sediment stress orientations were determined for each hole. The paper described how to determine which sections of a log are hydrate bearing as well as how to calculate the predicted water saturated resistivity. It was concluded that holes 5A, 5B, 6A and 7A contained well-ordered, high-angle fractures, from which horizontal stress directions could be accurately resolved. However, these stress directions, contradicted the orientations normally seen on a passive margin, and may be the result of local bathymetry variations. 6 refs., 1 tab., 11 figs.

  6. Regional Mapping and Resource Assessment of Shallow Gas Hydrates of Japan Sea - METI Launched 3 Years Project in 2013.

    Science.gov (United States)

    Matsumoto, R.

    2014-12-01

    Agency of Natural Resources and Energy of METI launched a 3 years shallow gas hydrate exploration project in 2013 to make a precise resource assessment of shallow gas hydrates in the eastern margin of Japan Sea and around Hokkaido. Shallow gas hydrates of Japan Sea occur in fine-grained muddy sediments of shallow subsurface of mounds and gas chimneys in the form of massive nodular to platy accumulation. Gas hydrate bearing mounds are often associated with active methane seeps, bacterial mats and carbonate concretions and pavements. Gases of gas hydrates are derived either from deep thermogenic, shallow microbial or from the mixed gases, contrasting with totally microbial deep-seated stratigraphically controlled hydrates. Shallow gas hydrates in Japan Sea have not been considered as energy resource due to its limited distribution in narrow Joetsu basin. However recently academic research surveys have demonstrated regional distribution of gas chimney and hydrate mound in a number of sedimentary basins along the eastern margin of Japan Sea. Regional mapping of gas chimney and hydrate mound by means of MBES and SBP surveys have confirmed that more than 200 gas chimneys exist in 100 km x 100 km area. ROV dives have identified dense accumulation of hydrates on the wall of half collapsed hydrate mound down to 30 mbsf. Sequential LWD and shallow coring campaign in the Summer of 2014, R/V Hakurei, which is equipped with Fugro Seacore R140 drilling rig, drilled through hydrate mounds and gas chimneys down to the BGHS (base of gas hydrate stability) level and successfully recovered massive gas hydrates bearing sediments from several horizons.

  7. Methane Hydrates: Chapter 8

    Science.gov (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  8. Extensive occurrence and genesis of authigenic carbonates from Krishna-Godavari offshore basin (Bay of Bengal): Possible influence of methane hydrates occurrences.

    Digital Repository Service at National Institute of Oceanography (India)

    Kocherla, M.; Pillai, S.; Patil, D.J.

    We report here the extensive occurrences of authigenic carbonate nodules/concretions from gas hydrate bearing sediments. Bulk mineralogical compositions by X-Ray diffractometry and EDS (Energy Dispersive Spectrum) analysis revealed...

  9. Gas hydrate formation in deep-sea sediments - on the role of sediment-mechanical process determination; Gashydratbildung in Tiefseesedimenten - zur Rolle der sedimentmechanischen Prozesssteuerung

    Energy Technology Data Exchange (ETDEWEB)

    Feeser, V. [Kiel Univ. (Germany). Geologisch-Palaeontologisches Inst.

    1997-12-31

    Slope failures in gas hydrate regions are encountered throughout the oceans. The stability of seafloor slopes can be assessed and predicted by means of calculation methods based on mechanical laws and parameters which describe the deformation behaviour and/or mechanical strength of the slope-forming sediments. Thermodynamic conditions conducive to the formation of gas hydrates in marine sediments differ from conditions prevailing in exclusively water-filled systems. The present contribution describes the relevant energetic conditions on the basis of a simple spherical model giving due consideration to petrographic parameters. Depending on pore size distribution, lithological stress conditions, pore water pressure, and sediment strength gas hydrates will either develop as a cementing phase or as segregated lenses. (MSK) [Deutsch] In den Weltmeeren ereignen sich immer wieder Hangrutschungen in Gashydratgebieten. Die zur Beurteilung und Prognonse von Hangstabilitaeten zu verwendenden Berechnungsverfahren erfordern Stoffgesetze und Parameter, welche das Deformations-und/oder Festigkeitsverhalten der hangbildenden Sedimente beschreiben. Die thermodynamischen Bildungsbedingungen von Gashydraten in marinen Sedimenten unterscheiden sich von den Bedingungen in ausschliesslich wassergefuellten Systemen. Unter Einbeziehung petrographischer Eigenschaften werden die energetischen Bedingungen beschrieben. Dazu dient ein einfaches Kugelmodell. Je nach vorhandenem Porenraumspektrum, lithostatischen Spannungsverhaeltnissen, Porenwasserdruck und Sedimentfestigkeit wachsen Gashydrate als Porenraumzement oder als segregierte Linsen.

  10. TOUGH+HYDRATE v1.2 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kowalsky, Michael B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    TOUGH+HYDRATE v1.2 is a code for the simulation of the behavior of hydratebearing geologic systems, and represents the second update of the code since its first release [Moridis et al., 2008]. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy’s law is valid. TOUGH+HYDRATE v1.2 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is a member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  11. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  12. Lithological controls on gas hydrate saturation: Insights from signal classification of NMR downhole data

    Science.gov (United States)

    Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik

    2016-04-01

    Nuclear magnetic resonance (NMR) downhole data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). NMR logging is a powerful tool to study geological reservoir formations. The measurements are based on interactions between the magnetic moments of protons in geological formation water and an external magnetic field. Inversion of the measured raw data provides so-called transverse relaxation time (T2) distribution curves or spectra. Different parts of the T2 curve are related with distinct pore radii and corresponding fluid components. A common practice in the analysis of T2 distribution curves is to extract single-valued parameters such as apparent total porosity. Moreover, the derived total NMR apparent porosity and the gamma-gamma density log apparent porosity can be combined to estimate gas hydrate saturation in hydrate-bearing sediments. To avoid potential loss of information, in our new approach we analyze the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. The approach is applied to NMR data measured in gas hydrate research well Mallik 5L-38. We use self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR T2 distribution curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, photo-electric factor, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal

  13. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  14. Numerical Simulations for Enhanced Methane Recovery from Gas Hydrate Accumulations by Utilizing CO2 Sequestration

    Science.gov (United States)

    Sridhara, Prathyusha

    In 2013, the International Energy Outlook (EIA, 2013) projected that global energy demand will grow by 56% between 2010 and 2040. Despite strong growth in renewable energy supplies, much of this growth is expected to be met by fossil fuels. Concerns ranging from greenhouse gas emissions and energy security are spawning new interests for other sources of energy including renewable and unconventional fossil fuel such as shale gas and oil as well as gas hydrates. The production methods as well as long-term reservoir behavior of gas hydrate deposits have been under extensive investigation. Reservoir simulators can be used to predict the production potentials of hydrate formations and to determine which technique results in enhanced gas recovery. In this work, a new simulation tool, Mix3HydrateResSim (Mix3HRS), which accounts for complex thermodynamics of multi-component hydrate phase comprised of varying hydrate solid crystal structure, is used to perform the CO2-assisted production technique simulations from CH4 hydrate accumulations. The simulator is one among very few reservoir simulators which can simulate the process of CH4 substitution by CO2 (and N2 ) in the hydrate lattice. Natural gas hydrate deposits around the globe are categorized into three different classes based on the characteristics of the geological sediments present in contact with the hydrate bearing deposits. Amongst these, the Class 2 hydrate accumulations predominantly confirmed in the permafrost and along seashore, are characterized by a mobile aqueous phase underneath a hydrate bearing sediment. The exploitation of such gas hydrate deposits results in release of large amounts of water due to the presence of permeable water-saturated sediments encompassing the hydrate deposits, thus lowering the produced gas rates. In this study, a suite of numerical simulation scenarios with varied complexity are considered which aimed at understanding the underlying changes in physical, thermodynamic and

  15. Acoustic and Shear-Wave Velocities in Hydrate-Bearing Sediments Offshore Southwestern Taiwan: Tomography, Converted Waves Analysis and Reverse-Time Migration of OBS Records

    Directory of Open Access Journals (Sweden)

    Philippe Schnurle

    2006-01-01

    Full Text Available A 2.5-D combined seismic reflection and refraction survey has been conducted in the accretionary complex offshore of southwestern Taiwan where BSRs (Bottom Simulating Reflectors are highly concentrated and geochemical signals for the presence of gas hydrate are strong. In this study, we perform velocity analysis of the 6 4-component OBS (Ocean-Bottom Seismometer records along the southernmost transect of this seismic experiment. We utilize 3 independent methods in order to accurately determine the acoustic and shear-wave velocities of the sediments: 1-D Root Mean Square (RMS analysis of the P-P and P-S reflected events on individual datumed components, 2-D inversion of the P-P and P-S reflected and refracted events along the in-line transect, and 3-D acoustic inversion of the first arrivals. The principal sources of bias in the determination of the velocities are the 3-dimentional nature of the topography and the complexity of the underlying structures. The three methods result in consistent velocity profiles. Rapid lateral and vertical variations of the velocities are observed. We then investigate the large scale gas hydrate content through rock physic modeling: at the vertical of each OBS, shear-waves velocities are utilized to estimate the water-filled porosities, and the acoustic velocities predicted for a set of gas hydrate, quartz and clay contents are compared to the observed profiles.

  16. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  17. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits

    Science.gov (United States)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswel, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.B.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.A.

    2011-01-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas-hydrate (GH) petroleum system; to discuss advances, requirements, and suggested practices in GH prospecting and GH deposit characterization; and to review the associated technical, economic, and environmental challenges and uncertainties, which include the following: accurate assessment of producible fractions of the GH resource; development of methods for identifying suitable production targets; sampling of hydrate-bearing sediments (HBS) and sample analysis; analysis and interpretation of geophysical surveys of GH reservoirs; well-testing methods; interpretation of well-testing results; geomechanical and reservoir/well stability concerns; well design, operation, and installation; field operations and extending production beyond sand-dominated GH reservoirs; monitoring production and geomechanical stability; laboratory investigations; fundamental knowledge of hydrate behavior; the economics of commercial gas production from hydrates; and associated environmental concerns. ?? 2011 Society of Petroleum Engineers.

  18. Identifying the morphologies of gas hydrate distribution using P-wave velocity and density: a test from the GMGS2 expedition in the South China Sea

    Science.gov (United States)

    Liu, Tao; Liu, Xuewei

    2018-06-01

    Pore-filling and fracture-filling are two basic distribution morphologies of gas hydrates in nature. A clear knowledge of gas hydrate morphology is important for better resource evaluation and exploitation. Improper exploitation may cause seafloor instability and exacerbate the greenhouse effect. To identify the gas hydrate morphologies in sediments, we made a thorough analysis of the characteristics of gas hydrate bearing sediments (GHBS) based on rock physics modeling. With the accumulation of gas hydrate in sediments, both the velocities of two types of GHBS increase, and their densities decrease. Therefore, these two morphologies cannot be differentiated only by velocity or density. After a series of tests, we found the attribute ρ {{V}{{P}}}0.5 as a function of hydrate concentration show opposite trends for these two morphologies due to their different formation mechanisms. The morphology of gas hydrate can thus be identified by comparing the measured ρ {{V}{{P}}}0.5 with its background value, which means the ρ {{V}{{P}}}0.5 of the hydrate-free sediments. In 2013, China’s second gas hydrate expedition was conducted by Guangzhou Marine Geologic Survey to explore gas hydrate resources in the northern South China Sea, and both two hydrate morphologies were recovered. We applied this method to three sites, which include two pore-filling and three fracture-filling hydrate layers. The data points, that agree with the actual situations, account for 72% and 82% of the total for the two pore-filling hydrate layers, respectively, and 86%, 74%, and 69% for the three fracture-filling hydrate layers, respectively.

  19. Remagnetization and Cementation of Unconsolidated Sediments in the Mallik 5L-38 Well (Canadian Arctic) by Solute Exclusion During Gas Hydrate Formation

    Science.gov (United States)

    Hamilton, T. S.; Enkin, R. J.; Esteban, L.

    2007-05-01

    mineralogy. Silt samples are significantly stronger than sand samples in saturation magnetization and magnetic susceptibility. The silt samples have single-domain to pseudo-single domain coercivity ratios whereas the gas hydrate bearing sands have a more multi-domain nature. Sands with current gas hydrate concentrations > 80% have less magnetic material and single domain characteristics. The source of the greigite, carbonates, and other diagenetic minerals was apparently concentrated solutes excluded from formation waters by the freezing and formation of the water dominated gas hydrate. The hydrates served as a cementing agent for the unconsolidated sediments, allowing them to fracture. Some layers have been so inflated by the introduction carbonate and sulfide cements that they resemble hydrothermal tufa and skarns with floating sand grains. In the silts, the magnetic properties reflect the mixture of primary detrital magnetite and diagenetic greigite in various grain sizes and concentrations. At Mallik, the magnetic properties are sensitive to the diagenetic mineralogy and redox state associated with the transport of methane and pore fluids and the creation of gas hydrates. Hypersaline brines, produced by solute exclusion from pore waters, fractured and inflated less permeable sediments and forced rapid disequilibrium growth of greigite without dissolving primary detrital magnetite grains.

  20. A New Critical State Model for Geomechanical Behavior of Methane Hydrate-Bearing Sands

    Science.gov (United States)

    Lin, J. S.; Xing, P.; Rutqvist, J.; Seol, Y.; Choi, J. H.

    2014-12-01

    Methane hydrate bearing sands behave like sands once the hydrate has dissociated, but could exhibit a substantial increase in the shear strength, stiffness and dilatancy as the degree of hydrate saturation increases. A new critical state model was developed that incorporates the spatially mobilized plane (SMP) concept, which has been proven effective in modeling mechanical behavior of sands. While this new model was built on the basic constructs of the critical state model, important enhancements were introduced. The model adopted the t-stress concept, which defined the normal and shear stress on the SMP, in describing the plastic behavior of the soil. In this connection the versatile Matsuoka-Nakai yield criterion was also employed, which defined the general three dimensional yield behavior. The resulting constitutive law was associated in the t-stress space, but became non-associated in the conventional p-q stress space as it should be for sands. The model also introduced a generalized degree of hydrate saturation concept that was modified from the pioneering work of the Cambridge group. The model gives stress change when the sands are subjected to straining, and/or to hydrate saturation changes. The performance of the model has been found satisfactory using data from laboratory triaxial tests on reconstituted samples and core samples taken from Nankai Trough, Japan. The model has been implemented into FLAC3D. A coupling example with the multiphase flow code, TOUGH+, is presented which simulates the mechanical behavior of a sample when the surrounding temperature has been raised, and the hydrate undergoes state change and no longer resides in the stability zone.

  1. Seismic Characterization of the Terrebonne Mini-basin, a Hydrate Rich Depositional System in the Gulf of Mexico

    Science.gov (United States)

    Dafov, L. N.; Eze, P. C.; Haines, S. S.; Graham, S. A.; McHargue, T.; Hosford Scheirer, A.

    2017-12-01

    Natural gas bearing hydrates are a focus of research as a potential source of energy and carbon storage because they occur globally in permafrost regions and marine sediment along every continent. This study focuses on the structural and stratigraphic architecture of the Terrebonne mini-basin, northwest Walker Ridge, Gulf of Mexico, to characterize the depositional architecture and to describe possible migration pathways for petroleum. Questions addressed include: a) continuity of sand layers b) effects of faulting and c) ponding versus fill and spill. To address these questions, seven of forty-two high resolution USGS 2D seismic lines were interpreted and then verified with WesternGeco 3D seismic data, yielding three qualitative models for the depositional environment of hydrate-bearing sand intervals. Deeper hydrate-bearing sand reservoirs were deposited as sheet-like turbidite lobes. Two shallower hydrate-bearing intervals display two possible depositional systems which form reservoirs- 1) sandy to muddy channel sealed laterally by muddy levees with associated sandy crevasse splays, and 2) ponded sandy lobes cut by channels filled with sand lags and mud. Additional observations in the 2D seismic include mass transport deposits and possible contourites. Salt movement facilitated mini-basin formation which was then ponded by sediment and followed by episodes of fill-and-spill and erosion. These seismic interpretations indicate periodic salt uplift. Overturn of salt along the northwestern edge of the basin resulted in thrust faults. The faults and erosional surfaces act as seals to reservoirs. The greatest volume of sandy reservoir potential occurs in sheet-like turbidite lobes with high lateral continuity, which facilitates updip migration of deep-sourced thermogenic gas along bedding surfaces. Channel levees serve as lateral seals to gas hydrate reservoirs, whereas faults, erosional surfaces, and shales provide vertical seals. Characterization of the Terrebonne

  2. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and anaylsis

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of MexicoGasHydrateJointIndustryProjectLegII (GOM JIP LegII) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gashydrates under various geologic conditions and to understand the geologic controls on the occurrence of gashydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gashydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gashydrate in nature: From using electrical resistivity and acoustic logs to identify gashydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gashydrate reservoirs and the distribution and concentration of gashydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gashydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gashydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP LegII effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  3. Effect of overpressure on gas hydrate distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, G.; Chapman, W.G.; Hirasaki, G.J. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Dickens, G.R.; Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Sciences

    2008-07-01

    Natural gas hydrate systems can be characterized by high sedimentation rates and/or low permeability sediments, which can lead to pore pressure higher than hydrostatic. This paper discussed a study that examined this effect of overpressure on gas hydrate and free gas distribution in marine sediments. A one-dimensional numerical model that coupled sedimentation, fluid flow, and gas hydrate formation was utilized. In order to quantify the relative importance of sedimentation rates and low permeability sediments, a dimensionless sedimentation-compaction group (scN) was defined, that compared the absolute permeability of the sediments to the sedimentation rate. Higher values of scN mean higher permeability or low sedimentation rate which generally yield hydrostatic pore pressure while lower values of scN normally create pore pressure greater than hydrostatic. The paper discussed non-hydrostatic consolidation in gas hydrate systems, including mass balances; constitutive relationships; normalized variables; and dimensionless groups. A numerical solution to the problem was presented. It was concluded that simulation results demonstrated that decreasing scN not only increased pore pressure above hydrostatic values, but also lowered the lithostatic stress gradient and gas hydrate saturation. This occurred because overpressure resulted in lower effective stress, causing higher porosity and lower bulk density of the sediment. 16 refs., 5 figs., 1 appendix.

  4. Numerical investigations of the fluid flows at deep oceanic and arctic permafrost-associated gas hydrate deposits

    Science.gov (United States)

    Frederick, Jennifer Mary

    Methane hydrate is an ice-like solid which sequesters large quantities of methane gas within its crystal structure. The source of methane is typically derived from organic matter broken down by thermogenic or biogenic activity. Methane hydrate (or more simply, hydrate) is found around the globe within marine sediments along most continental margins where thermodynamic conditions and methane gas (in excess of local solubility) permit its formation. Hydrate deposits are quite possibly the largest reservoir of fossil fuel on Earth, however, their formation and evolution in response to changing thermodynamic conditions, such as global warming, are poorly understood. Upward fluid flow (relative to the seafloor) is thought to be important for the formation of methane hydrate deposits, which are typically found beneath topographic features on the seafloor. However, one-dimensional models predict downward flow relative to the seafloor in compacting marine sediments. The presence of upward flow in a passive margin setting can be explained by fluid focusing beneath topography when sediments have anisotropic permeability due to sediment bedding layers. Even small slopes (10 degrees) in bedding planes produce upward fluid velocity, with focusing becoming more effective as slopes increase. Additionally, focusing causes high excess pore pressure to develop below topographic highs, promoting high-angle fracturing at the ridge axis. Magnitudes of upward pore fluid velocity are much larger in fractured zones, particularly when the surrounding sediment matrix is anisotropic in permeability. Enhanced flow of methane-bearing fluids from depth provides a simple explanation for preferential accumulation of hydrate under topographic highs. Models of fluid flow at large hydrate provinces can be constrained by measurements of naturally-occurring radioactive tracers. Concentrations of cosmogenic iodine, 129-I, in the pore fluid of marine sediments often indicate that the pore fluid is much

  5. Carbon dioxide storage in marine sediments - dissolution, transport and hydrate formation kinetics from high-pressure experiments

    Science.gov (United States)

    Bigalke, N. K.; Savy, J. P.; Pansegrau, M.; Aloisi, G.; Kossel, E.; Haeckel, M.

    2009-12-01

    By satisfying thermodynamic framework conditions for CO2 hydrate formation, pressures and temperatures of the deep marine environment are unique assets for sequestering CO2 in clathrates below the seabed. However, feasibility and safety of this storage option require an accurate knowledge of the rate constants governing the speed of physicochemical reactions following the injection of the liquefied gas into the sediments. High-pressure experiments designed to simulate the deep marine environment open the possibility to obtain the required parameters for a wide range of oceanic conditions. In an effort to constrain mass transfer coefficients and transport rates of CO2 in(to) the pore water of marine sediments first experiments were targeted at quantifying the rate of CO2 uptake by de-ionized water and seawater across a two-phase interface. The nature of the interface was controlled by selecting p and T to conditions within and outside the hydrate stability field (HSF) while considering both liquid and gaseous CO2. Concentration increase and hydrate growth were monitored by Raman spectroscopy. The experiments revealed anomalously fast transport rates of dissolved CO2 at conditions both inside and outside the HSF. While future experiments will further elucidate kinetics of CO2 transport and hydrate formation, these first results could have major significance to safety-related issues in the discussion of carbon storage in the marine environment.

  6. Endogenic carbonate sedimentation in Bear Lake, Utah and Idaho, over the last two glacial-interglacial cycles

    Science.gov (United States)

    Dean, W.E.

    2009-01-01

    Sediments deposited over the past 220,000 years in Bear Lake, Utah and Idaho, are predominantly calcareous silty clay, with calcite as the dominant carbonate mineral. The abundance of siliciclastic sediment indicates that the Bear River usually was connected to Bear Lake. However, three marl intervals containing more than 50% CaCO3 were deposited during the Holocene and the last two interglacial intervals, equivalent to marine oxygen isotope stages (MIS) 5 and 7, indicating times when the Bear River was not connected to the lake. Aragonite is the dominant mineral in two of these three high-carbonate intervals. The high-carbonate, aragonitic intervals coincide with warm interglacial continental climates and warm Pacific sea-surface temperatures. Aragonite also is the dominant mineral in a carbonate-cemented microbialite mound that formed in the southwestern part of the lake over the last several thousand years. The history of carbonate sedimentation in Bear Lake is documented through the study of isotopic ratios of oxygen, carbon, and strontium, organic carbon content, CaCO3 content, X-ray diffraction mineralogy, and HCl-leach chemistry on samples from sediment traps, gravity cores, piston cores, drill cores, and microbialites. Sediment-trap studies show that the carbonate mineral that precipitates in the surface waters of the lake today is high-Mg calcite. The lake began to precipitate high-Mg calcite sometime in the mid-twentieth century after the artificial diversion of Bear River into Bear Lake that began in 1911. This diversion drastically reduced the salinity and Mg2+:Ca2+ of the lake water and changed the primary carbonate precipitate from aragonite to high-Mg calcite. However, sediment-trap and core studies show that aragonite is the dominant mineral accumulating on the lake floor today, even though it is not precipitating in surface waters. The isotopic studies show that this aragonite is derived from reworking and redistribution of shallow-water sediment

  7. National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry

    Science.gov (United States)

    Lorenson, Thomas; Collett, Timothy S.

    2018-01-01

    suggests a thermogenic source. Gas hydrate accumulations in the Krishna-Godavari and Mahanadi Basins are the result of a microbially sourced gas hydrate system. The system is enhanced by the migration of microbial gas from surrounding areas through pathways including high-porosity delta sands, shale diapirism, faulting and folding of sediment due to the local processes associated with rapid sediment deposition, sediment overpressure, and the recycling of methane from a rapidly upward moving gas hydrate stability zone. The gas hydrate system in the Andaman Basin is less well constrained due to lack of exploration and occurs in a forearc basin. Each of these hydrate-bearing systems overlies and is likely supported by the presence and possible migration of gas from deeper gas-prone petroleum systems currently generating thermogenic hydrocarbons at much greater depths.

  8. Long-term Measurement of Sediment Resuspension and Gas Hydrate Stability at a Gulf of Mexico Seep Site

    Science.gov (United States)

    Vardaro, M. F.; Bender, L. C.; MacDonald, I. R.

    2003-12-01

    To study the temporal topographic and hydrologic changes in Gulf of Mexico cold seeps, we deployed a deep-sea time-lapse camera, several temperature probes and an ADCP mooring at the continental shelf seep community surrounding a gas hydrate outcropping. The digital camera recorded one still image every six hours for three months in 2001, every two hours for the month of June 2002 and every six hours for the month of July 2002. A pair of 300 kHz Workhorse acoustic Doppler current profilers (ADCPs) attached to a 540 meter-long mooring were anchored approximately 2 km from the site in 2002. Temperature probes were deployed at the site over the entire experimental period. The data recovered provide a comprehensive record of gas hydrate mound processes. We calculated biological activity by identifying fauna observed in the time-lapse record and recording the number of individuals and species seen in each image. 1,381 individual organisms representing over 20 species were observed. An average of 4.6 (+/-3.0) organisms were seen in each frame during the three-month deployment, while 3.6 (+/-4.2) were seen per frame in the one-month deployment. An extensive amount of sediment suspension and redistribution occurred during the deployment period. By digitally analyzing the luminosity of the water column above the mound and plotting the results over time the turbidity at the site could be quantified. A 24.1-hour diurnal pattern can be seen in the record, indicating a possible tidal or inertial component to deep-sea currents in this area. Contrary to expectations, there was no major change in shape or size of the gas hydrate outcrop being studied. This indicates a higher degree of stability than laboratory studies or prior in situ observations have shown. The stable topography of the gas hydrate mound combines with high organic output and sediment turnover to serve as a focus of benthic predatory activity. The frequency and recurrence of sediment resuspension indicate that

  9. Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    Science.gov (United States)

    Lorenson, T.D.

    1999-01-01

    Molecular and isotopic composition of gases from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well demonstrate that the in situ gases can be divided into three zones composed of mixtures of microbial and thermogenic gases. Sediments penetrated by the well are thermally immature; thus the sediments are probably not a source of thermogenic gas. Thermogenic gas likely migrated from depths below 5000 m. Higher concentrations of gas within and beneath the gas hydrate zone suggest that gas hydrate is a partial barrier to gas migration. Gas hydrate accumulations occur wholly within zone 3, below the base of permafrost. The gas in gas hydrate resembles, in part, the thermogenic gas in surrounding sediments and gas desorbed from lignite. Gas hydrate composition implies that the primary gas hydrate form is Structure I. However, Structure II stabilizing gases are more concentrated and isotopically partitioned in gas hydrate relative to the sediment hosting the gas hydrate, implying that Structure II gas hydrate may be present in small quantities.

  10. Stability Zone of Natural Gas Hydrates in a Permafrost-Bearing Region of the Beaufort-Mackenzie Basin: Study of a Feasible Energy Source (Geological Survey of Canada Contribution No.1999275)

    International Nuclear Information System (INIS)

    Majorowicz, J. A.; Hannigan, P. K.

    2000-01-01

    Analysis of geological and geophysical data from 150 wells in the Beaufort-Mackenzie region(study area between 68 deg. 30'-70 deg. 00'N and 131 deg. -39 deg. W) led to reinterpretation of the depth of methane hydrate stability and construction of the first contour maps displaying thickness of hydrate stability zones as well as hydrate stability zone thicknesses below permafrost. Calculations were based on construction of temperature-depth profiles incorporating regional heat-flow values, temperature at the base of ice-bearing permafrost, and models relating thermal conductivity with depth. Data analysis indicates the presence and extent of the methane hydrate stability zone is related mainly to the history of permafrost development and less so by the relatively small regional variations of temperature gradients. Analysis of well logs and other indicators in conjunction with knowledge of the hydrate stability zone allows reevaluation of the location of possible gas hydrate occurrences. Log analysis indicates that in the onshore and shallow sea area of the Beaufort-Mackenzie Basin, methane hydrate occurs in 27 wells. Fifteen of these locations coincides with underlying conventional hydrocarbon occurrences. Previous analyses place some of the hydrate occurrences at greater depths than proposed for the methane hydrate stability zone described in this study. Interpretation of geological cross sections reveals that hydrates are related mainly to sandy deltaic and delta-plain deposits in Iperk, Kugmallit, and Reindeer sequences although additional hydrate picks have been inferred in other sequences, such as Richards. Overlying permafrost may act as seal for hydrate accumulations; however, the thickness of permafrost and its related hydrate stability zone fluctuated during geological time. It is interpreted that only in the last tens of thousand of years (i.e., Sangamonian to Holocene), conditions for hydrates changed from nonstable to stable. During Early and Late

  11. Modes of occurrence and accumulation mechanism of methane hydrate -result of meti exploratory test wells ''Tokai-Oki To Kumano-Nada''

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tetsuya; Namikawa, Takatoshi; Nakamizu, Masaru; Tsuji, Yoshihiro; Okui, Toshiharu; Kawasaki, Masayuki; Ochiai, Koji

    2005-07-01

    In the Nankai Trough, offshore central Japan, seismic data indicates widespread existence of BSR, which is interpreted as an indicator of bottom boundary of methane hydrate bearing zone. Methane hydrate is regarded as future possible natural gas resource. However, the volume, distribution and occurrence of hydrate have been poorly understood. In order to obtain data for the understanding of methane hydrate occurrence and volume estimation, METI exploratory test wells ''Tokai-oki to Kumano-nada'' were drilled from January to May in 2004. First, LWD (Logging While Drilling) was carried out at 16 sites that were selected based on 2D and 3D seismic interpretation. Secondly, coring was carried out at 4 sites where high concentration of methane hydrate was expected based on resistivity log curve. In addition, continuous formation temperature measurement was carried out in order to investigate in-situ temperature condition in hydrate bearing sediments. Coring was carried out using both ODP type core sampler and PTCS (Pressure Temperature Core Sampler). PTCS coring were mainly focused on the hydrate bearing zone. Hydrate was confirmed in the pore space of turbidite sandstone layer in two of these sites, while it was confirmed as massive or layered condition in mud in one of the sites. Coring results suggest that most of hydrate were concentrated in sand layers in the alternation of sand and mud. The evidence may indicates permeable sandstone is ideal for hydrate accumulation. Hydrate dissociation and gas measurement test on board was also carried out and natural hydrate saturation data, which may calibrate logging results, was obtained. (Author)

  12. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production

    Science.gov (United States)

    Rutqvist, J.; Moridis, G.J.; Grover, T.; Collett, T.

    2009-01-01

    In this simulation study, we analyzed the geomechanical response during depressurization production from two known hydrate-bearing permafrost deposits: the Mallik (Northwest Territories, Canada) deposit and Mount Elbert (Alaska, USA) deposit. Gas was produced from these deposits at constant pressure using horizontal wells placed at the top of a hydrate layer (HL), located at a depth of about 900??m at the Mallik site and 600??m at the Mount Elbert site. The simulation results show that general thermodynamic and geomechanical responses are similar for the two sites, but with substantially higher production and more intensive geomechanical responses at the deeper Mallik deposit. The depressurization-induced dissociation begins at the well bore and then spreads laterally, mainly along the top of the HL. The depressurization results in an increased shear stress within the body of the receding hydrate and causes a vertical compaction of the reservoir. However, its effects are partially mitigated by the relatively stiff permafrost overburden, and compaction of the HL is limited to less than 0.4%. The increased shear stress may lead to shear failure in the hydrate-free zone bounded by the HL overburden and the downward-receding upper dissociation interface. This zone undergoes complete hydrate dissociation, and the cohesive strength of the sediment is low. We determined that the likelihood of shear failure depends on the initial stress state as well as on the geomechanical properties of the reservoir. The Poisson's ratio of the hydrate-bearing formation is a particularly important parameter that determines whether the evolution of the reservoir stresses will increase or decrease the likelihood of shear failure.

  13. Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification.

    Science.gov (United States)

    Wang, Lei; Tsang, Daniel C W; Poon, Chi-Sun

    2015-03-01

    Navigational/environmental dredging of contaminated sediment conventionally requires contained marine disposal and continuous monitoring. This study proposed a green remediation approach to treat and recycle the contaminated sediment by means of stabilization/solidification enhanced by the addition of selected solid wastes. With an increasing amount of contaminated sediment (20-70%), the 28-d compressive strength of sediment blocks decreased from greater than 10MPa to slightly above 1MPa. For augmenting the cement hydration, coal fly ash was more effective than lime and ground seashells, especially at low sediment content. The microscopic and spectroscopic analyses showed varying amounts of hydration products (primarily calcium hydroxide and calcium silicate hydrate) in the presence of coal fly ash, signifying the influence of pozzolanic reaction. To facilitate the waste utilization, cullet from beverage glass bottles and bottom ashes from coal combustion and waste incineration were found suitable to substitute coarse aggregate at 33% replacement ratio, beyond which the compressive strength decreased accordingly. The mercury intrusion porosimetry analysis indicated that the increase in the total pore area and average pore diameter were linearly correlated with the decrease of compressive strength due to waste replacement. All the sediment blocks complied with the acceptance criteria for reuse in terms of metal leachability. These results suggest that, with an appropriate mixture design, contaminated sediment and waste materials are useful resources for producing non-load-bearing masonry units or fill materials for construction uses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Gas Migration Processes through the Gas Hydrate Stability Zone at Four-Way Closure Ridge Offshore SW Taiwan

    Science.gov (United States)

    Kunath, P.; Chi, W. C.; Berndt, C.; Liu, C. S.

    2016-12-01

    We have used 3D P-Cable seismic data from Four-Way-Closure Ridge, a NW-SE trending anticlinal ridge within the lower slope domain of accretionary wedge, to investigate the geological constraints influencing the fluid migration pattern in the shallow marine sediments. In the seismic data, fluid migration feature manifests itself as high reflection layers of dipping strata, which originate underneath a bottom simulating reflector (BSR) and extend towards the seafloor. Shoaling of the BSR near fluid migration pathways indicates a focused fluid flux, perturbing the temperature field. Furthermore, seafloor video footage confirmed the presence of recent methane seepage above seismically imaged fluid migration pathways. We plan to test two hypotheses for the occurrence of these fluid migration pathways: 1) the extensional regime under the anticlinal ridge crest caused the initiation of localized fault zones, acting as fluid conduits in the gas hydrate stability zone (GHSZ). 2) sediment deformation induced by focused fluid flow and massive growth and dissolution of gas hydrate, similar to processes controlling the evolution of pockmarks on the Nigerian continental margin. We suggest that these processes may be responsible for the formation of a massive hydrate core in the crest of the anticline, as inferred from other geophysical datasets. Triggering process for fluid migration cannot be clearly defined. However, the existence of blind thrust faults may help to advect deep-seated fluids. This may be augmented by biogenic production of shallow gas underneath the ridge, where the excess of gas enables the coexistence of gas, water, and gas hydrate within the GHSZ. Fluid migration structures may exists because of the buoyancy of gas-bearing fluids. This study shows a potential model on how gas-bearing fluids migrate upward towards structural highs, which might occur in other anticlinal structures around the world. Keywords: P-Cable, gas-hydrate, fluid flow, fault-related fold

  15. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  16. Lithological control on gas hydrate saturation as revealed by signal classification of NMR logging data

    Science.gov (United States)

    Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik

    2015-09-01

    In this paper, nuclear magnetic resonance (NMR) downhole logging data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). In NMR logging, transverse relaxation time (T2) distribution curves are usually used to determine single-valued parameters such as apparent total porosity or hydrocarbon saturation. Our approach analyzes the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. We apply self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal amplitudes for all relaxation times. Most importantly, two subtypes of hydrate-bearing shaly sands were identified. They show distinct NMR signals and differ in hydrate saturation and gamma ray values. An inverse linear relationship between hydrate saturation and clay content was concluded. Finally, we infer that the gas hydrate is not grain coating, but rather, pore filling with matrix support is the preferred growth habit model for the studied formation.

  17. Three types of gas hydrate reservoirs in the Gulf of Mexico identified in LWD data

    Science.gov (United States)

    Lee, Myung Woong; Collett, Timothy S.

    2011-01-01

    High quality logging-while-drilling (LWD) well logs were acquired in seven wells drilled during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II in the spring of 2009. These data help to identify three distinct types of gas hydrate reservoirs: isotropic reservoirs in sands, vertical fractured reservoirs in shale, and horizontally layered reservoirs in silty shale. In general, most gas hydratebearing sand reservoirs exhibit isotropic elastic velocities and formation resistivities, and gas hydrate saturations estimated from the P-wave velocity agree well with those from the resistivity. However, in highly gas hydrate-saturated sands, resistivity-derived gas hydrate-saturation estimates appear to be systematically higher by about 5% over those estimated by P-wave velocity, possibly because of the uncertainty associated with the consolidation state of gas hydrate-bearing sands. Small quantities of gas hydrate were observed in vertical fractures in shale. These occurrences are characterized by high formation resistivities with P-wave velocities close to those of water-saturated sediment. Because the formation factor varies significantly with respect to the gas hydrate saturation for vertical fractures at low saturations, an isotropic analysis of formation factor highly overestimates the gas hydrate saturation. Small quantities of gas hydrate in horizontal layers in shale are characterized by moderate increase in P-wave velocities and formation resistivities and either measurement can be used to estimate gas hydrate saturations.

  18. Regional versus detailed velocity analysis to quantify hydrate and free gas in marine sediments : the south Shetland margin case study

    Energy Technology Data Exchange (ETDEWEB)

    Tinivella, U.; Loreto, M.F.; Accaino, F. [Inst. Nazionale di Oceanografia di Geofisica Sperimentale, Trieste (Italy)

    2008-07-01

    The presence of gas hydrate and free gas within marine sediments, deposited along the South Shetland margin, offshore the Antarctic Peninsula, was confirmed by low and high resolution geophysical data, acquired during three research cruises in 1989-1990. Seismic data analysis has demonstrated the presence of a bottom simulating reflector that is very strong and continuous in the eastern part of the margin. This seismic dataset was used in the past to extract detailed velocity information of the shallow structures by using traditional tomographic inversion and jointly tomographic inversion and pre-stack depth migration tool. This paper presented a method to obtain a regional seismic velocity field and information about hydrate and free gas presence in the marine sediments, by using an improved method of the standard analysis of the pre-stack depth migration output. The velocity field was obtained with a layer stripping approach and tomographic inversion of the reflections observed in common image gathering. The paper presented the seismic data and regional and detailed velocity analysis. The results of residual semblance analyses were also presented. Gas phase concentrations were then discussed. The velocity analysis revealed the presence of three main layers characterizing the first kilometer of sediments below the sea floor. In addition, velocity models and related gas-phase sections showed that gas was concentrated in different parts of the profile than where the hydrate was concentrated. This observation confirmed that geological structures and sedimentary processes controlled the gas and hydrate distribution, as observed along other margins. 7 refs., 5 figs.

  19. An early Brunhes (age for the Lower Paleolithic tool-bearing Kozarnika cave sediments, Bulgaria

    Science.gov (United States)

    Muttoni, Giovanni; Sirakov, Nikolas; Guadelli, Jean-Luc; Kent, Dennis V.; Scardia, Giancarlo; Monesi, Edoardo; Zerboni, Andrea; Ferrara, Enzo

    2017-12-01

    We present a new sedimentological profile and a magnetostratigraphy of the tool-bearing Kozarnika cave sediments from Bulgaria. Modal analysis of cave infilling sedimentary texture indicates that the tool-bearing layers contain a sizable fraction of sediment interpreted as loess. We also find evidence for a relatively thick and well defined normal magnetic polarity in the upper-middle part of the section interpreted as a record of the Brunhes Chron, followed down-section by reverse polarity directions interpreted as a record of the Matuyama Chron. The lowermost levels with Lower Paleolithic tools (Layers 13a-c) lie in the early Brunhes at a nominal maximum age of ∼0.75 Ma, while the Brunhes-Matuyama boundary (0.78 Ma) falls in Layer 13 Lower immediately below. This finding represents a conspicuous revision of previous age estimates for the same tool-bearing layers.

  20. Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Yang, Jinhai; Okwananke, Anthony; Tohidi, Bahman; Chuvilin, Evgeny; Maerle, Kirill; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey

    2017-01-01

    Highlights: • Flue gas was injected for both methane recovery and carbon dioxide sequestration. • Kinetics of methane recovery and carbon dioxide sequestration was investigated. • Methane-rich gas mixtures can be produced inside methane hydrate stability zones. • Up to 70 mol% of carbon dioxide in the flue gas was sequestered as hydrates. - Abstract: Flue gas injection into methane hydrate-bearing sediments was experimentally investigated to explore the potential both for methane recovery from gas hydrate reservoirs and for direct capture and sequestration of carbon dioxide from flue gas as carbon dioxide hydrate. A simulated flue gas from coal-fired power plants composed of 14.6 mol% carbon dioxide and 85.4 mol% nitrogen was injected into a silica sand pack containing different saturations of methane hydrate. The experiments were conducted at typical gas hydrate reservoir conditions from 273.3 to 284.2 K and from 4.2 to 13.8 MPa. Results of the experiments show that injection of the flue gas leads to significant dissociation of the methane hydrate by shifting the methane hydrate stability zone, resulting in around 50 mol% methane in the vapour phase at the experimental conditions. Further depressurisation of the system to pressures well above the methane hydrate dissociation pressure generated methane-rich gas mixtures with up to 80 mol% methane. Meanwhile, carbon dioxide hydrate and carbon dioxide-mixed hydrates were formed while the methane hydrate was dissociating. Up to 70% of the carbon dioxide in the flue gas was converted into hydrates and retained in the silica sand pack.

  1. PAHs distribution in sediments associated with gas hydrate and oil seepage from the Gulf of Mexico.

    Science.gov (United States)

    Wang, Cuiping; Sun, Hongwen; Chang, Ying; Song, Zhiguang; Qin, Xuebo

    2011-12-01

    Six sediment samples collected from the Gulf of Mexico were analyzed. Total concentrations of the PAHs ranged from 52 to 403 ng g(-1) dry weight. The lowest PAH concentration without 5-6 rings PAHs appeared in S-1 sample associated with gas hydrate or gas venting. Moreover, S-1 sample had the lowest organic carbon content with 0.85% and highest reduced sulfur level with 1.21% relative to other samples. And, analysis of the sources of PAHs in S-1 sample indicated that both pyrogenic and petrogenic sources, converserly, while S-8, S-10 and S-11 sample suggested petrogenic origin. The distribution of dibenzothiophene, fluorine and dibenzofuran and the maturity parameters of triaromatic steranes suggested that organic matters in S-1 sample were different from that in S-8, S-10 and S-11 sample. This study suggested that organic geochemical data could help in distinguish the characteristic of sediment associated with gas hydrate or with oil seepage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. BSR and methane hydrates: New challenges for geophysics and rock physics

    Energy Technology Data Exchange (ETDEWEB)

    Nur, A. [Stanford Univ., CA (United States). Dept. of Geophysics

    1996-12-31

    It is generally accepted that solid gas hydrates which form within the uppermost few hundred meters of the sea floor are responsible for so-called Bottom Simulating Reflectors (BSRs) at continental margins. Gas to solid volumetric ratio in recovered hydrate samples may be as large as 170. Consequently, huge amounts of compressed methane (more than twice all recoverable and nonrecoverable oil, gas, and coal on earth) may exist under earth`s oceans. These hydrates are a potential energy resource, they influence global warming and effect seafloor mechanical stability. It is possible, in principle, to obtain a quantitative estimate of the amount and state of existing hydrates by relating seismic velocity to the volume of gas hydrate in porous sediments. This can be done by linking the elastic properties of hydrated sediments to their internal structure. The authors approach this problem by examining two micromechanical models of hydrate deposition in the pore space: (1) the hydrate cements grain contacts and thus significantly stiffens the sediment; and (2) the hydrate is located away from grain contacts and only weakly affects the stiffness of the sediment frame. To discriminate between the two models the authors use the Amplitude Versus Offset (AVO) technique of seismic data processing. This approach allows them to estimate the amount of gas hydrates in the pore space, and also to tell whether the permeability of the hydrated sediment is high or low. The latter is important for determining whether free methane can be trapped underneath a BSR.

  3. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  4. Gas hydrates distribution in the Shenhu area, northern South China Sea: comparisons between the eight drilling sites with gashydrate petroleum system

    Energy Technology Data Exchange (ETDEWEB)

    Su, M.; Yang, R.; Wang, H.; Sha, Z.; Liang, J.; Wu, N.; Qiao, S.; Cong, X.

    2016-07-01

    The results of the first marine gas hydrate drilling expedition of Guangzhou Marine Geological Survey (GMGS-1) in northern continental slope of the South China Sea revealed a variable distribution of gas hydrates in the Shenhu area. In this study, comparisons between the eight sites with gas-hydrate petroleum system were used to analyze and re-examine hydrate potential. In the Shenhu gas hydrate drilling area, all the sites were located in a suitable low-temperature, high-pressure environment. Biogenic and thermogenic gases contributed to the formation of hydrates. Gas chimneys and some small-scale faults (or micro-scale fractures) compose the migration pathways for gas-bearing fluids. Between these sites, there are three key differences: the seafloor temperatures and pressures; geothermal gradient and sedimentary conditions. Variations of seafloor temperatures and pressures related to water depths and geothermal gradient would lead to changes in the thickness of gas hydrate stability zones. Although the lithology and grain size of the sediments were similar, two distinct sedimentary units were identified for the first time through seismic interpretation, analysis of deep-water sedimentary processes, and the Cm pattern (plotted one-percentile and median values from grain-size analyses), implying the heterogeneous sedimentary conditions above Bottom Simulating Reflectors (BSRs). Based on the analyses of forming mechanisms and sedimentary processes, these two fine-grained sedimentary units have different physical properties. Fine-grained turbidites (Unit I) with thin-bedded chaotic reflectors at the bottom acted as the host rocks for hydrates; whereas, finegrained sediments related to soft-sediment deformation (Unit II) characterized by thick continuous reflectors at the top would serve as regional homogeneous caprocks. Low-flux methane that migrated upwards along chimneys could be enriched preferentially in fine-grained turbidites, resulting in the formation of

  5. Experimental Simulation of Methane Hydrate Extraction at High Pressure Conditions: Influence of the Sediment Bed

    Science.gov (United States)

    Agudo, J. R.; Park, J.; Luzi, G.; Williams, M.; Rauh, C.; Wierschem, A.; Delgado, A.

    2017-10-01

    Being a clean alternative to other fossil fuels, Methane Hydrate (MH) is currently considered as one of the most important potential sources for hydrocarbon fuels [1]. In addition, the high energy density of MH and its stability at higher temperatures as compared to LNG (Liquefied Natural Gas) makes MH a potential greener method for energy transportation. At the same time, the low thermodynamic stability of MH strongly questions the future exploitation of gas hydrate deposits, turning its extraction into a possible geohazard [2]. Fluctuations in pressure, temperature, salinity, degree of saturation or sediment bed properties may cause methane gas release from the water lattice. We experimentally study the influence of the sediment bed geometry during formation-dissociation of MH. For this purpose, MH is synthesized within regular substrates in a 93 cm3 high pressure vessel. The regular substrates are triangular and quadratic arrangements of identical glass spheres with a diameter of 2 and 5 mm, respectively. MH formation within regular substrate reduces the possibility of spontaneous nucleation to a unique geometrical configuration. This fact permits us to characterize the kinetics of MH formation-dissociation as a function of the sediment bed geometry. Preliminary experimental results reveal a strong dependence of MH formation on the geometry of the regular substrate. For instance, under the same pressure and temperature, the kinetics of MH production is found to change by a factor 3 solely depending on the substrate symmetry, i.e. triangular or quadratic.

  6. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies

    Science.gov (United States)

    Handwerger, Alexander L.; Rempel, Alan W.; Skarbek, Rob M.

    2017-07-01

    Submarine landslides occur along continental margins at depths that often intersect the gas hydrate stability zone, prompting suggestions that slope stability may be affected by perturbations that arise from changes in hydrate stability. Here we develop a numerical model to identify the conditions under which the destabilization of hydrates results in slope failure. Specifically, we focus on high-saturation hydrate anomalies at fine-grained to coarse-grained stratigraphic boundaries that can transmit bridging stresses that decrease the effective stress at sediment contacts and disrupt normal sediment consolidation. We evaluate slope stability before and after hydrate destabilization. Hydrate anomalies act to significantly increase the overall slope stability due to large increases in effective cohesion. However, when hydrate anomalies destabilize there is a loss of cohesion and increase in effective stress that causes the sediment grains to rapidly consolidate and generate pore pressures that can either trigger immediate slope failure or weaken the surrounding sediment until the pore pressure diffuses away. In cases where failure does not occur, the sediment can remain weakened for months. In cases where failure does occur, we quantify landslide dynamics using a rate and state frictional model and find that landslides can display either slow or dynamic (i.e., catastrophic) motion depending on the rate-dependent properties, size of the stress perturbation, and the size of the slip patch relative to a critical nucleation length scale. Our results illustrate the fundamental mechanisms through which the destabilization of gas hydrates can pose a significant geohazard.

  7. Protocol for Measuring the Thermal Properties of a Supercooled Synthetic Sand-water-gas-methane Hydrate Sample.

    Science.gov (United States)

    Muraoka, Michihiro; Susuki, Naoko; Yamaguchi, Hiroko; Tsuji, Tomoya; Yamamoto, Yoshitaka

    2016-03-21

    Methane hydrates (MHs) are present in large amounts in the ocean floor and permafrost regions. Methane and hydrogen hydrates are being studied as future energy resources and energy storage media. To develop a method for gas production from natural MH-bearing sediments and hydrate-based technologies, it is imperative to understand the thermal properties of gas hydrates. The thermal properties' measurements of samples comprising sand, water, methane, and MH are difficult because the melting heat of MH may affect the measurements. To solve this problem, we performed thermal properties' measurements at supercooled conditions during MH formation. The measurement protocol, calculation method of the saturation change, and tips for thermal constants' analysis of the sample using transient plane source techniques are described here. The effect of the formation heat of MH on measurement is very small because the gas hydrate formation rate is very slow. This measurement method can be applied to the thermal properties of the gas hydrate-water-guest gas system, which contains hydrogen, CO2, and ozone hydrates, because the characteristic low formation rate of gas hydrate is not unique to MH. The key point of this method is the low rate of phase transition of the target material. Hence, this method may be applied to other materials having low phase-transition rates.

  8. Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data

    Science.gov (United States)

    Kumar, Dhananjay; Sen, Mrinal K.; Bangs, Nathan L.

    2007-12-01

    A seismic experiment composed of streamer and ocean bottom seismometer (OBS) surveys was conducted in the summer of 2002 at southern Hydrate Ridge, offshore Oregon, to map the gas hydrate distribution within the hydrate stability zone. Gas hydrate concentrations within the reservoir can be estimated with P wave velocity (Vp); however, we can further constrain gas hydrate concentrations using S wave velocity (Vs), and use Vs through its relationship to Vp (Vp/Vs) to reveal additional details such as gas hydrate form within the matrix (i.e., hydrate cements the grains, becomes part of the matrix frame or floats in pore space). Both Vp and Vs can be derived simultaneously by inverting multicomponent seismic data. In this study, we use OBS data to estimate seismic velocities where both gas hydrate and free gas are present in the shallow sediments. Once Vp and Vs are estimated, they are simultaneously matched with modeled velocities to estimate the gas hydrate concentration. We model Vp using an equation based on a modification of Wood's equation that incorporates an appropriate rock physics model and Vs using an empirical relation. The gas hydrate concentration is estimated to be up to 7% of the rock volume, or 12% of the pore space. However, Vp and Vs do not always fit the model simultaneously. Vp can vary substantially more than Vs. Thus we conclude that a model, in which higher concentrations of hydrate do not affect shear stiffness, is more appropriate. Results suggest gas hydrates form within the pore space of the sediments and become part of the rock framework in our survey area.

  9. Hydrate Evolution in Response to Ongoing Environmental Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Alan [Univ. of Oregon, Eugene, OR (United States)

    2015-12-31

    Natural gas hydrates have the potential to become a vital domestic clean-burning energy source. However, past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. This project was designed to fill critical gaps in our understanding of domestic hydrate resources and improve forecasts for their response to environmental shifts. Project work can be separated into three interrelated components, each involving the development of predictive mathematical models. The first project component concerns the role of sediment properties on the development and dissociation of concentrated hydrate anomalies. To this end, we developed numerical models to predict equilibrium solubility of methane in twophase equilibrium with hydrate as a function of measureable porous medium characteristics. The second project component concerned the evolution of hydrate distribution in heterogeneous reservoirs. To this end, we developed numerical models to predict the growth and decay of anomalies in representative physical environments. The third project component concerned the stability of hydrate-bearing slopes under changing environmental conditions. To this end, we developed numerical treatments of pore pressure evolution and consolidation, then used "infinite-slope" analysis to approximate the landslide potential in representative physical environments, and developed a "rate-and-state" frictional formulation to assess the stability of finite slip patches that are hypothesized to develop in response to the dissociation of hydrate anomalies. The increased predictive capabilities that result from this work provide a framework for interpreting field observations of hydrate anomalies in terms of the history of environmental forcing that led to their development. Moreover

  10. Links and Feedbacks between Salt Diapirs, Hydrates, and Submarine Landslides: Example from Cape Fear, offshore North Carolina, U.S.A.

    Science.gov (United States)

    Sawyer, D.; Akinci, L.; Nikolinakou, M. A.; Heidari, M.

    2015-12-01

    hydrate dissociation during salt rise may have been an important factor in triggering the landslide. Salt, has a higher thermal conductivity than sediment. Therefore it is expected that while the salt was rising, warming of the surrounding hydrate-bearing sediment may have resulted in overpressure that allowed landsliding at low angles.­

  11. Archie's Saturation Exponent for Natural Gas Hydrate in Coarse-Grained Reservoirs

    Science.gov (United States)

    Cook, Ann E.; Waite, William F.

    2018-03-01

    Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice-bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate-bearing sands. In this work, we calibrate n for hydrate-bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L-38, by establishing an independent downhole Sh profile based on compressional-wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L-38 well, we also apply this method to two marine, coarse-grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313-H and Green Canyon 955-H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse-grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.

  12. Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2)

    Science.gov (United States)

    Ryu, Byong-Jae; Collett, Timothy S.; Riedel, Michael; Kim, Gil-Young; Chun, Jong-Hwa; Bahk, Jang-Jun; Lee, Joo Yong; Kim, Ji-Hoon; Yoo, Dong-Geun

    2013-01-01

    As a part of Korean National Gas Hydrate Program, the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) was conducted from 9 July to 30 September, 2010 in the Ulleung Basin, East Sea, offshore Korea using the D/V Fugro Synergy. The UBGH2 was performed to understand the distribution of gas hydrates as required for a resource assessment and to find potential candidate sites suitable for a future offshore production test, especially targeting gas hydrate-bearing sand bodies in the basin. The UBGH2 sites were distributed across most of the basin and were selected to target mainly sand-rich turbidite deposits. The 84-day long expedition consisted of two phases. The first phase included logging-while-drilling/measurements-while-drilling (LWD/MWD) operations at 13 sites. During the second phase, sediment cores were collected from 18 holes at 10 of the 13 LWD/MWD sites. Wireline logging (WL) and vertical seismic profile (VSP) data were also acquired after coring operations at two of these 10 sites. In addition, seafloor visual observation, methane sensing, as well as push-coring and sampling using a Remotely Operated Vehicle (ROV) were conducted during both phases of the expedition. Recovered gas hydrates occurred either as pore-filling medium associated with discrete turbidite sand layers, or as fracture-filling veins and nodules in muddy sediments. Gas analyses indicated that the methane within the sampled gas hydrates is primarily of biogenic origin. This paper provides a summary of the operational and scientific results of the UBGH2 expedition as described in 24 papers that make up this special issue of the Journal of Marine and Petroleum Geology.

  13. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  14. Environmental changes of the last 30,000 years in the gas hydrate area of Joetsu Basin, eastern margin of Japan Sea

    Energy Technology Data Exchange (ETDEWEB)

    Freire, A.F.M.; Sugai, T. [Tokyo Univ., Kashiwanoha Campus, Chiba (Japan). Dept. of Natural Environmental Studies; Takeuchi, E.; Nagasaka, A.; Hiruta, A.; Ishizaki, O.; Matsumoto, R. [Tokyo Univ., Hongo Campus, Bunkyo-ku, Tokyo (Japan). Dept. of Earth and Planetary Science

    2008-07-01

    The Japan Sea is a semi-isolated marginal sea with an average depth of 1350 metres and a maximum water depth of approximately 3700 metres in the northern basin. This paper presented a study that inferred the age and the nature of the environmental events of the last 30 thousand years using geochemical and sedimentary records from piston cores collected on the gas hydrates bearing-sediments of Joetsu Basin, eastern margin of Japan Sea, south of Sado Islands. Interbedded dark gray thinly laminates and dark brown to gray bioturbated units are common throughout the quaternary sediments of the Japan Sea. They have been explained in terms of glacio-eustatic sea-level change. Active methane venting and gas hydrates have also been recognized, which are widely distributed just beneath the sea floor in the Joetsu Basin, in the eastern margin of the Japan Sea. In order to identify the nature of the organic matter present in the study area and to make a correlation with samples collected in the Pacific Ocean, the study utilized total organic carbon contents and carbon isotopic composition of the gas hydrates bearing-sediments. Using X-ray diffraction analysis, these data were used to apply sequence stratigraphy concepts to locate the holocene/pleistocene boundary and to identify key stratigraphic surfaces, and also to recognize methane flux variations and sulfate-methane interfaces. The paper discussed total organic carbon in the Holocene/Pleistocene boundaries; nature of the organic matter and terrestrial versus marine phytoplankton production; and terrigenous material input. Sulfate oxidation of methane was also discussed. It was concluded that the correlation between the Japan Sea and Pacific Ocean was possible using piston cores. 13 refs., 13 figs.

  15. Mixture design and treatment methods for recycling contaminated sediment

    International Nuclear Information System (INIS)

    Wang, Lei; Kwok, June S.H.; Tsang, Daniel C.W.; Poon, Chi-Sun

    2015-01-01

    Graphical abstract: - Highlights: • Contaminated sediment can be recycled as fill material for site formation. • Thermal pretreatment of sediment permits non-load-bearing block application. • CO 2 curing enhances strength and reduces carbon footprint. • Inclusion of granular wastes reinforces the solidified sediment matrix. • Sediment blocks are useful resources for construction use. - Abstract: Conventional marine disposal of contaminated sediment presents significant financial and environmental burden. This study aimed to recycle the contaminated sediment by assessing the roles and integration of binder formulation, sediment pretreatment, curing method, and waste inclusion in stabilization/solidification. The results demonstrated that the 28-d compressive strength of sediment blocks produced with coal fly ash and lime partially replacing cement at a binder-to-sediment ratio of 3:7 could be used as fill materials for construction. The X-ray diffraction analysis revealed that hydration products (calcium hydroxide) were difficult to form at high sediment content. Thermal pretreatment of sediment removed 90% of indigenous organic matter, significantly increased the compressive strength, and enabled reuse as non-load-bearing masonry units. Besides, 2-h CO 2 curing accelerated early-stage carbonation inside the porous structure, sequestered 5.6% of CO 2 (by weight) in the sediment blocks, and acquired strength comparable to 7-d curing. Thermogravimetric analysis indicated substantial weight loss corresponding to decomposition of poorly and well crystalline calcium carbonate. Moreover, partial replacement of contaminated sediment by various granular waste materials notably augmented the strength of sediment blocks. The metal leachability of sediment blocks was minimal and acceptable for reuse. These results suggest that contaminated sediment should be viewed as useful resources

  16. Mixture design and treatment methods for recycling contaminated sediment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Kwok, June S.H.; Tsang, Daniel C.W., E-mail: dan.tsang@polyu.edu.hk; Poon, Chi-Sun

    2015-02-11

    Graphical abstract: - Highlights: • Contaminated sediment can be recycled as fill material for site formation. • Thermal pretreatment of sediment permits non-load-bearing block application. • CO{sub 2} curing enhances strength and reduces carbon footprint. • Inclusion of granular wastes reinforces the solidified sediment matrix. • Sediment blocks are useful resources for construction use. - Abstract: Conventional marine disposal of contaminated sediment presents significant financial and environmental burden. This study aimed to recycle the contaminated sediment by assessing the roles and integration of binder formulation, sediment pretreatment, curing method, and waste inclusion in stabilization/solidification. The results demonstrated that the 28-d compressive strength of sediment blocks produced with coal fly ash and lime partially replacing cement at a binder-to-sediment ratio of 3:7 could be used as fill materials for construction. The X-ray diffraction analysis revealed that hydration products (calcium hydroxide) were difficult to form at high sediment content. Thermal pretreatment of sediment removed 90% of indigenous organic matter, significantly increased the compressive strength, and enabled reuse as non-load-bearing masonry units. Besides, 2-h CO{sub 2} curing accelerated early-stage carbonation inside the porous structure, sequestered 5.6% of CO{sub 2} (by weight) in the sediment blocks, and acquired strength comparable to 7-d curing. Thermogravimetric analysis indicated substantial weight loss corresponding to decomposition of poorly and well crystalline calcium carbonate. Moreover, partial replacement of contaminated sediment by various granular waste materials notably augmented the strength of sediment blocks. The metal leachability of sediment blocks was minimal and acceptable for reuse. These results suggest that contaminated sediment should be viewed as useful resources.

  17. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea

    Science.gov (United States)

    Wang, Xiujuan; Qiang, Jin; Collett, Timothy S.; Shi, Hesheng; Yang, Shengxiong; Yan, Chengzhi; Li, Yuanping; Wang, Zhenzhen; Chen, Duanxin

    2016-01-01

    A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.

  18. Formation of carbonate concretions in deep-sea sediment below the CCD and above an active gas hydrate system

    Science.gov (United States)

    Dicus, C. M.; Snyder, G. T.; Dickens, G. R.

    2004-12-01

    Site 1230 of the Ocean Drilling Program targeted the chemistry and microbiology of an active deep-water gas hydrate system in the Peru Trench. The site is noteworthy because, at nearly 6000 m water depth, it lies well below the carbonate compensation depth and the sediments comprise mostly terrigenous clays and biogenic silica. Shipboard work at this site delineated a prominent sulfate-methane transition (SMT) at 8-10 m below seafloor (mbsf) as well as some carbonate horizons. In this study, we present calcium and strontium data for pore waters and sediments at this site, including across the SMT. Concentration profiles show that dissolved Ca2+ diffuses downward from the seafloor toward the SMT, where a sharp inflection indicates consumption of Ca2+ into an authigenic phase. Dissolved Sr2+, on the other hand, diffuses upward from depth toward the SMT. Again, however, a prominent inflection suggests removal of Sr2+ to sediment. The inferences from pore water profiles are borne out by sediment chemistry. Large peaks in the calcium and strontium content of sediment mark the SMT. The calcium and strontium fronts reach ˜2700 and ˜5 mmol/kg, respectively, at 9 mbsf, which are much greater than average background values of ˜10 and ˜1 mmol/kg. These authigenic fronts are primarily composed of carbonate minerals, as determined by acetic acid extractions and x-ray diffraction. Because the calcium and strontium fronts coincide with both the SMT and changes in dissolved chemistry, it is proposed that the carbonates are currently forming as follows: methane rising from the underlying gas hydrate system reacts with dissolved sulfate through anaerobic oxidation of methane which releases HCO3- and alkalinity and causes carbonate precipitation. The overall process has been observed elsewhere; the Peru Trench is interesting, however, because the process leads to carbonate in sediments otherwise devoid of carbonate.

  19. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan

    2018-02-25

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydrates and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.

  20. Structural and Stratigraphic Controls on Methane Hydrate occurrence and distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Priyank [Oklahoma State Univ., Stillwater, OK (United States)

    2017-09-01

    The goal of this project was to determine structural and stratigraphic controls on hydrate occurrence and distribution in Green Canyon (GC) 955 and Walker Ridge (WR) 313 blocks using seismic and well data. Gas hydrate was discovered in these blocks in coarse- and fine-grained sediments during the 2009 Joint Industrial project (JIP) Leg 11 drilling expedition. Although the immediate interest of the exploration community is exclusively hydrate which is present in coarse–grained sediments, factors that control hydrate and free gas distribution in the two blocks and whether coarse and fine-grained hydrate-bearing units are related in any manner, formed the core of this research. The project spanned from 10/01/2012 to 07/31/2016. In the project, in both the leased blocks, the interval spanning the gas hydrate stability zone (GHSZ) was characterized using a joint analysis of sparse Ocean Bottom Seismic (OBS) and dense, surface–towed multichannel seismic (MCS) data. The project team had the luxury of calibrating their results with two well logs. Advance processing methods such as depth migration and full-waveform inversion (FWI) were used for seismic data analysis. Hydrate quantification was achieved through interpretation of the FWI velocity field using appropriate rock physics models at both blocks. The seismic modeling/inversion methodology (common to both GC955 and WR313 blocks) was as follows. First, the MCS data were depth migrated using a P-wave velocity (VP) model constructed using inversion of reflection arrival times of a few (four in both cases) key horizons carefully picked in the OBS data to farthest possible offsets. Then, the resolution of the traveltime VP model was improved to wavelength scale by inverting OBS gathers up to the highest frequency possible (21.75 Hz for GC955 and 17.5 for WR313) using FWI. Finally, the hydrate saturation (or the volume fraction) was estimated at the well location assuming one of the other hydrate morphology (filling the

  1. The Comparison Study of gas source between two hydrate expeditions in ShenHu area, SCS

    Science.gov (United States)

    Cong, X. R.

    2016-12-01

    Two gas hydrate expeditions (GMGS 01&03) were conducted in the Pearl River Mouth Basin, SCS, which were organized by Guangzhou Marine Geological Survey in 2007 and 2015, respectively. Compared with the drilling results of "mixed bio-thermogenic gas and generally dominated by biogenic gas" in 2007, hydrocarbon component measurements revealed a higher content of ethane and propane in 2015 drilling, providing direct evidence that deep thermogenic gas was the source for shallow hydrate formation. According to the geochemical analyses of the results obtained from the industrial boreholes in Baiyun sag, the deep hydrocarbon gas obviously leaked from the reservoir as escape caused by Dongsha movement in the late Miocene, as a result thermogenic gas from Wenchang, Enping and Zhuhai hydrocarbon source rocks migrated to late Miocene shallow strata through faults, diapirs and gas chimney vertically migration. In this paper we report the differences in fluid migration channel types and discuss their effect in fluid vertical migration efficiency in the two Shenhu hydrate drilling areas. For the drilling area in 2007,when the limited deep thermogenic gas experienced long distance migration process from bottom to up along inefficient energy channel, the gas composition might have changed and the carbon isotope fractionation might have happened, which were reflected in the results of higher C1/C2 ratios and lighter carbon isotope in gas hydrate bearing sediments. As a result the gas is with more "biogenic gas" features. It means thermogenic gases in the deep to contributed the formation of shallow gas hydrate indirectly in 2007 Shenhu drill area. On another hand, the gases were transported to the shallow sediment layers efficiently, where gas hydrate formed, through faults and fractures from deep hydrocarbon reservoirs, and as the result they experienced less changes in both components and isotopes in 2015 drilling site.

  2. Seismic characterization of hydrates in faulted, fine-grained sediments of Krishna-Godavari basin: Unified imaging

    Digital Repository Service at National Institute of Oceanography (India)

    Jaiswal, P.; Dewangan, P.; Ramprasad, T.; Zelt, C.A.

    (Clennell et al., 1999). However, in basins affected by structural deformation, local fluid and heat flow, and spatially variable sedimentation, e.g., Gulf of Mexico (Ding et al., 2008) and Krishna-Godavari (Dewangan et al., 2011), the BSR profile may..., northern Gulf of Mexico: Part I. A seismic approach based on geologic model, inversion, and rock physics principles. Marine and Petroleum Geology 25, 830-844. Daigle, H., Dugan, B., 2011. Capillary controls on methane hydrate distribution and fracturing...

  3. Density structure of submarine slump and normal sediments of the first gas production test site at Daini-Atsumi Knoll near Nankai Trough, estimated by LWD logging data

    Science.gov (United States)

    Suzuki, K.; Takayama, T.; Fujii, T.; Yamamoto, K.

    2014-12-01

    Many geologists have discussed slope instability caused by gas-hydrate dissociation, which could make movable fluid in pore space of sediments. However, physical property changes caused by gas hydrate dissociation would not be so simple. Moreover, during the period of natural gas-production from gas-hydrate reservoir applying depressurization method would be completely different phenomena from dissociation processes in nature, because it could not be caused excess pore pressure, even though gas and water exist. Hence, in all cases, physical properties of gas-hydrate bearing sediments and that of their cover sediments are quite important to consider this phenomena, and to carry out simulation to solve focusing phenomena during gas hydrate dissociation periods. Daini-Atsumi knoll that was the first offshore gas-production test site from gas-hydrate is partially covered by slumps. Fortunately, one of them was penetrated by both Logging-While-Drilling (LWD) hole and pressure-coring hole. As a result of LWD data analyses and core analyses, we have understood density structure of sediments from seafloor to Bottom Simulating Reflector (BSR). The results are mentioned as following. ・Semi-confined slump showed high-density, relatively. It would be explained by over-consolidation that was result of layer-parallel compression caused by slumping. ・Bottom sequence of slump has relative high-density zones. It would be explained by shear-induced compaction along slide plane. ・Density below slump tends to increase in depth. It is reasonable that sediments below slump deposit have been compacting as normal consolidation. ・Several kinds of log-data for estimating physical properties of gas-hydrate reservoir sediments have been obtained. It will be useful for geological model construction from seafloor until BSR. We can use these results to consider geological model not only for slope instability at slumping, but also for slope stability during depressurized period of gas

  4. Paleomagnetism and environmental magnetism of GLAD800 sediment cores from Bear Lake, Utah and Idaho

    Science.gov (United States)

    Heil, C.W.; King, J.W.; Rosenbaum, J.G.; Reynolds, R.L.; Colman, Steven M.

    2009-01-01

    A ???220,000-year record recovered in a 120-m-long sediment core from Bear Lake, Utah and Idaho, provides an opportunity to reconstruct climate change in the Great Basin and compare it with global climate records. Paleomagnetic data exhibit a geomagnetic feature that possibly occurred during the Laschamp excursion (ca. 40 ka). Although the feature does not exhibit excursional behavior (???40?? departure from the expected value), it might provide an additional age constraint for the sequence. Temporal changes in salinity, which are likely related to changes in freshwater input (mainly through the Bear River) or evaporation, are indicated by variations in mineral magnetic properties. These changes are represented by intervals with preserved detrital Fe-oxide minerals and with varying degrees of diagenetic alteration, including sulfidization. On the basis of these changes, the Bear Lake sequence is divided into seven mineral magnetic zones. The differing magnetic mineralogies among these zones reflect changes in deposition, preservation, and formation of magnetic phases related to factors such as lake level, river input, and water chemistry. The occurrence of greigite and pyrite in the lake sediments corresponds to periods of higher salinity. Pyrite is most abundant in intervals of highest salinity, suggesting that the extent of sulfidization is limited by the availability of SO42-. During MIS 2 (zone II), Bear Lake transgressed to capture the Bear River, resulting in deposition of glacially derived hematite-rich detritus from the Uinta Mountains. Millennial-scale variations in the hematite content of Bear Lake sediments during the last glacial maximum (zone II) resemble Dansgaard-Oeschger (D-O) oscillations and Heinrich events (within dating uncertainties), suggesting that the influence of millennial-scale climate oscillations can extend beyond the North Atlantic and influence climate of the Great Basin. The magnetic mineralogy of zones IV-VII (MIS 5, 6, and 7

  5. Appraisal of gas hydrate resources based on a P- and S-impedance reflectivity template: case study from the deep sea sediments in Iran

    International Nuclear Information System (INIS)

    Hosseini Shoar, Behnam; Javaherian, Abdolrahim; Farajkhah, Nasser Keshavarz; Seddigh Arabani, Mojtaba

    2013-01-01

    The occurrence of a bottom simulating reflector (BSR) in the 2D seismic data from Makran's accretionary prism reveals the presence of gas hydrate and free gas several hundred meters below the seafloor of Iran's deep sea. According to the global distribution of marine hydrates, they are widely present in deep sea sediments, where high operational costs and hazards cause a lack of well log information. Therefore, developing a method to quantify the hydrate resources with seismic data is an ultimate goal for unexplored regions. In this study, the so-called reflectivity templates (RTs) are introduced for quantification of the hydrate and free gas near the BSR. These RTs are intuitive crossplots of P-impedance and S-impedance contrasts across the BSR. They are calculated theoretically based on the effective medium theory for different hydrate distribution modes with some assumptions on porosity and mineralogical composition of unconsolidated sediments. This technique suggests the possibility of using the amplitude variation versus offset (AVO) analysis of the BSR for a quantitative interpretation when well log data are not available. By superimposing the AVO-derived P-impedance and S-impedance contrasts across the BSR on these RTs, the saturations of the hydrate and free gas near the BSR could be estimated. Validation of this approach by synthetic data showed that a reliable quantification could be achieved if the model parameters were rearranged to a form in which the AVO inversion was independent of the S-wave to P-wave velocity-ratio assumption. Based on this approach applied on the 2D marine pre-stack time migrated seismic line in offshore Iran, 4% to 28% of the gas hydrate and 1% to 2% of the free gas are expected to be accumulated near the thrusted-ridge and thrusted-footwall types of BSRs. (paper)

  6. Comparing the sensitivity of permafrost and marine gas hydrate to climate warming

    International Nuclear Information System (INIS)

    Taylor, A.E.; Dallimore, S.R.; Hyndman, R.D.; Wright, F.

    2005-01-01

    The sensitivity of Arctic subpermafrost gas hydrate at the Mallik borehole was compared to temperate marine gas hydrate located offshore southwestern Canada. In particular, a finite element geothermal model was used to determine the sensitivity to the end of the ice age, and contemporary climate warming of a 30 m thick methane hydrate layer lying at the base of a gas hydrate stability zone prior to 13.5 kiloannum (ka) before present (BP). It was suggested that the 30 m gas-hydrate-bearing layer would have disappeared by now, according to the thermal signal alone. However, the same gas-hydrate-bearing layer underlying permafrost would persist until at least 4 ka after present, even with contemporary climate warming. The longer time for subpermafrost gas hydrate comes from the thawing pore ice at the base of permafrost, at the expense of dissociation of the deeper gas hydrate. The dissociation of underlying gas hydrate from climate surface warming is buffered by the overlying permafrost

  7. Infrared spectroscopy for monitoring gas hydrates in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, G.T.; Luzinova, Y.; Mizaikoff, B. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemistry and Biochemistry; Raichlin, Y.; Katzir, A. [Tel-Aviv Univ., Tel-Aviv (Israel). Shool of Physics and Astronomy

    2008-07-01

    This paper introduced the first principles for monitoring gas hydrate formation and dissociation in aqueous solution by evaluating state-responsive infrared (IR) absorption features of water with fiberoptic evanescent field spectroscopy. A first order linear functional relationship was also derived according to Lambert Beer's law in order to quantify the percentage gas hydrate within the volume of water probed via the evanescent field. In addition, spectroscopic studies evaluating seafloor sediments collected from a gas hydrate site in the Gulf of Mexico revealed minimal spectral interferences from sediment matrix components. As such, evanescent field sensing strategies were established as a promising perspective for monitoring the dynamics of gas hydrates in oceanic environments. 21 refs., 5 figs.

  8. Effects-based spatial assessment of contaminated estuarine sediments from Bear Creek, Baltimore Harbor, MD, USA.

    Science.gov (United States)

    Hartzell, Sharon E; Unger, Michael A; McGee, Beth L; Wilson, Sacoby M; Yonkos, Lance T

    2017-10-01

    Estuarine sediments in regions with prolonged histories of industrial activity are often laden to significant depths with complex contaminant mixtures, including trace metals and persistent organic pollutants. Given the complexity of assessing risks from multi-contaminant exposures, the direct measurement of impacts to biological receptors is central to characterizing contaminated sediment sites. Though biological consequences are less commonly assessed at depth, laboratory-based toxicity testing of subsurface sediments can be used to delineate the scope of contamination at impacted sites. The extent and depth of sediment toxicity in Bear Creek, near Baltimore, Maryland, USA, was delineated using 10-day acute toxicity tests with the estuarine amphipod Leptocheirus plumulosus, and chemical analysis of trace metals and persistent organic pollutants. A gradient of toxicity was demonstrated in surface sediments with 21 of 22 tested sites differing significantly from controls. Effects were most pronounced (100% lethality) at sites proximate to a historic industrial complex. Sediments from eight of nine core samples to depths of 80 cm were particularly impacted (i.e., caused significant lethality to L. plumulosus) even in locations overlain with relatively non-toxic surface sediments, supporting a conclusion that toxicity observed at the surface (top 2 cm) does not adequately predict toxicity at depth. In seven of nine sites, toxicity of surface sediments differed from toxicity at levels beneath by 28 to 69%, in five instances underestimating toxicity (28 to 69%), and in two instances overestimating toxicity (44 to 56%). Multiple contaminants exceeded sediment quality guidelines and correlated positively with toxic responses within surface sediments (e.g., chromium, nickel, polycyclic aromatic hydrocarbon (PAH), total petroleum hydrocarbon). Use of an antibody-based PAH biosensor revealed that porewater PAH concentrations also increased with depth at most sites. This

  9. Hydro-geomechanical behaviour of gas-hydrate bearing soils during gas production through depressurization and CO2 injection

    Science.gov (United States)

    Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.

    2015-12-01

    Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.

  10. Gas geochemistry studies at the gas hydrate occurrence in the permafrost environment of Mallik (NWT, Canada)

    Science.gov (United States)

    Wiersberg, T.; Erzinger, J.; Zimmer, M.; Schicks, J.; Dahms, E.; Mallik Working Group

    2003-04-01

    We present real-time mud gas monitoring data as well as results of noble gas and isotope investigations from the Mallik 2002 Production Research Well Program, an international research project on Gas Hydrates in the Northwest Territories of Canada. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. Mud gas monitoring (extraction of gas dissolved in the drill mud followed by real-time analysis) revealed more or less complete gas depth profiles of Mallik 4L-38 and Mallik 5L-38 wells for N_2, O_2, Ar, He, CO_2, H_2, CH_4, C_2H_6, C_3H_8, C_4H10, and 222Rn; both wells are approx. 1150 m deep. Based on the molecular and and isotopic composition, hydrocarbons occurring at shallow depth (down to ˜400 m) are mostly of microbial origin. Below 400 m, the gas wetness parameter (CH_4/(C_2H_6 + C_3H_8)) and isotopes indicate mixing with thermogenic gas. Gas accumulation at the base of permafrost (˜650 m) as well as δ13C and helium isotopic data implies that the permafrost inhibits gas flux from below. Gas hydrate occurrence at Mallik is known in a depth between ˜890 m and 1100 m. The upper section of the hydrate bearing zone (890 m--920 m) consists predominantly of methane bearing gas hydrates. Between 920 m and 1050 m, concentration of C_2H_6, C_3H_8, and C_4H10 increases due to the occurrence of organic rich sediment layers. Below that interval, the gas composition is similar to the upper section of the hydrate zone. At the base of the hydrate bearing zone (˜1100 m), elevated helium and methane concentrations and their isotopic composition leads to the assumption that gas hydrates act as a barrier for gas migration from below. In mud gas

  11. Authigenic Gypsum in Gas-Hydrate Associated Sediments from the East Coast of India (Bay of Bengal)

    Digital Repository Service at National Institute of Oceanography (India)

    Kocherla, M.

    operation respectively. This is NIO contribution no… 10 4.0 References. Aharon, P., Graber, E. R. Roberts, H. H., 1992. Dissolved carbon and delta c-13 anomalies in the water column caused by hydrocarbon seeps on the northwestern Gulf of Mexico... hydrate. Geology, 24: 655–658. Botz, R., Faber, E., Whiticar, M, Brooks, J.M., 1988. Authigenic carbonates in sediments from the Gulf of Mexico. Earth and Planetary Science Letters, 88: 263-272. Bohrmann, G., Greinert, J., Suess, E., Torres, M., 1998...

  12. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-07-15

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  13. Is the extent of glaciation limited by marine gas-hydrates?

    Science.gov (United States)

    Paull, Charles K.; Ussler, William; Dillon, William P.

    1991-01-01

    Methane may have been released to the atmosphere during the Quaternary from Arctic shelf gas-hydrates as a result of thermal decomposition caused by climatic warming and rising sea-level; this release of methane (a greenhouse gas) may represent a positive feedback on global warming [Revelle, 1983; Kvenvolden, 1988a; Nisbet, 1990]. We consider the response to sea-level changes by the immense amount of gas-hydrate that exists in continental rise sediments, and suggest that the reverse situation may apply—that release of methane trapped in the deep-sea sediments as gas-hydrates may provide a negative feedback to advancing glaciation. Methane is likely to be released from deep-sea gas-hydrates as sea-level falls because methane gas-hydrates decompose with pressure decrease. Methane would be released to sediment pore space at shallow sub-bottom depths (100's of meters beneath the seafloor, commonly at water depths of 500 to 4,000 m) producing zones of markedly decreased sediment strength, leading to slumping [Carpenter, 1981; Kayen, 1988] and abrupt release of the gas. Methane is likely to be released to the atmosphere in spikes that become larger and more frequent as glaciation progresses. Because addition of methane to the atmosphere warms the planet, this process provides a negative feedback to glaciation, and could trigger deglaciation.

  14. Archie’s saturation exponent for natural gas hydrate in coarse-grained reservoirs

    Science.gov (United States)

    Cook, Ann E.; Waite, William F.

    2018-01-01

    Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice‐bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate‐bearing sands. In this work, we calibrate n for hydrate‐bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L‐38, by establishing an independent downhole Sh profile based on compressional‐wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L‐38 well, we also apply this method to two marine, coarse‐grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313‐H and Green Canyon 955‐H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse‐grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.

  15. Submarine slope failures in the Beaufort Sea; Influence of gas hydrate decomposition

    Science.gov (United States)

    Grozic, J. L.; Dallimore, S.

    2012-12-01

    The continental shelf of the Beaufort Sea is composed of complex of marine and non-marine sequences of clay, silt, and sand. In many areas of the shelf these sediments contain occurrences of ice-bonded permafrost and associated pressure and temperature conditions that are conducive to the occurrence of methane gas hydrates. This complex environment is undergoing dramatic warming, where changes in sea level, ocean bottom temperatures, and geothermal regimes are inducing permafrost thawing and gas hydrate decomposition. Decomposition is inferred to be occurring at the base and top of the gas hydrate stability zone, which will cause sediment weakening and the generation of excess water and free gas. In such settings, the overlying permafrost cap may act as a permeability barrier, which could result in significant excess pore pressures and reduction in sediment stability. The shelf to slope transition is thought to be an area of extensive regional instability with acoustic records indicating there is upwards of 500 km of slumps and glides extending over the entire Beaufort margin. Some of these slide regions are coincident with up-dip limit of the permafrost gas hydrate stability zone. In this paper, a two dimensional model of the Beaufort shelf was constructed to examine the influence of gas hydrate decomposition on slope stability. The model relies on available data on the Beaufort sediments generated from offshore hydrocarbon exploration in the 1980s and 90s, as well as knowledge available from multidisciplinary marine research programs conducted in the outer shelf area. The slope stability model investigates the influence of marine transgression and ocean bottom warming by coupling soil deformation with hydrate dissociation during undrained conditions. By combining mechanical and thermal loading of the sediment, a more accurate indication of slope stability was obtained. The stability analysis results indicate a relatively low factor of safety for the Beaufort

  16. Investigating the influence of lithologic heterogeneity on gas hydrate formation and methane recycling at the base of the gas hydrate stability zone in channelized systems

    Energy Technology Data Exchange (ETDEWEB)

    Daigle, Hugh; Nole, Michael; Cook, Ann; Malinverno, Alberto

    2017-12-14

    In marine environments, gas hydrate preferentially accumulates in coarse-grained sediments. At the meso- to micro-scale, however, hydrate distribution in these coarse-grained units is often heterogeneous. We employ a methane hydrate reservoir simulator coupling heat and mass transfer as well as capillary effects to investigate how capillary controls on methane solubility affect gas and hydrate accumulations in reservoirs characterized by graded bedding and alternating sequences of coarse-grained sands and fine-grained silt and clay. Simulations bury a channelized reservoir unit encased in homogeneous, fine-grained material characterized by small pores (150 nm) and low permeability (~1 md in the absence of hydrate). Pore sizes within each reservoir bed between vary between coarse sand and fine silt. Sands have a median pore size of 35 microns and a lognormal pore size distribution. We also investigate how the amount of labile organic carbon (LOC) affects hydrate growth due to microbial methanogenesis within the sediments. In a diffusion-dominated system, methane movies into reservoir layers along spatial gradients in dissolved methane concentration. Hydrate grows in such a way as to minimize these concentration gradients by accumulating slower in finer-grained reservoir layers and faster in coarser-grained layers. Channelized, fining-upwards sediment bodies accumulate hydrate first along their outer surfaces and thence inward from top to bottom. If LOC is present in thin beds within the channel, higher saturations of hydrate will be distributed more homogeneously throughout the unit. When buried beneath the GHSZ, gas recycling can occur only if enough hydrate is present to form a connected gas phase upon dissociation. Simulations indicate that this is difficult to achieve for diffusion-dominated systems, especially those with thick GHSZs and/or small amounts of LOC. However, capillary-driven fracturing behavior may be more prevalent in settings with thick GHSZs.

  17. Delineation, Characterization and Assessment of Gas-hydrates: Examples from Indian Offshore

    Science.gov (United States)

    Sain, K.

    2017-12-01

    Successful test productions in McKenzie delta, Alaska, Nankai Trough and more recently in South China Sea have provided great hopes for production of gas-hydrates in near future, and boosted national programs of many countries including India. It has been imperative to map the prospective zones of gas-hydrates and evaluate their resource potential. Hence, we have adopted a systematic strategy for the delineation, characterization and quantification of gas-hydrates based on seismic traveltime tomography, full-waveform inversion, impedance inversion, attributes computation and rock-physical modeling. The bathymetry, seafloor temperature, total organic carbon content, sediment-thickness, rate of sedimentation, geothermal gradient imply that shallow sediments of Indian deep water are good hosts for occurrences of gas-hydrates. From the analysis of multi-channel seismic (MCS) data, we have identified the Krishna-Godavari (KG), Mahanadi and Andaman basins as prospective for gas-hydrates, and their presence has been validated by drilling and coring of Indian Expeditions-01 and -02. The MCS data also shows BSR-like features in the Cauvery, Kerala-Konkan and Saurashtra basins indicating that gas-hydrates cannot be ruled out from these basins also. We shall present several approaches that have been applied to field seismic and well-log data for the detection, characterization and quantification of gas-hydrates along the Indian margin.

  18. Characterisation of heavy metal-bearing phases in stream sediments of the Meza River Valley, Slovenia, by means of SEM/EDS analysis

    International Nuclear Information System (INIS)

    Miler, M; Gosar, M

    2010-01-01

    Stream sediment reflects the rock structure of the catchment area, its geochemical characteristics and possible recent contamination upstream of the sampling point and thus, it is most frequently used in geochemical researches of heavy metal pollution. Stream sediment samples were collected along the Mez'a River and its tributaries and the Drava River, located in the NNE part of Slovenia. Previous geochemical studies have shown that these sediments are heavily polluted with heavy metals as a consequence of past mining of Pb-Zn ore and steelworks activities. Conventional geochemical analyses (ICP-MS, AAS, etc.) provided limited information on mineralogy, morphology and sources of heavy metal-bearing phases therefore SEM/EDS was utilized. Several problems were confronted with during EDS analysis, which are related to identification and quantification of light elements, identification of elements due to peak overlaps and quantification of spectra from unpolished samples. These problems were successfully dealt with. SEM/EDS enabled successful identification of heavy metal-bearing phases in stream sediments. Ore mineral phases, such as cerussite, sphalerite, smithsonite and galena, different heavy metal-bearing Fe-alloys, Fe-oxides and spherical particles and common rock-forming and accessory mineral phases, such as barite, rutile, ilmenite, zircon and monazite, were identified using solely SEM/EDS. These results were used for subsequent geochemical interpretation and source apportionment of heavy metals, according to associations of different heavy metal-bearing phases. Heavy metal-bearing phases were arranged by their source and genesis into three groups, denoted as geogenic/technogenic, technogenic and geogenic.

  19. Seismic-Scale Rock Physics of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Amos Nur

    2009-01-08

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  20. CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter

    International Nuclear Information System (INIS)

    Lee, Yohan; Kim, Yunju; Lee, Jaehyoung; Lee, Huen; Seo, Yongwon

    2015-01-01

    Highlights: • The extent of the replacement was improved due to the enclathration of N 2 in small cages. • The dissociation enthalpies of the replaced gas hydrates were measured. • There was no noticeable heat flow change during the CH 4 –flue gas replacement. • The replacement could occur without significant destruction of gas hydrates. - Abstract: The CH 4 –flue gas replacement in naturally occurring gas hydrates has attracted significant attention due to its potential as a method of exploitation of clean energy and sequestration of CO 2 . In the replacement process, the thermodynamic and structural properties of the mixed gas hydrates are critical factors to predict the heat flow in the hydrate-bearing sediments and the heat required for hydrate dissociation, and to evaluate the CO 2 storage capacity of hydrate reservoirs. In this study, the 13 C NMR and gas composition analyses confirmed that the preferential enclathration of N 2 molecules in small 5 12 cages of structure I hydrates improved the extent of the CH 4 recovery. A high pressure micro-differential scanning calorimeter (HP μ-DSC) provided reliable hydrate stability conditions and heat of dissociation values in the porous silica gels after the replacement, which confirmed that CH 4 in the hydrates was successfully replaced with flue gas. A heat flow change associated with the dissociation and formation of hydrates was not noticeable during the CH 4 –flue gas replacement. Therefore, this study reveals that CH 4 –flue gas swapping occurs without structural transitions and significant hydrate dissociations

  1. Acoustic stratigraphy of Bear Lake, Utah-Idaho: late Quaternary sedimentation patterns in a simple half-graben

    Science.gov (United States)

    Colman, Steven M.

    2006-01-01

    A 277-km network of high-resolution seismic-reflection profiles, supplemented with a sidescan-sonar mosaic of the lake floor, was collected in Bear Lake, Utah–Idaho, in order to explore the sedimentary framework of the lake's paleoclimate record. The acoustic stratigraphy is tied to a 120 m deep, continuously cored drill hole in the lake. Based on the age model for the drill core, the oldest continuously mapped acoustic reflector in the data set has an age of about 100 ka, although older sediments were locally imaged. The acoustic stratigraphy of the sediments below the lake indicates that the basin developed primarily as a simple half-graben, with a steep normal-fault margin on the east and a flexural margin on the west. As expected for a basin controlled by a listric master fault, seismic reflections steepen and diverge toward the fault, bounding eastward-thickening sediment wedges. Secondary normal faults west of the master fault were imaged beneath the lake and many of these faults show progressively increasing offset with depth and age. Several faults cut the youngest sediments in the lake as well as the modern lake floor. The relative simplicity of the sedimentary sequence is interrupted in the northwestern part of the basin by a unit that is interpreted as a large (4 × 10 km) paleodelta of the Bear River. The delta overlies a horizon with an age of about 97 ka, outcrops at the lake floor and is onlapped by much of the uppermost sequence of lake sediments. A feature interpreted as a wave-cut bench occurs in many places on the western side of the lake. The base of this bench occurs at a depth (22–24 m) similar to that (20–25 m) of the distal surface of the paleodelta. Pinch-outs of sedimentary units are common in relatively shallow water on the gentle western margin of the basin and little Holocene sediment has accumulated in water depths of less than 30 m. On the steep eastern margin of the basin, sediments commonly onlap the hanging wall of the East

  2. Behaviour of gas production from type 3 hydrate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Pooladi-Darvish, M. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Fekete Associates Inc., Calgary, AB (Canada); Zatsepina, O. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Hong, H. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-07-01

    The possible role of gas hydrates as a potential energy resource was discussed with particular reference to methods for estimating the rate of gas production from hydrate reservoirs under different operating conditions. This paper presented several numerical simulations studies of gas production from type 3 hydrate reservoirs in 1-D and 2-D geometries. Type 3 reservoirs include gas production from hydrate-reservoirs that lie totally within the hydrate stability zone and are sandwiched by impermeable layers on top and bottom. The purpose of this study was to better understand hydrate decomposition by depressurization. The study questioned whether 1-D modeling of type 3 hydrate reservoirs is a reasonable approximation. It also determined whether gas rate increases or decreases with time. The important reservoir characteristics for determining the rate of gas production were identified. Last, the study determined how competition between fluid and heat flow affects hydrate decomposition. This paper also described the relation and interaction between the heat and fluid flow mechanisms in depressurization of type 3 hydrate reservoirs. All results of 1-D and 2-D numerical simulation and analyses were generated using the STARS simulator. It was shown that the rate of gas production depends on the initial pressure/temperature conditions and permeability of the hydrate bearing formation. A high peak rate may be achieved under favourable conditions, but this peak rate is obtained after an initial period where the rate of gas production increases with time. The heat transfer in the direction perpendicular to the direction of fluid flow is significant, requiring 2D modeling. The hydraulic diffusivity is low because of the low permeability of hydrate-bearing formations. This could result in competition between heat and fluid flow, thereby influencing the behaviour of decomposition. 6 refs., 3 tabs., 12 figs.

  3. The Characteristics of Fluid Potential in Mud Diapirs Associated with Gas Hydrates in the Okinawa Trough

    Directory of Open Access Journals (Sweden)

    Ning Xu

    2006-01-01

    Full Text Available Many mud diapirs have been identified in the southern Okinawa Trough from a seismic survey using R/V KEXUE I in 2001. The movement and accumulation of free gas related to mud diapirs are discussed in detail by an analysis of fluid potential which is based upon velocity data. It can be found that free gas moves from the higher fluid potential strata to the lower ones and the gas hydrate comes into being during free gas movement meeting the proper criteria of temperature and pressure. In fact, gas hydrates have been found in the upper layers above the mud diapirs and in host rocks exhibiting other geophysical characteristics. As the result of the formation of the gas hydrate, the free gas bearing strata are enclosed by the gas hydrate bearing strata. Due to the high pressure anomalies of the free gas bearing strata the fluid potential increases noticeably. It can then be concluded that the high fluid potential anomaly on the low fluid potential background may be caused by the presence of the free gas below the gas hydrate bearing strata.

  4. Major occurrences and reservoir concepts of marine clathrate hydrates: Implications of field evidence

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Dillon, William P.; Clennell, M.B.; Rowe, M.M.

    1998-01-01

    This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert). Questions concerning clathrate hydrate as an energy resource, as a factor in modifying global climate and as a triggering mechanism for mass movements invite consideration of what factors promote hydrate concentration, and what the quintessential hydrate-rich sediment may be. Gas hydrate field data, although limited, provide a starting point for identifying the environments and processes that lead to more massive concentrations. Gas hydrate zones are up to 30 m thick and the vertical range of occurrence at a site may exceed 200 m. Zones typically occur more than 100m above the phase boundary. Thicker zones are overwhelmingly associated with structural features and tectonism, and often contain sand. It is unclear whether an apparent association between zone thickness and porosity represents a cause-and-effect relationship. The primary control on the thickness of a potential gas hydrate reservoir is the geological setting. Deep water and low geothermal gradients foster thick gas hydrate stability zones (GHSZs). The presence of faults, fractures, etc. can favour migration of gas-rich fluids. Geological processes, such as eustacy or subsidence, may alter the thickness of the GHSZ or affect hydrate concentratiion. Tectonic forces may promote injection of gas into the GHSZ. More porous and permeable sediment, as host sediment properties, increase storage capacity and fluid conductivity, and thus also enhance reservoir potential.

  5. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    which have been effectively used to collect invaluable geologic and engineering data on the occurrence of methane hydrates throughout the world. Technologies designed specifically for the collection and analysis of undisturbed methane hydrate samples have included the development of a host of pressure core systems and associated specialty laboratory apparatus. The study and use of both wireline conveyed and logging-­‐while-­‐drilling technologies have also contributed greatly to our understanding of the in-­‐situ nature of hydrate-­‐bearing sediments. Recent developments in borehole instrumentation specifically designed to monitor changes associated with hydrates in nature through time or to evaluate the response of hydrate accumulations to production have also contributed greatly to our understanding of the complex nature and evolution of methane hydrate systems.Our understanding of how methane hydrates occur and behave in nature is still growing and evolving – we do not yet know if methane hydrates can be economically produced, nor do we know fully the role of hydrates as an agent of climate change or as a geologic hazard. But it is known for certain that scientific drilling has contributed greatly to our understanding of hydrates in nature and will continue to be a critical source of the information to advance our understanding of methane hydrates.

  6. The effect of hydrate content on seismic attenuation: A case study for Mallik 2L-38 well data, Mackenzie delta, Canada

    Science.gov (United States)

    Chand, Shyam; Minshull, Tim A.

    2004-07-01

    Observations of velocities in sediments containing gas hydrates show that the strength of sediments increases with hydrate saturation. Hence it is expected that the attenuation of these sediments will decrease with increasing hydrate saturation. However, sonic log measurements in the Mallik 2L-38 well and cross hole tomography measurements in the Mallik field have shown that attenuation increases with hydrate saturation. We studied a range of mechanisms by which increasing hydrate saturation could cause increased attenuation. We found that a difference in permeability between the host sediment and the newly formed hydrate can produce the observed effect. We modelled attenuation in terms of Biot and squirt flow mechanisms in composite media. We have used our model to predict observed attenuations in the Mallik 2L-38 well, Mackenzie Delta, Canada.

  7. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  8. Application of conditional simulation of heterogeneous rock properties to seismic scattering and attenuation analysis in gas hydrate reservoirs

    Science.gov (United States)

    Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd

    2012-02-01

    We present a conditional simulation algorithm to parameterize three-dimensional heterogeneities and construct heterogeneous petrophysical reservoir models. The models match the data at borehole locations, simulate heterogeneities at the same resolution as borehole logging data elsewhere in the model space, and simultaneously honor the correlations among multiple rock properties. The model provides a heterogeneous environment in which a variety of geophysical experiments can be simulated. This includes the estimation of petrophysical properties and the study of geophysical response to the heterogeneities. As an example, we model the elastic properties of a gas hydrate accumulation located at Mallik, Northwest Territories, Canada. The modeled properties include compressional and shear-wave velocities that primarily depend on the saturation of hydrate in the pore space of the subsurface lithologies. We introduce the conditional heterogeneous petrophysical models into a finite difference modeling program to study seismic scattering and attenuation due to multi-scale heterogeneity. Similarities between resonance scattering analysis of synthetic and field Vertical Seismic Profile data reveal heterogeneity with a horizontal-scale of approximately 50 m in the shallow part of the gas hydrate interval. A cross-borehole numerical experiment demonstrates that apparent seismic energy loss can occur in a pure elastic medium without any intrinsic attenuation of hydrate-bearing sediments. This apparent attenuation is largely attributed to attenuative leaky mode propagation of seismic waves through large-scale gas hydrate occurrence as well as scattering from patchy distribution of gas hydrate.

  9. Relation between gas hydrate and physical properties at the Mallik 2L-38 research well in the Mackenzie delta

    Science.gov (United States)

    Winters, W.J.; Dallimore, S.R.; Collett, T.S.; Jenner, K.A.; Katsube, J.T.; Cranston, R.E.; Wright, J.F.; Nixon, F.M.; Uchida, T.

    2000-01-01

    As part of an interdisciplinary field program, a 1150-m deep well was drilled in the Canadian Arctic to determine, among other goals, the location, characteristics, and properties of gas hydrate. Numerous physical properties of the host sediment were measured in the laboratory and are presented in relation to the lithology and quantity of in situ gas hydrate. Profiles of measured and derived properties presented from that investigation include: sediment wet bulk density, water content, porosity, grain density, salinity, gas hydrate content (percent occupancy of non-sediment grain void space), grain size, porosity, and post-recovery core temperature. The greatest concentration of gas hydrate is located within sand and gravel deposits between 897 and 922 m. Silty sediment between 926 and 952 m contained substantially less, or no, gas hydrate perhaps because of smaller pore size.

  10. Minimum distribution of subsea ice-bearing permafrost on the US Beaufort Sea continental shelf

    Science.gov (United States)

    Brothers, Laura L.; Hart, Patrick E.; Ruppel, Carolyn D.

    2012-01-01

    Starting in Late Pleistocene time (~19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ~120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (>2.3 km s−1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along sea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.

  11. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  12. The rates measurement of methane hydrate formation and dissociation using micro-drilling system application for gas hydrate exploration

    Energy Technology Data Exchange (ETDEWEB)

    Bin Dou [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)]|[Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Reinicke, K.M. [Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Guosheng Jiang; Xiang Wu; Fulong Ning [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)

    2006-07-01

    When drilling through gas hydrate bearing formations, the energy supplied by virtue of the drilling process may lead to a destabilization of the hydrates surrounding the wellbore. Therefore, as the number of oil and gas fields being development in deepwater and onshore arctic environments increases, greater emphasis should be placed on quantifying the risks, gas hydrates pose to drilling operations. The qualification of these risks requires a comprehensive understanding of gas hydrate-formation and dissociation as a result of drilling induced processes. To develop the required understanding of gas hydrat formation and dissociation, the authors conducted laboratory experiments by using a micro-drilling system, to study the dissociation rates of methane hydrates contained in a tank reactor. The test facility used is a development of China University of Geosciences. The rates of methane hydrate formation and dissociation in the tank reactor were measured at steady-state conditions at pressures ranging from 0.1 to 25 MPa and temperatures ranging from -5 to 20 C. The experimental results show that the rate of hydrate formation is strongly influenced by the fluid system used to form the hydrates, pressure and temperature, with the influence of the temperature on methane hydrate dissociation being stronger than that of the pressure. Drilling speed, drilling fluids and hydrate dissociation inhibitors were also shown to influence hydrate dissociation rate. The derived results have been used to predict hydrate drilling stability for several drilling fluid systems.

  13. 77 FR 59639 - Bear Lake National Wildlife Refuge, Bear Lake County, ID and Oxford Slough Waterfowl Production...

    Science.gov (United States)

    2012-09-28

    ... by 2020 to reduce the sedimentation rate of Bear River water diversions and to better exclude carp... sedimentation rate of Bear River water diversions and better exclude carp from Refuge wetlands. As in... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R1-R-2012-N095; 1265-0000-10137-S3] Bear...

  14. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  15. Oceanic hydrates: more questions than answers

    International Nuclear Information System (INIS)

    Laherrere, Jean

    2000-01-01

    Methane hydrates create problems by blocking pipelines and casing; they are also accused of contributing to environmental problems (e.g. global warming). Methane hydrates are also found in permafrost areas and in oceanic sediments where the necessary temperature and pressure for stability occur. Claims for the widespread occurrence in thick oceanic deposits are unfounded: apparently indirect evidence from seismic reflectors, seismic hydrocarbon indicators, logs and free samples is unreliable. At one time, hydrate was seen as a static, biogenic, continuous, huge resource but that view is changing to one of a dynamic, overpressurised, discontinuous and unreliable resource. Only Japan and India are currently showing any serious interest in hydrates. Academic research has raised more questions than answers. It is suggested that more hard exploratory evidence rather than theoretical study is required

  16. Characterisation of heavy metal-bearing phases in stream sediments of the Meža River Valley, Slovenia, by means of SEM/EDS analysis

    Science.gov (United States)

    Miler, M.; Gosar, M.

    2010-02-01

    Stream sediment reflects the rock structure of the catchment area, its geochemical characteristics and possible recent contamination upstream of the sampling point and thus, it is most frequently used in geochemical researches of heavy metal pollution. Stream sediment samples were collected along the Meža River and its tributaries and the Drava River, located in the NNE part of Slovenia. Previous geochemical studies have shown that these sediments are heavily polluted with heavy metals as a consequence of past mining of Pb-Zn ore and steelworks activities. Conventional geochemical analyses (ICP-MS, AAS, etc.) provided limited information on mineralogy, morphology and sources of heavy metal-bearing phases therefore SEM/EDS was utilized. Several problems were confronted with during EDS analysis, which are related to identification and quantification of light elements, identification of elements due to peak overlaps and quantification of spectra from unpolished samples. These problems were successfully dealt with. SEM/EDS enabled successful identification of heavy metal-bearing phases in stream sediments. Ore mineral phases, such as cerussite, sphalerite, smithsonite and galena, different heavy metal-bearing Fe-alloys, Fe-oxides and spherical particles and common rock-forming and accessory mineral phases, such as barite, rutile, ilmenite, zircon and monazite, were identified using solely SEM/EDS. These results were used for subsequent geochemical interpretation and source apportionment of heavy metals, according to associations of different heavy metal-bearing phases. Heavy metal-bearing phases were arranged by their source and genesis into three groups, denoted as geogenic/technogenic, technogenic and geogenic.

  17. Global Inventory of Methane Hydrate: How Large is the Threat? (Invited)

    Science.gov (United States)

    Buffett, B. A.; Frederick, J. M.

    2010-12-01

    Methane hydrate is a dark horse in the science of climate change. The volume of methane sequestered in marine sediments is large enough to pose a potential threat, yet the expected contribution to future warming is not known. Part of the uncertainty lies in the poorly understood details of methane release from hydrate. Slow, diffusive loss of methane probably results in oxidation by sulfate and precipitation to CaCO3 in the sediments, with little effect on climate. Conversely, a direct release of methane into the atmosphere is liable to have strong and immediate consequences. Progress in narrowing the possibilities requires a better understanding of the mechanisms responsible for methane release. Improvements are also needed in our estimates of the hydrate inventory, as this sets a limit on the possible response. Several recent estimates of the hydrate inventory have been constructed using mechanistic models. Many of the model parameters (e.g. sedimentation rate and sea floor temperature) can be estimated globally, while others (e.g. vertical fluid flow) are not well known. Available observations can be used to estimate the poorly known parameters, but it is reasonable to question whether the results from a limited number of sites are representative of other locations. Fluid flow is a case in point because most hydrate locations are associated with upward flow. On the other hand, simple models of sediment compaction predict downward flow relative to the sea floor, which acts to impede hydrate formation. A variety of mechanisms can produce upward flow, including time-dependent sedimentation, seafloor topography, subsurface fractures, dehydration of clay minerals and gradual burial of methane hydrate below the stability zone. Each of these mechanisms makes specific predictions for the magnitude of flow and the proportion of sea floor that is likely to be affected. We assess the role of fluid flow on the present-day inventory and show that the current estimates for

  18. The impact of permafrost-associated microorganisms on hydrate formation kinetics

    Science.gov (United States)

    Luzi-Helbing, Manja; Liebner, Susanne; Spangenberg, Erik; Wagner, Dirk; Schicks, Judith M.

    2016-04-01

    The relationship between gas hydrates, microorganisms and the surrounding sediment is extremely complex: On the one hand, microorganisms producing methane provide the prerequisite for gas hydrate formation. As it is known most of the gas incorporated into natural gas hydrates originates from biogenic sources. On the other hand, as a result of microbial activity gas hydrates are surrounded by a great variety of organic compounds which are not incorporated into the hydrate structure but may influence the formation or degradation process. For gas hydrate samples from marine environments such as the Gulf of Mexico a direct association between microbes and gas hydrates was shown by Lanoil et al. 2001. It is further assumed that microorganisms living within the gas hydrate stability zone produce biosurfactants which were found to enhance the hydrate formation process significantly and act as nucleation centres (Roger et al. 2007). Another source of organic compounds is sediment organic matter (SOM) originating from plant material or animal remains which may also enhance hydrate growth. So far, the studies regarding this relationship were focused on a marine environment. The scope of this work is to extend the investigations to microbes originating from permafrost areas. To understand the influence of microbial activity in a permafrost environment on the methane hydrate formation process and the stability conditions of the resulting hydrate phase we will perform laboratory studies. Thereby, we mimic gas hydrate formation in the presence and absence of methanogenic archaea (e.g. Methanosarcina soligelidi) and other psychrophilic bacteria isolated from permafrost environments of the Arctic and Antarctic to investigate their impact on hydrate induction time and formation rates. Our results may contribute to understand and predict the occurrences and behaviour of potential gas hydrates within or adjacent to the permafrost. Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH

  19. Effect of gas hydrates melting on seafloor slope stability

    Science.gov (United States)

    Sultan, N.; Cochonat, P.; Foucher, J. P.; Mienert, J.; Haflidason, H.; Sejrup, H. P.

    2003-04-01

    Quantitative studies of kinetics of gas hydrate formation and dissociation is of a particular concern to the petroleum industry for an evaluation of environmental hazards in deep offshore areas. Gas hydrate dissociation can generate excess pore pressure that considerably decreases the strength of the soil. In this paper, we present a theoretical study of the thermodynamic chemical equilibrium of gas hydrate in soil, which is based on models previously reported by Handa (1989), Sloan (1998) and Henry (1999). Our study takes into account the influence of temperature, pressure, pore water chemistry, and the pore size distribution of the sediment. This model fully accounts for the latent heat effects, as done by Chaouch and Briaud (1997) and Delisle et al. (1998). It uses a new formulation based on the enthalpy form of the law of conservation of energy. The model allows for the evaluation of the excess pore pressure generated during gas hydrate dissociation using the Soave’s (1972) equation of state. Fluid flow in response to the excess pore pressure is simulated using the finite element method. In the second part of the paper, we present and discuss an application of the model through a back-analysis of the case of the giant Storegga slide on the Norwegian margin. Two of the most important changes during and since the last deglaciation (hydrostatic pressure due to the change of the sea level and the increase of the sea water temperature) were considered in the calculation. Simulation results are presented and discussed. Chaouch, A., &Briaud, J.-L., 1997. Post melting behavior of gas hydrates in soft ocean sediments, OTC-8298, in 29th offshore technology conference proceedings, v. 1, Geology, earth sciences and environmental factors: Society of Petroleum Engineers, p. 217-224. Delisle, G.; Beiersdorf, H.; Neben, S.; Steinmann, D., 1998. The geothermal field of the North Sulawesi accretionary wedge and a model on BSR migration in unstable depositional environments. in

  20. Do Pleistocene Glacial-Interglacial Cycles Control Methane Hydrate Formation? An Example from Green Canyon, Gulf of Mexico

    Science.gov (United States)

    Oryan, B.; Malinverno, A.; Goldberg, D.; Fortin, W.

    2017-12-01

    Well GC955-H was drilled in the Green Canyon region under the Gulf of Mexico Gas Hydrates Joint Industry Project in 2009. Logging-while-drilling resistivity logs obtained at the well indicate that the saturation of gas hydrate varies between high and low values in an alternating fashion. This trend is observed from 180 to 360mbsf, depths that correspond to the Late Pleistocene. Similar gas hydrate saturation patterns have been observed in other Gulf of Mexico locations (Walker Ridge sites WR313-G and 313-H) in Late Pleistocene sediments. Our hypothesis is that these variations in saturation can be explained by sea level changes through time during glacial-interglacial cycles. A higher amount of organic matter is deposited and buried in the sediment column during glacial intervals when sea level is low. Microbes in the sediment column degrade organic matter and produce methane gas as a byproduct. Higher availability of organic matter in the sediment column can increase the concentration of methane in the sediment pore water and in turn lead to the formation of gas hydrate. We use a time-dependent numerical model of the formation of gas hydrate to test this hypothesis. The model predicts the volume and distribution of gas hydrates using mass balance equations. Model inputs include in situ porosity determined from bulk density logs; local thermal gradient estimated from the depth of the bottom of the gas hydrate stability zone in proximity to the well; and sedimentation rate determined using the biostratigraphy of an industry well in the vicinity of GC955-H. Initial results show a good match between gas hydrate saturation predicted by the model and resistivity logs obtained in the well. We anticipate that this correlation will establish whether a causal link exists between the saturation of gas hydrate in this reservoir and glacioeustatic sea level changes in the Late Pleistocene.

  1. A gas production system from methane hydrate layers by hot water injection and BHP control with radial horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, T.; Ono, S.; Iwamoto, A.; Sugai, Y.; Sasaki, K. [Kyushu Univ., Fukuoka, Fukuoka (Japan)

    2010-07-01

    Reservoir characterization of methane hydrate (MH) bearing turbidite channel in the eastern Nankai Trough, in Japan has been performed to develop a gas production strategy. This paper proposed a gas production system from methane hydrate (MH) sediment layers by combining the hot water injection method and bottom hole pressure control at the production well using radial horizontal wells. Numerical simulations of the cylindrical homogeneous MH layer model were performed in order to evaluate gas production characteristics by the depressurization method with bottom hole pressure control. In addition, the effects of numerical block modeling and averaging physical properties of MH layers were presented. According to numerical simulations, combining the existing production system with hot water injection and bottom hole pressure control results in an outward expansion of the hot water chamber from the center of the MH layer with continuous gas production. 10 refs., 15 figs.

  2. A laboratory study of anaerobic oxidation of methane in the presence of methane hydrate

    Science.gov (United States)

    Solem, R.; Bartlett, D.; Kastner, M.; Valentine, D.

    2003-12-01

    In order to mimic and study the process of anaerobic methane oxidation in methane hydrate regions we developed four high-pressure anaerobic bioreactors, designed to incubate environmental sediment samples, and enrich for populations of microbes associated with anaerobic methane oxidation (AMO). We obtained sediment inocula from a bacterial mat at the southern Hydrate Ridge, Cascadia, having cell counts approaching 1010 cells/cc. Ultimately, our goal is to produce an enriched culture of these microbes for characterization of the biochemical processes and chemical fluxes involved, as well as the unique adaptations required for, AMO. Molecular phylogenetic information along with results from fluorescent in situ hybridization indicate that consortia of Archaea and Bacteria are present which are related to those previously described for marine sediment AMO environments. Using a medium of enriched seawater and sediment in a 3:1 ratio, the system was incubated at 4° C under 43 atm of methane pressure; the temperature and pressure were kept constant. We have followed the reactions for seven months, particularly the vigorous consumption rates of dissolved sulfate and alkalinity production, as well as increases in HS-, and decreases in Ca concentrations. We also monitored the dissolved inorganic C (DIC) δ 13C values. The data were reproduced, and indicated that the process is extremely sensitive to changes in methane pressure. The rates of decrease in sulfate and increase in alkalinity concentrations were complimentary and showed considerable linearity with time. When the pressure in the reactor was decreased below the methane hydrate stability field, following the methane hydrate dissociation, sulfate reduction abruptly decreased. When the pressure was restored all the reactions returned to their previous rates. Much of the methane oxidation activity in the reactor is believed to occur in association with the methane hydrate. Upon the completion of one of the experiments

  3. Hydrate studies of northern Cascadia margin off Vancouver Island : a reference source

    Energy Technology Data Exchange (ETDEWEB)

    Hyndman, R. [Natural Resources Canada, Sidney, BC (Canada). Geological Survey of Canada, Pacific Geoscience Centre]|[Victoria Univ., BC (Canada). School of Earth and Ocean Sciences; Riedel, M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences; Spence, G.D. [Victoria Univ., BC (Canada). School of Earth and Ocean Sciences

    2008-07-01

    Extensive geophysical studies have been conducted to determine the occurrence, distribution, and concentration of gas hydrate in the Cascadia subduction zone off western Canada. In this paper, the authors compiled a comprehensive reference list of studies involving marine natural gas hydrate surveys and studies on the northern Cascadia margin. The reference categories included general reviews; regional tectonic framework for northern Cascadia hydrate; prism sediment thickening, fluid expulsion and hydrate formation; and, seismic surveys. This paper first addressed the local tectonics and the sedimentary accretionary prism in which the hydrate forms, followed by a description of the geophysical and geological surveys that have been conducted. The surveys included a wide range of seismic surveys such as multichannel, ocean-bottom, high-resolution single channel and very high resolution deep towed surveys. Heat flow, electrical sounding, seafloor compliance, sediment coring, and mapping gas plumes from the seafloor were among the other geophysical studies listed in this paper. The conclusions that have resulted from this work in terms of distribution, concentrations and amounts of hydrate were presented along with a discussion on the process of hydrate formation and dissociation. 96 refs., 3 figs.

  4. The U.S. Geological Survey’s Gas Hydrates Project

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    The Gas Hydrates Project at the U.S. Geological Survey (USGS) focuses on the study of methane hydrates in natural environments. The project is a collaboration between the USGS Energy Resources and the USGS Coastal and Marine Geology Programs and works closely with other U.S. Federal agencies, some State governments, outside research organizations, and international partners. The USGS studies the formation and distribution of gas hydrates in nature, the potential of hydrates as an energy resource, and the interaction between methane hydrates and the environment. The USGS Gas Hydrates Project carries out field programs and participates in drilling expeditions to study marine and terrestrial gas hydrates. USGS scientists also acquire new geophysical data and sample sediments, the water column, and the atmosphere in areas where gas hydrates occur. In addition, project personnel analyze datasets provided by partners and manage unique laboratories that supply state-of-the-art analytical capabilities to advance national and international priorities related to gas hydrates.

  5. Methane hydrates in marine sediments - Untapped source of energy

    Digital Repository Service at National Institute of Oceanography (India)

    Jauhari, P.

    (Egorov et al 1999). Many known gas seep areas and mud volcanoes are characterised by the formation of authigenic carbonates. In the Gulf of Mexico, which is the best studied area, the association of bacterial mats, gas hydrates and authigenic carbonates... of methane hydrates offshore southern Mexico. In : Watkins, J.S., Moore J.R. et al. (Eds). Initial Reports deep Sea Drilling Project Leg 66. Washington, D.C., US Government Printing Office, pp. 547-556. Singh, A., & Singh, B.D. 1999. Methane Gas...

  6. Subduction zone earthquake probably triggered submarine hydrocarbon seepage offshore Pakistan

    Science.gov (United States)

    Fischer, David; José M., Mogollón; Michael, Strasser; Thomas, Pape; Gerhard, Bohrmann; Noemi, Fekete; Volkhard, Spiess; Sabine, Kasten

    2014-05-01

    Seepage of methane-dominated hydrocarbons is heterogeneous in space and time, and trigger mechanisms of episodic seep events are not well constrained. It is generally found that free hydrocarbon gas entering the local gas hydrate stability field in marine sediments is sequestered in gas hydrates. In this manner, gas hydrates can act as a buffer for carbon transport from the sediment into the ocean. However, the efficiency of gas hydrate-bearing sediments for retaining hydrocarbons may be corrupted: Hypothesized mechanisms include critical gas/fluid pressures beneath gas hydrate-bearing sediments, implying that these are susceptible to mechanical failure and subsequent gas release. Although gas hydrates often occur in seismically active regions, e.g., subduction zones, the role of earthquakes as potential triggers of hydrocarbon transport through gas hydrate-bearing sediments has hardly been explored. Based on a recent publication (Fischer et al., 2013), we present geochemical and transport/reaction-modelling data suggesting a substantial increase in upward gas flux and hydrocarbon emission into the water column following a major earthquake that occurred near the study sites in 1945. Calculating the formation time of authigenic barite enrichments identified in two sediment cores obtained from an anticlinal structure called "Nascent Ridge", we find they formed 38-91 years before sampling, which corresponds well to the time elapsed since the earthquake (62 years). Furthermore, applying a numerical model, we show that the local sulfate/methane transition zone shifted upward by several meters due to the increased methane flux and simulated sulfate profiles very closely match measured ones in a comparable time frame of 50-70 years. We thus propose a causal relation between the earthquake and the amplified gas flux and present reflection seismic data supporting our hypothesis that co-seismic ground shaking induced mechanical fracturing of gas hydrate-bearing sediments

  7. Characteristics and interpretation of fracture-filled gas hydrate: an example from the Ulleung Basin, East Sea of Korea

    Science.gov (United States)

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, a total of thirteen sites were selected and drilled in the East Sea of Korea in 2010. A suite of logging-while-drilling (LWD) logs was acquired at each site. LWD logs from the UBGH2-3A well indicate significant gas hydrate in clay-bearing sediments including several zones with massive gas hydrate with a bulk density less than 1.0 g/m3 for depths between 5 and 103 m below the sea floor. The UBGH2-3A well was drilled on a seismically identified chimney structure with a mound feature at the sea floor. Average gas hydrate saturations estimated from the isotropic analysis of ring resistivity and P-wave velocity logs are 80 ± 13% and 47 ± 16%, respectively, whereas they are 46 ± 17% and 45 ± 16%, respectively from the anisotropic analysis. Modeling indicates that the upper part of chimney (between 5 and 45 m below sea floor [mbsf]) is characterized by gas hydrate filling near horizontal fractures (7° dip) and the lower part of chimney (between 45 and 103 mbsf) is characterized by gas hydrate filling high angle fractures on the basis of ring resistivity and P-wave velocity. The anisotropic analysis using P40H resistivity (phase shift resistivity at 32 mHz with 40 inch spacing) and the P-wave velocity yields a gas hydrate saturation of 46 ± 15% and 46 ± 15% respectively, similar to those estimated using ring resistivity and P-wave velocity, but with quite different fracture dip angles. Differences in vertical resolution, depth of investigation, and a finite fracture dimension relative to the tool separation appear to contribute to this discrepancy. Forward modeling of anisotropic resistivity and velocity are essential to identify gas hydrate in fractures and to estimate accurate gas hydrate amounts.

  8. Prospects of gas hydrate presence in the Chukchi sea

    Directory of Open Access Journals (Sweden)

    Т. В. Матвеева

    2017-08-01

    Full Text Available The purpose of this study is to forecast the scale and distribution character of gas hydrate stability zone in the Chukchi Sea under simulated natural conditions and basing on these results to estimate resource potential of gas hydrates within this area. Three types of stability zone have been identified. A forecast map of gas hydrate environment and potentially gas hydrate-bearing water areas in the Chukchi Sea has been plotted to a scale of 1:5 000 000. Mapping of gas hydrate stability zone allowed to give a justified forecast based on currently available data on geologic, fluid dynamic, cryogenic, geothermal and pressure-temperature conditions of gas hydrate formation in the Chukchi Sea. It is the first forecast of such kind that focuses on formation conditions for hydrates of various types and compositions in the Arctic seas offshore Russia. Potential amount of gas, stored beneath the Chukchi Sea in the form of hydrates, is estimated based on mapping of their stability zone and falls into the interval of 7·1011-11.8·1013 m3.

  9. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans

    OpenAIRE

    Boudreau, B.P.; Luo, Y.; Meysman, F.J.R.; Middelburg, J

    2015-01-01

    Anthropogenic warming of the oceans can release methane (CH4) currently stored in sediments as gas hydrates. This CH4 will be oxidized to CO2, thus increasing the acidification of the oceans. We employ a biogeochemical model of the multimillennial carbon cycle to determine the evolution of the oceanic dissolved carbonate system over the next 13?kyr in response to CO2 from gas hydrates, combined with a reasonable scenario for long-term anthropogenic CO2 emissions. Hydrate-derived CO2 will appr...

  10. Putting the Deep Biosphere and Gas Hydrates on the Map

    Science.gov (United States)

    Sikorski, Janelle J.; Briggs, Brandon R.

    2016-01-01

    Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…

  11. Estimation of seismic attenuation of gas hydrate bearing sediments from multi-channel seismic data: A case study from Krishna-Godavari offshore basin

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Mandal, R.; Jaiswal, P.; Ramprasad, T.; Sriram, G.

    thickness of water column. The estimated effective Q-values, along the inline and crossline seismic profiles, depend on several factors such as gas hydrate, free gas and the complex fault system. The combined interpretation of the quality factor...

  12. Giordano Bruno crater on the Moon: Detection and Mapping of Hydration Features of Endogenic and/or Exogenic Nature

    Science.gov (United States)

    Saran Bhiravarasu, Sriram; Bhattacharya, Satadru; Chauhan, Prakash

    2017-10-01

    We analyze high resolution spectral and spatial data from the recent lunar missions and report the presence of strong hydration features within the inner flank, hummocky floor, ejecta and impact melt deposits of crater Giordano Bruno. Hydroxyl-bearing lithologies at Giordano Bruno are characterized primarily by a prominent absorption feature near 2800 nm, the band minima of which goes beyond 3000 nm. The hydration features are found to be associated with low-Ca pyroxene-bearing noritic lithologies along the inner crater flanks, whereas similar features are also seen within the hummocky crater floor in association with shocked plagioclase-bearing anorthositic lithology. Interestingly, the ejecta blanket is characterized by sharp, narrow features centered near 2800 nm similar to the features previously reported from Compton-Belkovich volcanic complex and central peak of crater Theophilus. The low-Ca pyroxene-bearing rock exposures within the crater inner flanks are characterized by both presence and absence of the hydration features. Enhanced hydration is also seen within the ejecta blanket covering the nearby Harkhebi K and J craters. We also analyze the impact melts and ejecta using radar images at regions interior and exterior to the Giordano Bruno crater rim.Anomalous behaviors of hydration feature associated with low-Ca pyroxene-rich exposures, its nature and occurrences within the impact melt sheets inside the crater along with the ejecta blankets could possibly indicate endogenic and/or exogenic nature of the observed hydration feature. Initial results indicate the presence of strongest hydration feature in the partially shadowed pole-facing slopes (with low-Ca pyroxene-bearing exposures) and its complete absence in the equator-facing sun-lit slopes. This hints at a possible exogenic origin, whereas the same feature occurring (with same mineral) under both sun-lit and shadowed conditions suggest it to be of magmatic origin. We propose that the heterogeneous

  13. Effect of permafrost properties on gas hydrate petroleum system in the Qilian Mountains, Qinghai, Northwest China.

    Science.gov (United States)

    Wang, Pingkang; Zhang, Xuhui; Zhu, Youhai; Li, Bing; Huang, Xia; Pang, Shouji; Zhang, Shuai; Lu, Cheng; Xiao, Rui

    2014-12-01

    The gas hydrate petroleum system in the permafrost of the Qilian Mountains, which exists as an epigenetic hydrocarbon reservoir above a deep-seated hydrocarbon reservoir, has been dynamic since the end of the Late Pleistocene because of climate change. The permafrost limits the occurrence of gas hydrate reservoirs by changing the pressure-temperature (P-T) conditions, and it affects the migration of the underlying hydrocarbon gas because of its strong sealing ability. In this study, we reconstructed the permafrost structure of the Qilian Mountains using a combination of methods and measured methane permeability in ice-bearing sediment permafrost. A relationship between the ice saturation of permafrost and methane permeability was established, which permitted the quantitative evaluation of the sealing ability of permafrost with regard to methane migration. The test results showed that when ice saturation is >80%, methane gas can be completely sealed within the permafrost. Based on the permafrost properties and genesis of shallow gas, we suggest that a shallow "gas pool" occurred in the gas hydrate petroleum system in the Qilian Mountains. Its formation was related to a metastable gas hydrate reservoir controlled by the P-T conditions, sealing ability of the permafrost, fault system, and climatic warming. From an energy perspective, the increasing volume of the gas pool means that it will likely become a shallow gas resource available for exploitation; however, for the environment, the gas pool is an underground "time bomb" that is a potential source of greenhouse gas.

  14. Numerical simulation of gas hydrate exploitation from subsea reservoirs in the Black Sea

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2017-04-01

    Natural gas (methane) is the most environmental friendly source of fossil energy. When coal is replace by natural gas in power production the emission of carbon dioxide is reduced by 50 %. The vast amount of methane assumed in gas hydrate deposits can help to overcome a shortage of fossil energy resources in the future. To increase their potential for energy applications new technological approaches are being discussed and developed worldwide. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e. g. depressurization and/or carbon dioxide injection) is numerically studied in the frame of the German research project »SUGAR - Submarine Gas Hydrate Reservoirs«. In order to simulate the exploitation of hydrate-bearing sediments in the subsea, an in-house simulation model HyReS which is implemented in the general-purpose software COMSOL Multiphysics is used. This tool turned out to be especially suited for the flexible implementation of non-standard correlations concerning heat transfer, fluid flow, hydrate kinetics, and other relevant model data. Partially based on the simulation results, the development of a technical concept and its evaluation are the subject of ongoing investigations, whereby geological and ecological criteria are to be considered. The results illustrate the processes and effects occurring during the gas production from a subsea gas hydrate deposit by depressurization. The simulation results from a case study for a deposit located in the Black Sea reveal that the production of natural gas by simple depressurization is possible but with quite low rates. It can be shown that the hydrate decomposition and thus the gas production strongly depend on the geophysical properties of the reservoir, the mass and heat transport within the reservoir, and

  15. Electrical Conductive Mechanism of Gas Hydrate-Bearing Reservoirs in the Permafrost Region of Qilian Mountain

    Science.gov (United States)

    Peng, C.; Zou, C.; Tang, Y.; Liu, A.; Hu, X.

    2017-12-01

    In the Qilian Mountain, gas hydrates not only occur in pore spaces of sandstones, but also fill in fractures of mudstones. This leads to the difficulty in identification and evaluation of gas hydrate reservoir from resistivity and velocity logs. Understanding electrical conductive mechanism is the basis for log interpretation. However, the research is insufficient in this area. We have collected well logs from 30 wells in this area. Well logs and rock samples from DK-9, DK-11 and DK-12 wells were used in this study. The experiments including SEM, thin section, NMR, XRD, synthesis of gas hydrate in consolidated rock cores under low temperature and measurement of their resistivity and others were performed for understanding the effects of pore structure, rock composition, temperature and gas hydrate on conductivity. The results show that the porosity of reservoir of pore filling type is less than 10% and its clay mineral content is high. As good conductive passages, fractures can reduce resistivity of water-saturated rock. If fractures in the mudstone are filled by calcite, resistivity increases significantly. The resistivity of water-saturated rock at 2°C is twice of that at 18°C. The gas hydrate formation process in the sandstone was studied by resistivity recorded in real time. In the early stage of gas hydrate formation, the increase of residual water salinity may lead to the decrease of resistivity. In the late stage of gas hydrate formation, the continuity decrease of water leads to continuity increase of resistivity. In summary, fractures, rock composition, temperature and gas hydrate are important factors influencing resistivity of formation. This study is helpful for more accurate evaluation of gas hydrate from resistivity log. Acknowledgment: We acknowledge the financial support of the National Special Program for Gas Hydrate Exploration and Test-production (GZH201400302).

  16. High-resolution seismic imaging of the gas and gas hydrate system at Green Canyon 955 in the Gulf of Mexico

    Science.gov (United States)

    Haines, S. S.; Hart, P. E.; Collett, T. S.; Shedd, W. W.; Frye, M.

    2015-12-01

    High-resolution 2D seismic data acquired by the USGS in 2013 enable detailed characterization of the gas and gas hydrate system at lease block Green Canyon 955 (GC955) in the Gulf of Mexico, USA. Earlier studies, based on conventional industry 3D seismic data and logging-while-drilling (LWD) borehole data acquired in 2009, identified general aspects of the regional and local depositional setting along with two gas hydrate-bearing sand reservoirs and one layer containing fracture-filling gas hydrate within fine-grained sediments. These studies also highlighted a number of critical remaining questions. The 2013 high-resolution 2D data fill a significant gap in our previous understanding of the site by enabling interpretation of the complex system of faults and gas chimneys that provide conduits for gas flow and thus control the gas hydrate distribution observed in the LWD data. In addition, we have improved our understanding of the main channel/levee sand reservoir body, mapping in fine detail the levee sequences and the fault system that segments them into individual reservoirs. The 2013 data provide a rarely available high-resolution view of a levee reservoir package, with sequential levee deposits clearly imaged. Further, we can calculate the total gas hydrate resource present in the main reservoir body, refining earlier estimates. Based on the 2013 seismic data and assumptions derived from the LWD data, we estimate an in-place volume of 840 million cubic meters or 29 billion cubic feet of gas in the form of gas hydrate. Together, these interpretations provide a significantly improved understanding of the gas hydrate reservoirs and the gas migration system at GC955.

  17. Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, John

    2012-12-31

    Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

  18. Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand

    Science.gov (United States)

    Waite, W.F.; deMartin, B.J.; Kirby, S.H.; Pinkston, J.; Ruppel, C.D.

    2002-01-01

    Using von Herzen and Maxwell's needle probe method, we measured thermal conductivity in four porous mixtures of quartz sand and methane gas hydrate, with hydrate composing 0, 33, 67 and 100% of the solid volume. Thermal conductivities were measured at a constant methane pore pressure of 24.8 MPa between -20 and +15??C, and at a constant temperature of -10??C between 3.5 and 27.6 MPa methane pore pressure. Thermal conductivity decreased with increasing temperature and increased with increasing methane pore pressure. Both dependencies weakened with increasing hydrate content. Despite the high thermal conductivity of quartz relative to methane hydrate, the largest thermal conductivity was measured in the mixture containing 33% hydrate rather than in hydrate-free sand. This suggests gas hydrate enhanced grain-to-grain heat transfer, perhaps due to intergranular contact growth during hydrate synthesis. These results for gas-filled porous mixtures can help constrain thermal conductivity estimates in porous, gas hydrate-bearing systems.

  19. Gas hydrates in the Ulleung Basin, East Sea of Korea

    Directory of Open Access Journals (Sweden)

    Byong-Jae Ryu Michael Riedel

    2017-01-01

    Full Text Available To develop gas hydrates as a potential energy source, geophysical surveys and geological studies of gas hydrates in the Ulleung Basin, East Sea off the east coast of Korea have been carried out since 1997. Bottom-simulating reflector (BSR, initially used indicator for the potential presence of gas hydrates was first identified on seismic data acquired in 1998. Based on the early results of preliminary R&D project, 12367 km of 2D multichannel reflection seismic lines, 38 piston cores, and multi-beam echo-sounder data were collected from 2000 to 2004. The cores showed high amounts of total organic carbon and high residual hydrocarbon gas levels. Gas composition and isotope ratios define it as of primarily biogenic origin. In addition to the BSRs that are widespread across the basin, numerous chimney structures were found in seismic data. These features indicate a high potential of the Ulleung Basin to host significant amounts of gas hydrate. Dedicated geophysical surveys, geological and experimental studies were carried out culminating in two deep drilling expeditions, completed in 2007 and 2010. Sediment coring (including pressure coring, and a comprehensive well log program complements the regional studies and were used for a resource assessment. Two targets for a future test-production are currently proposed: pore-filling gas hydrate in sand-dominated sediments and massive occurrences of gas hydrate within chimney-like structures. An environmental impact study has been launched to evaluate any potential risks to production.

  20. Sensitivity of the global submarine hydrate inventory to scenarios of future climate change

    Science.gov (United States)

    Hunter, S. J.; Goldobin, D. S.; Haywood, A. M.; Ridgwell, A.; Rees, J. G.

    2013-04-01

    The global submarine inventory of methane hydrate is thought to be considerable. The stability of marine hydrates is sensitive to changes in temperature and pressure and once destabilised, hydrates release methane into sediments and ocean and potentially into the atmosphere, creating a positive feedback with climate change. Here we present results from a multi-model study investigating how the methane hydrate inventory dynamically responds to different scenarios of future climate and sea level change. The results indicate that a warming-induced reduction is dominant even when assuming rather extreme rates of sea level rise (up to 20 mm yr-1) under moderate warming scenarios (RCP 4.5). Over the next century modelled hydrate dissociation is focussed in the top ˜100m of Arctic and Subarctic sediments beneath business-as-usual scenario (RCP 8.5), upper estimates of resulting global sea-floor methane fluxes could exceed estimates of natural global fluxes by 2100 (>30-50TgCH4yr-1), although subsequent oxidation in the water column could reduce peak atmospheric release rates to 0.75-1.4 Tg CH4 yr-1.

  1. Isotropic, anisotropic, and borehole washout analyses in Gulf of Mexico Gas Hydrate Joint Industry Project Leg II, Alaminos Canyon well 21-A

    Science.gov (United States)

    Lee, Myung W.

    2012-01-01

    Through the use of three-dimensional seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon area of the Gulf of Mexico. Two of the prospects were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Program Leg II in May 2009, and a suite of logging-while-drilling logs was acquired at each well site. Logging-while-drilling logs at the Alaminos Canyon 21–A site indicate that resistivities of approximately 2 ohm-meter and P-wave velocities of approximately 1.9 kilometers per second were measured in a possible gas-hydrate-bearing target sand interval between 540 and 632 feet below the sea floor. These values are slightly elevated relative to those measured in the hydrate-free sediment surrounding the sands. The initial well log analysis is inconclusive in determining the presence of gas hydrate in the logged sand interval, mainly because large washouts in the target interval degraded well log measurements. To assess gas-hydrate saturations, a method of compensating for the effect of washouts on the resistivity and acoustic velocities is required. To meet this need, a method is presented that models the washed-out portion of the borehole as a vertical layer filled with seawater (drilling fluid). Owing to the anisotropic nature of this geometry, the apparent anisotropic resistivities and velocities caused by the vertical layer are used to correct measured log values. By incorporating the conventional marine seismic data into the well log analysis of the washout-corrected well logs, the gas-hydrate saturation at well site AC21–A was estimated to be in the range of 13 percent. Because gas hydrates in the vertical fractures were observed, anisotropic rock physics models were also applied to estimate gas-hydrate saturations.

  2. Gas Hydrate Occurrence Inferred from Dissolved Cl− Concentrations and δ18O Values of Pore Water and Dissolved Sulfate in the Shallow Sediments of the Pockmark Field in Southwestern Xisha Uplift, Northern South China Sea

    Directory of Open Access Journals (Sweden)

    Min Luo

    2014-06-01

    Full Text Available Deep-water pockmarks are frequently accompanied by the occurrence of massive gas hydrates in shallow sediments. A decline in pore-water Cl− concentration and rise in δ18O value provide compelling evidence for the gas hydrate dissociation. Mega-pockmarks are widely scattered in the southwestern Xisha Uplift, northern South China Sea (SCS. Pore water collected from a gravity-core inside of a mega-pockmark exhibits a downward Cl− concentration decrease concomitant with an increase in δ18O value at the interval of 5.7–6.7 mbsf. Concentrations of Cl−, Na+, and K+ mainly cluster along the seawater freshening line without distinct Na+ enrichment and K+ depletion. Thus, we infer that the pore water anomalies of Cl− concentrations and δ18O values are attributed to gas hydrate dissociation instead of clay mineral dehydration. Moreover, the lower δ18O values of sulfate in the target core (C14 than those in the reference core (C9 may be associated with the equilibrium oxygen fractionation during sulfate reduction between sulfate and the relatively 18O-depleted ambient water resulting from gas hydrate formation. The gas hydrate contents are estimated to be 6%–10% and 7%–15%, respectively, according to the offset of Cl− concentrations and δ18O values from the baselines. This pockmark field in southwestern Xisha Uplift is likely to be a good prospective area for the occurrence of gas hydrate in shallow sediments.

  3. Gas-hydrate-bearing sand reservoir systems in the offshore of India: Results of the India National Gas Hydrate Program Expedition 02

    Science.gov (United States)

    Kumar, P.; Collett, Timothy S.; Vishwanath, K.; Shukla, K.M.; Nagalingam, J.; Lall, M.V.; Yamada, Y; Schultheiss, P.; Holland, M.

    2016-01-01

    The India National Gas Hydrate Program Expedition 02 (NGHP-02) was conducted from 3-March-2015 to 28-July-2015 off the eastern coast of India using the deepwater drilling vessel Chikyu. The primary goal of this expedition was to explore for highly saturated gas hydrate occurrences in sand reservoirs that would become targets for future production tests. The first two months of the expedition were dedicated to logging-whiledrilling (LWD) operations, with a total of 25 holes drilled and logged. The next three months were dedicated to coring operations at 10 of the most promising sites. With a total of five months of continuous field operations, the expedition was the most comprehensive dedicated gas hydrate investigation ever undertaken.

  4. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  5. Analytical investigation of high temperature 1 kW solid oxide fuel cell system feasibility in methane hydrate recovery and deep ocean power generation

    International Nuclear Information System (INIS)

    Azizi, Mohammad Ali; Brouwer, Jacob; Dunn-Rankin, Derek

    2016-01-01

    Highlights: • A dynamic Solid Oxide Fuel Cell (SOFC) model was developed. • Hydrate bed methane dissociation model was integrated with the SOFC model. • SOFC operated steadily for 120 days at high pressure deep ocean environment. • Burning some of the dissociated gas for SMR heat leads to more net methane produced. • Higher SOFC fuel utilization produces higher integrated system efficiency. - Abstract: Methane hydrates are potential valuable energy resources. However, finding an efficient method for methane gas recovery from hydrate sediments is still a challenge. New challenges arise from increasing environmental protection. This is due in part to the technical difficulties involved in the efficient dissociation of methane hydrates at high pressures. In this study, a new approach is proposed to produce valuable products of: 1. Net methane gas recovery from the methane hydrate sediment, and 2. Deep ocean power generation. We have taken the first steps toward utilization of a fuel cell system in methane gas recovery from deep ocean hydrate sediments. An integrated high pressure and high temperature solid oxide fuel cell (SOFC) and steam methane reformer (SMR) system is analyzed for this application and the recoverable amount of methane from deep ocean sediments is measured. System analysis is accomplished for two major cases regarding system performance: 1. Energy for SMR is provided by the burning part of the methane gas dissociated from the hydrate sediment. 2. Energy for SMR is provided through heat exchange with fuel cell effluent gases. We found that the total production of methane gas is higher in the first case compared to the second case. The net power generated by the fuel cell system is estimated for all cases. The primary goal of this study is to evaluate the feasibility of integrated electrochemical devices to accomplish energy efficient dissociation of methane hydrate gases in deep ocean sediments. Concepts for use of electrochemical devices

  6. Problems of ecological and technical safety by exploration and production of natural gas hydrates

    Directory of Open Access Journals (Sweden)

    Chen-Chen

    2006-10-01

    Full Text Available Gas hydrates - the firm crystal connections form water (liquid water, ice, water vapor and low-molecular waterproof natural gases (mainly methane whose crystal structure effectively compresses gas e.s.: each cubic meter of hydrate can yield over 160 m3 of methane.In present time, the exploitation of the Messoyahsk (Russia and Mallik (Canada deposits of gas hydrates is conducted actively. The further perfection of prospecting methods in the field of studying gas hydrates containing sediments depends on the improvement of geophysical and the well test research, among which native-state core drilling is one of the major. Sampling a native-state core from gas hydrates sediments keeps not only the original composition but structural - textural features of their construction.Despite of the appeal to use gas hydrates as a perspective and ecologically pure fuel possessing huge resources, the investigation and development of their deposits can lead to a number of negative consequences connected with hazards arising from the maintenance of their technical and ecological safety of carrying out. Scales of the arising problems can change from local to regional and even global.

  7. Controls on evolution of gas-hydrate system in the Krishna-Godavari basin, offshore India

    Digital Repository Service at National Institute of Oceanography (India)

    Badesab, F.K.; Dewangan, P.; Usapkar, A.; Kocherla, M.; Peketi, A.; Mohite, K.; Sangode, S.J.; Deenadayalan, K.

    -hydrate system in the Krishna-Godavari (K-G) basin. Four distinct sedimentary units have been identified, based on the sediment magnetic signatures. An anomalous zone of enhanced magnetic susceptibility (Unit III: 51.9–160.4 mbsf) coinciding with the gas hydrate...

  8. Geologic and porous media factors affecting the 2007 production response characteristics of the JOGMEC/NRCan/AURORA Mallik gas hydrate production research well

    Energy Technology Data Exchange (ETDEWEB)

    Dallimore, S. R.; Wright, J. F.; Nixon, F. M. [Natural Resources Canada, Sidney, BC (Canada). Geological Survey of Canada; Kurihara, M. [Japan Oil Engineering, Tokyo (Japan); Yamamoto, K.; Fujii, T.; Fujii, K.; Numasawa, M.; Yasuda, M. [Japan Oil, Gas, Metals National Corp., Chiba (Japan). Technical Research Centre; Imasato, Y. [Schlumberger K.K., Fuchinombe (Japan)

    2008-07-01

    The joint research project between Japan Oil, Gas and Metals National Corporation (JOGMEC), Natural Resources Canada (NRCan) and the Aurora Research Institute was conducted in an effort to measure and monitor the response of a terrestrial gas hydrate reservoir to pressure draw down. This paper reviewed the geologic setting and porous media conditions of a concentrated gas hydrate production interval between 1093 and 1105 m. The short-duration production test was conducted at the Mallik site in Canada's Mackenzie Delta in April 2007. The production interval consists of a sand-dominated succession with occasional silty sand interbeds. Gas hydrate occurs primarily within the sediment pore spaces, with concentrations ranging between 50-90 per cent. Experiments on pore water salinity and porous media conditions on pressure-temperature stability suggest that the partition between gas hydrate stability and instability should be considered as a phase boundary zone rather than a discrete threshold. The experiment revealed that there are significant changes to the physical properties following gas hydrate dissociation, with sediments containing no hydrate behaving as unconsolidated sands. A strong reservoir response to pressure draw down was observed with increasing gas flow during the testing period. Sand inflow to the well during the test may be attributed to loss of sediment strength during gas hydrate dissociation, with the sediment behaving as a gasified slurry. It was concluded that the gas flow response observed during the 2007 production test at Mallik was highly influenced by porous media properties and by the geological heterogeneities which may initiate high permeability conduits in sediments within the production interval of the Mallik gas hydrate reservoir. 18 refs., 6 figs.

  9. A study of the process of joint formation of methane gas-hydrate and authigenic carbonates in bottom sediments in the Sea of Okhotsk

    Energy Technology Data Exchange (ETDEWEB)

    Esikov, A D [AN SSSR, Moscow (USSR). Water Problems Inst.; Pashkina, V I [AN SSSR, Moscow (USSR). Inst. Okeanologii

    1990-01-01

    The discovery of gas-hydrates in bottom sediments in the Sea of Okhotsk has allowed isotope fractionation of oxygen and hydrogen to be determined in the formation of the crystal lattice. It was established that the structure of gas-hydrate selectively included the heavier isotopes of oxygen and hydrogen, so that the gas-hydrate water had values of {delta}{sup 18}O = +1.9 per mille and {delta}D = +23 per mille, whereas the interstitial water was ''lighter'' in isotopes, with the values of {delta}{sup 18}O = -0.5 per mille and {delta}D = -5 per mille (relative to SMOW (standard mean ocean water)). The formation of gas-hydrates under the conditions of underwater discharge of methane alters the chemical composition of interstitial water, so that the carbonate equilibrium is shifted, and carbonates of authigenic origin are formed. The isotope composition of the carbonates is characterized by a low content of {sup 13}C({delta}{sup 13}C from -39.3 to -51.8 per mille PDB) and a high content of {sup 18}O({delta}{sup 18}O from + 2.7 to +6.3 per mille PDB) in comparison with carbonates of sea origin. These characteristics of the isotope composition suggest the participation of methane in the formation of authigenic carbonates, due to its anaerobic oxidation and the involvement of sulfate in the silt water. (author).

  10. Natural Gas Hydrates in the Offshore Beaufort-Mackenzie Basin-Study of a Feasible Energy Source II

    International Nuclear Information System (INIS)

    Majorowicz, J. A.; Hannigan, P. K.

    2000-01-01

    In the offshore part of Beaufort-Mackenzie Basin depth of methane hydrate stability reaches more than 1.5 km. However, there are areas in the western part of the basin where there are no conditions of methane hydrate stability. Construction of the first contour maps displaying thickness of hydrate stability zones as well as hydrate stability zone thicknesses below permafrost in the offshore area, shows that these zones can reach 1200 m and 900 m, respectively. Depth to the base of ice-bearing relict permafrost under the sea (depth of the -1 o C isotherm-ice-bearing permafrost base) and regional variations of geothermal gradient are the main controlling factors. Hydrostatic pressures in the upper 1500 m are the rule. History of methane hydrate stability zone is related mainly to the history of permafrost and it reached maximum depth in early Holocene. More recently, the permafrost and hydrate zone is diminishing because of sea transgression. Reevaluation of the location of possible gas hydrate occurrences is done from the analysis of well logs and other indicators in conjunction with knowledge of the hydrate stability zone. In the offshore Beaufort-Mackenzie Basin, methane hydrate occurs in 21 wells. Nine of these locations coincides with underlying conventional hydrocarbon occurrences. Previous analyses place some of the hydrate occurrences at greater depths than proposed for the methane hydrate-stability zone described in this study. Interpretation of geological cross sections and maps of geological sequences reveals that hydrates are occurring in the Iperk-Kugmallit sequence. Hydrate-gas contact zones, however, are possible in numerous situations. As there are no significant geological seals in the deeper part of the offshore basin (all hydrates are within Iperk), it is suggested that overlying permafrost and hydrate stability zone acted as the only trap for upward migrating gas during the last tens of thousand of years (i.e., Sangamonian to Holocene)

  11. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    Science.gov (United States)

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  12. Iron and Sulfur Species and Sulfur Isotopic Compositions of Authigenic Pyrite in Gas Hydrate-Bearing Sediments from Hydrate Ridge, Cascadia Margin (ODP Leg 204): A Proposal of Conceptual Models to Indicate the Non-Steady State Depositional and Diagenetic Processes

    Science.gov (United States)

    Liu, C.; Jiang, S. Y.; Su, X.

    2017-12-01

    Two accretionary sediment sequences from Sites 1245 and 1252 recovered during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge, Cascadia Margin were investigated to explore the non-steady state depositional and diagenetic history. Five iron species and three sulfur species were chemically extracted, and their concentrations and the sulfur isotopic compositions of pyrite were determined. After the mineral recognitions of these species and detailed comparative analyses, the aerobic history of bottom seawater has been determined. The formation of pyrite is thought to be controlled by the limited production of hydrogen sulfide relative to the supply of reactive iron. Also, the intrusion of oxygen by bioturbation would oxidize the reduced sulfur species and further suppress pyritization. To explain the geochemical relationship between pyrite and siderite and the sulfur isotope characteristics of pyrite, we propose seven conceptual models based on the variations in depositional rate and methane flux, and the models succeed in explaining the geochemical results and are validated by the observed non-steady state events. These models may contribute to the reconstruction of the non-steady state processes in other research areas in the future.

  13. A Two-Dimensional Post-Stack Seismic Inversion for Acoustic Impedance of Gas and Hydrate Bearing Deep-Water Sediments Within the Continental Slope of the Ulleung Basin, East Sea, Korea

    Directory of Open Access Journals (Sweden)

    Keumsuk Lee

    2013-01-01

    Full Text Available A post-stack inversion of 2D seismic data was conducted to estimate the spatial distribution of acoustic impedance associated with gas and hydrates in the Ulleung Basin, East Sea, Korea constrained by logs from three boreholes drilled on its continental margin. A model-based inversion was applied to a Plio-Quaternary succession composed of alternations of unconsolidated mass-flow deposits/turbidites. A comparison of seismic reflections and synthetic data computed from impedance logs is shown for two zones. An upper (steep slope zone contains a moderately continuous, possibly bottom-simulating reflector feature along the corresponding section. This feature may be associated with a lithology boundary near a drill site in addition to, or instead of, a stability boundary of gas hydrates (i.e., gas below and hydrates above. The lower (gentle slope zone has locally cross-cutting reflection patterns that are more likely to be attributed to gas- and hydrate-related physical phenomena than to spatiotemporal changes in lithology. This seismic inversion is informative and useful, making a contribution to enhance the interpretability of the seismic profiles for a potential hydrate recovery.

  14. Effective-Medium Models for Marine Gas Hydrates, Mallik Revisited

    Science.gov (United States)

    Terry, D. A.; Knapp, C. C.; Knapp, J. H.

    2011-12-01

    Hertz-Mindlin type effective-medium dry-rock elastic models have been commonly used for more than three decades in rock physics analysis, and recently have been applied to assessment of marine gas hydrate resources. Comparisons of several effective-medium models with derivative well-log data from the Mackenzie River Valley, Northwest Territories, Canada (i.e. Mallik 2L-38 and 5L-38) were made several years ago as part of a marine gas hydrate joint industry project in the Gulf of Mexico. The matrix/grain supporting model (one of the five models compared) was clearly a better representation of the Mallik data than the other four models (2 cemented sand models; a pore-filling model; and an inclusion model). Even though the matrix/grain supporting model was clearly better, reservations were noted that the compressional velocity of the model was higher than the compressional velocity measured via the sonic logs, and that the shear velocities showed an even greater discrepancy. Over more than thirty years, variations of Hertz-Mindlin type effective medium models have evolved for unconsolidated sediments and here, we briefly review their development. In the past few years, the perfectly smooth grain version of the Hertz-Mindlin type effective-medium model has been favored over the infinitely rough grain version compared in the Gulf of Mexico study. We revisit the data from the Mallik wells to review assertions that effective-medium models with perfectly smooth grains are a better predictor than models with infinitely rough grains. We briefly review three Hertz-Mindlin type effective-medium models, and standardize nomenclature and notation. To calibrate the extended effective-medium model in gas hydrates, we use a well accepted framework for unconsolidated sediments through Hashin-Shtrikman bounds. We implement the previously discussed effective-medium models for saturated sediments with gas hydrates and compute theoretical curves of seismic velocities versus gas hydrate

  15. Gas hydrate identified in sand-rich inferred sedimentary section using downhole logging and seismic data in Shenhu area, South China Sea

    Science.gov (United States)

    Wang, Xiujuan; Lee, Myung W.; Collett, Timothy S.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo

    2014-01-01

    Downhole wireline log (DWL) data was acquired from eight drill sites during China's first gas hydrate drilling expedition (GMGS-1) in 2007. Initial analyses of the acquired well log data suggested that there were no significant gas hydrate occurrences at Site SH4. However, the re-examination of the DWL data from Site SH4 indicated that there are two intervals of high resistivity, which could be indicative of gas hydrate. One interval of high resistivity at depth of 171–175 m below seafloor (mbsf) is associated with a high compressional- wave (P-wave) velocities and low gamma ray log values, which suggests the presence of gas hydrate in a potentially sand-rich (low clay content) sedimentary section. The second high resistivity interval at depth of 175–180 mbsf is associated with low P-wave velocities and low gamma values, which suggests the presence of free gas in a potentially sand-rich (low clay content) sedimentary section. Because the occurrence of free gas is much shallower than the expected from the regional depth of the bottom simulating reflector (BSR), the free gas could be from the dissociation of gas hydrate during drilling or there may be a local anomaly in the depth to the base of the gas hydrate stability zone. In order to determine whether the low P-wave velocity with high resistivity is caused by in-situ free gas or dissociated free gas from the gas hydrate, the surface seismic data were also used in this analysis. The log analysis incorporating the surface seismic data through the construction of synthetic seismograms using various models indicated the presence of free gas directly in contact with an overlying gas hydrate-bearing section. The occurrence of the anomalous base of gas hydrate stability at Site SH4 could be caused by a local heat flow conditions. This paper documents the first observation of gas hydrate in what is believed to be a sand-rich sediment in Shenhu area of the South China Sea.

  16. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  17. Equivalent formation strength as a proxy tool for exploring the existence and distribution of gas hydrates

    Science.gov (United States)

    Hamada, Y.; Yamada, Y.; Sanada, Y.; Nakamura, Y.; Kido, Y. N.; Moe, K.

    2017-12-01

    Gas hydrates bearing layer can be normally identified by a basement simulating reflector (BSR) or well logging because of their high acoustic- and electric impedance compared to the surrounding formation. These characteristics of the gas hydrate can also represent contrast of in-situ formation strength. We here attempt to describe gas hydrate bearing layers based on the equivalent strength (EST). The Indian National Gas Hydrate Program (NGHP) Expedition 02 was executed 2015 off the eastern margin of the Indian Peninsula to investigate distribution and occurrence of gas hydrates. From 25 drill sites, downhole logging data, cored samples, and drilling performance data were collected. Recorded drilling performance data was converted to the EST, which is a developed mechanical strength calculated only by drilling parameters (top drive torque, rotation per minute , rate of penetration , and drill bit diameter). At a representative site, site 23, the EST shows constant trend of 5 to 10 MPa, with some positive peaks at 0 - 270 mbsf interval, and sudden increase up to 50 MPa above BSR depth (270 - 290 mbsf). Below the BSR, the EST stays at 5-10 MPa down to the bottom of the hole (378 mbsf). Comparison of the EST with logging data and core sample description suggests that the depth profiles of the EST reflect formation lithology and gas hydrate content: the EST increase in the sand-rich layer and the gas hydrate bearing zone. Especially in the gas hydrate zone, the EST curve indicates approximately the same trend with that of P-wave velocity and resistivity measured by downhole logging. Cross plot of the increment of the EST and resistivity revealed the relation between them is roughly logarithmic, indicating the increase and decrease of the EST strongly depend on the saturation factor of gas hydrate. These results suggest that the EST, proxy of in-situ formation strength, can be an indicator of existence and amount of the gas-hydrate layer. Although the EST was calculated

  18. Gas hydrate formation and accumulation potential in the Qiangtang Basin, northern Tibet, China

    International Nuclear Information System (INIS)

    Fu, Xiugen; Wang, Jian; Tan, Fuwen; Feng, Xinglei; Wang, Dong; He, Jianglin

    2013-01-01

    Highlights: • Qiangtang Basin is the biggest residual petroleum-bearing basin in Tibet Plateau. • The Late Triassic Tumen Gela Formation is the most important gas source rock. • Seventy-one potential anticline structural traps have been found. • A favorable geothermal condition for gas hydrate formation. • A large number of mud volcanoes were discovered in the basin. - Abstract: The Qiangtang Basin is the biggest residual petroleum-bearing basin in the Qinghai–Tibet Plateau, and is also an area of continuous permafrost in southwest China with strong similarities to other known gas-hydrate-bearing regions. Permafrost thickness is typically 60–180 m; average surface temperature ranges from −0.2 to −4.0 °C, and the geothermal gradient is about 2.64 °C/100 m. In the basin, the Late Triassic Tumen Gela Formation is the most important gas source rock for gas, and there are 34.3 × 10 8 t of gas resources in the Tumen Gela Formation hydrocarbon system. Seventy-one potential anticline structural traps have been found nowadays covering an area of more than 30 km 2 for each individual one, five of them are connected with the gas source by faults. Recently, a large number of mud volcanoes were discovered in the central Qiangtang Basin, which could be indicative of the formation of potential gas hydrate. The North Qiangtang depression should be delineated as the main targets for the purpose of gas hydrate exploration

  19. Phase equilibrium condition of marine carbon dioxide hydrate

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang

    2013-01-01

    Highlights: ► CO 2 hydrate phase equilibrium was studied in simulated marine sediments. ► CO 2 hydrate equilibrium temperature in NaCl and submarine pore water was depressed. ► Coarse-grained silica sand does not affect CO 2 hydrate phase equilibrium. ► The relationship between equilibrium temperature and freezing point was discussed. - Abstract: The phase equilibrium of ocean carbon dioxide hydrate should be understood for ocean storage of carbon dioxide. In this paper, the isochoric multi-step heating dissociation method was employed to investigate the phase equilibrium of carbon dioxide hydrate in a variety of systems (NaCl solution, submarine pore water, silica sand + NaCl solution mixture). The experimental results show that the depression in the phase equilibrium temperature of carbon dioxide hydrate in NaCl solution is caused mainly by Cl − ion. The relationship between the equilibrium temperature and freezing point in NaCl solution was discussed. The phase equilibrium temperature of carbon dioxide hydrate in submarine pore water is shifted by −1.1 K to lower temperature region than that in pure water. However, the phase equilibrium temperature of carbon dioxide hydrate in mixture samples of coarsed-grained silica sand and NaCl solution is in agreement with that in NaCl solution with corresponding concentrations. The relationship between the equilibrium temperature and freezing point in mixture samples was also discussed.

  20. Velocity Structure and 3D Finite Element Modeling for Critical Instability of Gas Hydrate-related Slipstream Submarine Slide, offshore Vancouver Island, Canada

    Science.gov (United States)

    LONG, S.; He, T.; Lan, K.; Spence, G.; Yelisetti, S.

    2016-12-01

    The previous study indicated that Slipstream submarine landslide is one of a gas hydrate-related slope failures on the frontal ridges of the Northern Cascadia accretionary margin, off Vancouver Island, Canada. The OBS data collected during SeaJade project were used to derive the subseafloor Vp & Vs structures. The anomalous high Vp of about 2.0 km/s at shallow depths of 100 (± 10) mbsf closely matches the estimated depth of the glide plane. The modelled Vs above the BSR at a depth of 265-275 mbsf is about 100-150 m/s higher than a theoretical 100% water saturated background value, indicating that the hydrate acts as part of the load-bearing matrix to increase the rigidity of the sediment. Also, the Vp & Vs above BSR both indicate a consistent 40% saturation of gas hydrate. On the basis of high accurate submarine bathymetry obtained by multibeam sounding system, the submarine landform before slump is reconstructed by comparing the slump headwall geometry with surrounding ridges. Using the elastic moduli determined from Vp & Vs, the stress status was calculated by the finite element method for different conditions and confirmed that the undersea sliding process related with gas hydrate starts from the toe of the slope and then progressively retreats to the place of current headwall, in a series of triangular blocks or wedges. The shear stress are then compared with the frame shear strength of geological model, which is critical for controlling slope stability of steep frontal ridges The simulation results found that the ridge was stable under its own weight, but gas hydrate saturation decrease and pore-water pressure increase will greatly reduce shear strength of sediments and may cause a landslide. Since the study area is in the earthquake belt, the large seismic acceleration will greatly affect pore pressure distribution within the ridge. The simulation results indicated that the shallow high-velocity gas hydrate layer coincident with glide plane depth is more

  1. Carbon dioxide hydrate formation in a fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.; Lang, X. [South China Univ. of Technology, Guangzhou (China). Key Laboratory of Enhanced Heat Transfer and Energy Conservation; Wang, Y.; Liang, D. [Chinese Academy of Sciences, Guangzhou (China). Guangzhou Inst. of Energy Conversion and Guangzhou Center of Natural Gas Hydrate; Sun, X.; Jurcik, B. [Air Liquide Laboratories, Tsukuba (Japan)

    2008-07-01

    Gas hydrates are thermodynamically stable at high pressures and near the freezing temperature of pure water. Methane hydrates occur naturally in sediments in the deep oceans and permafrost regions and constitute an extensive hydrocarbon reservoir. Carbon dioxide (CO{sub 2}) hydrates are of interest as a medium for marine sequestration of anthropogenic carbon dioxide. Sequestering CO{sub 2} as hydrate has potential advantages over most methods proposed for marine CO{sub 2} sequestration. Because this technique requires a shallower depth of injection when compared with other ocean sequestration methods, the costs of CO{sub 2} hydrate sequestration may be lower. Many studies have successfully used different continuous reactor designs to produce CO{sub 2} hydrates in both laboratory and field settings. This paper discussed a study that involved the design and construction of a fixed-bed reactor for simulation of hydrate formation system. Water, river sands and carbon dioxide were used to simulate the seep kind of hydrate formation. Carbon dioxide gas was distributed as small bubbles to enter from the bottom of the fixed-bed reactor. The paper discussed the experimental data and presented a diagram of the gas hydrate reactor system. The morphology as well as the reaction characters of CO{sub 2} hydrate was presented in detail. The results were discussed in terms of experimental phenomena and hydrate formation rate. A mathematical model was proposed for describing the process. 17 refs., 7 figs.

  2. Dissociation heat of mixed-gas hydrate composed of methane and ethane

    Energy Technology Data Exchange (ETDEWEB)

    Hachikubo, A.; Nakagawa, R.; Kubota, D.; Sakagami, H.; Takahashi, N.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan)

    2008-07-01

    Formation and dissociation processes of natural gas hydrates in permafrost, marine and lake sediments are highly controlled by their thermal properties. Dissociation heat of gas hydrates can be estimated from phase equilibrium data using the Clausius-Clapeyron equation. However, this method is applicable for pure gas hydrate and at a temperature of 0 degrees Celsius. Direct calorimetric measurements on gas hydrates using a calorimeter have been developed to obtain thermal properties of gas hydrates, including dissociation heat and heat capacity. Studies have shown that a structure 2 gas hydrate appears in appropriate gas composition of methane and ethane. This paper investigated the effect of ethane concentration on dissociation heat of mixed-gas (methane and ethane) hydrate. Raman spectroscopy was used to confirm the appearance of a structure 2 gas hydrate. The paper identified the experimental procedure and discussed sample preparation, Raman spectroscopy, and calorimetric measurements. A schematic diagram of the calorimeter was also presented. It was concluded that in most cases, two stages of dissociation were found at the dissociation process. 15 refs., 6 figs.

  3. Stages of Gas-Hydrate Evolution on the Northern Cascadia Margin

    Directory of Open Access Journals (Sweden)

    the IODP Expedition 311 Scientists

    2006-09-01

    Full Text Available Natural gas hydrate occurs beneath many continental slopes and in arctic permafrost areas. Recent studies have indicated that the largest deposits of gas hydrate might lie in nearly horizontal layers several hundred meters beneath the seafloor of continental slopes, especially in the large, accretionary sedimentary prisms of subduction zones. Expedition 311 of the Integrated Ocean Drilling Program (IODP investigated the formation of gas hydrate in the accretionary prism of the Cascadia subduction zone (Fig. 1. The primary objectives of Expedition 311 were to test and constraingeological models of gas hydrate formation by upward fluidand methane transport in accretionary prisms. We specifi -cally sought to (a determine the mechanisms that controlthe nature, magnitude, and distribution of the gas hydrate,(b find the pathways of the fluid migration required to formlarge concentrations of gas hydrate, (c examine the effectsof gas hydrate on the physical properties of the host sediment,and (d investigate the microbiology and geochemistryassociated with the occurrence of gas hydrate. Furthermore,we concentrated on the contrast between methane transportby focused fl ow in fault zones and by dispersed pervasiveupward flow at various scales of permeability.

  4. Numerical simulation studies of gas production scenarios from hydrate accumulations at the Mallik Site, McKenzie Delta, Canada

    International Nuclear Information System (INIS)

    Moridis, George J.; Collett, Timothy S.; Dallimore, Scott R.; Satoh, Tohru; Hancock, Stephen; Weatherill, Brian

    2002-01-01

    The Mallik site represents an onshore permafrost-associated gas hydrate accumulation in the Mackenzie Delta, Northwest Territories, Canada. An 1150 m deep gas hydrate research well was drilled at the site in 1998. The objective of this study is the analysis of various gas production scenarios from several gas-hydrate-bearing zones at the Mallik site. The TOUGH2 general-purpose simulator with the EOSHYDR2 module were used for the analysis. EOSHYDR2 is designed to model the non-isothermal CH(sub 4) (methane) release, phase behavior and flow under conditions typical of methane-hydrate deposits by solving the coupled equations of mass and heat balance, and can describe any combination of gas hydrate dissociation mechanisms. Numerical simulations indicated that significant gas hydrate production at the Mallik site was possible by drawing down the pressure on a thin free-gas zone at the base of the hydrate stability field. Gas hydrate zones with underlying aquifers yielded significant gas production entirely from dissociated gas hydrate, but large amounts of produced water. Lithologically isolated gas-hydrate-bearing reservoirs with no underlying free gas or water zones, and gas-hydrate saturations of at least 50% were also studied. In these cases, it was assumed that thermal stimulation by circulating hot water in the well was the method used to induce dissociation. Sensitivity studies indicated that the methane release from the hydrate accumulations increases with gas-hydrate saturation, the initial formation temperature, the temperature of the circulating water in the well, and the formation thermal conductivity. Methane production appears to be less sensitive to the rock and hydrate specific heat and permeability of the formation

  5. Nitrogen release from forest soils containing sulfide-bearing sediments

    Science.gov (United States)

    Maileena Nieminen, Tiina; Merilä, Päivi; Ukonmaanaho, Liisa

    2014-05-01

    Soils containing sediments dominated by metal sulfides cause high acidity and release of heavy metals, when excavated or drained, as the aeration of these sediments causes formation of sulfuric acid. Consequent leaching of acidity and heavy metals can kill tree seedlings and animals such as fish, contaminate water, and corrode concrete and steel. These types of soils are called acid sulfate soils. Their metamorphic equivalents, such as sulfide rich black shales, pose a very similar risk of acidity and metal release to the environment. Until today the main focus in treatment of the acid sulfate soils has been to prevent acidification and metal toxicity to agricultural crop plants, and only limited attention has been paid to the environmental threat caused by the release of acidity and heavy metals to the surrounding water courses. Even less attention is paid on release of major nutrients, such as nitrogen, although these sediments are extremely rich in carbon and nitrogen and present a potentially high microbiological activity. In Europe, the largest cover of acid sulfate soils is found in coastal lowlands of Finland. Estimates of acid sulfate soils in agricultural use range from 1 300 to 3 000 km2, but the area in other land use classes, such as managed peatland forests, is presumably larger. In Finland, 49 500 km2 of peatlands have been drained for forestry, and most of these peatland forests will be at the regeneration stage within 10 to 30 years. As ditch network maintenance is often a prerequisite for a successful establishment of the following tree generation, the effects of maintenance operations on the quality of drainage water should be under special control in peatlands underlain by sulfide-bearing sediments. Therefore, identification of risk areas and effective prevention of acidity and metal release during drain maintenance related soil excavating are great challenges for forestry on coastal lowlands of Finland. The organic and inorganic nitrogen

  6. Lightweight Approaches to Natural Gas Hydrate Exploration & Production

    Science.gov (United States)

    Max, M. D.; Johnson, A. H.

    2017-12-01

    Lower-cost approaches to drilling and reservoir utilization are made possible by adapting both emerging and new technology to the unique, low risk NGH natural gas resource. We have focused on drilling, wellbore lining technology, and reservoir management with an emphasis on long-term sand control and adaptive mechanical stability during NGH conversion to its constituent gas and water. In addition, we suggest that there are opportunities for management of both the gas and water with respect to maintaining desired thermal conditions. Some of the unique aspects of NGH deposits allow for new, more efficient technology to be applied to development, particularly in drilling. While NGH-bearing sands are in deepwater, they are confined to depths beneath the seafloor of 1.2 kilometers or less. As a result, they will not be significantly above hydrostatic pressure, and temperatures will be less than 30 oC. Drilling will be through semi-consolidated sediment without liquid hydrocarbons. These characteristics mean that high capability drillships are not needed. What is needed is a new perspective about drilling and producing NGH. Drilling from the seafloor will resolve the high-pressure differential between a wellhead on the sea surface in a vessel and reservoir to about the hydrostatic pressure difference between the seafloor and, at most, the base of the GHSZ. Although NGH production will begin using "off-the-shelf" technology, innovation will lead to new technology that will bring down costs and increase efficiency in the same way that led to the shale breakthrough. Commercial success is possible if consideration is given to what is actually needed to produce NGH in a safe and environmentally manner. Max, M.D. 2017. Wellbore Lining for Natural Gas Hydrate. U.S. Patent Application US15644947 Max, M.D. & Johnson, A.H. 2017. E&P Cost Reduction Opportunities for Natural Gas Hydrate. OilPro. . Max, M.D. & Johnson, A.H. 2016. Exploration and Production of Oceanic Natural Gas

  7. P-Wave and S-Wave Velocity Structure of Submarine Landslide Associated With Gas Hydrate Layer on Frontal Ridge of Northern Cascadia Margin

    Science.gov (United States)

    He, T.; Lu, H.; Yelisetti, S.; Spence, G.

    2015-12-01

    The submarine landslide associated with gas hydrate is a potential risk for environment and engineering projects, and thus from long time ago it has been a hot topic of hydrate research. The study target is Slipstream submarine landslide, one of the slope failures observed on the frontal ridges of the Northern Cascadia accretionary margin off Vancouver Island. The previous studies indicated a possible connection between this submarine landslide feature and gas hydrate, whose occurrence is indicated by a prominent bottom-simulating reflector (BSR), at a depth of ~265-275 m beneath the seafloor (mbsf). The OBS (Ocean Bottom Seismometer) data collected during SeaJade (Seafloor Earthquake Array - Japan Canada Cascadia Experiment) project were used to derive the subseafloor velocity structure for both P- and S-wave using travel times picked from refraction and reflection events. The P-wave velocity structure above the BSR showed anomalous high velocities of about 2.0 km/s at shallow depths of 100 mbsf, closely matching the estimated depth of the glide plane (100 ± 10 m). Forward modelling of S-waves was carried out using the data from the OBS horizontal components. The S-wave velocities, interpreted in conjunction with the P-wave results, provide the key constraints on the gas hydrate distribution within the pores. The hydrate distribution in the pores is important for determining concentrations, and also for determining the frame strength which is critical for controlling slope stability of steep frontal ridges. The increase in S-wave velocity suggests that the hydrate is distributed as part of the load-bearing matrix to increase the rigidity of the sediment.

  8. Methane hydrates in quaternary climate change

    International Nuclear Information System (INIS)

    Kennett, J. P.; Hill, T. M.; Behl, R. J.

    2005-01-01

    The hydrate reservoir in marine sediments is known to contain a large volume of exchangeable carbon stored as solid methane hydrate and associated free gas. This reservoir has been shown to be potentially unstable in response to changing intermediate water temperature and sea level (pressure). Evidence continues to grow for past episodes of major methane release at times of climatic warming. Yet few studies of late Quaternary climate change include methane hydrates as an integral part of the global climate system, in spite of the largest known oscillations at this time in sea level and upper ocean temperature changes for the Cenozoic or earlier, conditions that favor instability of the methane hydrate reservoir. Abrupt increases in atmospheric methane recorded in polar ice cores are widely believed to have resulted, not from ocean-floor methane degassing, but instead from continental wetland activation, a hypothesis thus far unsupported by geological data. Furthermore, as part of this Wetland Methane Hypothesis, the abrupt methane increases have been seen as a response to climatic warming rather than contributing significantly to the change. An alternative view (formulated as the Clathrate Gun Hypothesis) is that the speed, magnitude and timing of abrupt climate change in the recent geologic past are consistent with the process of major degassing of methane hydrates. We summarize aspects of this hypothesis here and needs to test this hypothesis. (Author)

  9. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  10. Experimental determination of methane hydrate formation in the presence of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.B.; Wang, L.Y.; Liu, A.X.; Guo, X.Q.; Chen, G.J.; Ma, Q.L.; Li, G.W. [China Univ. of Petroleum, Beijng (China). State Key Laboratory of Heavy Oil Processing

    2008-07-01

    Gas hydrates are non-stoichiometric inclusion compounds that are created by a lattice of water molecules. The host molecule has a strong hydrogen bond and encages low molecular weight gases or volatile liquids. The guest molecules favor hydrate formation. Historically, gas hydrates have been thought to be problematic during natural gas transportation because the formed solid hydrate can block pipelines and cause tubing and casing collapse. However, the discovery of huge deposits of gas hydrates in deep-sea sediments and in permafrost has renewed interest in gas hydrates as a new energy resource. This paper discussed a study that is a part of an ongoing experimental and computational program dealing with the thermodynamics of gas hydrate formation in ammonia-water systems. The purpose of the study was to develop a new method to separate and recycle the vent gas of ammonia synthesis by forming or dissociating hydrate. The hydrate-forming conditions of methane in ammonia and water system were studied and reported in this paper with reference to the experimental apparatus and procedure. The materials and preparation of samples were also explained. The experimental results showed that the ammonia had an inhibitive effect on the hydrate formation. 26 refs., 2 tabs., 3 figs.

  11. Calibration and validation of a numerical model against experimental data of methane hydrate formation and dissociation in a sandy porous medium

    Science.gov (United States)

    Yin, Z.; Moridis, G. J.; Chong, Z. R.; Linga, P.

    2017-12-01

    Methane hydrates (MH) are known to trap enormous amounts of CH4 in oceanic and permafrost-associated deposits, and are being considered as a potential future energy source. Several powerful numerical simulators were developed to describe the behavior of natural hydrate-bearing sediments (HBS). The complexity and strong nonlinearities in HBS do not allow analytical solutions for code validation. The only reliable method to develop confidence in these models is through comparisons to laboratory and/or field experiments. The objective of this study is to reproduce numerically the results from earlier experiments of MH formation and depressurization (and the corresponding fluid production) in 1.0L reactor involving unconsolidated sand, thus validating and calibrating the TOUGH+Hydrate v1.5 simulator. We faithfully describe the reactor geometry and the experimental process that involves both hydrate formation and dissociation. We demonstrate that the laboratory experiments can only be captured by a kinetic hydration model. There is an excellent agreement between observations and predictions (a) of the cumulative gas depletion (during formation) and production (during dissociation) and (b) of pressure over time. The temperature agreement is less satisfactory, and the deviations are attributed to the fixed locations of the limited number of sensors that cannot fully capture the hydrate heterogeneity. We also predict the spatial distributions over time of the various phase (gas, aqueous and hydrate) saturations. Thus, hydrates form preferentially along the outer boundary of the sand core, and the hydrate front moves inward leaving a significant portion of the sand at the center hydrate-free. During depressurization, dissociation advances again inward from the reactor boundary to the center of the reactor. As expected, methane gas accumulates initially at the locations of most intense dissociation, and then gradually migrates to the upper section of the reactor because of

  12. Halogen systematics in the Mallik 5L-38 gas hydrate production research well, Northwest Territories, Canada: Implications for the origin of gas hydrates under terrestrial permafrost conditions

    International Nuclear Information System (INIS)

    Tomaru, Hitoshi; Fehn, Udo; Lu, Zunli; Matsumoto, Ryo

    2007-01-01

    The authors report here halogen concentrations in pore waters and sediments collected from the Mallik 5L-38 gas hydrate production research well, a permafrost location in the Mackenzie Delta, Northwest Territories, Canada. Iodine and Br are commonly enriched in waters associated with CH 4 , reflecting the close association between these halogens and source organic materials. Pore waters collected from the Mallik well show I enrichment, by one order of magnitude above that of seawater, particularly in sandy layers below the gas hydrate stability zone (GHSZ). Although Cl and Br concentrations increase with depth similar to the I profile, they remain below seawater values. The increase in I concentrations observed below the GHSZ suggests that I-rich fluids responsible for the accumulation of CH 4 in gas hydrates are preferentially transported through the sandy permeable layers below the GHSZ. The Br and I concentrations and I/Br ratios in Mallik are considerably lower than those in marine gas hydrate locations, demonstrating a terrestrial nature for the organic materials responsible for the CH 4 at the Mallik site. Halogen systematics in Mallik suggest that they are the result of mixing between seawater, freshwater and an I-rich source fluid. The comparison between I/Br ratios in pore waters and sediments speaks against the origin of the source fluids within the host formations of gas hydrates, a finding compatible with the results from a limited set of 129 I/I ratios determined in pore waters, which gives a minimum age of 29 Ma for the source material, i.e. at the lower end of the age range of the host formations. The likely scenario for the gas hydrate formation in Mallik is the derivation of CH 4 together with I from the terrestrial source materials in formations other than the host layers through sandy permeable layers into the present gas hydrate zones

  13. Deep-Water Acoustic Anomalies from Methane Hydrate in the Bering Sea

    Science.gov (United States)

    Wood, Warren T.; Barth, Ginger A.; Scholl, David W.; Lebedeva-Ivanova, Nina

    2015-01-01

    A recent expedition to the central Bering Sea, one of the most remote locations in the world, has yielded observations confirming gas and gas hydrates in this deep ocean basin. Significant sound speed anomalies found using inversion of pre-stack seismic data are observed in association with variable seismic amplitude anomalies in the thick sediment column. The anomalously low sound speeds below the inferred base of methane hydrate stability indicate the presence of potentially large quantities of gas-phase methane associated with each velocity-amplitude anomaly (VAMP). The data acquired are of such high quality that quantitative estimates of the concentrations of gas hydrates in the upper few hundred meters of sediment are also possible, and analyses are under way to make these estimates. Several VAMPs were specifically targeted in this survey; others were crossed incidentally. Indications of many dozens or hundreds of these features exist throughout the portion of the Bering Sea relevant to the U.S. extended continental shelf (ECS) consistent with the United Nations Convention on the Law of the Sea. 

  14. Control of the geomorphology and gas hydrate extent on widespread gas emissions offshore Romania (Black Sea)

    Science.gov (United States)

    Riboulot, V.; Cattaneo, A.; Sultan, N.; Ker, S.; Scalabrin, C.; Gaillot, A.; Jouet, G.; Marsset, B.; Thomas, Y.; Ballas, G.; Marsset, T.; Garziglia, S.; Ruffine, L.; Boulart, C.

    2016-12-01

    The Romanian sector of the Black Sea deserves attention because the Danube deep-sea fan is one of the largest sediment depositional systems worldwide and is considered the world's most isolated sea, the largest anoxic water body on the planet and a unique energy-rich sea. Due to the high sediment accumulation rate, presence of organic matter and anoxic conditions, the Black sea sediment offshore the Danube delta is rich in gas and thus show BSR. The cartography of the BSR over the last 20 years, exhibits its widespread occurrence, indicative of extensive development of hydrate accumulations and a huge gas hydrate potential. By combining old and new datasets acquired in 2015 during the GHASS expedition, we performed a geomorphological analysis of the continental slope north-east of the Danube canyon that reveals the presence of several landslides inside and outside several canyons incising the seafloor. It is a complex study area presenting sedimentary processes such as seafloor erosion and instability, mass wasting, formation of gas hydrates, fluid migration, gas escape, where the imprint of geomorphology seems to dictate the location where gas seep occurs. . Some 1409 gas seeps within the water column acoustic records are observed between 200 m and 800 m water depth. No gas flares were detected in deeper areas where gas hydrates are stable. Overall, 93% of the all gas seeps observed are above geomorphological structures. 78% are right above escarpment induced by sedimentary destabilizations inside or outside canyons. The results suggest a geomorphological control of degassing at the seafloor and gas seeps are thus constrained by the gas hydrates stability zone. The stability of the gas hydrates is dependent on the salinity gradient through the sedimentary column and thus on the Black Sea recent geological history. The extent and the dynamics of gas hydrates have a probable impact on the sedimentary destabilization observed at the seafloor.

  15. Concentrations and carbon isotope compositions of methane in the cored sediments from offshore SW Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, P.C.; Yang, T.F.; Hong, W.L. [National Taiwan Univ., Taipei, Taiwan (China). Dept. of Geosciences; Lin, S.; Chen, J.C. [National Taiwan Univ., Taipei, Taiwan (China). Inst. of Oceanography; Sun, C.H. [CPC Corp., Wen Shan, Miaoli, Taiwan (China). Exploration and Development Research Inst.; Wang, Y. [Central Geological Survey, MOEA, Taipei, Taiwan (China)

    2008-07-01

    Gas hydrates are natural occurring solids that contain natural gases, mainly methane, within a rigid lattice of water molecules. They are a type of non-stoichiometric clathrates and metastable crystal products in low temperature and high pressure conditions and are widely distributed in oceans and in permafrost regions around the world. Gas hydrates have been considered as potential energy resources for the future since methane is the major gas inside gas hydrates. Methane is also a greenhouse gas that might affect the global climates from the dissociations of gas hydrates. Bottom simulating reflections (BSRs) have been found to be widely distributed in offshore southwestern Taiwan therefore, inferring the existence of potential gas hydrates underneath the seafloor sediments. This paper presented a study that involved the systematic collection of sea waters and cored sediments as well as the analysis of the gas composition of pore-space of sediments through ten cruises from 2003 to 2006. The paper discussed the results in terms of the distribution of methane concentrations in bottom waters and cored sediments; methane fluxes in offshore southwestern Taiwan; and isotopic compositions of methane in pore spaces of cored sediments. It was concluded that the carbon isotopic compositions of methane demonstrated that biogenic gas source was dominated at shallower depth. However, some thermogenic gases might be introduced from deeper source in this region. 15 refs., 5 figs.

  16. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada

    Science.gov (United States)

    Moridis, G.J.; Collett, T.S.; Dallimore, S.R.; Satoh, T.; Hancock, S.; Weatherill, B.

    2004-01-01

    The Mallik site represents an onshore permafrost-associated gas hydrate accumulation in the Mackenzie Delta, Northwest Territories, Canada. A gas hydrate research well was drilled at the site in 1998. The objective of this study is the analysis of various gas production scenarios from five methane hydrate-bearing zones at the Mallik site. In Zone #1, numerical simulations using the EOSHYDR2 model indicated that gas production from hydrates at the Mallik site was possible by depressurizing a thin free gas zone at the base of the hydrate stability field. Horizontal wells appeared to have a slight advantage over vertical wells, while multiwell systems involving a combination of depressurization and thermal stimulation offered superior performance, especially when a hot noncondensible gas was injected. Zone #2, which involved a gas hydrate layer with an underlying aquifer, could yield significant amounts of gas originating entirely from gas hydrates, the volumes of which increased with the production rate. However, large amounts of water were also produced. Zones #3, #4 and #5 were lithologically isolated gas hydrate-bearing deposits with no underlying zones of mobile gas or water. In these zones, thermal stimulation by circulating hot water in the well was used to induce dissociation. Sensitivity studies indicated that the methane release from the hydrate accumulations increased with the gas hydrate saturation, the initial formation temperature, the temperature of the circulating water in the well, and the formation thermal conductivity. Methane production appears to be less sensitive to the specific heat of the rock and of the hydrate, and to the permeability of the formation. ?? 2004 Published by Elsevier B.V.

  17. Rock magnetic and geochemical evidence for authigenic magnetite formation via iron reduction in coal-bearing sediments offshore Shimokita Peninsula, Japan (IODP Site C0020)

    Science.gov (United States)

    Phillips, Stephen C.; Johnson, Joel E.; Clyde, William C.; Setera, Jacob B.; Maxbauer, Daniel P.; Severmann, Silke; Riedinger, Natascha

    2017-06-01

    Sediments recovered at Integrated Ocean Drilling Program (IODP) Site C0020, in a fore-arc basin offshore Shimokita Peninsula, Japan, include numerous coal beds (0.3-7 m thick) that are associated with a transition from a terrestrial to marine depositional environment. Within the primary coal-bearing unit (˜2 km depth below seafloor) there are sharp increases in magnetic susceptibility in close proximity to the coal beds, superimposed on a background of consistently low magnetic susceptibility throughout the remainder of the recovered stratigraphic sequence. We investigate the source of the magnetic susceptibility variability and characterize the dominant magnetic assemblage throughout the entire cored record, using isothermal remanent magnetization (IRM), thermal demagnetization, anhysteretic remanent magnetization (ARM), iron speciation, and iron isotopes. Magnetic mineral assemblages in all samples are dominated by very low-coercivity minerals with unblocking temperatures between 350 and 580°C that are interpreted to be magnetite. Samples with lower unblocking temperatures (300-400°C), higher ARM, higher-frequency dependence, and isotopically heavy δ56Fe across a range of lithologies in the coal-bearing unit (between 1925 and 1995 mbsf) indicate the presence of fine-grained authigenic magnetite. We suggest that iron-reducing bacteria facilitated the production of fine-grained magnetite within the coal-bearing unit during burial and interaction with pore waters. The coal/peat acted as a source of electron donors during burial, mediated by humic acids, to supply iron-reducing bacteria in the surrounding siliciclastic sediments. These results indicate that coal-bearing sediments may play an important role in iron cycling in subsiding peat environments and if buried deeply through time, within the subsequent deep biosphere.

  18. Discrete element analysis of the mechanical properties of deep-sea methane hydrate-bearing soils considering interparticle bond thickness

    Science.gov (United States)

    Jiang, Mingjing; He, Jie; Wang, Jianfeng; Zhou, Yaping; Zhu, Fangyuan

    2017-12-01

    Due to increasing global energy demands, research is being conducted on the mechanical properties of methane hydrate-bearing soils (MHBSs), from which methane hydrate (MH) will be explored. This paper presents a numerical approach to study the mechanical properties of MHBSs. The relationship between the level of MH saturation and the interparticle bond thickness is first obtained by analyzing the scanning electron microscope images of MHBS samples, in which is the bridge connecting the micromechanical behavior captured by the DEM with the macroscopic properties of MHBSs. A simplified thermal-hydromechanical (THM) bond model that considers the different bond thicknesses is then proposed to describe the contact behavior between the soil particles and those incorporated into the discrete element method (DEM). Finally, a series of biaxial compression tests are carried out with different MH saturations under different effective confining pressures to analyze the mechanical properties of deep-sea MHBSs. The results of the DEM numerical simulation are also compared with the findings from triaxial compression tests. The results show that the macromechanical properties of deep-sea MHBSs can be qualitatively captured by the proposed DEM. The shear strength, cohesion, and volumetric contraction of deep-sea MHBSs increase with increasing MH saturation, although its influence on the internal friction angle is obscure. The shear strength and volumetric contraction increase with increasing effective confining pressure. The peak shear strength and the dilation of MHBSs increase as the critical bond thickness increases, while the residual deviator stress largely remains the same at a larger axial strain. With increasing the axial strain, the percentage of broken bonds increases, along with the expansion of the shear band.

  19. Preparation of Authigenic Pyrite from Methane-bearing Sediments for In Situ Sulfur Isotope Analysis Using SIMS.

    Science.gov (United States)

    Lin, Zhiyong; Sun, Xiaoming; Peckmann, Jörn; Lu, Yang; Strauss, Harald; Xu, Li; Lu, Hongfeng; Teichert, Barbara M A

    2017-08-31

    Different sulfur isotope compositions of authigenic pyrite typically result from the sulfate-driven anaerobic oxidation of methane (SO4-AOM) and organiclastic sulfate reduction (OSR) in marine sediments. However, unravelling the complex pyritization sequence is a challenge because of the coexistence of different sequentially formed pyrite phases. This manuscript describes a sample preparation procedure that enables the use of secondary ion mass spectroscopy (SIMS) to obtain in situ δ 34 S values of various pyrite generations. This allows researchers to constrain how SO4-AOM affects pyritization in methane-bearing sediments. SIMS analysis revealed an extreme range in δ 34 S values, spanning from -41.6 to +114.8‰, which is much wider than the range of δ 34 S values obtained by the traditional bulk sulfur isotope analysis of the same samples. Pyrite in the shallow sediment mainly consists of 34 S-depleted framboids, suggesting early diagenetic formation by OSR. Deeper in the sediment, more pyrite occurs as overgrowths and euhedral crystals, which display much higher SIMS δ 34 S values than the framboids. Such 34 S-enriched pyrite is related to enhanced SO4-AOM at the sulfate-methane transition zone, postdating OSR. High-resolution in situ SIMS sulfur isotope analyses allow for the reconstruction of the pyritization processes, which cannot be resolved by bulk sulfur isotope analysis.

  20. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming.

    Science.gov (United States)

    Wallmann, Klaus; Riedel, M; Hong, W L; Patton, H; Hubbard, A; Pape, T; Hsu, C W; Schmidt, C; Johnson, J E; Torres, M E; Andreassen, K; Berndt, C; Bohrmann, G

    2018-01-08

    Methane seepage from the upper continental slopes of Western Svalbard has previously been attributed to gas hydrate dissociation induced by anthropogenic warming of ambient bottom waters. Here we show that sediment cores drilled off Prins Karls Foreland contain freshwater from dissociating hydrates. However, our modeling indicates that the observed pore water freshening began around 8 ka BP when the rate of isostatic uplift outpaced eustatic sea-level rise. The resultant local shallowing and lowering of hydrostatic pressure forced gas hydrate dissociation and dissolved chloride depletions consistent with our geochemical analysis. Hence, we propose that hydrate dissociation was triggered by postglacial isostatic rebound rather than anthropogenic warming. Furthermore, we show that methane fluxes from dissociating hydrates were considerably smaller than present methane seepage rates implying that gas hydrates were not a major source of methane to the oceans, but rather acted as a dynamic seal, regulating methane release from deep geological reservoirs.

  1. Assessment of marine gas hydrate deposits: A comparative study of seismic, electromagnetic and seafloor compliance methods

    Energy Technology Data Exchange (ETDEWEB)

    Willoughby, E. C.; Schwalenberg, K.; Edwards, R.N.; Spence, G.D.; Hyndman, R.D.

    2005-07-01

    The existence, distribution and concentration of marine natural gas hydrate are mostly diagnosed using seismic data. The base of the hydrate stability zone marks an acoustic impedance contrast, which generally mimics seafloor topography and is associated with a bright, negative-polarity reflector, known as the Bottom Simulating Reflector (BSR). However, limitations of seismic methods include uncertainty in the origin of the BSR, which does not distinguish between low velocity gas and high velocity hydrate, blanking, and lack of clear upper boundary reflections. Sufficiently accurate hydrate layer velocities have been obtained at few sites, and these could better evaluate hydrate content with reference to velocities in similar sediments without hydrate- a situation very difficult to find. Therefore, estimation of the total mass of a deposit is difficult using seismic data alone. We have developed two supplementary geophysical imaging techniques for the evaluation of marine hydrate: A deep-towed controlled-source electromagnetic (CSEM) and a seafloor compliance experiment. These methods are sensitive to physical properties of the sedimentary section, which are modified by the presence of gas hydrate, namely the resistivity and the bulk shear modulus depth profile, respectively. CSEM data are gathered by inline receivers towed behind an AC transmitter; high precision timing allows measurement of the EM field propagation time through marine sediments which is proportional to resistivity, which is increased by the presence of insulating hydrate. Seafloor compliance is the transfer function between pressure induced on the seafloor by surface gravity waves and the associated deformation of the seafloor. It is mostly sensitive to shear modulus anomalies. Shear modulus is increased by hydrates, which can cement grains together. Here we present field data at a gas hydrate site, south of ODP Hole 889B in northern Cascadia, over a proposed new IODP transect, where these three

  2. India National Gas Hydrate Program Expedition 02 Technical Contributions

    Science.gov (United States)

    Collett, T. S.; Kumar, P.; Shukla, K. M.; Nagalingam, J.; Lall, M. V.; Yamada, Y.; Schultheiss, P. J.; Holland, M.; Waite, W. F.

    2017-12-01

    The National Gas Hydrate Program Expedition 02 (NGHP-02) was conducted from 3-March-2015 to 28-July-2015 off the eastern coast of India. The primary objective of this expedition was the exploration and discovery of highly saturated gas hydrate occurrences in sand reservoirs that would be targets of future production testing. The first 2 months of the expedition were dedicated to logging while drilling (LWD) operations with a total of 25 holes being drilled and logged. The next 3 months were dedicated to coring operations at 10 of the most promising sites. NGHP-02 downhole logging, coring and formation pressure testing have confirmed the presence of large, highly saturated, gas hydrate accumulations in coarse-grained sand-rich depositional systems throughout the Krishna-Godavari Basin within the regions defined during NGHP-02 as Area-B, Area-C, and Area-E. The nature of the discovered gas hydrate occurrences closely matched pre-drill predictions, confirming the project developed depositional models for the sand-rich depositional facies in the Krishna-Godavari and Mahanadi Basins. The existence of a fully developed gas hydrate petroleum system was established in Area-C of the Krishna-Godavari Basin with the discovery of a large slope-basin interconnected depositional system, including a sand-rich, gas-hydrate-bearing channel-levee prospect at Sites NGHP-02-08 and -09. The acquisition of closely spaced LWD and core holes in the Area-B L1 Block gas hydrate accumulation have provided one of the most complete three-dimensional petrophysical-based views of any known gas hydrate reservoir system in the world. It was concluded that Area-B and Area-C in the area of the greater Krishna-Godavari Basin contain important world-class gas hydrate accumulations and represent ideal sites for consideration of future gas hydrate production testing.

  3. Energy from gas hydrates - assessing the opportunities and challenges for Canada: report of the expert panel on gas hydrates

    International Nuclear Information System (INIS)

    2008-09-01

    Gas hydrates form when water and natural gas combine at low temperatures and high pressures in regions of permafrost and in marine subseafloor sediments. Estimates suggest that the total amount of natural gas bound in hydrate form may exceed all conventional gas resources, or even the amount of all combined hydrocarbon energy. Gas from gas hydrate could provide a potentially vast new source of energy to offset declining supplies of conventional natural gas in North America and to provide greater energy security for countries such as Japan and India that have limited domestic sources. However, complex issues would need to be addressed if gas hydrate were to become a large part of the energy future of Canada. Natural Resources Canada asked the Council of Canadian Academies to assemble a panel of experts to examine the challenges for an acceptable operational extraction of gas hydrates in Canada. This report presented an overview of relevant contextual background, including some basic science; the medium-term outlook for supply and demand in markets for natural gas; broad environmental issues related to gas hydrate in its natural state and as a fuel; and an overview of Canada's contribution to knowledge about gas hydrate in the context of ongoing international research activity. The report also presented current information on the subject and what would be required to delineate and quantify the resource. Techniques for extracting gas from gas hydrate were also outlined. The report also addressed safety issues related to gas hydrate dissociation during drilling operations or release into the atmosphere; the environmental issues associated with potential leakage of methane into the atmosphere and with the large volumes of water produced during gas hydrate dissociation; and jurisdictional and local community issues that would need to be resolved in order to proceed with the commercial exploitation of gas hydrate. It was concluded that there does not appear to be

  4. Examination of Hydrate Formation Methods: Trying to Create Representative Samples

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.

    2011-04-01

    Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas

  5. Evidence for faulting related to dissociation of gas hydrate and release of methane off the southeastern United States

    Science.gov (United States)

    Dillon, William P.; Danforth, W.W.; Hutchinson, D.R.; Drury, R.M.; Taylor, M.H.; Booth, J.S.

    1998-01-01

    This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert). An irregular, faulted, collapse depression about 38 x 18 km in extent is located on the crest of the Blake Ridge offshore from the south- eastern United States. Faults disrupt the sea floor and terminate or sole out about 40-500 m below the sea floor at the base of the gas hydrate stable zone, which is identified from the location of the bottom simulating reflection (BSR). Normal faults are common but reverse faults and folds also are widespread. Folds commonly convert upward into faults. Sediment diapirs and deposits of sediments that were erupted onto the sea floor are also present. Sea-floor depressions at faults may represent locations of liquid/gas vents. The collapse was probably caused by overpressures and by the decoupling of the overlying sediments by gassy muds that existed just beneath the zone of gas hydrate stability.

  6. Preliminary assessment of the waveform inversion method for interpretation of cross-well seismic data from the thermal production test, JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [Nagoya Univ., Nagoya (Japan). Research Center for Seismology and Volcanology; Shimizu, S. [Japan National Oil Co., Chiba (Japan); Asakawa, E. [JGI Inc., Tokyo (Japan); Kamei, R.; Matsuoka, T. [Kyoto Univ., Kyoto (Japan). Dept. of Civil and Earth Resources Engineering

    2005-07-01

    The JAPEX/JNOC/GSC et al. Mallik 3L-38 and 4L-38 test wells were subjected to repeated cross-well seismic surveys before and during the gas production test from the gas-hydrate-bearing layer at a depth of about 905 to 920 m. High-resolution velocity images in the gas-hydrate-bearing layer were obtained using the frequency-domain nonlinear waveform inversion method. An acoustic waveform inversion method was used along with the frequency-domain approach in order to detect the change in acoustic properties of the gas-hydrate-bearing layer resulting from gas production. The layered structures with small lateral heterogeneities were reconstructed by tomography analysis of preprocessed waveform data using a smaller number of source-receiver pairs. Preliminary results reveal high velocity and very high attenuation in the gas-hydrate-bearing layers. No obvious velocity decreases were noted. Information for further detailed processing was also gathered.

  7. Late Quaternary sedimentary features of Bear Lake, Utah and Idaho

    Science.gov (United States)

    Smoot, J.P.

    2009-01-01

    Bear Lake sediments were predominantly aragonite for most of the Holocene, reflecting a hydrologically closed lake fed by groundwater and small streams. During the late Pleistocene, the Bear River flowed into Bear Lake and the lake waters spilled back into the Bear River drainage. At that time, sediment deposition was dominated by siliciclastic sediment and calcite. Lake-level fluctuation during the Holocene and late Pleistocene produced three types of aragonite deposits in the central lake area that are differentiated primarily by grain size, sorting, and diatom assemblage. Lake-margin deposits during this period consisted of sandy deposits including well-developed shoreface deposits on margins adjacent to relatively steep gradient lake floors and thin, graded shell gravel on margins adjacent to very low gradient lake-floor areas. Throughout the period of aragonite deposition, episodic drops in lake level resulted in erosion of shallow-water deposits, which were redeposited into the deeper lake. These sediment-focusing episodes are recognized by mixing of different mineralogies and crystal habits and mixing of a range of diatom fauna into poorly sorted mud layers. Lake-level drops are also indicated by erosional gaps in the shallow-water records and the occurrence of shoreline deposits in areas now covered by as much as 30 m of water. Calcite precipitation occurred for a short interval of time during the Holocene in response to an influx of Bear River water ca. 8 ka. The Pleistocene sedimentary record of Bear Lake until ca. 18 ka is dominated by siliciclastic glacial fl our derived from glaciers in the Uinta Mountains. The Bear Lake deep-water siliciclastic deposits are thoroughly bioturbated, whereas shallow-water deposits transitional to deltas in the northern part of the basin are upward-coarsening sequences of laminated mud, silt, and sand. A major drop in lake level occurred ca. 18 ka, resulting in subaerial exposure of the lake floor in areas now covered by

  8. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans

    NARCIS (Netherlands)

    Boudreau, B.P.; Luo, Yiming; Meysman, Filip J R; Middelburg, J.J.; Dickens, G.R.

    2015-01-01

    Anthropogenic warming of the oceans can release methane (CH4) currently stored in sediments as gas hydrates. This CH4 will be oxidized to CO2, thus increasing the acidification of the oceans. We employ a biogeochemical model of the multimillennial carbon cycle to determine the evolution of the

  9. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Overview of scientific and technical program

    Science.gov (United States)

    Hunter, R.B.; Collett, T.S.; Boswell, R.; Anderson, B.J.; Digert, S.A.; Pospisil, G.; Baker, R.; Weeks, M.

    2011-01-01

    The Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled within the Alaska North Slope (ANS) Milne Point Unit (MPU) from February 3 to 19, 2007. The well was conducted as part of a Cooperative Research Agreement (CRA) project co-sponsored since 2001 by BP Exploration (Alaska), Inc. (BPXA) and the U.S. Department of Energy (DOE) in collaboration with the U.S. Geological Survey (USGS) to help determine whether ANS gas hydrate can become a technically and commercially viable gas resource. Early in the effort, regional reservoir characterization and reservoir simulation modeling studies indicated that up to 0.34 trillion cubic meters (tcm; 12 trillion cubic feet, tcf) gas may be technically recoverable from 0.92 tcm (33 tcf) gas-in-place within the Eileen gas hydrate accumulation near industry infrastructure within ANS MPU, Prudhoe Bay Unit (PBU), and Kuparuk River Unit (KRU) areas. To further constrain these estimates and to enable the selection of a test site for further data acquisition, the USGS reprocessed and interpreted MPU 3D seismic data provided by BPXA to delineate 14 prospects containing significant highly-saturated gas hydrate-bearing sand reservoirs. The "Mount Elbert" site was selected to drill a stratigraphic test well to acquire a full suite of wireline log, core, and formation pressure test data. Drilling results and data interpretation confirmed pre-drill predictions and thus increased confidence in both the prospect interpretation methods and in the wider ANS gas hydrate resource estimates. The interpreted data from the Mount Elbert well provide insight into and reduce uncertainty of key gas hydrate-bearing reservoir properties, enable further refinement and validation of the numerical simulation of the production potential of both MPU and broader ANS gas hydrate resources, and help determine viability of potential field sites for future extended term production testing. Drilling and data acquisition operations demonstrated that gas hydrate

  10. Capillary pressure controlled methane hydrate and ice growth-melting patterns in porous media : synthetic silica versus natural sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Tohidi, B.; Webber, B. [Heriot-Watt Univ., Centre for Gas Research, Edinburgh (United Kingdom). Inst. of Petroleum Engineering

    2008-07-01

    Although naturally-occurring gas hydrates (or clathrate hydrates) in marine sediments can pose a hazard to deepwater hydrocarbon production operations, they represent a potential strategic energy reserve. Gas hydrates can also provide a means for deep ocean carbon dioxide disposal through sequestration/storage. They have long-term importance with respect to ocean margin stability, methane release, and global climate change. However, fundamental knowledge is still lacking regarding the mechanisms of hydrate growth, accumulation and distribution within the subsurface. Marine sediments which host gas hydrates are commonly fine-grained silts, muds, and clays with narrow mean pore diameters, leading to speculation that capillary phenomena could play a significant role in controlling hydrate distribution in the seafloor, and may be partly responsible for discrepancies between observed and predicted hydrate stability zone thicknesses. A close relationship between hydrate inhibition and pore size has been confirmed through previous laboratory studies. Clathrate stability has been significantly reduced in narrow pores. However, the focus of investigations has generally been hydrate dissociation conditions in porous media, with capillary controls on the equally important process of hydrate growth being largely overlooked. This paper presented the results of an experimental investigation into methane hydrate growth and dissociation equilibria in natural medium grained sandstone. The study also compared data with that previously measured for mesoporous silica glasses. The paper discussed solid-liquid phase behaviour in confined geometries including hysteresis in porous media. It also discussed the experimental equipment and method. It was concluded that, as for synthetic silicas, hydrate growth and dissociation in the sandstone were characterised by a measurable hysteresis between opposing transitions, notably hydrate (or ice) formation occurring at temperatures lower than

  11. Calculation of the eroei coefficient for natural gas hydrates in laboratory conditions

    Science.gov (United States)

    Siažik, Ján; Malcho, Milan; Čaja, Alexander

    2017-09-01

    In the 1960s, scientists discovered that methane hydrate existed in the gas field in Siberia. Gas hydrates are known to be stable under conditions of high pressure and low temperature that have been recognized in polar regions and in the uppermost part of deep -water sediments below the sea floor. The article deals with the determination of the EROEI coefficient to generate the natural gas hydrate in the device under specific temperature and pressure conditions. Energy returned on energy invested expresses ratio of the amount of usable energy delivered from a particular energy resource to the amount of exergy used to obtain that energy resource. Gas hydrates have been also discussed before decades like potential source mainly for regions with restricted access to conventional hydrocarbons also tactic interest in establishing alternative gas reserves.

  12. Fluid flow and methane occurrences in the Disko Bugt area offshore West Greenland: indications for gas hydrates?

    Science.gov (United States)

    Nielsen, Tove; Laier, Troels; Kuijpers, Antoon; Rasmussen, Tine L.; Mikkelsen, Naja E.; Nørgård-Pedersen, Niels

    2014-12-01

    The present study is the first to directly address the issue of gas hydrates offshore West Greenland, where numerous occurrences of shallow hydrocarbons have been documented in the vicinity of Disko Bugt (Bay). Furthermore, decomposing gas hydrate has been implied to explain seabed features in this climate-sensitive area. The study is based on archive data and new (2011, 2012) shallow seismic and sediment core data. Archive seismic records crossing an elongated depression (20×35 km large, 575 m deep) on the inner shelf west of Disko Bugt (Bay) show a bottom simulating reflector (BSR) within faulted Mesozoic strata, consistent with the occurrence of gas hydrates. Moreover, the more recently acquired shallow seismic data reveal gas/fluid-related features in the overlying sediments, and geochemical data point to methane migration from a deeper-lying petroleum system. By contrast, hydrocarbon signatures within faulted Mesozoic strata below the strait known as the Vaigat can be inferred on archive seismics, but no BSR was visible. New seismic data provide evidence of various gas/fluid-releasing features in the overlying sediments. Flares were detected by the echo-sounder in July 2012, and cores contained ikaite and showed gas-releasing cracks and bubbles, all pointing to ongoing methane seepage in the strait. Observed seabed mounds also sustain gas seepages. For areas where crystalline bedrock is covered only by Pleistocene-Holocene deposits, methane was found only in the Egedesminde Dyb (Trough). There was a strong increase in methane concentration with depth, but no free gas. This is likely due to the formation of gas hydrate and the limited thickness of the sediment infill. Seabed depressions off Ilulissat Isfjord (Icefjord) previously inferred to express ongoing gas release from decomposing gas hydrate show no evidence of gas seepage, and are more likely a result of neo-tectonism.

  13. Measurements of gas permeability and non-Darcy flow in gas-water-hydrate systems

    Energy Technology Data Exchange (ETDEWEB)

    Ersland, G.; Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Baldwin, B. [Green Country Petrophysics LLC, Dewey, OK (United States); Stevens, J.; Howard, J. [ConocoPhillips, OK (United States)

    2008-07-01

    Storage of carbon dioxide (CO{sub 2}) in natural gas hydrate reservoirs may offer stable long-term storage of a greenhouse gas while benefiting from methane production, without requiring heat. By exposing hydrate to a thermodynamically preferred hydrate former, CO{sub 2}, the hydrate may be maintained macroscopically in the solid state and retain the stability of the formation. However, there is concern over the flow capacity in such reservoirs. This depends on several factors, notably thermodynamic destabilization of hydrate in small pores due to capillary effects; the presence of liquid channels separating the hydrate from the mineral surfaces; and, the connectivity of gas or liquid filled pores and channels. This paper described a technique for measuring gas permeability in gas-water-hydrate systems. It reported on several experiments that measured gas permeability during stages of hydrate growth in sandstone core plugs. Interactions between minerals and surrounding molecules were also discussed. The formation of methane hydrate in porous media was monitored and quantified with magnetic resonance imaging (MRI). MRI images of hydrate growth within the porous rock were provided along with measurements of gas permeability and non-Darcy flow effects at various hydrate saturations. Gas permeability was measured at steady state flow of methane through the hydrate-bearing core sample. Significant gas permeability was recorded for porous sandstone even when hydrates occupied up to 60 per cent of the pore space. It was concluded that MRI imaging can be used effectively to map and quantify hydrate saturation in sandstone core plugs. 27 refs., 2 tabs., 10 figs.

  14. Gas hydrates: entrance to a methane age or climate threat?

    International Nuclear Information System (INIS)

    Krey, Volker; Nakicenovic, Nebojsa; Grubler, Arnulf; O'Neill, Brian; Riahi, Keywan; Canadell, Josep G; Abe, Yuichi; Andruleit, Harald; Archer, David; Hamilton, Neil T M; Johnson, Arthur; Kostov, Veselin; Lamarque, Jean-Francois; Langhorne, Nicholas; Nisbet, Euan G; Riedel, Michael; Wang Weihua; Yakushev, Vladimir

    2009-01-01

    Methane hydrates, ice-like compounds in which methane is held in crystalline cages formed by water molecules, are widespread in areas of permafrost such as the Arctic and in sediments on the continental margins. They are a potentially vast fossil fuel energy source but, at the same time, could be destabilized by changing pressure-temperature conditions due to climate change, potentially leading to strong positive carbon-climate feedbacks. To enhance our understanding of both the vulnerability of and the opportunity provided by methane hydrates, it is necessary (i) to conduct basic research that improves the highly uncertain estimates of hydrate occurrences and their response to changing environmental conditions, and (ii) to integrate the agendas of energy security and climate change which can provide an opportunity for methane hydrates-in particular if combined with carbon capture and storage-to be used as a 'bridge fuel' between carbon-intensive fossil energies and zero-emission energies. Taken one step further, exploitation of dissociating methane hydrates could even mitigate against escape of methane to the atmosphere. Despite these opportunities, so far, methane hydrates have been largely absent from energy and climate discussions, including global hydrocarbon assessments and the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

  15. Dissolution of methane bubbles with hydrate armoring in deep ocean conditions

    Science.gov (United States)

    Kovalchuk, Margarita; Socolofsky, Scott

    2017-11-01

    The deep ocean is a storehouse of natural gas. Methane bubble moving upwards from marine sediments may become trapped in gas hydrates. It is uncertain precisely how hydrate armoring affects dissolution, or mass transfer from the bubble to the surrounding water column. The Texas A&M Oilspill Calculator was used to simulate a series of gas bubble dissolution experiments conducted in the United States Department of Energy National Energy Technology Laboratory High Pressure Water Tunnel. Several variations of the mass transfer coefficient were calculated based on gas or hydrate phase solubility and clean or dirty bubble correlations. Results suggest the mass transfer coefficient may be most closely modeled with gas phase solubility and dirty bubble correlation equations. Further investigation of hydrate bubble dissolution behavior will refine current numeric models which aid in understanding gas flux to the atmosphere and plumes such as oil spills. Research funded in part by the Texas A&M University 2017 Undergraduate Summer Research Grant and a Grant from the Methane Gas Hydrates Program of the US DOE National Energy Technology Laboratory.

  16. Impact of Compound Hydrate Dynamics on Phase Boundary Changes

    Science.gov (United States)

    Osegovic, J. P.; Max, M. D.

    2006-12-01

    systems include pipeline blockages and natural hydrate concentrations associated with upwelling fluids in marine sediments. 3) In open systems, mass can either flow into or out of a system. In such situations compound hydrate will form or decompose to re-establish chemical equilibrium. This is accomplished by 1) loading/consuming a preferred hydrate former to/from the surroundings, 2) lowering/raising the temperature of the system, and 3) increasing the local pressure. Examples of this type of system include hydrate produced for low pressure transport, depressurized or superheated hydrate settings (pipeline remediation or energy recovery), or in an industrial process where formation of compound hydrates may be used to separate and concentrate gases from a mixture. The relationship between composition and the phase boundary is as important as pressure and temperature effects. Composition is less significant for simple hydrates where the hydrate behaves as a one-component mineral, but for compound hydrate, feedback between pressure, temperature, and composition can result in complex system behavior.

  17. Amplitude versus offset analysis to marine seismic data acquired in Nankai Trough, offshore Japan where methane hydrate exists

    Science.gov (United States)

    Hato, M.; Inamori, T.; Matsuoka, T.; Shimizu, S.

    2003-04-01

    Occurrence of methane hydrates in the Nankai Trough, located off the south-eastern coast of Japan, was confirmed by the exploratory test well drilling conducted by Japan’s Ministry of International Trade and Industry in 1999. Confirmation of methane hydrate has given so big impact to the Japan's future energy strategy and scientific and technological interest was derived from the information of the coring and logging results at the well. Following the above results, Japan National Oil Corporation (JNOC) launched the national project, named as MH21, for establishing the technology of methane hydrate exploration and related technologies such as production and development. As one of the research project for evaluating the total amount of the methane hydrate, Amplitude versus Offset (AVO) was applied to the seismic data acquired in the Nankai Trough area. The main purpose of the AVO application is to evaluate the validity of delineation of methane hydrate-bearing zones. Since methane hydrate is thought to accompany with free-gas in general just below the methane hydrate-bearing zones, the AVO has a possibility of describing the presence of free-gas. The free-gas is thought to be located just below the base of methane hydrate stability zone which is characterized by the Bottom Simulating Reflectors (BSRs) on the seismic section. In this sense, AVO technology, which was developed as gas delineation tools, can be utilized for methane hydrate exploration. The result of AVO analysis clearly shows gas-related anomaly below the BSRs. Appearance of the AVO anomaly has so wide variety. Some of the anomalies might not correspond to the free-gas existence, however, some of them may show free-gas. We are now going to develop methodology to clearly discriminate free-gas from non-gas zone by integrating various types of seismic methods such as seismic inversion and seismic attribute analysis.

  18. Analytical theory relating the depth of the sulfate-methane transition to gas hydrate distribution and saturation

    Science.gov (United States)

    Bhatnagar, Gaurav; Chatterjee, Sayantan; Chapman, Walter G.; Dugan, Brandon; Dickens, Gerald R.; Hirasaki, George J.

    2011-03-01

    We develop a theory that relates gas hydrate saturation in marine sediments to the depth of the sulfate-methane transition (SMT) zone below the seafloor using steady state, analytical expressions. These expressions are valid for systems in which all methane transported into the gas hydrate stability zone (GHSZ) comes from deeper external sources (i.e., advective systems). This advective constraint causes anaerobic oxidation of methane to be the only sulfate sink, allowing us to link SMT depth to net methane flux. We also develop analytical expressions that define the gas hydrate saturation profile based on SMT depth and site-specific parameters such as sedimentation rate, methane solubility, and porosity. We evaluate our analytical model at four drill sites along the Cascadia Margin where methane sources from depth dominate. With our model, we calculate average gas hydrate saturations across GHSZ and the top occurrence of gas hydrate at these sites as 0.4% and 120 mbsf (Site 889), 1.9% and 70 mbsf (Site U1325), 4.7% and 40 mbsf (Site U1326), and 0% (Site U1329), mbsf being meters below seafloor. These values compare favorably with average saturations and top occurrences computed from resistivity log and chloride data. The analytical expressions thus provide a fast and convenient method to calculate gas hydrate saturation and first-order occurrence at a given geologic setting where vertically upward advection dominates the methane flux.

  19. Stochastic Approach to Determine CO2 Hydrate Induction Time in Clay Mineral Suspensions

    Science.gov (United States)

    Lee, K.; Lee, S.; Lee, W.

    2008-12-01

    A large number of induction time data for carbon dioxide hydrate formation were obtained from a batch reactor consisting of four independent reaction cells. Using resistance temperature detector(RTD)s and a digital microscope, we successfully monitored the whole process of hydrate formation (i.e., nucleation and crystal growth) and detected the induction time. The experiments were carried out in kaolinite and montmorillonite suspensions at temperatures between 274 and 277 K and pressures ranging from 3.0 to 4.0 MPa. Each set of data was analyzed beforehand whether to be treated by stochastic manner or not. Geochemical factors potentially influencing the hydrate induction time under different experimental conditions were investigated by stochastic analyses. We observed that clay mineral type, pressure, and temperature significantly affect the stochastic behavior of the induction times for CO2 hydrate formation in this study. The hydrate formation kinetics along with stochastic analyses can provide basic understanding for CO2 hydrate storage in deep-sea sediment and geologic formation, securing its stability under the environments.

  20. Effect of changes in seafloor temperature and sea-level on gas hydrate stability

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Pritchett, W. [Science Applications International Corp., San Diego, CA (United States)

    2008-07-01

    Natural gas hydrates occur in oceanic sediments and in permafrost regions around the world. As a greenhouse gas, large amounts of methane released from the global hydrate reservoir would have a significant impact on Earth's climate. The role of methane released by hydrate dissociation in climate change is uncertain. However, changes in global climate such as glaciation and warming can destabilize the hydrates. During the last glacial maximum, the sea level dropped about 100 meters. It has been suggested that the sea-level fall was associated with gas hydrate instability and seafloor slumping. This paper investigated the effect of changes in seafloor temperature and sea level on gas hydrate stability and on gas venting at the seafloor. A one-dimensional numerical computer model (simulator) was developed to describe methane hydrate formation, decomposition, reformation, and distribution with depth below the seafloor in the marine environment. The simulator was utilized to model hydrate distributions at two sites, notably Blake Ridge, located offshore South Carolina and Hydrate Ridge, located off the coast of Oregon. The numerical models for the two sites were conditioned by matching the sulfate, chlorinity, and hydrate distribution measurements. The effect of changes in seafloor temperature and sea-level on gas hydrate stability were then investigated. It was concluded that for Blake Ridge, changes in hydrate concentration were small. Both the changes in seafloor temperature and sea-level led to a substantial increase in gas venting at the seafloor for Hydrate Ridge. 17 refs., 8 figs.

  1. Sensitivity of the Arctic Ocean gas hydrate to climate changes in the period of 1948-2015

    Science.gov (United States)

    Malakhova, Valentina V.; Golubeva, Elena N.; Iakshina, Dina F.

    2017-11-01

    The objective of the present study is to analyze the interactions between a methane hydrates stability zone and the ocean temperature variations and to define the hydrate sensitivity to the contemporary warming in the Arctic Ocean. To obtain the spatial-temporary variability of the ocean bottom temperature we employ the ICMMG regional Arctic-North Atlantic ocean model that has been developed in the Institute of Computational Mathematics and Mathematical Geophysics. With the ice-ocean model the Arctic bottom water temperatures were analyzed. The resulting warming ocean bottom water is spatially inhomogeneous, with a strong impact by the Atlantic inflow on shallow regions of 200-500 m depth. Results of the mathematical modeling of the dynamics of methane hydrate stability zone in the Arctic Ocean sediment are reported. We find that the reduction of the methane hydrate stability zone occurs in the Arctic Ocean between 250 and 400 m water depths within the upper 100 m of sediment in the area influenced by the Atlantic inflow. We have identified the areas of the Arctic Ocean where an increase in methane release is probable to occur at the present time.

  2. 3Wave propagation in rock samples under medium and low temperature conditions. Characteristics of methane hydrate-BSR phenomena; Chu teion ryoiki ni okeru ganseki shiryo no hado denpa tokusei. 1. Methane hydrate BSR gensho no kosatsu suitei

    Energy Technology Data Exchange (ETDEWEB)

    Rokugawa, S; Kato, Y; Matsushima, J; Sano, A [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1997-10-22

    In relation to sea-bottom pseudo reflection face and methane hydrate in seismic exploration records, fundamental experimental studies have been made. In order to get a handhold to elucidate phenomena accompanying methane hydrate, the studies have investigated wave propagation behavior of rock samples and sandy sediments under medium and low temperature conditions. The experiments have used a constant-temperature cooling water circulating equipment to control temperatures of each sample. The samples were placed in a cooler box with the vibration transmitter and receiver fixedly installed, and changes of the waves against temperature change were measured. Sand-stones and two kinds of tuffs were used as rock samples for the measurement. Artificial sand sample soaked in water was used as a substitute for a methane hydrate layer. As a result of the experiments, the relation between the hydrate layer and the gas layer was comprehended. In addition, the blanking phenomenon was thought occurring as a result of the nearly whole substance presenting the speed of ice due to freezing of the sediments, rather than by what is described in the ground homogeneousness theory. 5 refs., 9 figs.

  3. Geochemistry and microbiology at gas hydrate and mud volcano sites in the black sea

    Science.gov (United States)

    Drews, M.; Schmaljohann, R.; Wallmann, K.

    2003-04-01

    We present geochemical and microbiological results which were obtained from sediments at gas hydrate and mud volcano sites in the Sorokin Trough (northern Black Sea, south east of the Crimean peninsula) at water depths of about 1800 to 2100 m during the METEOR cruise 52-1. The surface near sub-bottom accumulations of gas hydrates (occuring at depths of several meters or less beneath the sea floor) in the Black Sea are associated with numerous mud volcanos. At stations we investigated gas hydrates occurred below 10 cm to 100 cm with a significant influence on the sediment biochemistry. Analyses revealed high methane concentrations, anoxic and sulfidic conditions, a steep sulfate gradient, carbonate precipitation, and high anaerobic methane oxidation rates. In proximity of the so called Odessa mud volcano one investigated sampling station showed maximum methane oxidation rates in the depth horizon of a firm 2 cm thick carbonate crust layer, adhered to by a bacterial mat. This observation is taken to indicate that the bacteria are causing or mediating the crust formation by their anaerobic methane oxidation metabolism. The station was further characterised by two layers of gas hydrate fragments and lenses below 1 m depth. A 2 to 4 cm thick carbonate crust with attached bacterial mat from a Yalta mud vulcano sample (2124 m water depth) was investigated under the scanning electron microscope. The stiff gelatinous mat showed a dense and morphologically uniform population of rod shaped bacteria with only a few nests of coccoid cells. Purified mat material exhibited anaerobic methane oxidation activity. These mats resemble the type previously found in the shallow NW methane seep area of the Black Sea, where it covers carbonate chimneys. Samples from two sites atop the summit of the active but flat-topped Dvurechenskii mud volcano were characterised by very high methane oxidation rates (up to 563 nmol/cm3/d) at the sediment surface. Strong pore water gradients of chloride

  4. Methane Production from Gas Hydrate Deposits through Injection of Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Matthias Haeckel

    2012-06-01

    Full Text Available The recovery of natural gas from CH4-hydrate deposits in sub-marine and sub-permafrost environments through injection of CO2 is considered a suitable strategy towards emission-neutral energy production. This study shows that the injection of hot, supercritical CO2 is particularly promising. The addition of heat triggers the dissociation of CH4-hydrate while the CO2, once thermally equilibrated, reacts with the pore water and is retained in the reservoir as immobile CO2-hydrate. Furthermore, optimal reservoir conditions of pressure and temperature are constrained. Experiments were conducted in a high-pressure flow-through reactor at different sediment temperatures (2 °C, 8 °C, 10 °C and hydrostatic pressures (8 MPa, 13 MPa. The efficiency of both, CH4 production and CO2 retention is best at 8 °C, 13 MPa. Here, both CO2- and CH4-hydrate as well as mixed hydrates can form. At 2 °C, the production process was less effective due to congestion of transport pathways through the sediment by rapidly forming CO2-hydrate. In contrast, at 10 °C CH4 production suffered from local increases in permeability and fast breakthrough of the injection fluid, thereby confining the accessibility to the CH4 pool to only the most prominent fluid channels. Mass and volume balancing of the collected gas and fluid stream identified gas mobilization as equally important process parameter in addition to the rates of methane hydrate dissociation and hydrate conversion. Thus, the combination of heat supply and CO2 injection in one supercritical phase helps to overcome the mass transfer limitations usually observed in experiments with cold liquid or gaseous CO2.

  5. Long-term viability of carbon sequestration in deep-sea sediments

    Science.gov (United States)

    Teng, Y.; Zhang, D.

    2017-12-01

    Sequestration of carbon dioxide in deep-sea sediments has been proposed for the long-term storage of anthropogenic CO2, due to the negative buoyancy effect and hydrate formation under conditions of high pressure and low temperature. However, the multi-physics process of injection and post-injection fate of CO2 and the feasibility of sub-seabed disposal of CO2 under different geological and operational conditions have not been well studied. On the basis of a detailed study of the coupled processes, we investigate whether storing CO2 into deep-sea sediments is viable, efficient, and secure over the long term. Also studied are the evolution of the multiphase and multicomponent flow and the impact of hydrate formation on storage efficiency during the upward migration of the injected CO2. It is shown that low buoyancy and high viscosity slow down the ascending plume and the forming of the hydrate cap effectively reduces the permeability and finally becomes an impermeable seal, thus limiting the movement of CO2 towards the seafloor. Different flow patterns at varied time scales are identified through analyzing the mass distribution of CO2 in different phases over time. Observed is the formation of a fluid inclusion, which mainly consists of liquid CO2 and is encapsulated by an impermeable hydrate film in the diffusion-dominated stage. The trapped liquid CO2 and CO2 hydrate finally dissolve into the pore water through diffusion of the CO2 component. Sensitivity analyses are performed on storage efficiency under variable geological and operational conditions. It is found that under a deep-sea setting, CO2 sequestration in intact marine sediments is generally safe and permanent.

  6. Influence of Chemical, Physical, Biological and Geochemical Processes of Early Diagenesis and Material Exchange Across the Sediment/Seawater Interface in Margin Sediments

    National Research Council Canada - National Science Library

    Kastner, Miriam

    1997-01-01

    .... To this end, we provided high resolution characterizations of sediment microfabric, physical properties, chemistry, mineralogy, and organic matter content as well as theoretical work on smectite interlayer hydration...

  7. Risk factors of methane hydrate resource development in the concentrated zones distributed in the eastern Nankai Trough

    Science.gov (United States)

    Yamamoto, K.; Nagakubo, S.

    2009-04-01

    Some environmental and safety concerns on the offshore methane hydrate development have been raised, but the ground of such allegations are sometime not fully reasonable. The risks of methane hydrate resource development to environment and safety should be discussed upon methane hydrate occurrences condition, the production methods, and the designs of production system, under comprehensively scientific manners. In the Phase 1 of the Methane Hydrate Exploitation Program in Japan (FY2001-2008), the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) found methane hydrate concentrated zones in the eastern Nankai Trough that are potential prospects for resource development. The concentrated zones are consisted of turbidite-derived sandy sediments and hydrate crystals in pore spaces of sand grains (pore-filling type structure). The MH21 Research Consortium proposed the depressurization method as prime technique due to its efficiency of gas production in such concentrated zones, and has tried to develop conceptual designs of production systems based on the information of existing devices and facilities. Under the condition and circumstances described above, the authors tried to extract and evaluate some risk factors concerning methane hydrate development using depressurization in the area. Leakage of methane gas, that is less harmful substance to ecosystem than heavier hydrocarbons, from production system can be one possible risk. However, in the case of gas production through wellbore, even if catastrophic damages happen in the subsea production system during gas production, the leakages do not continue because the borehole could be filled by seawater and depressurization is stopped immediately. Another possible risk is a leakage of produced gas through seafloor. If methane hydrate production makes high pressure or temperature zones in sediments, the risk should be considered. However, depressurization method makes opposite condition

  8. Direct seismic detection of gas hydrates using multi-component seismology : a case study from the mid-Norwegian margin

    Energy Technology Data Exchange (ETDEWEB)

    Bunz, S.; Mienert, J. [Tromso Univ., Tromso (Norway). Dept. of Geology; Chand, S. [Norwegian Geological Survey, Trondheim (Norway)

    2008-07-01

    Gas hydrates are important as a possible future energy resource, in submarine landsliding and in global climate change as they contain more carbon than any other global reservoir and are plentiful on continental margins worldwide. It is therefore necessary to identify and map the distribution of gas hydrates in a fast and basin-wide approach. Information about the distribution of gas hydrates can be obtained using multi-component seismology. In the marine environment shear waves (S-waves) can be generated by conversion from a downward-propagating compressional wave (P-wave) upon reflection at a sedimentary interface. The upward-propagating S-wave can be recorded at the ocean floor using vertical and horizontal geophones. On the mid-Norwegian margin, a combined analysis of the independently obtained parameters, P-wave velocity and Vp/Vs-ratio, of ocean-bottom cable data enables the direct detection of gas hydrates with higher certainty and assessment of their grain-scale distribution and its controlling parameters. In order to directly image gas hydrates and to directly assess their grain-scale distribution, a model was developed to evaluate the distribution of the ratio of P- and S-wave velocities, Vp/Vs, along the ocean-bottom cable line. The study also evaluated possible controlling mechanisms for the distribution of gas hydrates. The paper provided detailed information on the distribution of gas hydrates and gas within the sediments through analyses of seismic velocities, obtained from multi-channel or ocean-bottom seismic data. It was concluded that gas hydrates are distributed both with and without affecting the shear strength of the sediments. 13 refs., 6 figs.

  9. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

    Science.gov (United States)

    Yongquan, Zhou; Chunhui, Fang; Yan, Fang; Fayan, Zhu; Haiwen, Ge; Hongyan, Liu

    2017-12-01

    Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1-12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium-oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance ( r Na-O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

  10. Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels.

    Science.gov (United States)

    Seo, Yongwon; Lee, Seungmin; Cha, Inuk; Lee, Ju Dong; Lee, Huen

    2009-04-23

    In the present study, we examined the active role of porous silica gels when used as natural gas storage and transportation media. We adopted the dispersed water in silica gel pores to substantially enhance active surface for contacting and encaging gas molecules. We measured the three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria of C(2)H(6) and C(3)H(8) hydrates in 6.0, 15.0, 30.0, and 100.0 nm silica gel pores to investigate the effect of geometrical constraints on gas hydrate phase equilibria. At specified temperatures, the hydrate stability region is shifted to a higher pressure region depending on pore size when compared with those of bulk hydrates. Through application of the Gibbs-Thomson relationship to the experimental data, we determined the values for the C(2)H(6) hydrate-water and C(3)H(8) hydrate-water interfacial tensions to be 39 +/- 2 and 45 +/- 1 mJ/m(2), respectively. By using these values, the calculation values were in good agreement with the experimental ones. The overall results given in this study could also be quite useful in various fields, such as exploitation of natural gas hydrate in marine sediments and sequestration of carbon dioxide into the deep ocean.

  11. Fractionation of oxygen and hydrogen isotopes at the hydrate gas forming in the sea sediments

    International Nuclear Information System (INIS)

    Pashkina, V.I.; Esikov, A.D.

    1990-01-01

    The paper gives data on isotope composition of interstitial and near-bottom waters sampled in a region of gas-hydrate formation in the Sea of Okhotsk. The studies show that heavy isotopes of oxygen and hydrogen is used in gas-hydrate formation, with the result that isotope composition of its constitution water constitutes δ 18 O=+1.99per mille, δD=+23per mille relatively to SMOW. Formation of autogenic carbonates leads to isotope exchange with interstitial water wich, in turn, changes its primary isotope composition in the direction of increasing of O-18 content. The near-bottom waters are isotope-light relatively to the SMOW standard and to the mean isotope composition of interstitial water in the studied region of gas-hydrate spreading. (orig.) [de

  12. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Coring operations, core sedimentology, and lithostratigraphy

    Science.gov (United States)

    Rose, K.; Boswell, R.; Collett, T.

    2011-01-01

    In February 2007, BP Exploration (Alaska), the U.S. Department of Energy, and the U.S. Geological Survey completed the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) in the Milne Point Unit on the Alaska North Slope. The program achieved its primary goals of validating the pre-drill estimates of gas hydrate occurrence and thickness based on 3-D seismic interpretations and wireline log correlations and collecting a comprehensive suite of logging, coring, and pressure testing data. The upper section of the Mount Elbert well was drilled through the base of ice-bearing permafrost to a casing point of 594??m (1950??ft), approximately 15??m (50??ft) above the top of the targeted reservoir interval. The lower portion of the well was continuously cored from 606??m (1987??ft) to 760??m (2494??ft) and drilled to a total depth of 914??m. Ice-bearing permafrost extends to a depth of roughly 536??m and the base of gas hydrate stability is interpreted to extend to a depth of 870??m. Coring through the targeted gas hydrate bearing reservoirs was completed using a wireline-retrievable system. The coring program achieved 85% recovery of 7.6??cm (3??in) diameter core through 154??m (504??ft) of the hole. An onsite team processed the cores, collecting and preserving approximately 250 sub-samples for analyses of pore water geochemistry, microbiology, gas chemistry, petrophysical analysis, and thermal and physical properties. Eleven samples were immediately transferred to either methane-charged pressure vessels or liquid nitrogen for future study of the preserved gas hydrate. Additional offsite sampling, analyses, and detailed description of the cores were also conducted. Based on this work, one lithostratigraphic unit with eight subunits was identified across the cored interval. Subunits II and Va comprise the majority of the reservoir facies and are dominantly very fine to fine, moderately sorted, quartz, feldspar, and lithic fragment-bearing to

  13. Geochemical and geologic factors effecting the formulation of gas hydrate: Task No. 5, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kvenvolden, K.A.; Claypool, G.E.

    1988-01-01

    The main objective of our work has been to determine the primary geochemical and geological factors controlling gas hydrate information and occurrence and particularly in the factors responsible for the generation and accumulation of methane in oceanic gas hydrates. In order to understand the interrelation of geochemical/geological factors controlling gas hydrate occurrence, we have undertaken a multicomponent program which has included (1) comparison of available information at sites where gas hydrates have been observed through drilling by the Deep Sea Drilling Project (DSDP) on the Blake Outer Ridge and Middle America Trench; (2) regional synthesis of information related to gas hydrate occurrences of the Middle America Trench; (3) development of a model for the occurrence of a massive gas hydrate as DSDP Site 570; (4) a global synthesis of gas hydrate occurrences; and (5) development of a predictive model for gas hydrate occurrence in oceanic sediment. The first three components of this program were treated as part of a 1985 Department of Energy Peer Review. The present report considers the last two components and presents information on the worldwide occurrence of gas hydrates with particular emphasis on the Circum-Pacific and Arctic basins. A model is developed to account for the occurrence of oceanic gas hydrates in which the source of the methane is from microbial processes. 101 refs., 17 figs., 6 tabs.

  14. Sedimentological Characterization of a Deepwater Methane Hydrate Reservoir in Green Canyon 955, Northern Gulf of Mexico

    Science.gov (United States)

    Meazell, K.; Flemings, P. B.

    2017-12-01

    Grain size is a controlling factor of hydrate saturation within a Pleistocene channel-levee system investigated by the UT-GOM2-1 expedition within the deepwater northern Gulf of Mexico. Laser diffraction and settling experiments conducted on sediments from 413-440 meters below the seafloor reveal the presence of two interbedded lithologic units, identified as a silty sand and a clayey silt, according Shepard's classification system. The sand-rich lithofacies has low density and high p-wave velocity, suggesting a high degree of hydrate saturation. Conversely, the clay and silt dominated lithofacies is characterized by a higher density and low p-wave velocity, suggesting low hydrate saturation. The sand-rich lithofacies is well-sorted and displays abundant ripple lamination, indicative of deposition within a high-energy environment. The clayey-silt is poorly-sorted and lacks sedimentary structures. The two lithofacies are interbedded throughout the reservoir unit; however, the relative abundance of the sand-rich lithofacies increases with depth, suggesting a potential decrease in flow energy or sediment flux over time, resulting in the most favorable reservoir properties near the base of the unit.

  15. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin

    Science.gov (United States)

    Brothers, D.S.; Ruppel, C.; Kluesner, J.W.; ten Brink, Uri S.; Chaytor, J.D.; Hill, J.C.; Andrews, B.D.; Flores, C.

    2014-01-01

    Identifying the spatial distribution of seabed fluid expulsion features is crucial for understanding the substrate plumbing system of any continental margin. A 1100 km stretch of the U.S. Atlantic margin contains more than 5000 pockmarks at water depths of 120 m (shelf edge) to 700 m (upper slope), mostly updip of the contemporary gas hydrate stability zone (GHSZ). Advanced attribute analyses of high-resolution multichannel seismic reflection data reveal gas-charged sediment and probable fluid chimneys beneath pockmark fields. A series of enhanced reflectors, inferred to represent hydrate-bearing sediments, occur within the GHSZ. Differential sediment loading at the shelf edge and warming-induced gas hydrate dissociation along the upper slope are the proposed mechanisms that led to transient changes in substrate pore fluid overpressure, vertical fluid/gas migration, and pockmark formation.

  16. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  17. National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry

    Science.gov (United States)

    Lorenson, Thomas; Collett, Timothy S.

    2018-01-01

    The National Gas Hydrate Program Expedition 01 (NGHP-01) targeted gas hydrate accumulations offshore of the Indian Peninsula and along the Andaman convergent margin. The primary objectives of coring were to understand the geologic and geochemical controls on the accumulation of methane hydrate and their linkages to underlying petroleum systems. Four areas were investigated: 1) the Kerala-Konkan Basin in the eastern Arabian Sea, 2) the Mahanadi and 3) Krishna-Godavari Basins in the western Bay of Bengal, and 4) the Andaman forearc Basin in the Andaman Sea.Upward flux of methane at three of the four of the sites cored during NGHP-01 is apparent from the presence of seafloor mounds, seismic evidence for upward gas migration, shallow sub-seafloor geochemical evidence of methane oxidation, and near-seafloor gas composition that resembles gas from depth.The Kerala-Konkan Basin well contained only CO2 with no detectable hydrocarbons suggesting there is no gas hydrate system here. Gas and gas hydrate from the Krishna-Godavari Basin is mainly microbial methane with δ13C values ranging from −58.9 to −78.9‰, with small contributions from microbial ethane (−52.1‰) and CO2. Gas from the Mahanadi Basin was mainly methane with lower concentrations of C2-C5 hydrocarbons (C1/C2 ratios typically >1000) and CO2. Carbon isotopic compositions that ranged from −70.7 to −86.6‰ for methane and −62.9 to −63.7‰ for ethane are consistent with a microbial gas source; however deeper cores contained higher molecular weight hydrocarbon gases suggesting a small contribution from a thermogenic gas source. Gas composition in the Andaman Basin was mainly methane with lower concentrations of ethane to isopentane and CO2, C1/C2 ratios were mainly >1000 although deeper samples were exploration and occurs in a forearc basin. Each of these hydrate-bearing systems overlies and is likely supported by the presence and possible migration of gas from deeper gas-prone petroleum

  18. Controls on methane expulsion during melting of natural gas hydrate systems. Topic area 2

    Energy Technology Data Exchange (ETDEWEB)

    Flemings, Peter [Univ. of Texas, Austin, TX (United States)

    2016-01-14

    1.1. Project Goal The project goal is to predict, given characteristic climate-induced temperature change scenarios, the conditions under which gas will be expelled from existing accumulations of gas hydrate into the shallow ocean or directly to the atmosphere. When those conditions are met, the fraction of the gas accumulation that escapes and the rate of escape shall be quantified. The predictions shall be applicable in Arctic regions and in gas hydrate systems at the up dip limit of the stability zone on continental margins. The behavior shall be explored in response to two warming scenarios: longer term change due to sea level rise (e.g. 20 thousand years) and shorter term due to atmospheric warming by anthropogenic forcing (decadal time scale). 1.2. Project Objectives During the first budget period, the objectives are to review and categorize the stability state of existing well-studied hydrate reservoirs, develop conceptual and numerical models of the melting process, and to design and conduct laboratory experiments that dissociate methane hydrate in a model sediment column by systematically controlling the temperature profile along the column. The final objective of the first budget period shall be to validate the models against the experiments. In the second budget period, the objectives are to develop a model of gas flow into sediment in which hydrate is thermodynamically stable, and conduct laboratory experiments of this process to validate the model. The developed models shall be used to quantify the rate and volume of gas that escapes from dissociating hydrate accumulations. In addition, specific scaled simulations characteristic of Arctic regions and regions near the stability limit at continental margins shall be performed. 1.3. Project Background and Rationale The central hypothesis proposed is that hydrate melting (dissociation) due to climate change generates free gas that can, under certain conditions, propagate through the gas hydrate stability

  19. Modification of Yellow River Sediment Based Stabilized Earth Bricks

    Directory of Open Access Journals (Sweden)

    Junxia Liu

    2016-12-01

    Full Text Available This paper presents an experimental study on the microstructure and performance of stabilized earth bricks prepared from the Yellow River sediment. The sediment is modified by inorganic cementitious material, polymer bonding agent, and jute fibre. The results show that the sediment is preliminarily consolidated when the mixture ratio of activated sediment/cementitious binder/sand is 65/25/10. Compressive strength and softening coefficient of stabilized earth bricks is further improved by polymer bonding agent and jute fibre. SEM images and EDS spectral analysis indicate that there is indeed synergy among inorganic hydration products, polymer network and jute fibre to strengthen the sediment.

  20. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01

    Energy Technology Data Exchange (ETDEWEB)

    Anne Trehu; Peter Kannberg

    2011-06-30

    The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m{sup 2}). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that {approx}50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a 'toe-thrust' ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow

  1. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01

    Energy Technology Data Exchange (ETDEWEB)

    Trehu, Anne; Kannberg, Peter

    2011-06-30

    The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m2). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that ~50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a "toe-thrust" ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in

  2. Vertical seismic profile data from well Mallik 2L-38 for gas hydrate studies

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Y [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics; Walia, R [Victoria Univ., BC (Canada) School of Earth and Ocean Sciences; Hyndman, R [Geological Survey of Canada, Sidney, BC (Canada) Pacific Geoscience Centre

    1999-07-01

    A gas hydrate research well was drilled in the Canadian Arctic to study gas hydrates in a permafrost setting in a collaborative research project between the Japan National Oil Corp., the Geological Survey of Canada and other agencies. The multidisciplinary study included an electromagnetic survey, permafrost and gas hydrate coring, comprehensive downhole geophysical logging and measurement. Laboratory studies concerned studies on recovered cuttings and core including sedimentology, physical properties, geochemistry, and reservoir characteristics of the Mallik gas accumulation. As part of the Mallik 2L-38 field program, a vertical seismic profiling survey was conducted at zero and other offset source positions with three component receiver tools and horizontal and vertical vibration sources. A special effort was made to record shear wave data, which will be used to estimate the effect of gas hydrate on formation velocities and to determine gas hydrate concentration as a function of the Mallik gas accumulation. From the initial VSP analysis, certain conclusions follow: 1) zero offset vertical vibration component Z and horizontal X component data give reliable velocity determination within the gas hydrate formation zone. P wave velocities from offset VSP data show an excellent consistency with that from offset data and with the sonic log. And 2) the VSP data permit reliable identification of gas hydrate bearing zones. Abstract only included.

  3. Mechanistic insights into a hydrate contribution to the Paleocene-Eocene carbon cycle perturbation from coupled thermohydraulic simulations

    Science.gov (United States)

    Minshull, T. A.; Marín-Moreno, H.; Armstrong McKay, D. I.; Wilson, P. A.

    2016-08-01

    During the Paleocene-Eocene Thermal Maximum (PETM), the carbon isotopic signature (δ13C) of surface carbon-bearing phases decreased abruptly by at least 2.5 to 3.0‰. This carbon isotope excursion (CIE) has been attributed to widespread methane hydrate dissociation in response to rapid ocean warming. We ran a thermohydraulic modeling code to simulate hydrate dissociation due to ocean warming for various PETM scenarios. Our results show that hydrate dissociation in response to such warming can be rapid but suggest that methane release to the ocean is modest and delayed by hundreds to thousands of years after the onset of dissociation, limiting the potential for positive feedback from emission-induced warming. In all of our simulations at least half of the dissociated hydrate methane remains beneath the seabed, suggesting that the pre-PETM hydrate inventory needed to account for all of the CIE is at least double that required for isotopic mass balance.

  4. Seismic reflection profile of the Blake Ridge near sites 994, 995, and 997: Chapter 4

    Science.gov (United States)

    Dillon, William P.; Hutchinson, Deborah R.; Drury, Rebecca M.

    1996-01-01

    Seismic reflection profiles near Sites 994, 995, and 997 were collected with seismic sources that provide maximum resolution with adequate power to image the zone of gas hydrate stability and the region direction beneath it. The overall structure of the sediment drift deposit that constitutes the Blake Ridge consists of southwestward-dipping strata. These strata are approximately conformal to the seafloor on the southwest side of the ridge and are truncated by erosion on the northeast side. A bottom-simulating reflection (BSR) marks the velocity contrast between gas hydrate-bearing sediment and regions containing free gas beneath the zone of gas hydrate stability. The BSR is strong and continuous near the ridge crest but becomes discontinuous on the flanks, where concentration of gas is reduced and dipping strata pass through the level of the base o fgas hydrate stability or the strata are disrupted by faults. Seismic reflection amplitudes appear to be reduced in the region of gas hydrate formation compared to normal amplitudes. A faulted zone ~0.5-0.6 s thick parallels reflections from strata. We infer that this may represent a formerly gas hydrate-bearing zone that was faulted because of a breakdown of hydrate near its phase limit (at the base of the zone). Strong reflections at the top of the faulted zone are caused by free-gas acccumulation at Site 994. Similar strong reflections probably are caused by free-gas accumulations where the top of the faulted zone rises above the BSR, although this would require local free gas within the hydrate-stable zone.

  5. Individual and combined effects of chloride, sulfate, and magnesium ions on hydrated Portland-cement paste

    International Nuclear Information System (INIS)

    Poole, T.S.; Wakeley, L.D.; Young, C.L.

    1994-03-01

    Ground water with a high concentration of magnesium ion is known to cause deterioration to portland cement concretes. A proposed mechanism for this deterioration process published previously involves an approximate 1:1 replacement of Ca ions by Mg ions in the crystalline phases of hydrated cement. The current study was undertaken to determine which ions, among magnesium, chloride, and sulfate, cause deterioration; whether their deleterious action is individual or interdependent; and to relate this mechanism of deterioration to the outlook for a 100-yr service life of concretes used in mass placements at the Waste Isolation Pilot Plant. Loss of Ca ion by cement pastes was found to be strongly related to the concentration of Mg ion in simulated ground-water solutions in which the paste samples were aged. This was true of both salt- containing and conventional cement pastes. No other ion in the solutions exerted a strong effect on Ca loss. Ca ion left first from calcium hydroxide in the pastes, depleting all calcium hydroxide by 60 days. Some calcium silicate hydrate remained even after 90 days in the solutions with the highest concentration of Mg ion, while the paste samples deteriorated noticeably. The results indicated a mechanism that involves dissolution of Ca phases and transport of Ca ions to the surface of the sample, followed by formation of Mg-bearing phases at this reaction surface rather than directly by substitution within the microstructure of hydrated cement. Given that calcium hydroxide and calcium silicate hydrate are the principal strength-giving phases of hydrated cement, this mechanism indicates the likelihood of significant loss of integrity of a concrete exposed to Mg-bearing ground water at the WIPP. The rate of deterioration ultimately will depend on Mg-ion concentration, the microstructure materials of the concrete exposed to that groundwater, and the availability of brine

  6. Extreme Morphologic and Venting Changes in Methane Seeps at Southern Hydrate Ridge, Cascadia Margin

    Science.gov (United States)

    Bigham, K.; Kelley, D. S.; Solomon, E. A.; Delaney, J. R.

    2017-12-01

    Two highly active methane hydrate seeps have been visited over a 7-year period as part of the construction and operation of NSF's Ocean Observatory Initiative's Regional Cable Array at Southern Hydrate Ridge. The site is located 90 km west of Newport, Oregon, at a water depth of 800 m. The seeps, Einstein's Grotto (OOI instrument deployment site) and Smokey Tavern (alternate site to the north), have been visited yearly from 2010 to 2017 with ROVs. Additionally, a digital still camera deployed from 2014 to 2017 at Einstein's Grotto, has been documenting the profound morphologic and biological changes at this site. A cabled pressure sensor, Acoustic Doppler Current Profiler, hydrophone, seismometer array, and uncabled fluid samplers have also been operational at the site for the duration of the camera's deployment. During this time, Einstein's Grotto has evolved from a gentle mound with little venting, to a vigorously bubbling pit bounded by a near vertical wall. Early on bubble emissions blew significant amounts of sediment into the water column and thick Beggiatoa mats coverd the mound. Most recently the face of the pit has collapsed, although bubble plumes are still emitted from the site. The Smokey Tavern site has undergone more extreme changes. Similar to Einstein's Grotto it was first characterized by gentle hummocks with dispersed bacterial mats. In subsequent years, it developed an extremely rugged, elongated collapsed area with vertical walls and jets of methane bubbles rising from small pits near the base of the collapse zone. Meter-across nearly sediment-free blocks of methane hydrate were exposed on the surface and in the walls of the collapse zone. In 2016, this area was unrecognizable with a much more subdued topography, and weak venting of bubbles. Exposed methane hydrate was not visible. From these observations new evolutionary models for methane seeps are being developed for Southern Hydrate Ridge.

  7. Seismic Modeling Of Reservoir Heterogeneity Scales: An Application To Gas Hydrate Reservoirs

    Science.gov (United States)

    Huang, J.; Bellefleur, G.; Milkereit, B.

    2008-12-01

    Natural gas hydrates, a type of inclusion compound or clathrate, are composed of gas molecules trapped within a cage of water molecules. The occurrence of gas hydrates in permafrost regions has been confirmed by core samples recovered from the Mallik gas hydrate research wells located within Mackenzie Delta in Northwest Territories of Canada. Strong vertical variations of compressional and shear sonic velocities and weak surface seismic expressions of gas hydrates indicate that lithological heterogeneities control the distribution of hydrates. Seismic scattering studies predict that typical scales and strong physical contrasts due to gas hydrate concentration will generate strong forward scattering, leaving only weak energy captured by surface receivers. In order to understand the distribution of hydrates and the seismic scattering effects, an algorithm was developed to construct heterogeneous petrophysical reservoir models. The algorithm was based on well logs showing power law features and Gaussian or Non-Gaussian probability density distribution, and was designed to honor the whole statistical features of well logs such as the characteristic scales and the correlation among rock parameters. Multi-dimensional and multi-variable heterogeneous models representing the same statistical properties were constructed and applied to the heterogeneity analysis of gas hydrate reservoirs. The petrophysical models provide the platform to estimate rock physics properties as well as to study the impact of seismic scattering, wave mode conversion, and their integration on wave behavior in heterogeneous reservoirs. Using the Biot-Gassmann theory, the statistical parameters obtained from Mallik 5L-38, and the correlation length estimated from acoustic impedance inversion, gas hydrate volume fraction in Mallik area was estimated to be 1.8%, approximately 2x108 m3 natural gas stored in a hydrate bearing interval within 0.25 km2 lateral extension and between 889 m and 1115 m depth

  8. Gas hydrate drilling transect across northern Cascadia margin - IODP Expedition 311

    Science.gov (United States)

    Riedel, M.; Collett, T.; Malone, M.J.; Collett, T.S.; Mitchell, M.; Guerin, G.; Akiba, F.; Blanc-Valleron, M.; Ellis, M.; Hashimoto, Y.; Heuer, V.; Higashi, Y.; Holland, M.; Jackson, P.D.; Kaneko, M.; Kastner, M.; Kim, J.-H.; Kitajima, H.; Long, P.E.; Malinverno, A.; Myers, Gwen E.; Palekar, L.D.; Pohlman, J.; Schultheiss, P.; Teichert, B.; Torres, M.E.; Trehu, A.M.; Wang, Jingyuan; Worthmann, U.G.; Yoshioka, H.

    2009-01-01

    A transect of four sites (U1325, U1326, U1327 and U1329) across the northern Cascadia margin was established during Integrated Ocean Drilling Program Expedition 311 to study the occurrence and formation of gas hydrate in accretionary complexes. In addition to the transect sites, a fifth site (U1328) was established at a cold vent with active fluid flow. The four transect sites represent different typical geological environments of gas hydrate occurrence across the northern Cascadia margin from the earliest occurrence on the westernmost first accreted ridge (Site U1326) to the eastward limit of the gas hydrate occurrence in shallower water (Site U1329). Expedition 311 complements previous gas hydrate studies along the Cascadia accretionary complex, especially ODP Leg 146 and Leg 204 by extending the aperture of the transect sampled and introducing new tools to systematically quantify the gas hydrate content of the sediments. Among the most significant findings of the expedition was the occurrence of up to 20 m thick sand-rich turbidite intervals with gas hydrate concentrations locally exceeding 50% of the pore space at Sites U1326 and U1327. Moreover, these anomalous gas hydrate intervals occur at unexpectedly shallow depths of 50-120 metres below seafloor, which is the opposite of what was expected from previous models of gas hydrate formation in accretionary complexes, where gas hydrate was predicted to be more concentrated near the base of the gas hydrate stability zone just above the bottom-simulating reflector. Gas hydrate appears to be mainly concentrated in turbidite sand layers. During Expedition 311, the visual correlation of gas hydrate with sand layers was clearly and repeatedly documented, strongly supporting the importance of grain size in controlling gas hydrate occurrence. The results from the transect sites provide evidence for a structurally complex, lithology-controlled gas hydrate environment on the northern Cascadia margin. Local shallow

  9. Vertical seismic profile data from well Mallik 2L-38 for gas hydrate studies

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Y [Calgary Univ., AB (Canada); Walia, R [Victoria Univ., BC (Canada); Hyndman, R D; Sakai, A

    1999-01-01

    A gas hydrate research well was drilled in the Canadian Arctic to determine gas hydrates in a permafrost setting in a collaborative research project between the Japan National Oil Corp., and the Geological Survey of Canada with the participation of other agencies. The multidisciplinary study included an electromagnetic survey, permafrost and gas hydrate coring, and comprehensive downhole geophysical logging and measurement. Laboratory studies on recovered cores and cuttings included sedimentology, physical properties, geochemistry, and reservoir characteristics of the Mallik gas accumulation. As part of the field program, a vertical seismic profiling survey was conducted at zero and offset source positions with 3 component receiver tools and horizontal and vertical vibration sources. A special effort was made to record shear wave data, and results from this work were combined with down hole logs and regional surface seismic data. The data will be used also to determine the effect of gas hydrates on formation velocities and to measure gas hydrate concentrations as a function of depth in the formation penetrated by the well. Certain conclusions followed from the initial VSP analysis. 1) Zero offset vertical vibration Z component and horizontal X component data give reliable velocity estimation within the gas hydrate formation zone, and P wave velocities from offset data indicate excellent consistency with that from zero offset data and with the sonic log. 2) The VSP data permitted reliable identification of gas hydrate bearing zones. 4 refs.

  10. Elastic properties of Fe-bearing wadsleyite at high pressures

    Science.gov (United States)

    Mao, Z.; Jacobsen, S. D.; Jiang, F.; Smyth, J. R.; Holl, C. M.; Frost, D. J.; Duffy, T.

    2009-12-01

    The elastic properties of wadsleyite, thought to be the dominant phase from 410 to 520-km depth in the mantle, are essential to interpret the seismic images and profiles in the transition zone. Our previous experimental measurements showed that elasticity of Mg2SiO4 wadsleyite can be significantly reduced by hydration at high pressures (e.g. Mao et al., 2008a,b). These results provide the first constraints on the effect of hydration on the high-pressure sound velocities of wadsleyite, and are significantly important for identifying the potential hydrogen rich region in the Earth’s transition zone. Since mantle wadsleyite contains ~10 mol.% Fe, it is more important to investigate the combined effect of Fe and hydration on the elastic properties of wadsleyite. Here, we measured the single-crystal elasticity of wadsleyite with 1.0 wt.% H2O, Mg1.73Fe0.19SiO4H0.16, up to 12 GPa using Brillouin scattering. At ambient conditions, the aggregate bulk modulus, KS0, and shear modulus, G0, are 158.4(5) GPa and 99.2(3) GPa, respectively. Including the results of current and previous studies, we find that the elasticity of wadsleyite decreases linearly with Fe and H2O content according to relations (in GPa): KS0 = 171(3)-13.0(8)CH2O, G0 = 112(2)-8.8(3)CH2O-40(10)XFe, where CH2O is the concentration of hydrogen expressed as weight percent H2O, and XFe is the Fe molar fraction (XFe = Fe/(Mg+Fe)). Further high-pressure measurements showed that the presence of 1 wt.% H2O in Fe-bearing wadsleyite increases the pressure derivative of the shear modulus from 1.5(1) to 1.9(1). But Fe-bearing wadsleyite with this amount of H2O might have a similar pressure derivative of the bulk modulus (4.8(1)) similar to the corresponding anhydrous phase. Using our results, we computed the sound velocities of wadsleyite with 1 wt.% H2O up to 12 GPa at 300 K. Compared to Fe-bearing anhydrous wadsleyite, 1 wt.% H2O causes a 1.5(4)% reduction in the compressional velocity at 12 GPa, and a 1

  11. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

  12. Centrifuge advances using HTS magnetic bearings

    Science.gov (United States)

    Werfel, F. N.; Flögel-Delor, U.; Rothfeld, R.; Wippich, D.; Riedel, T.

    2001-05-01

    Passive magnetic bearings are of increasing technical interest. We performed experiments with centrifugal rotors to analyze gyroscopic forces in terms imbalance, rotor elasticity and damping. Centrifuge rotors need to be operated soft and stable without whirling the sediments. In order to evaluate optimal parameters critical and resonance behaviors are investigated. Eccentricities up 2 mm are safely passed by accelerating test wheels. In a simple model we describe the effect of passing critical rotational speeds. Measurements of bearing properties and wheel performance are presented. We have constructed a first prototype centrifuge designed with a HTS double bearing which operates a titanium rotor safely up to 30 000 rpm. A 15 W Stirling cooler serves cryogenics of the YBCO stators. From the experiments design guidelines for centrifugal applications with HTS bearings are given.

  13. Feasibility Study on a Microwave-Based Sensor for Measuring Hydration Level Using Human Skin Models.

    Science.gov (United States)

    Brendtke, Rico; Wiehl, Michael; Groeber, Florian; Schwarz, Thomas; Walles, Heike; Hansmann, Jan

    2016-01-01

    Tissue dehydration results in three major types of exsiccosis--hyper-, hypo-, or isonatraemia. All three types entail alterations of salt concentrations leading to impaired biochemical processes, and can finally cause severe morbidity. The aim of our study was to demonstrate the feasibility of a microwave-based sensor technology for the non-invasive measurement of the hydration status. Electromagnetic waves at high frequencies interact with molecules, especially water. Hence, if a sample contains free water molecules, this can be detected in a reflected microwave signal. To develop the sensor system, human three-dimensional skin equivalents were instituted as a standardized test platform mimicking reproducible exsiccosis scenarios. Therefore, skin equivalents with a specific hydration and density of matrix components were generated and microwave measurements were performed. Hydration-specific spectra allowed deriving the hydration state of the skin models. A further advantage of the skin equivalents was the characterization of the impact of distinct skin components on the measured signals to investigate mechanisms of signal generation. The results demonstrate the feasibility of a non-invasive microwave-based hydration sensor technology. The sensor bears potential to be integrated in a wearable medical device for personal health monitoring.

  14. Feasibility Study on a Microwave-Based Sensor for Measuring Hydration Level Using Human Skin Models.

    Directory of Open Access Journals (Sweden)

    Rico Brendtke

    Full Text Available Tissue dehydration results in three major types of exsiccosis--hyper-, hypo-, or isonatraemia. All three types entail alterations of salt concentrations leading to impaired biochemical processes, and can finally cause severe morbidity. The aim of our study was to demonstrate the feasibility of a microwave-based sensor technology for the non-invasive measurement of the hydration status. Electromagnetic waves at high frequencies interact with molecules, especially water. Hence, if a sample contains free water molecules, this can be detected in a reflected microwave signal. To develop the sensor system, human three-dimensional skin equivalents were instituted as a standardized test platform mimicking reproducible exsiccosis scenarios. Therefore, skin equivalents with a specific hydration and density of matrix components were generated and microwave measurements were performed. Hydration-specific spectra allowed deriving the hydration state of the skin models. A further advantage of the skin equivalents was the characterization of the impact of distinct skin components on the measured signals to investigate mechanisms of signal generation. The results demonstrate the feasibility of a non-invasive microwave-based hydration sensor technology. The sensor bears potential to be integrated in a wearable medical device for personal health monitoring.

  15. Can hydrate dissolution experiments predict the fate of a natural hydrate system?

    Energy Technology Data Exchange (ETDEWEB)

    Hester, K.C.; Peltzer, E.T.; Dunk, R.M.; Walz, P.M.; Brewer, P.G. [Monterey Bay Aquarium Research Inst., Moss Landing, CA (United States); Dendy Sloan, E. [Colorado School of Mines, Golden, CO (United States). Center for Hydrate Research

    2008-07-01

    Gas hydrates are naturally occurring compounds found in permafrost regions and in oceans. In the natural environment, sufficient temperature and pressure conditions for hydrate formation exist over a significant portion of the ocean. However, in addition to pressure and temperature, the chemical potential of the gas in the hydrate must be equal to the surrounding waters. If the concentration of the gas in surrounding water is under-saturated with respect to the gas in the hydrate, the hydrate will dissolve to drive the system towards chemical equilibrium. This paper presented a dissolution study of exposed hydrate from outcrops at Barkley Canyon, located off Vancouver Island, British Columbia. A previous field experiment on synthetic methane hydrate samples had demonstrated that mass transfer controlled dissolution in under-saturated seawater. However, seafloor hydrate outcrops have been shown to have significant longevity compared to expected dissolution rates based upon convective boundary layer diffusion calculations. An in-situ dissolution experiment was performed on two distinct natural hydrate fabrics in order to help resolve this apparent disconnect between the dissolution rates of synthetic and natural hydrate. The paper presented a map of Barkley Canyon and discussed the field measurements and methods for the study. Exposed outcrops of gas hydrates were cored using a specially constructed stainless steel coring device and a hydraulic ram was located inside the corer. Hydrate samples were cored directly using the a manipulator arm and then injected into a sampling cell. The hydrate was then added to an open mesh exposure container, which allowed for exposure to ambient benthic currents with minimal disturbance. As well, in order to observe the slow dissolution of the hydrate in seawater at Barkley Canyon, time-lapse photography was employed. Last, the paper presented the results of the hydrate fabric porosities and hydrate dissolution rates. It was

  16. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  17. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  18. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    , not all of them are white like snow. Some hydrates from the deep Gulf of Mexico are richly colored in shades of yellow, orange, or even red. The ice-like masses are beautiful, and contrast with the dull gray of deep sea muds. Hydrates from the Blake... volcanoes and associated gas hydrates: Marine Geology, v. 167, p. 29-42. Milkov, A.V. and R. Sassen, 2001a, Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope: Marine Geology, v. 179, pp. 71-83. Milkov, A.V., Sassen, R...

  19. Shifting Focus: From Hydration for Performance to Hydration for Health.

    Science.gov (United States)

    Perrier, Erica T

    2017-01-01

    Over the past 10 years, literature on hydration biomarkers has evolved considerably - from (de)hydration assessment towards a more global definition of biomarkers of hydration in daily life. This shift in thinking about hydration markers was largely driven by investigating the differences that existed between otherwise healthy individuals whose habitual, ad-libitum drinking habits differ, and by identifying physiological changes in low-volume drinkers who subsequently increase their water intake. Aside from obvious differences in urinary volume and concentration, a growing body of evidence is emerging that links differences in fluid intake with small, but biologically significant, differences in vasopressin (copeptin), glomerular filtration rate, and markers of metabolic dysfunction or disease. Taken together, these pieces of the puzzle begin to form a picture of how much water intake should be considered adequate for health, and represent a shifting focus from hydration for performance, toward hydration for health outcomes. This narrative review outlines the key areas of research in which the global hydration process - including water intake, urinary hydration markers, and vasopressin - has been associated with health outcomes, focusing on kidney and metabolic endpoints. It will also provide a commentary on how various hydration biomarkers may be used in hydration for health assessment. Finally, if adequate water intake can play a role in maintaining health, how might we tell if we are drinking enough? Urine output is easily measured, and can take into account differences in daily physical activity, climate, dietary solute load, and other factors that influence daily water needs. Today, targets have been proposed for urine osmolality, specific gravity, and color that may be used by researchers, clinicians, and individuals as simple indicators of optimal hydration. However, there remain a large number of incomplete or unanswered research questions regarding the

  20. Geological modeling for methane hydrate reservoir characterization in the eastern Nankai Trough, offshore Japan

    Science.gov (United States)

    Tamaki, M.; Komatsu, Y.; Suzuki, K.; Takayama, T.; Fujii, T.

    2012-12-01

    The eastern Nankai trough, which is located offshore of central Japan, is considered as an attractive potential resource field of methane hydrates. Japan Oil, Gas and Metals National Corporation is planning to conduct a production test in early 2013 at the AT1 site in the north slope of Daini-Atsumi Knoll in the eastern Nankai Trough. The depositional environment of methane hydrate-bearing sediments around the production test site is a deep submarine-fan turbidite system, and it is considered that the reservoir properties should show lateral as well as vertical heterogeneity. Since the variations in the reservoir heterogeneity have an impact on the methane hydrate dissociation and gas production performance, precise geological models describing reservoir heterogeneity would be required for the evaluation of reservoir potentials. In preparation for the production test, 3 wells; two monitoring boreholes (AT1-MC and AT1-MT1) and a coring well (AT1-C), were newly acquired in 2012. In addition to a geotechnical hole drilling survey in 2011 (AT1-GT), totally log data from 2 wells and core data from 2 wells were obtained around the production test site. In this study, we conducted well correlations between AT1 and A1 wells drilled in 2003 and then, 3D geological models were updated including AT1 well data in order to refine hydrate reservoir characterization around the production test site. The results of the well correlations show that turbidite sand layers are characterized by good lateral continuity, and give significant information for the distribution morphology of sand-rich channel fills. We also reviewed previously conducted 3D geological models which consist of facies distributions and petrophysical properties distributions constructed from integration of 3D seismic data and a well data (A1 site) adopting a geostatistical approach. In order to test the practical validity of the previously generated models, cross-validation was conducted using AT1 well data. The

  1. HyFlux - Part I: Regional Modeling of Methane Flux From Near-Seafloor Gas Hydrate Deposits on Continental Margins

    Science.gov (United States)

    MacDonald, I. R.; Asper, V.; Garcia, O. P.; Kastner, M.; Leifer, I.; Naehr, T.; Solomon, E.; Yvon-Lewis, S.; Zimmer, B.

    2008-12-01

    HyFlux - Part I: Regional modeling of methane flux from near-seafloor gas hydrate deposits on continental margins MacDonald, I.R., Asper, V., Garcia, O., Kastner, M., Leifer, I., Naehr, T.H., Solomon, E., Yvon-Lewis, S., and Zimmer, B. The Dept. of Energy National Energy Technology Laboratory (DOE/NETL) has recently awarded a project entitled HyFlux: "Remote sensing and sea-truth measurements of methane flux to the atmosphere." The project will address this problem with a combined effort of satellite remote sensing and data collection at proven sites in the Gulf of Mexico where gas hydrate releases gas to the water column. Submarine gas hydrate is a large pool of greenhouse gas that may interact with the atmosphere over geologic time to affect climate cycles. In the near term, the magnitude of methane reaching the atmosphere from gas hydrate on continental margins is poorly known because 1) gas hydrate is exposed to metastable oceanic conditions in shallow, dispersed deposits that are poorly imaged by standard geophysical techniques and 2) the consumption of methane in marine sediments and in the water column is subject to uncertainty. The northern GOM is a prolific hydrocarbon province where rapid migration of oil, gases, and brines from deep subsurface petroleum reservoirs occurs through faults generated by salt tectonics. Focused expulsion of hydrocarbons is manifested at the seafloor by gas vents, gas hydrates, oil seeps, chemosynthetic biological communities, and mud volcanoes. Where hydrocarbon seeps occur in depths below the hydrate stability zone (~500m), rapid flux of gas will feed shallow deposits of gas hydrate that potentially interact with water column temperature changes; oil released from seeps forms sea-surface features that can be detected in remote-sensing images. The regional phase of the project will quantify verifiable sources of methane (and oil) the Gulf of Mexico continental margin and selected margins (e.g. Pakistan Margin, South China Sea

  2. Deep Sea Shell Taphonomy: Interactive benthic experiments in hydrate environments of Barkley Canyon, Ocean Networks Canada.

    Science.gov (United States)

    Best, Mairi; Purser, Autun

    2015-04-01

    In order to quantify and track the rates and processes of modification of biogenic carbonate in gas hydrate environments, and their possible environmental/ecological correlates, ongoing observations of experimentally deployed specimens are being made using a remotely controlled crawler with camera and sensors. The crawler is connected to NEPTUNE Canada, an 800km, 5-node, regional cabled ocean network across the northern Juan de Fuca Plate, northeastern Pacific, part of Ocean Networks Canada. One of 15 study areas is an environment of exposed hydrate mounds along the wall of Barkley Canyon, at ˜865m water depth. This is the home of a benthic crawler developed by Jacobs University of Germany, who is affectionately known as Wally. Wally is equipped with a range of sensors including cameras, methane sensor, current meter, fluorometer, turbidity meter, CTD, and a sediment microprofiler with probes for oxygen, methane, sulphide, pH, temperature, and conductivity. In conjunction with this sensor suite, a series of experiments have been designed to assess the cycling of biogenic carbon and carbonate in this complex environment. The biota range from microbes, to molluscs, to large fish, and therefore the carbon inputs include both a range of organic carbon compounds as well as the complex materials that are "biogenic carbonate". Controlled experimental specimens were deployed of biogenic carbonate (Mytilus edulis fresh shells) and cellulose (pieces of untreated pine lumber) that had been previously well characterized (photographed, weighed, and numbered, matching valves and lumber kept as controls). Deployment at the sediment/water interface was in such a way to maximize natural burial exhumation cycles but to minimize specimen interaction. 10 replicate specimens of each material were deployed in two treatments: 1) adjacent to a natural life and death assemblage of chemosynthetic bivalves and exposed hydrate on a hydrate mound and 2) on the muddy seafloor at a distance

  3. Modeled tephra ages from lake sediments, base of Redoubt Volcano, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, C J; Kaufman, D S; Wallace, K L; Werner, A; Ku, T L; Brown, T A

    2007-02-25

    A 5.6-m-long lake sediment core from Bear Lake, Alaska, located 22 km southeast of Redoubt Volcano, contains 67 tephra layers deposited over the last 8750 cal yr, comprising 15% of the total thickness of recovered sediment. Using 12 AMS {sup 14}C ages, along with the {sup 137}Cs and {sup 210}Pb activities of recent sediment, we evaluated different models to determine the age-depth relation of sediment, and to determine the age of each tephra deposit. The age model is based on a cubic smooth spline function that was passed through the adjusted tephra-free depth of each dated layer. The estimated age uncertainty of the 67 tephras averages {+-} 105 yr (1{sigma}). Tephra-fall frequency at Bear Lake was among the highest during the past 500 yr, with eight tephras deposited compared to an average of 3.7 per 500 yr over the last 8500 yr. Other periods of increased tephra fall occurred 2500-3500, 4500-5000, and 7000-7500 cal yr. Our record suggests that Bear Lake experienced extended periods (1000-2000 yr) of increased tephra fall separated by shorter periods (500-1000 yr) of apparent quiescence. The Bear Lake sediment core affords the most comprehensive tephrochronology from the base of the Redoubt Volcano to date, with an average tephra-fall frequency of once every 130 yr.

  4. Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization.

    Science.gov (United States)

    Wang, Lei; Chen, Liang; Tsang, Daniel C W; Li, Jiang-Shan; Yeung, Tiffany L Y; Ding, Shiming; Poon, Chi Sun

    2018-08-01

    Navigational dredging is an excavation of marine/freshwater sediment to maintain channels of sufficient depth for shipping safety. Due to historical inputs of anthropogenic contaminants, sediments are often contaminated by metals/metalloids, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other contaminants. Its disposal can present significant environmental and financial burdens. This study developed a novel and green remediation method for contaminated sediment using stabilization/solidification with calcium-rich/low-calcium industrial by-products and CO 2 utilization. The hydration products were evaluated by quantitative X-ray diffraction analysis and thermogravimetric analysis. The incorporation of calcium carbide residue (CCR) facilitated hydration reaction and provided relatively high 7-d strength. In contrast, the addition of Class-F pulverized fly ash (PFA) and ground granulated blast furnace slag (GGBS) was beneficial to the 28-d strength development due to supplementary pozzolanic and hydration reactions. The employment of 1-d CO 2 curing was found to promote strength development (98%) and carbon sequestration (4.3wt%), while additional 7-d air curing facilitated cement rehydration and further carbonation in the sediment blocks. The leachability tests indicated that all studied binders, especially CCR binder, effectively immobilized contaminants in the sediments. The calcium-rich CCR and GGBS were regarded as promising candidates for augmenting the efficacy of CO 2 curing, whereas GGBS samples could be applicable as eco-paving blocks in view of their superior 28-d strength. This study presents a new and sustainable way to transform contaminated sediment into value-added materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices.

    Science.gov (United States)

    Qian, Guangren; Yang, Xiaoyan; Dong, Shixiang; Zhou, Jizhi; Sun, Ying; Xu, Yunfeng; Liu, Qiang

    2009-06-15

    This work investigated the feasibility and effectiveness of MSWI fly ash-based Friedel matrices on stabilizing/solidifying industrial chromium-bearing electroplating sludge using MSWI fly ash as the main raw material with a small addition of active aluminum. The compressive strength, leaching behavior and chemical speciation of heavy metals and hydration phases of matrices were characterized by TCLP, XRD, FTIR and other experimental methods. The results revealed that MSWI fly ash-based Friedel matrices could effectively stabilize chromium-bearing electroplating sludge, the formed ettringite and Friedel phases played a significant role in the fixation of heavy metals in electroplating sludge. The co-disposal of chromium-bearing electroplating sludge and MSWI fly ash-based Friedel matrices with a small addition of active aluminum is promising to be an effective way of stabilizing chromium-bearing electroplating sludge.

  6. A Moessbauer study of deep sea sediments

    International Nuclear Information System (INIS)

    Minai, Y.; Tominaga, T.; Furuta, T.; Kobayashi, K.

    1981-01-01

    In order to determine the chemical states of iron in deep sea sediments, Moessbauer spectra of the sediments collected from various areas of the Pacific have been measured. The Moessbauer spectra were composed of paramagnetic ferric, high-spin ferrous, and magnetic components. The correlation of their relative abundance to the sampling location and the kind of sediments may afford clues to infer the origin of each iron-bearing phase. (author)

  7. The characteristics of heat flow in the Shenhu gas hydrate drilling area, northern South China Sea

    Science.gov (United States)

    Xu, Xing; Wan, Zhifeng; Wang, Xianqing; Sun, Yuefeng; Xia, Bin

    2016-12-01

    Marine heat flow is of great significance for the formation and occurrence of seabed oil, gas and gas hydrate resources. Geothermal gradient is an important parameter in determining the thickness of the hydrate stability zone. The northern slope of the South China Sea is rich in gas hydrate resources. Several borehole drilling attempts were successful in finding hydrates in the Shenhu area, while others were not. The failures demand further study on the distribution regularities of heat flow and its controlling effects on hydrate occurrence. In this study, forty-eight heat flow measurements are analyzed in the Shenhu gas hydrate drilling area, located in the northern South China Sea, together with their relationship to topography, sedimentary environment and tectonic setting. Canyons are well developed in the study area, caused mainly by the development of faults, faster sediment supply and slumping of the Pearl River Estuary since the late Miocene in the northern South China Sea. The heat flow values in grooves, occurring always in fault zones, are higher than those of ridges. Additionally, the heat flow values gradually increase from the inner fan, to the middle fan, to the external fan subfacies. The locations with low heat flow such as ridges, locations away from faults and the middle fan subfacies, are more conducive to gas hydrate occurrence.

  8. Dissolution of Hydrocarbon Gas Hydrates in Seawater at 1030-m; Effects of Porosity, Structure, and Compositional Variation as Determined by High-Definition Video and SEM Imaging.

    Science.gov (United States)

    Stern, L. A.; Peltzer, E. T.; Durham, W. B.; Kirby, S. H.; Brewer, P. G.; Circone, S.; Rehder, G.

    2002-12-01

    appropriate to the field site. These calculations assume that dissolution occurred only along the outer (i.e. imaged) surface of the samples. This assumption is now validated by SEM analysis of recovered samples from the second dive, showing little to no internal alteration of compacted material following their partial dissolution. Quantitative comparison of results from the two dives poses challenges due to variations in sample size and orientation. However, both compacted methane hydrate samples from the second dive in fact exhibited comparable behavior to that measured in the previous experiment; the oily sample did not dissolve at a slower rate, as might be expected if a hydrophobic contaminant inhibits seawater contact. Surprisingly, the porous methane hydrate exhibited significantly slower face retreat than its compacted counterparts. The sII methane-ethane hydrate dissolved measurably slower than all other samples, consistent with the solubility properties of its guest components. While these results represent only a first step in emulating the more complex interactions of seawater with naturally occurring hydrate-bearing sediments, such end member studies should aid preliminary modelling investigations of the chemical stability and lifetime of gas hydrates exposed at the seafloor.

  9. Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Matthew; Reagan, Matthew T.; Moridis, George J.

    2008-04-15

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor and assessed the potential for methane release into the ocean. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and for the first time, estimated the effect of benthic biogeochemical activity. The results show that shallow deposits--such as those found in arctic regions or in the Gulf of Mexico--can undergo rapid dissociation and produce significant methane fluxes of 2 to 13 mol/yr/m{sup 2} over a period of decades, and release up to 1,100 mol of methane per m{sup 2} of seafloor in a century. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane) to consume the released methane or sequester the carbon. These results will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

  10. Numerical modeling of pore-scale phenomena during CO2 sequestration in oceanic sediments

    International Nuclear Information System (INIS)

    Kang, Qinjun; Tsimpanogiannis, Ioannis N.; Zhang, Dongxiao; Lichtner, Peter C.

    2005-01-01

    Direct disposal of liquid CO 2 on the ocean floor is one of the approaches considered for sequestering CO 2 in order to reduce its concentration in the atmosphere. At oceanic depths deeper than approximately 3000 m, liquid CO 2 density is higher than the density of seawater and CO 2 is expected to sink and form a pool at the ocean floor. In addition to chemical reactions between CO 2 and seawater to form hydrate, fluid displacement is also expected to occur within the ocean floor sediments. In this work, we consider two different numerical models for hydrate formation at the pore scale. The first model consists of the Lattice Boltzmann (LB) method applied to a single-phase supersaturated solution in a constructed porous medium. The second model is based on the Invasion Percolation (IP) in pore networks, applied to two-phase immiscible displacement of seawater by liquid CO 2 . The pore-scale results are upscaled to obtain constitutive relations for porosity, both transverse and for the entire domain, and for permeability. We examine deposition and displacement patterns, and changes in porosity and permeability due to hydrate formation, and how these properties depend on various parameters including a parametric study of the effect of hydrate formation kinetics. According to the simulations, the depth of CO 2 invasion in the sediments is controlled by changes in the pore-scale porosity close to the hydrate formation front. (author)

  11. Characterization of actinide-bearing sediments underlying liquid waste disposal facilities at Hanford

    International Nuclear Information System (INIS)

    Price, S.M.; Ames, L.L.

    1975-09-01

    Past liquid waste disposal practices at the U. S. Energy Research and Development Administration's Hanford Reservation have included the discharges of solutions containing trace quantities of actinides directly into the ground via structures collectively termed ''trenches''. Characterization of samples from two of these trenches, the 216-Z-9 and the 216-Z-1A(a), has been initiated to determine the present form and migration potential of plutonium stored in sediments which received high salt, acidic waste liquids. Analysis of samples acquired by drilling has revealed that the greatest measured concentration of Pu, approximately 10 6 μCi 239 Pu/liter of sediment, occurs in both facilities just below the points of release of the waste liquids. This concentration decreases to approximately 10 3 μCi 239 Pu/liter of sediment within the first 2 meters of the underlying sediment columns and to approximately 10 μCi 239 Pu/liter of sediment at the maximum depth sampled (9 meters). Examination of relatively undisturbed sediment cores illustrated two types of Pu occurrence responsible for this distribution. One of these types is composed of Pu particles (greater than 70 wt percent PuO 2 ) added to the disposal site in the same form. This ''particulate'' type was ''filtered out'' within the upper 1 meter of the sediment column, accounting for the high concentration of Pu/liter of sediment in this region. The second type of Pu (less than 0.5 wt percent PuO 2 ) was originally disposed of as soluble Pu(IV). This ''nonparticulate'' type penetrated deeper within the sediment profile and was deposited in association with silicate hydrolysis of the sediment fragments

  12. Effects of CO2 hydrate on deep-sea foraminiferal assemblages

    International Nuclear Information System (INIS)

    Ricketts, E. R.; Kennett, J. P.; Hill, T. M.; Barry, J. P.

    2005-01-01

    This study, conducted with the Monterey Bay Aquarium Research Institute (MBARI), is the first to investigate potential effects of carbon dioxide (CO2) hydrates on benthic microfossils, specifically oraminifera. The experiment was conducted in September 2003 aboard the R/V Western Flier using the ROV Tiburon. Experimental (CO2 exposed) and control cores were collected at 3600m and stained to distinguish live (stained) from dead (unstained) individuals. Foraminifera are ideal for these investigations because of differing test composition (calcareous and agglutinated) and thickness, and diverse epifaunal and infaunal depth preferences. The effects of the CO2 on assemblages have been tracked both vertically (10cm depth) and horizontally, and between live and dead individuals. Increased mortality and dissolution of calcareous forms resulted from exposure to CO2 hydrate. Preliminary results suggest several major effects on surface sediment assemblages: 1) total number of foraminifera in a sample decreases; 2) foraminiferal diversity decreases in both stained and unstained specimens. The number of planktonic and hyaline calcareous tests declines greatly, with milliolids being more resistant to dissolution when stained; and 3) percentage of stained (live) forms is higher. Down-core trends (up to 10cm) indicate: 1) percent agglutinated forms decline and calcareous forms increasingly dominate; 2) agglutinated diversity decreases with depth; and 3) assemblages become increasingly similar with depth to those in control cores not subjected to CO2 hydrate. These results imply almost complete initial mortality and dissolution upon CO2 hydrate emplacement in the corrals. (Author)

  13. A method to measure the thermal-physical parameter of gas hydrate in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Diao, S.B.; Ye, Y.G.; Yue, Y.J.; Zhang, J.; Chen, Q.; Hu, G.W. [Qingdao Inst. of Marine Geology, Qingdao (China)

    2008-07-01

    It is important to explore and make good use of gas hydrates through the examination of the thermal-physical parameters of sediment. This paper presented a new type of simulation experiment using a device that was designed based on the theories of time domain reflection and transient hot wire method. A series of investigations were performed using this new device. The paper described the experiment, with reference to the experiment device and materials and method. It also presented the results of thermal physical properties; result of the thermal conductivity of water, dry sand and wet sand; and results of wet sand under various pressures. The time domain reflection (TDR) method was utilized to monitor the saturation of the hydrates. Both parallel hot-wire method and cross hot-wire method were utilized to measure the thermal conductivity of the gas hydrate in porous media. A TDR sensor which was equipped with both cross hot-wire probe and parallel hot-wire probe was developed in order to measure the cell temperature with these two methods at one time. It was concluded that the TDR probe could be taken as an online measurement skill in investigating the hydrate thermal physical property in porous media. The TDR sensor could monitor the hydrate formation process and the parallel hot-wire method and cross hot-wire method could effectively measure the thermal physical properties of the hydrates in porous media. 10 refs., 7 figs.

  14. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2009-01-01

    During the Indian National Gas Hydrate Program Expedition 01 (NGHP-Ol), one of the richest marine gas hydrate accumulations was discovered at Site NGHP-01-10 in the Krishna-Godavari Basin. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Assuming the resistivity of gas hydratebearing sediments is isotropic, th?? conventional Archie analysis using the logging while drilling resistivity log yields gas hydrate saturations greater than 50% (as high as ???80%) of the pore space for the depth interval between ???25 and ???160 m below seafloor. On the other hand, gas hydrate saturations estimated from pressure cores from nearby wells were less than ???26% of the pore space. Although intrasite variability may contribute to the difference, the primary cause of the saturation difference is attributed to the anisotropic nature of the reservoir due to gas hydrate in high-angle fractures. Archie's law can be used to estimate gas hydrate saturations in anisotropic reservoir, with additional information such as elastic velocities to constrain Archie cementation parameters m and the saturation exponent n. Theory indicates that m and n depend on the direction of the measurement relative to fracture orientation, as well as depending on gas hydrate saturation. By using higher values of m and n in the resistivity analysis for fractured reservoirs, the difference between saturation estimates is significantly reduced, although a sizable difference remains. To better understand the nature of fractured reservoirs, wireline P and S wave velocities were also incorporated into the analysis.

  15. Direct measurement of methane hydrate composition along the hydrate equilibrium boundary

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2005-01-01

    The composition of methane hydrate, namely nW for CH 4??nWH2O, was directly measured along the hydrate equilibrium boundary under conditions of excess methane gas. Pressure and temperature conditions ranged from 1.9 to 9.7 MPa and 263 to 285 K. Within experimental error, there is no change in hydrate composition with increasing pressure along the equilibrium boundary, but nW may show a slight systematic decrease away from this boundary. A hydrate stoichiometry of n W = 5.81-6.10 H2O describes the entire range of measured values, with an average composition of CH4??5.99(??0.07) H2O along the equilibrium boundary. These results, consistent with previously measured values, are discussed with respect to the widely ranging values obtained by thermodynamic analysis. The relatively constant composition of methane hydrate over the geologically relevant pressure and temperature range investigated suggests that in situ methane hydrate compositions may be estimated with some confidence. ?? 2005 American Chemical Society.

  16. Modelling of oceanic gas hydrate instability and methane release in response to climate change

    International Nuclear Information System (INIS)

    Reagan, M.T.; Moridis, G.J.

    2008-01-01

    Methane releases from oceanic hydrates are thought to have played a significant role in climatic changes that have occurred in the past. In this study, gas hydrate accumulations subjected to temperature changes were modelled in order to assess their potential for future methane releases into the ocean. Recent ocean and atmospheric chemistry studies were used to model 2 climate scenarios. Two types of hydrate accumulations were used to represent dispersed, low-saturation deposits. The 1-D multiphase thermodynamic-hydrological model considered the properties of benthic sediments; ocean depth; sea floor temperature; the saturation and distribution of the hydrates; and the effect of benthic biogeochemical activity. Results of the simulations showed that shallow deposits undergo rapid dissociation and are capable of producing methane fluxes of 2 to 13 mol m 3 per year over a period of decades. The fluxes exceed the ability of the anaerobic sea floor environment to sequester or consume the methane. A large proportion of the methane released in the scenarios emerged in the gas phase. Arctic hydrates may pose a threat to regional and global ecological systems. It was concluded that results of the study will be coupled with global climate models in order to assess the impact of the methane releases in relation to global climatic change. 39 refs., 5 figs

  17. Influence of smectite hydration and swelling on atrazine sorption behavior.

    Science.gov (United States)

    Chappell, Mark A; Laird, David A; Thompson, Michael L; Li, Hui; Teppen, Brian J; Aggarwal, Vaneet; Johnston, Cliff T; Boyd, Stephen A

    2005-05-01

    Smectites, clay minerals commonly found in soils and sediments, vary widely in their ability to adsorb organic chemicals. Recent research has demonstrated the importance of surface charge density and properties of exchangeable cations in controlling the affinity of smectites for organic molecules. In this study, we induced hysteresis in the crystalline swelling of smectites to test the hypothesis that the extent of crystalline swelling (or interlayer hydration status) has a large influence on the ability of smectites to adsorb atrazine from aqueous systems. Air-dried K-saturated Panther Creek (PC) smectite swelled less (d(001) = 1.38 nm) than never-dried K-PC (d(001) = 1.7 nm) when rehydrated in 20 mM KCl. Correspondingly, the air-dried-rehydrated K-PC had an order of magnitude greater affinity for atrazine relative to the never-dried K-PC. Both air-dried-rehydrated and never-dried Ca-PC expanded to approximately 2.0 nm in 10 mM CaCl2 and both samples had similar affinities for atrazine that were slightly lower than that of never-dried K-PC. The importance of interlayer hydration status in controlling sorption affinity was confirmed by molecular modeling, which revealed much greater interaction between interlayer water molecules and atrazine in a three-layer hydrate relative to a one-layer hydrate. The entropy change on moving atrazine from a fully hydrated state in the bulk solution to a partially hydrated state in the smectite interlayers is believed to be a major factor influencing sorption affinity. In an application test, choice of background solution (20 mM KCl versus 10 mM CaCl2) and air-drying treatments significantly affected atrazine sorption affinities for three-smectitic soils; however, the trends were not consistent with those observed for the reference smectite. Further, extending the initial rehydration time from 24 to 240 h (prior to adding atrazine) significantly decreased the soil's sorption affinity for atrazine. We conclude that interlayer

  18. On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions.

    Science.gov (United States)

    Ahmed, Mohammed; Namboodiri, V; Singh, Ajay K; Mondal, Jahur A

    2014-10-28

    The hydration energy of an ion largely resides within the first few layers of water molecules in its hydration shell. Hence, it is important to understand the transformation of water properties, such as hydrogen-bonding, intermolecular vibrational coupling, and librational freedom in the hydration shell of ions. We investigated these properties in the hydration shell of mono- (Cl(-) and I(-)) and bivalent (SO4(2-) and CO3(2-)) anions by using Raman multivariate curve resolution (Raman-MCR) spectroscopy in the OH stretch, HOH bend, and [bend+librational] combination bands of water. Raman-MCR of aqueous Na-salt (NaCl, NaI, Na2SO4, and Na2CO3) solutions provides ion-correlated spectra (IC-spectrum) which predominantly bear the vibrational characteristics of water in the hydration shell of respective anions. Comparison of these IC-spectra with the Raman spectrum of bulk water in different spectral regions reveals that the water is vibrationally decoupled with its neighbors in the hydration shell. Hydrogen-bond strength and librational freedom also vary with the nature of anion: hydrogen-bond strength, for example, decreases as CO3(2-) > SO4(2-) > bulk water ≈ Cl(-) > I(-); and the librational freedom increases as CO3(2-) ≈ SO4(2-) water water in the hydration shell of anions.

  19. [Skin hydration and hydrating products].

    Science.gov (United States)

    Duplan, H; Nocera, T

    2018-05-01

    One of the skin's principal functions is to protect the body against its environment by maintaining an effective epidermal barrier, not only against external factors, but also to prevent water loss from the body. Indeed, water homeostasis is vital for the normal physiological functioning of skin. Hydration levels affect not only visible microscopic parameters such as the suppleness and softness of skin, but also molecular parameters, enzyme activities and cellular signalling within the epidermis. The body is continually losing some of its water, but this phenomenon is limited and the optimal hydration gradient in skin is ensured via a set of sophisticated regulatory processes that rely on the functional and dynamic properties of the uppermost level of the skin consisting of the stratum corneum. The present article brings together data recently acquired in the fields of skin hydration and the characterisation of dehydrated or dry skin, whether through study of the regulatory processes involved or as a result of changes in the techniques used for in situ measurement, and thus in optimisation of management. Copyright © 2018. Published by Elsevier Masson SAS.

  20. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  1. Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 10, Basin analysis, formation and stability of gas hydrates of the Aleutian Trench and the Bering Sea

    Energy Technology Data Exchange (ETDEWEB)

    Krason, J.; Ciesnik, M.

    1987-01-01

    Four major areas with inferred gas hydrates are the subject of this study. Two of these areas, the Navarin and the Norton Basins, are located within the Bering Sea shelf, whereas the remaining areas of the Atka Basin in the central Aleutian Trench system and the eastern Aleutian Trench represent a huge region of the Aleutian Trench-Arc system. All four areas are geologically diverse and complex. Particularly the structural features of the accretionary wedge north of the Aleutian Trench still remain the subjects of scientific debates. Prior to this study, suggested presence of the gas hydrates in the four areas was based on seismic evidence, i.e., presence of bottom simulating reflectors (BSRs). Although the disclosure of the BSRs is often difficult, particularly under the structural conditions of the Navarin and Norton basins, it can be concluded that the identified BSRs are mostly represented by relatively weak and discontinuous reflectors. Under thermal and pressure conditions favorable for gas hydrate formation, the relative scarcity of the BSRs can be attributed to insufficient gas supply to the potential gas hydrate zone. Hydrocarbon gas in sediment may have biogenic, thermogenic or mixed origin. In the four studied areas, basin analysis revealed limited biogenic hydrocarbon generation. The migration of the thermogenically derived gases is probably diminished considerably due to the widespread diagenetic processes in diatomaceous strata. The latter processes resulted in the formation of the diagenetic horizons. The identified gas hydrate-related BSRs seem to be located in the areas of increased biogenic methanogenesis and faults acting as the pathways for thermogenic hydrocarbons.

  2. Seismic evidence of gas hydrates, multiple BSRs and fluid flow offshore Tumbes Basin, Peru

    Science.gov (United States)

    Auguy, Constance; Calvès, Gérôme; Calderon, Ysabel; Brusset, Stéphane

    2017-12-01

    Identification of a previously undocumented hydrate system in the Tumbes Basin, localized off the north Peruvian margin at latitude of 3°20'—4°10'S, allows us to better understand gas hydrates of convergent margins, and complement the 36 hydrate sites already identified around the Pacific Ocean. Using a combined 2D-3D seismic dataset, we present a detailed analysis of seismic amplitude anomalies related to the presence of gas hydrates and/or free gas in sediments. Our observations identify the occurrence of a widespread bottom simulating reflector (BSR), under which we observed, at several sites, the succession of one or two BSR-type reflections of variable amplitude, and vertical acoustic discontinuities associated with fluid flow and gas chimneys. We conclude that the uppermost BSR marks the current base of the hydrate stability field, for a gas composition comprised between 96% methane and 4% of ethane, propane and pure methane. Three hypotheses are developed to explain the nature of the multiple BSRs. They may refer to the base of hydrates of different gas composition, a remnant of an older BSR in the process of dispersion/dissociation or a diagenetically induced permeability barrier formed when the active BSR existed stably at that level for an extended period. The multiple BSRs have been interpreted as three events of steady state in the pressure and temperature conditions. They might be produced by climatic episodes since the last glaciation associated with tectonic activity, essentially tectonic subsidence, one of the main parameters that control the evolution of the Tumbes Basin.

  3. Hydration water and microstructure in calcium silicate and aluminate hydrates

    International Nuclear Information System (INIS)

    Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero

    2006-01-01

    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C 3 S, C 2 S) and aluminates (C 3 A, C 4 AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm -1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1 H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron scattering (USANS) and wide

  4. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina; Yamauchi, Kazuo; Li, Zongjin; Zhang, Xixiang; Ma, Hongyan; Ge, Shenguang

    2017-01-01

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10

  5. Onset and stability of gas hydrates under permafrost in an environment of surface climatic change : past and future

    International Nuclear Information System (INIS)

    Majorowicz, J.A.; Osadetz, K.; Safanda, J.

    2008-01-01

    This paper presented a model designed to simulate permafrost and gas hydrate formation in a changing surface temperature environment in the Beaufort-Mackenzie Basin (BMB). The numerical model simulated surface forcing due to general cooling trends that began in the late Miocene era. This study modelled the onset of permafrost formation and subsequent gas hydrate formation in the changing surface temperature environment for the BMB. Paleoclimatic data were used. The 1-D model was constrained by deep heat flow from well bottom hole temperatures; conductivity; permafrost thickness; and the thickness of the gas hydrates. The model used latent heat effects for the ice-bearing permafrost and hydrate intervals. Surface temperatures for glacial and interglacial histories for the last 14 million years were considered. The model also used a detailed Holocene temperature history as well as a scenario in which atmospheric carbon dioxide (CO 2 ) levels were twice as high as current levels. Two scenarios were considered: (1) the formation of gas hydrates from gas entrapped under geological seals; and (2) the formation of gas hydrates from gas located in free pore spaces simultaneously with permafrost formation. Results of the study showed that gas hydrates may have formed at a depth of 0.9 km only 1 million years ago. Results of the other modelling scenarios suggested that the hydrates formed 6 million years ago, when temperature changes caused the gas hydrate layer to expand both downward and upward. Detailed models of more recent glacial and interglacial histories showed that the gas hydrate zones will persist under the thick body of the BMB permafrost through current interglacial warming as well as in scenarios where atmospheric CO 2 is doubled. 28 refs., 13 figs

  6. Preliminary geotechnical properties of deepsea sediments from the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Khadge, N.H.

    Geotechnical properties of the Plio-Pleistocene sediments from nodule bearing area in the Central Indian Basin have been studied to know shear strength and water content variation with depth. It reveals that surface sediments have low (less than 1 k...

  7. Model of converter dusts and iron-bearing slurries management in briquetting

    Directory of Open Access Journals (Sweden)

    P. Gara

    2016-07-01

    Full Text Available An important problem in metallurgy of iron and steel is management of hydrated, fine-grained, iron-bearing waste which can be formed as a result of gas scrubbing. The article presents a model of application of converter slurry in a closed-circuit flow system. The correct preparation of slag, namely briquetting with defined additives, allows for application of such slag in the steel-making process as the substitute for scrap metal.

  8. Application of empirical hydration distribution functions around polar atoms for assessing hydration structures of proteins

    International Nuclear Information System (INIS)

    Matsuoka, Daisuke; Nakasako, Masayoshi

    2013-01-01

    Highlights: ► Empirical distribution functions of water molecules in protein hydration are made. ► The functions measure how hydrogen-bond geometry in hydration deviate from ideal. ► The functions assess experimentally identified hydration structures of protein. - Abstract: To quantitatively characterize hydrogen-bond geometry in local hydration structures of proteins, we constructed a set of empirical hydration distribution functions (EHDFs) around polar protein atoms in the main and side chains of 11 types of hydrophilic amino acids (D. Matsuoka, M. Nakasako, Journal of Physical Chemistry B 113 (2009) 11274). The functions are the ensemble average of possible hydration patterns around the polar atoms, and describe the anisotropic deviations from ideal hydrogen bond geometry. In addition, we defined probability distribution function of hydration water molecules (PDFH) over the hydrophilic surface of a protein as the sum of EHDFs of solvent accessible polar protein atoms. The functions envelop most of hydration sites identified in crystal structures of proteins (D. Matsuoka, M. Nakasako, Journal of Physical Chemistry B 114 (2010) 4652). Here we propose the application of EHDFs and PDFHs for assessing crystallographically identified hydration structures of proteins. First, hydration water molecules are classified with respect to the geometry in hydrogen bonds in referring EHDFs. Difference Fourier electron density map weighted by PDFH of protein is proposed to identify easily density peaks as candidates of hydration water molecules. A computer program implementing those ideas was developed and used for assessing hydration structures of proteins

  9. Development of an offshore gas field - investigation of hydrate and paraffin formation potential with regard to flow assurance; Entwicklung eines Offshore-Gasfeldes: Hydrat- und Paraffinuntersuchungen zur Sicherstellung der kontinuierlichen Produktion

    Energy Technology Data Exchange (ETDEWEB)

    Zettlitzer, M.; Busch, M. [RWE Dea AG, Wietze (Germany)

    2005-11-01

    During the production of offshore gas fields, raw gas from a number of production wells is usually led to a platform or - for reservoirs located close to shore - even transported as wet gas to an onshore gas treatment plant. The pipelines are located at the sea bottom, resulting in significant cooling of the raw gas with subsequent potential for the formation of hydrates and/or precipitation of paraffin on the pipeline walls. In order to safeguard continuous production, additional installations and/or dosage of chemicals would possibly be required. On the basis of gas and condensate samples from production tests, the formation potential for paraffins was experimentally investigated while the hydrate formation potential was assessed by simulations. The very small volume of condensate available (2-3 ml of each sample) formed a special challenge and limited the number of possible analytical investigations. Nevertheless, wax appearance temperature of five condensates under investigation could successfully be determined by a combination of gas-chromatographic and rheological measurements. Two of the three gas-bearing layers turned out to produce dry gas so that paraffin problems can be excluded. However, according to the simulations, hydrate formation at temperatures {<=}+20 C has to be expected under the formation pressure of about 200 bars. The third layer contains a gas condensate, causing paraffin precipitation at {<=}0 C and forming hydrate in a temperature range similar to that of the other two sands. Hence, precautions have to taken to prevent hydrate formation in all field lines containing wet gas. Furthermore, the paraffin precipitation potential has to be taken into account in the subsequent low-temperature gas-treatment plant. (orig.)

  10. In Situ Raman Analyses of Natural Gas and Gas Hydrates at Hydrate Ridge, Oregon

    Science.gov (United States)

    Peltzer, E. T.; White, S. N.; Dunk, R. M.; Brewer, P. G.; Sherman, A. D.; Schmidt, K.; Hester, K. C.; Sloan, E. D.

    2004-12-01

    During a July 2004 cruise to Hydrate Ridge, Oregon, MBARI's sea-going laser Raman spectrometer was used to obtain in situ Raman spectra of natural gas hydrates and natural gas venting from the seafloor. This was the first in situ analysis of gas hydrates on the seafloor. The hydrate spectra were compared to laboratory analyses performed at the Center for Hydrate Research, Colorado School of Mines. The natural gas spectra were compared to MBARI gas chromatography (GC) analyses of gas samples collected at the same site. DORISS (Deep Ocean Raman In Situ Spectrometer) is a laboratory model laser Raman spectrometer from Kaiser Optical Systems, Inc modified at MBARI for deployment in the deep ocean. It has been successfully deployed to depths as great as 3600 m. Different sampling optics provide flexibility in adapting the instrument to a particular target of interest. An immersion optic was used to analyze natural gas venting from the seafloor at South Hydrate Ridge ( ˜780 m depth). An open-bottomed cube was placed over the vent to collect the gas. The immersion optic penetrated the side of the cube as did a small heater used to dissociate any hydrate formed during sample collection. To analyze solid hydrates at both South and North Hydrate Ridge ( ˜590 m depth), chunks of hydrate were excavated from the seafloor and collected in a glass cylinder with a mesh top. A stand-off optic was used to analyze the hydrate inside the cylinder. Due to the partial opacity of the hydrate and the small focal volume of the sampling optic, a precision underwater positioner (PUP) was used to focus the laser spot onto the hydrate. PUP is a stand-alone system with three degrees-of-freedom, capable of moving the DORISS probe head with a precision of 0.1 mm. In situ Raman analyses of the gas indicate that it is primarily methane. This is verified by GC analyses of samples collected from the same site. Other minor constituents (such as CO2 and higher hydrocarbons) are present but may be in

  11. Final Scientific/Technical Report: Characterizing the Response of the Cascadia Margin Gas Hydrate Reservoir to Bottom Water Warming Along the Upper Continental Slope

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Evan A. [Univ. of Washington, Seattle, WA (United States); Johnson, H. Paul [Univ. of Washington, Seattle, WA (United States); Salmi, Marie [Univ. of Washington, Seattle, WA (United States); Whorley, Theresa [Univ. of Washington, Seattle, WA (United States)

    2017-11-10

    The objective of this project is to understand the response of the WA margin gas hydrate system to contemporary warming of bottom water along the upper continental slope. Through pre-cruise analysis and modeling of archive and recent geophysical and oceanographic data, we (1) inventoried bottom simulating reflectors along the WA margin and defined the upper limit of gas hydrate stability, (2) refined margin-wide estimates of heat flow and geothermal gradients, (3) characterized decadal scale temporal variations of bottom water temperatures at the upper continental slope of the Washington margin, and (4) used numerical simulations to provide quantitative estimates of how the shallow boundary of methane hydrate stability responds to modern environmental change. These pre-cruise results provided the context for a systematic geophysical and geochemical survey of methane seepage along the upper continental slope from 48° to 46°N during a 10-day field program on the R/V Thompson from October 10-19, 2014. This systematic inventory of methane emissions along this climate-sensitive margin corridor and comprehensive sediment and water column sampling program provided data and samples for Phase 3 of this project that focused on determining fluid and methane sources (deep-source vs. shallow; microbial, thermogenic, gas hydrate dissociation) within the sediment, and how they relate to contemporary intermediate water warming. During the 2014 research expedition, we sampled nine seep sites between ~470 and 520 m water depth, within the zone of predicted methane hydrate retreat over the past 40 years. We imaged 22 bubble plumes with heights commonly rising to ~300 meters below sea level with one reaching near the sea surface. We collected 22 gravity cores and 20 CTD/hydrocasts from the 9 seeps and at background locations (no acoustic evidence of seepage) within the depth interval of predicted downslope retreat of the methane hydrate stability zone. Approximately 300 pore water

  12. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  13. The study of distribution and forms of uranium occurrences in Lake Baikal sediments by the SSNTD method

    International Nuclear Information System (INIS)

    Zhmodik, S.M.; Verkhovtseva, N.V.; Soloboeva, E.V.; Mironov, A.G.; Nemirovskaya, N.A.; Ilic, R.; Khlystov, O.M.; Titov, A.T.

    2005-01-01

    Sediments of Lake Baikal drill cores VER-96-1 St8 TW2 (53 deg. 32 ' 15 ' 'E; 107 deg. 56 ' 25 ' 'N) (interval 181.8-235cm from the sediment surface) were studied by means of SSNTD with the aim of defining uranium occurrence in the sediments and the uranium concentration. The neutron-fission ((n,f)-autoradiographic) method allowed a detailed study of uranium distribution of these Lake Baikal sediments within the Academicheskiy Ridge. Layered accumulations of uranium-bearing grained phosphorite, uranium-bearing particles of organic material, and abnormal uranium concentration in diatomite of unknown origin were discovered

  14. Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds. Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lutken, Carol [Univ. of Mississippi, Oxford, MS (United States); Macelloni, Leonardo [Univ. of Mississippi, Oxford, MS (United States); D' Emidio, Marco [Univ. of Mississippi, Oxford, MS (United States); Dunbar, John [Univ. of Mississippi, Oxford, MS (United States); Higley, Paul [Univ. of Mississippi, Oxford, MS (United States)

    2015-01-31

    This study was designed to investigate temporal variations in hydrate system dynamics by measuring changes in volumes of hydrate beneath hydrate-bearing mounds on the continental slope of the northern Gulf of Mexico, the landward extreme of hydrate occurrence in this region. Direct Current Resistivity (DCR) measurements were made contemporaneously with measurements of oceanographic parameters at Woolsey Mound, a carbonate-hydrate complex on the mid-continental slope, where formation and dissociation of hydrates are most vulnerable to variations in oceanographic parameters affected by climate change, and where changes in hydrate stability can readily translate to loss of seafloor stability, impacts to benthic ecosystems, and venting of greenhouse gases to the water-column, and eventually, the atmosphere. We focused our study on hydrate within seafloor mounds because the structurally-focused methane flux at these sites likely causes hydrate formation and dissociation processes to occur at higher rates than at sites where the methane flux is less concentrated and we wanted to maximize our chances of witnessing association/dissociation of hydrates. We selected a particularly well-studied hydrate-bearing seafloor mound near the landward extent of the hydrate stability zone, Woolsey Mound (MC118). This mid-slope site has been studied extensively and the project was able to leverage considerable resources from the team’s research experience at MC118. The site exhibits seafloor features associated with gas expulsion, hydrates have been documented at the seafloor, and changes in the outcropping hydrates have been documented, photographically, to have occurred over a period of months. We conducted observatory-based, in situ measurements to 1) characterize, geophysically, the sub-bottom distribution of hydrate and its temporal variability, and 2) contemporaneously record relevant environmental parameters (temperature, pressure, salinity, turbidity, bottom currents) to

  15. Overview: Nucleation of clathrate hydrates.

    Science.gov (United States)

    Warrier, Pramod; Khan, M Naveed; Srivastava, Vishal; Maupin, C Mark; Koh, Carolyn A

    2016-12-07

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  16. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  17. Exogenous origin of hydration on asteroid (16) Psyche: the role of hydrated asteroid families

    Science.gov (United States)

    Avdellidou, C.; Delbo', M.; Fienga, A.

    2018-04-01

    Asteroid (16) Psyche, which for a long time was the largest M-type with no detection of hydration features in its spectrum, was recently discovered to have a weak 3-μm band and thus it was eventually added to the group of hydrated asteroids. Its relatively high density, in combination with the high radar albedo, led researchers to classify the asteroid as a metallic object. It is believed that it is possibly a core of a differentiated body, a remnant of `hit-and-run' collisions. The detection of hydration is, in principle, inconsistent with a pure metallic origin for this body. Here, we consider the scenario in which the hydration on its surface is exogenous and was delivered by hydrated impactors. We show that impacting asteroids that belong to families whose members have the 3-μm band can deliver hydrated material to Psyche. We developed a collisional model with which we test all dark carbonaceous asteroid families, which contain hydrated members. We find that the major source of hydrated impactors is the family of Themis, with a total implanted mass on Psyche of the order of ˜1014 kg. However, the hydrated fraction could be only a few per cent of the implanted mass, as the water content in carbonaceous chondrite meteorites, the best analogue for the Themis asteroid family, is typically a few per cent of their mass.

  18. Križna jama (SW Slovenia): Numerical- and correlated-ages from cave bear-bearing sediments

    Czech Academy of Sciences Publication Activity Database

    Bosák, Pavel; Pruner, Petr; Zupan Hajna, N.; Hercman, H.; Mihevc, A.; Wagner, Jan

    2010-01-01

    Roč. 39, č. 3 (2010), s. 529-549 ISSN 0583-6050 R&D Projects: GA AV ČR IAA300130701 Institutional research plan: CEZ:AV0Z30130516 Keywords : magnetostratigraphy * U-series dating * bear cave * Middle/late Pleistocene Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.750, year: 2010 http://carsologica.zrc-sazu.si/downloads/393/Bosak.pdf

  19. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  20. Hydration and leaching characteristics of cement pastes made from electroplating sludge.

    Science.gov (United States)

    Chen, Ying-Liang; Ko, Ming-Sheng; Lai, Yi-Chieh; Chang, Juu-En

    2011-06-01

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the (29)Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic β-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments

    International Nuclear Information System (INIS)

    Motlep, Riho; Sild, Terje; Puura, Erik; Kirsimaee, Kalle

    2010-01-01

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years.

  2. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments

    Energy Technology Data Exchange (ETDEWEB)

    Motlep, Riho, E-mail: riho.motlep@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Sild, Terje, E-mail: terje.sild@maaamet.ee [Estonian Land Board, Mustamaee tee 51, 10621 Tallinn (Estonia); Puura, Erik, E-mail: erik.puura@ut.ee [Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu (Estonia); Kirsimaee, Kalle, E-mail: kalle.kirsimae@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia)

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years.

  3. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  4. Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system

    Science.gov (United States)

    Lunine, J. I.; Stevenson, D. J.

    1985-01-01

    The thermodynamic stability of clathrate hydrate is calculated to predict the formation conditions corresponding to a range of solar system parameters. The calculations were performed using the statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data concerning clathrate hydrate and its components. Dissociation pressures and partition functions (Langmuir constants) are predicted at low pressure for CO clathrate (hydrate) using the properties of chemicals similar to CO. It is argued that nonsolar but well constrained noble gas abundances may be measurable by the Galileo spacecraft in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances of the Jovian satellite Titan are predicted, assuming that most of the methane in Titan is accreted as clathrate. It is suggested that under thermodynamically appropriate conditions, complete clathration of water ice could have occurred in high-pressure nebulas around giant planets, but probably not in the outer solar nebula. The stability of clathrate in other pressure ranges is also discussed.

  5. Allogenic sedimentary components of Bear Lake, Utah and Idaho

    Science.gov (United States)

    Rosenbaum, J.G.; Dean, W.E.; Reynolds, R.L.; Reheis, M.C.

    2009-01-01

    Bear Lake is a long-lived lake filling a tectonic depression between the Bear River Range to the west and the Bear River Plateau to the east, and straddling the border between Utah and Idaho. Mineralogy, elemental geochemistry, and magnetic properties provide information about variations in provenance of allogenic lithic material in last-glacial-age, quartz-rich sediment in Bear Lake. Grain-size data from the siliciclastic fraction of late-glacial to Holocene carbonate-rich sediments provide information about variations in lake level. For the quartz-rich lower unit, which was deposited while the Bear River fl owed into and out of the lake, four source areas are recognized on the basis of modern fluvial samples with contrasting properties that reflect differences in bedrock geology and in magnetite content from dust. One of these areas is underlain by hematite-rich Uinta Mountain Group rocks in the headwaters of the Bear River. Although Uinta Mountain Group rocks make up a small fraction of the catchment, hematite-rich material from this area is an important component of the lower unit. This material is interpreted to be glacial fl our. Variations in the input of glacial flour are interpreted as having caused quasi-cyclical variations in mineralogical and elemental concentrations, and in magnetic properties within the lower unit. The carbonate-rich younger unit was deposited under conditions similar to those of the modern lake, with the Bear River largely bypassing the lake. For two cores taken in more than 30 m of water, median grain sizes in this unit range from ???6 ??m to more than 30 ??m, with the coarsest grain sizes associated with beach or shallow-water deposits. Similar grain-size variations are observed as a function of water depth in the modern lake and provide the basis for interpreting the core grain-size data in terms of lake level. Copyright ?? 2009 The Geological Society of America.

  6. Consumption of pondweed rhizomes by Yellowstone grizzly bears

    Science.gov (United States)

    Mattson, D.J.; Podruzny, S.R.; Haroldson, M.A.

    2005-01-01

    Pondweeds (Potamogeton spp.) are common foods of waterfowl throughout the Northern Hemisphere. However, consumption of pondweeds by bears has been noted only once, in Russia. We documented consumption of pondweed rhizomes by grizzly bears (Ursus arctos) in the Yellowstone region, 1977-96, during investigations of telemetry locations obtained from 175 radiomarked bears. We documented pondweed excavations at 25 sites and detected pondweed rhizomes in 18 feces. We observed grizzly bears excavating and consuming pondweed on 2 occasions. All excavations occurred in wetlands that were inundated during and after snowmelt, but dry by late August or early September of most years. These wetlands were typified by the presence of inflated sedge (Carex vesicaria) and occurred almost exclusively on plateaus of Pliocene-Pleistocene detrital sediments or volcanic rhyolite flows. Bears excavated wetlands with pondweeds when they were free of standing water, most commonly during October and occasionally during spring prior to the onset of terminal snowmelt. Most excavations were about 4.5 cm deep, 40 cubic decimeter (dm3) in total volume, and targeted the thickened pondweed rhizomes. Starch content of rhizomes collected near grizzly bear excavations averaged 28% (12% SD; n = 6). These results add to the documented diversity of grizzly bear food habits and, because pondweed is distributed circumboreally, also raise the possibility that consumption of pondweed by grizzly bears has been overlooked in other regions.

  7. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    Science.gov (United States)

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    BioAggregate™ is a novel material introduced for use as a root-end filling material. It is tricalcium silicate-based, free of aluminium and uses tantalum oxide as radiopacifier. BioAggregate contains additives to enhance the material performance. The purpose of this research was to characterize the un-hydrated and hydrated forms of BioAggregate using a combination of techniques, verify whether the additives if present affect the properties of the set material and compare these properties to those of MTA Angelus™. Un-hydrated and hydrated BioAggregate and MTA Angelus were assessed. Un-hydrated cement was tested for chemical composition, specific surface area, mineralogy and kinetics of hydration. The set material was investigated for mineralogy, microstructure and bioactivity. Scanning electron microscopy, X-ray energy dispersive spectroscopic analysis, X-ray fluorescence spectroscopy, X-ray diffraction and isothermal calorimetry were employed. The specific surface area was investigated using a gas adsorption method with nitrogen as the probe. BioAggregate was composed of tricalcium silicate, tantalum oxide, calcium phosphate and silicon dioxide and was free of aluminium. On hydration, the tricalcium silicate produced calcium silicate hydrate and calcium hydroxide. The former was deposited around the cement grains, while the latter reacted with the silicon dioxide to form additional calcium silicate hydrate. This resulted in reduction of calcium hydroxide in the aged cement. MTA Angelus reacted in a similar fashion; however, since it contained no additives, the calcium hydroxide was still present in the aged cement. Bioactivity was demonstrated by deposition of hydroxyapatite. BioAggregate exhibited a high specific surface area. Nevertheless, the reactivity determined by isothermal calorimetry appeared to be slow compared to MTA Angelus. The tantalum oxide as opposed to bismuth oxide was inert, and tantalum was not leached in solution. BioAggregate exhibited

  8. Quantitative estimation of massive gas hydrate in gas chimney structures, the eastern margin of Japan Sea, from the physical property anomalies obtained by LWD.

    Science.gov (United States)

    Tanahashi, M.; Morita, S.; Matsumoto, R.

    2017-12-01

    Two dedicated LWD (Logging While Drilling) cruises, GR14 and HR15, were conducted in summers of 2014 and 2015, respectively, by Meiji University and Geological Survey of Japan, AIST to explore the gas chimney structures, which are characterized by the columnar acoustic blanking below the topographic mound and/or pockmarks in eastern margin of Japan Sea. Shallow (33 to 172m-bsf, average 136m-bsf) 33 LWD drillings were carried out generally in and around gas chimney structures which are in Oki Trough, Off-Joetsu, and Mogami Trough areas, eastern margin of Japan Sea, during two cruises. Schlumberger LWD tools, GeoVISION (resistivity), TeleScope, ProVISION (NMR) and SonicVISION (sonic) were applied during GR14. NeoScope (neutron) was added and SonicScope was replaced for SonicVISION during HR15. The presence of thick highly-anomalous intervals within the LWD data at site J24L suggests the development of massive gas hydrate within Off-Joetsu, by very high resistivity ( 10,000 Ωm), high Vp ( 3,700 m/s) and Vs (370-1,839 m/s), high neutron porosity ( 1.2), low natural gamma ray intensity ( 0 API), low neutron gamma density ( 0.8 g/cm3), low NMR porosity ( 0.0), low permeability (10-2-10-4 mD), low formation neutron sigma (26-28). The extreme physical properties intervals suggest the development of the almost pure hydrate. Because of the clear contrast between pure hydrate and seawater saturated fine sediments, the hydrate amount can be estimated quantitatively based on the assumptions as the two component system of pure hydrate and the monotonous seawater saturated fine sediments. This study was conducted as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

  9. Methods to determine hydration states of minerals and cement hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  10. Methods to determine hydration states of minerals and cement hydrates

    International Nuclear Information System (INIS)

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars

    2014-01-01

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na 2 SO 4 –H 2 O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions

  11. KIGAM Seafloor Observation System (KISOS) for the baseline study in monitoring of gas hydrate test production in the Ulleung Basin, Korea

    Science.gov (United States)

    Lee, Sung-rock; Chun, Jong-hwa

    2013-04-01

    For the baseline study in the monitoring gas hydrate test production in the Ulleung Basin, Korea Institute of Geoscience and Mineral Resources (KIGAM) has developed the KIGAM Seafloor Observation System (KISOS) for seafloor exploration using unmanned remotely operated vehicle connected with a ship by a cable. The KISOS consists of a transponder of an acoustic positioning system (USBL), a bottom finding pinger, still camera, video camera, water sampler, and measuring devices (methane, oxygen, CTD, and turbidity sensors) mounted on the unmanned ROV, and a sediment collecting device collecting sediment on the seafloor. It is very important to monitoring the environmental risks (gas leakage and production water/drilling mud discharge) which may be occurred during the gas hydrate test production drilling. The KISOS will be applied to solely conduct baseline study with the KIGAM seafloor monitoring system (KIMOS) of the Korean gas hydrate program in the future. The large scale of environmental monitoring program includes the environmental impact assessment such as seafloor disturbance and subsidence, detection of methane gas leakage around well and cold seep, methane bubbles and dissolved methane, change of marine environments, chemical factor variation of water column and seabed, diffusion of drilling mud and production water, and biological factors of biodiversity and marine habitats before and after drilling test well and nearby areas. The design of the baseline survey will be determined based on the result of SIMAP simulation in 2013. The baseline survey will be performed to provide the gas leakage and production water/drilling mud discharge before and after gas hydrate test production. The field data of the baseline study will be evaluated by the simulation and verification of SIMAP simulator in 2014. In the presentation, the authors would like introduce the configuration of KISOS and applicability to the seafloor observation for the gas hydrate test production in

  12. Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation

    International Nuclear Information System (INIS)

    Anderson, Graydon K.

    2004-01-01

    The enthalpies of the reactions in which methane hydrate is dissociated to methane vapor and either (1) water, or (2) ice are determined by a new analysis using the Clapeyron equation. The difference in enthalpies of the two reactions is used to infer the hydration number at the quadruple point where hydrate, ice, liquid water, and methane vapor coexist. By appropriate corrections, the hydration number at points removed from the quadruple point is also determined. The most important feature of the new analysis is the direct use of the Clapeyron equation. The method avoids the use of certain simplifying assumptions that have compromised the accuracy of previous analyses in which the Clausius-Clapeyron equation was used. The analysis takes into account the finite volumes of all phases, the non-ideality of the vapor phase, and the solubility of methane in water. The results show that the enthalpy of dissociation and hydration number are constant within experimental error over the entire (hydrate, liquid, vapor) coexistence region. The results are more accurate than but entirely consistent with almost all previous studies

  13. Fire extinction utilizing carbon dioxide hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, T.; Aida, E.; Yokomori, T.; Ohmura, R.; Ueda, T. [Keio Univ., Hiyoshi, Kohoku-ku, Yokohama (Japan)

    2008-07-01

    Clathrate hydrates formed with nonflammable gases may be suitable for use as fire extinguishing agents because dissociation of the hydrates results in the temperature decrease in the combustion field and the nonflammable gases released from the dissociated hydrates prevent the supply of the oxygen to the combustion field. This paper discussed experiments in which ordinary ice and dry ice were used to evaluate the performance of CO{sub 2} hydrate as a fire extinguishing agent. The paper described the apparatus and procedure for the preparation of CO{sub 2} hydrate crystals. A schematic of the reactor to form CO{sub 2} hydrate and a photograph of CO{sub 2} hydrate crystal formed in the study were also presented. Other illustrations, photographs, and tables that were presented included a schematic diagram of the experimental apparatus used for the flame extinction experiments; a photograph of CO{sub 2} hydrate powder; sequential video graphs of the flame extinction by the supply of CO{sub 2} hydrate crystals to the methanol pool flame and the relevant illustration; and heat of CO{sub 2} hydrate dissociation, water vaporization and sublimation of dry ice. It was concluded that the critical mass of the CO{sub 2} hydrate required to extinguish a flame was much less than that of ordinary ice, indicating the superiority of CO{sub 2} hydrate to the ice. In addition, the experiments also revealed that the size of the CO{sub 2} hydrate particles had a significant effect on the performance of flame extinction. 5 refs., 2 tabs., 7 figs.

  14. Hydrates on tap: scientists say natural gas hydrates may be tough nut to crack

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2001-12-01

    Gas hydrates are methane molecules trapped in cages of water molecules, yielding a substance with a slushy, sherbet-like consistency. Drilling for hydrates is similar to conventional oil and gas drilling, however, the secret to economic production still remains hidden. Hydrates exist in abundance in such places as deep ocean floor and below ground in some polar regions. The real challenge lies in producing gas from this resource, inasmuch as there is no existing technology for production of gas specifically from methane hydrates. This paper describes an international research program, involving a five-country partnership to spud the first of three wells into the permafrost of the Mackenzie River Delta in the Northwest Territories. The project, worth about $15 million, has brought together public funding and expertise from Japan, Germany, India as well as the Canadian and US Geological Surveys and the US Dept. of Energy in an effort to gain information on the production response of gas hydrates. The operator of the project is Japan Petroleum Exploration Company of Canada, a subsidiary of Japan National Oil Corporation. Since Japan is poor in domestic hydrocarbon resources, but is surrounded by deep water that contains potential for gas hydrates, Japan has a great deal riding on the success of this project. Germany and the United States are also very much interested. Current thinking is that gas is in contact with the hydrates and that it should be possible to develop a free gas reservoir as if it were a conventional deposit. As the free gas is drawn off, the pressure is reduced on the hydrates in contact with it , the hydrates dissociate from the gas and replenish the conventional reservoir. So far this is still only a theory, but it appears to be a sensible approach to hydrate production. 1 photo.

  15. Prestack Waveform Inversion and Well Log Examination at GC955 and WR313 in the Gulf of Mexico for Estimation of Methane Hydrate Concentrations

    Science.gov (United States)

    Fortin, W.; Goldberg, D.; Kucuk, H. M.

    2017-12-01

    Gas hydrates are naturally occurring compounds, which, at a molecular scale, are lattice structures of ice embedded with various gas molecules in the lattice voids. Volumetric estimates of associated hydrocarbons vary greatly due to the difficulty in remotely estimating hydrate concentrations in marine sediments but embedded hydrocarbon stores are thought to represent a significant portion of global deposits. Inherent hydrate instabilities obscure our understanding of and complicates processes related to resource extraction and hydrate response to disturbances in the local environment. Understanding the spatial extent and variability of hydrate deposits have important implications for potential economic production, climate change, and assessing natural hazards risks. Seismic reflection techniques are capable of determining the extent of gas hydrate deposits, often through the observation of bottom simulating reflectors (BSRs). However, BSRs are not present everywhere gas hydrates exist. Using high resolution prestack time migrated seismic data and prestack waveform inversion (PWI) we produce highly resolved velocity models and compare them to co-located well logs. Coupling our PWI results with velocity-porosity relationships and nearby well control, we map hydrate properties at GC955 and WR313. Integrating small scale heterogeneities and variations along the velocity model with in-situ measurements, we develop a workflow aimed to quantify hydrate concentrations observed in seismic data over large areas in great detail regardless of the existence of a BSR.

  16. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  17. Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator

    International Nuclear Information System (INIS)

    Li, Gang; Li, Xiao-Sen; Li, Bo; Wang, Yi

    2014-01-01

    The combination forms of the hydrate dissociation methods in different well systems are divided into 6 main patterns. Dissociation processes of methane hydrate in porous media using the inverted five-spot water flooding method (Pattern 4) are investigated by the experimental observation and numerical simulation. In situ methane hydrate is synthesized in the Cubic Hydrate Simulator (CHS), a 5.832-L cubic reactor. A center vertical well is used as the hot water injection well, while the four vertical wells at the corner are the gas and water production wells. The gas production begins simultaneously with the hot water injection, while after approximately 20 min of compression, the water begins to be produced. One of the common characteristics of the inverted five-spot water flooding method is that both the gas and water production rates decrease with the reduction of the hydrate dissociation rate. The evaluation of the energy efficiency ratio might indicate the inverted five-spot water flooding as a promising gas producing method from the hydrate reservoir. - Highlights: • A three-dimensional 5.8-L cubic pressure vessel is developed. • Gas production of hydrate using inverted five-spot flooding method is studied. • Water/gas production rate and energy efficiency ratio are evaluated. • Temperature distributions of numerical simulation and experiment agree well. • Hydrate dissociation process is a moving boundary problem in this study

  18. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  19. The role of heat transfer time scale in the evolution of the subsea permafrost and associated methane hydrates stability zone during glacial cycles

    Science.gov (United States)

    Malakhova, Valentina V.; Eliseev, Alexey V.

    2017-10-01

    Climate warming may lead to degradation of the subsea permafrost developed during Pleistocene glaciations and release methane from the hydrates, which are stored in this permafrost. It is important to quantify time scales at which this release is plausible. While, in principle, such time scale might be inferred from paleoarchives, this is hampered by considerable uncertainty associated with paleodata. In the present paper, to reduce such uncertainty, one-dimensional simulations with a model for thermal state of subsea sediments forced by the data obtained from the ice core reconstructions are performed. It is shown that heat propagates in the sediments with a time scale of ∼ 10-20 kyr. This time scale is longer than the present interglacial and is determined by the time needed for heat penetration in the unfrozen part of thick sediments. We highlight also that timings of shelf exposure during oceanic regressions and flooding during transgressions are important for simulating thermal state of the sediments and methane hydrates stability zone (HSZ). These timings should be resolved with respect to the contemporary shelf depth (SD). During glacial cycles, the temperature at the top of the sediments is a major driver for moving the HSZ vertical boundaries irrespective of SD. In turn, pressure due to oceanic water is additionally important for SD ≥ 50 m. Thus, oceanic transgressions and regressions do not instantly determine onsets of HSZ and/or its disappearance. Finally, impact of initial conditions in the subsea sediments is lost after ∼ 100 kyr. Our results are moderately sensitive to intensity of geothermal heat flux.

  20. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  1. Faulting and hydration of the Juan de Fuca plate system

    Science.gov (United States)

    Nedimović, Mladen R.; Bohnenstiehl, DelWayne R.; Carbotte, Suzanne M.; Pablo Canales, J.; Dziak, Robert P.

    2009-06-01

    Multichannel seismic observations provide the first direct images of crustal scale normal faults within the Juan de Fuca plate system and indicate that brittle deformation extends up to ~ 200 km seaward of the Cascadia trench. Within the sedimentary layering steeply dipping faults are identified by stratigraphic offsets, with maximum throws of 110 ± 10 m found near the trench. Fault throws diminish both upsection and seaward from the trench. Long-term throw rates are estimated to be 13 ± 2 mm/kyr. Faulted offsets within the sedimentary layering are typically linked to larger offset scarps in the basement topography, suggesting reactivation of the normal fault systems formed at the spreading center. Imaged reflections within the gabbroic igneous crust indicate swallowing fault dips at depth. These reflections require local alteration to produce an impedance contrast, indicating that the imaged fault structures provide pathways for fluid transport and hydration. As the depth extent of imaged faulting within this young and sediment insulated oceanic plate is primarily limited to approximately Moho depths, fault-controlled hydration appears to be largely restricted to crustal levels. If dehydration embrittlement is an important mechanism for triggering intermediate-depth earthquakes within the subducting slab, then the limited occurrence rate and magnitude of intraslab seismicity at the Cascadia margin may in part be explained by the limited amount of water imbedded into the uppermost oceanic mantle prior to subduction. The distribution of submarine earthquakes within the Juan de Fuca plate system indicates that propagator wake areas are likely to be more faulted and therefore more hydrated than other parts of this plate system. However, being largely restricted to crustal levels, this localized increase in hydration generally does not appear to have a measurable effect on the intraslab seismicity along most of the subducted propagator wakes at the Cascadia margin.

  2. Seismic characterization of hydrates in faulted, fine-grained sediments of Krishna-Godavari basin: Full waveform inversion.

    Digital Repository Service at National Institute of Oceanography (India)

    Jaiswal, P.; Dewangan, P.; Ramprasad, T.; Zelt, C.A.

    (QP−1) character of the gas hydrate stability zone (GHSZ). In this paper, we apply frequency domain full-waveform inversion (FWI) to surface-towed 2D multichannel seismic data from the Krishna-Godavari (KG) Basin, India, to image the fine-scale (100...

  3. Indian continental margin gas hydrate prospects : results of the Indian National Gas Hydrate Program (NGHP) expedition 01

    Energy Technology Data Exchange (ETDEWEB)

    Collett, T [United States Geological Survey, Denver, CO (United States); Riedel, M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences; Cochran, J.R. [Columbia Univ., Palisades, NY (United States). Lamont Doherty Earth Observatory; Boswell, R. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Kumar, P. [Pushpendra Kumar Oil and Natural Gas Corp. Ltd., Mumbai (India). Inst. of Engineering and Ocean Technology; Sathe, A.V. [Oil and Natural Gas Corp. Ltd., Uttaranchal (India). KDM Inst. of Petroleum Exploration

    2008-07-01

    The geologic occurrence of gas hydrate deposits along the continental margins of India were investigated in the first expedition of the Indian National Gas Hydrate Program (NGHP). The objective was to determine the regional context and characteristics of the gas hydrate deposits through scientific ocean drilling, logging, and analytical activities. A research drill ship was the platform for the drilling operation. The geological and geophysical studies revealed 2 geologically distinct areas with inferred gas hydrate occurrences, notably the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The NGHP Expedition 01 focused on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these 2 diverse settings. The study established the presence of gas hydrates in Krishna-Godavari, Mahanadi and Andaman basins. Site 10 in the Krishna-Godavari Basin was discovered to be the one of the richest gas hydrate accumulations yet documented, while site 17 in the Andaman Sea had the thickest and deepest gas hydrate stability zone yet known. The existence of a fully-developed gas hydrate system in the Mahanadi Basin was also discovered. Most of the gas hydrate occurrences discovered during this expedition appeared to contain mostly methane which was generated by microbial processes. However, there was also evidence of a thermal origin for a portion of the gas within the hydrates of the Mahanadi Basin and the Andaman offshore area. Gas hydrate in the Krishna-Godavari Basin appeared to be closely associated with large scale structural features, in which the flux of gas through local fracture systems, generated by the regional stress regime, controlled the occurrence of gas hydrate. 3 refs., 1 tab., 2 figs.

  4. Environment-Dependent Distribution of the Sediment nifH-Harboring Microbiota in the Northern South China Sea

    Science.gov (United States)

    Yang, Jinying; Li, Jing; Luan, Xiwu; Zhang, Yunbo; Gu, Guizhou; Xue, Rongrong; Zong, Mingyue; Klotz, Martin G.

    2013-01-01

    The South China Sea (SCS), the largest marginal sea in the Western Pacific Ocean, is a huge oligotrophic water body with very limited influx of nitrogenous nutrients. This suggests that sediment microbial N2 fixation plays an important role in the production of bioavailable nitrogen. To test the molecular underpinning of this hypothesis, the diversity, abundance, biogeographical distribution, and community structure of the sediment diazotrophic microbiota were investigated at 12 sampling sites, including estuarine, coastal, offshore, deep-sea, and methane hydrate reservoirs or their prospective areas by targeting nifH and some other functional biomarker genes. Diverse and novel nifH sequences were obtained, significantly extending the evolutionary complexity of extant nifH genes. Statistical analyses indicate that sediment in situ temperature is the most significant environmental factor influencing the abundance, community structure, and spatial distribution of the sediment nifH-harboring microbial assemblages in the northern SCS (nSCS). The significantly positive correlation of the sediment pore water NH4+ concentration with the nifH gene abundance suggests that the nSCS sediment nifH-harboring microbiota is active in N2 fixation and NH4+ production. Several other environmental factors, including sediment pore water PO43− concentration, sediment organic carbon, nitrogen and phosphorus levels, etc., are also important in influencing the community structure, spatial distribution, or abundance of the nifH-harboring microbial assemblages. We also confirmed that the nifH genes encoded by archaeal diazotrophs in the ANME-2c subgroup occur exclusively in the deep-sea methane seep areas, providing for the possibility to develop ANME-2c nifH genes as a diagnostic tool for deep-sea methane hydrate reservoir discovery. PMID:23064334

  5. Earth Surface Processes, Landforms and Sediment Deposits

    Science.gov (United States)

    Bridge, John; Demicco, Robert

    Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.

  6. Pesticide sorption by low organic carbon sediments: A sceening for seven herbicides

    DEFF Research Database (Denmark)

    Madsen, Lene; Lindhardt, Bo; Rosenberg, Per

    2000-01-01

    The sorption of seven pesticides in 10 Danish aquifer sediments has been studied. These sediments all have a total organic carbon (TOC) content below 1 g kg(-1), and include carbonate-bearing and carbonate-free Quatenary sand deposits and a Cretaceous chalk aquifer. Batch experiments were carried...

  7. Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates

    Science.gov (United States)

    Paull, C.K.; Ussler, W.; Dallimore, S.R.; Blasco, S.M.; Lorenson, T.D.; Melling, H.; Medioli, B.E.; Nixon, F.M.; McLaughlin, F.A.

    2007-01-01

    The Arctic shelf is currently undergoing dramatic thermal changes caused by the continued warming associated with Holocene sea level rise. During this transgression, comparatively warm waters have flooded over cold permafrost areas of the Arctic Shelf. A thermal pulse of more than 10??C is still propagating down into the submerged sediment and may be decomposing gas hydrate as well as permafrost. A search for gas venting on the Arctic seafloor focused on pingo-like-features (PLFs) on the Beaufort Sea Shelf because they may be a direct consequence of gas hydrate decomposition at depth. Vibracores collected from eight PLFs had systematically elevated methane concentrations. ROV observations revealed streams of methane-rich gas bubbles coming from the crests of PLFs. We offer a scenario of how PLFs may be growing offshore as a result of gas pressure associated with gas hydrate decomposition. Copyright 2007 by the American Geophysical Union.

  8. Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction

    Science.gov (United States)

    Schmidt, Frauke; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe

    2014-09-01

    Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased, resulting in a higher

  9. Seismic characterization of hydrates in faulted, fine-grained sediments of Krishna-Godavari Basin: Full waveform inversion

    Digital Repository Service at National Institute of Oceanography (India)

    Jaiswal, P.; Dewangan, P.; Ramprasad, T.; Zelt, C.A.

    (P)) and attenuation (Q sub(P) sup(-1)) character of the gas hydrate stability zone (GHSZ). In this paper, we apply frequency domain full-waveform inversion (FWI) to surface-towed 2D multichannel seismic data from the Krishna-Godavari (KG) Basin, India, to image...

  10. Experimental investigation of methane release from hydrate formation in sandstone through both hydrate dissociation and CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Stevens, J.; Howard, J.J. [ConocoPhillips, Ponca City, OK (United States); Baldwin, B.A. [Green Country Petrophysics LLC, Dewey, OK (United States)

    2008-07-01

    Large amounts of natural gas trapped in hydrate reservoirs are found in Arctic regions and in deep offshore locations around the world. Natural gas production from hydrate deposits offer significant potential for future energy needs. However, research is needed in order to propose potential production schemes for natural gas hydrates. Natural gas molecules can be freed from hydrate structured cages by depressurization, by heating and by exposing the hydrate to a substance that will form a thermodynamically more stable hydrate structure. This paper provided a comparison of two approaches for releasing methane from methane hydrate in porous sandstone. The study scope covered the dissociation rate of methane hydrate in porous media through depressurization, and also referred to previous work done on producing methane from hydrates in sandstone while sequestering carbon dioxide (CO{sub 2}). The study was conducted in a laboratory setting. The paper discussed the experimental design which included the placing of a pressure- and temperature-controlled sample holder inside the bore of a magnetic resonance imager. The experimental procedures were then outlined, with reference to hydrate formation; carbon dioxide sequestration; hydrate dissociation experiments with constant volume; and hydrate dissociation experiments at constant pressure. The constant volume experiments demonstrated that in order to dissociate a large amount of hydrate, the initial depressurization had to be significantly lower than the hydrate stability pressure. 9 refs., 9 figs.

  11. A note on geochemistry of surface sediments from Krishna-Godavari basin, East Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Parthiban, G.; PrakashBabu, C.; Khadge, N.H.; Paropkari, A.L.; Kodagali, V.N.

    A closely spaced 75 surface sediments drawn from ‘Gas Hydrate` Project taken up by National Institute of Oceanography on a regional scale from the Krishna-Godavari Basin (Latitude I5 degrees 35 minutes to 16 degrees 20 minutes N; Longitude 81...

  12. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  13. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  14. Insights into Gulf of Mexico Gas Hydrate Study Sites GC955 and WR313 from New Multicomponent and High-Resolution 2D Seismic Data

    Science.gov (United States)

    Haines, S. S.; Hart, P. E.; Collett, T. S.; Shedd, W. W.; Frye, M.

    2014-12-01

    In 2013, the U.S. Geological Survey led a seismic acquisition expedition in the Gulf of Mexico, acquiring multicomponent data and high-resolution 2D multichannel seismic (MCS) data at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313). Based on previously collected logging-while-drilling (LWD) borehole data, these gas hydrate study sites are known to include high concentrations of gas hydrate within sand layers. At GC955 our new 2D data reveal at least three features that appear to be fluid-flow pathways (chimneys) responsible for gas migration and thus account for some aspects of the gas hydrate distribution observed in the LWD data. Our new data also show that the main gas hydrate target, a Pleistocene channel/levee complex, has an areal extent of approximately 5.5 square kilometers and that a volume of approximately 3 x 107 cubic meters of this body lies within the gas hydrate stability zone. Based on LWD-inferred values and reasonable assumptions for net sand, sand porosity, and gas hydrate saturation, we estimate a total equivalent gas-in-place volume of approximately 8 x 108 cubic meters for the inferred gas hydrate within the channel/levee deposits. At WR313 we are able to map the thin hydrate-bearing sand layers in considerably greater detail than that provided by previous data. We also can map the evolving and migrating channel feature that persists in this area. Together these data and the emerging results provide valuable new insights into the gas hydrate systems at these two sites.

  15. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  16. A high yield process for hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Giavarini, C.; Maccioni, F. [Univ. of Roma La Sapienza, Roma (Italy). Dept. of Chemical Engineering

    2008-07-01

    Due to the large quantities of natural gas stored in deep ocean hydrates, hydrate reservoirs are a substantial energy resource. Hydrates concentrate methane by as much as a factor of 164. As such, several natural gas transportation and storage systems using gas hydrates have been studied, and many of them are nearing practical use. In these systems, the hydrate is produced as a slurry by a spray process at approximately 7 megapascal (MPa), and then shaped into pellets. The use of a spray process, instead of a conventional stirred vessel is necessary in order to reach high hydrate concentrations in the hydrate-ice system. This paper presented a new procedure to produce a bulk of concentrated methane hydrate in a static traditional reactor at moderate pressure, controlling pressure and temperature in the interval between ice melting and the hydrate equilibrium curve. This paper discussed the experimental procedure which included formation of methane hydrate at approximately 5 MPa and 2 degrees Celsius in a reaction calorimeter at a volume of two liters. Results were also discussed. It was concluded that the procedure seemed suitable for the development of a gas hydrate storage and transport technology. It was found that the spray procedure took more time, but could be sped up and made continuous by using two vessels, one for hydrate formation and the other for hydrate concentration. The advantage was the production of a concentrated hydrate, using a simpler equipment and working at lower pressures respect to the spray process. 9 refs., 5 figs.

  17. UT-GOM2-1: Prospecting, Drilling and Sampling a Coarse-Grained Hydrate Reservoir in Green Canyon 955, the Deepwater Gulf of Mexico

    Science.gov (United States)

    Flemings, P. B.; Phillips, S. C.

    2017-12-01

    In May 2017, a science team led by the University of Texas-Austin conducted drilling and coring operations from the Helix Q4000 targeting gas hydrates in sand-rich reservoirs in the Green Canyon 955 block in the northern Gulf of Mexico. The UT-GOM2-1 expedition goals were to 1) test two configurations of pressure coring devices to assess relative performance with respect to recovery and quality of samples and 2) gather sufficient samples to allow laboratories throughout the US to investigate a range of outstanding science questions related to the origin and nature of gas hydrate-bearing sands. In the first well (UT-GOM2-1-H002), 1 of the 8 cores were recovered under pressure with 34% recovery. In the second well (UT-GOM2-1-H005), 12 of 13 cores were recovered under pressure with 77% recovery. The pressure cores were imaged and logged under pressure. Samples were degassed both shipboard and dockside to interpret hydrate concentration and gas composition. Samples for microbiological and porewater analysis were taken from the depressurized samples. 21 3 ft pressure cores were returned to the University of Texas for storage, distribution, and further analysis. Preliminary analyses document that the hydrate-bearing interval is composed of two interbedded (cm to m thickness) facies. Lithofacies II is composed of sandy silt and has trough cross bedding whereas Lithofacies III is composed of clayey silt and no bedforms are observed. Lithofacies II has low density (1.7 to 1.9 g/cc) and high velocity (3000-3250 m/s) beds whereas Lithofacies 3 has high density ( 1.9-2.1g/cc) and low velocity ( 1700 m/s). Quantitative degassing was used to determine that Lithofacies II contains high hydrate saturation (66-87%) and Lithofacies III contains moderate saturation ( 18-30%). Gas samples were analyzed periodically in each experiment and were composed of primarily methane with an average of 94 ppm ethane and detectable, but not quantifiable, propane. The core data will provide a

  18. Occurrence of Cr-bearing beryl in stream sediment from Eskişehir, NW Turkey

    Directory of Open Access Journals (Sweden)

    Hülya Erkoyun

    2016-07-01

    Full Text Available Beryl crystals are found within stream sediments transecting schists in the northeast of Eskişehir, western Anatolia. This paper studied the Eskişehir beryl crystals with optical microscopy, scanning electron microscopy (SEM-EDX, infrared spectroscopy (IR and geochemical analyses. Beryl is accompanied by garnet, glaucophane, quartz, epidote, muscovite and chlorite in the stream sediments. The crystals are euhedral emerald (green gem beryl and light bluishgreen aquamarine, with ideal sharp IR bands. Wet chemical analysis of Eskişehir beryl yielded 61.28% SiO2, 15.13% Al2O3, 12.34% BeO, 0.18% Cr2O3, 1.49% MgO, 1.69% Na2O, 0.98% Fe2O3, and 0.008% V2O3, resulting in the formula (Al1.75Cr0.01Mg0.22Fe0.08(Be2.90Si6.00(Na0.32O18. Large Ion Lithophile Elements (LILE (barium, strontium, some transition metals (cobalt, except nickel and High Field Strength Elements (HFSE (niobium, zirconium, and yttrium in stream sediments that are associated with beryl exhibited low content about metamorphic rocks. Beryl formation appears to be controlled by upthrust faults and fractures that juxtaposed them with Cr-bearing ophiolitic units and a regime of metasomatic reactions. Such beryl crystals have also been found in detrital sediments that are derived from the schists.   Presencia de berilios relacionados con Cromo en corrientes sedimentarias de Eskisehir, noroeste de Turquía   Resumen Cristales de berilo fueron encontrados en sedimentos de corrientes que atraviesan en esquistos en el noreste de Eskisehir, al oeste de Anatolia. En este artículo se presentan resultados sobre el estudio de los cristales de berilio de Eskisehir con microscopio electrónico de barrido (SEM-EDX, del inglés Scanning Electron Microscopy, espectroscopia infrarroja y análisis geoquímicos. El berilio estaba acompañado de granate, glaucofana, cuarzo, epidota, moscovita, y clorito en las corrientes sedmientarias. Los cristales son esmeraldas de formas definidas (gema verde de

  19. Artificial Hydration and Nutrition

    Science.gov (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  20. Alcohol cosurfactants in hydrate antiagglomeration.

    Science.gov (United States)

    York, J Dalton; Firoozabadi, Abbas

    2008-08-28

    Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at

  1. Hydration dependent dynamics in RNA

    International Nuclear Information System (INIS)

    Olsen, Greg L.; Bardaro, Michael F.; Echodu, Dorothy C.; Drobny, Gary P.; Varani, Gabriele

    2009-01-01

    The essential role played by local and collective motions in RNA function has led to a growing interest in the characterization of RNA dynamics. Recent investigations have revealed that even relatively simple RNAs experience complex motions over multiple time scales covering the entire ms-ps motional range. In this work, we use deuterium solid-state NMR to systematically investigate motions in HIV-1 TAR RNA as a function of hydration. We probe dynamics at three uridine residues in different structural environments ranging from helical to completely unrestrained. We observe distinct and substantial changes in 2 H solid-state relaxation times and lineshapes at each site as hydration levels increase. By comparing solid-state and solution state 13 C relaxation measurements, we establish that ns-μs motions that may be indicative of collective dynamics suddenly arise in the RNA as hydration reaches a critical point coincident with the onset of bulk hydration. Beyond that point, we observe smaller changes in relaxation rates and lineshapes in these highly hydrated solid samples, compared to the dramatic activation of motion occurring at moderate hydration

  2. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  3. A Hydrate Database: Vital to the Technical Community

    Directory of Open Access Journals (Sweden)

    D Sloan

    2007-06-01

    Full Text Available Natural gas hydrates may contain more energy than all the combined other fossil fuels, causing hydrates to be a potentially vital aspect of both energy and climate change. This article is an overview of the motivation, history, and future of hydrate data management using a CODATA vehicle to connect international hydrate databases. The basis is an introduction to the Gas Hydrate Markup Language (GHML to connect various hydrate databases. The accompanying four articles on laboratory hydrate data by Smith et al., on field hydrate data by L?wner et al., on hydrate modeling by Wang et al., and on construction of a Chinese gas hydrate system by Xiao et al. provide details of GHML in their respective areas.

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  5. Storage capacity of hydrogen in gas hydrates

    International Nuclear Information System (INIS)

    Tsuda, Takaaki; Ogata, Kyohei; Hashimoto, Shunsuke; Sugahara, Takeshi; Sato, Hiroshi; Ohgaki, Kazunari

    2010-01-01

    The storage capacity of H 2 in the THF, THT, and furan hydrates was studied by p-V-T measurements. We confirmed that the storage and release processes of H 2 in all hydrates could be performed reversibly by pressure swing without destroying of hydrate cages. H 2 absorption in both THT and furan hydrates is much faster than THF hydrate in spite of same unit-cell structure. On the other hand, the storage amounts of H 2 are coincident in the all additive hydrates and would reach at about 1.0 mass% asymptotically.

  6. The Late Neogene elephantoid-bearing faunas of Indonesia and their palaeozoogeographic implications

    NARCIS (Netherlands)

    Bergh, van den G.D.

    1999-01-01

    The stratigraphic framework of the Neogene fossil vertebrate bearing formations of the Indonesianislands Sulawesi and Flores is established and the sediments are dated by means of marinemicropalaeontological and/or palaeomagnetic methods. The results allow comparison of the faunaevolution on these

  7. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)

    2008-07-01

    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  8. Gas hydrate-related proxies inferred from multidisciplinary investigations in the India offshoe areas

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.; Ramprasad, T.; Desa, M.; Sathe, A.V.; Sethi, A.K.

    ., Potential distribution of met h ane h y drates along the Indian continental margins. Curr. Sci ., 1998, 74 , 466 ? 468. 6. Milkov, A. V., Sassen, R. and DeFreitas, D., Gas H y drate in the Gulf of Mexico. Applied Gas Hydrate R e search Program, Year... of California, Mexico. Mar. Chem ., 1983, 14 , 89 ? 106. 24. Torres, M. E. et al ., Barite fronts in cont i nental margin sediments: A new look at b arium mobilization in the zone of su l fate reduction and formation of heavy barites in diagenetic...

  9. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  10. Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments.

    Directory of Open Access Journals (Sweden)

    Matthias Egger

    Full Text Available Globally, the methane (CH4 efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands, we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2-0.8 mol m-2 yr-1 during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50-170 nmol cm-3 d-1 both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1 reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years, thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1 allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments.

  11. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6......Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...

  12. Reactivity of a tuff-bearing concrete: CL-40 CON-14

    International Nuclear Information System (INIS)

    Scheetz, B.E.; Roy, D.M.

    1989-04-01

    Samples of a tuff-bearing concrete have been altered in J-13 groundwater and in the vapor phase over deionized water at 200/degree/C. Crushed and intact discs of the concrete have been studied. The glassy tuff component of the tuff was more extensively reacted than the welded devitrified tuff. The original concrete was formulated to be expansive on curing through the formation of the calcium alumino-sulfate hydrate phase, ettringite. An x-ray diffraction examination of the altered crushed samples shows that the ettringite is no longer present. The original, poorly crystalline calcium-silicate-hydrate has recrystallized to tobermorite. In the rocking autoclave experiments with crushed material, which are the experiments expected to have the fastest reaction rates, the tobermorite has been replaced by a mineral of the gyrolite-truscottite group at the longer reaction times. The disc experiments in J-13 groundwater are characterized by prominent dissolution of the tuff aggregate. Alteration in the vapor phase experiments is primarily in the form of overgrowths on the discs. 10 refs., 27 figs., 12 tabs

  13. Hydration and nutrition knowledge in adolescent swimmers. Does water intake affect urine hydration markers after swimming?

    Directory of Open Access Journals (Sweden)

    Cesare Altavilla

    2017-12-01

    Full Text Available Little data exists regarding nutritional knowledge and hydration in adolescent swimmers. The aim of this study was to assess the level of nutrition and hydration knowledge and to describe the fluid balance in adolescent swimmers during training. A study was carried out with a cross-sectional descriptive part and a longitudinal part with repeated measurements over five swimming sessions. Eighty-six adolescent swimmers completed a questionnaire to assess their sport nutrition and hydration knowledge. Fluid balance and urine hydration markers were studied during training. Swimmers showed a limited nutrition knowledge (33.26 % ± SD 12.59 and meagre hydration knowledge (28.61 % ± SD 28.59. Females showed lower scores than male swimmers in nutrition and hydration knowledge. Based on urine specific gravity, swimmers started the training close to the euhydrated threshold (1.019 g/mL ± SD 0.008. Although urine specific gravity and urine colour were reduced after the training, there were minimal changes in body mass (-0.12 Kg ± SD 0.31. Sweat loss (2.67 g/min ± SD 3.23 and the net changes in the fluid balance (-0.22 % ± SD 0.59 were low. The poor knowledge in nutrition and hydration encountered in the swimmers can justify the development of a strategy to incorporate nutritional education programmes for this group. Body water deficit from swimming activity seems to be easily replaced with the water intake to maintain hydration. After the training, the urine of swimmers was diluted regardless of their water intake. Dilution of urine did not reflect real hydration state in swimming.

  14. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  15. Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01

    Science.gov (United States)

    Collett, Timothy S.; Boswell, Ray; Cochran, J.R.; Kumar, Pushpendra; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna

    2014-01-01

    The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna-Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna-Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins.

  16. Simulation and Characterization of Methane Hydrate Formation

    Science.gov (United States)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  17. The impact of fluid advection on gas hydrate stability: Investigations at sites of methane seepage offshore Costa Rica

    Science.gov (United States)

    Crutchley, G. J.; Klaeschen, D.; Planert, L.; Bialas, J.; Berndt, C.; Papenberg, C.; Hensen, C.; Hornbach, M. J.; Krastel, S.; Brueckmann, W.

    2014-09-01

    Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to ∼60 mW m and ∼70 mW m beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.

  18. Nondestructive natural gas hydrate recovery driven by air and carbon dioxide.

    Science.gov (United States)

    Kang, Hyery; Koh, Dong-Yeun; Lee, Huen

    2014-10-14

    Current technologies for production of natural gas hydrates (NGH), which include thermal stimulation, depressurization and inhibitor injection, have raised concerns over unintended consequences. The possibility of catastrophic slope failure and marine ecosystem damage remain serious challenges to safe NGH production. As a potential approach, this paper presents air-driven NGH recovery from permeable marine sediments induced by simultaneous mechanisms for methane liberation (NGH decomposition) and CH₄-air or CH₄-CO₂/air replacement. Air is diffused into and penetrates NGH and, on its surface, forms a boundary between the gas and solid phases. Then spontaneous melting proceeds until the chemical potentials become equal in both phases as NGH depletion continues and self-regulated CH4-air replacement occurs over an arbitrary point. We observed the existence of critical methane concentration forming the boundary between decomposition and replacement mechanisms in the NGH reservoirs. Furthermore, when CO₂ was added, we observed a very strong, stable, self-regulating process of exchange (CH₄ replaced by CO₂/air; hereafter CH₄-CO₂/air) occurring in the NGH. The proposed process will work well for most global gas hydrate reservoirs, regardless of the injection conditions or geothermal gradient.

  19. Spectral and stratigraphic mapping of hydrated minerals associated with interior layered deposits near the southern wall of Melas Chasma, Mars

    Science.gov (United States)

    Liu, Yang; Goudge, Timothy A.; Catalano, Jeffrey G.; Wang, Alian

    2018-03-01

    Orbital remote sensing data acquired from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard Mars Reconnaissance Orbiter (MRO), in conjunction with other datasets, are used to perform detailed spectral and stratigraphic analyses over a portion of south Melas Chasma, Mars. The Discrete Ordinate Radiative Transfer (DISORT) model is used to retrieve atmospherically corrected single scattering albedos from CRISM I/F data for mineral identification. A sequence of interbedded poly- and monohydrated sulfates associated with interior layered deposits (ILDs) is identified and mapped. Analyses from laboratory experiments and spectral unmixing of CRISM hyperspectral data support the hypothesis of precipitation and dehydration of multiple inputs of complex Mg-Ca-Fe-SO4-Cl brines. In this scenario, the early precipitated Mg sulfates could dehydrate into monohydrated sulfate due to catalytic effects, and the later-precipitated Mg sulfates from the late-stage "clean" brine could terminate their dehydration at mid-degree of hydration to form a polyhydrated sulfate layer due to depletion of the catalytic species (e.g., Ca, Fe, and Cl). Distinct jarosite-bearing units are identified stratigraphically above the hydrated sulfate deposits. These are hypothesized to have formed either by oxidation of a fluid containing Fe(II) and SO4, or by leaching of soluble phases from precursor intermixed jarosite-Mg sulfate units that may have formed during the later stages of deposition of the hydrated sulfate sequence. Results from stratigraphic analysis of the ILDs show that the layers have a consistent northward dip towards the interior of the Melas Chasma basin, a mean dip angle of ∼6°, and neighboring strata that are approximately parallel. These strata are interpreted as initially sub-horizontal layers of a subaqueous, sedimentary evaporite deposits that underwent post-depositional tilting from slumping into the Melas Chasma basin. The interbedded hydrated sulfate

  20. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  1. Micromechanisms of fatigue crack growth in polycarbonate polyurethane: Time dependent and hydration effects.

    Science.gov (United States)

    Ford, Audrey C; Gramling, Hannah; Li, Samuel C; Sov, Jessica V; Srinivasan, Amrita; Pruitt, Lisa A

    2018-03-01

    Polycarbonate polyurethane has cartilage-like, hygroscopic, and elastomeric properties that make it an attractive material for orthopedic joint replacement application. However, little data exists on the cyclic loading and fracture behavior of polycarbonate polyurethane. This study investigates the mechanisms of fatigue crack growth in polycarbonate polyurethane with respect to time dependent effects and conditioning. We studied two commercially available polycarbonate polyurethanes, Bionate® 75D and 80A. Tension testing was performed on specimens at variable time points after being removed from hydration and variable strain rates. Fatigue crack propagation characterized three aspects of loading. Study 1 investigated the impact of continuous loading (24h/day) versus intermittent loading (8-10h/day) allowing for relaxation overnight. Study 2 evaluated the effect of frequency and study 3 examined the impact of hydration on the fatigue crack propagation in polycarbonate polyurethane. Samples loaded intermittently failed instantaneously and prematurely upon reloading while samples loaded continuously sustained longer stable cracks. Crack growth for samples tested at 2 and 5Hz was largely planar with little crack deflection. However, samples tested at 10Hz showed high degrees of crack tip deflection and multiple crack fronts. Crack growth in hydrated samples proceeded with much greater ductile crack mouth opening displacement than dry samples. An understanding of the failure mechanisms of this polymer is important to assess the long-term structural integrity of this material for use in load-bearing orthopedic implant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Stabilization of bottom sediments from Rzeszowski Reservoir

    Directory of Open Access Journals (Sweden)

    Koś Karolina

    2015-06-01

    Full Text Available The paper presents results of stabilization of bottom sediments from Rzeszowski Reservoir. Based on the geotechnical characteristics of the tested sediments it was stated they do not fulfill all the criteria set for soils in earth embankments. Therefore, an attempt to improve their parameters was made by using two additives – cement and lime. An unconfined compressive strength, shear strength, bearing ratio and pH reaction were determined on samples after different time of curing. Based on the carried out tests it was stated that the obtained values of unconfined compressive strength of sediments stabilized with cement were relatively low and they did not fulfill the requirements set by the Polish standard, which concerns materials in road engineering. In case of lime stabilization it was stated that the tested sediments with 6% addition of the additive can be used for the bottom layers of the improved road base.

  3. Exchangeable fraction of elements in alluvial sediments under waste disposal site (Zagreb, Croatia)

    International Nuclear Information System (INIS)

    Vertacnik, A.; Barisic, D.; Musani, Lj.; Prohic, E.; Juracic, M.

    1997-01-01

    Concentrations of Ag, Ba, Cd, Ce, Cs, Co, Cr, Eu, Fe, Rb, Sc, Sr, Th, and Zn exchangeable fractions were determined in alluvial sediments at waste disposal site area in the vicinity of water-well field. Samples have been'leached with 0.5M NH 4 Cl at a sample/solution ratio of 1:20 during 24 hours without shaking. INAA of dry NH 4 Cl residues show that the concentrations of exchangeable elements determined in the most of the sediments below the wastes have natural levels. Ag, Ba and Sr are readily exchangeable; Rb, Cs and Zn have lower exchangeability, while Cd, Ce, Th, Sc, Eu, Cr, Fe and Co are rather immobile. Extremely high total and exchangeable silver concentration was found at 6.5-6.8 meters below waste in the aerated layer occasionally under the water table. Exchangeable concentrations in deeper water-bearing sediment layers are not elevated. Due to this, one can presume that the upper sediment layers act as chemical filter generally preventing the infiltration from overlying wastes into water-bearing layers. (author)

  4. Distinguishing between hydrated, partially hydrated or unhydrated clinker in hardened concrete using microscopy

    NARCIS (Netherlands)

    Valcke, S.L.A.; Rooij, M.R. de; Visser, J.H.M.; Nijland, T.G.

    2010-01-01

    Hydration of clinker particles is since long a topic of interest in both designing and optimizing cement composition and its quantity used in concrete. The interest for carefully observing and also quantifying the type or stage of clinker hydration in hardened cement paste is twofold. Firstly, the

  5. Low-δD hydration rinds in Yellowstone perlites record rapid syneruptive hydration during glacial and interglacial conditions

    Science.gov (United States)

    Bindeman, Ilya N.; Lowenstern, Jacob B.

    2016-01-01

    Hydration of silicic volcanic glass forms perlite, a dusky, porous form of altered glass characterized by abundant “onion-skin” fractures. The timing and temperature of perlite formation are enigmatic and could plausibly occur during eruption, during post-eruptive cooling, or much later at ambient temperatures. To learn more about the origin of natural perlite, and to fingerprint the hydration waters, we investigated perlitic glass from several synglacial and interglacial rhyolitic lavas and tuffs from the Yellowstone volcanic system. Perlitic cores are surrounded by a series of conchoidal cracks that separate 30- to 100-µm-thick slivers, likely formed in response to hydration-induced stress. H2O and D/H profiles confirm that most D/H exchange happens together with rapid H2O addition but some smoother D/H variations may suggest separate minor exchange by deuterium atom interdiffusion following hydration. The hydrated rinds (2–3 wt% H2O) transition rapidly (within 30 µm, or by 1 wt% H2O per 10 µm) to unhydrated glass cores. This is consistent with quenched “hydration fronts” where H2O diffusion coefficients are strongly dependent on H2O concentrations. The chemical, δ18O, and δD systematics of bulk glass records last equilibrium between ~110 and 60 °C without chemical exchange but with some δ18O exchange. Similarly, the δ18O of water extracted from glass by rapid heating suggests that water was added to the glass during cooling at higher rates of diffusion at 60–110 °C temperatures, compared with values expected from extrapolation of high-temperature (>400 °C) experimental data. The thick hydration rinds in perlites, measuring hundreds of microns, preserve the original D/H values of hydrating water as a recorder of paleoclimate conditions. Measured δD values in perlitic lavas are −150 to −191 or 20–40 ‰ lower than glass hydrated by modern Yellowstone waters. This suggests that Yellowstone perlites record the low-δD signature

  6. The USANS technique for the investigation of structure from hydrated gels to porous rock

    International Nuclear Information System (INIS)

    Crompton, Kylie; Forsythe, John; Bertram, Willem; Knott, R.B.; Barker, John

    2005-01-01

    Full text: The Ultra Small Angle Neutron Scattering (USANS) technique extends the range of the Small Angle Neutron Scattering (SANS) technique into the tens of micron size range. This is extremely useful for many systems particularly those where sample preparation for optical or electron microscopy can cause major changes to the microstructure under investigation. Two examples will be presented to highlight different aspects of the technique. Firstly, the structure was investigated of a full hydrated polymer scaffold for stem cells constructed from chitosan. Stem cells interact with the scaffold on the micron scale however information on the nanoscale (i e individual chitosan polymer chains) is also required in order the tailor the scaffold structure. The soft, hydrated gel is unsuitable for optical or electron microscopy. Secondly, the structure was investigated of natural oil-bearing and synthetic rock. The scattering data from different thickness of rock was analysed using a Fourier Transform method to remove multiple scattering effects and to simulate scattering from a thin rock. In this case bulk properties such as porosity are of interest. (authors)

  7. THERMODYNAMIC MODEL OF GAS HYDRATES

    OpenAIRE

    Недоступ, В. И.; Недоступ, О. В.

    2015-01-01

    The interest to gas hydrates grows last years. Therefore working out of reliable settlement-theoretical methods of definition of their properties is necessary. The thermodynamic model of gas hydrates in which the central place occupies a behaviour of guest molecule in cell is described. The equations of interaction of molecule hydrate formative gas with cell are received, and also an enthalpy and energy of output of molecule from a cell are determined. The equation for calculation of thermody...

  8. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  9. Indian National Gas Hydrate Program Expedition 01 report

    Science.gov (United States)

    Collett, Timothy S.; Riedel, M.; Boswell, R.; Presley, J.; Kumar, P.; Sathe, A.; Sethi, A.; Lall, M.V.; ,

    2015-01-01

    Gas hydrate is a naturally occurring “ice-like” combination of natural gas and water that has the potential to serve as an immense resource of natural gas from the world’s oceans and polar regions. However, gas-hydrate recovery is both a scientific and a technical challenge and much remains to be learned about the geologic, engineering, and economic factors controlling the ultimate energy resource potential of gas hydrate. The amount of natural gas contained in the world’s gas-hydrate accumulations is enormous, but these estimates are speculative and range over three orders of magnitude from about 2,800 to 8,000,000 trillion cubic meters of gas. By comparison, conventional natural gas accumulations (reserves and undiscovered, technically recoverable resources) for the world are estimated at approximately 440 trillion cubic meters. Gas recovery from gas hydrate is hindered because the gas is in a solid form and because gas hydrate commonly occurs in remote Arctic and deep marine environments. Proposed methods of gas recovery from gas hydrate generally deal with disassociating or “melting” in situ gas hydrate by heating the reservoir beyond the temperature of gas-hydrate formation, or decreasing the reservoir pressure below hydrate equilibrium. The pace of energy-related gas hydrate assessment projects has accelerated over the past several years.

  10. Anti-Agglomerator of Tetra-n-Butyl Ammonium Bromide Hydrate and Its Effect on Hydrate-Based CO2 Capture

    Directory of Open Access Journals (Sweden)

    Rong Li

    2018-02-01

    Full Text Available Tetra-n-butyl ammonium bromide (TBAB was widely used in the research fields of cold storage and CO2 hydrate separation due to its high phase change latent heat and thermodynamic promotion for hydrate formation. Agglomeration always occurred in the process of TBAB hydrate generation, which led to the blockage in the pipeline and the separation apparatus. In this work, we screened out a kind of anti-agglomerant that can effectively solve the problem of TBAB hydrate agglomeration. The anti-agglomerant (AA is composed of 90% cocamidopropyl dimethylamine and 10% glycerol, which can keep TBAB hydrate of 19.3–29.0 wt. % in a stable state of slurry over 72 h. The microscopic observation of the morphology of the TBAB hydrate particles showed that the addition of AA can greatly reduce the size of the TBAB hydrate particles. CO2 gas separation experiments found that the addition of AA led to great improvement on gas storage capacity, CO2 split fraction and separation factor, due to the increasing of contact area between gas phase and hydrate particles. The CO2 split fraction and separation factor with AA addition reached up to 70.3% and 42.8%, respectively.

  11. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  12. Detection of gas-charged sediments and gas hydrate horizons along the western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Veerayya, M.; Karisiddaiah, S.M.; Vora, K.H.; Wagle, B.G.; Almeida, F.

    in the inner shelf. These maskings suggest the presence of gas-charged sediments. Further seaward on the outer shelf-middle slope, pockmarks and prominent plumes in the overlying water column indicate a significant seepage of gas from the slope sediments...

  13. A new combined nanoSIMS and continuous-flow IRMS approach to measure hydrogen isotopes from water in hydrated rhyolitic glass

    Science.gov (United States)

    Gatti, E.; Kitchen, N.; Newman, S.; Guan, Y.; Westgate, J.; Pearce, N. J. G.; Nikolic, D.; Eiler, J. M.

    2016-12-01

    The hydrogen-isotope value of water of hydration (or secondary water) preserved in rhyolitic glasses may provide significant insights regarding the climate at the time of their deposition and the impact of super-eruptions upon the environment. However, the ability of the glass to retain the environmental D/H isotopic signal after hydration needs to be tested, since modifications to the D/H systematics may result from the continuous exchange of D/H with the atmosphere or condensed water after initial glass hydration. Ideal geological archives to test whether the glass retains its original hydrogen signal are sediments in natural waters and ice cores, which preserve tephra in constrained horizons that can be independently isotopically characterised. However, tephra in marine and fresh water sediments and ice cores are often present in concentrations of the order of 1000 grains/cm3 (IRMS methods require much more material ( 100-500 mg) and therefore cannot be applied. We present here a new integrated nanoSIMS and continuous flow IRMS approach to understand how water is distributed within single glass grains (diffusion profiles), quantify the time of hydration of young (Holocene) and old (Miocene) already well-characterised rhyolitic glasses, and measure the D/H ratio of the hydration water on single grains and bulk material consisting of only approximately 0.1-1 mg. The IRMS method measures the absolute abundance of hydrogen released from the sample by continuous-flow mass spectrometry. Current data indicates that the method can accurately measure a hydrogen signal from a rock sample containing at least 400 nanomoles of H2, corresponding to 70 µg of water, which translates to 1 mg of hydrous glass (>3 wt%) or 15 mg of dry ( 0.5 wt%) obsidian chips. The method can be improved by reducing the blank to IRMS method will be compared to sub-micron mapping of single-grains using a high-resolution ion microprobe, the CAMECA NanoSIMS 50L, in the Microanalysis Center for

  14. Influence of gas hydrates crystals or ice crystals on the permeability of a porous medium; Influence de cristaux d'hydrates de gaz ou de glace sur la permeabilite d'un milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Bonnefoy, O

    2005-03-15

    The first part is a bibliographic study. We study the conditions for thermodynamic equilibrium of the hydrates as a bulk medium and the composition of the liquid and solid phases. We then describe the basics of fluid dynamics in a porous medium. Eventually, we merge the two approaches and study the influence of the porous medium on the hydrate stability. An off-shore hydrate field (Blake Ridge) and an on-shore field (Mallik) are precisely described. The latter will be used as a reference case for subsequent numerical simulations. The second part is devoted to the experiments. Their goal is to measure the permeability of a sediment containing crystals. To get closer to natural geologic conditions, crystals are synthesized in absence of free gas. It turns out that hydrates form in a very heterogeneous way in the porous medium, which makes the measurements non representative. We believe that this result has a general character and that, at the laboratory time-scale, it is difficult, to say the least to achieve a uniform distribution of gas hydrates grown from dissolved gas. To circumvent this difficulty, we show, with a theoretical approach, that ice crystals behave much the same way as the hydrate crystals, concerning the Van der Waals forces that govern the agglomeration. This allows us to calculate the Hamaker constant of the hydrates. The second series of experiments focuses on the permeability of a non consolidated porous medium under mechanical stress, where the pores are filled with ice crystals. Two silica beads populations are used to form a porous medium: 3 mm and 0.2 mm. With the large grains, results show two thresholds: for saturations below the lower threshold, the presence of crystals does not modify the permeability. For saturations above the upper threshold, the permeability vanishes almost completely (percolation phenomenon). Between these two limits, the permeability decreases exponentially with the saturation. With the fine grains, the permeability

  15. FY1995 molecular control technology for mining of methane-gas-hydrate; 1995 nendo methane hydrate no bunshi seigyo mining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The objectives of the investigation are as follows: 1) developing a method to control formation/dissociation of methane-gas-hydrate, 2) developing a technology to displace methane gas by CO{sub 2} in methane-gas-hydrate deposit, 3) developing a technology to produce methane gas from the deposit efficiently. The final purpose of the project is to create new mining industry that solves both the problems of energy and global environment. 1) Clustering of water molecules is found to play the key role in the methane gas hydrate formation. 2) Equilibrium properties and kinetics of gas hydrates formation and dissociation in bulk-scale gas-hydrate are clarified in the practical environmental conditions. 3) Particle size of hydrate deposit influences the formation and dissociation of bulk-scale gas-hydrate crystal. 4) Mass transfer between gas and liquid phase in turbulent bubbly flow is a function of bubble diameter. The mass transfer depends on interfacial dynamics. (NEDO)

  16. Changes in structure and preferential cage occupancy of ethane hydrate and ethane-methane mixed gas hydrate under high pressure

    International Nuclear Information System (INIS)

    Hirai, H; Takahara, N; Kawamura, T; Yamamoto, Y; Yagi, T

    2010-01-01

    Structural changes and preferential cage occupancies were examined for ethane hydrate and ethane-methane mixed gas hydrates with five compositions in a pressure range of 0.2 to 2.8 GPa at room temperature. X-ray diffractometry and Raman spectroscopy showed the following structural changes. The initial structure, structure I (sI), of ethane hydrate was retained up to 2.1 GPa without any structural change. For the mixed hydrates, sI was widely distributed throughout the region examined except for the methane-rich and lower pressure regions, where sII and sH appeared. Above 2.1 GPa ethane hydrate and all of the mixed hydrates decomposed into ice VI and ethane fluid or methane-ethane fluid, respectively. The Raman study revealed that occupation of the small cages by ethane molecules occurred above 0.1 GPa in ethane hydrate and continued up to decomposition at 2.1 GPa, although it was thought that ethane molecules were contained only in the large cage.

  17. Geochemical and geological constraints on the composition of marine sediment pore fluid: Possible link to gas hydrate deposits

    Digital Repository Service at National Institute of Oceanography (India)

    Mazumdar, A.; Joao, H.M.; Peketi, A.; Dewangan, P.; Kocherla, M.; Joshi, R.K.; Ramprasad, T.

    Pore water sulfate consumption in marine sediments is controlled by microbially driven sulfate reduction via organo-clastic and methane oxidation processes. In this work, we present sediment pore fluid compositions of 10 long sediment cores and high...

  18. Investigation of the Acoustics of Marine Sediments Using an Impedance Tube and Continued Investigation of the Acoustics of Marine Sediments Using Impedance Tube and Acoustic Resonator Techniques

    Science.gov (United States)

    2010-08-02

    exploit phenomena associated with the seagrass tissue gas content, or the free gas that is resirated by seagrass during photosynthesis . A secondary...sediments and seagrass . The work was initially focused on laboratory measurements, but expanded to include work during the large-scale, ONR-sponsored at-sea...attenuation, gas-bearing sediments, seagrass 16. SECURITY CLASSIFICATION OF: a. REPORT U b. ABSTRACT U c. THIS PAGE U 17. LIMITATION OF

  19. Approaching hydrate and free gas distribution at the SUGAR-Site location in the Danube Delta

    Science.gov (United States)

    Bialas, Joerg; Dannowski, Anke; Zander, Timo; Klaeschen, Dirk; Klaucke, Ingo

    2017-04-01

    Gas hydrates did receive a lot of attention over the last decades when investigating their potential to serve as a possible source for Methane production. Among other world-wide programs the German SUGAR project sets out to investigate the entire chain from exploitation to production in Europe. Therefore research in the scope of the SUGAR project sets out to investigate a site in European EEZ for the detailed studies of hydrate and gas distribution in a permeable sediment matrix. Among others one aim of the project is to provide in situ samples of natural methane hydrate for further investigations by MEBO drilling. The Danube paleo-delta with its ancient canyon and levee systems was chosen as a possible candidate for hydrate formation within the available drilling range of 200 m below seafloor. In order to decide on the best drilling location cruise MSM34 (Bialas et al., 2014) of the German RV MARIA S MERIAN set out to acquire geophysical, geological and geochemical datasets for assessment of the hydrate content within the Danube paleo-delta, Black Sea. The Black Sea is well known for a significant gas content in the sedimentary column. Reports on observations of bottom simulating reflectors (BSR) by Popescu et al. (2007) and others indicate that free gas and hydrate occurrence can be expected within the ancient passive channel levee systems. A variety of inverted reflection events within the gas hydrate stability zone (GHSZ) were observed within the drilling range of MEBO and chosen for further investigation. Here we report on combined seismic investigations of high-resolution 2D & 3D multichannel seismic (MCS) acquisition accompanied by four component Ocean-Bottom-Seismometer (OBS) observations. P- and converted S-wave arrivals within the OBS datasets were analysed to provide overall velocity depth models. Due to the limited length of profiles the majority of OBS events are caused by near vertical reflections. While P-wave events have a significant lateral

  20. Chemical and isotopic signature of bulk organic matter and hydrocarbon biomarkers within mid-slope accretionary sediments of the northern Cascadia margin gas hydrate system

    Science.gov (United States)

    Kaneko, Masanori; Shingai, Hiroshi; Pohlman, John W.; Naraoka, Hiroshi

    2010-01-01

    The chemical and isotopic compositions of sedimentary organic matter (SOM) from two mid-slope sites of the northern Cascadia margin were investigated during Integrated Ocean Drilling Program (IODP) Expedition 311 to elucidate the organic matter origins and identify potential microbial contributions to SOM. Gas hydrate is present at both locations (IODP Sites U1327 and U1328), with distinct patterns of near-seafloor structural accumulations at the cold seep Site U1328 and deeper stratigraphic accumulations at the slope-basin Site U1327. Source characterization and evidence that some components of the organic matter have been diagenetically altered are determined from the concentrations and isotopic compositions of hydrocarbon biomarkers, total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS). The carbon isotopic compositions of TOC (δ13CTOC = −26 to −22‰) and long-chain n-alkanes (C27, C29 and C31, δ13C = −34 to − 29‰) suggest the organic matter at both sites is a mixture of 1) terrestrial plants that employ the C3 photosynthetic pathway and 2) marine algae. In contrast, the δ15NTN values of the bulk sediment (+ 4 to + 8‰) are consistent with a predominantly marine source, but these values most likely have been modified during microbial organic matter degradation. The δ13C values of archaeal biomarker pentamethylicosane (PMI) (− 46.4‰) and bacterial-sourced hopenes, diploptene and hop-21-ene (− 40.9 to − 34.7‰) indicate a partial contribution from methane carbon or a chemoautotrophic pathway. Our multi-isotope and biomarker-based conclusions are consistent with previous studies, based only on the elemental composition of bulk sediments, that suggested a mixed marine-terrestrial organic matter origin for these mid-slope sites of the northern Cascadia margin.

  1. Natural gas hydrates. Experimental techniques and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yuguang; Liu, Changling (eds.) [Qingdao Institute of Marine Geology (China). Gas Hydrate Laboratory

    2013-07-01

    Focuses on gas hydrate experiment in laboratory. Intends to provide practical significant parameters for gas hydrate exploration and exploitation in the oceanic and permafrost environments. Consists of different themes that present up-to-date information on hydrate experiments. ''Natural Gas Hydrates: Experimental Techniques and Their Applications'' attempts to broadly integrate the most recent knowledge in the fields of hydrate experimental techniques in the laboratory. The book examines various experimental techniques in order to provide useful parameters for gas hydrate exploration and exploitation. It provides experimental techniques for gas hydrates, including the detection techniques, the thermo-physical properties, permeability and mechanical properties, geochemical abnormalities, stability and dissociation kinetics, exploitation conditions, as well as modern measurement technologies etc.

  2. Rheological properties of hydrate suspensions in asphaltenic crude oils; Proprietes rheologiques de suspensions d'hydrate dans des bruts asphalteniques

    Energy Technology Data Exchange (ETDEWEB)

    Marques de Toledo Camargo, R.

    2001-03-01

    The development of offshore oil exploitation under increasing water depths has forced oil companies to increase their understanding of gas hydrate formation and transportation in multiphase flow lines in which a liquid hydrocarbon phase is present. This work deals with the flow behaviour of hydrate suspensions in which a liquid hydrocarbon is the continuous phase. Three different liquid hydrocarbons are used: an asphaltenic crude oil, a condensate completely free of asphaltenes and a mixture between the asphaltenic oil and heptane. The rheological characterisation of hydrate suspensions is the main tool employed. Two original experimental devices are used: a PVT cell adapted to operate as a Couette type rheometer and a semi-industrial flow loop. Hydrate suspensions using the asphaltenic oil showed shear-thinning behaviour and thixotropy. This behaviour is typically found in flocculated systems, in which the particles attract each other forming flocs of aggregated particles at low shear rates. The suspensions using the condensate showed Newtonian behaviour. Their relative viscosities were high, which suggests that an aggregation process between hydrate particles takes. place during hydrate formation. Finally, hydrate suspensions using the mixture asphaltenic oil-heptane showed shear-thinning behaviour, thixotropy and high relative viscosity. From these results it can be inferred that, after the achievement of the hydrate formation process, the attractive forces between hydrate particles are weak. making unlikely pipeline obstruction by an aggregation process. Nevertheless, during the hydrate formation, these attractive forces can be sufficiently high. It seems that the hydrate surface wettability is an important parameter in this phenomena. (author)

  3. Experimental Determination of Refractive Index of Gas Hydrates

    DEFF Research Database (Denmark)

    Bylov, Martin; Rasmussen, Peter

    1997-01-01

    . For methane hydrate (structure I) the refractive index was found to be 1.346 and for natural gas hydrate (structure II) it was found to be 1.350. The measurements further suggest that the gas hydrate growth rate increases if the water has formed hydrates before. The induction time, on the other hand, seems......The refractive indexes of methane hydrate and natural gas hydrate have been experimentally determined. The refractive indexes were determined in an indirect manner making use of the fact that two non-absorbing materials will have the same refractive index if they cannot be distinguished visually...

  4. Time lapse survey plan on the first offshore methane hydrate production test in 2013 around the eastern Nankai Trough area by multi-component OBC seismic tool

    Science.gov (United States)

    Inamori, T.; Hayashi, T.; Asakawa, E.; Takahashi, H.; Saeki, T.

    2011-12-01

    We are planning to conduct the multi-component ocean bottom cable (hereafter OBC) seismic survey to monitor the methane hydrate dissociation zone at the 1st offshore methane hydrate production test site in the eastern Nankai Trough, Japan, in 2013. We conducted the first OBC survey in the methane hydrate concentrated zone around the eastern Nankai Trough area in 2006 by RSCS which we developed. We obtained to the good image of methane hydrate bearing layer by P-P section as similar as the conventional surface seismic survey. However, we could not obtain the good image from P-S section compared with P-P section. On the other hand, we studied the sonic velocity distribution at the Mallik 2nd production test before and after in 2007, by the sonic tool data. We could clearly delineate the decrease of S-wave velocity, however, we could not detect the decrease of P-wave velocity because of the presence of the dissociated methane gas from methane hydrate. From these reason we guess the S-wave data is more proper to delineate the condition of the methane hydrate zone at the methane hydrate production tests than P-wave data. We are now developing the new OBC system, which we call Deep-sea Seismic System (hereafter DSS). The sensor of the DSS will install three accelerometers and one hydrophone. A feasibility study to detect the methane hydrate dissociation with the DSS was carried out and we found that the methane hydrate dissociation could be detected with the DSS depending on the zone of the dissociation. And the baseline survey will be held at the 1st offshore methane hydrate production test site in summer 2012. Two monitoring surveys are planned after the methane hydrate production test in 2013. We believe that we will get the good images to delineate the methane hydrate dissociated zone from this time lapse survey. The Authors would like to thank METI, MH21 consortium and JOGMEC for permissions to publish this paper.

  5. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  6. Authigenic carbonates in the sediments of Goa offshore basin, western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Kocherla, M.

    in all the studied locations. The methane con- centration varied from 0.45–5.25 nM (top) to 11.25 nM (middle) and 0.64–13.23 nM (bottom). The CaCO 3 content of the sediments ranged from 33.6% to 69.9% and TOC varied from 0.21% to 0.86%. The porosity.... G. and Almeida, F., Detection of gas charged sediments and gas hydrate horizons in high resolution seismic profiles from the western con- tinental margin of India. Spec. Publ. Geol. Soc. Lond., 1998, 137, 239–253. 15. Satyavani, N., Thankur, N. K...

  7. Raman studies of methane-ethane hydrate metastability.

    Science.gov (United States)

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.

  8. Heat flow pattern in the gas hydrate drilling areas of northern south china sea and the implication for further study

    Science.gov (United States)

    Wang, Lifeng; Sha, Zhibin

    2015-04-01

    Numerous seismic reflection profiles have been acquired by China Geological Survey (CGS) in the Northern Slope of South China Sea (SCS), clearly indicating widespread occurrence of free gases and/or gas hydrates in the sediments. In the year 2007 and 2013 respectively the gas hydrate samples are successfully recovered during two offshore drilling exploratory programs. Results of geothermal data during previous field studies along the north continental margin, however, show that the gas hydrate sites are associated with high geothermal background in contrast to the other offshore ones where the gas hydrates are more likely to be found in the low geothermal regional backgrounds. There is a common interesting heat flow pattern during the two drilling expeditions that the gas hydrate occurrences coincide with the presences of comparatively low geothermal anomalies against the high thermal background which is mainly caused by concentrated fluid upward movements into the stability zone (GHSZ) detected by the surface heat flow measurements over the studied fields. The key point for understanding the coupling between the presences of the gas hydrates and heat flow pattern at regional scale is to know the cause of high heat flows and the origin of forming gases at depth. We propose that these high heat flows are attributed to elevated shallow fault-fissure system due to the tectonic activities. A remarkable series of vertical faults and fissures are common on the upper continental slope and the forming gases are thought to have migrated with hot advective fluid flows towards seafloor mainly via fault-fissure system from underlying source rocks which are deeper levels than those of the GHSZ. The present study is based on an extensive dataset on hydrate distribution and associated temperature field measurements collected in the vicinity of studied areas during a series of field expeditions organized within the framework of national widely collaborative projects. Those

  9. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Greg [Consortium for Ocean Leadership, Washington, DC (United States)

    2014-02-01

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report: Historical Methane Hydrate Project Review Report; Methane Hydrate Workshop Report; Topical Report: Marine Methane Hydrate Field Research Plan; and Final Scientific/Technical Report.

  10. Effects of sex, age, body mass, and capturing method on hematologic values of brown bears in Croatia.

    Science.gov (United States)

    Kusak, Josip; Rafaj, Renata Barić; Zvorc, Zdravko; Huber, Djuro; Forsek, Jadranka; Bedrica, Ljiljana; Mrljak, Vladimir

    2005-10-01

    Effects of various intrinsic and extrinsic factors on 17 hematologic values from 56 brown bears (Ursus arctos) sampled in Croatia from 1981 to 2005 were evaluated. Differences between female and male bears were detected for number of erythrocytes, sedimentation rate after 30 min, and number of leukocytes and segmented neutrophils. Significant differences between free-living vs. captive and snared vs. not snared bears were detected for the same three parameters: leukocytes, segmented neutrophils, and eosinophils. It was concluded that the physical exertion of bears snared by leg, rather than their free-living status, influenced differences of results among these groups. The obtained mean values are useful reference values for the species.

  11. Conditions of uranium-bearing calcite formation in ore-enclosing sediments of the Semizbaj deposit (Kazakhstan)

    International Nuclear Information System (INIS)

    Kondrat'eva, I.A.; Maksimova, I.G.; Dojnikova, O.I.

    1995-01-01

    Consideration is given to results of investigation into uranium-bearing calcite, forming the cement of gravelly-sandy rocks of the Semizbaj uranium deposit. Core sampling in prospecting boreholes were used to establish geological conditions, place and time of uranium-bearing calcite formation. Calcite was investigated by optical, electron-microscope and radiographic methods. It is shown that uranium in calcite doesn't form its own mineral phase and exists in scattered state. Uranium in calcite-bearing minerals is present in isomorphic form. Uranium content in calcite was equal to 0.009-0.15 %. It is proposed that mineralization, formed in sedimentary rocks by processes of ground-stratum oxidation, is the source of uranium, enriching calcite. refs., 5 figs., 2 tabs

  12. Morphology studies on gas hydrates interacting with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J.; Servio, P. [McGill Univ., Montreal, PQ (Canada). Dept. of Chemical Engineering

    2008-07-01

    Clathrate hydrates or gas hydrates are non-stoichiometric, crystalline compounds that form when small molecules come in contact with water at certain temperatures and pressures. Natural gas hydrates are found in the ocean bottom and in permafrost regions. It is thought that the amount of energy stored in natural hydrates is at least twice that of all other fossil fuels combined. In addition, trapping carbon dioxide as a hydrate in the bottom of the ocean has been suggested as an alternative means of reducing atmospheric carbon dioxide levels. Naturally occurring clathrates are found in close interaction with fine grained particles of very small mean pore diameters. Even though an increasing amount of hydrate equilibrium data for small diameter porous media has become available, the morphological behavior of hydrates subject to such conditions is yet to be explored. This paper presented a study that visually examined hydrate formation and decomposition of gas hydrates while interacting with fine grains of silica gel. The study showed still frames from high-resolution video recordings for hydrate formation and decomposition. The paper discussed the experiment including the apparatus as well as the results of hydrate formation and hydrate dissociation. This study enabled for the first time to observe clathrate morphology while hydrates interacted closely with fine grain particles with small mean pore diameters. 9 refs., 8 figs.

  13. Forecasting Ocean Acidification in the coastal waters of the Pacific Northwest

    Science.gov (United States)

    Siedlecki, S. A.; Alin, S. R.; Feely, R. A.; Hermann, A. J.; Bednarsek, N.; Nguyen, T.; Officer, S.; Kaplan, I.; Bond, N.; Newton, J.; Fisher, J. L.; Morgan, C.; Saenger, C.

    2016-12-01

    The co-occurrence of submarine landslides and hydrate-bearing sediment suggests that hydrates may play a role in landslide triggering and/or the mobility and dynamic characteristics of the submarine landslide. In turn, the removal of large sections of seafloor perturbs the hydrate stability field by removing overburden pressure and disturbing the temperature field. These potential hydrate-landslide feedbacks are not well understood. Here we combine three-dimensional seismic and petrophysical logs to characterize the deposits of submarine landslides that failed from hydrate-bearing sediments in the Orca Basin in the northern Gulf of Mexico. The Orca Basin contains a regionally mappable bottom simulating reflector, hydrate saturations within sands and muds, as well as numerous landslides. In addition, the Orca Basin features a well-known 123 km2 anoxic hypersaline brine pool that is actively being fed by outcropping salt. Lying at the bottom of the brine pool are deposits of submarine landslides. Slope instability in the Orca Basin is likely associated with near-seafloor salt tectonics. The most prominent landslide scar observable on the seafloor has a correlative deposit that now lies at the bottom of the brine pool 11.6 km away. The headwall is amphitheater-shaped with an average height of 80 meters and with only a minor amount of rubble remaining near the headwall. A total of 8.7 km3 of material was removed and deposited between the lower slopes of the basin and the base of the brine pool. Around the perimeter of the landslide headwall, two industry wells were drilled and well logs show elevated resistivity that are likely caused by gas hydrate. The slide deposits have a chaotic seismic facies with large entrained blocks and the headwall area does not retain much original material, which together suggests a relatively mobile style of landslide and therefore may have generated a wave upon impacting the brine pool. Such a slide-induced wave may have sloshed

  14. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Science.gov (United States)

    Braun, Doris E.; Griesser, Ulrich J.

    2018-01-01

    The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS) 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations). Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules) and (form III) differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products. PMID:29520359

  15. Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate

    Science.gov (United States)

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2009-01-01

    We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.

  16. Gas hydrate exploration activities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Keun-Pil Park, K.P. [Korea Inst. of Geoscience and Mineral Resources, Gas Hydrate R and D Organization, Ministry of Knowledge Economy, Yuseong-gu, Daejeon (Korea, Republic of)

    2008-07-01

    Korea's first gas hydrate research project was launched in 1996 to study the gas hydrate potential in the Ulleung Basin of the East Sea. It involved a series of laboratory experiments followed by a preliminary offshore seismic survey and regional reconnaissance geophysical and marine geological surveys. The bottom simulating reflector (BSR) was interpreted to show wide area distribution in the southern part of the Ulleung Basin, and its average burial depth was 187 m below the sea floor in the East Sea. A three-phase 10-year National Gas Hydrate Development Program was launched in 2004 to estimate the potential reserves in the East Sea. It will involve drilling to identify natural gas hydrates and to determine the most optimized production methods. Drilling sites were proposed based on five indicators that imply gas hydrate occurrence, notably BSR, gas vent, enhanced seismic reflection, acoustic blanking and gas seeping structure. The UBGH-X-01 gas hydrate expedition in the East Sea Ulleung Basin involved 5 logging while drilling (LWD) surveys at three high priority sites. One wire line logging was implemented at the site of the UBGH09. A total 334 m of non-pressurized conventional cores and 16 pressure cores were obtained in late 2007. The UBGH-X-01 was successfully completed, recovering many natural samples of gas hydrate from 3 coring sites in the East Sea. 7 refs., 12 figs.

  17. Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    Science.gov (United States)

    Graw, Michael F.; D'Angelo, Grace; Borchers, Matthew; Thurber, Andrew R.; Johnson, Joel E.; Zhang, Chuanlun; Liu, Haodong; Colwell, Frederick S.

    2018-01-01

    The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics. PMID:29696012

  18. Methane Hydrate Field Program. Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Tim [U.S. Geological Survey, Boulder, CO (United States); Bahk, Jang-Jun [Korea Inst. of Geoscience and Mineral Resources, Daejeon (Korea); Frye, Matt [U.S. Bureau of Ocean Energy Management, Sterling, VA (United States); Goldberg, Dave [Lamont-Doherty Earth Observatory, Palisades, NY (United States); Husebo, Jarle [Statoil ASA, Stavenger (Norway); Koh, Carolyn [Colorado School of Mines, Golden, CO (United States); Malone, Mitch [Texas A & M Univ., College Station, TX (United States); Shipp, Craig [Shell International Exploration and Production Inc., Anchorage, AK (United States); Torres, Marta [Oregon State Univ., Corvallis, OR (United States); Myers, Greg [Consortium For Ocean Leadership Inc., Washington, DC (United States); Divins, David [Consortium For Ocean Leadership Inc., Washington, DC (United States); Morell, Margo [Consortium For Ocean Leadership Inc., Washington, DC (United States)

    2013-12-31

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these efforts have been episodic in nature. To further our understanding, these efforts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and offers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  19. 3D Finite Element Modeling for Possible Creeping Behavior of Gas Hydrate-related Slipstream Submarine Slide, offshore Vancouver Island, Canada

    Science.gov (United States)

    LONG, S.; He, T.; Lan, K.; Spence, G.; Yelisetti, S.

    2017-12-01

    Natural gas hydrate-related submarine landslides have been identified on worldwide continental slope. Being a potential risk for marine environment and engineering projects, it has been a hot topic of hydrate research in recent decades. The study target is Slipstream submarine landslide, one of the slope failures on the frontal ridges of the Northern Cascadia accretionary margin, off Vancouver Island, Canada. The previous studies of P- & S-wave velocity structure based on OBS (Ocean Bottom Seismometer) data of SeaJade (Seafloor Earthquake Array - Japan Canada Cascadia Experiment) project indicated that there are two high concentration gas-hydrate layers within the ridge, one is at a depth of 100 mbsf (meter beneath the seafloor) with anomalous high P-wave velocities and the other is just above the prominent BSR (bottom-simulating reflector) at a depth of 265-275 mbsf. In this study we investigated the possible creeping behavior of gas hydrate layer to examine the critical instability of the ridge slope using the finite element method for self weight and additional stress (e.g., mega earthquake) conditions. The elastic and elasticoplasticity moduli of gas hydrate layer were obtained from laboratory measurements for different uniaxial pressure tests, which indicated that the sediments behave elastically for uniaxial pressures below 6 MPa, but elasticoplastically between 6-6.77 MPa. The modeled shear stress distribution indicated that the current sliding surface is more likely connected with the shallow high-velocity gas hydrate layer and sliding process related with gas hydrate starts from the toe of the slope and then progressively retreats to the place of current headwall, in a series of triangular blocks or wedges. Since the study area is in the earthquake belt, the large seismic acceleration will greatly affect the stress field and pore pressure distribution within the ridge, and the landslide is going to happen and supposedly at the shallow high-velocity gas

  20. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  1. Effects of Nanosilica on Early Age Stages of Cement Hydration

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani

    2017-01-01

    Full Text Available Effects of nanosilica on cement hydration have been broadly investigated in the literature and early age cement hydration, as a whole, has been mainly considered, disregarding the substages of the hydration. The hydration of cement is characterized by different substages and nanosilica effect on the hydration could be a result of diverse, even contradictory, behavior of nanosilica in individual stages of the hydration. In this study, effects of nanosilica on different substages of cement hydration are investigated. Isothermal calorimetry results show that at early ages (initial 72 hours the effects of nanosilica depend on the phenomenon by which the hydration is governed: when the hydration is chemically controlled, that is, during initial reaction, dormant period, and acceleratory period, the hydration rate is accelerated by adding nanosilica; when the hydration is governed by diffusion process, that is, during postacceleratory period, the hydration rate is decelerated by adding nanosilica. The Thermal Gravimetric Analysis on the samples at the hardened state (after 28 days of curing reveals that, after adding nanosilica, the hydration degree slightly increased compared to the plain paste.

  2. Lectures held at the congress on ``Gas hydrates: problem substance / resource``, organised by the GDMK Division for ``Exploration and Extraction`` and the Institute for Mineral Oil and Natural Gas Research, in Clausthal-Zellerfeld (Harz) on 6/7 November 1997. Author`s manuscripts; Vortraege der Veranstaltung ``Gashydrate: Problemstoff/Resource`` des GDMK-Fachbereichs `Aufsuchung und Gewinnung` und dem Institut fuer Erdoel- und Erdgasforschung am 06. und 07. November 1997 in Clausthal-Zellerfeld (Harz). Autorenmanuskripte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The following topics are dealt with in detail: the chemical and physical properties of gas hydrates as derivable from their phase behaviour; the significance and occurrence of gas hydrates in offshore areas; gas hydrates and permafrost in continental northern West Siberia; information on HYACE, a research project of the European Union on test drilling for gas hydrates in offshore areas; sediment-mechanical criteria of gas hydrate formation in deep-sea sediments; gas hydrate formation in gas cavern storages; the use of hydrate inhibitors in operating natural gas storages; and the inhibition of gas hydrates with kinetic inhibitors. Eight abstracts were abstracted individually for the Energy Database. (MSK) [Deutsch] Folgende Themen werden detailliert behandelt: die chemischen und physikalischen Eigenschaften von Gashydraten,welche aus dem Phasenverhalten der Gashydrate herzuleiten sind; zur Bedeutung und Vorkommen von Gashydraten im Offshore-Bereich; Gashydrate und Permafrost im kontinentalen noerdlichen Westsibirien; Informationen zu HYACE, einem Forschungsprojekt der Europaeischen Union zu Probebohrungen nach Gashydraten im Offshore-Bereich; sedimentmechanische Kriterien bei der Gashydratbildung in Tiefseesedimenten; die Gashydratbildung in Gaskavernenspeichern; der Einsatz von Hydratinhibitoren beim Betrieb von Erdgasspeichern sowie die Inhibierung von Gashydraten mit kinetischen Inhibitoren. Fuer die Datenbank Energy wurden acht Beitraege einzeln aufgenommen.

  3. Overview of the science activities for the 2002 Mallik gas hydrate production research well program, Mackenzie Delta, N.W.T., Canada

    Science.gov (United States)

    Dallimore, S. R.; Collett, T. S.; Uchida, T.; Weber, M.

    2003-04-01

    the measurement of in situ formation conditions. A wide- ranging science and engineering research program included the collection of gas-hydrate-bearing core samples and downhole geophysical logging. Laboratory and modeling studies undertaken during the field program, and subsequently as part of a post-field research program, will document the sedimentology, physical/petrophysical properties, geochemistry, geophysics, reservoir characteristics and production behavior of the Mallik gas hydrate accumulation. The research team, including some 100 participant scientists from over 20 institutes in 7 countries, expects to publish the scientific results in 2004.

  4. Investigating radionuclide bearing suspended sediment transport mechanisms in the Ribble estuary using airborne remote sensing

    International Nuclear Information System (INIS)

    Atkin, P.A.

    2000-10-01

    BNFL Sellafield has been authorised to discharge radionuclides to the Irish Sea since 1952. In the aquatic environment the radionuclides are adsorbed by sediments and are thus redistributed by sediment transport mechanisms. This sediment is known to accumulate in the estuaries of the Irish Sea. BNFL Springfields is also licensed to discharge isotopically different radionuclides directly to the Ribble estuary. Thus there is a need to understand the sediment dynamics of the Ribble estuary in order to understand the fate of these radionuclides within the Ribble estuary. Estuaries are highly dynamic environments that are difficult to monitor using the conventional sampling techniques. However, remote sensing provides a potentially powerful tool for monitoring the hydrodynamics of the estuarine environment by providing data that are both spatially and temporally representative. This research develops a methodology for mapping suspended sediment concentration (SSC) in the Ribble estuary using airborne remote sensing. The first hypothesis, that there is a relationship between SSC and 137 Cs concentration is proven in-situ (R 2 =0.94), thus remotely sensed SSC can act as a surrogate for 137 Cs concentration. Initial in-situ characterisation of the suspended sediments was investigated to identify spatial and temporal variability in grain size distributions and reflectance characteristics for the Ribble estuary. Laboratory experiments were then performed to clearly define the SSC reflectance relationship, identify the optimum CASI wavelengths for quantifying SSC and to demonstrate the effects on reflectance of the environmental variables of salinity and clay content. Images were corrected for variation in solar elevation and angle to give a ground truth calibration for SSC, with an R 2 =0.76. The remaining scatter in this relationship was attributed to the differences in spatial and temporal representation between sampling techniques and remote sensing. The second hypothesis

  5. A unified approach for description of gas hydrate formation kinetics in the presence of kinetic promoters in gas hydrate converters

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Varaminian, Farshad

    2013-01-01

    Highlights: • A unified kinetic model for description of promoted and non-promoted gas hydrate formation processes is presented. • Effects of impeller speed, promoter concentration and different kinetic promoters are investigated. • A unique region of gas hydrate formation is identified regarding gas hydrate formation processes. • The proposed model is useful for understanding the behavior of gas hydrate formation processes and design of GTH converters. - Abstract: The kinetic promoters have found wide applications in enhancing the rate of energy conversion and storage via gas hydrate formation processes. Effects of different kinetic promoters such as anionic surfactants sodium dodecyl sulfate (SDS), dodecylbenzene sulfonic acid (DBSA), and sodium dodecyl benzene sulfonate (SDBS); cationic surfactants, Cetyl trimethyl ammonium bromide (CTAB), dodecyl trimethyl ammonium bromide (DTAB) and non-ionic surfactants, alkylpolyglucoside (APG), dodecyl polysaccharide glycoside (DPG), TritonX-100 (TX100) on methane (CH 4 ), ethane (C 2 H 6 ) and propane (C 3 H 8 ) gas hydrate formation processes are investigated in this work. A macroscopic kinetic model based on the time variations of reaction chemical potential is also presented for global description of gas hydrate formation processes. Experimental gas hydrate formation data are employed to validate the proposed kinetic model. Effects of promoter’s concentrations and agitation intensities on the gas consumption profiles are also investigated. A universal correlation and a unified kinetic map have been proposed for macroscopic description of gas hydrate formation kinetics in the presence or absence of kinetic promoters. According to the presented unified kinetic map, a unique region of gas hydrate formation is identified for the first time. For negligible amounts of kinetic promoters, the presented region disappears and approaches to a unique path at high agitation intensities. The presented unified approach is

  6. Protein Hydration Thermodynamics: The Influence of Flexibility and Salt on Hydrophobin II Hydration.

    Science.gov (United States)

    Remsing, Richard C; Xi, Erte; Patel, Amish J

    2018-04-05

    The solubility of proteins and other macromolecular solutes plays an important role in numerous biological, chemical, and medicinal processes. An important determinant of protein solubility is the solvation free energy of the protein, which quantifies the overall strength of the interactions between the protein and the aqueous solution that surrounds it. Here we present an all-atom explicit-solvent computational framework for the rapid estimation of protein solvation free energies. Using this framework, we estimate the hydration free energy of hydrophobin II, an amphiphilic fungal protein, in a computationally efficient manner. We further explore how the protein hydration free energy is influenced by enhancing flexibility and by the addition of sodium chloride, and find that it increases in both cases, making protein hydration less favorable.

  7. Standardization and software infrastructure for gas hydrate data communications

    Energy Technology Data Exchange (ETDEWEB)

    Kroenlein, K.; Chirico, R.D.; Kazakov, A.; Frenkel, M. [National Inst. of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Div.; Lowner, R. [GeoForschungsZentrum Potsdam (Germany); Wang, W. [Chinese Academy of Science, Beijing (China). Computer Network Information Center; Smith, T. [MIT Systems, Flushing, NY (United States); Sloan, E.D. [Colorado School of Mines, Golden, CO (United States). Centre for Hydrate Research

    2008-07-01

    The perceived value of gas hydrates as an energy resource for the future has led to extensive hydrate research studies and experiments. The hydrate deposits are widely dispersed throughout the world, and many countries are now investigating methods of extracting gas hydrate resources. This paper described a gas hydrates markup language (GHML) developed as an international standard for data transfer and storage within the gas hydrates community. The language is related to a hydrates database developed to facilitate a greater understanding of naturally occurring hydrate interactions with geophysical processes, and aid in the development of hydrate technologies for resource recovery and storage. Recent updates to the GHML included the addition of ThermoML, a communication standard for thermodynamic data into the GHML schema. The standard will be used to represent all gas hydrates thermodynamic data. A new element for the description of crystal structures has also been developed, as well as a guided data capture tool. The tool is available free of charge and is publicly licensed for use by gas hydrate data producers. A web service has also been provided to ensure that access to GHML files for gas hydrates and data files are available for users. It was concluded that the tool will help to ensure data quality assurance for the conversion of data and meta-data within the database. 28 refs., 9 figs.

  8. Towards CO2 sequestration and applications of CO2 hydrates: the effects of tetrahydrofuran on the phase equilibria of CO2 hydrates

    International Nuclear Information System (INIS)

    Khalik, M.S.; Peters, C.J.

    2006-01-01

    The increasing quantity of carbon dioxide (CO 2 ) in the atmosphere has caused widespread global concerns. Capturing CO 2 from its sources and stored it in the form of gas hydrates and application of CO 2 hydrates are among the proposed methods to overcome this problem. In order to make hydrate-based process more attractive, the use of cyclic ethers as promoters is suggested to reduce the required hydrate formation pressure and enhancing the corresponding kinetic rate. In the present work, tetrahydrofuran (THF) is chosen as a hydrate promoter, participating in forming hydrates and produces mixed hydrate together with CO 2 . The pressure and temperature ranges of hydrate stability region are carefully determined through phase equilibrium measurement of the ternary CO 2 , tetrahydrofuran (THF) and water systems. From the experimental results, it is confirmed that the presence of THF in CO 2 + water systems will extend the hydrate formation region to higher temperature at a constant pressure. The extension of the hydrate stability region is depended on the overall concentration of the ternary system. Moreover, four-phase equilibrium of H-Lw-Lv-V is observed in the system, which may be due to a liquid phase split. In the region where the four-phase equilibrium exists, the ternary system loses its concentration dependency of the hydrate equilibrium conditions. (Author)

  9. A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy

    International Nuclear Information System (INIS)

    Andersen, Morten Daugaard; Jakobsen, Hans J.; Skibsted, Jorgen

    2006-01-01

    Recent 27 Al MAS NMR studies of hydrated Portland cements and calcium-silicate-hydrate (C-S-H) phases have shown a resonance from Al in octahedral coordination, which cannot be assigned to the well-known aluminate species in hydrated Portland cements. This resonance, which exhibits the isotropic chemical shift δ iso = 5.0 ppm and the quadrupole product parameter P Q = 1.2 MHz, has been characterized in detail by 27 Al MAS and 27 Al{ 1 H} CP/MAS NMR for different hydrated white Portland cements and C-S-H phases. These experiments demonstrate that the resonance originates from an amorphous or disordered aluminate hydrate which contains Al(OH) 6 3- or O x Al(OH) 6-x (3+x)- units. The formation of the new aluminate hydrate is related to the formation of C-S-H at ambient temperatures, however, it decomposes by thermal treatment at temperatures of 70-90 o C. From the experiments in this work it is proposed that the new aluminate hydrate is either an amorphous/disordered aluminate hydroxide or a calcium aluminate hydrate, produced as a separate phase or as a nanostructured surface precipitate on the C-S-H phase. Finally, the possibilities of Al 3+ for Ca 2+ substitution in the principal layers and interlayers of the C-S-H structure are discussed

  10. Influence of gas hydrates crystals or ice crystals on the permeability of a porous medium; Influence de cristaux d'hydrates de gaz ou de glace sur la permeabilite d'un milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Bonnefoy, O.

    2005-03-15

    The first part is a bibliographic study. We study the conditions for thermodynamic equilibrium of the hydrates as a bulk medium and the composition of the liquid and solid phases. We then describe the basics of fluid dynamics in a porous medium. Eventually, we merge the two approaches and study the influence of the porous medium on the hydrate stability. An off-shore hydrate field (Blake Ridge) and an on-shore field (Mallik) are precisely described. The latter will be used as a reference case for subsequent numerical simulations. The second part is devoted to the experiments. Their goal is to measure the permeability of a sediment containing crystals. To get closer to natural geologic conditions, crystals are synthesized in absence of free gas. It turns out that hydrates form in a very heterogeneous way in the porous medium, which makes the measurements non representative. We believe that this result has a general character and that, at the laboratory time-scale, it is difficult, to say the least to achieve a uniform distribution of gas hydrates grown from dissolved gas. To circumvent this difficulty, we show, with a theoretical approach, that ice crystals behave much the same way as the hydrate crystals, concerning the Van der Waals forces that govern the agglomeration. This allows us to calculate the Hamaker constant of the hydrates. The second series of experiments focuses on the permeability of a non consolidated porous medium under mechanical stress, where the pores are filled with ice crystals. Two silica beads populations are used to form a porous medium: 3 mm and 0.2 mm. With the large grains, results show two thresholds: for saturations below the lower threshold, the presence of crystals does not modify the permeability. For saturations above the upper threshold, the permeability vanishes almost completely (percolation phenomenon). Between these two limits, the permeability decreases exponentially with the saturation. With the fine grains, the permeability

  11. Suspension hydration of C3S [tricalcium silicate] at constant pH. II. Effect of previously formed hydrates and of additives

    NARCIS (Netherlands)

    McCurdy, K.G.; Stein, H.N.

    1973-01-01

    A retardation shown by the hydration of C3S at pH=11.5 can be prevented if before the addition of C3S there are present hydrate particles in the aqueous medium. These hydrate particles probably have the composition CSHn. This indicates a hydrate CSHn, precipitated from solution, as the retarding

  12. Suspended sediment and turbidity after road construction/improvement and forest harvest in streams of the Trask River Watershed Study, Oregon

    Science.gov (United States)

    Ivan Arismendi; Jeremiah D. Groom; Maryanne Reiter; Sherri L. Johnson; Liz Dent; Mark Meleason; Alba Argerich; Arne E. Skaugset

    2017-01-01

    Transport of fine-grained sediment from unpaved forest roads into streams is a concern due to the potential negative effects of additional suspended sediment on aquatic ecosystems. Here we compared turbidity and suspended sediment concentration (SSC) dynamics in five nonfish bearing coastal Oregon streams above and below road crossings, during three consecutive time...

  13. Structural transformations of sVI tert-butylamine hydrates to sII binary hydrates with methane.

    Science.gov (United States)

    Prasad, Pinnelli S R; Sugahara, Takeshi; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2009-10-22

    Binary clathrate hydrates with methane (CH(4), 4.36 A) and tert-butylamine (t-BuNH(2), 6.72 A) as guest molecules were synthesized at different molar concentrations of t-BuNH(2) (1.00-9.31 mol %) with methane at 7.0 MPa and 250 K, and were characterized by powder X-ray diffraction (PXRD) and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed on pressurizing with methane. The PXRD showed sII signatures and the remnant sVI signatures were insignificant, implying the metastable nature of sVI binary hydrates. Raman spectroscopic data on these binary hydrates suggest that the methane molecules occupy the small cages and vacant large cages. The methane storage capacity in this system was nearly doubled to approximately 6.86 wt % for 5.56 mol % > t-BuNH(2) > 1.0 mol %.

  14. Hydration behaviors of calcium silicate-based biomaterials.

    Science.gov (United States)

    Lee, Yuan-Ling; Wang, Wen-Hsi; Lin, Feng-Huie; Lin, Chun-Pin

    2017-06-01

    Calcium silicate (CS)-based biomaterials, such as mineral trioxide aggregate (MTA), have become the most popular and convincing material used in restorative endodontic treatments. However, the commercially available CS-based biomaterials all contain different minor additives, which may affect their hydration behaviors and material properties. The purpose of this study was to evaluate the hydration behavior of CS-based biomaterials with/without minor additives. A novel CS-based biomaterial with a simplified composition, without mineral oxides as minor additives, was produced. The characteristics of this biomaterial during hydration were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The hydration behaviors of commercially available gray and white MTAs with mineral oxide as minor additives were also evaluated for reference. For all three test materials, the XRD analysis revealed similar diffraction patterns after hydration, but MTAs presented a significant decrease in the intensities of Bi 2 O 3 -related peaks. SEM results demonstrated similar porous microstructures with some hexagonal and facetted crystals on the outer surfaces. In addition, compared to CS with a simplified composition, the FTIR plot indicated that hydrated MTAs with mineral oxides were better for the polymerization of calcium silicate hydrate (CSH), presenting Si-O band shifting to higher wave numbers, and contained more water crystals within CSH, presenting sharper bands for O-H bending. Mineral oxides might not result in significant changes in the crystal phases or microstructures during the hydration of CS-based biomaterials, but these compounds affected the hydration behavior at the molecular level. Copyright © 2016. Published by Elsevier B.V.

  15. Cryogenic-SEM investigation of CO{sub 2} hydrate morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Camps, A.P.; Milodowski, A.; Rochelle, C.; Williams, J.F.; Jackson, P. D. [British Geological Survey, Keyworth, Nottinghamshire (United Kingdom); Camps, A.P; Lovell, M.; Williams, J.F. [Leicester Univ., Leicester (United Kingdom). Dept. of Geology

    2008-07-01

    Gas hydrates occur naturally around the world in the shallow-marine geosphere, and are seen as a drilling hazard in the petroleum industry due to their role in the carbon cycle, and their possible contribution in past and present climate change. Hydrates are ice-like structures composed of cages of water molecules containing one or more guest molecules, such as methane and carbon dioxide (CO{sub 2}). CO{sub 2} hydrates also occur naturally on earth and are being investigated for their potential to store large volumes of CO{sub 2} to reduce atmospheric emissions of greenhouse gases as a climate change mitigation strategy. However, the mineralogy and formation processes of hydrates are relatively poorly understood. Different imaging techniques have been utilized to study gas hydrates, such as nuclear magnetic resonance, magnetic resonance imaging, and x-ray computed tomography. Scanning Electron Microscopy (SEM) at cryogenic temperatures is another technique to study hydrates, and has been used successfully for investigation of methane and CO{sub 2} hydrates. This paper presented a study that investigated CO{sub 2} hydrates formed in laboratories, using a cryogenic-SEM. The paper presented the study methods and observations, including euhedral crystalline carbon dioxide hydrate; acicular carbon dioxide hydrate; granoblastic carbon dioxide hydrate; and gas rich carbon dioxide hydrate. It was concluded that the investigation produced various different hydrate morphologies resulting from different formation conditions. Morphologies ranged from well-defined euhedral crystals to acicular needles, and more complex, intricate forms. 22 refs., 6 figs., 1 appendix.

  16. When shape matters: strategies of different Antarctic ascidians morphotypes to deal with sedimentation

    OpenAIRE

    Torre, Luciana; Abele, Doris; Lagger, Cristian; Momo, Fernando; Sahade, Ricardo

    2014-01-01

    Climate change leads to increased melting of tidewater glaciers in theWestern Antarctic Peninsula region and sediment bearing glacial melt waters negatively affects filter feeding species as solitary ascidians. In previous work the erect-forms Molgula pedunculata and Cnemidocarpa verrucosa (Order Stolidobranchiata) appeared more sensitive than the flat form Ascidia challengeri (Order Phlebobranchiata). Sedimentation exposure is expected to induce up-regulation of anaerobic metabol...

  17. The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

    2012-11-28

    Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

  18. Gas Hydrates | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Preliminary Report - Cascadia Margin Gas Hydrates, Volume 204 Initial Report Mallik 2002 GSC Bulletin 585 : Scientific results from the Mallik 2002 gas hydrate production well program Offshore gas hydrate sample

  19. Hopane, sterane and n-alkane distributions in shallow sediments hosting high arsenic groundwaters in Cambodia

    International Nuclear Information System (INIS)

    Dongen, Bart E. van; Rowland, Helen A.L.; Gault, Andrew G.; Polya, David A.; Bryant, Charlotte; Pancost, Richard D.

    2008-01-01

    The presence of elevated As in ground waters exploited for drinking water and irrigation in South-East Asia is causing serious impacts on human health. A key mechanism that causes the mobilization of As in these waters is microbially mediated reductive transformation of As-bearing Fe(III) hydrated oxides and the role of degradable organic matter (OM) in this process is widely recognized. A number of different types of OM that drive As release in these aquifers have been suggested, including petroleum derived hydrocarbons naturally seeping into shallow sediments from deeper thermally mature source rocks. However, the amount of information on the characteristics of the OM in South-East Asian aquifers is limited. Here the organic geochemical analyses of the saturated hydrocarbon fractions and radiocarbon analysis, of two additional sites in SE Asia are reported. The results show that the OM in a given sedimentary horizon likely derives from multiple sources including naturally occurring petroleum. The importance of naturally occurring petroleum as one of the sources was clearly indicated by the n-alkane CPI of approximately 1, the presence of an unresolved complex mixture, and hopane (dominated by 17α(H),21β(H) hopanes) and sterane distribution patterns. The results also indicate that the OM in these aquifers varies tremendously in content, character and potential bioavailability. Furthermore, the presence of petroleum derived OM in sediments at both sites doubles the number of locations where their presence has been observed in association with As-rich, shallow aquifers, suggesting that the role of petroleum derived OM in microbially mediated As release might occur over a wider range of geographical locations than previously thought

  20. Post-depositional redistribution of trace metals in reservoir sediments of a mining/smelting-impacted watershed (the Lot River, SW France)

    International Nuclear Information System (INIS)

    Audry, Stephane; Grosbois, Cecile; Bril, Hubert; Schaefer, Joerg; Kierczak, Jakub; Blanc, Gerard

    2010-01-01

    Mining/smelting wastes and reservoir sediment cores from the Lot River watershed were studied using mineralogical (XRD, SEM-EDS, EMPA) and geochemical (redox dynamics, selective extractions) approaches to characterize the main carrier phases of trace metals. These two approaches permitted determining the role of post-depositional redistribution processes in sediments and their effects on the fate and mobility of trace metals. The mining/smelting wastes showed heterogeneous mineral compositions with highly variable contents of trace metals. The main trace metal-bearing phases include spinels affected by secondary processes, silicates and sulfates. The results indicate a clear change in the chemical partitioning of trace metals between the reservoir sediments upstream and downstream of the mining/smelting activities, with the downstream sediments showing a 2-fold to 5-fold greater contribution of the oxidizable fraction. This increase was ascribed to stronger post-depositional redistribution of trace metals related to intense early diagenetic processes, including dissolution of trace metal-bearing phases and precipitation of authigenic sulfide phases through organic matter (OM) mineralization. This redistribution is due to high inputs (derived from mining/smelting waste weathering) at the water-sediment interface of (i) dissolved SO 4 promoting more efficient OM mineralization, and (ii) highly reactive trace metal-bearing particles. As a result, the main trace metal-bearing phases in the downstream sediments are represented by Zn- and Fe-sulfides, with minor occurrence of detrital zincian spinels, sulfates and Fe-oxyhydroxides. Sequestration of trace metals in sulfides at depth in reservoir sediments does not represent long term sequestration owing to possible resuspension of anoxic sediments by natural (floods) and/or anthropogenic (dredging, dam flush) events that might promote trace metal mobilization through sulfide oxidation. It is estimated that, during a major