WorldWideScience

Sample records for hybrids nuclear desalting

  1. Desalting and Nuclear Energy

    Science.gov (United States)

    Burwell, Calvin C.

    1971-01-01

    Future use of nuclear energy to produce electricity and desalted water is outlined. Possible desalting processes are analyzed to show economic feasibility and the place in planning in world's economic growth. (DS)

  2. Nuclear Energy for Desalting (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Urrows, Grace M.

    1967-01-01

    This booklet discusses the huge demand for fresh clean water and various ways to create it. Since 3/4 of the world is covered in salt water, many processes have been developed to desalt the salt water. Nuclear-powered desalting units are discussed extensively.

  3. Nuclear desalting potential for developing countries

    International Nuclear Information System (INIS)

    1969-01-01

    Nuclear power, having proved its success in large units, now poses problems for application in developing countries. Possible solutions for electricity supply, desalting systems and agricultural development are suggested by Joseph R. Wilson, of the Agency's Division of Nuclear Power and Reactors. His article is adapted from a lecture to students in Switzerland. (author)

  4. Water desalting plants' exploitation experience on the nuclear powered icebreakers and the nuclear-powered freight-carrier ''Sevmorput''

    International Nuclear Information System (INIS)

    Kovalenko, V.K.; Pavlov, E.A.

    1997-01-01

    The experience from water desalting plants M4C-1 on nuclear-powered icebreakers and M3C on the nuclear-powered freight-carrier ''Sevmorput'' are discussed. The specific design features, including those for maintaining distillate quality, to be considered under conditions of roll, heel and hull impact loading are highlighted. (author). 3 figs

  5. Desalting seawater and brackish waters: 1981 cost update

    International Nuclear Information System (INIS)

    Reed, S.A.

    1982-08-01

    This is the fourth in a series of desalting cost update reports. Cost data are reported for desalting seawater by various distillation systems and by reverse osmosis. Costs of desalting four brackish waters, representative of those found in the United States by both reverse osmosis and electrodialysis are also given. Cost data are presented parametrically as a function of energy cost and plant size. The cost of desalting seawater by distillation has increased by 40% during the past two years, while desalting by reverse osmosis has increased by about 36% during the same period. Brackish water desalting by reverse osmosis has only increased by about 12%, and brackish water desalting by electrodialysis is up by 40%. Again, the continued increase in energy costs has had a major impact on all desalination systems

  6. Counter-flow dialysis for microvolume desalting

    OpenAIRE

    Kalikavunkal, Prameen Chacko

    2015-01-01

    Some analytical techniques are not compatible with physiological salt concentrations. An array of desalting approaches exists, but the conventional implementation requires large sample volumes, which is not compatible with fingerprick blood samples for molecular diagnostics. With dialysis being identified as the most suitable method for on-chip microvolume desalting, the aim of this work was to develop a microvolume dialyser that can desalt biological samples to any required salt concentratio...

  7. Method of removing suspended impurity from mixed floor type filtering desalter

    International Nuclear Information System (INIS)

    Oya, Takashi; Morikawa, Yoshitake; Hagiwara, Masahiro; Kozu, Hideo; Izumi, Takeshi.

    1989-01-01

    In BWR type nuclear power plants, since the inside of a nuclear reactor has to be always kept clean, condensates flowing from a condensator to the inside of the reactor are cleaned-up by a condensate desalting tower into a highly cleaned-up state and then utilized as coolants for the inside of the reactor. Upon processing primary coolants, a mixed floor is formed with a resin in which the crosslinking rate of granular or powdery cationic exchange resins is reduced as from 7.5 to 3% of divinyl benzene (DVB) content. Crud separating effect is larger as the DVB content (%) is lower. However, if the DVB content is too small fracture strength and heat exchange capacity of the resins are decreased making it difficult for handling and, accordingly, practical lower limit is set to 3%. This enables sufficient removal of cruds upon eliminating suspended impurities in a mixed floor type filtering desalter. (T.M.)

  8. New contact system in crude oil desalting process

    International Nuclear Information System (INIS)

    Forero, J; Duque; Diaz, J; Nunez, A; Guarin, F; Carvajal, F

    2001-01-01

    The effect of the ICP contactor and the mixture valve on the desalting process was evaluated as a contact system in the crude oil washing process. The evaluation was carried out in the two desalters at the Cartagena refinery (GRC) and a desalter at the Barrancabermeja refinery (GCB) of ECOPETROL. The pressure drop was measured and the efficiency of the desalting processes, dehydration and hydrocarbon crude intake in the water was calculated based on the BS and W measurement, salt content and hydrocarbon concentration in the water. Results showed that the contactor improved desalting, water in the crude oil was reduced and crude carry-over in the wastewater was reduced between 50 and 92% at the Barrancabermeja refinery, and between 40 and 95% at the Cartagena refinery, which mean savings of approximately us$ 373.000 dollars per year at both refineries, due to the fact that less water is loaded into the process. Furthermore, hydrocarbon 1055 in wastewater was reduced by about 3650 barrels per year. The pressure drop was reduced between 88 and 94 % in relation to the mixing valve

  9. Experience in the development and mastering of large distillation desalting plants

    International Nuclear Information System (INIS)

    Chernozubov, V.B.; Tokmantsev, N.K.; Putilin, Ju.V.

    1997-01-01

    At present there are more than 30 desalination plants, including the first nuclear desalination plant in Aktau, developed by SverdNIIchimmash are in operation. This report gives a short description of the experience in the investigation, development and mastering of the Russian water distillation technique and the future investigations. Based on the past 40 years experience and scientific investigations, the multistage distillation desalting plants with horizontal tube film evaporators is recommended for the floating nuclear desalination complexes. (author)

  10. Crude incompatibility problems at heavy crude unit desalter

    International Nuclear Information System (INIS)

    Kirmani, Z.; Khurshid, A.; Alam, N.; Gul, S.; Ahmed, N.

    2009-01-01

    Attock Refinery Limited (ARL) is based at Rawalpindi, Pakistan and operates a 40,000 Barrels per Stream Day (BPSD) refinery. The Heavy Crude Unit (HCU) of ARL is a fully integrated two-stage 10,000 BPSD Atmospheric and 5,700 BPSD Vacuum Distillation Unit. A 3-stage desalter designed to reduce salt and BS and W content from 2,000 parts per thousand barrels (PTB) and 2% to less than 5 PTB and 0.1% respectively, is part of HCU. The feedstock is a composite blend of 14 local Heavy Crudes received at the Refinery. Although in the past this desalter had been giving good performance, over the last one year, period since August 2005, at least nine shutdowns of the unit took place due to salt slippage and consequential tube leakages at the overhead Crude-Naphtha vapor Heat Exchanger where partial condensation of naphtha takes place. Final condensation is achieved in trim condenser. High salted water carry-over with the crude caused increased hydrolysis, formation of Hydrochloric acid and increase of tail water chlorides. Salt contents at the outlet of third desalter at times increased up to 400 PTB with 3.2% BS and W during the above mentioned upsets, as compared to normal 5-10 PTB. Fallout from this loss of desalter control was the creation of large quantities of slop due to draining of strong water oil emulsion from the desalters. Individual crudes of the blend were analyzed for affinity of water and emulsion stability. It was observed that 3 of the 14 crudes formed very strong while the remaining crudes formed weak oil water emulsion, which easily separated water from oil in desalter without any operational problem. Study was further narrowed down to one crude evaluation. Alkaline earth metallic naphthenate surfactants were detected and isolated as responsible for the strong water oil and sediments emulsion. The isolated crude was next withdrawn from the Heavy Crude blend. As soon as it was isolated and its ratio in heavy crude tank came down to 0.7 %, the problem began

  11. Desalting sea water and brackish waters: a cost update

    International Nuclear Information System (INIS)

    Reed, S.A.; Wilson, J.V.

    1977-01-01

    This report, based on first-quarter 1977 dollars, is an update of costs presented in ORNL/TM-5070 (Rev.), which gave cost estimates for desalting seawater and brackish waters based on first-quarter 1975 financial parameters. Cost estimates are given for desalting seawater by distillation and reverse osmosis and for brackish waters using reverse osmosis and electrodialysis. Cost data were computed as a function of plant size and energy cost. The cost of generating steam and electrical energy on-site using coal-fired boilers as well as oil-fired boilers and dual-purpose electric/seawater distillation plants is included. While the costs of energy, equipment and labor have continued to rise, they have increased at a relatively modest rate compared with the two years prior to 1975. On an average, the cost of desalting seawater by distillation has increased approximately 15%. Costs for desalting brackish waters by the membrance processes have increased about 7%

  12. Electrical desalting - preparing of the crude oil for further processing

    International Nuclear Information System (INIS)

    Asadi, Nadija; Minovski, Mino; Sokolovski, Aleksandar

    1999-01-01

    Desalting as well as dewatering of the crude oil is important preparing process, which takes place in crude units on the refinery plants. One of the most efficient ways of desalting is use of high voltage electricity. In this work attention is paid on the principals of this process, illustrated with practically gained results from the OKTA Crude Oil Refinery in Macedonia. (Original)

  13. Nuclear desalination option for the international reactor innovative and secure (IRIS) design

    International Nuclear Information System (INIS)

    Ingersoll, D. T.; Binder, J. L.; Conti, D.; Ricotti, M. E.

    2004-01-01

    The worldwide demand for potable water is on the rise. A recent market survey by the World Resources Institute shows a doubling in desalinated water production every ten years from both seawater and brackish water sources. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh per cubic meter of produced desalted water. At current U.S. water use rates, 1 kW of energy capacity per capita (or 1000 MW for every one million people) would be required to meet water needs with desalted water. The choice of the desalination technology determines the form of energy required: electrical energy for reverse osmosis systems, relatively low quality thermal energy for distillation systems, and both electrical and thermal energy for hybrid systems such as pre-heat RO systems. Nuclear energy plants are attractive for large scale desalination application. Nuclear plants can provide both electrical and thermal energy in an integrated, co-generated fashion to produce a spectrum of energy products including electricity, desalted water, process heat, district heating, and potentially hydrogen generation. A particularly attractive option for nuclear desalination is to couple it with an advanced, modular, passively safe reactor design such as the International Reactor Innovative and Secure (IRIS) plant. This allows for countries with smaller electrical grid needs and infrastructure to add new electrical and desalination capacity in smaller increments and at distributed sites. The safety by design nature of the IRIS reactor will ensure a safe and reliable source of energy even for countries with limited nuclear power experience and infrastructure. Two options for the application of the IRIS nuclear power plant to the cogeneration of electricity and desalted water are presented, including a coupling to a reverse osmosis plant and a multistage flash distillation plant. The results from an economic assessment of the two options are also presented.(author)

  14. Electronic desalting for controlling the ionic environment in droplet-based biosensing platforms

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, Vikhram Vilasur [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Dak, Piyush; Alam, Muhammad A., E-mail: rbashir@illinois.edu, E-mail: alam@purdue.edu [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Reddy, Bobby; Duarte-Guevara, Carlos; Zhong, Yu [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Salm, Eric [Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Fischer, Andrew [Abbott Laboratories, 1921 Hurd Drive, Dept. 8482 LC2 M/S 2-33, Irving, Texas 75038 (United States); Liu, Yi-Shao [Taiwan Semiconductor Manufacturing Company, Hsinchu 300-78, Taiwan (China); Bashir, Rashid, E-mail: rbashir@illinois.edu, E-mail: alam@purdue.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-02-02

    The ability to control the ionic environment in saline waters and aqueous electrolytes is useful for desalination as well as electronic biosensing. We demonstrate a method of electronic desalting at micro-scale through on-chip micro electrodes. We show that, while desalting is limited in bulk solutions with unlimited availability of salts, significant desalting of ≥1 mM solutions can be achieved in sub-nanoliter volume droplets with diameters of ∼250 μm. Within these droplets, by using platinum-black microelectrodes and electrochemical surface treatments, we can enhance the electrode surface area to achieve >99% and 41% salt removal in 1 mM and 10 mM salt concentrations, respectively. Through self-consistent simulations and experimental measurements, we demonstrate that conventional double-layer theory over-predicts the desalting capacity and, hence, cannot be used to model systems that are mass limited or undergoing significant salt removal from the bulk. Our results will provide a better understanding of capacitive desalination, as well as a method for salt manipulation in high-throughput droplet-based microfluidic sensing platforms.

  15. [Research on controlling iron release of desalted water transmitted in existing water distribution system].

    Science.gov (United States)

    Tian, Yi-Mei; Liu, Yang; Zhao, Peng; Shan, Jin-Lin; Yang, Suo-Yin; Liu, Wei

    2012-04-01

    Desalted water, with strong corrosion characteristics, would possibly lead to serious "red water" when transmitted and distributed in existing municipal water distribution network. The main reason for red water phenomenon is iron release in water pipes. In order to study the methods of controlling iron release in existing drinking water distribution pipe, tubercle analysis of steel pipe and cast iron pipe, which have served the distribution system for 30-40 years, was carried out, the main construction materials were Fe3O4 and FeOOH; and immersion experiments were carried in more corrosive pipes. Through changing mixing volume of tap water and desalted water, pH, alkalinity, chloride and sulfate, the influence of different water quality indexes on iron release were mainly analyzed. Meanwhile, based on controlling iron content, water quality conditions were established to meet with the safety distribution of desalted water: volume ratio of potable water and desalted water should be higher than or equal to 2, pH was higher than 7.6, alkalinity was higher than 200 mg x L(-1).

  16. Optimization of desalting process with centrifugation for condensation process of uranium from sea water

    International Nuclear Information System (INIS)

    Yamamoto, Tatsuya; Takase, Hisao; Fukuoka, Fumio

    1984-01-01

    Optimization of desalting of the slurry on the condensation process by the deposited slurry method for the recovery of uranium from sea water was studied. We have already published that the uranium rich deposit containing seven ppm uranium could be made on the sea bottom by the deposited slurry method. Uranium can be transferred to the anion exchange resin from titanic acid in the slurry. But in this case Cl - ions obstruct the adsorption of uranium on the anion exchange resin, so the slurry must be desalted before RIP method. It is considered that the cost of desalting of the slurry stage would be a large portion of the capital cost for the recovery of uranium from sea water. The cost of water required is comparable to the cost of energy so that the objective function consists of the cost of energy and the quantity of water. The consumption of energy and water required for desalting of the slurry with the multi-stage centrifugation were oprimized based on dynamic programming. (author)

  17. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  18. ICENES '91:Sixth international conference on emerging nuclear energy systems

    International Nuclear Information System (INIS)

    1991-01-01

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, μ-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session

  19. Comparative investigation of the economics of seawater desalting based on current and advanced distillation concepts

    International Nuclear Information System (INIS)

    Glueckstern, P.; Reed, S.A.

    1976-01-01

    A reassessment of desalting plant design and product water cost based on current technology and energy and equipment costs has been made. Plant sizes in the range of 1 to 200 Mgd utilizing the multistage flash (MSF) and the vertical tube evaporator (VTE) were investigated. Process steam was assumed to be supplied by large nuclear dual-purpose plants or from fossil-fired low-pressure boilers. Plants applying the pH control method versus the threshold pretreatment method were compared. The potential benefits of applying low cost aluminum tubing in low-temperature VTE plants were also investigated

  20. Desalted deep-sea water improves cognitive function in mice by increasing the production of insulin-like growth factor-I in the hippocampus.

    Science.gov (United States)

    Harada, Naoaki; Zhao, Juan; Kurihara, Hiroki; Nakagata, Naomi; Okajima, Kenji

    2011-08-01

    The stimulation of sensory neurons in the gastrointestinal (GI) tract improves cognitive function by increasing the hippocampal production of insulin-like growth factor-I (IGF-I) in mice. In the current study, we examined whether oral administration of desalted deep-sea water (DSW) increases the hippocampal production of IGF-I by stimulating sensory neurons in the GI tract, thereby improving cognitive function in mice. Desalted DSW increased calcitonin gene-related peptide (CGRP) release from dorsal root ganglion (DRG) neurons isolated from wild-type (WT) mice by activating transient receptor potential vanilloid 1. The plasma levels of IGF-I and tissue levels of CGRP, IGF-I, and IGF-I mRNA in the hippocampus were increased by oral administration of desalted DSW in WT mice. In these animals, nociceptive information originating from the GI tract was transmitted to the hippocampus via the spinothalamic pathway. Improvement of spatial learning was observed in WT mice after administration of desalted DSW. Distilled DSW showed results similar to those of desalted DSW in vitro and in vivo. None of the effects of desalted DSW in WT mice were observed after the administration of desalted DSW in CGRP-knockout (CGRP-/-) mice. No volatile compounds were detected in distilled DSW on GC-MS analysis. These observations suggest that desalted DSW may increase the hippocampal IGF-I production via sensory neuron stimulation in the Gl tract, thereby improving cognitive function in mice. Such effects of desalted DSW might not be dependent on the minerals but are dependent on the function of the water molecule itself. Copyright © 2011 Mosby, Inc. All rights reserved.

  1. Desalting device for nuclear power plants

    International Nuclear Information System (INIS)

    Shinmura, Akira; Mizumachi, Wataru.

    1981-01-01

    Purpose: To prevent heated steams and sea water from mixing even in the failures of heat transfer pipes for sea water heating heat exchangers. Constitution: Heating pipes from the nuclear reactor are kept from direct contact with sea water. Specifically, heat exchange is at first carried out in a first heat exchanger between the heated steams from the nuclear reactor and highly pressurized heat exchanging fluid (For example, water). Then, next heat exchange is carried out in a second heat exchanger between the heat exchanging fluid referred to above and the sea water to increase the temperature of the latter. That is, a closed heat transfer loop under high pressure is provided between the sea water and the heat source on the side of the nuclear reactor, so that the sea water and the heat source of the nuclear reactor are kept from direct contact. (Ikeda, J.)

  2. A study of chemical profiles and appearance of white crystals in Istrian dry-cured ham: effect of desalting

    Directory of Open Access Journals (Sweden)

    Helga Medić

    2010-01-01

    Full Text Available In order to find out the effect on physical-chemical profile of Istrian dry-cured ham with particular regard to the appearance of white crystals in the muscles, raw salted legs were desalted by soaking the legs in cold water for 24 hours. The 20 raw hams taken from 10 slaughtered hogs (Swedish Landrace breed and processed in the traditional Istrian manner were used. After salting and pressing, the raw hams were divided into two groups: 1 the 10 left legs of each hog were desalted (D; 2 the 10 right legs were not desalted (N. Following this, both groups of legs were subjected to continuous processing. Samples for chemical analysis and counting of white spots were taken from the 20 legs (10 N and 10 D from 10 hogs, each weighing 12 to 15 kg. Chemical analysis of muscle tissue showed a highly significant difference (P<0.0001 in the salt quantity in the N (6.85% and D (5.31% dry-cured hams, as expected. Desalting affected the level of calcium which was higher (P=0.0124 in the D hams (0.27 g than in the N hams (0.22 g. Desalting did not affect the free amino acid content, with the exception of methionine which was lower (P=0.0041 in D (0.14 g than in N hams (0.17 g. Desalting affected the level of two free fatty acids as follows: heptadecanoic acid was higher (P=0.0203 in N (0.18% than in D hams (0.24% and DPA was higher (P=0.0373 in N (0.49% than in D hams (0.39%. By counting the white precipitates, it was established that the regularity of appearance of the precipitate was noted on both the D and N hams, such that where there was no precipitate on the right N ham, nor was their any on the left D ham of the same hog. However, desalting only lead to a slight decrease in the appearance of precipitates (average of 0.7 points, but it is certain that desalting reduces the salt content in the legs, which affects some physical- chemical changes in the ham tissues during processing.

  3. Continuous desalting of refolded protein solution improves capturing in ion exchange chromatography: A seamless process.

    Science.gov (United States)

    Walch, Nicole; Jungbauer, Alois

    2017-06-01

    Truly continuous biomanufacturing processes enable an uninterrupted feed stream throughout the whole production without the need for holding tanks. We have utilized microporous anion and cation exchangers into which only salts, but not proteins, can penetrate into the pores for desalting of protein solutions, while diafiltration or dilution is usually employed for feed adjustments. Anion exchange and cation exchange chromatography columns were connected in series to remove both anions and cations. To increase operation performance, a continuous process was developed comprised of four columns. Continuous mode was achieved by staggered cycle operation, where one set of columns, consisting of one anion exchange and one cation exchange column, was loaded during the regeneration of the second set. Refolding, desalting and subsequent ion exchange capturing with a scFv as the model protein was demonstrated. The refolding solution was successfully desalted resulting in a consistent conductivity below 0.5 mS/cm from initial values of 10 to 11 mS/cm. With continuous operation process time could be reduced by 39% while productivity was increased to 163% compared to batch operation. Desalting of the protein solution resulted in up to 7-fold higher binding capacities in the subsequent ion exchange capture step with conventional protein binding resins. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Desalting Protein Ions in Native Mass Spectrometry Using Supercharging Reagents

    Science.gov (United States)

    Cassou, Catherine A.; Williams, Evan R.

    2014-01-01

    Effects of the supercharging reagents m-NBA and sulfolane on sodium ion adduction to protein ions formed using native mass spectrometry were investigated. There is extensive sodium adduction on protein ions formed by electrospray ionization from aqueous solutions containing millimolar concentrations of NaCl, which can lower sensitivity by distributing the signal of a given charge state over multiple adducted ions and can reduce mass measuring accuracy for large proteins and non-covalent complexes for which individual adducts cannot be resolved. The average number of sodium ions adducted to the most abundant ion formed from ten small (8.6–29 kDa) proteins for which adducts can be resolved is reduced by 58% or 80% on average, respectively, when 1.5% m-NBA or 2.5% sulfolane are added to aqueous solutions containing sodium compared to without the supercharging reagent. Sulfolane is more effective than m-NBA at reducing sodium ion adduction and at preserving non-covalent protein-ligand and protein-protein interactions. Desalting with 2.5% sulfolane enables detection of several glycosylated forms of 79.7 kDa holo-transferrin and NADH bound to the 146 kDa homotetramer LDH, which are otherwise unresolved due to peak broadening from extensive sodium adduction. Although sulfolane is more effective than m-NBA at protein ion desalting, m-NBA reduces salt clusters at high m/z and can increase the signal-to-noise ratios of protein ions by reducing chemical noise. Desalting is likely a result of these supercharging reagents binding sodium ions in solution, thereby reducing the sodium available to adduct to protein ions. PMID:25133273

  5. An Automated High Throughput Proteolysis and Desalting Platform for Quantitative Proteomic Analysis

    Directory of Open Access Journals (Sweden)

    Albert-Baskar Arul

    2013-06-01

    Full Text Available Proteomics for biomarker validation needs high throughput instrumentation to analyze huge set of clinical samples for quantitative and reproducible analysis at a minimum time without manual experimental errors. Sample preparation, a vital step in proteomics plays a major role in identification and quantification of proteins from biological samples. Tryptic digestion a major check point in sample preparation for mass spectrometry based proteomics needs to be more accurate with rapid processing time. The present study focuses on establishing a high throughput automated online system for proteolytic digestion and desalting of proteins from biological samples quantitatively and qualitatively in a reproducible manner. The present study compares online protein digestion and desalting of BSA with conventional off-line (in-solution method and validated for real time sample for reproducibility. Proteins were identified using SEQUEST data base search engine and the data were quantified using IDEALQ software. The present study shows that the online system capable of handling high throughput samples in 96 well formats carries out protein digestion and peptide desalting efficiently in a reproducible and quantitative manner. Label free quantification showed clear increase of peptide quantities with increase in concentration with much linearity compared to off line method. Hence we would like to suggest that inclusion of this online system in proteomic pipeline will be effective in quantification of proteins in comparative proteomics were the quantification is really very crucial.

  6. Hybrid fission-fusion nuclear reactors

    International Nuclear Information System (INIS)

    Zucchetti, Massimo

    2011-01-01

    A fusion-fission hybrid could contribute to all components of nuclear power - fuel supply, electricity production, and waste management. The idea of the fusion-fission hybrid is many decades old. Several ideas, both new and revisited, have been investigated by hybrid proponents. These ideas appear to have attractive features, but they require various levels of advances in plasma science and fusion and nuclear technology. As a first step towards the development of hybrid reactors, fusion neutron sources can be considered as an option. Compact high-field tokamaks can be a candidate for being the neutron source in a fission-fusion hybrid, essentially due to their design characteristics, such as compact dimensions, high magnetic field, flexibility of operation. This study presents the development of a tokamak neutron source for a material testing facility using an Ignitor-based concept. The computed values show the potential of this neutron-rich device for fusion materials testing. Some full-power months of operation are sufficient to obtain relevant radiation damage values in terms of dpa. (Author)

  7. Desalination of seawater: a nuclear solution

    International Nuclear Information System (INIS)

    Basta, H.

    2003-01-01

    1,4 milliard human beings do not benefit of sufficient clean water supply. The desalting of seawater is a valid and tested solution in terms of technology but the 2 physical processes involved, evaporation and reverse osmosis are energy-greedy. Only rich countries like Kuwait or Saudi-Arabia can afford producing massive volumes of fresh water from seawater. Today the total world capacity of desalting reaches 30 milliard m 3 a day with 10.000 operating units, half of which installed in middle-east countries. The use of nuclear energy is a solution to lower costs. In Aktau (Kazakhstan) a BN-350 fast reactor has been producing a 135 MW electrical output and 80.000 m 3 of fresh water a day for 27 years. In Japan about 10 desalting units have been coupled to nuclear power plants. A company (Eskom) based in South-Africa is developing a new concept of high temperature reactor: the PBMR (pebble bed modular reactor). The suitability of this reactor has been assessed for desalting and it appears that its main assets are its size: 165 MW electrical output (400 MW thermal output) and its Brayton cycle. Other characteristics such as the coolant (helium), the type of fuel (8% enriched uranium encapsulated in carbon), the low design and maintenance costs, the short building time (2 years) are important when considering issues like nuclear safety, non-proliferation and profitability. (A.C.)

  8. Hybrid reactors: Nuclear breeding or energy production?

    International Nuclear Information System (INIS)

    Piera, Mireia; Lafuente, Antonio; Abanades, Alberto; Martinez-Val, J.M.

    2010-01-01

    After reviewing the long-standing tradition on hybrid research, an assessment model is presented in order to characterize the hybrid performance under different objectives. In hybrids, neutron multiplication in the subcritical blanket plays a major role, not only for energy production and nuclear breeding, but also for tritium breeding, which is fundamental requirement in fusion-fission hybrids. All three objectives are better achieved with high values of the neutron multiplication factor (k-eff) with the obvious and fundamental limitation that it cannot reach criticality under any event, particularly, in the case of a loss of coolant accident. This limitation will be very important in the selection of the coolant. Some general considerations will be proposed, as guidelines for assessing the hybrid potential in a given scenario. Those guidelines point out that hybrids can be of great interest for the future of nuclear energy in a framework of Sustainable Development, because they can contribute to the efficient exploitation of nuclear fuels, with very high safety features. Additionally, a proposal is presented on a blanket specially suited for fusion-fission hybrids, although this reactor concept is still under review, and new work is needed for identifying the most suitable blanket composition, which can vary depending on the main objective of the hybrid.

  9. Designing and testing a chemical demulsifier dosage controller in a crude oil desalting plant: an artificial Intelligence-Based network approach

    Energy Technology Data Exchange (ETDEWEB)

    Alshehri, A.K.; Ricardez-Sandoval, L.A.; Elkamel, A. [Department of Chemical Engineering, University of Waterloo, Waterloo (Canada)

    2010-06-15

    The aim of this paper is to present an artificial neural network (ANN) controller trained on a historical data set that covers a wide operating range of the fundamental parameters that affect the demulsifier dosage in a crude oil desalting process. The designed controller was tested and implemented on-line in a gas-oil separation plant. The results indicate that the current control strategy overinjects chemical demulsifier into the desalting process whereas the proposed ANN controller predicts a lower demulsifier dosage while keeping the salt content within its specification targets. Since an on-line salt analyzer is not available in the desalting plant, an ANN based on historical measurements of the salt content in the desalting process was also developed. The results show that the predictions made by this ANN controller can be used as an on-line strategy to predict and control the salt concentration in the treated oil. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  11. Impact of increased fuel costs and inflation on the cost of desalting sea water and brackish waters

    International Nuclear Information System (INIS)

    Reed, S.A.

    1976-01-01

    The combined increases in the cost of fuel, equipment, and money during the past four years have had a marked impact on the cost of desalting saline waters. The current costs of desalting seawater by distillation and reverse osmosis and brackish waters by reverse osmosis and electrodialysis as a function of plant size and feedwater chemistry are estimated. Typically, distillation plant capital costs have increased from dollar 1 per daily gallon to dollar 3 per daily gallon for large plants (100 Mgd) and from approximately dollar 1.40 per daily gallon to approximately dollar 5 per daily gallon per plant sizes of 5 Mgd or less. Consequently, water costs are now ranging from dollar 3 to dollar 4 per 1000 gal when oil is used to generate steam. Similarly, the costs of desalting inland brackish waters using reverse osmosis or electrodialysis have increased significantly

  12. Organic material reducing device in nuclear power plant

    International Nuclear Information System (INIS)

    Minakata, Noriyuki; Takada, Takao

    1998-01-01

    A total organic carbon (TOC) removing device is disposed between a filtration device and a desalting device or between a condensator and the desalting device disposed to a radioactive liquid waste processing facility or a condensate cleaning system of a BWR type nuclear reactor. Since the removing ratio of the TOC removing device is generally high if impurities are not contained, and ionic ingredients are formed after decomposition, TOC can be decomposed and removed more efficiently and removal in a short period of time can be expected by disposing the TOC device downstream of the filtration device or a condensator to be disposed instead of the filtration device and upstream of the desalting device. Then, further enhanced effect can be expected, if two series of the TOC removing line and the bypass line are disposed between the filtration device or the condensator and the desalting device so as to enable selection of processed liquids. (T.M.)

  13. Direct contact membrane distillation: Capability to desalt raw water

    Directory of Open Access Journals (Sweden)

    Ali Boubakri

    2017-05-01

    Full Text Available In this work, the potentialities of membrane distillation to desalt raw waters were investigated. The experiments were performed on a direct contact membrane distillation (DCMD unit using a flat sheet polypropylene (PP membrane with a low pore size of 0.064 μm. The effect of relevant operating parameters such as transmembrane temperature difference, hydrodynamic conditions and ionic strength on permeate flux and conductivity was studied. The results indicated that a permeate flux increases with increasing transmembrane temperature difference and Reynolds number, and slightly decreases with increasing ionic strength. The permeate flux reached 4.24 L/m2 h at a temperature difference of 60 °C and Reynolds number of 3740 and ionic strength of 8.56 × 10−2 M. DCMD process using PP with low pore size membrane present a very low salt passage through the membrane which was not affected by feed concentration. DCMD process has been applied during a long period to desalt raw water without any pretreatment. For brackish water, the variation of permeate flux and conductivity were slightly changed as function of operating time. For seawater, the permeate flux decreased slightly and the permeate conductivity increased sharply in which a simple pretreatment step is recommended to ameliorate the performance of DCMD process.

  14. Coolant cleanup method in a nuclear reactor

    International Nuclear Information System (INIS)

    Kubota, Masayoshi; Nishimura, Shigeoki; Takahashi, Sankichi; Izumi, Kenkichi; Motojima, Kenji.

    1983-01-01

    Purpose : To effectively adsorb to remove low molecular weight organic substances from iron exchange resins for use in the removal of various radioactive nucleides contained in reactor coolants. Method : Reactor coolants are recycled by a main recyling pump in a nuclear reactor and a portion of the coolants is cooled and, thereafter, purified in a coolant desalter. While on the other hand, high pressure steams generated from the reactor are passed through a turbine, cooled in a condensator, eliminated with claddings or the likes by the passage through a filtration desalter using powderous ion exchange resins and then further passed through a desalter (filled with granular ion exchange resins). For instance, an adsorption and removing device for organic substances (resulted through the decomposition of ion exchange resins) precoated with activated carbon powder or filled with granular activated carbon is disposed at the downstream for each of the desalters. In this way, the organic substances in the coolants are eliminated to prevent the reduction in the desalting performance of the ion exchange resins caused by the formation of complexes between organic substances and cobalt in the coolants, etc. In this way, the coolant cleanup performance is increased and the amount of wasted ion exchange resins can be decreased. (Horiuchi, T.)

  15. Nuclear Desalination Demonstration Project (NDDP) in India

    International Nuclear Information System (INIS)

    Tewari, P.K.; Misra, B.M.

    2001-01-01

    In order to gainfully employ the years of experience and expertise in various aspects of desalination activity, BARC (India) has undertaken installation of a hybrid nuclear desalination plant coupled to 170 MW(e) PHWR station at Kalpakkam, Chennai in the Southeast coast of India. The integrated system, called the Nuclear Desalination Demonstration Project (NDDP), will thus meet the dual needs of process water for nuclear power plant and drinking water for the neighbouring people. NDDP aims for demonstrating the safe and economic production of good quality water by nuclear desalination of seawater. It comprises a 4500 m 3 /d Multistage Flash (MSF) and a 1800 m 3 /d Reverse Osmosis (RO) plant. MSF section uses low pressure steam from Madras Atomic Power Station (MAPS), Kalpakkam. The objectives of the NDDP (Kalpakkam) are as follows: to establish the indigenous capability for the design, manufacture, installation and operation of nuclear desalination plants; to generate necessary design inputs and optimum process parameters for large scale nuclear desalination plant; to serve as a demonstration project to IAEA welcoming participation from interested member states. The hybrid plant is envisaged to have a number of advantages: a part of high purity desalted water produced from MSF plant will be used for the makeup demineralised water requirement (after necessary polishing) for the power station; blending of the product water from RO and MSF plants would provide requisite quality drinking water; the RO plant will continue to be operated to provide the water for drinking purposes during the shutdown of the power station

  16. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalick, S.; Jansen, P.; Kessler, G.; Klumpp, P.

    1980-08-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  17. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.; Jansen, P.; Kessler, G.; Klumpp, P.

    1981-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  18. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.

    1980-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrides are coupled to the breeders. The results also indicate that from a resource standpaint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  19. Desalting by crystallization: detection of attomole biomolecules in picoliter buffers by mass spectrometry.

    Science.gov (United States)

    Gong, Xiaoyun; Xiong, Xingchuang; Wang, Song; Li, Yanyan; Zhang, Sichun; Fang, Xiang; Zhang, Xinrong

    2015-10-06

    Sensitive detection of biomolecules in small-volume samples by mass spectrometry is, in many cases, challenging because of the use of buffers to maintain the biological activities of proteins and cells. Here, we report a highly effective desalting method for picoliter samples. It was based on the spontaneous separation of biomolecules from salts during crystallization of the salts. After desalting, the biomolecules were deposited in the tip of the quartz pipet because of the evaporation of the solvent. Subsequent detection of the separated biomolecules was achieved using solvent assisted electric field induced desorption/ionization (SAEFIDI) coupled with mass spectrometry. It allowed for direct desorption/ionization of the biomolecules in situ from the tip of the pipet. The organic component in the assistant solvent inhibited the desorption/ionization of salts, thus assured successful detection of biomolecules. Proteins and peptides down to 50 amol were successfully detected using our method even if there were 3 × 10(5) folds more amount of salts in the sample. The concentration and ion species of the salts had little influence on the detection results.

  20. Enrichment and desalting of tryptic protein digests and the protein depletion using boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Fischnaller, Martin; Köck, Rainer; Bakry, Rania, E-mail: rania.bakry@uibk.ac.at; Bonn, Günther K.

    2014-05-01

    Highlights: • Protein tryptic digests were desalted and enriched utilizing hexagonal boron nitride. • Phosphopeptides were desalted with high recovery rates. • Boron nitride exhibits high wettability allowing fast sample preparation. • Boron nitride shows protein depletion capability applied for peptide purification. - Abstract: Sample preparation still remains a great challenge in modern bioanalysis and the interest in new efficient solid phase extraction (SPE) materials still remains high. In this work, hexagonal boron nitride (h-BN) is introduced as a new SPE material for the isolation and enrichment of peptides. The h-BN is isoelectronic and structurally similar to graphite. It has remarkable properties including good thermal conductivity, excellent thermal and chemical stability and a better oxidation resistance than graphite. BN attracts increasing interest because of its wide range of applicability. In the present work, the great potential of h-BN, as a new SPE-material, on the enrichment, preconcentration and desalting of tryptic digest of model proteins is demonstrated. A special attention was dedicated to the efficient enrichment of hydrophilic phosphopeptides. Two elution protocols were developed for the enrichment of peptides compatible for subsequent MALDI-MS and ESI-MS analysis. In addition, the recoveries of 5 peptides and 3 phosphopeptides with wide range of pI values utilizing h-BN materials with different surface areas were investigated. 84–106% recovery rate could be achieved using h-BN materials. The results were compared with those obtained using graphite and silica C18 under the same elution conditions, and lower recoveries were obtained. In addition, h-BN was found to have a capability of protein depletion, which is requisite for the peptide profiling.

  1. Enrichment and desalting of tryptic protein digests and the protein depletion using boron nitride

    International Nuclear Information System (INIS)

    Fischnaller, Martin; Köck, Rainer; Bakry, Rania; Bonn, Günther K.

    2014-01-01

    Highlights: • Protein tryptic digests were desalted and enriched utilizing hexagonal boron nitride. • Phosphopeptides were desalted with high recovery rates. • Boron nitride exhibits high wettability allowing fast sample preparation. • Boron nitride shows protein depletion capability applied for peptide purification. - Abstract: Sample preparation still remains a great challenge in modern bioanalysis and the interest in new efficient solid phase extraction (SPE) materials still remains high. In this work, hexagonal boron nitride (h-BN) is introduced as a new SPE material for the isolation and enrichment of peptides. The h-BN is isoelectronic and structurally similar to graphite. It has remarkable properties including good thermal conductivity, excellent thermal and chemical stability and a better oxidation resistance than graphite. BN attracts increasing interest because of its wide range of applicability. In the present work, the great potential of h-BN, as a new SPE-material, on the enrichment, preconcentration and desalting of tryptic digest of model proteins is demonstrated. A special attention was dedicated to the efficient enrichment of hydrophilic phosphopeptides. Two elution protocols were developed for the enrichment of peptides compatible for subsequent MALDI-MS and ESI-MS analysis. In addition, the recoveries of 5 peptides and 3 phosphopeptides with wide range of pI values utilizing h-BN materials with different surface areas were investigated. 84–106% recovery rate could be achieved using h-BN materials. The results were compared with those obtained using graphite and silica C18 under the same elution conditions, and lower recoveries were obtained. In addition, h-BN was found to have a capability of protein depletion, which is requisite for the peptide profiling

  2. Nuclear energy for seawater desalination - options in future

    International Nuclear Information System (INIS)

    Yadav, M.K.; Murugan, V.; Balasubramaniyan, C.; Nagaraj, R.; Dangore, Y.

    2010-01-01

    Full text: With ever increasing water scarcity, many alternatives are being tried to supplement the existing water resources. There are regions where water is scarce and population is growing and is at the mercy of inadequate supplies. Seawater constitutes a practically unlimited source of saline water. When desalted, it can augment the existing potable water resources for the people in nearby area and also meet the increasing demand. BARC has been engaged in the field of desalination and developed expertise in both thermal and membrane technologies. It has setup 6300 M 3 /D Nuclear Desalination Demonstration Project (NDDP) at Kalpakkam, where both membrane and thermal technologies have been used for sea water desalination. Desalination process needs energy and nuclear energy is strong option in view of limited fossil fuels and environmental concerns. Multi Stage Flash (MSF) plant based on thermal technology has been coupled to MAPS Reactors and Sea Water Reverse Osmosis (SWRO) plant is based on membrane technology. This paper discusses various aspects of coupling of desalination plant with nuclear reactors and also discusses salient features of hybridization of thermal and membrane technologies

  3. Coupling of RO-MSF hybrid desalination plants with nuclear reactors

    International Nuclear Information System (INIS)

    Al-Sulaiman, Khalil; Al-Mutaz, Ibrahim S.

    1999-01-01

    Full text.Reverse osmosis (RO) and multistage flash (MSF) desalination are the most widely commercial available processes. MSF utilizes stream in the brine heater as a primary source of energy. RO is derived mainly by electricity that pumps the feed water against the mambranes. Steam and electricity and be produced easily by nuclear reactors. Nuclear reactors may be coupled with deslination plants (MSF, RO or combined (hybrid) RO/MSF configuration). This integrated plant will be capable of producing power and water at reasonable cost. The capital and operating cost will be reduced and the excess power can be efficiently utilized. Maintenance and operating cost will drop significantly. In this paper, a techno-economic study of hybrid reverses osmosis /multistage flash desalination will be carried. The proposed configuration (hybrid RO/MSF) coupled with nuclear reactor is considered the most appropriate candidate system for the application of dual-purpose nuclear desalination plants. the design parameters for such a desalination hybrid system will be the applied pressure and recovery for reverse osmosis plant and the number of stages and the heat transfer areas for multistage flash plant

  4. Resin regenerating device in condensate desalting system

    International Nuclear Information System (INIS)

    Sato, Yoshiaki; Igarashi, Hiroo; Oosumi, Katsumi; Nishimura, Yusaku; Ebara, Katsuya; Shindo, Norikazu.

    1984-01-01

    Purpose: To improve the accuracy in the separation of anionic and cationic exchange resins. Constitution: Resins transferred from a condensate desalting column are charged in a cationic exchange resin column. The temperature of water for separating and transferring the resins is measured by a temperature detector disposed in a purified water injection line, and water is adjusted to a suitable flow rate for the separation and transfer of the resins by an automatic flow rate control valve, and then is injected. The resins are separated into cationic exchange resins and anionic exchange resins, in which only the anionic exchange resins are transferred, through an anionic exchange transfer line, into an anionic exchange resin column. By controlling the flow rate depending on the temperature of the injected water, the developing rate of the resin layer is made constant to enable separation and transfer of the resins at high accuracy. (Seki, T.)

  5. Justification of the hybrid nuclear medicine examinations

    International Nuclear Information System (INIS)

    Garcheva-Tsacheva, Marina B.

    2015-01-01

    The annual frequency of nuclear medicine examinations is increasing worldwide. This is partly a consequence of the recently introduced single photon emission tomography, combined with computed tomography, and positron emission tomography, combined with computed tomography, techniques, which combine functional, metabolic and morphological information important for the diagnosis of many diseases. However, since the effective radiation dose is the sum of the dose of two components, the hybrid examinations result in increased patient exposure. Accordingly, their justification becomes mandatory. It starts with their clinical importance-the opportunity to resolve a clinical problem decisive for patients' management. Knowledge of the indications, contraindications and the examinations' limitations is the responsibility of the nuclear medicine physician, as well as the choice of the most adequate examination and protocol. In conclusion, the cost and the accessibility of the examinations should not be the principal consideration as opposed to the diagnostic value and the exposure. Flexible protocols and algorithms should be used for hybrid nuclear medicine examinations. (authors)

  6. Medium-size nuclear plants

    International Nuclear Information System (INIS)

    Vogelweith, L.; Lavergne, J.C.; Martinot, G.; Weiss, A.

    1977-01-01

    CEA (TECHNICATOME) has developed a range of pressurized water reactors of the type ''CAS compact'' which are adapted to civil ship propulsion, or to electric power production, combined possibly with heat production, up to outputs equivalent to 125 MWe. Nuclear plants equipped with these reactors are suitable to medium-size electric networks. Among the possible realizations, two types of plants are mentioned as examples: 1) Floating electron-nuclear plants; and 2) Combined electric power and desalting plants. The report describes the design characteristics of the different parts of a 125 MWe unit floating electro-nuclear plant: nuclear steam system CAS 3 G, power generating plant, floating platform for the whole plant. The report gives attention to the different possibilities according to site conditions (the plant can be kept floating, in a natural or artificial basin, it can be put aground, ...) and to safety and environment factors. Such unit can be used in places where there is a growing demand in electric power and fresh water. The report describes how the reactor, the power generating plant and multiflash distillation units of an electric power-desalting plant can be combined: choice of the ratio water output/electric power output, thermal cycle combination, choice of the gain ratio, according to economic considerations, and to desired goal of water output. The report analyses also some technical options, such as: choice of the extraction point of steam used as heat supply of the desalting station (bleeding a condensation turbine, or recovering steam at the exhaust of a backpressure turbine), design making the system safe. Lastly, economic considerations are dealt with: combining the production of fresh water and electric power provides usually a much better energy balance and a lower cost for both products. Examples are given of some types of installations which combine medium-size reactors with fresh water stations yielding from 10000 to 120000 m 3 per day

  7. Thermoresponsive Arrays Patterned via Photoclick Chemistry: Smart MALDI Plate for Protein Digest Enrichment, Desalting, and Direct MS Analysis.

    Science.gov (United States)

    Meng, Xiao; Hu, Junjie; Chao, Zhicong; Liu, Ying; Ju, Huangxian; Cheng, Quan

    2018-01-10

    Sample desalting and concentration are crucial steps before matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) analysis. Current sample pretreatment approaches require tedious fabrication and operation procedures, which are unamenable to high-throughput analysis and also result in sample loss. Here, we report the development of a smart MALDI substrate for on-plate desalting, enrichment, and direct MS analysis of protein digests based on thermoresponsive, hydrophilic/hydrophobic transition of surface-grafted poly(N-isopropylacrylamide) (PNIPAM) microarrays. Superhydrophilic 1-thioglycerol microwells are first constructed on alkyne-silane-functionalized rough indium tin oxide substrates based on two sequential thiol-yne photoclick reactions, whereas the surrounding regions are modified with hydrophobic 1H,1H,2H,2H-perfluorodecanethiol. Surface-initiated atom-transfer radical polymerization is then triggered in microwells to form PNIPAM arrays, which facilitate sample loading and enrichment of protein digests by concentrating large-volume samples into small dots and achieving on-plate desalting through PNIPAM configuration change at elevated temperature. The smart MALDI plate shows high performance for mass spectrometric analysis of cytochrome c and neurotensin in the presence of 1 M urea and 100 mM NaHCO 3 , as well as improved detection sensitivity and high sequence coverage for α-casein and cytochrome c digests in femtomole range. The work presents a versatile sample pretreatment platform with great potential for proteomic research.

  8. Dynamic performance analysis of two regional Nuclear Hybrid Energy Systems

    International Nuclear Information System (INIS)

    Garcia, Humberto E.; Chen, Jun; Kim, Jong S.; Vilim, Richard B.; Binder, William R.; Bragg Sitton, Shannon M.; Boardman, Richard D.; McKellar, Michael G.; Paredis, Christiaan J.J.

    2016-01-01

    In support of more efficient utilization of clean energy generation sources, including renewable and nuclear options, HES (hybrid energy systems) can be designed and operated as FER (flexible energy resources) to meet both electrical and thermal energy needs in the electric grid and industrial sectors. These conceptual systems could effectively and economically be utilized, for example, to manage the increasing levels of dynamic variability and uncertainty introduced by VER (variable energy resources) such as renewable sources (e.g., wind, solar), distributed energy resources, demand response schemes, and modern energy demands (e.g., electric vehicles) with their ever changing usage patterns. HES typically integrate multiple energy inputs (e.g., nuclear and renewable generation) and multiple energy outputs (e.g., electricity, gasoline, fresh water) using complementary energy conversion processes. This paper reports a dynamic analysis of two realistic HES including a nuclear reactor as the main baseload heat generator and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by their application in scenarios with multiple commodity production and high renewable penetration. It is performed for regional cases – not generic examples – based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses. - Highlights: • Hybrids including renewables can operate as dispatchable flexible energy resources. • Nuclear energy can address high variability and uncertainty in energy systems. • Nuclear hybrids can reliably provide grid services over various time horizons. • Nuclear energy can provide operating reserves and grid inertia under high renewables. • Nuclear hybrids can greatly reduce GHG emissions and support grid and industry needs.

  9. A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting

    International Nuclear Information System (INIS)

    Tang, Ling; Yu, Lean; Wang, Shuai; Li, Jianping; Wang, Shouyang

    2012-01-01

    Highlights: ► A hybrid ensemble learning paradigm integrating EEMD and LSSVR is proposed. ► The hybrid ensemble method is useful to predict time series with high volatility. ► The ensemble method can be used for both one-step and multi-step ahead forecasting. - Abstract: In this paper, a novel hybrid ensemble learning paradigm integrating ensemble empirical mode decomposition (EEMD) and least squares support vector regression (LSSVR) is proposed for nuclear energy consumption forecasting, based on the principle of “decomposition and ensemble”. This hybrid ensemble learning paradigm is formulated specifically to address difficulties in modeling nuclear energy consumption, which has inherently high volatility, complexity and irregularity. In the proposed hybrid ensemble learning paradigm, EEMD, as a competitive decomposition method, is first applied to decompose original data of nuclear energy consumption (i.e. a difficult task) into a number of independent intrinsic mode functions (IMFs) of original data (i.e. some relatively easy subtasks). Then LSSVR, as a powerful forecasting tool, is implemented to predict all extracted IMFs independently. Finally, these predicted IMFs are aggregated into an ensemble result as final prediction, using another LSSVR. For illustration and verification purposes, the proposed learning paradigm is used to predict nuclear energy consumption in China. Empirical results demonstrate that the novel hybrid ensemble learning paradigm can outperform some other popular forecasting models in both level prediction and directional forecasting, indicating that it is a promising tool to predict complex time series with high volatility and irregularity.

  10. Artificial Crab Burrows Facilitate Desalting of Rooted Mangrove Sediment in a Microcosm Study

    Directory of Open Access Journals (Sweden)

    Nathalie Pülmanns

    2015-07-01

    Full Text Available Water uptake by mangrove trees can result in salt accumulation in sediment around roots, negatively influencing growth. Tidal pumping facilitates salt release and can be enhanced by crab burrows. Similarly, flushing of burrows by incoming tidal water decreases sediment salinity. In contrast to burrows with multiple entrances, the role of burrows with one opening for salinity reduction is largely unknown. In a microcosm experiment we studied the effect of artificial, burrow-like macro-pores with one opening on the desalting of mangrove sediment and growth of Rhizophora mangle L. seedlings. Sediment salinity, seedling leaf area and seedling growth were monitored over six months. Artificial burrows facilitated salt release from the sediment after six weeks, but seedling growth was not influenced. To test whether crab burrows with one opening facilitate salt release in mangrove forests, sediment salinities were measured in areas with and without R. mangle stilt roots in North Brazil at the beginning and end of the wet season. In addition, burrows of Ucides cordatus were counted. High crab burrow densities and sediment salinities were associated with stilt root occurrence. Precipitation and salt accumulation by tree roots seem to have a larger effect on sediment salinity than desalting by U. cordatus burrows.

  11. Coupling technology for dual-purpose nuclear-desalting plants

    International Nuclear Information System (INIS)

    Jones, J.E. Jr.; Anderson, T.D.; Reed, S.A.

    1976-11-01

    Although the basic technology for the various components of nuclear dual-purpose plants is reasonably well developed, the techniques of coupling the elements together to form a reliable, economical system that will satisfy the diverse operating requirements are not well established. The purpose of the study reported is to examine the technical, economic, and safety considerations in coupling nuclear power plants with distillation units to form a dual-purpose power and water distillation plant. The basic coupling arrangement required to provide a large-scale dual-purpose water plant is to supply steam to the water plant from the exhaust of a back-pressure turbine. The principal component at the interface that may require major research and development is the back-pressure turbine. To satisfy the operational requirements, two major auxiliary systems will be needed. These are: (1) a prime-steam bypass system, and (2) auxiliary condensers. These systems will provide a degree of independence between water and power production and can be justified economically

  12. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  13. Nuclear Hybrid Energy Systems Regional Studies: West Texas & Northeastern Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deason, Wesley R [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vilim, Richard B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [[NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases not generic examples based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  14. Reprocessing free nuclear fuel production via fusion fission hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike, E-mail: mtk@mail.utexas.edu [Intitute for Fusion Studies, University of Texas at Austin (United States); Valanju, Prashant; Mahajan, Swadesh [Intitute for Fusion Studies, University of Texas at Austin (United States)

    2012-05-15

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively 'new' cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th{sup 232}-U{sup 233} conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO{sub 2} matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U{sup 235} fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  15. Reprocessing free nuclear fuel production via fusion fission hybrids

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Mahajan, Swadesh

    2012-01-01

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively “new” cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th 232 –U 233 conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO 2 matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U 235 fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  16. The real cost of desalted water and how to reduce it further

    International Nuclear Information System (INIS)

    Nisan, S.; Blank, J.E.; Tusel, G.F.

    2007-01-01

    Freshwater scarcity on a worldwide level is now a burning problem, widely discussed in media inter-views and in major newspapers. In this context, the majority of the media are underlining the importance of seawater desalination as an attractive and logical alternative source to fight the freshwater scarcity. Unfortunately the majority of all these discussions are providing a totally wrong picture of the real cost of freshwater production from seawater. Figures for desalted water costs from below 0.25 Euro/m 3 to over 0.6 Euro/m 3 for large-scale realisation are frequently quoted. In some media, however, the costs given for desalted water production are too prohibitive for large-scale applications. Many so-called experts are enhancing the confusion with incorrect or in incomplete statements. Even simple considerations, such as water cost ex desalination plant vs. water cost at consumer tap, are neglected. Yet another neglected point is that freshwater of any kind is either highly subsidized or overpriced to finance costs which are not water-related costs. Even in the EU Commission the real cost of seawater desalination is sometimes incorrectly perceived. In principle, the calculation of specific freshwater cost is simple and based on a few clear parameters such as investment cost for a given desalting capacity, energy cost, cost for distribution, amortization period and concept, financing cost, inflation rate, operation and maintenance cost and, last but not least, plant availability and lifetime. A typical example to illustrate the reigning confusion is the primary energy cost. Today, the barrel of crude oil costs in the world market approximately 70 US dollars or more. However, many tenders or BOT projects compare the water and energy cost on a 5 US dollars/barrel level. With this energy cost level and other unrealistic conditions even old-fashioned, low-GOR MSF plant can produce freshwater for a nominal cost of 0.60 Euro/m 3 . With today's world-market prices

  17. Simulations for the transmutation of nuclear wastes with hybrid reactors

    International Nuclear Information System (INIS)

    Vuillier, St.

    1998-06-01

    A Monte Carlo simulation, devoted to the spallation, has been built in the framework of the hybrid systems proposed for the nuclear wastes incineration. This system GSPARTE, described the reactions evolution. It takes into account and improves the nuclear codes and the low and high energy particles transport in the GEANT code environment, adapted to the geometry of the hybrid reactors. Many applications and abacus useful for the wastes transmutation, have been realized with this system: production of thick target neutrons, source definition, material damages. (A.L.B.)

  18. Nuclear-Renewable Hybrid Energy System Market Analysis Plans

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2016-06-09

    This presentation describes nuclear-renewable hybrid energy systems (N-R HESs), states their potential benefits, provides figures for the four tightly coupled N-R HESs that NREL is currently analyzing, and outlines the analysis process that is underway.

  19. Role of a hybrid (fusion--fission) reactor in a nuclear economy

    International Nuclear Information System (INIS)

    Wolkenhauer, W.C.

    1974-01-01

    Some of the hybrid concepts which have been proposed to date are separated into groups according to their apparent neutronic characteristics. An attempt is made to identify these hybrid groups with two possible roles in a nuclear economy. An analysis is made to see if there is enough current information to determine which hybrid concepts appear most promising when assigned to these roles. (U.S.)

  20. Nuclear Hybrid Energy Systems - Regional Studies. West Texas and Northeastern Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deason, Wesley R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vilim, Richard B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases - not generic examples - based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  1. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  2. Study of the Utilization BWR Type Nuclear Power Reactor for Desalination Process

    International Nuclear Information System (INIS)

    Itjeu Karliana; Sumijanto; Dhandhang Purwadi, M.

    2008-01-01

    The needs of fresh water increased by rapid population growth and industrials expansion, but these demands can not be prepared naturally. Following this case, seawater desalination becomes the primer option which can fulfill the need through the nuclear desalination technology. The coupled nuclear power reactor enables to supply thermal energy for auxiliary equipment and pumps operation. The utilization study of power reactor type BWR coupled with desalination process has been performed. The goal of study is to obtain characteristic data of desalted water specification which desalination system coupling with nuclear power plant produced energy for desalination process. The study is carried out by browsing data and information, and comprehensive review of thermal energy correlation between NPP with desalination process installation. According to reviewing are found that the thermal energy and electric power utilization from the nuclear power reactor are enable to remove the seawater to produce desalted water and also to operate auxiliary equipments. The assessment results is VK-300 reactor prototype, BWR type 250 MW(e) power are cogeneration unit can supplied hot steam temperature 285 °C to the extraction turbine to empower 150 MW electric power, and a part of hot steam 130 °C is use to operate desalination process and remind heat is distribute to the municipal and offices at that region. The coupled of VK-300 reactor power type BWR with desalination installation of MED type enable to produce desalted water with high quality distillate. Based on the economic calculation that the VK-300 reactor power of BWR type produced water distillate capacity is 300.000 m 3 /hour with cost US$ 0.58/m 3 . The coupling VK-300 reactor power type BWR with MED desalination plant is competitive economically. (author)

  3. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  4. Hybrid systems to address seasonal mismatches between electricity production and demand in nuclear renewable electrical grids

    International Nuclear Information System (INIS)

    Forsberg, Charles

    2013-01-01

    A strategy to enable zero-carbon variable electricity production with full utilization of renewable and nuclear energy sources has been developed. Wind and solar systems send electricity to the grid. Nuclear plants operate at full capacity with variable steam to turbines to match electricity demand with production (renewables and nuclear). Excess steam at times of low electricity prices and electricity demand go to hybrid fuel production and storage systems. The characteristic of these hybrid technologies is that the economic penalties for variable nuclear steam inputs are small. Three hybrid systems were identified that could be deployed at the required scale. The first option is the gigawatt-year hourly-to-seasonal heat storage system where excess steam from the nuclear plant is used to heat rock a kilometer underground to create an artificial geothermal heat source. The heat source produces electricity on demand using geothermal technology. The second option uses steam from the nuclear plant and electricity from the grid with high-temperature electrolysis (HTR) cells to produce hydrogen and oxygen. Hydrogen is primarily for industrial applications; however, the HTE can be operated in reverse using hydrogen for peak electricity production. The third option uses variable steam and electricity for shale oil production. -- Highlights: •A system is proposed to meet variable hourly to seasonal electricity demand. •Variable solar and wind electricity sent to the grid. •Base-load nuclear plants send variable steam for electricity and hybrid systems. •Hybrid energy systems can economically absorb gigawatts of variable steam. •Hybrid systems include geothermal heat storage, hydrogen, and shale-oil production

  5. Summary Report of the INL-JISEA Workshop on Nuclear Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Antkowiak, M.; Ruth, M.; Boardman, R.; Bragg-Sitton, S.; Cherry, R.; Shunn, L.

    2012-07-01

    The Institute for Nuclear Energy Science and Technology (INEST) and the Joint Institute for Strategic Energy Analysis (JISEA) co-sponsored an international workshop to identify research topics important in advancing the potential use of hybrid systems with a specific focus on nuclear-renewable hybrid systems. The workshop included presentations ranging from energy challenges and research and development directions being pursued by nations to multiple options for hybrid systems. Those options include one that is being commercialized to other opportunities and analysis results quantifying them. The workshop also involved two breakout sessions--one focused on thermal energy management issues especially at unit-operation scale and the second focused on system operations issues including system controls, regulatory issues, technical and economic analysis, and market challenges. A discussion involving the full group focused on more general issues such as societal involvement and participation. Key criteria for selecting hybrid energy system projects and metrics for comparing them were also identified by the full group.

  6. Nuclear DNA content of the hybrid plant pathogen Phytophthora andina determined by flow cytometry.

    Science.gov (United States)

    Wang, Jianan; Presser, Jackson W; Goss, Erica M

    2016-09-01

    Phytophthora andina is a heterothallic plant pathogen of Andean solanaceous hosts and is an interspecific hybrid of P. infestans and an unknown Phytophthora species. The objective of this study was to estimate the nuclear DNA content of isolates in three clonal lineages of P. andina relative to P. infestans Twelve isolates of P. andina and six isolates of P. infestans were measured for nuclear DNA content by propidium iodide-stained flow cytometry. We found that the DNA content of P. andina was similar but slightly smaller, on average, than that of our sample of P. infestans isolates. This is consistent with P. andina being a homoploid hybrid rather than allopolyploid hybrid. Nuclear DNA content was more variable among a smaller sample of P. infestans isolates, including a putative triploid isolate from Mexico, but small differences in nuclear DNA content were also observed among P. andina isolates. Both species appear to be able to tolerate significant variation in genome size. © 2016 by The Mycological Society of America.

  7. Hybrid imaging, PET-CT and SPECT-CT: What impact on nuclear medicine education and practice in France?

    International Nuclear Information System (INIS)

    Mundler, O.

    2009-01-01

    To define the policy of our specialty with a consensus opinion, a questionnaire entitled 'hybrid imaging' was sent to practicing nuclear medicine specialist physicians in France to obtain their opinion on the impact of this recent method in training and in the practice of nuclear medicine and on the relations between nuclear medicine specialists and other medical imaging specialists. This questionnaire, written by the office of the French Society of Nuclear Medicine (F.S.N.M.) and molecular imaging, was divided into four parts: Profile and experience in hybrid imaging, Relations with radiologists, Practice of CT scans with hybrid equipment, and the Future of the specialty and of training in nuclear medicine. The response rate was 60%, i.e. 374 completed questionnaires. Overall, the responses were uniform, whatever the respondent's experience, type and place of practice. Regular participation in hybrid imaging practice was the reply provided by the majority of respondents. In terms of relations with radiologists, such contacts existed in over 85% of cases and are considered as being of high quality in over 90% of cases. The vast majority of practitioners believe that hybrid imaging will become the standard. Opinions on the diagnostic use of CT scans are divided, as well as their interpretation by a radiologist, a nuclear medicine specialist or by both. In the opinion of the vast majority, hybrid equipment systems should be managed by nuclear medicine specialists. With regard to the future, nuclear medicine should remain an independent specialty with enhanced training in morphological imaging and a residency training program whose length should be increased to 5 years. (author)

  8. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  9. Innovative configuration of a hybrid nuclear-solar tower power plant

    International Nuclear Information System (INIS)

    Popov, Dimityr; Borissova, Ana

    2017-01-01

    This paper proposes a combination of a nuclear and a CSP plant and performs a thermodynamic analysis of the potential benefit. Most of today's operating nuclear reactor systems are producing saturated steam at relatively low pressure. This, in turn, limits their thermodynamic efficiency. Superheating of nuclear steam with solar thermal energy has the potential to overcome this drawback. Accordingly, an innovative configuration of a hybrid nuclear-CSP plant is assembled and simulated. It brings together pressurized water reactor and solar tower. The solar heat is transferred to nuclear steam to raise its temperature. Continuous superheating is provided through thermal energy storage. The results from design point calculations show that solar superheating has the potential to increase nuclear plant electric efficiency significantly, pushing it to around 37.5%. Solar heat to electricity conversion efficiency reaches unprecedented rates of 56.2%, approaching the effectiveness of the modern combined cycle gas turbine plants. Off-design model was used to simulate 24-h operation for one year by simulating 8760 cases. Due to implementation of thermal energy storage non-stop operation is manageable. The increased efficiency leads to solar tower island installed cost reductions of up to 25% compared to the standalone CSP plant, particularly driven by the smaller solar field. - Highlights: • External superheating of nuclear steam with solar thermal energy is proposed. • Novel hybrid plant configuration is assembled, modeled and simulated. • Substantial increase of nuclear plant capacity and efficiency is reported. • Superior efficiency of solar heat to electricity conversion is achieved. • Substantial decrease of solar field investment cost is reported.

  10. Feasibility of waste to Bio-diesel production via Nuclear-Biomass hybrid model. System dynamics analysis

    International Nuclear Information System (INIS)

    Nam, Hoseok; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    Nuclear-Biomass hybrid system which takes waste biomass from municipal, agricultural area, and forest as feedstock produces Bio-diesel fuel from synthesis gas generated by endothermic pyrolytic gasification using high temperature nuclear heat. Over 900 degree Celsius of exterior thermal heat from nuclear reactors, Very High Temperature Reactor (VHTR) and some other heat sources, bring about waste biomass gasification to produce maximum amount of chemical energy from feedstock. Hydrogen from Biomass gasification or Bio-diesel as the product of Fischer-Tropsch reaction following it provide fuels for transport sector. Nuclear-Biomass hybrid system is a new alternatives to produce more energy generating synergy effects by efficiently utilizing the high temperature heat from nuclear reactor that might be considerably wasted by thermal cycle, and also energy loss from biomass combustion or biochemical processes. System Dynamics approach is taken to analyze low-carbon synthesis fuel, Bio-diesel, production with combination of carbon monoxide and hydrogen from biomass gasification. Feedstock cost considering collection, transportation, storage and facility for biomass gasification impacts the economic feasibility of this model. This paper provides the implication of practical nuclear-biomass hybrid system application with feedstock supply chain through evaluation of economic feasibility. (author)

  11. Species delineation and hybrid identification using diagnostic nuclear markers for Plectropomus leopardus and Plectropomus maculatus

    KAUST Repository

    He, Song

    2018-06-01

    Diagnostic molecular markers are an essential tool in the study of species’ ecology and evolution, particularly in closely related and sympatric species. Furthermore, the increasing awareness of wild-hybrids has led to a renewed interest in rapid diagnostic assays. Here, we test the ability of two mitochondrial (Cytb and COI) and two nuclear markers (ETS2 and TMO-4c4) to confidently discriminate purebred P. leopardus and P. maculatus and their first-generation hybrids. A sample of 48 purebred individuals and 91 interspecific hybrids were used in this study and their delineation confirmed using a set of microsatellite markers. Our results indicate mitochondrial markers could not distinguish even between species but both nuclear markers confidently identified species and first-generation hybrids. However, later-generation hybrids could not always be confidently identified due to on-going introgression between species. Our findings provide a robust tool to distinguish purebred individuals and interspecific hybrids in a pair of species with an unexpectedly high incidence of hybridization. The quick species discrimination abilities provided by these diagnostic markers are important for stock assessment and recruitment studies of these important fishery species.

  12. Species delineation and hybrid identification using diagnostic nuclear markers for Plectropomus leopardus and Plectropomus maculatus

    KAUST Repository

    He, Song; Harrison, Hugo B.; Berumen, Michael L.

    2018-01-01

    Diagnostic molecular markers are an essential tool in the study of species’ ecology and evolution, particularly in closely related and sympatric species. Furthermore, the increasing awareness of wild-hybrids has led to a renewed interest in rapid diagnostic assays. Here, we test the ability of two mitochondrial (Cytb and COI) and two nuclear markers (ETS2 and TMO-4c4) to confidently discriminate purebred P. leopardus and P. maculatus and their first-generation hybrids. A sample of 48 purebred individuals and 91 interspecific hybrids were used in this study and their delineation confirmed using a set of microsatellite markers. Our results indicate mitochondrial markers could not distinguish even between species but both nuclear markers confidently identified species and first-generation hybrids. However, later-generation hybrids could not always be confidently identified due to on-going introgression between species. Our findings provide a robust tool to distinguish purebred individuals and interspecific hybrids in a pair of species with an unexpectedly high incidence of hybridization. The quick species discrimination abilities provided by these diagnostic markers are important for stock assessment and recruitment studies of these important fishery species.

  13. Nuclear Hybrid Energy Systems Initial Integrated Case Study Development and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US Department of Energy Office of Nuclear Energy established the Nuclear Hybrid Energy System (NHES) project to develop a systematic, rigorous, technically accurate set of methods to model, analyze, and optimize the integration of dispatchable nuclear, fossil, and electric storage with an industrial customer. Ideally, the optimized integration of these systems will provide economic and operational benefits to the overall system compared to independent operation, and it will enhance the stability and responsiveness of the grid as intermittent, nondispatchable, renewable resources provide a greater share of grid power.

  14. Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Wu

    Full Text Available BACKGROUND: Type I insulin-like growth factor receptor (IGF-1R and insulin receptor (INSR are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R. The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium. METHODOLOGY/PRINCIPLE FINDINGS: IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways. CONCLUSION/SIGNIFICANCE: In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic

  15. Mars mission performance enhancement with hybrid nuclear propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, J. E. [Pacific Northwest Lab., Richland, WA (United States); Noffsinger, K. E. [Pacific Northwest Lab., Richland, WA (United States); Segna, D. R. [USDOE Richland Operations Office, WA (United States)

    1992-01-01

    Nuclear electric propulsion (NEP), compared with chemical and nuclear thermal propulsion (NTP), can effectively deliver the same mass to Mars using much less propellant, consequently requiring less mass delivered to Earth orbit. The lower thrust of NEP requires a spiral trajectory near planetary bodies, which significantly increases the travel time. Although the total travel time is long, the portion of the flight time spent during interplanetary transfer is shorter, because the vehicle is thrusting for much longer periods of time. This has led to the supposition that NEP, although very attractive for cargo missions, is not suitable for piloted missions to Mars. However, with the application of a hybrid application of a hybrid approach to propulsion, the benefits of NEP can be utilized while drastically reducing the overall travel time required. Development of a dual-mode system, which utilizes high-thrust NTP to propel the spacecraft from the planetary gravitational influence and low-thrust NEP to accelerate in interplanetary space, eliminates the spiral trajectory and results in a much faster transit time than could be obtained by either NEP or NTP alone. This results in a mission profile with a lower initial mass in low Earth orbit. In addition, the propulsion system would have the capability to provide electrical power for mission applications.

  16. Dehydration and desalting of heavy crude Maya into the TMDB by means of tanks of storage of 500 TB converted to type gun-barrel

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros, L.F.L.; Abundes, A.A.; Aguinaga, C.A.L.; Monroy, J.D.A.; Jimenez, R.M.; Sanchez, M.R.; Medina, J.L.H.; Vazquez, J.V.; Montano, A.E.G.; Villanueva, A.G.; Moreno, W.N.C.; Maria, G.B.; Mendez, J.L.J.; Cordero, E.D.; Ponce, F.C.; Estrada, C.D.; Azuara, V.H.C. [Petroleos Mexicanos, PEMEX, Mexico City (Mexico)

    2009-07-01

    When crude oil emerges from the production well, it is polluted with congenital waters and in some cases with sea water. These waters can be present as free water or emulsified. When the water reaches the surface, the free water is eliminated by sedimentation. However, the reduction of emulsified water is not directly due to the stability presented by the drops of emulsified water in the crude, therefore chemical injection for the separation of both phases is required. This paper discussed the design of a system for dehydration and desalting of 750 TBD Maya heavy crude, by means of tanks type gun-barrel. The design was performed using the simulation packages HYSYS and computational fluid dynamics of ANSYS, considering the parameters that were studied in bottle tests and profiled in tanks storage of 500 TB. The design was based on the settling speed that affects the dehydration and desalting of crude. The paper discussed the production facilities used in the crude dehydration, with particular reference to the gun barrel tank; washer tank; heat treater tanks; free water separator; and electrostatic separator. The development of the system was described in terms of data compilation using Stokes' Law and interpretation of the field data using bottle tests. It was concluded that the gun barrel train was the best option to dehydrate and desalt Mayan oil in the TMDB, since this processing system takes advantage of the existing facilities, specifically the storage tanks of 500 TB capacity. 16 refs., 5 tabs., 5 figs.

  17. Saudi Arabia a technically developing country and the question of introducing nuclear power during 1980-2000

    International Nuclear Information System (INIS)

    Melibary, A.R.

    1980-07-01

    In this investigation, the possibility of introducing nuclear power during 1980-2000 to the oil exporting country Saudi Arabia is examined in view of generating the required electricity and desalted water during this period by using the nuclear fuels uranium and thorium. The investigation is carried out in a general framework by means of coupling the prevailing conditions in the country with the special requirements of the nuclear power industry in areas as the grid size, fuel cycle material demand and cost, and siting conditions. (orig.) [de

  18. Transient behaviour and coupling aspects of a hybrid MSF-RO nuclear desalination plant

    International Nuclear Information System (INIS)

    Tewari, P.K.; Misra, B.M.

    1998-01-01

    BARC is setting up a 6300 M 3 /day (1.4 MGD) hybrid MSF-RO nuclear desalination plant for sea water desalination at Madras Atomic Power Station (MAPS) coupled to a 170 MWe Pressurised Heavy Water Reactor (PHWR). The transient behaviour and coupling aspects of this dual purpose plant has been discussed. A hybrid desalination plant appears to offer high availability factor. (author)

  19. An On-Target Desalting and Concentration Sample Preparation Protocol for MALDI-MS and MS/MS Analysis

    DEFF Research Database (Denmark)

    Zhang, Xumin; Wang, Quanhui; Lou, Xiaomin

    2012-01-01

    2DE coupled with MALDI-MS is one of the most widely used and powerful analytic technologies in proteomics study. The MALDI sample preparation method has been developed and optimized towards the combination of simplicity, sample-cleaning, and sample concentration since its introduction. Here we...... present a protocol of the so-called Sample loading, Matrix loading, and on-target Wash (SMW) method which fulfills the three criteria by taking advantage of the AnchorChip™ targets. Our method is extremely simple and no pre-desalting or concentration is needed when dealing with samples prepared from 2DE...

  20. Impact of RO-desalted water on distribution water qualities.

    Science.gov (United States)

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  1. Hybrid nuclear cycles for nuclear fission sustainability

    International Nuclear Information System (INIS)

    Piera, M.; Martinez-Val, M. M.

    2007-01-01

    resources could be exploited with such a cycle, using very safe reactors. This percentage is much higher than the actual value for the once-through cycle (0.5 %) and the value for multiple Pu recycling in the MOX scheme (1 %). Moreover, thorium could also be exploited through fertile conversion into U-233 in the subcritical breeders. The separation between energy production (to be done in LWR) and nuclear breeding (to be done in subcritical hybrids) presents a scenario with very appealing safety features and a high potential for an efficient utilization of all natural resources of uranium and thorium, that account for 10 2 4 J, i.e., 25 Gtoe, which is 35,000 times as large as the annual production of Nuclear Energy nowadays, and about 2,500 times as large as the total annual energy consumption all over the globe

  2. Quark-nuclear hybrid star equation of state with excluded volume effects

    Science.gov (United States)

    Kaltenborn, Mark Alexander Randolph; Bastian, Niels-Uwe Friedrich; Blaschke, David Bernhard

    2017-09-01

    A two-phase description of the quark-nuclear matter hybrid equation of state that takes into account the effect of excluded volume in both the hadronic and the quark-matter phases is introduced. The nuclear phase manifests a reduction of the available volume as density increases, leading to a stiffening of the matter. The quark-matter phase displays a reduction of the effective string tension in the confining density functional from available volume contributions. The nuclear equation of state is based upon the relativistic density-functional model DD2 with excluded volume. The quark-matter equation of state is based upon a quasiparticle model derived from a relativistic density-functional approach and will be discussed in greater detail. The interactions are decomposed into mean scalar and vector components. The scalar interaction is motivated by a string potential between quarks, whereas the vector interaction potential is motivated by higher-order interactions of quarks leading to an increased stiffening at high densities. As an application, we consider matter under compact star constraints of electric neutrality and β equilibrium. We obtain mass-radius relations for hybrid stars that form a third family, disconnected from the purely hadronic star branch, and fulfill the 2 M⊙ constraint.

  3. The UK approach to desalination and nuclear power dual purpose operation

    International Nuclear Information System (INIS)

    Pugh, O.

    1974-01-01

    Nuclear desalination is a particular example of dual purpose operation and the majority of desalting units installed around the world are operated in this way. A nuclear dual purpose concept has to be very large if present economic reactor designs are utilised. It is the size which has defeated the concept to date. Present fossil fired dual purpose installations are either in an economic situation (generally low fuel cost) where the inefficiencies introduced by operating away from the optimum water/power ratio are acceptable or, if optimised, the water and power blocks are small enough to allow introduction into the existing utility networks. As part of the United Kingdom, Water Resources Board (WRB) report 'Desalination 1972' the Central Electricity Generating Board (CEGB) and WRB identified nine coastal sites in the United Kingdom where nuclear power stations might be built during the next 15 years. The difficulties of dual purpose operation were recognised in the report, including additional water storage to cover the summer shutdown (turbine overhaul) period, modification of station design to facilitate the extraction of steam, etc. More seriously, as a given power station had higher fuelling costs relative to the newer station, the electrical utility might require compensation for continuing to operate it because of the associated desalting plant. Taking account of these factors and the replacement of the lost electricity production from other, maybe less efficient stations on the system

  4. CAS medium-size nuclear plants

    International Nuclear Information System (INIS)

    Vogelweith, L.; Weiss, A.

    1977-01-01

    CEA has developed a range of pressurized water reactors of the type CAS Compact, which are adapted to civil ship propulsion, or to electric power production, combined possibly with heat production, up to outputs equivalent to 125MW(e). Nuclear plants equipped with these reactors are suitable for medium-size electric networks, especially in developing countries, because they are easily adaptable, owing to their flexibility; they can be installed and used in a variety of ways (on land, floating installation, combination of electric power and other production, etc.); they can be used as training reactors by countries wishing to limit their investment plans before undertaking a wider nuclear development. Examples of two possible realizations are presented: as a floating plant, and as a combined electric and desalting plant. (author)

  5. Hybrid microcircuits for nuclear instrumentation

    International Nuclear Information System (INIS)

    Kulkarni, R.G.

    2005-01-01

    Hybrid microcircuits (HMCs) have distinct advantages over their rival products like printed circuit boards (PCBs) and integrated circuits (ICs), and are able to survive the onslaught of Moore's law, by retaining the niche market for themselves. The ASIC development cost is normally huge and when the volumes are small (less than ten thousand or so), the prohibitively high unit cost deters the potential customers. However the HMCs can be developed at a small fraction of an ASIC development cost and thus they are attractive when the volumes are small, as in the case of professional electronics industries like defense, broadcast, or instrumentation industries. The hybrid microcircuit (HMC) technology can involve one of the two processes: thick-film and thin- film. Broadly the thick-film process consists of printing and firing of, conductor and resistor pastes, on an Alumina substrate. The thin-film process consists of photo lithographic etching of, conductor and resistor patterns, on a metal/resistor sputtered high purity Alumina substrate. The active devices, either in die-form or in surface-mount form, are attached to the thick-film or the thin-film substrate. The passive devices like chip inductors and chip capacitors are also attached to the substrate. This paper discusses in detail the thick-film and the thin-film processes and their relative merits and demerits. The associated qualification and screening procedures followed to provide reliable HMCs to the customer are described. The existing HMC facilities and the product range available in Bharat Electronics including the HMCs developed for nuclear instrumentation are presented. (author)

  6. Co-generation project for the Combined Cycle Power Plant President Juarez Rosarito and a reverse osmosis desalting plant; Proyecto de cogeneracion para la planta de ciclo combinado Presidente Juarez Rosarito y una planta desaladora de osmosis inversa

    Energy Technology Data Exchange (ETDEWEB)

    Beltran Mora, Hector; Espindola Hernandez, Salvador [Universidad NAcional Autonoma de Mexico (UNAM), Mexico, D.F. (Mexico)

    2006-11-15

    In this work a technical and economical analysis of the installation of a reverse osmosis desalting plant connected to a power station that uses the combined cycle technology under a co-generation scheme is presented: production of electricity and water. The operation program of the desalting power station will be determined by the demand of energy of the combined cycle power station; the proposal is that the desalting plant operates in the hours of low load of the power station and shuts down at the peak hours of electrical energy demand. So that this study is representative, the demand curves of electric energy of the units of combined cycle of Central President Juarez Rosarito of the Comision Federal de Electricidad (CFE) have been taken and updated the data of the reverse osmosis desalting plants that are available at the moment in the market. As basis of the study the level costs will be determined so much as the electrical energy generated by the power station of combined cycle, operating inside and outside of a co-generation scheme and the costs made level for the water produced by the reverse osmosis plant under two assumptions: the first one is buying the electrical energy from CFE and the second one considering that the CFE is the owner of the desalting plant and therefore the cost of electrical energy to desalting the plant is zero. This work shows the economic impacts on the costs of the generation of electrical energy and on those of the desalted water in a co-generation scheme. The results shown in this study can be considered for the future planning in the construction of desalting plants to supply of water in the Northwestern zones of the country where serious problems of water shortage exist. [Spanish] En este trabajo se presenta un analisis tecnico y economico de la instalacion de una planta desaladora de osmosis inversa acoplada a una central de generacion de energia electrica que utiliza la tecnologia de ciclo combinado bajo un esquema de

  7. Hybrid particle swarm optimization algorithm and its application in nuclear engineering

    International Nuclear Information System (INIS)

    Liu, C.Y.; Yan, C.Q.; Wang, J.J.

    2014-01-01

    Highlights: • We propose a hybrid particle swarm optimization algorithm (HPSO). • Modified Nelder–Mead simplex search method is applied in HPSO. • The algorithm has a high search precision and rapidly calculation speed. • HPSO can be used in the nuclear engineering optimization design problems. - Abstract: A hybrid particle swarm optimization algorithm with a feasibility-based rule for solving constrained optimization problems has been developed in this research. Firstly, the global optimal solution zone can be obtained through particle swarm optimization process, and then the refined search of the global optimal solution will be achieved through the modified Nelder–Mead simplex algorithm. Simulations based on two well-studied benchmark problems demonstrate the proposed algorithm will be an efficient alternative to solving constrained optimization problems. The vertical electrical heating pressurizer is one of the key components in reactor coolant system. The mathematical model of pressurizer has been established in steady state. The optimization design of pressurizer weight has been carried out through HPSO algorithm. The results show the pressurizer weight can be reduced by 16.92%. The thermal efficiencies of conventional PWR nuclear power plants are about 31–35% so far, which are much lower than fossil fueled plants based in a steam cycle as PWR. The thermal equilibrium mathematic model for nuclear power plant secondary loop has been established. An optimization case study has been conducted to improve the efficiency of the nuclear power plant with the proposed algorithm. The results show the thermal efficiency is improved by 0.5%

  8. Interspecies introgressive hybridization in spiny frogs Quasipaa (Family Dicroglossidae) revealed by analyses on multiple mitochondrial and nuclear genes.

    Science.gov (United States)

    Zhang, Qi-Peng; Hu, Wen-Fang; Zhou, Ting-Ting; Kong, Shen-Shen; Liu, Zhi-Fang; Zheng, Rong-Quan

    2018-01-01

    Introgression may lead to discordant patterns of variation among loci and traits. For example, previous phylogeographic studies on the genus Quasipaa detected signs of genetic introgression from genetically and morphologically divergent Quasipaa shini or Quasipaa spinosa . In this study, we used mitochondrial and nuclear DNA sequence data to verify the widespread introgressive hybridization in the closely related species of the genus Quasipaa , evaluate the level of genetic diversity, and reveal the formation mechanism of introgressive hybridization. In Longsheng, Guangxi Province, signs of asymmetrical nuclear introgression were detected between Quasipaa boulengeri and Q. shini . Unidirectional mitochondrial introgression was revealed from Q. spinosa to Q. shini . By contrast, bidirectional mitochondrial gene introgression was detected between Q. spinosa and Q. shini in Lushan, Jiangxi Province. Our study also detected ancient hybridizations between a female Q. spinosa and a male Q. jiulongensis in Zhejiang Province. Analyses on mitochondrial and nuclear genes verified three candidate cryptic species in Q. spinosa , and a cryptic species may also exist in Q. boulengeri . However, no evidence of introgressive hybridization was found between Q. spinosa and Q. boulengeri . Quasipaa exilispinosa from all the sampling localities appeared to be deeply divergent from other communities. Our results suggest widespread introgressive hybridization in closely related species of Quasipaa and provide a fundamental basis for illumination of the forming mechanism of introgressive hybridization, classification of species, and biodiversity assessment in Quasipaa .

  9. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    International Nuclear Information System (INIS)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode

  10. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  11. Genetic basis to hybrid inviability is more complex than hybrid male sterility in Caenorhabditis nematodes.

    Science.gov (United States)

    Bundus, Joanna D; Wang, Donglin; Cutter, Asher D

    2018-04-07

    Hybrid male sterility often evolves before female sterility or inviability of hybrids, implying that the accumulation of divergence between separated lineages should lead hybrid male sterility to have a more polygenic basis. However, experimental evidence is mixed. Here, we use the nematodes Caenorhabditis remanei and C. latens to characterize the underlying genetic basis of asymmetric hybrid male sterility and hybrid inviability. We demonstrate that hybrid male sterility is consistent with a simple genetic basis, involving a single X-autosome incompatibility. We also show that hybrid inviability involves more genomic compartments, involving diverse nuclear-nuclear incompatibilities, a mito-nuclear incompatibility, and maternal effects. These findings demonstrate that male sensitivity to genetic perturbation may be genetically simple compared to hybrid inviability in Caenorhabditis and motivates tests of generality for the genetic architecture of hybrid incompatibility across the breadth of phylogeny.

  12. Application specific integrated circuits and hybrid micro circuits for nuclear instrumentation

    International Nuclear Information System (INIS)

    Chandratre, V.B.; Sukhwani, Menka; Mukhopadhyay, P.K.; Shastrakar, R.S.; Sudheer, M.; Shedam, V.; Keni, Anubha

    2009-01-01

    Rapid development in semiconductor technology, sensors, detectors and requirements of high energy physics experiments as well as advances in commercially available nuclear instruments have lead to challenges for instrumentation. These challenges are met with development of Application Specific Integrated Circuits and Hybrid Micro Circuits. This paper discusses various activities in ASIC and HMC development in Bhabha Atomic Research Centre. (author)

  13. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Tightly coupled nuclear-renewable hybrid energy systems (N-R HESs) are an option that can generate zero-carbon, dispatchable electricity and provide zero-carbon energy for industrial processes at a lower cost than alternatives. N-R HESs are defined as systems that are managed by a single entity and link a nuclear reactor that generates heat, a thermal power cycle for heat to electricity conversion, at least one renewable energy source, and an industrial process that uses thermal and/or electrical energy. This report provides results of an analysis of two N-R HES scenarios. The first is a Texas-synthetic gasoline scenario that includes four subsystems: a nuclear reactor, thermal power cycle, wind power plant, and synthetic gasoline production technology. The second is an Arizona-desalination scenario with its four subsystems a nuclear reactor, thermal power cycle, solar photovoltaics, and a desalination plant. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives where the energy is provided by natural gas.

  14. Advances in nuclear desalination

    International Nuclear Information System (INIS)

    Misra, B.M.

    2003-01-01

    The Nuclear Desalination Demonstration Project (NDDP) at Kalpakkam aims to demonstrate the safe and economic production of good quality water by desalination of seawater comprising 4,500 m 3 /d Multi-Stage Flash (MSF) and 1,800 m 3 /d Reverse Osmosis (RO) plant. The design of the hybrid MSF-RO plant to be set up at an existing nuclear power station is presented. The MSF plant based on long tube design requires less energy. The effect on performance of the MSF plant due to higher seawater intake temperature is marginal. The preheat RO system part of the hybrid plant uses reject cooling seawater from the MSF plant. This allows lower pressure operation, resulting in energy saving. The two qualities of water produced are usable for the power station as well as for drinking purposes with appropriate blending. The post treatment is also simplified due to blending of the products from MSF and RO plants. The hybrid plant has a number of advantages: part of high purity desalted water produced from the MSF plant will be used for the makeup demineralised water requirement (after necessary polishing) for the power station; blending of the product water from RO and MSF plants would provide requisite quality drinking water; and the RO plant will continue to be operated to provide water for drinking purposes during the shut down of the power station. Commissioning of the RO section is expected in 2002 and that of the MSF section in 2003. Useful design data are expected from the plant on the coupling of small and medium size reactors (SMR) based on PHWR. This will enable us to design a large size commercial plant up to 50,000 m 3 /d capacity. India will share the O and M experience of NDDP to member states of the International Atomic Energy Agency (IAEA) when the plant is commissioned. The development work for producing good quality water for power station from high salinity water utilizing low grade waste heat is presented. About 40 and 100 MWth low temperature waste heat is

  15. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  16. Hybrid model for the decay of nuclear giant resonances

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1986-12-01

    The decay properties of nuclear giant multipole resonances are discussed within a hybrid model that incorporates, in a unitary consistent way, both the coherent and statistical features. It is suggested that the 'direct' decay of the GR is described with continuum first RPA and the statistical decay calculated with a modified Hauser-Feshbach model. Application is made to the decay of the giant monopole resonance in 208 Pb. Suggestions are made concerning the calculation of the mixing parameter using the statistical properties of the shell model eigenstates at high excitation energies. (Author) [pt

  17. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene

    OpenAIRE

    Chang, Zhenyi; Chen, Zhufeng; Wang, Na; Xie, Gang; Lu, Jiawei; Yan, Wei; Zhou, Junli; Tang, Xiaoyan; Deng, Xing Wang

    2016-01-01

    Nuclear male sterility is common in flowering plants, but its application in hybrid breeding and seed production is limited because of the inability to propagate a pure male sterile line for commercial hybrid seed production. Here, we characterized a rice nuclear gene essential for sporophytic male fertility and constructed a male sterility system that can propagate the pure male sterile seeds on a large scale. This system is fundamentally advantageous over the current cytoplasmic male steril...

  18. Strategy for nuclear wastes incineration in hybrid reactors

    International Nuclear Information System (INIS)

    Lelievre, F.

    1998-01-01

    The transmutation of nuclear wastes in accelerator-driven nuclear reactors offers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  19. A hybrid approach to solving the problem of design of nuclear fuel cells

    International Nuclear Information System (INIS)

    Montes T, J. L.; Perusquia del C, R.; Ortiz S, J. J.; Castillo, A.

    2015-09-01

    An approach to solving the problem of fuel cell design for BWR power reactor is presented. For this purpose the hybridization of a method based in heuristic knowledge rules called S15 and the advantages of a meta-heuristic method is proposed. The synergy of potentialities of both techniques allows finding solutions of more quality. The quality of each solution is obtained through a multi-objective function formed from the main cell parameters that are provided or obtained during the simulation with the CASMO-4 code. To evaluate this alternative of solution nuclear fuel cells of reference of nuclear power plant of Laguna Verde were used. The results show that in a systematic way the results improve when both methods are coupled. As a result of the hybridization process of the mentioned techniques an improvement is achieved in a range of 2% with regard to the achieved results in an independent way by the S15 method. (Author)

  20. Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges

    International Nuclear Information System (INIS)

    Aumeier, Steven E.

    2010-01-01

    As global population reaches an expected 8 billion people by 2030, primary energy consumption is expected to increase by almost 40% from approximately 520 exajoules consumed today to almost 740 exajoules. Much of this increase is expected to come from non-Organization for Economic Cooperation and Development (OECD) nations, and Asia specifically. In these economies, energy used for transportation is expected to grow substantially, as is industrial, commercial and to a lesser degree residential energy use, creating considerable pressure on global and local energy markets. The magnitude and timing of growth in energy consumption likely will create a global imperative to deploy energy production technologies that balance the three pillars of energy security: (1) economic stability - related to the affordability of energy products, stability and predictability in their price, and the efficient and effective deployment of global capital resources in their development; (2) environmental sustainability - related to minimizing the negative impacts of energy production to air, land, and water systems and advancing the long-term viability of using a particular resource in a way that does not limit future generations ability to prosper; (3) resource security - related to the ability to access energy resources and products where and when necessary, in an affordable and predictable manner. One approach to meeting these objectives is hybrid energy systems (HES). Broadly described, HES are energy product production plants that take two or more energy resource inputs (typically includes both carbon and non-carbon based sources) and produce two or more energy products (e.g. electricity, liquid transportation fuels, industrial chemicals) in an integrated plant. Nuclear energy integration into HES offers intriguing potential, particularly if smaller (<300 MWe) reactors are available. Although the concept of using nuclear energy in a variety of non-electrical process applications is

  1. Integrating Desalination and Energy Storage using a Saltwater-based Hybrid Sodium-ion Supercapacitor.

    Science.gov (United States)

    Guo, Zhaowei; Ma, Yuanyuan; Dong, Xiaoli; Hou, Mengyan; Wang, Yonggang; Xia, Yongyao

    2018-06-11

    Ever-increasing freshwater scarcity and energy crisis problems require efficient seawater desalination and energy storage technologies; however, each target is generally considered separately. Herein, a hybrid sodium-ion supercapacitor, involving a carbon-coated nano-NaTi 2 (PO 4 ) 3 -based battery anode and an activated-carbon-based capacitive cathode, is developed to combine desalination and energy storage in one device. On charge, the supercapacitor removes salt in a flowing saltwater electrolyte through Cl - electrochemical adsorption at the cathode and Na + intercalation at the anode. Discharge delivers useful electric energy and regenerates the electrodes. This supercapacitor can be used not only for energy storage with promising electrochemical performance (i.e., high power, high efficiency, and long cycle life), but also as a desalination device with desalination capacity of 146.8 mg g -1 , much higher than most reported capacitive and battery desalination devices. Finally, we demonstrate renewables to usable electric energy and desalted water through combining commercial photovoltaics and this hybrid supercapacitor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Control Systems for a Dynamic Multi-Physics Model of a Nuclear Hybrid Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [ORNL; Fugate, David W [ORNL; Cetiner, Sacit M [ORNL

    2017-01-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as either thermal power, electrical power, or both. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different local markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  3. Effect of applied voltage and initial concentration to desalting NaCl solution using electrodialysis

    International Nuclear Information System (INIS)

    Boubakri, Ali; Gzara, Lassaad; Dhahbi, Mahmoud; Bouguecha, Salah

    2009-01-01

    The desalination process of electrodialysis is one of membrane separation that competes with reverse osmosis for desalination of brackish water and seawater. In this work water desalination using a laboratory electrodialysis was performed and evaluated to desalting aqueous solutions containing 5000, 10000 and 20000 mg/L NaCl at different applied potential (10, 15 and 20 V) and at a constant flow rate of 3 L/min. Nine electrodialysis runs were performed. The results showed that the increasing of applied potential and decreasing of NaCl concentration have an important effect to enhance the electrodialysis performance. The efficiencies of each experiment were evaluated as function of specific power consumption with the electrical energy consumed in electrodialysis stack. It was obtained that the specific power consumption increased when the salt concentration and applied voltage increased. A laboratory electrodialysis stack containing fifteen cation exchange membranes and fifteen anion exchange membranes of 0,716 m 2 total effective area was used.

  4. Performance Evaluation of the Concept of Hybrid Heat Pipe as Passive In-core Cooling Systems for Advanced Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Kim, Kyung Mo; Kim, In Guk; Bang, In Cheol

    2015-01-01

    As an arising issue for inherent safety of nuclear power plant, the concept of hybrid heat pipe as passive in-core cooling systems was introduced. Hybrid heat pipe has unique features that it is inserted in core directly to remove decay heat from nuclear fuel without any changes of structures of existing facilities of nuclear power plant, substituting conventional control rod. Hybrid heat pipe consists of metal cladding, working fluid, wick structure, and neutron absorber. Same with working principle of the heat pipe, heat is transported by phase change of working fluid inside metal cask. Figure 1 shows the systematic design of the hybrid heat pipe cooling system. In this study, the concept of a hybrid heat pipe was introduced as a Passive IN-core Cooling Systems (PINCs) and demonstrated for internal design features of heat pipe containing neutron absorber. Using a commercial CFD code, single hybrid heat pipe model was analyzed to evaluate thermal performance in designated operating condition. Also, 1-dimensional reactor transient analysis was done by calculating temperature change of the coolant inside reactor pressure vessel using MATLAB. As a passive decay heat removal device, hybrid heat pipe was suggested with a concept of combination of heat pipe and control rod. Hybrid heat pipe has distinct feature that it can be a unique solution to cool the reactor when depressurization process is impossible so that refueling water cannot be injected into RPV by conventional ECCS. It contains neutron absorber material inside heat pipe, so it can stop the reactor and at the same time, remove decay heat in core. For evaluating the concept of hybrid heat pipe, its thermal performance was analyzed using CFD and one-dimensional transient analysis. From single hybrid heat pipe simulation, the hybrid heat pipe can transport heat from the core inside to outside about 18.20 kW, and total thermal resistance of hybrid heat pipe is 0.015 .deg. C/W. Due to unique features of long heat

  5. Color-coded Live Imaging of Heterokaryon Formation and Nuclear Fusion of Hybridizing Cancer Cells.

    Science.gov (United States)

    Suetsugu, Atsushi; Matsumoto, Takuro; Hasegawa, Kosuke; Nakamura, Miki; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Bouvet, Michael; Hoffman, Robert M

    2016-08-01

    Fusion of cancer cells has been studied for over half a century. However, the steps involved after initial fusion between cells, such as heterokaryon formation and nuclear fusion, have been difficult to observe in real time. In order to be able to visualize these steps, we have established cancer-cell sublines from the human HT-1080 fibrosarcoma, one expressing green fluorescent protein (GFP) linked to histone H2B in the nucleus and a red fluorescent protein (RFP) in the cytoplasm and the other subline expressing RFP in the nucleus (mCherry) linked to histone H2B and GFP in the cytoplasm. The two reciprocal color-coded sublines of HT-1080 cells were fused using the Sendai virus. The fused cells were cultured on plastic and observed using an Olympus FV1000 confocal microscope. Multi-nucleate (heterokaryotic) cancer cells, in addition to hybrid cancer cells with single-or multiple-fused nuclei, including fused mitotic nuclei, were observed among the fused cells. Heterokaryons with red, green, orange and yellow nuclei were observed by confocal imaging, even in single hybrid cells. The orange and yellow nuclei indicate nuclear fusion. Red and green nuclei remained unfused. Cell fusion with heterokaryon formation and subsequent nuclear fusion resulting in hybridization may be an important natural phenomenon between cancer cells that may make them more malignant. The ability to image the complex processes following cell fusion using reciprocal color-coded cancer cells will allow greater understanding of the genetic basis of malignancy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This report is one of a series of reports that investigate the technical and economic aspects of Nuclear-Renewable Hybrid Energy Systems. It provides the results of an analysis of two scenarios. The first is a Texas-synthetic gasoline scenario and the second is an Arizona-desalination scenario. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives in which natural gas provides the energy.

  7. Evidence for mito-nuclear and sex-linked reproductive barriers between the hybrid Italian sparrow and its parent species.

    Directory of Open Access Journals (Sweden)

    Cassandra N Trier

    2014-01-01

    Full Text Available Studies of reproductive isolation between homoploid hybrid species and their parent species have rarely been carried out. Here we investigate reproductive barriers between a recently recognized hybrid bird species, the Italian sparrow Passer italiae and its parent species, the house sparrow P. domesticus and Spanish sparrow P. hispaniolensis. Reproductive barriers can be difficult to study in hybrid species due to lack of geographical contact between taxa. However, the Italian sparrow lives parapatrically with the house sparrow and both sympatrically and parapatrically with the Spanish sparrow. Through whole-transcriptome sequencing of six individuals of each of the two parent species we identified a set of putatively parent species-diagnostic single nucleotide polymorphism (SNP markers. After filtering for coverage, genotyping success (>97% and multiple SNPs per gene, we retained 86 species-informative, genic, nuclear and mitochondrial SNP markers from 84 genes for analysis of 612 male individuals. We show that a disproportionately large number of sex-linked genes, as well as the mitochondria and nuclear genes with mitochondrial function, exhibit sharp clines at the boundaries between the hybrid and the parent species, suggesting a role for mito-nuclear and sex-linked incompatibilities in forming reproductive barriers. We suggest that genomic conflict via interactions between mitochondria and sex-linked genes with mitochondrial function ("mother's curse" at one boundary and centromeric drive at the other may best explain our findings. Hybrid speciation in the Italian sparrow may therefore be influenced by mechanisms similar to those involved in non-hybrid speciation, but with the formation of two geographically separated species boundaries instead of one. Spanish sparrow alleles at some loci have spread north to form reproductive barriers with house sparrows, while house sparrow alleles at different loci, including some on the same chromosome

  8. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    Increasing concern about the global climate change spurs the development of low- or zero-carbon energy system. Nuclear hydrogen production by water electrolysis would be the one of the short-term solutions, but low efficiency and high production cost (high energy consumption) is the technical hurdle to be removed. In this paper the once-through sulfur process composed of the desulfurization and the water electrolysis systems is proposed. Electrode potential for the conventional water electrolysis (∼2.0 V) can be reduced significantly by the anode depolarization using sulfur dioxide: down to 0.6 V depending on the current density This depolarized electrolysis is the electrolysis step of the hybrid sulfur process originally proposed by the Westinghouse. However; recycling of sulfur dioxide requires a high temperature heat source and thus put another technical hurdle on the way to nuclear hydrogen production: the development of high temperature nuclear reactors and corresponding sulfuric acid decomposition system. By the once-through use of sulfur dioxide rather than the closed recycle, the hurdle can be removed. For the sulfur feed, the desulfurization system is integrated into the water electrolysis system. Fossil fuels include a few percent of sulfur by weight. During the refinement or energy conversion, most of the sulfur should be separated The separated sulfur can be fed to the water electrolysis system and the final product would be hydrogen and sulfuric acid, which is number one chemical in the world by volume. Lowered electrode potential and additional byproduct, the sulfuric acid, can provide economically affordable hydrogen. In this study, the once-through hybrid sulfur process for hydrogen production was proposed and the process was optimized considering energy consumption in electrolysis and sulfuric acid concentration. Economic feasibility of the proposed process was also discussed. Based on currently available experimental data for the electrode

  9. Desalting of sea water by a wall-less evaporation process

    International Nuclear Information System (INIS)

    Kassel, C.; Sachine, P.; Vuillemey, R.

    1966-06-01

    The need for fresh water supplies in many parts of the globe has given a great impetus to the study of the desalting of sea-water. Research into this problem has been very varied. Although it is possible in the more-or-less near future that methods based on freezing may be developed, only evaporation methods have industrial applications at the present time. Amongst the many techniques using this method, the most favorably placed installations from the technical and economic points of view are those based on multiple effects and wall-less heat transfer. We have defined the characteristics of a wall-less evaporation process using the various factors involved in this evaporation: energy source, corrosion, furring, heat transfer, maximum temperature, etc... The unit considered in this work has a daily output of 100,000 m 3 , and makes use of the multi-stage technique with an organic heat-carrier. The maximum temperature of the first stage is 150 deg C and the evaporation factor is 0.4. After the description of the process and, the calculation of the equipment, an economic estimate is given of the cost-price : 1.49 F/m 3 . It is likely that more detailed study of the process (technique, equipment and energy consumed) should make it possible to obtain a significant improvement in the process and to reduce the price to 1 F/m 3 . (authors) [fr

  10. Regeneration of somatic hybrids in relation to the nuclear and cytoplasmic genomes of wheat and Setaria italica.

    Science.gov (United States)

    Xiang, Fengning; Xia, Guangmin; Zhi, Daying; Wang, Jing; Nie, Hui; Chen, Huimin

    2004-08-01

    Somatic hybridization via PEG (Polyethylene 6000)-mediated protoplast fusion was achieved between two different wheat culture lines (Triticum aestivum L., "Jinan"177, T1 and T2) and Setaria italica (L.) P. Beauv. The T1 recipient originated from non-regenerable long-term cell suspensions, while T2 was derived from embryogenic calli with a high regeneration capacity. Donor protoplasts were obtained from embryogenic calli of S. italica (S) (with low regeneration capacity) irradiated with different doses of ultraviolet light. Twenty-three putative hybrid cell lines were produced in fusion combinations with the donor protoplasts treated with UV light for 30 s (combination I) and 1 min (combination II), but only one (from combination II) differentiated into green plants. Three cell lines from combination I and five cell lines from combination II possessed the nuclear genomes of T1, T2, and S. italica as revealed by cytological, isozyme, RAPD, and 5S rDNA spacer sequence analyses. Genomic in situ hybridization (GISH) analysis showed that most hybrid cell lines had 22-36 wheat chromosomes, 0-2 S. italica chromosomes, and 1-6 wheat - S. italica recombinant chromosomes, whereas the regenerable cell line had 44-56 wheat chromosomes and 3-6 recombinant chromosomes, but no intact S. italica chromosomes. RFLP analysis of organellar DNA revealed that mitochondrial and chloroplast DNA of both parents coexisted in all hybrid cell lines and recombined in most hybrid cell lines. These results indicate that the regeneration of hybrid plants involves not only the integration of S. italica nuclear and organellar DNA, but also the genome complementation of T1 and T2.

  11. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    International Nuclear Information System (INIS)

    Hong, Seong Hee; Kim, Myung Hyun

    2016-01-01

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  12. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  13. New hybrid systems

    International Nuclear Information System (INIS)

    Bernardin, B.

    2001-01-01

    New hybrid systems are made up of a subcritical core, a spallation target and a proton accelerator. The neutrons that are produced in the target by the flux of protons are necessary to maintain the chain reaction of fission. Some parameters that are important for a classical nuclear reactor like doppler coefficient or delayed neutron fraction do not matter in a hybrid system. In a PWR-type reactor or in a fast reactor the concentration of actinides has a bad impact on these 2 parameters, so it is justified to study hybrid systems as actinide transmuters. The hybrid system, because of its external source of neutrons can put aside an important reactivity margin. This reactivity margin can be used to design safer nuclear reactors (particularly in some situations of reactivity accidents) or to irradiate fuel elements containing high concentrations of minor actinides that could not be allowed in a classical reactor. This article reviews various ways of integrating hybrid systems in a population of already existing nuclear reactors in order to manage quantities of plutonium, of minor actinides or of long-life fission products. (A.C.)

  14. Reticulate evolution: frequent introgressive hybridization among chinese hares (genus lepus revealed by analyses of multiple mitochondrial and nuclear DNA loci

    Directory of Open Access Journals (Sweden)

    Wu Shi-Fang

    2011-07-01

    Full Text Available Abstract Background Interspecific hybridization may lead to the introgression of genes and genomes across species barriers and contribute to a reticulate evolutionary pattern and thus taxonomic uncertainties. Since several previous studies have demonstrated that introgressive hybridization has occurred among some species within Lepus, therefore it is possible that introgressive hybridization events also occur among Chinese Lepus species and contribute to the current taxonomic confusion. Results Data from four mtDNA genes, from 116 individuals, and one nuclear gene, from 119 individuals, provides the first evidence of frequent introgression events via historical and recent interspecific hybridizations among six Chinese Lepus species. Remarkably, the mtDNA of L. mandshuricus was completely replaced by mtDNA from L. timidus and L. sinensis. Analysis of the nuclear DNA sequence revealed a high proportion of heterozygous genotypes containing alleles from two divergent clades and that several haplotypes were shared among species, suggesting repeated and recent introgression. Furthermore, results from the present analyses suggest that Chinese hares belong to eight species. Conclusion This study provides a framework for understanding the patterns of speciation and the taxonomy of this clade. The existence of morphological intermediates and atypical mitochondrial gene genealogies resulting from frequent hybridization events likely contribute to the current taxonomic confusion of Chinese hares. The present study also demonstrated that nuclear gene sequence could offer a powerful complementary data set with mtDNA in tracing a complete evolutionary history of recently diverged species.

  15. A cost and safety superiority of fusion-fission hybrid reactor in China nuclear energy development

    International Nuclear Information System (INIS)

    Pereslavtszev, P.E.; Luan Guishi; Xia Chengang

    1994-08-01

    Considering economy and safety, an optimization model of nuclear energy developing scenarios of China was set up. An objective function to optimize was determined. Three prospective developing scenarios of China nuclear energy system including hybrid reactor were calculated and discussed. In the system which has no fissile material exchange with other system, a smooth developing model has a smooth distribution of inventory of Pu, thus the potential danger of whole nuclear energy system will be decreased. This scheme will improve investment effectiveness. Result shows that the optimization is necessary and the significant profit in cost and safety can be obtained. (5 tabs., 8 figs., 12 refs.)

  16. Chemical properties of neossolos flúvicos after application of irrigation of rejects desalt machine and of hydroponic system | Propriedades químicas de neossolos flúvicos depois da aplicação de lâminas de irrigação de rejeitos de dessalinizador e de hidro

    Directory of Open Access Journals (Sweden)

    Ricardo Andrade Wanderley

    2016-04-01

    Full Text Available ABSTRACT: Aiming to evaluate the soil salty process of the Ibimirim – PE irrigation project, submitted to the application of the rejects from desalt machine and from hydroponic solution, also primarily originated from desalt machine reject, it was realized an experiment in soil columns, installed in the Soil Mechanic and Residue Use Laboratory of the Universidade Federal Rural de Pernambuco. The treatments were delineated in a randomized blocks with factorial arrangement of two soils (claily and sandy, two types of reject (reject of desalt machine and reject of the hydroponic system and five salty concentrations (0.53; 1.16; 1.90; 3.52; 4.60 dS m-1, with three replicates. The evaluated variables in the extract of the saturated paste were the electric conductivity (EC and the relationship of sodium adsorption relationship (SAR. The use of the leaching depths equivalent to three volumes of pores, using rejects both of desalt machine and of hydroponic system didn't provide the neither salty process nor sodium process of the soils studied (EC > 4,00 dS m-1 and SAR 4,00 dS m-1 quando foi utilizados os maiores níveis de condutividade elétrica , entretanto, não ocasionou a sodificação dos solos (RAS < 13 mmol L-1 ½. Palavras-chave: Salinização, meio ambiente e dessalinização.

  17. Conceptual evaluation of hybrid energy system comprising wind-biomass-nuclear plants for load balancing and for production of renewable synthetic transport fuels

    International Nuclear Information System (INIS)

    Carlsson, Johan; Purvins, Arturs; Papaioannou, Ioulia T.; Shropshire, David; Cherry, Robert S.

    2014-01-01

    Future energy systems will increasingly need to integrate variable renewable energy in order to reduce greenhouse gas emissions from power production. Addressing this trend the present paper studies how a hybrid energy systems comprising aggregated wind farms, a biomass processing plant, and a nuclear cogeneration plant could support high renewable energy penetration. The hybrid energy system operates so that its electrical output tends to meet demand. This is achieved mainly through altering the heat-to-power ratio of the nuclear reactor and by using excess electricity for hydrogen production through electrolysis. Hybrid energy systems with biomass treatment processes, i.e. drying, torrefaction, pyrolysis and synthetic fuel production were evaluated. It was shown that the studied hybrid energy system comprising a 1 GWe wind farm and a 347 MWe nuclear reactor could closely follow the power demand profile with a standard deviation of 34 MWe. In addition, on average 600 m"3 of bio-gasoline and 750 m"3 bio-diesel are produced daily. The reduction of greenhouse gas emissions of up to 4.4 MtCO_2eq annually compared to power generation and transport using conventional fossil fuel sources. (author)

  18. A decision support system based on hybrid knowledge approach for nuclear power plant operation

    International Nuclear Information System (INIS)

    Yang, J.O.; Chang, S.H.

    1991-01-01

    This paper describes a diagnostic expert system, HYPOSS (Hybrid Knowledge Based Plant Operation Supporting System), which has been developed to support operators' decision making during the transients of nuclear power plant. HYPOSS adopts the hybrid knowledge approach which combines shallow and deep knowledge to couple the merits of both approaches. In HYPOSS, four types of knowledge are used according to the steps of diagnosis procedure: structural, functional, behavioral and heuristic knowledge. Frames and rules are adopted to represent the various knowledge types. Rule-based deduction and abduction are used for shallow and deep knowledge based reasoning respectively. The event-based operational guidelines are provided to the operator according to the diagnosed results

  19. Hybrid systems for transuranic waste transmutation in nuclear power reactors: state of the art and future prospects

    Science.gov (United States)

    Yurov, D. V.; Prikhod'ko, V. V.

    2014-11-01

    The features of subcritical hybrid systems (HSs) are discussed in the context of burning up transuranic wastes from the U-Pu nuclear fuel cycle. The advantages of HSs over conventional atomic reactors are considered, and fuel cycle closure alternatives using HSs and fast neutron reactors are comparatively evaluated. The advantages and disadvantages of two HS types with neutron sources (NSs) of widely different natures -- nuclear spallation in a heavy target by protons and nuclear fusion in magnetically confined plasma -- are discussed in detail. The strengths and weaknesses of HSs are examined, and demand for them for closing the U-Pu nuclear fuel cycle is assessed.

  20. Hybrid heat pipe based passive cooling device for spent nuclear fuel dry storage cask

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Highlights: • Hybrid heat pipe was presented as a passive cooling device for dry storage cask of SNF. • A method to utilize waste heat from spent fuel was suggested using hybrid heat pipe. • CFD analysis was performed to evaluate the thermal performance of hybrid heat pipe. • Hybrid heat pipe can increase safety margin and storage capacity of the dry storage cask. - Abstract: Conventional dry storage facilities for spent nuclear fuel (SNF) were designed to remove decay heat through the natural convection of air, but this method has limited cooling capacity and a possible re-criticality accident in case of flooding. To enhance the safety and capacity of dry storage cask of SNF, hybrid heat pipe-based passive cooling device was suggested. Heat pipe is an excellent passive heat transfer device using the principles of both conduction and phase change of the working fluid. The heat pipe containing neutron absorber material, the so-called hybrid heat pipe, is expected to prevent the re-criticality accidents of SNF and to increase the safety margin during interim and long term storage period. Moreover, a hybrid heat pipe with thermoelectric module, a Stirling engine and a phase change material tank can be used for utilization of the waste heat as heat-transfer medium. Located at the guide tube or instrumentation tube, hybrid heat pipe can remove decay heat from inside the sealed metal cask to outside, decreasing fuel rod temperature. In this paper, a 2-step analysis was performed using computational fluid dynamics code to evaluate the heat and fluid flow inside a cask, which consisted of a single spent fuel assembly simulation and a full-scope dry cask simulation. For a normal dry storage cask, the maximum fuel temperature is 290.0 °C. With hybrid heat pipe cooling, the temperature decreased to 261.6 °C with application of one hybrid heat pipe per assembly, and to 195.1 °C with the application of five hybrid heat pipes per assembly. Therefore, a dry

  1. A shift in nuclear state as the result of natural interspecific hybridization between two North American taxa of the basidiomycete complex Heterobasidion

    Science.gov (United States)

    Matteo Garbelotto; Paolo Gonthier; Rachel Linzer; Giovanni Nicolotti; William Otrosina

    2004-01-01

    A natural first generation hybrid fungus shows interspecific heterozygosity. The nuclear condition of a rare natural hybrid between two taxa of the Heterobasidion complex is investigated. Heterobasidion species are known to be either homokaryotic (haploid) or heterokaryotic (n + n), but heterokaryons are made up of both...

  2. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  3. Evidence of Natural Hybridization and Introgression between Vasconcellea Species (Caricaceae) from Southern Ecuador Revealed by Chloroplast, Mitochondrial and Nuclear DNA Markers

    Science.gov (United States)

    VAN DROOGENBROECK, B.; KYNDT, T.; ROMEIJN-PEETERS, E.; VAN THUYNE, W.; GOETGHEBEUR, P.; ROMERO-MOTOCHI, J. P.; GHEYSEN, G.

    2006-01-01

    • Background and Aims Vasconcellea × heilbornii is believed to be of natural hybrid origin between V. cundinamarcensis and V. stipulata, and is often difficult to discriminate from V. stipulata on morphological grounds. The aim of this paper is to examine individuals of these three taxa and of individuals from the closely related species V. parviflora and V. weberbaueri, which all inhabit a hybrid zone in southern Ecuador. • Methods Molecular data from mitochondrial, chloroplast and nuclear DNA from 61 individuals were analysed. • Key Results Molecular analysis confirmed occasional contemporary hybridization between V. stipulata, V. cundinamarcensis and V. × heilbornii and suggested the possible involvement of V. weberbaueri in the origin of V. × heilbornii. In addition, the molecular data indicated unidirectional introgression of the V. cundinamarcensis nuclear genome into that of V. stipulata. Several of the individuals examined with morphology similar to that of V. stipulata had genetic traces of hybridization with V. cundinamarcensis, which only seems to act as pollen donor in interspecific hybridization events. Molecular analyses also strongly suggested that most of the V. × heilbornii individuals are not F1 hybrids but instead are progeny of repeated backcrosses with V. stipulata. • Conclusions The results of the present study point to the need for re-evaluation of natural populations of V. stipulata and V. × heilbornii. In general, this analysis demonstrates the complex patterns of genetic and morphological diversity found in natural plant hybrid zones. PMID:16500954

  4. Hybrid MWPC gamma ray detecting system for applications in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J E; Connolly, J F [Science Research Council, Chilton (UK). Rutherford Lab.

    1978-10-15

    Results are presented from prototype MWPC gas-solid hybrid imaging detectors designed for applications in nuclear medicine. Using a multi-section chamber with foil converter cathodes and a delay line readout technique, the authors have made a sup(99m)Tc imaging detector with a spatial resolution of 5 mm fwhm and a projected quantum efficiency of 15% for a full scale device. With lead foil cathodes the detector design yields similar spatial resolution and quantum efficiency when positron annihilation gammas are detected. Images of positron emitters (/sup 22/Na and /sup 68/Ga) are presented.

  5. Study of potential of nuclear waste transmutation and safety characteristics of an hybrid system: sub critical accelerator reactor; Etude du potentiel de transmutation et des caracteristiques de surete d`un systeme hybride: accelerateur reacteur sous critique

    Energy Technology Data Exchange (ETDEWEB)

    Tchistiakov, A

    1998-04-01

    The study of potential of nuclear waste transmutation for the new reactor systems - hybrid reactors - was the object of this work. Global review of different projects is presented. The basic physical parameters definitions, as neutron surplus and relative importance of external source neutrons, are introduced and explained. For these parameters, numerical values are obtained. The advantage in neutron surplus of fast system is noted. Equilibrium model and corresponding toxicities of different isotopes nd nuclear cycles are presented. Numerical analysis for equilibrium model converge validation are performed also. The study of neutron consumption by `transmutable` Long-Lived Fission Products (Tc, I and Cs) show the possibility of their incineration in dedicated fast hybrid reactors. Equilibrium model shown the influence of reprocessing losses level to cycle toxicity level. Relations between specific fuel inventories (mass normalised by power unit) for thermal and fast spectra are examined. The differences are relatively small. Finally, few hybrid reactor concepts with different objects were analysed. These studies confirm that in frameworks of certain Nuclear Energy scenarios the fast hybrid systems can reduce significantly the radio-toxicity of fuel cycle. Preliminary analyses of sub-critical reactor behaviour show big potential of this reactor type in `Transient of Power` kind of accident, even if more detailed study is necessary. (author)

  6. Development of cytoplasmic-nuclear male sterility, its inheritance, and potential use in hybrid pigeonpea breeding.

    Science.gov (United States)

    Saxena, Kul B; Ravikoti, V Kumar; Dalvi, Vijay A; Pandey, Lalji B; Gaddikeri, Guruprasad

    2010-01-01

    Pigeonpea [Cajanus cajan (L.) Millsp.] is a unique food legume because of its partial (20-30%) outcrossing nature, which provides an opportunity to breed commercial hybrids. To achieve this, it is essential to have a stable male-sterility system. This paper reports the selection of a cytoplasmic-nuclear male-sterility (CMS) system derived from an interspecific cross between a wild relative of pigeonpea (Cajanus sericeus Benth. ex. Bak.) and a cultivar. This male-sterility source was used to breed agronomically superior CMS lines in early (ICPA 2068), medium (ICPA 2032), and late (ICPA 2030) maturity durations. Twenty-three fertility restorers and 30 male-sterility maintainers were selected to develop genetically diverse hybrid combinations. Histological studies revealed that vacuolation of growing tetrads and persistence of tetrad wall were primary causes of the manifestation of male sterility. Genetic studies showed that 2 dominant genes, of which one had inhibitory gene action, controlled fertility restoration in the hybrids. The experimental hybrids such as TK 030003 and TK 030009 in early, ICPH 2307 and TK 030625 in medium, and TK 030861 and TK 030851 in late maturity groups exhibited 30-88% standard heterosis in multilocation trials.

  7. Case for the fusion hybrid

    International Nuclear Information System (INIS)

    Rose, R.P.

    1981-01-01

    The use of nuclear fusion to produce fuel for nuclear fission power stations is discussed in the context of a crucial need for future energy options. The fusion hybrid is first considered as an element in the future of nuclear fission power to provide long term assurance of adequate fuel supplies for both breeder and convertor reactors. Generic differences in neutronic characteristics lead to a fuel production potential of fusion-fission hybrid systems which is significantly greater than that obtainable with fission systems alone. Furthermore, cost benefit studies show a variety of scenarios in which the hybrid offers sufficient potential to justify development costs ranging in the tens of billions of dollars. The hybrid is then considered as an element in the ultimate development of fusion electric power. The hybrid offers a near term application of fusion where experience with the requisite technologies can be derived as a vital step in mapping a credible route to eventual commercial feasibility of pure fusion systems. Finally, the criteria for assessment of future energy options are discussed with prime emphasis on the need for rational comparision of alternatives

  8. Hybrid modeling approach to improve the forecasting capability for the gaseous radionuclide in a nuclear site

    International Nuclear Information System (INIS)

    Jeong, Hyojoon; Hwang, Wontae; Kim, Eunhan; Han, Moonhee

    2012-01-01

    Highlights: ► This study is to improve the reliability of air dispersion modeling. ► Tracer experiments assumed gaseous radionuclides were conducted at a nuclear site. ► The performance of a hybrid modeling combined ISC with ANFIS was investigated.. ► Hybrid modeling approach shows better performance rather than a single ISC model. - Abstract: Predicted air concentrations of radioactive materials are important for an environmental impact assessment for the public health. In this study, the performance of a hybrid modeling combined with the industrial source complex (ISC) model and an adaptive neuro-fuzzy inference system (ANFIS) for predicting tracer concentrations was investigated. Tracer dispersion experiments were performed to produce the field data assuming the accidental release of radioactive material. ANFIS was trained in order that the outputs of the ISC model are similar to the measured data. Judging from the higher correlation coefficients between the measured and the calculated ones, the hybrid modeling approach could be an appropriate technique for an improvement of the modeling capability to predict the air concentrations for radioactive materials.

  9. Graphite powder as an alternative or supplement to reversed-phase material for desalting and concentration of peptide mixtures prior to matrix-assisted laser desorption/ionization-mass spectrometry

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Cordwell, Stuart J; Roepstorff, Peter

    2002-01-01

    The success attributed to identification and characterization of gel separated proteins by mass spectrometry (MS) is highly dependent on the percentage of an entire sequence covered by matching peptides derived from enzymatic digestion. Desalting and concentration of peptide mixtures on reversed......-phase (RP) microcolumns prior to mass spectrometric analysis have resulted in increased signal-to-noise ratio and sensitivity, and consequently higher sequence coverage. A large proportion of peptides, however, remains undetected by MS presumably because they are lost during sample preparation...

  10. Suppression/reducing method for total organic carbon in feedwater/condensate

    International Nuclear Information System (INIS)

    Maeda, Katsuharu.

    1993-01-01

    The present invention suppresses/reduces the concentration of the total organic carbon before the startup of a reactor, to decrease (TOC) which is brought into the reactor upon startup of the operation and suppress/moderate degradation of water quality of reactor water. That is, in-service period of a condensate desalting tower is shortened, to avoid concentration increase of TOC in feed water/condensate which is leached out from the condensate desalting tower. The condensate desalting towers are put to in-service for the entire towers after increasing the vacuum degree of the condensator, to suppress leaching of TOC from the condensate desalting tower. Further, upon startup of a nuclear power plant, when the condensate desalting tower is put to in-service, condensate filters of the entire towers are previously back-washed and regenerated to remove TOC efficiently. By these procedures, TOC brought from a water supply system upon startup of the plant is thermally decomposed or radiolyzed in the reactor, thereby enabling to suppress/avoid worsening of water quality of reactor water caused by generated ion impurities. (I.S.)

  11. A Study on a Hybrid Approach for Diagnosing Faults in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yang, M.; Zhang, Z.J.; Peng, M.J.; Yan, S.Y.; Wang, H.; Ouyang, J.

    2006-01-01

    Proper and rapid identification of malfunctions is of premier importance for the safe operation of Nuclear Power Plants (NPP). Many monitoring or/and diagnosis methodologies based on artificial and computational intelligence have been proposed to aid operator to understand system problems, perform trouble-shooting action and reduce human error under serious pressure. However, because no single method is adequate to handle all requirements for diagnostic system, hybrid approaches where different methods work in conjunction to solve parts of the problem interest researchers greatly. In this study, Multilevel Flow Models (MFM) and Artificial Neural Network (ANN) are proposed and employed to develop a fault diagnosis system with the intention of improving the success rate of recognition on the one hand, and improving the understandability of diagnostic process and results on the other hand. Several simulation cases were conducted for evaluating the performance of the proposed diagnosis system. The simulation results validated the effectiveness of the proposed hybrid approach. (authors)

  12. Fusion-fission hybrids: environmental aspects and their role in hybrid rationale

    International Nuclear Information System (INIS)

    Holdren, J.P.

    1981-01-01

    The rationale for developing hybrids depends on real or perceived liabilities of relying on pure fission to do the same job. Quite possibly the main constraint on expanded use of fission will be neither lack of fuel nor high costs, but perceived environmental liabilities - radioactive wastes, reactor safety, and links to nuclear weaponry. The environmental characteristics of hybrid systems and pure-fisson systems are compared here in detail. The findings are that significant environmental advantages for hybrids cannot now be demonstrated and may not exist. Therefore, if environmental drawbacks constrain the application of pure fission, hybrids probably also will be thus constrained

  13. Clinical applications of SPECT/CT: New hybrid nuclear medicine imaging system

    International Nuclear Information System (INIS)

    2008-08-01

    Interest in multimodality imaging shows no sign of subsiding. New tracers are spreading out the spectrum of clinical applications and innovative technological solutions are preparing the way for yet more modality marriages: hybrid imaging. Single photon emission computed tomography (SPECT) has enabled the evaluation of disease processes based on functional and metabolic information of organs and cells. Integration of X ray computed tomography (CT) into SPECT has recently emerged as a brilliant diagnostic tool in medical imaging, where anatomical details may delineate functional and metabolic information. SPECT/CT has proven to be valuable in oncology. For example, in the case of a patient with metastatic thyroid cancer, neither SPECT nor CT alone could identify the site of malignancy. SPECT/CT, a hybrid image, precisely identified where the surgeon should operate. However SPECT/CT is not just advantageous in oncology. It may also be used as a one-stop-shop for various diseases. Clinical applications with SPECT/CT have started and expanded in developed countries. It has been reported that moving from SPECT alone to SPECT/CT could change diagnoses in 30% of cases. Large numbers of people could therefore benefit from this shift all over the world. This report presents an overview of clinical applications of SPECT/CT and a relevant source of information for nuclear medicine physicians, radiologists and clinical practitioners. This information may also be useful for decision making when allocating resources dedicated to the health care system, a critical issue that is especially important for the development of nuclear medicine in developing countries. In this regard, the IAEA may be heavily involved in the promotion of programmes aimed at the IAEA's coordinated research projects and Technical Cooperation projects

  14. Strategy for nuclear wastes incineration in hybrid reactors; Strategies pour l'incineration de dechets nucleaires dans des reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, F

    1998-12-11

    The transmutation of nuclear wastes in accelerator-driven nuclear reactorsoffers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  15. Mirror hybrid reactor studies

    International Nuclear Information System (INIS)

    Bender, D.J.

    1978-01-01

    The hybrid reactor studies are reviewed. The optimization of the point design and work on a reference design are described. The status of the nuclear analysis of fast spectrum blankets, systems studies for fissile fuel producing hybrid reactor, and the mechanical design of the machine are reviewed

  16. Nuclear power plant

    International Nuclear Information System (INIS)

    Inami, Ichiro; Kobayashi, Minoru.

    1995-01-01

    In a condensate cleanup system and a reactor water cleanup system of a BWR-type reactor, in which primary coolants flow, there is disposed a filtering and desalting device using hollow thread membrane filter and ion exchange resin for a condensate cleanup system, and using a high temperature filter made of a metal, a metal oxide or ceramics as a filtering material and a precoat filter made of a powdery ion exchange resin as a filtering material for a reactor water cleanup system. This can completely remove cruds generated in the condensate system. Since the reactor water cleanup system comprises the powdery resin precoat-type filtering and desalting device and the high temperature filter using ceramics, ionic impurities such as radioactive materials can be removed. Accordingly, cruds are not carried into the inside of the reactor, and since the radioactive concentration in the reactor water is reduced, radiation exposure upon periodical inspection can be minimized almost to zero, to attain a clean plant. (T.M.)

  17. MARS, 600 MWth NUCLEAR POWER PLANT

    International Nuclear Information System (INIS)

    Cumo, M.; Naviglio, A.; Sorabella, L.

    2004-01-01

    MARS (Multipurpose Advanced Reactor, inherently Safe) is a 600 MWth, single loop, pressurized light water reactor (PWR), developed at the Dept. of Nuclear Engineering and Energy Conversion of the University of Rome ''La Sapienza''. The design was focused to a multipurpose reactor to be used in high population density areas also for industrial heat production and, in particular, for water desalting. Using the well-proven technology and the operation experience of PWRs, the project introduces a lot of innovative features hugely improving the safety performance while keeping the cost of KWh competitive with traditional large power plants. Extensive use of passive safety, in depth plant simplification and decommissioning oriented design were the guidelines along the design development. The latest development in the plant design, in the decommissioning aspects and in the experimental activities supporting the project are shown in this paper

  18. Coolant clean-up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tsuburaya, Hirobumi; Akita, Minoru; Shiraishi, Tadashi; Kinoshita, Shoichiro; Okura, Minoru; Tsuji, Akio.

    1987-01-01

    Purpose: To ensure a sufficient urging pressure at the inlet of a coolant clean-up system pump in a nuclear reactor and eliminate radioactive contaminations to the pump. Constitution: Coolant clean-up system (CUW) pump in a nuclear reactor is disposed to the downstream of a filtration desalter and, for compensating the insufficiency of the urging pressure at the pump inlet, the reactor water intake port to the clean-up system is disposed to the downstream of the after-heat removing pump and the heat exchanger. By compensating the net positive suction head (NPSH) of the clean-up system from the residual heat removing system, the problems of insufficient NPSH for the CUW pump upon reactor shut-down can be dissolved and, accordingly, the reactor clean-up system can be arranged in the order of the heat exchanger, clean-up device and pump. Thus, the CUW pump acts on reactor water after cleaned-up in the clean-up device to reduce the radioactivity contamination to the pump. (Kawakami, Y.)

  19. BUTREN-RC an hybrid system for the recharges optimization of nuclear fuels in a BWR

    International Nuclear Information System (INIS)

    Ortiz S, J.J.; Castillo M, J.A.; Valle G, E. del

    2004-01-01

    The obtained results with the hybrid system BUTREN-RC are presented that obtains recharges of nuclear fuel for a BWR type reactor. The system has implemented the methods of optimization heuristic taboo search and neural networks. The optimization it carried out with the technique of taboo search, and the neural networks, previously trained, were used to predict the behavior of the recharges of fuel, in substitution of commercial codes of reactor simulation. The obtained recharges of nuclear fuel correspond to 5 different operation cycles of the Laguna Verde Nuclear Power plant, Veracruz in Mexico. The obtained results were compared with the designs of this cycles. The energy gain with the recharges of fuel proposals is of approximately 4.5% with respect to those of design. The time of compute consumed it was considerably smaller that when a commercial code for reactor simulation is used. (Author)

  20. A diagnostic expert system for the nuclear power plant b ased on the hybrid knowledge approach

    International Nuclear Information System (INIS)

    Yang, J.O.; Chang, S.H.

    1989-01-01

    A diagnostic expert system, the hybrid knowledge based plant operation supporting system (HYPOSS), which has been developed to support operators' decisionmaking during the transients of the nuclear power plant, is described. HYPOSS adopts the hybrid knowledge approach, which combines both shallow and deep knowledge to take advantage of the merits of both approaches. In HYPOSS, four types of knowledge are used according to the steps of diagnosis procedure. They are structural, functional, behavioral, and heuristic knowledge. The structural and functional knowledge is represented by three fundamental primitives and five types of functions, respectively. The behavioral knowledge is represented using constraints. The inference procedure is based on the human problem-solving behavior modeled in HYPOSS. The event-based operational guidelines are provided to the operator according to the diagnosed results. If the exact anomalies cannot be identified while some of the critical safety functions are challenged, the function-based operational guidelines are provided to the operator. For the validation of HYPOSS, several tests have been performed based on the data produced by a plant simulator. The results of validation studies show good applicability of HYPOSS to the anomaly diagnosis of nuclear power plant

  1. Development and benchmark analysis of the hybrid evaluated nuclear data library HENDL1.0

    International Nuclear Information System (INIS)

    Xu Dezheng; Wu Yican; Gao Chunjing; Zheng Shanliang; Li Jingjing; Zhu Xiaoxiang; Liu Haibo

    2004-01-01

    To meet the requirements of fusion-fission sub-critical hybrid reactor design and the other related studies, the evaluate nuclear data library named HENDL1.0/E has been constituted based on the several main national evaluated data libraries. The relevant working libraries including transport sub-libraries HENDL1.0/MG in groupwise form, HENDL1.0/MC in pointwise form, and the burnup sub-library HENDL1.0/BU and response function sub-library HENDL1.0/RF are generated using the nuclear data processing codes NJOY97 and TRANSX2. The simulating calculation and comparative analysis are carried out against a series of existing benchmark test experiments with popular neutron transport codes, in order to validate the correctness and availability of the HENDL1.0. (authors)

  2. Coolant cleanup system for BWR type reactor

    International Nuclear Information System (INIS)

    Kinoshita, Shoichiro; Araki, Hidefumi.

    1993-01-01

    The cleanup system of the present invention removes impurity ions and floating materials accumulated in a reactor during evaporation of coolants in the nuclear reactor. That is, coolants pass pipelines from a pressure vessel using pressure difference between a high pressure in the pressure vessel and a low pressure at the upstream of a condensate filtration/desalting device of a condensate/feed water system as a driving source, during which cations and floating materials are removed in a high temperature filtration/desalting device and coolants flow into the condensate/feedwater system. Impurities containing anions are removed here by the condensates filtration/desalting device. Then, they return to the pressure vessel while pressurized and heated by a condensate pump, a feed water pump and a feed water heater. At least pumps, a heat exchanger for heating, a filtration/desalting device for removing anions and pipelines connecting them used exclusively for the coolant cleanup system are no more necessary. (I.S.)

  3. Coolant clean up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tajima, Fumio; Iwami, Hiroshi.

    1981-01-01

    Purpose: To decrease the amount of main steams and improve the plant heat efficiency by the use of condensated water as coolants for not-regenerative heat exchangers in a coolant clean up system of a nuclear reactor. Constitution: In a coolant clean up system of a nuclear reactor, a portion of condensates is transferred to the shell of a non-regenerative heat exchanger by way of a condensate pump for non-regenerative heat exchanger through a branched pipeway provided to the outlet of a condensate desalter for using the condensates as the coolants for the shell of the heat exchanger and the condensates are then returned to the inlet of a feedwater heater after the heat exchange. The branched flow rate of the condensates is controlled by the flow rate control valve mounted in the pipeway. Condensates passed through the heat exchanger and the condensates not passed through the heat exchanger are mixed and heated in a heater and then fed to the nuclear reactor. In a case where no feedwater is necessary to the nuclear reactor such as upon shutdown of the reactor, the condensates are returned by way of feedwater bypass pipeway to the condensator. By the use of the condensates as the coolants for the heat exchanger, the main steam loss can be decreased and the thermal load for the auxiliary coolant facility can be reduced. (Kawakami, Y.)

  4. Strategy for nuclear wastes incineration in hybrid reactors; Strategies pour l'incineration de dechets nucleaires dans des reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, F

    1998-12-11

    The transmutation of nuclear wastes in accelerator-driven nuclear reactorsoffers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  5. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC)

    DEFF Research Database (Denmark)

    Flotats, Albert; Gutberlet, Matthias; Knuuti, Juhani

    2011-01-01

    . The European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC) in this paper want to present a position statement of the institutions on the current roles of SPECT/CT and PET/CT hybrid cardiac imaging in patients...

  6. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry

    International Nuclear Information System (INIS)

    Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco; Stark, Greg; Jenkin, Thomas

    2016-01-01

    This report is one of a series of reports that Idaho National Laboratory and National Renewable Energy Laboratory are producing to investigate the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). Previous reports provided results of an analysis of two N-R HES scenarios. This report builds that analysis with a Texas-synthetic gasoline scenario providing the basis in which the N-R HES sells heat directly to an industrial customer. Subsystems were included that convert electricity to heat, thus allowing the renewable energy subsystem to generate heat and benefit from that revenue stream. Nuclear and renewable energy sources are important to consider in the energy sector's evolution because both are considered to be clean and non-carbon-emitting energy sources.

  7. A hybrid approach to solving the problem of design of nuclear fuel cells; Un enfoque hibrido para la solucion del problema del diseno de celdas de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Montes T, J. L.; Perusquia del C, R.; Ortiz S, J. J.; Castillo, A., E-mail: joseluis.montes@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    An approach to solving the problem of fuel cell design for BWR power reactor is presented. For this purpose the hybridization of a method based in heuristic knowledge rules called S15 and the advantages of a meta-heuristic method is proposed. The synergy of potentialities of both techniques allows finding solutions of more quality. The quality of each solution is obtained through a multi-objective function formed from the main cell parameters that are provided or obtained during the simulation with the CASMO-4 code. To evaluate this alternative of solution nuclear fuel cells of reference of nuclear power plant of Laguna Verde were used. The results show that in a systematic way the results improve when both methods are coupled. As a result of the hybridization process of the mentioned techniques an improvement is achieved in a range of 2% with regard to the achieved results in an independent way by the S15 method. (Author)

  8. HYPER (hybrid power extraction reactor): a system for clean nuclear energy

    International Nuclear Information System (INIS)

    Park, W.S.; Shin, U.; Han, S.-J.; Song, T.Y.; Choi, B.H.; Park, C.K.

    2000-01-01

    The Korea Atomic Energy Research Institute (KAERI) has been performing accelerator driven system related research and development (RID) called HYPER (hybrid power extraction reactor) for the transmutation of nuclear waste and energy production through the transmutation process. HYPER program is within the frame work of the national mid and long-term nuclear research plan. KAERI is aiming to develop the elemental technologies for the subcritical transmutation system by the year of 2001 and build a small bench scale test facility (∝5 MW) by the year of 2006. Some major features of HYPER have been developed and employed. On-power fueling concepts are employed to keep system power constant with a minimum variation of accelerator power. A hollow cylinder-type metal fuel is designed for the on-line refueling concept. Lead-bismuth (Pb-Bi) is adopted as a coolant and spallation target material. 1 GeV 16 mA proton beam is designed to be provided for HYPER. HYPER is to transmute about 380 kg of TRU a year and produce 1000 MW of power. The support ratio of HYPER for LWR units producing the same power is believed to be 5∝6. (orig.)

  9. Nuclear and mitochondrial DNA analysis reveals that hybridization between Fasciola hepatica and Fasciola gigantica occurred in China.

    Science.gov (United States)

    Ichikawa-Seki, Madoka; Peng, Mao; Hayashi, Kei; Shoriki, Takuya; Mohanta, Uday Kumar; Shibahara, Toshiyuki; Itagaki, Tadashi

    2017-02-01

    The well-known pathogens of fasciolosis, Fasciola hepatica (Fh) and Fasciola Gigantica (Fg), possess abundant mature sperms in their seminal vesicles, and thus, they reproduce bisexually. On the other hand, aspermic Fasciola flukes reported from Asian countries, which have no sperm in their seminal vesicles, probably reproduce parthenogenetically. The aim of this study was to reveal the origin of aspermic Fasciola flukes. The nuclear single copy markers, phosphoenolpyruvate carboxykinase and DNA polymerase delta, were employed for analysis of Fasciola species from China. The hybrid origin of aspermic Fasciola flukes was strongly suggested by the presence of the Fh/Fg type, which includes DNA fragments of both F. hepatica and F. gigantica. China can be regarded as the cradle of the interspecific hybridization because F. hepatica and F. gigantica were detected in the northern and southern parts of China, respectively, and hybrids flukes were distributed between the habitats of the two species. The Chinese origin was supported by the fact that a larger number of mitochondrial NADH dehydrogenase subunit 1 (nad1) haplotypes was detected in Chinese aspermic Fasciola populations than in aspermic populations from the neighbouring countries. Hereafter, 'aspermic' Fasciola flukes should be termed as 'hybrid' Fasciola flukes.

  10. Nuclear power generation facility

    International Nuclear Information System (INIS)

    Kubo, Mitsuji.

    1996-01-01

    Main steams are introduced from a moisture separation device for removing moisture content of the main steams to a low pressure turbine passing through a cross-around pipe. A condensate desalter comprising a mixed floor-type desalting tower using granular ion exchange resins is disposed at the downstream of the main condensator by way of condensate pipelines, and a feedwater heater is disposed at the downstream. Structural members of the main condensator are formed by weather proof steels. Low alloy steels are used partially or entirely for the cross-around pipe, gas extraction pipelines, heat draining pipelines, inner structural members other than pipelines in the feedwater heater, and the body and the inner structural members of the moisture separator. Titanium or a titanium alloy is used for the pipelines in the main condensator. With such a constitution, BWR type reactor facilities, in which the concentration of cruds inflown to the condensate cleanup system is reduced to simplify the condensate cleanup device can be obtained. (I.N.)

  11. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  12. Development on hybrid evaluated nuclear data library HENDL1.0/MG/MC

    International Nuclear Information System (INIS)

    Xu Dezheng; Gao Chunjing; Zheng Shanliang; Liu Haibo; Zhu Xiaoxiang; Li Jingjing; Wu Yican

    2004-01-01

    A Hybrid Evaluated Nuclear Data Library (HENDL) named as HENDL1.0 has been developed by Fusion Design Study (FDS) team of Institute of Plasma Physics, Academia Sinica (ASIPP) to take into account the requirements in design and research relevant to fusion, fission and fusion-fission sub-critical hybrid reactor. HENDLI1.0 contains one basic evaluated sub-library naming HENDL1.0/E and to processed working sub-libraries naming HENDL1.0/MG and HENDL1.0/MC, respectively. Through carefully comparing, distinguishing and choosing, HENDL1.0/E integrated basic evaluated neutron data files of 213 nuclides from the several main data libraries for evaluated neutron reaction cross sections including ENDF/B-VI (USA), JEF-2.2 (OECD/NEA, Europe), JENDL-3.2 (Japan), CENDL-2 (China), BROND-2 (Russia) and FENDL-2 (IAEA/NDS, ITER program). Based on this, 175-group neutron and 42-group photon neutron-photon coupled multi-group working library HENDL1.0/MG used for discrete ordinate Sn method transport calculation (such as ANISN code) and a compact ENDF form (ACE), continuous energy structure (pointwise) neutron cross section library HENDL1.0/MC for Monte Carlo method transport simulation (as MCMP code) can be attainable with the current group constants processing system NJOY and transport cross section preparation code TRANSX referring to the Vitamin-J energy group structure. In addition, two special bases i.e. transmutation (burnup) library BURNUP. DAT and response function library RESPONSE.DAT, have been also made for fuel cycle calculation and reactivity analyses of nuclear reactor. The relevant sample testing, benchmark checking and primary confirmation are also carried out to assess the validity of multi-purpose data library HENDL1.0. (authors)

  13. Nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro; Asano, Takashi

    1997-12-22

    A steam dryer/gas water separator storage pool of a BWR type reactor is connected to a sucking pipeline of a fuel pool cleaning pump and a sucking pipeline of a cleaning pump of a suppression pool (S/P) respectively by way of a drainage pipeline and a draining pipeline. Pool water from the storage pool passed through the drainage pipeline is pressurized by a fuel pool cleaning pump, and then cleaned by a filtration desalting device, and drained to S/P. At the same time, the pool water from the storage pool passed through the draining pipeline, and pressurized by the S/P cleaning system pump and cleaned by the filtration desalting device in the same manner, and then drained to the S/P. When the water in the storage pool is reduced and the sucking pressure of the fuel pool cleaning pump is lowered to cause possibility that the integral operation of the pump is difficult, the remained water is drained only by the S/P cleaning system pump. (I.N.)

  14. Nuclear power plants

    International Nuclear Information System (INIS)

    Ushijima, Susumu.

    1984-01-01

    Purpose: To enable to prevent the degradation in the quality of condensated water in a case where sea water leakage should occur in a steam condenser of a BWR type nuclear power plant. Constitution: Increase in the ion concentration in condensated water is detected by an ion concentration detector and the leaking factor of sea water is calculated in a leaking factor calculator. If the sea water leaking factor exceeds a predetermined value, a leak generation signal is sent from a judging device to a reactor power control device to reduce the reactor power. At ehe same tiem, the leak generation signal is also sent to a steam condenser selection and isolation device to interrupt the sea water pump of a specified steam condenser based on the signal from the ion concentration detector, as well as close the inlet and outlet valves while open vent and drain valves to thereby forcively discharge the sea water in the cooling water pipes. This can keep the condensate desalting device from ion breaking and prevent the degradation in the quality of the reactor water. (Horiuchi, T.)

  15. Development of once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jung, Yong Hun

    2010-02-01

    Humanity has been facing major energy challenges such as the severe climate change, threat of energy security and global energy shortage especially for the developing world. Particularly, growing awareness of the global warming has led to efforts to develop the sustainable energy technologies for the harmony of the economy, social welfare and environment. Water-splitting nuclear hydrogen production is expected to help to resolve those challenges, when high energy efficiency and low cost for hydrogen production become possible. Once-through Hybrid Sulfur process (Ot-HyS), proposed in this work, produces hydrogen using the same SO 2 Depolarized water Electrolysis (SDE) process found in the original Hybrid Sulfur cycle (HyS) proposed by Westinghouse, which has the sulfuric acid decomposition (SAD) process using high temperature heat source in order to recover sulfur dioxide for the SDE process. But Ot-HyS eliminated this technical hurdle by replacing it with well-established sulfur combustion process to feed sulfur dioxide to the SDE process. Because Ot-HyS has less technical challenges, Ot-HyS is expected to advance the realization of the large-scale nuclear hydrogen production by feeding an initial nuclear hydrogen stock. Most of the elemental sulfur, at present, is supplied by desulfurization process for environmental reasons during the processing of natural gas and petroleum refining and expected to increase significantly. This recovered sulfur will be burned with oxygen in the sulfur combustion process so that produced sulfur dioxide could be supplied to the SDE process to produce hydrogen. Because the sulfur combustion is a highly exothermic reaction releasing 297 kJ/mol of combustion heat resulting in a large temperature rise, efficiency of the Ot-HyS is expected to be high by recovering this great amount of high grade excess heat with nuclear energy. Sulfuric acid, which is a byproduct of the SDE process, could be sent to the neighboring consumers with or even

  16. Nuclear Characteristics of SPNDs and Preliminary Calculation of Hybrid Fixed Incore Detector with Monte Carlo Code

    International Nuclear Information System (INIS)

    Koo, Bon Seung; Lee, Kyung Hoon; Song, Jae Seung; Park, Sang Yoon

    2013-01-01

    In this paper, the basic nuclear characteristics of major emitter materials were surveyed. In addition, preliminary calculations of Cobalt-Vanadium fixed incore detector were performed using the Monte Carlo code. Calculational results were cross-checked by KARMA. KARMA is a two-dimensional multigroup transport theory code developed by the KAERI and approved by Korean regularity agency to be employed as a nuclear design tool for a Korean commercial pressurizer water reactor. The nuclear characteristics of the major emitter materials were surveyed, and preliminary calculations of the hybrid fixed incore detector were performed with the MCNP code. The eigenvalue and pin-by-pin fission power distributions were calculated and showed good agreement with the KARMA calculation results. As future work, gamma power distributions as well as several types of XS of the emitter, insulator, and collector regions for a Co-V ICI assembly will be evaluated and compared

  17. Preliminary design and analysis on nuclear fuel cycle for fission-fusion hybrid spent fuel burner

    International Nuclear Information System (INIS)

    Chen Yan; Wang Minghuang; Jiang Jieqiong

    2012-01-01

    A wet-processing-based fuel cycle and a dry-processing were designed for a fission-fusion hybrid spent fuel burner (FDS-SFB). Mass flow of SFB was preliminarily analyzed. The feasibility analysis of initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing were preliminarily evaluated. The results of mass flow of FDS-SFB demonstrated that the initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing of nuclear fuel cycle of FDS-SFB is preliminarily feasible. (authors)

  18. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    This report is one of a series of reports that Idaho National Laboratory and National Renewable Energy Laboratory are producing to investigate the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). Previous reports provided results of an analysis of two N-R HES scenarios. This report builds that analysis with a Texas-synthetic gasoline scenario providing the basis in which the N-R HES sells heat directly to an industrial customer. Subsystems were included that convert electricity to heat, thus allowing the renewable energy subsystem to generate heat and benefit from that revenue stream. Nuclear and renewable energy sources are important to consider in the energy sector's evolution because both are considered to be clean and non-carbon-emitting energy sources.

  19. Advantages of Production of New Fissionable Nuclides for the Nuclear Power Industry in Hybrid Fusion-Fission Reactors

    Science.gov (United States)

    Tsibulskiy, V. F.; Andrianova, E. A.; Davidenko, V. D.; Rodionova, E. V.; Tsibulskiy, S. V.

    2017-12-01

    A concept of a large-scale nuclear power engineering system equipped with fusion and fission reactors is presented. The reactors have a joint fuel cycle, which imposes the lowest risk of the radiation impact on the environment. The formation of such a system is considered within the framework of the evolution of the current nuclear power industry with the dominance of thermal reactors, gradual transition to the thorium fuel cycle, and integration into the system of the hybrid fusion-fission reactors for breeding nuclear fuel for fission reactors. Such evolution of the nuclear power engineering system will allow preservation of the existing structure with the dominance of thermal reactors, enable the reprocessing of the spent nuclear fuel (SNF) with low burnup, and prevent the dangerous accumulation of minor actinides. The proposed structure of the nuclear power engineering system minimizes the risk of radioactive contamination of the environment and the SNF reprocessing facilities, decreasing it by more than one order of magnitude in comparison with the proposed scheme of closing the uranium-plutonium fuel cycle based on the reprocessing of SNF with high burnup from fast reactors.

  20. Hybridization in East African swarm-raiding army ants

    DEFF Research Database (Denmark)

    Kronauer, Daniel Jc; Peters, Marcell K; Schöning, Caspar

    2011-01-01

    Hybridization can have complex effects on evolutionary dynamics in ants because of the combination of haplodiploid sex-determination and eusociality. While hybrid non-reproductive workers have been found in a range of species, examples of gene-flow via hybrid queens and males are rare. We studied...... hybridization in East African army ants (Dorylus subgenus Anomma) using morphology, mitochondrial DNA sequences, and nuclear microsatellites....

  1. Phylogeny reconstruction and hybrid analysis of populus (Salicaceae) based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments.

    Science.gov (United States)

    Wang, Zhaoshan; Du, Shuhui; Dayanandan, Selvadurai; Wang, Dongsheng; Zeng, Yanfei; Zhang, Jianguo

    2014-01-01

    Populus (Salicaceae) is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maximum likelihood and Bayesian inference methods. The resulting phylogenetic trees showed better resolution at both inter- and intra-sectional level than previous studies. The results revealed that (1) the plastid-based phylogenetic tree resulted in two main clades, suggesting an early divergence of the maternal progenitors of Populus; (2) three advanced sections (Populus, Aigeiros and Tacamahaca) are of hybrid origin; (3) species of the section Tacamahaca could be divided into two major groups based on plastid and nuclear DNA data, suggesting a polyphyletic nature of the section; and (4) many species proved to be of hybrid origin based on the incongruence between plastid and nuclear DNA trees. Reticulate evolution may have played a significant role in the evolution history of Populus by facilitating rapid adaptive radiations into different environments.

  2. Phylogeny reconstruction and hybrid analysis of populus (Salicaceae based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments.

    Directory of Open Access Journals (Sweden)

    Zhaoshan Wang

    Full Text Available Populus (Salicaceae is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maximum likelihood and Bayesian inference methods. The resulting phylogenetic trees showed better resolution at both inter- and intra-sectional level than previous studies. The results revealed that (1 the plastid-based phylogenetic tree resulted in two main clades, suggesting an early divergence of the maternal progenitors of Populus; (2 three advanced sections (Populus, Aigeiros and Tacamahaca are of hybrid origin; (3 species of the section Tacamahaca could be divided into two major groups based on plastid and nuclear DNA data, suggesting a polyphyletic nature of the section; and (4 many species proved to be of hybrid origin based on the incongruence between plastid and nuclear DNA trees. Reticulate evolution may have played a significant role in the evolution history of Populus by facilitating rapid adaptive radiations into different environments.

  3. Cosmic ray nuclear interactions and EAS-triggered families observed by the Chacaltaya hybrid experiment

    International Nuclear Information System (INIS)

    Aoki, H.; Honda, K.; Inoue, N.; Ishii, T.; Kawasumi, N.; Martinic, N.; Ochi, N.; Ohmori, N.; Ohsawa, A.; Tamada, M.; Ticona, R.

    2008-01-01

    Longitudinal and lateral characteristics of the families detected by emulsion chambers in the hybrid experiment with AS-array at Mt. Chacaltaya are studied in detail. Although many groups discuss about an increase of the heavy component in primary cosmic-rays beyond the knee region, it is shown that the observed characteristics of the families accompanied by large shower size, Ne>10 6 , can not be explained by an increase of heavy primaries alone. It is necessary to assume some changes of nuclear interaction in order to explain the observed characteristics of the air-showers accompanied by families

  4. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-01-01

    for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations

  5. How carbon-friendly is nuclear energy? A hybrid MRIO-LCA model of a Spanish facility.

    Science.gov (United States)

    Zafrilla, Jorge E; Cadarso, María-Ángeles; Monsalve, Fabio; de la Rúa, Cristina

    2014-12-16

    Spain faces the challenge of 80-95% greenhouse gas emissions reduction by 2050 (European Energy Roadmap). As a possible first step to fulfill this objective, this paper presents a two-level analysis. First, we estimate the carbon footprint of a hypothetical nuclear facility in Spain. Using a hybrid multiregional input-output model, to avoid truncation while diminishing sector aggregation problems and to improve environmental leakages estimations, we calculate the CO2 equivalent emissions associated with the different phases of the nuclear life-cycle--construction, fuel processing and operation and maintenance--taking into account the countries or regions where the emissions have been generated. Our results estimate a nuclear carbon footprint of 21.30 gCO2e/kWh, of which 89% comes from regions outside Spain. In some regions, the highest impacts are mostly direct (92%, 95%, and 92% of total carbon emissions in the U.S., France, and UK, respectively), meaning that these emissions are linked to the inputs directly required for nuclear energy production; in other regions, indirect emissions are higher (83% in China), which becomes relevant for policy measures. Second, through the analyses of different scenarios, we unravel and quantify how different assumptions that are often taken in the literature result in different carbon emissions.

  6. Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

    2004-01-01

    The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal

  7. Mechanical and thermal design of hybrid blankets

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1978-01-01

    The thermal and mechanical aspects of hybrid reactor blanket design considerations are discussed. This paper is intended as a companion to that of J. D. Lee of Lawrence Livermore Laboratory on the nuclear aspects of hybrid reactor blanket design. The major design characteristics of hybrid reactor blankets are discussed with emphasis on the areas of difference between hybrid reactors and standard fusion or fission reactors. Specific examples are used to illustrate the design tradeoffs and choices that must be made in hybrid reactor design. These examples are drawn from the work on the Mirror Hybrid Reactor

  8. Proton nuclear magnetic resonance and spectrophotometric studies of nickel(II)-iron(II) hybrid hemoglobins

    International Nuclear Information System (INIS)

    Shibayama, N.; Inubushi, T.; Morimoto, H.; Yonetani, T.

    1987-01-01

    Ni(II)-Fe(II) hybrid hemoglobins, α(Fe) 2 β(Ni) 2 and α(Ni) 2 β(Fe) 2 , have been characterized by proton nuclear magnetic resonance with Ni(II) protoporphyrin IX (Ni-PP) incorporated in apoprotein, which serves as a permanent deoxyheme. α(Fe) 2 β(Ni) 2 , α(Ni) 2 β(Fe) 2 , and NiHb commonly show exchangeable proton resonances at 11 and 14 ppm, due to hydrogen-bonded protons in a deoxy-like structure. Upon binding of carbon monoxide (CO) to α(Fe) 2 β(Ni) 2 , these resonances disappear at pH 6.5 to pH 8.5. On the other hand, the complementary hybrid α(Ni) 2 β(Fe-CO) 2 showed the 11 and 14 ppm resonances at low pH. Upon raising pH, the intensities of both resonances are reduced, although these changes are not synchronized. Electronic absorption spectra and hyperfine-shifted proton resonances indicate that the ligation of CO in the β(Fe) subunits induced changes in the coordination and spin states of Ni-PP in the α subunits. In a deoxy-like structure, the coordination of Ni-PP in the α subunits is predominantly in a low-spin (S = 0) four-coordination state, whereas in an oxy-like structure the contribution of a high-spin (S = 1) five-coordination state markedly increased. Ni-PP in the β subunits always takes a high-spin five-coordination state regardless of solution conditions and the state of ligation in the partner α(Fe) subunits. In the β(Ni) subunits, a significant downfield shift of the proximal histidyl N/sub δ/H resonance and a change in the absorption spectrum of Ni-PP were detected, upon changing the quaternary structure of the hybrid. The chemical shifts were analyzed in terms of the E11-Val methyls vs. the porphyrin rings in hybrid Hbs

  9. Host Adaptation and Speciation through Hybridization and Polyploidy in Phytophthora

    Science.gov (United States)

    Bertier, Lien; Leus, Leen; D’hondt, Liesbet; de Cock, Arthur W. A. M.; Höfte, Monica

    2013-01-01

    It is becoming increasingly evident that interspecific hybridization is a common event in phytophthora evolution. Yet, the fundamental processes underlying interspecific hybridization and the consequences for its ecological fitness and distribution are not well understood. We studied hybridization events in phytophthora clade 8b. This is a cold-tolerant group of plant pathogenic oomycetes in which six host-specific species have been described that mostly attack winter-grown vegetables. Hybrid characterization was done by sequencing and cloning of two nuclear (ITS and Ypt1) and two mitochondrial loci (Cox1 and Nadh1) combined with DNA content estimation using flow cytometry. Three different mtDNA haplotypes were recovered among the presumed hybrid isolates, dividing the hybrids into three types, with different parental species involved. In the nuclear genes, additivity, i.e. the presence of two alleles coming from different parents, was detected. Hybrid isolates showed large variations in DNA content, which was positively correlated with the additivity in nuclear loci, indicating allopolyploid hybridization followed by a process of diploidization. Moreover, indications of homeologous recombination were found in the hybrids by cloning ITS products. The hybrid isolates have been isolated from a range of hosts that have not been reported previously for clade 8b species, indicating that they have novel pathogenic potential. Next to this, DNA content measurements of the non-hybrid clade 8b species suggest that polyploidy is a common feature of this clade. We hypothesize that interspecific hybridization and polyploidy are two linked phenomena in phytophthora, and that these processes might play an important and ongoing role in the evolution of this genus. PMID:24386473

  10. The LOFA analysis of fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Yu, Z.-C.; Xie, H.

    2014-01-01

    The fusion-fission hybrid energy reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc, with the fusion neutron source striking the subcritical blanket. The passive safety system, consisting of passive residual heat removal system, passive safety injection system and automatic depressurization system, was adopted into the fusion-fission hybrid energy reactor in this paper. Modeling and nodalization of primary loop, passive core cooling system and partial secondary loop of the fusion-fission hybrid energy reactor using RELAP5 were conducted and LOFA (Loss of Flow Accident) was analyzed. The results of key transient parameters indicated that the PRHRs could mitigate the accidental consequence of LOFA effectively. It is also concluded that it is feasible to apply the passive safety system concept to fusion-fission hybrid energy reactor. (author)

  11. Fusion-fission hybrid studies in the United States

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Berwald, D.H.; Cheng, E.T.; Delene, J.G.; Jassby, D.L.

    1986-01-01

    Systems and conceptual design studies have been carried out on the following three hybrid types: (1) The fission-suppressed hybrid, which maximizes fissile material produced (Pu or 233 U) per unit of total nuclear power by suppressing the fission process and multiplying neutrons by (n,2n) reactions in materials like beryllium. (2) The fast-fission hybrid, which maximizes fissile material produced per unit of fusion power by maximizing fission of 238 U (Pu is produced) in which twice the fissile atoms per unit of fusion power (but only a third per unit of nuclear power) are made. (3) The power hybrid, which amplifies power in the blanket for power production but does not produce fuel to sell. All three types must sell electrical power to be economical

  12. Mitochondrial Recombination and Introgression during Speciation by Hybridization.

    Science.gov (United States)

    Leducq, Jean-Baptiste; Henault, Mathieu; Charron, Guillaume; Nielly-Thibault, Lou; Terrat, Yves; Fiumera, Heather L; Shapiro, B Jesse; Landry, Christian R

    2017-08-01

    Genome recombination is a major source of genotypic diversity and contributes to adaptation and speciation following interspecies hybridization. The contribution of recombination in these processes has been thought to be largely limited to the nuclear genome because organelles are mostly uniparentally inherited in animals and plants, which prevents recombination. Unicellular eukaryotes such as budding yeasts do, however, transmit mitochondria biparentally, suggesting that during hybridization, both parents could provide alleles that contribute to mitochondrial functions such as respiration and metabolism in hybrid populations or hybrid species. We examined the dynamics of mitochondrial genome transmission and evolution during speciation by hybridization in the natural budding yeast Saccharomyces paradoxus. Using population-scale mitochondrial genome sequencing in two endemic North American incipient species SpB and SpC and their hybrid species SpC*, we found that both parental species contributed to the hybrid mitochondrial genome through recombination. We support our findings by showing that mitochondrial recombination between parental types is frequent in experimental crosses that recreate the early step of this speciation event. In these artificial hybrids, we observed that mitochondrial genome recombination enhances phenotypic variation among diploid hybrids, suggesting that it could play a role in the phenotypic differentiation of hybrid species. Like the nuclear genome, the mitochondrial genome can, therefore, also play a role in hybrid speciation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Review of nuclear electricity generation and desalination plants and evaluation of SMART application

    International Nuclear Information System (INIS)

    Kang, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Yoon, Ju Hyeon; Kim, Hwan Yeol; Lee, Young Jin; Kim, Joo Pyung; Lee, Doo Jeong; Chang, Moon Hee

    1998-03-01

    KAERI are developing a new advanced integral reactor named SMART for dual application purpose of the electric power generation and seawater desalination. This report are describing the general desalting methods with its technology development and the coupling schemes between electricity generation system and desalting system. Though MSF takes the most part of currently operating seawater desalination plants, MED and RO has been preferred in the past decade. MED has a advantage over MSF with the view to investment costs and energy efficiency. The coupling between electricity generation system and desalination system can be realized by using one of back pressure cycle, extraction cycle, and multi-shaft cycle. New design and operating strategy has to be established for various environment and load conditions. To evaluate the candidate desalination systems of SMART and the coupling method of it with other secondary systems, the desalted water and electricity were calculated through the several options. The result shows that back pressure cycle is preferred at the high water/power ratio and extraction cycle at the low value. If energy efficiency are only considered, RO will be best choice. (author). 17 refs., 12 tabs., 31 figs

  14. The tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.; Rose, R.P.

    1981-01-01

    At a time when the potential benefits of various energy options are being seriously evaluated in many countries through-out the world, it is both timely and important to evaluate the practical application of fusion reactors for their economical production of nuclear fissile fuels from fertile fuels. The fusion hybrid reactor represents a concept that could assure the availability of adequate fuel supplies for a proven nuclear technology and have the potential of being an electrical energy source as opposed to an energy consumer as are the present fuel enrichment processes. Westinghouse Fusion Power Systems Department, under Contract No. EG-77-C-02-4544 with the Department of Energy, Office of Fusion Energy, has developed a preliminary conceptual design for an early twenty-first century fusion hybrid reactor called the commercial Tokamak Hybrid Reactor (CTHR). This design was developed as a first generation commercial plant producing fissile fuel to support a significant number of client Light Water Reactor (LWR) Plants. To the depth this study has been performed, no insurmountable technical problems have been identified. The study has provided a basis for reasonable cost estimates of the hybrid plants as well as the hybrid/LWR system busbar electricity costs. This energy system can be optimized to have a net cost of busbar electricity that is equivalent to the conventional LWR plant, yet is not dependent on uranium ore prices or standard enrichment costs, since the fusion hybrid can be fueled by numerous fertile fuel resources. A nearer-term concept is also defined using a beam driven fusion driver in lieu of the longer term ignited operating mode. (orig.)

  15. Genome reorganization in Nicotiana asymmetric somatic hybrids analysed by in situ hybridization

    International Nuclear Information System (INIS)

    Parokonny, A.S.; Kenton, A.Y.; Gleba, Y.Y.; Bennett, M.D.

    1992-01-01

    In situ hybridization was used to examine genome reorganization in asymmetric somatic hybrids between Nicotiana plumbaginifolia and Nicotiana sylvestris obtained by fusion of gamma-irradiated protoplasts from one of the parents (donor) with non-irradiated protoplasts from the other (recipient). Probing with biotinylated total genomic DNA from either the donor or the recipient species unequivocally identified genetic material from both parents in 31 regenerant plants, each originating from a different nuclear hybrid colony. This method, termed genomic in situ hybridization (GISH), allowed intergenomic translocations containing chromosome segments from both species to be recognized in four regenerants. A probe homologous to the consensus sequence of the Arabidopsis thaliana telomeric repeat (5'-TTTAGGG-3')n, identified telomeres on all chromosomes, including 'mini-chromosomes' originating from the irradiated donor genome. Genomic in situ hybridization to plant chromosomes provides a rapid and reliable means of screening for recombinant genotypes in asymmetric somatic hybrids. Used in combination with other DNA probes, it also contributes to a greater understanding of the events responsible for genomic recovery and restabilization following genetic manipulation in vitro

  16. Recent hybridization between Taenia asiatica and Taenia saginata.

    Science.gov (United States)

    Yamane, Kanako; Suzuki, Yumi; Tachi, Eiko; Li, Tiaoying; Chen, Xingwang; Nakao, Minoru; Nkouawa, Agathe; Yanagida, Testuya; Sako, Yasuhito; Ito, Akira; Sato, Hiroshi; Okamoto, Munehiro

    2012-06-01

    Five Taenia tapeworms collected from humans in Tibetan Plateau, Sichuan, China, where three species of human Taenia are sympatrically endemic, were examined for the mitochondrial cox1 gene and two nuclear genes, ef1 and elp. Phylogenetic analyses of these genes revealed that two adult worms showed nuclear-mitochondrial discordance, suggesting that they originated from hybridization between Taenia saginata and Taenia asiatica. One of two worms had T. asiatica-type mtDNA, whereas another worm had T. saginata-type mtDNA, indicating that reciprocal hybridization between T. saginata and T. asiatica could occur. The worm having T. asiatica-type mtDNA was heterozygous at both nuclear loci with T. saginata-type alleles and T. asiatica-type alleles. In another worm, the ef1 locus was heterozygous with a T. saginata-type alleles and T. asiatica-type alleles, while the elp locus was homozygous with T. saginata-type alleles. Self-fertilization is the main reproductive method of the genus Taenia. Since self-fertilization represents a type of inbreeding, each locus in the offspring would become homozygous over generations with genetic drift. The fact that some nuclear loci are still heterozygous means that hybridization might have occurred recently. Hybridization between T. asiatica and T. saginata is probably an ongoing event in many areas in which they are sympatrically endemic. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  17. New hybrid systems: strategy and research programs

    International Nuclear Information System (INIS)

    Thomas, J.B.

    2001-01-01

    This short article gives a status of research and experimental programs concerning new hybrid systems. A hybrid system is made up of a subcritical core, a spallation target and of a particle accelerator that delivers a proton beam. The main asset of hybrid systems is to provide a large reactivity margin that would be very valuable to transmute actinide nuclei efficiently. As a consequence hybrid systems could be considered as actinide burner reactors integrated to a large population of classical nuclear reactors dedicated to electricity production. (A.C.)

  18. The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water. The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.

  19. Hybridization change of DNA and nuclear RNA synthesized immediately after ionizing irradiation in spleen cells isolated from 615 mice

    International Nuclear Information System (INIS)

    Meng Ziqiang

    1986-01-01

    DNA hybridization with nuclear RNA(nRNA) synthesized immediately after 60 Co Gamma-irradiation in the spleen cells freshly isolated from inbred line 615 mice was investigated, using the technique of Gillespie and Spiegelman. In RNA/DNA hybridization percentage experiment, it was showed that the hybridization of normal DNA with labelled nRNA synthesized in irradiated cells reached the saturation point at a much faster rate than with labelled normal nRNA. The hybridization percentage of nRNA synthesized in irradiated cells was higher than that of normal nRNA during the different reaction time before the saturation point of DNA with nRNA synthesized in irradiated cells, but it was lower than that of normal nRNA after the zone of high repetitive DNA sequences was stimulated, however, the transcription of some base sequences in the zone of low repetitive DNA sequences was seriously inhibited. Measurements of the exhaustion rates of pulse-labelled nRNA were carried out as described by Greene and Flickinger Biochim. In these studies, pulse-labelled nRNA synthesized in unirradiated and irradiated cells were compared by exhausion with DNA at hybridization time of 4 or 24 hours, When the hybridization time was 4 hours, the nRNA synthesized in irradiated cells displayed a faster exhaustion rate than the control nRNA. But if the hybridization time was 24 hours, the exhaustion rate of nRNA synthesized in irradiated cells reduced. These results demostrated that Gamma-irradiation changed the proportion of transcription of some nRNA species and implayed that the sensitivities of the transcription activeties of the different repetitive DNA sequences to Gamma-irradiation were different, and so were the transcription activeties of the different base sequences in the same repetitive DNA sequences

  20. Facility of BWR type nuclear power plant

    International Nuclear Information System (INIS)

    Kubo, Mitsuji

    1998-01-01

    A condensate filtering device for cleaning condensate flown from a low pressure turbine and a condensate desalting device are connected by way of a condensate pipeline. Control rod drives (CRD) are disposed to the lower portion of BWR. A CRD pump and one end of a CRD feedwater pipeline are connected in series to the upstream of CRD. The other end of the CRD feedwater pipeline is connected to a CRD water taking pipeline branched from the condensate pipeline. Water is taken to the CRD from downstream of the condensate filtering device and upstream of a connecting portion between a low pressure heater drain pipeline and the condensate pipeline. Flow of impurities leached out of the condensate desalting device to the reactor can be suppressed, and rising of temperature of CRD water by the low pressure heater drain water is prevented. In addition, flowing of dissolved oxygen to the CRD system can be suppressed. (I.N.)

  1. Determination of organic-bound chlorine and bromine in human body fluids by neutron activation analysis

    International Nuclear Information System (INIS)

    McKinney, J.D.; Abusamra, A.; Reed, J.H.

    1983-01-01

    The levels of organic-bound chlorine and bromine in human milk and serum are determined by neutron activation analysis. Desalted milk and serum fractions are irradiated with neutrons in a nuclear reactor and the resulting γ-rays of 38 Cl and 80 Br are measured. The desalting procedure, achieved by using Bio-Gel molecular sieves, virtually removes all ionic chloride and bromides from milk and serum. Radioactive tracer studies with polychlorinated biphenyl- 14 C indicate a recovery of 90% through the Bio-Gel column. The total organic chlorine in 2.2-(4-chlorophenyl)-1,1-dichloroethane spiked milk and heptachlor spiked milk, determined after being desalted and irradiated according to this procedure, substantiates a good recovery of the added spike. The lower limits of detection of organic-bound chlorine and bromine in milk or serum are 50 and 5 parts per billion (ppb), respectively

  2. Near term feasibility of nuclear reactor for sea-water desalting: coupling of standard condensing nuclear power stations to low grade heat multieffect distillation plants

    International Nuclear Information System (INIS)

    Adar, J.; Manor, S.; Schaal, M.

    1977-01-01

    Commercial nuclear power reactors exist only in standard sizes and designs. No large nuclear back-pressure turbines are available today. Therefore, near term large scale nuclear desalination plants must be tailored to the NSSS sizes and available turbines and not the contrary. Standard condensing nuclear turbines could operate continuously with a back-presure of up to 5-7'' Hg (depending on the supplier). It means that they can exhaust huge amounts of steam at 56 0 C - 64 0 C with a loss of electricity production of 6% - 10% when compared to 2 1/2'' Hg normal condensing pressure. The horizontal aluminium tube multi-effect distillation process developed by ''Israel Desalination Engineering'' Ltd. is very suitable for the use of such low-grade heat: 4 to 9 effects can operate within these temperature ranges. A special flash-chamber constitutes a positive barrier against any possible contamination being carried over by the steam exhausted from the turbine to the desalination plant. Flow sheets, heat and mass balances have been prepared for two standard sizes of NSSS and turbines (1882sup(Mwth) and 2785sup(Mwth)), two ''back-pressures'' (5 1/2'' and 7'' Hg), and corresponding desalination plants. Only standard equipment is being used in the steam and electricity producing plant. The desalination plant consists of 6 to 12 parallel double lines, each of them similar to a large prototype now being designed and which is going to be coupled to an old fossil power station. Water production varies between 50 and 123 sup(us MGD) and water cost between 23 and 36 sup(cents)/M 3 . Total energy requirements of the desalination plant represent only 19 to 50% of the total water cost as against 75% for a single purpose plant. Costs are based on actual bids for the power plant and actual estimates for the desalination prototype. The operation is designed to be flexible so that the power plant can be operated either in conjunction with the desalination plant, or as a single purpose

  3. Conceptual design and cost study for a dual-purpose nuclear-electric reverse osmosis seawater conversion plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    The objective of this study was to develop a conceptual design and cost estimate for a 25 million gallon per day seawater reverse osmosis desalting plant operating at both Caribbean and Persian Gulf sites. The plant would operate in conjunction with a 1000 MW(e) nuclear power plant. Four seawater membrane manufacturers were supplied with feedwater analysis and a simplified cost estimating procedure in order to recommend membrane systems which would be applicable. For both sites a two-stage system was selected for development of a conceptual cost estimate. The product water cost was found to be (based upon 1978 United States construction costs) $3.17/1000 gallons for the Caribbean site and $3.75/1000 gallons for the Persian Gulf site.

  4. Conceptual design and cost study for a dual-purpose nuclear-electric reverse osmosis seawater conversion plant

    International Nuclear Information System (INIS)

    1979-04-01

    The objective of this study was to develop a conceptual design and cost estimate for a 25 million gallon per day seawater reverse osmosis desalting plant operating at both Caribbean and Persian Gulf sites. The plant would operate in conjunction with a 1000 MW(e) nuclear power plant. Four seawater membrane manufacturers were supplied with feedwater analysis and a simplified cost estimating procedure in order to recommend membrane systems which would be applicable. For both sites a two-stage system was selected for development of a conceptual cost estimate. The product water cost was found to be (based upon 1978 United States construction costs) $3.17/1000 gallons for the Caribbean site and $3.75/1000 gallons for the Persian Gulf site

  5. Prospect of realizing nuclear fusion reactors

    International Nuclear Information System (INIS)

    1989-01-01

    This Report describes the results of the research work on nuclear fusion, which CRIEPI has carried out for about ten years from the standpoint of electric power utilities, potential user of its energy. The principal points are; (a) economic analysis (calculation of costs) based on Japanese analysis procedures and database of commercial fusion reactors, including fusion-fission hybrid reactors, and (b) conceptual design of two types of hybrid reactors, that is, fission-fuel producing DMHR (Demonstration Molten-Salt Hybrid Reactor) and electric-power producing THPR (Tokamak Hybrid Power Reactor). The Report consists of the following chapters: 1. Introduction. 2. Conceptual Design of Hybrid Reactors. 3. Economic Analysis of Commercial Fusion Reactors. 4. Basic Studies Applicable Also to Nuclear Fusion Technology. 5. List of Published Reports and Papers; 6. Conclusion. Appendices. (author)

  6. Hybrid radiation background monitoring in operational control and forecasting of environmental contamination by nuclear power station discharges

    International Nuclear Information System (INIS)

    Ermeev, I.S.; Eremenko, V.A.; Makarov, Y.A.; Matueev, V.V.; Zhernov, V.S.

    1986-01-01

    Rapid developments in nuclear power have stimulated research on monitoring and forecasting environmental radiation pollution (ERP), and in particular the amounts, compositions, and distributions of radionuclides in the environment. A conceptual model is presented for hybrid environmental radiation pollution monitoring. When there is an emergency, the model operates in a fashion most closely corresponding to the actual meteorological conditions, and the ERP data given by the model enable one to distinguish changes due to the man-made component from random fluctuations in the natural background. The measurement system in general includes mobile and stationary data-acquisition facilities linked by wire or radio to the central point. The system also accumulates and stores data on the radiation environment, which are edited on the basis of radioactive, chemical, and other transformations. The purpose of hybrid monitoring is ultimately to analyze trends in order to detect elevated discharges and thus to output data to the regional monitoring system

  7. Hybridization and the evolution of reef coral diversity.

    Science.gov (United States)

    Vollmer, Steven V; Palumbi, Stephen R

    2002-06-14

    Hundreds of coral species coexist sympatrically on reefs, reproducing in mass-spawning events where hybridization appears common. In the Caribbean, DNA sequence data from all three sympatric Acropora corals show that mass spawning does not erode species barriers. Species A. cervicornis and A. palmata are distinct at two nuclear loci or share ancestral alleles. Morphotypes historically given the name Acropora prolifera are entirely F(1) hybrids of these two species, showing morphologies that depend on which species provides the egg for hybridization. Although selection limits the evolutionary potential of hybrids, F(1) individuals can reproduce asexually and form long-lived, potentially immortal hybrids with unique morphologies.

  8. Present situation of floating nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, A [Central Research Inst. of Electric Power industry, Tokyo (Japan)

    1975-08-01

    The present situation of investigation and the future problems of floating nuclear power plants in Japan are examined, referring to those in USA. The committee report on a new power generation system in 1970 is quoted. In this report, the site conditions are supposed to be 5 km offshore, 100m water depth, 60 m/sec wind velocity, 10 m wave height, 200 m wave length, 12 seconds wave period 0.2 g earthquake acceleration, and 2.5 knots tide current. The semisubmersible hull of double construction 15 m under water is employed. A pair of 1,000,000 kW BWR reactors are utilized. A sea water desalting unit using bleed steam from turbines is installed. The solid radioactive wastes packed in drums are disposed in the sea. The design and cost estimation were made. The names of the organizations who have made investigation in this field, namely the Civil Engineering Society, the Sience and Technology Agency and other several centers, are reported. The Chubu Electric Power Company is forwarding its project. Referring to the investigations in USA, the project of Atlantic nuclear power station unit is described. A report of plant design has been submitted by O.P.S. to United States Atomic Energy Commission in 1973. The Coastal Area Facilities Act was instituted in New Jersey in 1973. Although the Atlantic nuclear power station has been postponed, it is the most feasible project. For the realization of a floating nuclear power plant in Japan, investigation must be started on the ground construction that can endure the construction of breakwater in water depth of 14 to 30 meter.

  9. Doubts about hybrids

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The natural draught wet cooling tower with a height of 160 m is considerably taller than the 80 m high hybrid cooling tower, but the latter has a considerably larger diameter. Spray losses for both types are about 4.5 kg/sec for a thermal output of 2500 MW. Apart from the pump load, the natural cooling tower requires no power. Apart from higher pump loads, the hybrid cooling tower requires power for the fans. The energy demand for this purpose is 1.5 to 3% of the nett powerstation output. For the Isar 2 nuclear powerstation this would mean a reduction in puput of about 35 MW. (orig.) [de

  10. Hybrid feedforward and feedback controller design for nuclear steam generators over wide range operation using genetic algorithm

    International Nuclear Information System (INIS)

    Zhao, Y.; Edwards, R.M.; Lee, K.Y.

    1997-01-01

    In this paper, a simplified model with a lower order is first developed for a nuclear steam generator system and verified against some realistic environments. Based on this simplified model, a hybrid multi-input and multi-out (MIMO) control system, consisting of feedforward control (FFC) and feedback control (FBC), is designed for wide range conditions by using the genetic algorithm (GA) technique. The FFC control, obtained by the GA optimization method, injects an a priori command input into the system to achieve an optimal performance for the designed system, while the GA-based FBC control provides the necessary compensation for any disturbances or uncertainties in a real steam generator. The FBC control is an optimal design of a PI-based control system which would be more acceptable for industrial practices and power plant control system upgrades. The designed hybrid MIMO FFC/FBC control system is first applied to the simplified model and then to a more complicated model with a higher order which is used as a substitute of the real system to test the efficacy of the designed control system. Results from computer simulations show that the designed GA-based hybrid MIMO FFC/FBC control can achieve good responses and robust performances. Hence, it can be considered as a viable alternative to the current control system upgrade

  11. A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system.

    Science.gov (United States)

    Zhang, Yang; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart

    2013-09-17

    In isolated locations, remote areas, or islands, potable water is precious because of the lack of drinking water treatment facilities and energy supply. Thus, a robust and reliable water treatment system based on natural energy is needed to reuse wastewater or to desalinate groundwater/seawater for provision of drinking water. In this work, a hybrid membrane system combining electrodialysis (ED) and forward osmosis (FO), driven by renewable energy (solar energy), denoted as EDFORD (ED-FO Renewable energy Desalination), is proposed to produce high-quality water (potable) from secondary wastewater effluent or brackish water. In this hybrid membrane system, feedwater (secondary wastewater effluent or synthetic brackish water) was drawn to the FO draw solution while the organic and inorganic substances (ions, compounds, colloids and particles) were rejected. The diluted draw solution was then pumped to the solar energy driven ED. In the ED unit, the diluted draw solution was desalted and high-quality water was produced; the concentrate was recycled to the FO unit and reused as the draw solution. Results show that the water produced from this system contains a low concentration of total organic carbon (TOC), carbonate, and cations derived from the feedwater; had a low conductivity; and meets potable water standards. The water production cost considering the investment for membranes and solar panel is 3.32 to 4.92 EUR m(-3) (for 300 days of production per year) for a small size potable water production system.

  12. Plantation of desert and renewal of earth with small LMRs

    International Nuclear Information System (INIS)

    Hattori, Sadao; Minato, Akio; Handa, Norihiko; Hashizume, Kenichi.

    1991-01-01

    Desertification is advancing at rapid rate on the earth. The technical development for preventing the desertification has been requested for advanced countries. Particularly in the southern hemisphere, the energy which can restore green in deserts and supply the electric power required for living is necessary. In this paper, the supply of electric power using the small fast reactors which are excellent in the safety and maintainability and the desalting plants required for tree planting in deserts, and further, the regeneration of the earth accompanying it, are discussed. By desertification, yearly 6 million ha of lands are devastated to unrecoverable extent, and those concentrate in the districts where yearly rainfall is little. In order to prevent desertification, it is necessary to stabilize surface soil by tree planting. Further, in order to prevent the deforestation for obtaining energy, the dual purpose plants for power generation and desalting are important. In this paper, the concept of obtaining water resources from sea, carrying out the desalting, supplying the water to the forefront of deserts and forming green belts there by using fast reactors is considered. The present status of desertification, the desalting of seawater by nuclear power, small fast reactors aiming at ultra-safety, the production of green, and the regeneration of the earth are described. (K.I.)

  13. Thermal safety analysis for pebble bed blanket fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie

    1998-01-01

    Pebble bed blanket hybrid reactor may have more advantages than slab element blanket hybrid reactor in nuclear fuel production and nuclear safety. The thermo-hydraulic calculations of the blanket in the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor developed in China are carried out using the Code THERMIX and auxiliary code. In the calculations different fuel pebble material and steady state, depressurization and total loss of flow accident conditions are included. The results demonstrate that the conceptual design of the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor with dump tank is feasible and safe enough only if the suitable fuel pebble material is selected and the suitable control system and protection system are established. Some recommendations for due conceptual design are also presented

  14. Neutronics issues in fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    Liu Chengan

    1995-01-01

    The coupled neutron and γ-ray transport equations and nuclear number density equations, and its computer program systems concerned in fusion-fission hybrid reactor design are briefly described. The current status and focal point for coming work of nuclear data used in fusion reactor design are explained

  15. Effects of supplementary desalted mother liquor as replacement of commercial salt in diet for Thai native cattle on digestibility, energy and nitrogen balance, and rumen conditions.

    Science.gov (United States)

    Sato, Yoshiaki; Angthong, Wanna; Butcha, Patima; Takeda, Motoharu; Oishi, Kazato; Hirooka, Hiroyuki; Kumagai, Hajime

    2018-05-16

    Four Thai native cattle were used in a 4 × 4 Latin square design experiment to evaluate the availability of desalted mother liquor (DML) as replacement of salt in concentrate. Each cattle was assigned to one of the following concentrate feeding treatments: C1, 1% NaCl was added as salt; C2, 2% NaCl was added as salt; D1, 1% NaCl was replaced by DML; D2, 2% NaCl was replaced by DML, on a dry matter (DM) basis. The animals were fed rice straw and experimental concentrates (40:60) at 1.9% of body weight on a DM basis, daily. Acid detergent fiber expressed exclusive of residual ash (ADFom) digestibility in DML treatment was higher than salt treatment (p balance, rumen conditions, blood metabolites and methane emission. © 2018 Japanese Society of Animal Science.

  16. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  17. Species from within the Phytophthora cryptogea complex and related species, P. erythroseptica and P. sansomeana, readily hybridize.

    Science.gov (United States)

    Safaiefarahani, Banafsheh; Mostowfizadeh-Ghalamfarsa, Reza; Hardy, Giles E St J; Burgess, Treena I

    2016-08-01

    During a study on the phylogenetic relationships between species in the Phytophthora cryptogea complex and related species, Phytophthora erythroseptica and Phytophthora sansomeana, 19 hybrid isolates with multiple polymorphisms in the nuclear sequences were observed. Molecular characterization of hybrids was achieved by sequencing three nuclear (internal transcribed spacers, β-tubulin (TUB), heat shock protein 90) and two mitochondrial (cytochrome c oxidase subunit I (coxI), NADH dehydrogenase subunit I (NADH)) gene regions and cloning of the single-copy nuclear gene, TUB. Based on the molecular studies the hybrid isolates belonged to six distinct groups between P. cryptogea, P. erythroseptica, Phytophthora pseudocryptogea, P. sansomeana, and Phytophthora sp. kelmania. In all cases, only a single coxI and NADH allele was detected and nuclear genes were biparentally inherited, suggesting that the hybrids arose from sexual recombination events. Colony morphology, growth rate, cardinal temperatures, breeding system, and morphology of sporangia, oogonia, oospores, and antheridia were also determined. Some morphological differences between the hybrids and the parental species were noted; however, they were not sufficient to reliably distinguish the taxa and DNA markers from nuclear and mitochondrial genes will to be necessary for their identification. The parental species are all important pathogens of agricultural fields that have been transported globally. With the apparent ease of hybridization within this group there is ample opportunity for virulent hybrids to form, perhaps with extended host ranges. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. Molecular Characterization of Natural Hybrids Formed between Five Related Indigenous Clade 6 Phytophthora Species

    Science.gov (United States)

    Burgess, Treena I.

    2015-01-01

    Most Phytophthora hybrids characterized to date have emerged from nurseries and managed landscapes, most likely generated as a consequence of biological invasions associated with the movement of living plants and germplasm for ornamental, horticultural and agricultural purposes. Presented here is evidence for natural hybridization among a group of five closely related indigenous clade 6 Phytophthora species isolated from waterways and riparian ecosystems in Western Australia. Molecular characterization of hybrids consisted of cloning and sequencing two nuclear genes (ITS and ASF), sequencing of two further nuclear loci (BT and HSP) and of two mitochondrial loci (COI and NADH). Additionally, phenotypic traits including morphology of sporangia and optima and maxima temperatures for growth were also determined. In most cases the nuclear genes were biparentally and in all cases the mtDNA were uniparentally inherited, indicating hybrid formation through sexual crosses. Some isolates bear the molecular signature of three parents suggesting additional hybrid events, although it cannot be determined from the data if these were sequential or simultaneous. These species and their hybrids co-exist in riparian ecosystems and waterways where their ability for rapid asexual proliferation would enable them to rapidly colonize green plant litter. The apparent ease of hybridization could eventually lead to the merging of species through introgression. However, at this point in time, species integrity has been maintained and a more likely scenario is that the hybrids are not stable evolutionary lineages, but rather transient hybrid clones. PMID:26248187

  19. Hybridization relics complicate barcode-based identification of species in earthworms.

    Science.gov (United States)

    Dupont, L; Porco, D; Symondson, W O C; Roy, V

    2016-07-01

    Introgressive hybridization results in mito-nuclear discordance which could obscure the delimitation of closely related taxa. Although such events are increasingly reported, they have been poorly studied in earthworms. Here, we propose a method for investigating the degree of introgressive hybridization between three taxa of the Allolobophora chlorotica aggregate within two field populations (N = 67 and N = 105) using a reference data set including published DNA barcoding and microsatellite data of all known A. chlorotica lineages (N = 85). For this, we used both molecular phylogenetic and population genetic approaches. The test of correspondence between mitochondrial cytochrome c oxidase I (COI) lineages and clusters of nuclear microsatellite genotypes allowed individuals to be sorted in three categories (matching, admixed and nonmatching) and additional markers (mitochondrial NADH dehydrogenase subunit 1, nuclear Histone 3 and Internal transcribed Spacer Region 2) were used for phylogenetic reconstructions in order to check assignments. Although 15 admixed individuals were observed, no early-generation hybrids were detected within the two populations. Interestingly, 14 nonmatching individuals (i.e. with a mtDNA haplotype that did not correspond to their nuclear cluster) were detected, a pattern that would result after multiple generations of unidirectional hybridization of female from one taxon to male of the other taxon. Because earthworms are simultaneous hermaphrodites, these events of unidirectional hybridization suggest sterility of the male function in several crosses and highlight that some individuals can be misidentified if reliance is placed on COI barcodes alone. These findings could improve the use of these barcodes in earthworms for species delineation. © 2016 John Wiley & Sons Ltd.

  20. Strategy of nuclear power in Korea, non-nuclear-weapon state and peaceful use of nuclear power

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2005-01-01

    The nuclear power plant started at Kori in Korea in April, 1978. Korea has carried out development of nuclear power as a national policy. The present capacity of nuclear power plants takes the sixes place in the world. It supplies 42% total power generation. The present state of nuclear power plant, nuclear fuel cycle facility, strategy of domestic production of nuclear power generation, development of next generation reactor and SMART, strategy of export in corporation with industry, government and research organization, export of nuclear power generation in Japan, nuclear power improvement project with Japan, Korea and Asia, development of nuclear power system with nuclear diffusion resistance, Hybrid Power Extraction Reactor System, radioactive waste management and construction of joint management and treatment system of spent fuel in Asia are stated. (S.Y.)

  1. Molecular evidence for natural hybridization in the mangrove genus avicennia

    International Nuclear Information System (INIS)

    Huang, L.; Huang Y; Shi, S.; Zhou, R

    2014-01-01

    Hybridization has been observed in several multi-species genera of mangroves; however, there has been no report on hybridization in Avicennia in the Indo-West Pacific region. In this study, we sequenced 5 low-copy nuclear genes of Avicennia marina, A. rumphiana and 2 individuals of their putative hybrid in the Southeast Asia region to test the hypothesis of natural hybridization between these 2 species. We demonstrated that both putative hybrid individuals possessed two types of sequences at each of the 5 genes, perfectly corresponding to those of A. marina and A. rumphiana, confirming the hybridization between these 2 Avicennia species, and the 2 hybrid individuals are most likely F1 hybrids. Sequencing of the chloroplast trnH-psbA regions indicated that A. marina was the maternal parent of the two hybrid individuals. (author)

  2. Hybrid system concepts

    International Nuclear Information System (INIS)

    Landeyro, P.A.

    1995-01-01

    Hybrid systems studied for fissile material production, were reconsidered for minor actinide and long-lived fission product destruction as alternative to the traditional final disposal of nuclear waste. Now there are attempts to extend the use of the concepts developed for minor actinide incineration to plutonium burning. The most promising hybrid system concept considers fuel and target both as liquids. From the results obtained, the possibility to adopt composite targets seems the most promising solution, but still there remains the problem of Pu production, not acceptable in a burning system. This kind of targets can be mainly used for fissile material production, while for accelerator driven burners it is most convenient to use a liquid lead target. The most suitable solvent is heavy water for minor actinide annihilation in the blanket of a hybrid system. Due to the criticality conditions and the necessity of electric energy production, the blanket using plutonium dissolved in molten salts is the most convenient one. (author)

  3. Hybrid nuclear reactors and muon catalysis

    International Nuclear Information System (INIS)

    Petrov, Yu.

    1983-01-01

    Three methods are described of the conversion of isotope 238 U to 239 Pu by neutron capture in fast breeder reactors, in the breeding blanket of hybrid thermonuclear reactors using neutrons generated by fusion and electronuclear breeding in which the target is bombarded with 1 GeV protons. Their possible use in power production is discussed. Another prospective energy source is the use of muon catalysis in the fusion of deuterium and tritium nuclei. (J.P.)

  4. BUTREN-RC an hybrid system for the recharges optimization of nuclear fuels in a BWR; BUTREN-RC un sistema hibrido para la optimizacion de recargas de combustible nuclear en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J.; Castillo M, J.A. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico); Valle G, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)

    2004-07-01

    The obtained results with the hybrid system BUTREN-RC are presented that obtains recharges of nuclear fuel for a BWR type reactor. The system has implemented the methods of optimization heuristic taboo search and neural networks. The optimization it carried out with the technique of taboo search, and the neural networks, previously trained, were used to predict the behavior of the recharges of fuel, in substitution of commercial codes of reactor simulation. The obtained recharges of nuclear fuel correspond to 5 different operation cycles of the Laguna Verde Nuclear Power plant, Veracruz in Mexico. The obtained results were compared with the designs of this cycles. The energy gain with the recharges of fuel proposals is of approximately 4.5% with respect to those of design. The time of compute consumed it was considerably smaller that when a commercial code for reactor simulation is used. (Author)

  5. Iron concentration controller in feedwater in nuclear plant

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Isaka, Yoshitaka

    1990-01-01

    The purpose of the present invention is to prevent chlorine ions from flowing into a reactor when sea water leakage accident should occur in a condenser upon control of Fe concentration in feedwater. That is, a sensor is disposed for detecting the leakage of the sea water at the exit of the condenser. The controller receives a detection signal as the input and delivers a control signal as the output. A control system receives the control signal and actuates valves in bypass systems. In view of the above, the electroconductivity or chlorine ion concentration of the condensate, which varies upon occurrence of sea water leakages in the condenser, is detected by the sensor, and then the controller closes a valve dispposed in the bypass systems in a processing device for filtering and desalting the condensates. Accordingly, the chlorine ions mixed into the condensates are removed by a desalting device without flowing into the reactor. In view of the above, an effect capable of keeping integrity of the plant is obtainable. (I.S.)

  6. Hybrid simulation of a 900 Mwe nuclear plant

    International Nuclear Information System (INIS)

    Constantieux, Thierry; Deat, Max.

    1979-01-01

    To analyse the effects on PWRs of transients originating from the network, specific means of calculation must be elaborated. One of them which was conceived and set up on a hybrid computer by FRAMATOME and the FRENCH ATOMIC ENERGY COMMISSION, is described in this paper. The method chosen to validate this code is fairly original, since it consisted in carrying out a long duration test on a plan and in simulating this on the hybrid computer; then in carefully comparing the recorded data of the test with the results of the simulation. The quality of the results, thus obtained shows that a relatively unsophisticated model is able to give a good idea of actual process behavior, but only if the types of transients to be studied with the code are well identified before its elaboration

  7. Identification of bester hybrid and its parental species (♀ Huso huso Linnaeus, 1758 and ♂ Acipenser ruthenus Linnaeus, 1758 by nuclear markers

    Directory of Open Access Journals (Sweden)

    Andreea Dudu

    2015-05-01

    Full Text Available In Romania, sturgeon farming is gaining advance, different species being raised for commercial purposes and for restocking activities. A correct identification of individuals is imposed since severe ecological damages might occur if non-native species or hybrids are used for restocking. Such identification is required also for commercial reasons, the meat and caviar from different species having different prices. The aim of our study was to analyze two sturgeon species, Huso huso and Acipenser ruthenus and their interspecific hybrid - bester, using nuclear markers, in order to set up a molecular method for their accurate identification. The genetic pattern of the species was inferred from the analysis of nine microsatellite loci (LS19, LS34, LS39, LS54, AoxD234, AnacC11, LS68, Aox45 and Aox27 amplified by multiplex PCR reactions. The genotype data were analyzed with GENETIX v4.05 and STRUCTURE. The FCA analysis grouped the individuals in three distinct clusters corresponding to each of the pure species and to the interspecific hybrids. The admixture analysis performed in STRUCTURE also assigned three groups, confirming the results highlighted by FCA. We can conclude that the selected microsatellite markers allow the unambiguously identification of the bester hybrid and its genitor species from Romanian farms.

  8. Hybridization dynamics between Colorado's native cutthroat trout and introduced rainbow trout.

    Science.gov (United States)

    Metcalf, Jessica L; Siegle, Matthew R; Martin, Andrew P

    2008-01-01

    Newly formed hybrid populations provide an opportunity to examine the initial consequences of secondary contact between species and identify genetic patterns that may be important early in the evolution of hybrid inviability. Widespread introductions of rainbow trout (Oncorhynchus mykiss) into watersheds with native cutthroat trout (Oncorhynchus clarkii) have resulted in hybridization. These introductions have contributed to the decline of native cutthroat trout populations. Here, we examine the pattern of hybridization between introduced rainbow trout and 2 populations of cutthroat trout native to Colorado. For this study, we utilized 7 diagnostic, codominant nuclear markers and a diagnostic mitochondrial marker to investigate hybridization in a population of greenback cutthroat trout (Oncorhynchus clarkii stomias) and a population of Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus). We infer that cutthroat-rainbow trout hybrid swarms have formed in both populations. Although a mixture of hybrid genotypes was present, not all genotype combinations were detected at expected frequencies. We found evidence that mitochondrial DNA introgression in hybrids is asymmetric and more likely from rainbow trout than from cutthroat trout. A difference in spawning time of the 2 species or differences in the fitness between the reciprocal crosses may explain the asymmetry. Additionally, the presence of intraspecific cytonuclear associations found in both populations is concordant with current hypotheses regarding coevolution of mitochondrial and nuclear genomes.

  9. Molecular Evidence for the Hybrid Origin of Ilex dabieshanensis (Aquifoliaceae.

    Directory of Open Access Journals (Sweden)

    Lin Shi

    Full Text Available Ilex, the largest genus of dioecious woody plants, is a good study system to assess the role of hybridization in speciation and evolution. Ilex dabieshanensis, a tree endemic to Dabieshan Mountains region, was initially described as a new species. Based on morphological intermediacy and sympatric distribution with its putative parental species, I. cornuta and I. latifolia, we proposed it as a natural hybrid between them. In this study, we sequenced one chloroplast intergenic spacer (trnH-psbA and two nuclear genes (gapC and nepGS in I. dabieshanensis and its putative parental species to test the hybrid origin hypothesis. Our results showed that there were one to two differentially fixed sequence differences between I. cornuta and I. latifolia at the two nuclear genes. Twelve of the 14 individuals of I. dabieshanensis exhibited additivity in chromatograms on these differentially fixed sites at both nuclear genes, and the remaining two exhibited additivity in chromatograms on the fixed site at only the nepGS gene. Except one haplotype of I. cornuta at the nepGS gene, all of the haplotypes of I. cornuta at the two nuclear genes were well separated from those of I. latifolia, and most haplotypes of I. dabieshanensis were shared with those of I. cornuta and I. latifolia. Phylogenetic analysis of these haplotypes was largely consistent with haplotype network analysis. I. cornuta and I. latifolia differed by two nucleotide substitutions in the chloroplast intergenic spacer, and 12 individuals of I. dabieshanensis had the same sequences as I. latifolia, while the remaining two were identical with I. cornuta. The molecular data provide convincing evidence for the hybrid origin of I. dabieshanensis and asymmetrical direction of hybridization. One haplotype of I. cornuta at the nepGS gene was nested with those of I. latifolia, indicating introgression to I. cornuta.

  10. Hybrid preheat/recirculating steam generator

    International Nuclear Information System (INIS)

    Lilly, G.P.

    1985-01-01

    The patent describes a hybrid preheat/recirculating steam generator for nuclear power plants. The steam generator utilizes recirculated liquid to preheat incoming liquid. In addition, the steam generator incorporates a divider so as to limit the amount of recirculating water mixed with the feedwater. (U.K.)

  11. Molecular Evidence for Natural Hybridization between Cotoneaster dielsianus and C. glaucophyllus

    Directory of Open Access Journals (Sweden)

    Mingwan Li

    2017-05-01

    Full Text Available Hybridization accompanied by polyploidization and apomixis has been demonstrated as a driving force in the evolution and speciation of many plants. A good example to study the evolutionary process of hybridization associated with polyploidy and apomixis is the genus Cotoneaster (Rosaceae, which includes approximately 150 species, most of which are polyploid apomicts. In this study, we investigated all Cotoneaster taxa distributed in a small region of Malipo, Yunnan, China. Based on the morphological characteristics, four Cotoneaster taxa were identified and sampled: C. dielsianus, C. glaucophyllus, C. franchetii, and a putative hybrid. Flow cytometry analyses showed that C. glaucophyllus was diploid, while the other three taxa were tetraploid. A total of five low-copy nuclear genes and six chloroplast regions were sequenced to validate the status of the putative hybrid. Sequence analyses showed that C. dielsianus and C. glaucophyllus are distantly related and they could be well separated using totally 50 fixed nucleotide substitutions and four fixed indels at the 11 investigated genes. All individuals of the putative hybrid harbored identical sequences: they showed chromatogram additivity for all fixed differences between C. dielsianus and C. glaucophyllus at the five nuclear genes, and were identical with C. glaucophyllus at the six chloroplast regions. Haplotype analysis revealed that C. dielsianus possessed nine haplotypes for the 11 genes, while C. glaucophyllus had ten, and there were no shared haplotypes between the two species. The putative hybrid harbored two haplotypes for each nuclear gene: one shared with C. dielsianus and the other with C. glaucophyllus. They possessed the same chloroplast haplotype with C. glaucophyllus. Our study provided convincing evidence for natural hybridization between C. dielsianus and C. glaucophyllus, and revealed that all hybrid individuals were derivatives of one initial F1 via apomixes. C. glaucophyllus

  12. Status Report on Modelling and Simulation Capabilities for Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Epiney, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, J. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yigitoglu, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, S. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ganda, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Maronati, G. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-01

    This report summarizes the current status of the modeling and simulation capabilities developed for the economic assessment of Nuclear-Renewable Hybrid Energy Systems (N-R HES). The increasing penetration of variable renewables is altering the profile of the net demand, with which the other generators on the grid have to cope. N-R HES analyses are being conducted to determine the potential feasibility of mitigating the resultant volatility in the net electricity demand by adding industrial processes that utilize either thermal or electrical energy as stabilizing loads. This coordination of energy generators and users is proposed to mitigate the increase in electricity cost and cost volatility through the production of a saleable commodity. Overall, the financial performance of a system that is comprised of peaking units (i.e. gas turbine), baseload supply (i.e. nuclear power plant), and an industrial process (e.g. hydrogen plant) should be optimized under the constraint of satisfying an electricity demand profile with a certain level of variable renewable (wind) penetration. The optimization should entail both the sizing of the components/subsystems that comprise the system and the optimal dispatch strategy (output at any given moment in time from the different subsystems). Some of the capabilities here described have been reported separately in [1, 2, 3]. The purpose of this report is to provide an update on the improvement and extension of those capabilities and to illustrate their integrated application in the economic assessment of N-R HES.

  13. Nuclear hybrid energy systems: imperatives, prospects, and challenges

    International Nuclear Information System (INIS)

    Aumeier, Steven; Cherry, Robert; Boardman, Richard; Smith, Joseph

    2010-01-01

    In less than 60 years we have witnessed the transition of nuclear electricity production from an experiment on the high desert of the western United States to more than 430 commercial nuclear power reactors deployed in 31 countries, supplying nearly 14% of all global electricity consumed. The speed at which this transition took place was stunning, as has been the evolution of the technology, business management and operations approach to civil nuclear electricity production. Even as the United States took a two-decade hiatus from the construction of new nuclear electricity plants, other nations embraced the technology and continue to do so. Today, there are 53 nuclear power reactors under construction, 142 planned and 327 proposed for development, including a number in the United States

  14. Economics of seawater desalination with innovative nuclear reactors and other energy sources: the EURODESAL project

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2004-01-01

    This paper summarises our recent investigations undertaken as part of the EURODESAL project on nuclear desalination, which were carried out by a consortium of four EU and one Canadian, Industrials and two leading EU R and D organisations. Major results of the project, in particular of its economic evaluation work package as discussed in this paper, are: 1. A coherent demonstration of the technical feasibility of nuclear desalination through the development of technical principles for the optimum cogeneration of electricity and water and by exploring the unique capabilities of the innovative nuclear reactors and desalination technologies; verification that the integrated system design does not adversely affect nuclear reactor safety. 2. The development of codes and methods for an objective assessment of the competitiveness and sustainability of proposed solutions through comparison, in European conditions, with fossil and renewable energy based solutions. The results obtained so far seem to be quite encouraging as regards the economical viability of nuclear desalination options. Thus, for example, specific desalination costs ($/m 3 of desalted water) for nuclear systems such as the AP600 and the French PWR900 (reference base case), coupled to Multiple Effect Distillation (MED) or the Reverse Osmosis (RO) processes, are 30% to 60% lower than fossil energy based systems using pulverised coal and natural gas with combined cycle, at low discount rates and recommended fuel prices. Even in the most unfavourable scenarios for nuclear energy (discount rates = 10%, low fossil fuel prices) desalination costs with the nuclear options with the nuclear reactors are 7% to 15% lower, depending upon the desalination capacities. Furthermore, with the high performance coupling schemes developed by the EURODESAL partners, the specific desalination costs of nuclear systems are reduced by another 2% to 14%, even without system and design optimisation. (author)

  15. Assignment of electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) to human chromosome 4q33 by fluorescence in situ hybridization and somatic cell hybridization.

    Science.gov (United States)

    Spector, E B; Seltzer, W K; Goodman, S I

    1999-08-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a nuclear-encoded protein located in the inner mitochondrial membrane. Inherited defects of ETF-QO cause glutaric acidemia type II. We here describe the localization of the ETF-QO gene to human chromosome 4q33 by somatic cell hybridization and fluorescence in situ hybridization. Copyright 1999 Academic Press.

  16. The under-critical reactors physics for the hybrid systems; La physique des reacteurs sous-critiques des systemes hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Schapira, J P [Institut de Physique Nucleaire, IN2P3/CNRS 91 - Orsay (France); Vergnes, J [Electricite de France, EDF, Direction des Etudes et Recherches, 75 - Paris (France); Zaetta, A [CEA/Saclay, Direction des Reacteurs Nucleaires, DRN, 91 - Gif-sur-Yvette (France); and others

    1998-03-12

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  17. Fusion-Fission hybrid reactors and nonproliferation

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-09-01

    New options for the development of the nuclear energy economy which might become available by a successful development of fusion-breeders or fusion-fission hybrid power reactors, identified and their nonproliferative attributes are discussed. The more promising proliferation-resistance ettributes identified include: (1) Justification for a significant delay in the initiation of fuel processing, (2) Denaturing the plutonium with 238 Pu before its use in power reactors of any kind, and (3) Making practical the development of denatured uranium fuel cycles and, in particular, denaturing the uranium with 232 U. Fuel resource utilization, time-table and economic considerations associated with the use of fusion-breeders are also discussed. It is concluded that hybrid reactors may enable developing a nuclear energy economy which is more proliferation resistant than possible otherwise, whileat the same time, assuring high utilization of t he uranium and thorium resources in an economically acceptable way. (author)

  18. Natural hybridization and reproductive isolation between two Primula speciesFA

    Institute of Scientific and Technical Information of China (English)

    Yanping Xie; Xingfu Zhu; Yongpeng Ma; Jianli Zhao; Li Li; Qingjun Li

    2017-01-01

    Natural hybridization frequently occurs in plants and can facilitate gene flow between species,possibly resulting in species refusion.However,various reproductive barriers block the formation of hybrids and maintain species integrity.Here,we conducted a field survey to examine natural hybridization and reproductive isolation (RI) between sympatric populations of Primula secundiflora and P.poissonii using ten nuclear simple sequence repeat (SSR) loci.Although introgressive hybridization occurred,species boundaries between P.secundiflora and P.poissonii were maintained through nearly complete reproductive isolation.These interfertile species provide an excellent model for studying the RI mechanisms and evolutionary forces that maintain species boundaries.

  19. Hybrid SPECT/CT: Principle, dosimetry and quality control; Imagerie hybride: principe, dosimetrie et controle de qualite

    Energy Technology Data Exchange (ETDEWEB)

    Hapdey, S.; Gardin, I.; Salles, A.; Rousseliere, F.; Edet-Sanson, A.; Vera, P

    2009-05-15

    The recent introduction of hybrid systems combining a SPECT and a CT in nuclear medicine, greatly improved the diagnostic accuracy for particular clinical indications, due to the possible attenuation and/or scatter correction of the SPECT functional images and the availability of helpful anatomic information. Although the gamma cameras performances are noticeably comparable, the associated CT furnished by the manufacturer are relatively different from each other. Whatever the system is, the introduction of CT in the nuclear diagnostic process results in a significant increase of the patient dose. This dose increase should be justified and optimized considering both the clinical question and the CT settings available on these systems. The installation of a hybrid system must be accompanied by the management of a documentary quality insurance program, jointly developed by the technologists, physicists and physicians, both covering its clinical use and the associated dosimetry issues as monitoring its performances. Particular quality control procedures have to be defined because of the coupling between the two devices. (authors)

  20. Improvement in the makeup of Asco Nuclear Site with the addition of a R.O. plant to the makeup treatment

    International Nuclear Information System (INIS)

    Cascante, C.; Boronat, M.; Lloret, J.

    1988-01-01

    At present, the Asco nuclear site makes use of a complete water treatment support system that perform pretreatment (decarbonization, decantation, chlorination, filtration), reverse osmosis (regulation atmospheric tank, chemical conditioning of pretreated water, microfiltration, membrane chains, degasifier, pH correction), storage of osmotized water (atmospherical tank), demineralization (dechlorinizer, cationic exchanger, anionic exchanger, degasifier, strong anionic exchanger, catalytic reducer of oxygen, interchange of mixed layer), and storage of demineralized water (tank with atmospherical nitrogen). The installation of reverse osmosis equipment in the R.O. plant at the Asco nuclear site has its objective to reduce in a substantial way the total solids from the water coming from the Ebro river which is then submitted to a process of floculation, decarbonization, decantation and filtration, prior to total demineralization. The process is based on the property of semipermeable membranes in which a pressure is applied to water which contains dissolved solids, and only the dissolvent can pass through them, thus providing desalted water and a concentrate which contains the carried dissolved solids. (Nogami, K.)

  1. Development of a 1200 fine group nuclear data library for advanced nuclear systems

    Institute of Scientific and Technical Information of China (English)

    Jun Zou; Lei-Ming Shang; Fang Wang; Li-Juan Hao

    2017-01-01

    Accurate and reliable nuclear data libraries are essential for calculation and design of advanced nuclear systems.A 1200 fine group nuclear data library Hybrid Evaluated Nuclear Data Library/Fine Group (HENDL/FG) with neutrons of up to 150 MeV has been developed to improve the accuracy of neutronics calculations and analysis.Corrections of Doppler,resonance self-shielding,and thermal upscatter effects were done for HENDL/FG.Shielding and critical safety benchmarks were performed to test the accuracy and reliability of the library.The discrepancy between calculated and measured nuclear parameters fell into a reasonable range.

  2. Hybrid SPECT/CT imaging in neurology.

    Science.gov (United States)

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  3. Are both sympatric species Ilex perado and Ilex canariensis secretly hybridizing? Indication from nuclear markers collected in Tenerife

    Directory of Open Access Journals (Sweden)

    Manen Jean-François

    2004-11-01

    Full Text Available Abstract Background Intra-specific and intra-individual polymorphism is frequently observed in nuclear markers of Ilex (Aquifoliaceae and discrepancy between plastid and nuclear phylogenies is the rule in this genus. These observations suggest that inter-specific plastid or/and nuclear introgression played an important role in the process of evolution of Ilex. With the aim of a precise understanding of the evolution of this genus, two distantly related sympatric species collected in Tenerife (Canary Islands, I. perado and I. canariensis, were studied in detail. Introgression between these two species was previously never reported. One plastid marker (the atpB-rbcL spacer and two nuclear markers, the ribosomal internal transcribed spacer (ITS and the nuclear encoded plastid glutamine synthetase (nepGS were analyzed for 13 and 27 individuals of I. perado and I. canariensis, respectively. Results The plastid marker is intra-specifically constant and correlated with species identity. On the other hand, whereas the nuclear markers are conserved in I. perado, they are highly polymorphic in I. canariensis. The presence of pseudogenes and recombination in ITS sequences of I. canariensis explain this polymorphism. Ancestral sequence polymorphism with incomplete lineage sorting, or past or recent hybridization with an unknown species could explain this polymorphism, not resolved by concerted evolution. However, as already reported for many other plants, past or recent introgression of an alien genotype seem the most probable explanation for such a tremendous polymorphism. Conclusions Data do not allow the determination with certitude of the putative species introgressing I. canariensis, but I. perado is suspected. The introgression would be unilateral, with I. perado as the male donor, and the paternal sequences would be rapidly converted in highly divergent and consequently unidentifiable pseudogenes. At least, this study allows the establishment of

  4. Neutronics analysis of water-cooled energy production blanket for a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Jiang Jieqiong; Wang Minghuang; Chen Zhong; Qiu Yuefeng; Liu Jinchao; Bai Yunqing; Chen Hongli; Hu Yanglin

    2010-01-01

    Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (M) and tritium breeding ratio (TBR) in a fusion-fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.

  5. Somatic hybridization of sexually incompatible petunias: Petunia parodii, Petunia parviflora.

    Science.gov (United States)

    Power, J B; Berry, S F; Chapman, J V; Cocking, E C

    1980-01-01

    Somatic hybrid plants were regenerated following the fusion of leaf mesophyll protoplasts of P. parodii with those isolated from a nuclear-albino mutant of P. parviflora. Attempts at sexual hybridization of these two species repeatedly failed thus confirming their previously established cross-incompatibility. Selection of somatic hybrid plants was possible since protoplasts of P. parodii would not develop beyond the cell colony stage, whilst those of the somatic hybrid and albino P. parviflora produced calluses. Green somatic hybrid calluses were visible against a background of albino cells/calluses, and upon transfer to regeneration media gave rise to shoots. Shoots and the resultant flowering plants were confirmed as somatic hybrids based on their growth habit, floral pigmentation and morphology, leaf hair structure, chromosome number and Fraction 1 protein profiles. The relevance of such hybrid material for the development of new, and extensively modified cultivars, is discussed.

  6. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Boardman, Richard; Rabiti, Cristian; Suk Kim, Jong; McKellar, Michael; Sabharwall, Piyush; Chen, Jun; Cetiner, M. Sacit; Harrison, T. Jay; Qualls, A. Lou

    2016-01-01

    technologies will aid in achieving reduced GHG emissions, it also presents new challenges to grid management that must be addressed. These challenges primarily derive from the fundamental characteristics of variable renewable generators, such as wind and solar: non-dispatchability, variable production, and reduced electromechanical inertia. This document presents a preliminary research and development (R&D) plan for detailed dynamic simulation and analysis of nuclear-renewable hybrid energy systems (N-R HES), coupled with integrated energy system design, component development, and integrated systems testing. N-R HES are cooperatively-controlled systems that dynamically apportion thermal and/or electrical energy to provide responsive generation to the power grid.

  7. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Suk Kim, Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cetiner, M. Sacit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, T. Jay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. Lou [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    renewable technologies will aid in achieving reduced GHG emissions, it also presents new challenges to grid management that must be addressed. These challenges primarily derive from the fundamental characteristics of variable renewable generators, such as wind and solar: non-dispatchability, variable production, and reduced electromechanical inertia. This document presents a preliminary research and development (R&D) plan for detailed dynamic simulation and analysis of nuclear-renewable hybrid energy systems (N-R HES), coupled with integrated energy system design, component development, and integrated systems testing. N-R HES are cooperatively-controlled systems that dynamically apportion thermal and/or electrical energy to provide responsive generation to the power grid.

  8. Advanced nuclear fuel production by using fission-fusion hybrid reactor

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.; Sahin, S.; Abdulraoof, M.

    1993-01-01

    Efforts are made at the College of Engineering, King Saud University, Riyadh to lay out the main structure of a prototype experimental fusion and fusion-fission (hybrid) reactor blanket in cylindrical geometry. The geometry is consistent with most of the current fusion and hybrid reactor design concepts in respect of the neutronic considerations. Characteristics of the fusion chamber, fusion neutrons and the blanket are provided. The studies have further shown that 1 GWe fission-fusion reactor can produce up to 957 kg/year which is enough to fuel five light water reactors of comparable power. Fuel production can be increased further. 29 refs

  9. Safety analysis of coupling system of hybrid (MED-RO) nuclear desalination system utilising waste heat from HTGR

    International Nuclear Information System (INIS)

    Raha, Abhijit; Kishore, G.; Rao, I.S.; Adak, A.K.; Srivastava, V.K.; Prabhakar, S.; Tewari, P.K.

    2010-01-01

    To meet the generation IV goals, High Temperature Gas Cooled Reactors (HTGRs) are designed to have relatively higher thermal efficiency and enhanced safety and environmental characteristics. It can provide energy for combined production of hydrogen, electricity and other industrial applications. The waste heat available in the HTGR power cycle can also be utilized for the desalination of seawater for producing potable water. Desalination is an energy intensive process, so use of waste heat from HTGR certainly makes desalination process more affordable to create fresh water resources. So design of the coupling system, as per the safety design requirement of nuclear desalination plant, of desalination plant with HTGR is very crucial. In the first part of this paper, design of the coupling system between hybrid Multi Effect Desalination-Reverse Osmosis (MED-RO) nuclear desalination plant and HTGR to utilize the waste heat in HTGR are discussed. In the next part deterministic safety analysis of the designed coupling system of are presented in detail. It was found that all the coupling system meets the acceptance criteria for all the Postulated Initiating Events (PIE's) limited to DBA. (author)

  10. A hybrid non-dominated sorting genetic algorithm and its application on multi-objective optimal design of nuclear power plant

    International Nuclear Information System (INIS)

    Chen, Lei; Yan, Changqi; Liao, Yi; Song, Feifei; Jia, Zhen

    2017-01-01

    Highlights: • The optimization ability of NSGA-II is improved. • The design targets can be obvious optimized through optimization methodology. • Multi-objective optimization is implanted into the design of nuclear power plant. - Abstract: The design of nuclear component can be optimized by seeking out the best combination of article operational and structural parameters. Through multi-objective optimization, the optimized scheme can not only meets the design requirements, but also satisfies the safety regulations. In this work, a hybrid non-dominated sorting genetic algorithm is proposed, and its performance is verified by comparing it with its prototype and immune memory clone constraint multi-objective algorithm through four test-functions; the designs of the steam generator and the primary loop of Qinshan I nuclear power plant are optimized by the proposed algorithm. The results show that the algorithm outperforms the other two through overall evaluation; the reactor inlet temperature is an important parameter which influences the distribution of the Pareto optimal front; through optimization, the weight of the steam generator can be reduced by 16.5%, and the primary flow-rate can be reduced by 17.0%, the weight of the primary loop can be reduced by 11.4%, and the volume can be reduced by 9.8%.

  11. White paper of nuclear medicine

    International Nuclear Information System (INIS)

    2012-10-01

    This document aims at proposing a synthetic presentation of nuclear medicine in France (definition, strengths and weaknesses, key figures about practices and the profession, stakes for years to come), a description of the corresponding education (speciality definition, abilities and responsibilities, diploma content, proposition by the European Society of Radiology and by the CNIPI, demography of the profession), and an overview of characteristics of nuclear medicine (radio-pharmacy, medical physics, paramedical personnel in nuclear medicine, hybrid imagery, therapy, relationships with industries of nuclear medicine, relationships with health authorities)

  12. Hybridization of mouse lemurs: different patterns under different ecological conditions

    Directory of Open Access Journals (Sweden)

    Rosenkranz David

    2011-10-01

    Full Text Available Abstract Background Several mechanistic models aim to explain the diversification of the multitude of endemic species on Madagascar. The island's biogeographic history probably offered numerous opportunities for secondary contact and subsequent hybridization. Existing diversification models do not consider a possible role of these processes. One key question for a better understanding of their potential importance is how they are influenced by different environmental settings. Here, we characterized a contact zone between two species of mouse lemurs, Microcebus griseorufus and M. murinus, in dry spiny bush and mesic gallery forest that border each other sharply without intermediate habitats between them. We performed population genetic analyses based on mtDNA sequences and nine nuclear microsatellites and compared the results to a known hybrid zone of the same species in a nearby wide gradient from dry spiny bush over transitional forest to humid littoral forest. Results In the spiny-gallery system, Microcebus griseorufus is restricted to the spiny bush; Microcebus murinus occurs in gallery forest and locally invades the dryer habitat of its congener. We found evidence for bidirectional introgressive hybridization, which is closely linked to increased spatial overlap within the spiny bush. Within 159 individuals, we observed 18 hybrids with mitochondrial haplotypes of both species. Analyses of simulated microsatellite data indicate that we identified hybrids with great accuracy and that we probably underestimated their true number. We discuss short-term climatic fluctuations as potential trigger for the dynamic of invasion and subsequent hybridization. In the gradient hybrid zone in turn, long-term aridification could have favored unidirectional nuclear introgression from Microcebus griseorufus into M. murinus in transitional forest. Conclusions Madagascar's southeastern transitional zone harbors two very different hybrid zones of mouse lemurs

  13. Hybrid Imaging: A New Frontier in Medical Imaging

    OpenAIRE

    Bijan Bijan

    2010-01-01

    Introduction of hybrid imaging in the arena of medical imaging calls for re-strategizing in current practice. Operating PET-CT and upcoming PET-MRI is a turf battle between Radiologists, Nuclear Medicine Physicians, Oncologists, Cardiologists and other related fields.

  14. Speciation and reduced hybrid female fertility in house mice.

    Science.gov (United States)

    Suzuki, Taichi A; Nachman, Michael W

    2015-09-01

    In mammals, intrinsic postzygotic isolation has been well studied in males but has been less studied in females, despite the fact that female gametogenesis and pregnancy provide arenas for hybrid sterility or inviability that are absent in males. Here, we asked whether inviability or sterility is observed in female hybrids of Mus musculus domesticus and M. m. musculus, taxa which hybridize in nature and for which male sterility has been well characterized. We looked for parent-of-origin growth phenotypes by measuring adult body weights in F1 hybrids. We evaluated hybrid female fertility by crossing F1 females to a tester male and comparing multiple reproductive parameters between intrasubspecific controls and intersubspecific hybrids. Hybrid females showed no evidence of parent-of-origin overgrowth or undergrowth, providing no evidence for reduced viability. However, hybrid females had smaller litter sizes, reduced embryo survival, fewer ovulations, and fewer small follicles relative to controls. Significant variation in reproductive parameters was seen among different hybrid genotypes, suggesting that hybrid incompatibilities are polymorphic within subspecies. Differences in reproductive phenotypes in reciprocal genotypes were observed and are consistent with cyto-nuclear incompatibilities or incompatibilities involving genomic imprinting. These findings highlight the potential importance of reduced hybrid female fertility in the early stages of speciation. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  15. Hybrid male sterility is caused by mitochondrial DNA deletion.

    Science.gov (United States)

    Hayashida, Kenji; Kohno, Shigeru

    2009-07-01

    Although it is known that the hybrid male mouse is sterile just like any other animal's heterogametic sex, the reason why only the male germ cells are impaired has yet to be discovered. TdT-mediated dUTP nick end labeling assay using a confocal fluorescence microscope and DNA fragmentation assay of hybrid testis indicated destruction of the mitochondrial DNA (mtDNA) rather than the nuclear DNA. Previously we reported that maternal mtDNA inheritance is through selective sperm mtDNA elimination based on the sperm factor and two egg factors, and expression of these three factors was recognized in the hybrid testis. It was thereby assumed that mtDNA destruction caused by the expression of maternal mtDNA inheritance system in male germ cells is implicated in the hybrid male sterility of mice.

  16. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Kavka, Tetyana; Bertolissi, Gabriele; Ctibor, Pavel; Vilémová, Monika; Mušálek, Radek; Nevrlá, Barbara

    2013-01-01

    Roč. 22, č. 5 (2013), s. 744-755 ISSN 1059-9630 R&D Projects: GA MPO FR-TI2/702; GA TA ČR TA01010300 Institutional support: RVO:61389021 Keywords : plasma spraying * tungsten * copper * inert gas shrouding * water-argon plasma torch * gas shroud * hybrid plasma torch * influence of spray parameters * nuclear fusion * oxidation Subject RIV: JG - Metallurgy Impact factor: 1.491, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs11666-013-9895-x.pdf

  17. Neutron analysis of a hybrid system fusion-fission

    International Nuclear Information System (INIS)

    Dorantes C, J. J.; Francois L, J. L.

    2011-11-01

    The use of energy at world level implies the decrease of natural resources, reduction of fossil fuels, in particular, and a high environmental impact. In view of this problem, an alternative is the energy production for nuclear means, because up to now is one of the less polluting energy; however, the nuclear fuel wastes continue being even a problem without being solved. For the above mentioned this work intends the creation of a device that incorporates the combined technologies of fission and nuclear fusion, called Nuclear Hybrid Reactor Fusion-Fission (HRFF). The HRFF has been designed theoretically with base in experimental fusion reactors in different parts of the world like: United States, Russia, Japan, China and United Kingdom, mainly. The hybrid reactor model here studied corresponds at the Compact Nuclear Facility Source (CNFS). The importance of the CNFS resides in its feasibility, simple design, minor size and low cost; uses deuterium-tritium like main source of neutrons, and as fuel can use the spent fuel of conventional nuclear reactors, such as the current light water reactors. Due to the high costs of experimental research, this work consists on simulating in computer a proposed model of CNFS under normal conditions of operation, to modify the arrangement of the used fuel: MOX and IMF, to analyze the obtained results and to give final conclusions. In conclusion, the HRFF can be a versatile system for the management of spent fuel of light water reactors, so much for the possibility of actinides destruction, like for the breeding of fissile material. (Author)

  18. A hybrid niched-island genetic algorithm applied to a nuclear core optimization problem

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.

    2005-01-01

    Diversity maintenance is a key-feature in most genetic-based optimization processes. The quest for such characteristic, has been motivating improvements in the original genetic algorithm (GA). The use of multiple populations (called islands) has demonstrating to increase diversity, delaying the genetic drift. Island Genetic Algorithms (IGA) lead to better results, however, the drift is only delayed, but not avoided. An important advantage of this approach is the simplicity and efficiency for parallel processing. Diversity can also be improved by the use of niching techniques. Niched Genetic Algorithms (NGA) are able to avoid the genetic drift, by containing evolution in niches of a single-population GA, however computational cost is increased. In this work it is investigated the use of a hybrid Niched-Island Genetic Algorithm (NIGA) in a nuclear core optimization problem found in literature. Computational experiments demonstrate that it is possible to take advantage of both, performance enhancement due to the parallelism and drift avoidance due to the use of niches. Comparative results shown that the proposed NIGA demonstrated to be more efficient and robust than an IGA and a NGA for solving the proposed optimization problem. (author)

  19. Unified analysis of pionic atoms and low-energy pion-nuclear scattering: hybrid analysis

    International Nuclear Information System (INIS)

    Seki, R.; Masutani, K.; Yazaki, K.

    1983-01-01

    Using the method of effective nuclear density, we apply a simple, π-nucleus optical potential (without rho 2 terms and the Lorentz-Lorenz effect) to π - atoms and low-energy π-nucleus elastic scatterings. Data of both phenomena are analyzed in a unified, hybrid (phenomenological and theoretical) manner: The π - -atom data are analyzed first to determine phenomenologically the potential parameters at threshold. The parameters are then extrapolated successfully up to 50 MeV incident pion laboratory energy by a microscopic calculation in which the energy-dependence correction is made after including the Fermi-averaging and Pauli-blocking effects. In contrast to other work, our potential includes the minimum number of the parameters that describe the full information content of the data. We can thus conclude that these effects are the important microscopic corrections for the extrapolation, but neither the Lorentz-Lorenz effect nor some highly nonlocal effects are crucial ones. The potential we have used has angular transformation terms which are also found to be crucial in the unified treatment. During the course of this work we have found an interesting behavior of the terms. A short account of its discussion is also presented

  20. The objective of this program is to develop innovative DNA detection technologies to achieve fast microbial community assessment. The specific approaches are (1) to develop inexpensive and reliable sequence-proof hybridization DNA detection technology (2) to develop quantitative DNA hybridization technology for microbial community assessment and (3) to study the microbes which have demonstrated the potential to have nuclear waste bioremediation

    International Nuclear Information System (INIS)

    Chen, Chung H.

    2004-01-01

    The objective of this program is to develop innovative DNA detection technologies to achieve fast microbial community assessment. The specific approaches are (1) to develop inexpensive and reliable sequence-proof hybridization DNA detection technology (2) to develop quantitative DNA hybridization technology for microbial community assessment and (3) to study the microbes which have demonstrated the potential to have nuclear waste bioremediation

  1. Characterization and Curing Kinetics of Epoxy/Silica Nano-Hybrids

    Science.gov (United States)

    Yang, Cheng-Fu; Wang, Li-Fen; Wu, Song-Mao; Su, Chean-Cheng

    2015-01-01

    The sol-gel technique was used to prepare epoxy/silica nano-hybrids. The thermal characteristics, curing kinetics and structure of epoxy/silica nano-hybrids were studied using differential scanning calorimetry (DSC), 29Si nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). To improve the compatibility between the organic and inorganic phases, a coupling agent was used to modify the diglycidyl ether of bisphenol A (DGEBA) epoxy. The sol-gel technique enables the silica to be successfully incorporated into the network of the hybrids, increasing the thermal stability and improving the mechanical properties of the prepared epoxy/silica nano-hybrids. An autocatalytic mechanism of the epoxy/SiO2 nanocomposites was observed. The low reaction rate of epoxy in the nanocomposites is caused by the steric hindrance in the network of hybrids that arises from the consuming of epoxide group in the network of hybrids by the silica. In the nanocomposites, the nano-scale silica particles had an average size of approximately 35 nm, and the particles were well dispersed in the epoxy matrix, according to the TEM images. PMID:28793616

  2. Genetic Identification of Hyalodaphnia Species and Interspecific Hybrids

    NARCIS (Netherlands)

    Billiones, R.; Brehm, G.M.; Klee, J.; Schwenk, K.

    2004-01-01

    Species of the genus Daphnia, in particular the subgenus Hyalodaphnia, represent a taxonomically problematic group due to their phenotypic plasticity, local races and the formation of interspecific hybrids and backcrosses. In this study, we present a genetic approach utilising nuclear DNA to

  3. Recent hybrid origin of three rare chinese turtles

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Bryan L.; Parham, James F.

    2006-02-07

    Three rare geoemydid turtles described from Chinese tradespecimens in the early 1990s, Ocadia glyphistoma, O. philippeni, andSacalia pseudocellata, are suspected to be hybrids because they are knownonly from their original descriptions and because they have morphologiesintermediate between other, better-known species. We cloned the allelesof a bi-parentally inherited nuclear intron from samples of these threespecies. The two aligned parental alleles of O. glyphistoma, O.philippeni, and S. pseudocellata have 5-11.5 times more heterozygouspositions than do 13 other geoemydid species. Phylogenetic analysis showsthat the two alleles from each turtle are strongly paraphyletic, butcorrectly match sequences of other species that were hypothesized frommorphology to be their parental species. We conclude that these rareturtles represent recent hybrids rather than valid species. Specifically,"O. glyphistoma" is a hybrid of Mauremys sinensis and M. cf. annamensis,"O. philippeni" is a hybrid of M. sinensis and Cuora trifasciata, and "S.pseudocellata" is a hybrid of C. trifasciata and S. quadriocellata.Conservation resources are better directed toward finding and protectingpopulations of other rare Southeast Asian turtles that do representdistinct evolutionary lineages.

  4. pH-potentiometric determination of solubility of barely soluble organic extracting agents in water and aqueous solutions of neutral salts

    International Nuclear Information System (INIS)

    Pavlovskaya, E.M.; Charykov, A.K.; Tikhomirov, V.I.

    1977-01-01

    A pH-potentiometric method has been used to estimate the solubility of chloroform, benzene and nitrobenzene in water. The desalting effect is studied of alkali metal chlorides on chloroform solubility to establish the following phenomenological series of alkali metal cations by their desalting action: Li + + + + + . The non-conformity of chloroform solubility values in water-isoactive solutions of different salts is indicative of the high specificity of desalting processes with respect to the chemical nature of the desalting cation. Salt effects also essentially depend on the chemical nature of the desalted substance, particularly on its acid-base properties

  5. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  6. Feasibility study of a fission supressed blanket for a tandem-mirror hybrid reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Barr, W.L.

    1981-01-01

    A study of fission suppressed blankets for the tandem mirror not only showed such blankets to be feasible but also to be safer than fissioning blankets. Such hybrids could produce enough fissile material to support up to 17 light water reactors of the same nuclear power rating. Beryllium was compared to 7 Li for neutron multiplication; both were considered feasible but the blanket with Li produced 20% less fissile fuel per unit of nuclear power in the reactor. The beryllium resource, while possibly being too small for extensive pure fusion application, would be adequate (with carefully planned industrial expansion) for the hybrid because of the large support ratio, and hence few hybrids required. Radiation damage and coatings for beryllium remain issues to be resolved by further study and experimentation. Molten salt reprocessing was compared to aqueous solution reprocessing

  7. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  8. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  9. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    Science.gov (United States)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  10. The under-critical reactors physics for the hybrid systems

    International Nuclear Information System (INIS)

    Schapira, J.P.; Vergnes, J.; Zaetta, A.

    1998-01-01

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  11. Radio-Frequency design of a Lower Hybrid Slotted Waveguide Antenna.

    Czech Academy of Sciences Publication Activity Database

    Helou, W.; Goniche, M.; Hillairet, J.; Žáček, František; Achard, J.; Adámek, Jiří; Bogár, Ondrej; Mollard, P.; Pascal, J.-Y.; Poli, S.; Šesták, David; Volpe, R.; Zajac, Jaromír

    2017-01-01

    Roč. 123, November (2017), s. 223-227 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] Institutional support: RVO:61389021 Keywords : Lower Hybrid Current Drive * Slotted Waveguide Antenna * Phased arrays Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 https://www.sciencedirect.com/science/article/pii/S0920379617304076

  12. Bibliography: Sandia Laboratories hybrid microcircuits and related thin film technology (revised)

    International Nuclear Information System (INIS)

    Oswalt, J.A.

    1975-12-01

    Hybrid circuit applications for nuclear weapons have been considered at Sandia since the mid-60's. However a major commitment was made in 1970 to develop a limited but well understood set of technologies for weapon applications. Development of these technologies and related studies have been documented in a number of publications. This bibliography lists the publications from 1968 to mid-1977 for reference by hybrid designers, users, or technologists

  13. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene.

    Science.gov (United States)

    Chang, Zhenyi; Chen, Zhufeng; Wang, Na; Xie, Gang; Lu, Jiawei; Yan, Wei; Zhou, Junli; Tang, Xiaoyan; Deng, Xing Wang

    2016-12-06

    The breeding and large-scale adoption of hybrid seeds is an important achievement in agriculture. Rice hybrid seed production uses cytoplasmic male sterile lines or photoperiod/thermo-sensitive genic male sterile lines (PTGMS) as female parent. Cytoplasmic male sterile lines are propagated via cross-pollination by corresponding maintainer lines, whereas PTGMS lines are propagated via self-pollination under environmental conditions restoring male fertility. Despite huge successes, both systems have their intrinsic drawbacks. Here, we constructed a rice male sterility system using a nuclear gene named Oryza sativa No Pollen 1 (OsNP1). OsNP1 encodes a putative glucose-methanol-choline oxidoreductase regulating tapetum degeneration and pollen exine formation; it is specifically expressed in the tapetum and miscrospores. The osnp1 mutant plant displays normal vegetative growth but complete male sterility insensitive to environmental conditions. OsNP1 was coupled with an α-amylase gene to devitalize transgenic pollen and the red fluorescence protein (DsRed) gene to mark transgenic seed and transformed into the osnp1 mutant. Self-pollination of the transgenic plant carrying a single hemizygous transgene produced nontransgenic male sterile and transgenic fertile seeds in 1:1 ratio that can be sorted out based on the red fluorescence coded by DsRed Cross-pollination of the fertile transgenic plants to the nontransgenic male sterile plants propagated the male sterile seeds of high purity. The male sterile line was crossed with ∼1,200 individual rice germplasms available. Approximately 85% of the F1s outperformed their parents in per plant yield, and 10% out-yielded the best local cultivars, indicating that the technology is promising in hybrid rice breeding and production.

  14. Hybrid KED/XRF measurement of minor actinides in reprocessing plants

    International Nuclear Information System (INIS)

    Hsue, S.T.; Collins, M.L.

    1996-01-01

    Minor actinides have received considerable attention recently in the nuclear power industry. Because of their potential value as recycle fuels in thermal and breeder reactors, reprocessing plants may have an economic incentive to extract Np, Am, and Cm from their waste streams. This report discusses the technique of hybrid densitometry and its potential to measure Np and Am in reprocessing plants. Precision estimates are made for the hybrid analysis of Np and Am in two types of dissolver solutions

  15. Methodology for the hybrid solution of systems of differential equations

    International Nuclear Information System (INIS)

    Larrinaga, E.F.; Lopez, M.A.

    1993-01-01

    This work shows a general methodology of solution to systems of differential equations in hybrid computers. Taking into account this methodology, a mathematical model was elaborated. It offers wide possibilities of recording and handling the results on the basis of using the hybrid system IBM-VIDAC 1224 which the ISCTN has. It also presents the results gained when simulating a simple model of a nuclear reactor, which was used in the validation of the results of the computational model

  16. Uranium-thorium fuel cycle in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Hernandez, C.R.G.; Oliva, A.M.; Fajardo, L.G.; Garcia, J.A.R.; Curbelo, J.P.; Abadanes, A.

    2011-01-01

    Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. Therefore, Thorium fuels can complement Uranium fuels and ensure long term sustainability of nuclear power. The main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a Uranium-Thorium (U + Th) fuel cycle are shown in this paper. Once-through and two step U + Th fuel cycle was evaluated. With this goal, a preliminary conceptual design of a hybrid system formed by a Graphite Moderated Gas-Cooled Very High Temperature Reactor and two ADSs is proposed. The main parameters related to the neutronic behavior of the system in a deep burn scheme are optimized. The parameters that describe the nuclear fuel breeding and Minor Actinide stockpile are compared with those of a simple Uranium fuel cycle. (author)

  17. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants

    Science.gov (United States)

    Interspecific hybridization can be considered an accelerator of evolution, otherwise a slow process, solely dependent on mutation and recombination. Upon interspecific hybridization, several novel interactions between nuclear and cytoplasmic genomes emerge which provide additional sources of diversi...

  18. Vegetative hyphal fusion and subsequent nuclear behavior in Epichloë grass endophytes.

    Science.gov (United States)

    Shoji, Jun-Ya; Charlton, Nikki D; Yi, Mihwa; Young, Carolyn A; Craven, Kelly D

    2015-01-01

    Epichloë species (including the former genus Neotyphodium) are fungal symbionts of many agronomically important forage grasses, and provide their grass hosts with protection from a wide range of biotic and abiotic stresses. Epichloë species include many interspecific hybrids with allodiploid-like genomes, which may provide the potential for combined traits or recombination to generate new traits. Though circumstantial evidence suggests that such interspecific hybrids might have arisen from nuclear fusion events following vegetative hyphal fusion between different Epichloë strains, this hypothesis has not been addressed empirically. Here, we investigated vegetative hyphal fusion and subsequent nuclear behavior in Epichloë species. A majority of Epichloë strains, especially those having a sexual stage, underwent self vegetative hyphal fusion. Vegetative fusion also occurred between two hyphae from different Epichloë strains. Though Epichloë spp. are uninucleate fungi, hyphal fusion resulted in two nuclei stably sharing the same cytoplasm, which might ultimately lead to nuclear fusion. In addition, protoplast fusion experiments gave rise to uninucleate putative hybrids, which apparently had two markers, one from each parent within the same nucleus. These results are consistent with the notion that interspecific hybrids arise from vegetative hyphal fusion. However, we also discuss additional factors, such as post-hybridization selection, that may be important to explain the recognized prevalence of hybrids in Epichloë species.

  19. Studies on supplementary desalted mother liquor on digestibility of nutrients, ruminal fermentation, and energy and nitrogen balance in Thai native cattle.

    Science.gov (United States)

    Sakai, Takashi; Angthong, Wanna; Takeda, Motoharu; Oishi, Kazato; Hirooka, Hiroyuki; Kumagai, Hajime

    2017-09-01

    Four Thai native steers were used to determine the adequate levels of supplementary desalted mother liquor (DML) for energy and nitrogen balances and ruminal fermentation. The crude protein and sodium chloride contents of DML were 25.5% and 60.3% on a dry matter (DM) basis, respectively. A 4 × 4 Latin square design experiment was conducted by adding different amounts of DML to three experimental diets (T1: 1.1%, T2: 2.2%, T3: 3.4% sodium chloride concentration with supplementary DML on a DM basis) and comparing their effects with those of a control diet (C) containing 1.0% commercial salt on a DM basis. The animals were given the experimental diets and rice straw daily at 1.2% and 0.8% of body weight, respectively, on a DM basis. No significant differences in the apparent digestibility of nutrients were observed among treatments. T3 achieved the lowest nitrogen retention (P < 0.05), followed by C, T2 and T1. The ratios of energy retention to gross energy were higher in T1 and T3 than T2, and that in C was lowest (P < 0.05). Supplementary NaCl concentration at 1% and 2% can be replaced with DML without an adverse effect on the digestibility of nutrients or on the nitrogen and energy retention. © 2017 Japanese Society of Animal Science.

  20. Hybrid SPECT/CT: Principle, dosimetry and quality control

    International Nuclear Information System (INIS)

    Hapdey, S.; Gardin, I.; Salles, A.; Rousseliere, F.; Edet-Sanson, A.; Vera, P.

    2009-01-01

    The recent introduction of hybrid systems combining a SPECT and a CT in nuclear medicine, greatly improved the diagnostic accuracy for particular clinical indications, due to the possible attenuation and/or scatter correction of the SPECT functional images and the availability of helpful anatomic information. Although the gamma cameras performances are noticeably comparable, the associated CT furnished by the manufacturer are relatively different from each other. Whatever the system is, the introduction of CT in the nuclear diagnostic process results in a significant increase of the patient dose. This dose increase should be justified and optimized considering both the clinical question and the CT settings available on these systems. The installation of a hybrid system must be accompanied by the management of a documentary quality insurance program, jointly developed by the technologists, physicists and physicians, both covering its clinical use and the associated dosimetry issues as monitoring its performances. Particular quality control procedures have to be defined because of the coupling between the two devices. (authors)

  1. Characterization of germ cell-specific expression of the orphan nuclear receptor, germ cell nuclear factor.

    Science.gov (United States)

    Katz, D; Niederberger, C; Slaughter, G R; Cooney, A J

    1997-10-01

    Nuclear receptors, such as those for androgens, estrogens, and progesterones, control many reproductive processes. Proteins with structures similar to these receptors, but for which ligands have not yet been identified, have been termed orphan nuclear receptors. One of these orphans, germ cell nuclear factor (GCNF), has been shown to be germ cell specific in the adult and, therefore, may also participate in the regulation of reproductive functions. In this paper, we examine more closely the expression patterns of GCNF in germ cells to begin to define spatio-temporal domains of its activity. In situ hybridization showed that GCNF messenger RNA (mRNA) is lacking in the testis of hypogonadal mutant mice, which lack developed spermatids, but is present in the wild-type testis. Thus, GCNF is, indeed, germ cell specific in the adult male. Quantitation of the specific in situ hybridization signal in wild-type testis reveals that GCNF mRNA is most abundant in stage VII round spermatids. Similarly, Northern analysis and specific in situ hybridization show that GCNF expression first occurs in testis of 20-day-old mice, when round spermatids first emerge. Therefore, in the male, GCNF expression occurs postmeiotically and may participate in the morphological changes of the maturing spermatids. In contrast, female expression of GCNF is shown in growing oocytes that have not completed the first meiotic division. Thus, GCNF in the female is expressed before the completion of meiosis. Finally, the nature of the two different mRNAs that hybridize to the GCNF complementary DNA was studied. Although both messages contain the DNA binding domain, only the larger message is recognized by a probe from the extreme 3' untranslated region. In situ hybridization with these differential probes demonstrates that both messages are present in growing oocytes. In addition, the coding region and portions of the 3' untranslated region of the GCNF complementary DNA are conserved in the rat.

  2. Light-stimulated accumulation of transcripts of nuclear and chloroplast genes for ribulosebisphosphate carboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S M; Ellis, R J

    1981-01-01

    The chloroplast enzyme, ribulosebisphosphate carboxylase, consists of large subunit polypeptides encoded in the chloroplast genome and small subunit polypeptides encoded in the nuclear genome. Cloned DNA complementary to the small subunit mRNA hybridizes to a single RNA species of 900-1000 nucleotides in both total and poly(A)-containing RNA from leaves of Pisum sativum, but does not hybridize to chloroplast RNA. Small subunit cDNA hybridizes to at least three RNA species from nuclei, two of which are of higher molecular weight than the mature mRNA. A cloned large subunit DNA sequence hybridizes to a single species of Pisum chloroplast RNA containing approximately 1700 nucleotides, but does not hybridize to nuclear RNA. The light-stimulation of carboxylase accumulation reflects increases in the amounts of transcripts for both subunits in total leaf RNA. Transcripts of the small subunit gene are more abundant in nuclear RNA from light-grown leaves than in that from dark-grown leaves. These results suggest that the stimulation of carboxylase accumulation by light is mediated at the level of either transcription or RNA turnover in both nucleus and chloroplast.

  3. Is hybridic positron emission tomography/computerized tomography the only option? The future of nuclear medicine and molecular imaging.

    Science.gov (United States)

    Grammaticos, Philip; Zerva, Cherry; Asteriadis, Ioannis; Trontzos, Christos; Hatziioannou, Kostas

    2007-01-01

    As we all know, Nuclear Medicine is the medical science using nuclear radiation for diagnosis, treatment and research. Nuclear Medicine, in contrast to Radiology, makes use of unsealed sources of radiation. Nuclear Medicine a few years ago has partly offered Nuclear Cardiology, the most lucrative of all Nuclear Medicine "children" at that time, to Cardiology. Radiology, has succeeded in being recognized by the European Union Authorities as Clinical Radiology. The word "clinical" offers greater independence to Clinical Radiology and makes it difficult for such a specialty to relinquish any of its equipment i.e. the diagnostic CT scan or the newly developed fast angiography CT, to other specialties. Contrary to Clinical Radiology, Nuclear Medicine being a laboratory specialty in most countries seems to have no right to deny offering, after some period of "proper certified education", its PET camera to Clinical Radiologists. Nuclear Medicine by virtue of its unique diagnostic techniques and treatments, is and should be recognized as a "Clinical Specialty" The interference of other specialties in the fields of Nuclear Medicine is also indicated by the fact that in vitro techniques of Nuclear Medicine are often used by Endocrinologists and Oncologists in their own laboratories. Also in some hospitals the Director of the Radiology Department acts as the Director of Nuclear Medicine Laboratory. Finally at present, Radiologists wish after "proper certified education", to be on equal terms in charge of the new hybridic equipment, the PET/CT scanner. If that is followed to happen, Nuclear Medicine will be in a difficult position losing at least part of PET and consequently should ask for help from its "Overlords and Protectors" i.e. the National and the European Societies of Nuclear Medicine and the Society of Nuclear Medicine of the United States of America. Radiology as a specialty participating om equal terms with the PET camera will then include the study of: a) "open

  4. Summary Report of the INL-JISEA Workshop on Nuclear Hybrud Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mark Antkowiak; Richard Boardman; Shannon Bragg-Sitton; Robert Cherry; Mark Ruth

    2012-07-01

    Hybrid energy systems utilize two or more energy resources as inputs to two or more physically coupled subsystems to produce one or more energy commodities as outputs. Nuclear hybrid energy systems can be used to provide load-following electrical power to match diurnal to seasonal-scale changes in power demand or to compensate for the variability of renewable wind or solar generation. To maintain economical, full rate operation of the nuclear reactor, its thermal energy available when power demand is low could be diverted into making synthetic vehicle fuels of various types. The Institute for Nuclear Energy Science and Technology (INEST) and the Joint Institute for Strategic Energy Analysis (JISEA) co-sponsored an international workshop to identify research topics important in advancing the potential use of hybrid systems with a specific focus on nuclear-renewable hybrid systems. The workshop included presentations ranging from energy challenges and research and development (R&D) directions being pursued by nations to multiple options for hybrid systems. Those options include one that is being commercialized to other opportunities and analysis results quantifying them. The workshop also involved two breakout sessions - one focused on thermal energy management issues especially at unit-operation scale and the second focused on system operations issues including system controls, regulatory issues, technical and economic analysis, and market challenges. A discussion involving the full group focused on more general issues such as societal involvement and participation. Key criteria for selecting hybrid energy system projects and metrics for comparing them were also identified by the full group. The workshop's findings are being used initially by INEST to define topics for a research preproposal solicitation.

  5. Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei, despite clonal reproduction of hybrids.

    Directory of Open Access Journals (Sweden)

    Lukas Choleva

    Full Text Available Distinguishing between hybrid introgression and incomplete lineage sorting causing incongruence among gene trees in that they exhibit topological differences requires application of statistical approaches that are based on biologically relevant models. Such study is especially challenging in hybrid systems, where usual vectors mediating interspecific gene transfers--hybrids with Mendelian heredity--are absent or unknown. Here we study a complex of hybridizing species, which are known to produce clonal hybrids, to discover how one of the species, Cobitis tanaitica, has achieved a pattern of mito-nuclear mosaic genome over the whole geographic range. We appplied three distinct methods, including the method using solely the information on gene tree topologies, and found that the contrasting mito-nuclear signal might not have resulted from the retention of ancestral polymorphism. Instead, we found two signs of hybridization events related to C. tanaitica; one concerning nuclear gene flow and the other suggested mitochondrial capture. Interestingly, clonal inheritance (gynogenesis of contemporary hybrids prevents genomic introgressions and non-clonal hybrids are either absent or too rare to be detected among European Cobitis. Our analyses therefore suggest that introgressive hybridizations are rather old episodes, mediated by previously existing hybrids whose inheritance was not entirely clonal. Cobitis complex thus supports the view that the type of resulting hybrids depends on a level of genomic divergence between sexual species.

  6. Feasibility study of applying the passive safety system concept to fusion–fission hybrid reactor

    International Nuclear Information System (INIS)

    Yu, Zhang-cheng; Xie, Heng

    2014-01-01

    The fusion–fission hybrid reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc., with the fusion neutron source striking the subcritical blanket. The passive safety system consists of passive residual heat removal system, passive safety injection system and automatic depressurization system was adopted into the fusion–fission hybrid reactor in this paper. Modeling and nodalization of primary loop, partial secondary loop and passive core cooling system for the fusion–fission hybrid reactor using relap5 were conducted and small break LOCA on cold leg was analyzed. The results of key transient parameters indicated that the actuation of passive safety system could mitigate the accidental consequence of the 4-inch cold leg small break LOCA on cold leg in the early time effectively. It is feasible to apply the passive safety system concept to fusion–fission hybrid reactor. The minimum collapsed liquid level had great increase if doubling the volume of CMTs to increase its coolant injection and had no increase if doubling the volume of ACCs

  7. Subcellular localization of low-abundance human immunodeficiency virus nucleic acid sequences visualized by fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Lawrence, J.B.; Marselle, L.M.; Byron, K.S.; Johnson, C.V.; Sullivan, J.L.; Singer, R.H.

    1990-01-01

    Detection and subcellular localization of human immunodeficiency virus (HIV) were investigated using sensitive high-resolution in situ hybridization methodology. Lymphocytes infected with HIV in vitro or in vivo were detected by fluorescence after hybridization with either biotin or digoxigenin-labeled probes. At 12 hr after infection in vitro, a single intense signal appeared in the nuclei of individual cells. Later in infection, when cytoplasmic fluorescence became intense, multiple nuclear foci frequently appeared. The nuclear focus consisted of newly synthesized HIV RNA as shown by hybridization in the absence of denaturation and by susceptibility to RNase and actinomycin D. Virus was detected in patient lymphocytes and it was shown that a singular nuclear focus also characterizes cells infected in vivo. The cell line 8E5/LAV containing one defective integrated provirus revealed a similar focus of nuclear RNA, and the single integrated HIV genome was unequivocally visualized on a D-group chromosome. This demonstrates an extremely sensitive single-cell assay for the presence of a single site of HIV transcription in vitro and in vivo and suggests that it derives from one (or very few) viral genomes per cell. In contrast, productive Epstein-Barr virus infection exhibited many foci of nuclear RNA per cell

  8. Conceptual scheme of a hybrid mesocatalytic fusion reactor

    International Nuclear Information System (INIS)

    Petrov, Yu.V.

    1988-01-01

    To test the practical realization of the mesocatalytic method for energy production a preliminary engineering analysis and calculation of the separate units of the conceptual scheme of the hybrid mesocatalytic reactor was made. The construction and efficiency of the most characteristic separate blocks of the conceptual scheme for muon-catalyzed fusion are examined. The muon catalysis cycle in a dt mixture was assessed. The kinetics and energetics of muon production through a pion-forming target and a converter were evaluated. Concomitant questions, particularly the removal of helium from hydrogen, are discussed. Fusion chamber requirements were calculated and problems of heat removal were assessed. Blanket construction and efficiency were examined. The efficiency of different methods for power generation were comparatively reviewed including hybrid thermonuclear, electronuclear nuclear, and hybrid mesocatalytic methods. Energy balances and economic restrictions were examined

  9. MACK/MACKLIB system for nuclear response functions

    International Nuclear Information System (INIS)

    Abdou, M.A.; Gohar, Y.

    1978-01-01

    The MACK computer program calculates energy pointwise and multigroup nuclear response functions from basic nuclear data in ENDF/B format. The new version of the program, MACK-IV, incorporates major developments and improvements aimed at maximizing the utilization of available nuclear data and ensuring energy conservation in nuclear heating calculations. A new library, MACKLIB-IV, of nuclear response functions was generated in the CTR energy group structure of 171 neutron groups and 36 gamma groups. The library was prepared using MACK-IV, and ENDF/B-IV, and is suitable for fusion, fusion--fission hybrids, and fission applications. 3 figures, 4 tables

  10. Calculation of the power factor using the neutron diffusion hybrid equation

    International Nuclear Information System (INIS)

    Costa da Silva, Adilson; Carvalho da Silva, Fernando; Senra Martinez, Aquilino

    2013-01-01

    Highlights: ► A neutron diffusion hybrid equation with an external neutron source was used. ► Nodal expansion method to obtain the neutron flux was used. ► Nuclear power factors in each fuel element in the reactor core were calculated. ► The results obtained were very accurate. -- Abstract: In this paper, we used a neutron diffusion hybrid equation with an external neutron source to calculate nuclear power factors in each fuel element in the reactor core. We used the nodal expansion method to obtain the neutron flux for a given control rods bank position. The results were compared with results obtained for eigenvalue problem near criticality condition and fixed source problem during the start-up of the reactor, where external neutron sources are extremely important for the stabilization of external neutron detectors.

  11. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  12. 75As-NQR study of the hybridization gap semiconductor CeOs4As12

    International Nuclear Information System (INIS)

    Yogi, M; Niki, H; Higa, N; Kawata, T; Sekine, C

    2016-01-01

    We performed an 75 As nuclear quadrupole resonance (NQR) measurement on CeOs 4 As 12 . The 75 As-NQR spectrum shape demonstrates that the Ce-site filling fraction of our high-pressure synthesized sample is close to unity. A presence of the c — f hybridization gap is confirmed from the temperature dependence of the nuclear spin-lattice relaxation rate 1/T 1 . An increase of 1/T 1 below ∼3 K indicates a development of the spin fluctuations. The 1/T 1 for CeOs 4 As 12 shows similar behavior as that for CeOs 4 Sb 12 with different magnitude of the c — f hybridization gap. An absence of phase transition in CeOs 4 As 12 may be caused by the increase of the c — f hybridization, which increases the gap magnitude and reduces the residual density of state inside the gap. (paper)

  13. Small nuclear reactors for desalination

    International Nuclear Information System (INIS)

    Goldsmith, K.

    1978-01-01

    Small nuclear reactors are considered to have an output of not more than 400MW thermal. Since they can produce steam at much higher conditions than needed by the brine heater of a multi-flash desalination unit, it may be economically advantageous to use small reactors for a dual-purpose installation of appropriate size, producing both electricity and desalted water, rather than for a single-purpose desalination plant only. Different combinations of dual-purpose arrangements are possible depending principally on the ratio of electricity to water output required. The costs of the installation as well as of the products are critically dependent on this ratio. For minimum investment costs, the components of the dual-purpose installation should be of a standardised design based on normal commercial power plant practice. This then imposes some restrictions on the plant arrangement but, on the other hand, it facilitates selection of the components. Depending on the electricity to water ratio to be achieved, the conventional part of the installation - essentially the turbines - will form a combination of back-pressure and condensing machines. Each ratio will probably lead to an optimum combination. In the economic evaluation of this arrangement, a distinction must be made between single-purpose and dual-purpose installations. The relationship between output and unit costs of electricity and water will be different for the two cases, but the relation can be expressed in general terms to provide guidelines for selecting the best dimensions for the plant. (author)

  14. Polypeptide composition of fraction 1 protein of the somatic hybrid between Petunia parodii and Petunia parviflora.

    Science.gov (United States)

    Kumar, A; Wilson, D; Cocking, E C

    1981-04-01

    The analysis of the subunit polypeptide composition of Fraction 1 protein provides information on the expression of both chloroplast and nuclear genomes. Fraction 1 protein, isolated from leaves of the somatic hybrid plants derived form the fusion of protoplasts of Petunia parodii and P. parviflora, was analyzed for its subunit polypeptide composition by isoelectric focusing in 8 M urea. The fraction 1 protein enzyme oligomer in the somatic hybrid plants contained small subunits resulting from the expression of both parental nuclear genomes, but probably only one of the parental large subunits, namely that of P. parodii. The relevance of such somatic hybrid material for the study of nucleocytoplasmic interrelationship is discussed, as well as the use of these fraction 1 protein isoelectric focusing patterns for the analysis of taxonomic relationships in Petunia.

  15. Analysis of cytoplasmic genomes in somatic hybrids between navel orange (Citrus sinensis Osb.) and 'Murcott' tangor.

    Science.gov (United States)

    Kobayashi, S; Ohgawara, T; Fujiwara, K; Oiyama, I

    1991-07-01

    Somatic hybrid plants were produced by protoplast fusion of navel orange and 'Murcott' tangor. Hybridity of the plants was confirmed by the restriction endonuclease analysis of nuclear ribosomal DNA. All of the plants (16 clones) were normal, uniform, and had the amphidiploid chromosome number of 36 (2n=2x=18 for each parent). The cpDNA analysis showed that each of the 16 somatic hybrids contained either one parental chloroplast genome or the other. In all cases, the mitochondrial genomes of the regenerated somatic hybrids were of the navel orange type.

  16. Hybrid laser arc welding of a used fuel container

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, C., E-mail: cboyle@nwmo.ca [Nuclear Waste Management Organization, Toronto, ON (Canada); Martel, P. [Novika Solutions, La Pocatiere, QC (Canada)

    2015-07-01

    The Nuclear Waste Management Organization (NWMO) has designed a novel Used Fuel Container (UFC) optimized for CANDU used nuclear fuel. The Mark II container is constructed of nuclear grade pipe for the body and capped with hemi-spherical heads. The head-to-shell joint fit-up features an integral backing designed for external pressure, eliminating the need for a full penetration closure weld. The NWMO and Novika Solutions have developed a partial penetration, single pass Hybrid Laser Arc Weld (HLAW) closure welding process requiring no post-weld heat treatment. This paper will discuss the joint design, HLAW process, associated welding equipment, and prototype container fabrication. (author)

  17. Hybrid laser arc welding of a used fuel container

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, C. [Nuclear Waste Management Organization (NWMO), Toronto, Ontario (Canada); Martel, P. [Novika Solutions, La Pocatiere, Quebec (Canada)

    2015-09-15

    The Nuclear Waste Management Organization (NWMO) has designed a novel Used Fuel Container (UFC) optimized for CANDU used nuclear fuel. The Mark II container is constructed of nuclear grade pipe for the body and capped with hemi-spherical heads. The head-to-shell joint fit-up features an integral backing designed for external pressure, eliminating the need for a full penetration closure weld. The NWMO and Novika Solutions have developed a partial penetration, single pass Hybrid Laser Axe Weld (HLAW) closure welding process requiring no post-weld heat treatment. This paper will discuss the joint design, HLAW process, associated welding equipment, and prototype container fabrication. (author)

  18. Near-term feasibility of nuclear reactors for seawater desalting. Coupling of standard condensing nuclear power stations to low-grade heat multieffect distillation plants

    International Nuclear Information System (INIS)

    Adar, J.; Manor, S.; Schaal, M.

    1977-01-01

    The paper describes the horizontal aluminium tube, multieffect distillation process developed by Israel Desalination Engineering Ltd., which is very suitable for the use of low-grade heat from standard condensing nuclear turbines operating at increased back-pressure. A special flash-chamber constitutes a positive barrier against any possible contamination being carried over by the steam exhausted from the turbine to the desalination plant. Flow sheets, heat and mass balances have been prepared for two standard sizes of NSSS and turbines, two back-pressures, and corresponding desalination plants. Only standard equipment is being used in the steam and electricity-producing plant. The desalination plant consists of 6 to 12 parallel double lines, each of them similar to a large prototype now being designed and which will be coupled to an old fossil-fuel power station. Total energy requirements of the desalination plant represent only 19 to 50% of the total water cost as against 75% for a single-purpose plant. Costs are based on actual bids for the power plant and actual estimates for the desalination prototype. The operation is designed to be flexible so that the power plant can be operated either in conjunction with the desalination plant, or as a single-purpose plant. (author)

  19. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  20. Pressurized Hybrid Heat Pipe for Passive IN-Core Cooling System (PINCs) in Advanced Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-05-15

    The representative operating limit of the thermosyphon heat pipe is flooding limit that arises from the countercurrent flow of vapor and liquid. The effect of difference between wetted perimeter and heated perimeter on the flooding limit of the thermosyphons has not been studied; despite the effect of cross-sectional area of the vapor path on the heat transfer characteristics of thermosyphons have been studied. Additionally, the hybrid heat pipe must operate at the high temperature and high pressure environment because it will be inserted to the active core to remove the decay heat. However, the previously studied heat pipes operated below the atmospheric pressure. Therefore, the effect of the unique geometry for hybrid heat pipe and operating pressure on the heat transfer characteristics including the flooding limit of hybrid heat pipe was experimentally measured. Hybrid heat pipe as a new conceptual decay heat removal device was proposed. For the development of hybrid heat pipe operating at high temperature and high pressure conditions, the pressurized hybrid heat pipe was prepared and the thermal performances including operation limits of hybrid heat pipe were experimentally measured. Followings were obtained: (1) As operating pressure of the heat pipe increases, the evaporation heat transfer coefficient increases due to heat transfer with convective pool boiling mode. (2) Non-condensable gas charged in the test section for the pressurization lowered the condensation heat transfer by impeding the vapor flow to the condenser. (3) The deviations between experimentally measured flooding limits for hybrid heat pipes and the values from correlation for annular thermosyphon were observed.

  1. Heat transfer characteristics and operation limit of pressurized hybrid heat pipe for small modular reactors

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Bang, In Cheol

    2017-01-01

    Highlights: • Thermal performances and operation limits of hybrid heat pipe were experimentally studied. • Models for predicting the operation limit of the hybrid heat pipe was developed. • Non-condensable gas affected heat transfer characteristics of the hybrid heat pipe. - Abstract: In this paper, a hybrid heat pipe is proposed for use in advanced nuclear power plants as a passive heat transfer device. The hybrid heat pipe combines the functions of a heat pipe and a control rod to simultaneously remove the decay heat generated from the core and shutdown the reactor under accident conditions. Thus, the hybrid heat pipe contains a neutron absorber in the evaporator section, which corresponds to the core of the reactor pressure vessel. The presence of the neutron absorber material leads to differences in the heated diameter and hydraulic diameter of the heat pipe. The cross-sectional areas of the vapor paths through the evaporator, adiabatic, and condenser sections are also different. The hybrid heat pipe must operate in a high-temperature, high-pressure environment to remove the decay heat. In other words, the operating pressure must be higher than those of the commercially available thermosyphons. Hence, the thermal performances, including operation limit of the hybrid heat pipe, were experimentally studied in the operating pressure range of 0.2–20 bar. The operating pressure of the hybrid heat pipe was controlled by charging the non-condensable gas which is unused method to achieve the high saturation pressure in conventional thermosyphons. The effect of operating pressure on evaporation heat transfer was negligible, while condensation heat transfer was affected by the amount of non-condensable gas in the test section. The operation limit of the hybrid heat pipe increased with the operating pressure. Maximum heat removal capacity of the hybrid heat pipe was up to 6 kW which is meaningful value as a passive decay heat removal device in the nuclear power

  2. Restriction endonuclease analysis of chloroplast DNA in interspecies somatic Hybrids of Petunia.

    Science.gov (United States)

    Kumar, A; Cocking, E C; Bovenberg, W A; Kool, A J

    1982-12-01

    Restriction endonuclease cleavage pattern analysis of chloroplast DNA (cpDNA) of three different interspecific somatic hybrid plants revealed that the cytoplasms of the hybrids contained only cpDNA of P. parodii. The somatic hybrid plants analysed were those between P. parodii (wild type) + P. hybrida (wild type); P. parodii (wild type)+P. inflata (cytoplasmic albino mutant); P. parodii (wild type) + P. parviflora (nuclear albino mutant). The presence of only P. parodii chloroplasts in the somatic hybrid of P. parodii + P. inflata is possibly due to the stringent selection used for somatic hybrid production. However, in the case of the two other somatic hybrids P. parodii + P. hybrida and P. parodii + P. parviflora it was not possible to determine whether the presence of only P. parodii chloroplasts in these somatic hybrid plants was due to the nature of the selection schemes used or simply occurred by chance. The relevance of such somatic hybrid material for the study of genomic-cytoplasmic interaction is discussed, as well as the use of restriction endonuclease fragment patterns for the analysis of taxonomic and evolutionary inter-relationships in the genus Petunia.

  3. Radio frequency system for nuclear fusion

    International Nuclear Information System (INIS)

    Kozeki, Shoichiro; Sagawa, Norimoto; Takizawa, Teruhiro

    1987-01-01

    The importance of radio frequency waves has been increasing in the area of nuclear fusion since they are indispensable for heating of plasma, etc. This report outlines radio frequency techniques used for nuclear fusion and describes the development of radio frequency systems (radio frequency plasma heating system and current drive system). Presently, in-depth studies are underway at various research institutes to achieve plasma heating by injection of radio frequency electric power. Three ranges of frequencies, ICRF (ion cyclotron range of frequency), LHRF (lower hybrid range of frequency) and ECRF (electron cyclotron range of frequency), are considered promissing for radio frequency heating. Candidate waves for plasma current driving include ECW (electron cyclotron wave), LHW (lower hybrid wave), MSW (magnetic sound wave), ICW (ion cyclotron wave) with minority component, and FW (fast wave). FW is the greatest in terms of current drive efficiency. In general, a radio frequency system for nuclear fusion consists of a radio frequency power source, transmission/matching circuit component and plasma connection component. (Nogami, K.)

  4. Recent advances in nuclear cardiology

    DEFF Research Database (Denmark)

    Gutte, H.; Petersen, C. Leth; Kjaer, A.

    2008-01-01

    Nuclear cardiology is an essential part of functional, non-invasive, cardiac imaging. Significant advances have been made in nuclear cardiology since planar (201)thallium ((201)TI) scintigraphy was introduced for the evaluation of left ventricular (LV) perfusion nearly 40 years ago. The use...... of nuclear cardiology has been steadily increasing over the last 20 years with important steps being the introduction of (99m)technetium- ((99m)Tc)-labelled perfusion radiotracers, the change from only planar to now much more single photon emission computed tomography (SPECT) and positron emission tomography...... (PET), electrocardiogram gating of nuclear perfusion imaging, and finally introducing nuclear hybrid imaging using either SPECT or PET together with either computed tomography or magnetic resonance imaging. The indications have extended from nearly only coronary artery diseases to several non...

  5. Research in heavy-ion nuclear physics

    International Nuclear Information System (INIS)

    Sanders, S.J.; Prosser, F.W.

    1992-01-01

    This report discusses the following topics: Fusion-fission in light nuclear systems; High-resolution Q-value measurement for the 24 Mg+ 24 Mg reaction; Heavy-ion reactions and limits to fusion; and Hybrid MWPC-Bragg curve detector development

  6. Computations of nuclear response functions with MACK-IV

    International Nuclear Information System (INIS)

    Abdou, M.A.; Gohar, Y.

    1978-01-01

    The MACK computer program calculates energy pointwise and multigroup nuclear response functions from basic nuclear data in ENDF/B format. The new version of the program, MACK-IV, incorporates major developments and improvements aimed at maximizing the utilization of available nuclear data and ensuring energy conservation in nuclear heating calculations. A new library, MACKLIB-IV, of nuclear response functions was generated in the CTR energy group structure of 171 neutron groups and 36 gamma groups. The library was prepared using MACK-IV and ENDF/B-IV and is suitable for fusion, fusion-fission hybrids, and fission applications

  7. Computations of nuclear response functions with MACK-IV

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M A; Gohar, Y

    1978-01-01

    The MACK computer program calculates energy pointwise and multigroup nuclear response functions from basic nuclear data in ENDF/B format. The new version of the program, MACK-IV, incorporates major developments and improvements aimed at maximizing the utilization of available nuclear data and ensuring energy conservation in nuclear heating calculations. A new library, MACKLIB-IV, of nuclear response functions was generated in the CTR energy group structure of 171 neutron groups and 36 gamma groups. The library was prepared using MACK-IV and ENDF/B-IV and is suitable for fusion, fusion-fission hybrids, and fission applications.

  8. Nuclear Knowledge Management Programmes for Young Generations

    International Nuclear Information System (INIS)

    De Grosbois, John

    2017-01-01

    The Future of Nuclear Energy: Today’s Challenges - •Climate change •Investment in renewables •Societal acceptance of nuclear energy •Nuclear R&D declining •Aging reactor fleets •Phase-outs •Pace of new builds •Future uncertainties. Future Opportunities - •Shift to smart energy grids •Carbon tax and “cap and trade” systems •Possible need for new nuclear energy solutions: –high temperature reactors –hybrids → steam reforming –smaller plants needed –minimized nuclear waste –inherently safe designs. Supporting TC’s “Strategic Capacity Building Approach” (SCBA) by Strengthening Sustainable National Nuclear Education Systems: Knowledge sharing & eLearning platforms (e.g. CLP4NET) and supporting tools → Regional Nuclear Education Networks; → National Nuclear Education Networks; → Stakeholder Networking for Human Resource and Knowledge Development

  9. Genetic origin and composition of a natural hybrid poplar Populus × jrtyschensis from two distantly related species.

    Science.gov (United States)

    Jiang, Dechun; Feng, Jianju; Dong, Miao; Wu, Guili; Mao, Kangshan; Liu, Jianquan

    2016-04-18

    The factors that contribute to and maintain hybrid zones between distinct species are highly variable, depending on hybrid origins, frequencies and fitness. In this study, we aimed to examine genetic origins, compositions and possible maintenance of Populus × jrtyschensis, an assumed natural hybrid between two distantly related species. This hybrid poplar occurs mainly on the floodplains along the river valleys between the overlapping distributions of the two putative parents. We collected 566 individuals from 45 typical populations of P. × jrtyschensis, P. nigra and P. laurifolia. We genotyped them based on the sequence variations of one maternally inherited chloroplast DNA (cpDNA) fragment and genetic polymorphisms at 20 SSR loci. We further sequenced eight nuclear genes for 168 individuals from 31 populations. Two groups of cpDNA haplotypes characteristic of P. nigra and P. laurifolia respectively were both recovered for P. × jrtyschensis. Genetic structures and coalescent tests of two sets of nuclear population genetic data suggested that P. × jrtyschensis originated from hybridizations between the two assumed parental species. All examined populations of P. × jrtyschensis comprise mainly F1 hybrids from interspecific hybridizations between P. nigra and P. laurifolia. In the habitats of P. × jrtyschensis, there are lower concentrations of soil nitrogen than in the habitats occupied by the other two species. Our extensive examination of the genetic composition of P. × jrtyschensis suggested that it is typical of F1-dominated hybrid zones. This finding plus the low concentration of soil nitrogen in the floodplain soils support the F1-dominated bounded hybrid superiority hypothesis of hybrid zone maintenance for this particular hybrid poplar.

  10. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  11. Condensate treatment and oxygen control in power plants

    International Nuclear Information System (INIS)

    Sakai, Toshiaki; Iida, Kei; Ohashi, Shinichi.

    1997-01-01

    In thermal and nuclear power stations, the steam that operated turbines is cooled and condensed with condensers. The condensate is heated again with boilers, nuclear reactors or steam generators, but if corrosion products or impurities are contained in the condensate, corrosion and scale formation occur in boilers and others. The filtration facility and the desalting facility for condensate are installed to remove impurities, but water quality control is different in thermal, BWR and PWR plants, therefore, the treatment facilities corresponding to respective condensates have been adopted. In order to reduce the amount of clud generation, the treatment of injecting a small quantity of oxygen into condensate has been adopted. In thermal power plants, all volatile treatment is carried out, in which corrosion is prevented by the addition of ammonia and hydrazine to boiler feedwater. The condensate filters of various types and the NH 4 type condensate desalter for thermal power plants are described. In BWR power plants, steam is generated in nuclear reactors, therefore, the addition of chemicals into water is never carried out, and high purity neutral water is used. In PWR power plants, the addition of chemicals to water is done in the primary system, and AVT is adopted in the secondary system. Also the condensate treatment facilities are different for both reactors. (K.I.)

  12. Electrochemical Removal of Radioactive Cesium from Nuclear Waste Using the Dendritic Copper Hexacyanoferrate/Carbon Nanotube Hybrids

    International Nuclear Information System (INIS)

    Zheng, Yuanyuan; Qiao, Junhua; Yuan, Junhua; Shen, Jianfeng; Wang, Ai-jun; Niu, Li

    2017-01-01

    Highlights: •Copper hexacyanoferrate was uniformly covered on carbon nanotubes. •Cs + ion can be exchanged using this hybrid by controlling the electrode potential. •The maximum of Cs + adsorption capacity is 310 mg·g −1 in 50 μM Cs + solution. •The distribution coefficient of Cs + in this hybrid reaches up to 568 L·g −1 ,. •This hybrid can be regenerated with high stability for Cs + exchange. -- Abstract: A novel electrochemical separation system was developed based on copper hexacyanoferrate/multiwalled carbon nanotube (CuHCF/MWCNT) hybrids for selectively removing cesium from wastewater. These CuHCF/MWCNT hybrids were prepared by co-precipitation strategy. The as-prepared CuHCF nanoparticles were uniformly covered on MWCNTs to form a dendritic core-shell structure. This novel structure can improve CuHCFs conductivity, making CuHCFs more accessible for ion exchange. The uptake and release of alkali ion in CuHCF/MWCNT hybrids can be shifted mutually by switching the applied potentials between the anode and cathode. This ion exchange is a fast and reversible process associated with electron transfer in CuHCFs. The potential response depends on the radius of alkali ion. Using this electrochemical adsorption system (EAS), the maximum adsorption capacity (Q max ) of Cs + ion for CuHCFs/MWCNT hybrids reaches up to 310 mg·g −1 in 50 μM Cs + solution with a distribution coefficient K d of 568 L·g −1 , superior to the Cs + removal performance by the conventional adsorption system (Q max 230 mg·g −1 , Kd 389 L·g −1 ). Besides, CuHCF/MWCNT hybrids can be regenerated electrochemically. In addition to the advantages in Cs + removal performance and electrochemical regenerability, they can maintain considerable stability with uptake capacity retention of 85% after 100 cycles of adsorption and regeneration.

  13. Hybridization at an ecotone: ecological and genetic barriers between three Iberian vipers.

    Science.gov (United States)

    Tarroso, Pedro; Pereira, Ricardo J; Martínez-Freiría, Fernando; Godinho, Raquel; Brito, José C

    2014-03-01

    The formation of stable genetic boundaries between emerging species is often diagnosed by reduced hybrid fitness relative to parental taxa. This reduced fitness can arise from endogenous and/or exogenous barriers to gene flow. Although detecting exogenous barriers in nature is difficult, we can estimate the role of ecological divergence in driving species boundaries by integrating molecular and ecological niche modelling tools. Here, we focus on a three-way secondary contact zone between three viper species (Vipera aspis, V. latastei and V. seoanei) to test for the contribution of ecological divergence to the development of reproductive barriers at several species traits (morphology, nuclear DNA and mitochondrial DNA). Both the nuclear and mitochondrial data show that all taxa are genetically distinct and that the sister species V. aspis and V. latastei hybridize frequently and backcross over several generations. We find that the three taxa have diverged ecologically and meet at a hybrid zone coincident with a steep ecotone between the Atlantic and Mediterranean biogeographical provinces. Integrating landscape and genetic approaches, we show that hybridization is spatially restricted to habitats that are suboptimal for parental taxa. Together, these results suggest that niche separation and adaptation to an ecological gradient confer an important barrier to gene flow among taxa that have not achieved complete reproductive isolation. © 2014 John Wiley & Sons Ltd.

  14. Human management and hybridization shape treegourd fruits in the Brazilian Amazon Basin.

    Science.gov (United States)

    Ambrósio Moreira, Priscila; Mariac, Cédric; Zekraoui, Leila; Couderc, Marie; Rodrigues, Doriane Picanço; Clement, Charles R; Vigouroux, Yves

    2017-07-01

    Local people's perceptions of cultivated and wild agrobiodiversity, as well as their management of hybridization are still understudied in Amazonia. Here we analyze domesticated treegourd ( Crescentia cujete ), whose versatile fruits have technological, symbolic, and medicinal uses. A wild relative ( C. amazonica ) of the cultivated species grows spontaneously in Amazonian flooded forests. We demonstrated, using whole chloroplast sequences and nuclear microsatellites, that the two species are strongly differentiated. Nonetheless, they hybridize readily throughout Amazonia and the proportions of admixture correlate with fruit size variation of cultivated trees. New morphotypes arise from hybridization, which are recognized by people and named as local varieties. Small hybrid fruits are used to make the important symbolic rattle ( maracá ), suggesting that management of hybrid trees is an ancient human practice in Amazonia. Effective conservation of Amazonian agrobiodiversity needs to incorporate this interaction between wild and cultivated populations that is managed by smallholder families. Beyond treegourd, our study clearly shows that hybridization plays an important role in tree crop phenotypic diversification and that the integration of molecular analyses and farmers' perceptions of diversity help disentangle crop domestication history.

  15. A templated approach for multi-physics modeling of hybrid energy systems in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [ORNL; Cetiner, Sacit M. [ORNL; Harrison, Thomas J. [ORNL; Fugate, David [Oak Ridge National Laboratory (ORNL)

    2018-01-01

    A prototypical hybrid energy system (HES) couples a primary thermal power generator (i.e., nuclear power plant) with one or more additional subsystems beyond the traditional balance of plant electricity generation system. The definition and architecture of an HES can be adapted based on the needs and opportunities of a given local market. For example, locations in need of potable water may be best served by coupling a desalination plant to the HES. A location near an oil refinery may have a need for emission-free hydrogen production. The flexible, multidomain capabilities of Modelica are being used to investigate the dynamics (e.g., thermal hydraulics and electrical generation/consumption) of such a hybrid system. This paper examines the simulation infrastructure created to enable the coupling of multiphysics subsystem models for HES studies. A demonstration of a tightly coupled nuclear hybrid energy system implemented using the Modelica based infrastructure is presented for two representative cases. An appendix is also included providing a step-by-step procedure for using the template-based infrastructure.

  16. Nuclear medicine in oncology 1: Lymphoma, and cancer of the lung ...

    African Journals Online (AJOL)

    Nuclear medicine provides an opportunity to image pathophysiology, while radiology mainly shows morphology. Over the last few decades hybrid imaging modalities have been developed in which nuclear medicine instrumentation has been combined with computed tomography (CT) and, more recently, with magnetic ...

  17. Diamond difference method with hybrid angular quadrature applied to neutron transport problems

    International Nuclear Information System (INIS)

    Zani, Jose H.; Barros, Ricardo C.; Alves Filho, Hermes

    2005-01-01

    In this work we presents the results for the calculations of the disadvantage factor in thermal nuclear reactor physics. We use the one-group discrete ordinates (S N ) equations to mathematically model the flux distributions in slab lattices. We apply the diamond difference method with source iteration iterative scheme to numerically solve the discretized systems equations. We used special interface conditions to describe the method with hybrid angular quadrature. We show numerical results to illustrate the accuracy of the hybrid method. (author)

  18. Molecular confirmation of hybridization between Dascyllus reticulatus × Dascyllus aruanus from the Great Barrier Reef

    KAUST Repository

    He, Song; Johansen, Jacob L.; Hoey, Andrew S.; Pappas, Melissa; Berumen, Michael L.

    2017-01-01

    To date, more than 81 species of tropical coral reef fish have been reported to hybridize in nature, spanning multiple families, including the Chaetodontidae, Pomacanthidae, and Labridae. Hybridization, however, is seemingly rare among benthic nesting species that engage in pair spawning, such as the Pomacentridae. Here, we present evidence for the first molecularly confirmed record of hybridization within the genus Dascyllus; D. aruanus and D. reticulatus. Interestingly, although many hybridization events are attributed to peripheral range effects or areas of limited overlap among otherwise allopatric species, this hybrid individual was collected from the northern Great Barrier Reef, centrally located within the distribution ranges of both species. The hybrid exhibited coloration and meristic counts intermediate between D. aruanus and D. reticulatus. Diagnostic genetic markers and subsequent microsatellites analysis confirmed that this individual was a hybrid offspring of D. aruanus and D. reticulatus, with the latter providing the maternal contribution. The occurrence of the D. aruanus × D. reticulatus hybrid on the Great Barrier Reef represents an exception to the otherwise species-specific haplotypes. The nuclear diagnostic marker which was identified during this study could serve as a hybrid indicator and benefit future hybrid investigations for hybridization between these two species.

  19. Molecular confirmation of hybridization between Dascyllus reticulatus × Dascyllus aruanus from the Great Barrier Reef

    KAUST Repository

    He, Song

    2017-11-17

    To date, more than 81 species of tropical coral reef fish have been reported to hybridize in nature, spanning multiple families, including the Chaetodontidae, Pomacanthidae, and Labridae. Hybridization, however, is seemingly rare among benthic nesting species that engage in pair spawning, such as the Pomacentridae. Here, we present evidence for the first molecularly confirmed record of hybridization within the genus Dascyllus; D. aruanus and D. reticulatus. Interestingly, although many hybridization events are attributed to peripheral range effects or areas of limited overlap among otherwise allopatric species, this hybrid individual was collected from the northern Great Barrier Reef, centrally located within the distribution ranges of both species. The hybrid exhibited coloration and meristic counts intermediate between D. aruanus and D. reticulatus. Diagnostic genetic markers and subsequent microsatellites analysis confirmed that this individual was a hybrid offspring of D. aruanus and D. reticulatus, with the latter providing the maternal contribution. The occurrence of the D. aruanus × D. reticulatus hybrid on the Great Barrier Reef represents an exception to the otherwise species-specific haplotypes. The nuclear diagnostic marker which was identified during this study could serve as a hybrid indicator and benefit future hybrid investigations for hybridization between these two species.

  20. Nuclear physics and biology

    International Nuclear Information System (INIS)

    Valentin, L.

    1994-01-01

    This paper is about nuclear instrumentation and biological concepts, based on images from appropriate Β detectors. First, three detectors are described: the SOFI detector, for gene mapping, the SOFAS detector, for DNA sequencing and the RIHR detector, for in situ hybridization. Then, the paper presents quantitative imaging in molecular genetic and functional imaging. (TEC)

  1. Diploid hybrid origin of Ostryopsis intermedia (Betulaceae) in the Qinghai-Tibet Plateau triggered by Quaternary climate change.

    Science.gov (United States)

    Liu, Bingbing; Abbott, Richard J; Lu, Zhiqiang; Tian, Bin; Liu, Jianquan

    2014-06-01

    Despite the well-known effects that Quaternary climate oscillations had on shaping intraspecific diversity, their role in driving homoploid hybrid speciation is less clear. Here, we examine their importance in the putative homoploid hybrid origin and evolution of Ostryopsis intermedia, a diploid species occurring in the Qinghai-Tibet Plateau (QTP), a biodiversity hotspot. We investigated interspecific relationships between this species and its only other congeners, O. davidiana and O. nobilis, based on four sets of nuclear and chloroplast population genetic data and tested alternative speciation hypotheses. All nuclear data distinguished the three species clearly and supported a close relationship between O. intermedia and the disjunctly distributed O. davidiana. Chloroplast DNA sequence variation identified two tentative lineages, which distinguished O. intermedia from O. davidiana; however, both were present in O. nobilis. Admixture analyses of genetic polymorphisms at 20 SSR loci and sequence variation at 11 nuclear loci and approximate Bayesian computation (ABC) tests supported the hypothesis that O. intermedia originated by homoploid hybrid speciation from O. davidiana and O. nobilis. We further estimated that O. davidiana and O. nobilis diverged 6-11 Ma, while O. intermedia originated 0.5-1.2 Ma when O. davidiana is believed to have migrated southward, contacted and hybridized with O. nobilis possibly during the largest Quaternary glaciation that occurred in this region. Our findings highlight the importance of Quaternary climate change in the QTP in causing hybrid speciation in this important biodiversity hotspot. © 2014 John Wiley & Sons Ltd.

  2. Fault diagnosis of nuclear-powered equipment based on HMM and SVM

    International Nuclear Information System (INIS)

    Yue Xia; Zhang Chunliang; Zhu Houyao; Quan Yanming

    2012-01-01

    For the complexity and the small fault samples of nuclear-powered equipment, a hybrid HMM/SVM method was introduced in fault diagnosis. The hybrid method has two steps: first, HMM is utilized for primary diagnosis, in which the range of possible failure is reduced and the state trends can be observed; then faults can be recognized taking the advantage of the generalization ability of SVM. Experiments on the main pump failure simulator show that the HMM/SVM system has a high recognition rate and can be used in the fault diagnosis of nuclear-powered equipment. (authors)

  3. A diagnostic expert system for NPP based on hybrid knowledge approach

    International Nuclear Information System (INIS)

    Yang, Joon On; Chang, Soon Heung

    1989-01-01

    This paper describes a diagnostic expert system, HYPOSS (Hybrid Knowledge Based Plant Operation Supporting System), which has been developed to support operators' decision making during the transients of nuclear power plant. HYPOSS adopts the hybrid knowledge approach which combines shallow and deep knowledge to couple the merits of both approaches. In HYPOSS, four types of knowledge are used according to the steps of diagnosis procedure: structural, functional, behavioral and heuristic knowledge. The structural and functional knowledge is represented by three fundamental primitives and five types of functions respectively. The behavioral knowledge is represented using constraints. The inference procedure is based on the human problem solving behavior modeled in HYPOSS. For the validation of HYPOSS, several tests have been performed based on the data produced by a plant simulator. The results of validation studies showed a good applicability of HYPOSS to the anomaly diagnosis of nuclear power plant

  4. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    Science.gov (United States)

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  5. Hybrid mimics and hybrid vigor in Arabidopsis

    Science.gov (United States)

    Wang, Li; Greaves, Ian K.; Groszmann, Michael; Wu, Li Min; Dennis, Elizabeth S.; Peacock, W. James

    2015-01-01

    F1 hybrids can outperform their parents in yield and vegetative biomass, features of hybrid vigor that form the basis of the hybrid seed industry. The yield advantage of the F1 is lost in the F2 and subsequent generations. In Arabidopsis, from F2 plants that have a F1-like phenotype, we have by recurrent selection produced pure breeding F5/F6 lines, hybrid mimics, in which the characteristics of the F1 hybrid are stabilized. These hybrid mimic lines, like the F1 hybrid, have larger leaves than the parent plant, and the leaves have increased photosynthetic cell numbers, and in some lines, increased size of cells, suggesting an increased supply of photosynthate. A comparison of the differentially expressed genes in the F1 hybrid with those of eight hybrid mimic lines identified metabolic pathways altered in both; these pathways include down-regulation of defense response pathways and altered abiotic response pathways. F6 hybrid mimic lines are mostly homozygous at each locus in the genome and yet retain the large F1-like phenotype. Many alleles in the F6 plants, when they are homozygous, have expression levels different to the level in the parent. We consider this altered expression to be a consequence of transregulation of genes from one parent by genes from the other parent. Transregulation could also arise from epigenetic modifications in the F1. The pure breeding hybrid mimics have been valuable in probing the mechanisms of hybrid vigor and may also prove to be useful hybrid vigor equivalents in agriculture. PMID:26283378

  6. Thermodynamic exergy analysis for small modular reactor in nuclear hybrid energy system

    Directory of Open Access Journals (Sweden)

    Boldon Lauren

    2016-01-01

    Full Text Available Small modular reactors (SMRs provide a unique opportunity for future nuclear development with reduced financial risks, allowing the United States to meet growing energy demands through safe, reliable, clean air electricity generation while reducing greenhouse gas emissions and the reliance on unstable fossil fuel prices. A nuclear power plant is comprised of several complex subsystems which utilize materials from other subsystems and their surroundings. The economic utility of resources, or thermoeconomics, is extremely difficult to analyze, particularly when trying to optimize resources and costs among individual subsystems and determine prices for products. Economics and thermodynamics cannot provide this information individually. Thermoeconomics, however, provides a method of coupling the quality of energy available based on exergy and the value of this available energy – “exergetic costs”. For an SMR exergy analysis, both the physical and economic environments must be considered. The physical environment incorporates the energy, raw materials, and reference environment, where the reference environment refers to natural resources available without limit and without cost, such as air input to a boiler. The economic environment includes market influences and prices in addition to installation, operation, and maintenance costs required for production to occur. The exergetic cost or the required exergy for production may be determined by analyzing the physical environment alone. However, to optimize the system economics, this environment must be coupled with the economic environment. A balance exists between enhancing systems to improve efficiency and optimizing costs. Prior research into SMR thermodynamics has not detailed methods on improving exergetic costs for an SMR coupled with storage technologies and renewable energy such as wind or solar in a hybrid energy system. This process requires balancing technological efficiencies and

  7. Hybrid tracers for sentinel node biopsy

    International Nuclear Information System (INIS)

    Van Den Berg, N. S.; Kleinjan, G. I.; Valdés-Olmos, R. A.; Buckle, T.; Van Leeuwen, F. I.; Klop, W. M.; Horenblas, S.; Van Der Poel, H. G.

    2014-01-01

    Conventional sentinel node (SN) mapping is performed by injection of a radiocolloid followed by lymphoscintigraphy to identify the number and location of the primary tumor draining lymph node(s), the so-called SN(s). Over the last decade research has focused on the introduction of new imaging agents that can further aid (surgical) SN identification. Different tracers for SN mapping, with varying sizes and isotopes have been reported, most of which have proven their value in a clinical setting. A major challenge lies in transferring this diagnostic information obtained at the nuclear medicine department to the operating theatre thereby providing the surgeon with (image) guidance. Conventionally, an intraoperative injection of vital blue dye or a fluorescence dye is given to allow intraoperative optical SN identification. However, for some indications, the radiotracer-based approach remains crucial. More recently, hybrid tracers, that contain both a radioactive and fluorescent label, were introduced to allow for direct integration of pre- and intraoperative guidance technologies. Their potential is especially high when they are used in combination with new surgical imaging modalities and navigation tools. Next to a description of the known tracers for SN mapping, this review discusses the application of hybrid tracers during SN biopsy and how the introduction of these new techniques can further aid in translation of nuclear medicine information into the operating theatre.

  8. Adjustment of electrical equipment in the Akal-J oil platform of PEP for the implementation of the dehydration and desalting system of crude; Adecuacion de equipo electrico en la plataforma Akal-J de PEP para la implementacion del sistema de deshidratacion y desalado de crudo

    Energy Technology Data Exchange (ETDEWEB)

    Huesca Amador, Victor Hugo; Rosales Sedano, Inocente [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Coutino Gonzalez, Marina [PEMEX, Region Marina Noreste (Mexico)

    2010-10-09

    The Integral Asset Cantarell (AIC), of PEMEX Exploration and Production (PEP), developed a project to carry out the dehydration and desalting process of Maya (DDCM) crude of 300 MBD (thousands of daily barrels) of the Process Center (PC) of Akal-J through two integral systems of DDCM, with a capacity of 150 MBD each. The Process Center of Akal-J is conformed by eight marine platforms and the selected ones, by space availability to install these systems, were Akal-J2 and Akal-J3. In this paper the electrical analyses realized to determine the feasibility of the provision of energy to the required electrical equipment is presented, to implement the dehydration and desalting process of 300 MBD of Mayan crude, as well as the recommendations for a reliable and safe operation of the electrical system of the PC Akal-J. [Spanish] El Activo Integral Cantarell (AIC), de PEMEX Exploracion y Produccion (PEP), desarrollo un proyecto para efectuar el proceso de deshidratacion y desalado de crudo Maya (DDCM) de 300 MBD (miles de barriles diarios) de el Centro de Proceso (CP) Akal-J a traves de dos sistemas integrales de DDCM, con una capacidad de 150 MBD cada uno. El Centro de Proceso Akal-J se encuentra conformado por ocho plataformas marinas y las seleccionadas, por disponibilidad de espacio para instalar dichos sistemas, fueron Akal-J2 y Akal-J3. En este trabajo se presentan los analisis electricos realizados para determinar la factibilidad del suministro de energia a los equipos electricos requeridos, para implementar el proceso de deshidratacion y desalado de 300 MBD de crudo Maya, asi como las recomendaciones para una operacion confiable y segura del sistema electrico del CP Akal-J.

  9. Water reuse achieved by zero discharge of aqueous waste

    International Nuclear Information System (INIS)

    Kelchner, B.L.

    1976-01-01

    Plans for zero discharge of aqueous waste from ERDA's nuclear weapons plant near Denver are discussed. Two plants - a process waste treatment facility now under construction, and a reverse osmosis desalting plant now under design, will provide total reuse of waste water for boiler feed and cooling tower supply. Seventy million gallons of water per year will be conserved and downstream municipalities will be free of inadvertent pollution hazards

  10. Hybridization experiments indicate incomplete reproductive isolating mechanism between Fasciola hepatica and Fasciola gigantica.

    Science.gov (United States)

    Itagaki, T; Ichinomiya, M; Fukuda, K; Fusyuku, S; Carmona, C

    2011-09-01

    Experiments on hybridization between Fasciola hepatica and Fasciola gigantica were carried out to clarify whether a reproductive isolating mechanism appears between the two Fasciola species. Molecular evidence for hybridization was based on the DNA sequence of the internal transcribed spacer 1 (ITS1) region in nuclear ribosomal DNA, which differs between the species. The results suggested that there were not pre-mating but post-mating isolating mechanisms between the two species. However, viable adults of the hybrids F1 and F2 were produced from both parental F. hepatica and F. gigantica. The hybrids inherited phenotypic characteristics such as ratio of body length and width and infectivity to rats from parental Fasciola hepatica and F. gigantica. These findings suggest that reproductive isolation is incomplete between Fasciola hepatica and F. gigantica. Adults of the hybrids F1 and F2 were completely different in mode of reproduction from aspermic Fasciola forms that occur in Asia and seem to be offspring originated from hybridization between F. hepatica and F. gigantica and to reproduce parthenogenetically.

  11. The mitochondrial genome impacts respiration but not fermentation in interspecific Saccharomyces hybrids.

    Directory of Open Access Journals (Sweden)

    Warren Albertin

    Full Text Available In eukaryotes, mitochondrial DNA (mtDNA has high rate of nucleotide substitution leading to different mitochondrial haplotypes called mitotypes. However, the impact of mitochondrial genetic variant on phenotypic variation has been poorly considered in microorganisms because mtDNA encodes very few genes compared to nuclear DNA, and also because mitochondrial inheritance is not uniparental. Here we propose original material to unravel mitotype impact on phenotype: we produced interspecific hybrids between S. cerevisiae and S. uvarum species, using fully homozygous diploid parental strains. For two different interspecific crosses involving different parental strains, we recovered 10 independent hybrids per cross, and allowed mtDNA fixation after around 80 generations. We developed PCR-based markers for the rapid discrimination of S. cerevisiae and S. uvarum mitochondrial DNA. For both crosses, we were able to isolate fully isogenic hybrids at the nuclear level, yet possessing either S. cerevisiae mtDNA (Sc-mtDNA or S. uvarum mtDNA (Su-mtDNA. Under fermentative conditions, the mitotype has no phenotypic impact on fermentation kinetics and products, which was expected since mtDNA are not necessary for fermentative metabolism. Alternatively, under respiratory conditions, hybrids with Sc-mtDNA have higher population growth performance, associated with higher respiratory rate. Indeed, far from the hypothesis that mtDNA variation is neutral, our work shows that mitochondrial polymorphism can have a strong impact on fitness components and hence on the evolutionary fate of the yeast populations. We hypothesize that under fermentative conditions, hybrids may fix stochastically one or the other mt-DNA, while respiratory environments may increase the probability to fix Sc-mtDNA.

  12. Nuclear hydrogen production programme in the United States

    International Nuclear Information System (INIS)

    Sink, C.

    2010-01-01

    The Nuclear Hydrogen Initiative (NHI) is focused on demonstrating the economic, commercial-scale production of hydrogen using process heat derived from nuclear energy. NHI-supported research has concentrated to date on three technologies compatible with the Next Generation Nuclear Plant (NGNP): high temperature steam electrolysis (HTE); sulphur-iodine (S-I) thermochemical; and hybrid sulphur (HyS) thermochemical. In 2009 NHI will down select to a single technology on which to focus its future development efforts, for which the next step will be a pilot-scale experiment. (author)

  13. Hybrid Energy System Modeling in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  14. Enhanced Thermal Management System for Spent Nuclear Fuel Dry Storage Canister with Hybrid Heat Pipes

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Dry storage uses the gas or air as coolant within sealed canister with neutron shielding materials. Dry storage system for spent fuel is regarded as relatively safe and emits little radioactive waste for the storage, but it showed that the storage capacity and overall safety of dry cask needs to be enhanced for the dry storage cask for LWR in Korea. For safety enhancement of dry cask, previous studies of our group firstly suggested the passive cooling system with heat pipes for LWR spent fuel dry storage metal cask. As an extension, enhanced thermal management systems for the spent fuel dry storage cask for LWR was suggested with hybrid heat pipe concept, and their performances were analyzed in thermal-hydraulic viewpoint in this paper. In this paper, hybrid heat pipe concept for dry storage cask is suggested for thermal management to enhance safety margin. Although current design of dry cask satisfies the design criteria, it cannot be assured to have long term storage period and designed lifetime. Introducing hybrid heat pipe concept to dry storage cask designed without disrupting structural integrity, it can enhance the overall safety characteristics with adequate thermal management to reduce overall temperature as well as criticality control. To evaluate thermal performance of hybrid heat pipe according to its design, CFD simulation was conducted and previous and revised design of hybrid heat pipe was compared in terms of temperature inside canister

  15. Draft Environmental Impact Statement on a proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel. Volume 1

    International Nuclear Information System (INIS)

    1995-03-01

    The United States Department of Energy and United States Department of State are jointly proposing to adopt a policy to manage spent nuclear fuel from foreign research reactors. Only spent nuclear fuel containing uranium enriched in the United States would be covered by the proposed policy. The purpose of the proposed policy is to promote U.S. nuclear weapons nonproliferation policy objectives, specifically by seeking to reduce highly-enriched uranium from civilian commerce. Environmental effects and policy considerations of three Management Alternative approaches for implementation of the proposed policy are assessed. The three Management Alternatives analyzed are: (1) acceptance and management of the spent nuclear fuel by the Department of Energy in the United States, (2) management of the spent nuclear fuel at one or more foreign facilities (under conditions that satisfy United States nuclear weapons nonproliferation policy objectives), and (3) a combination of components of Management Alternatives 1 and 2 (Hybrid Alternative). A No Action Alternative is also analyzed. For each Management Alternative, there are a number of alternatives for its implementation. For Management Alternative 1, this document addresses the environmental effects of various implementation alternatives such as varied policy durations, management of various quantities of spent nuclear fuel, and differing financing arrangements. Environmental impacts at various potential ports of entry, along truck and rail transportation routes, at candidate management sites, and for alternate storage technologies are also examined. For Management Alternative 2, this document addresses two subalternatives: (1) assisting foreign nations with storage; and (2) assisting foreign nations with reprocessing of the spent nuclear fuel. Management Alternative 3 analyzes a hybrid alternative. This document is Vol. 1 of 2 plus summary volume

  16. Evidence for the robustness of protein complexes to inter-species hybridization.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Leducq

    Full Text Available Despite the tremendous efforts devoted to the identification of genetic incompatibilities underlying hybrid sterility and inviability, little is known about the effect of inter-species hybridization at the protein interactome level. Here, we develop a screening platform for the comparison of protein-protein interactions (PPIs among closely related species and their hybrids. We examine in vivo the architecture of protein complexes in two yeast species (Saccharomyces cerevisiae and Saccharomyces kudriavzevii that diverged 5-20 million years ago and in their F1 hybrids. We focus on 24 proteins of two large complexes: the RNA polymerase II and the nuclear pore complex (NPC, which show contrasting patterns of molecular evolution. We found that, with the exception of one PPI in the NPC sub-complex, PPIs were highly conserved between species, regardless of protein divergence. Unexpectedly, we found that the architecture of the complexes in F1 hybrids could not be distinguished from that of the parental species. Our results suggest that the conservation of PPIs in hybrids likely results from the slow evolution taking place on the very few protein residues involved in the interaction or that protein complexes are inherently robust and may accommodate protein divergence up to the level that is observed among closely related species.

  17. Nuclear desalination: harnessing the seas for development of coastal areas of Pakistan

    International Nuclear Information System (INIS)

    Ayub, M.S.; Butt, W.M.

    2005-01-01

    already operating a Sea Water Reverse Osmosis (SWRO) plant to meet its operating requirements, contributing to its ultimate heat sink. The experience gained in the installation and commissioning of the RO plant will be very useful for the proposed nuclear desalination plant. The objective of this paper is to present the work done by PAEC in preparing the engineering feasibility for coupling a 1MGD demonstration nuclear desalination plant with KANUPP. The paper discusses in detail the criteria for selection of the most appropriate thermal desalting process, capacity of the plant and the coupling arrangement with the existing power plant without disturbing the normal operation of KANUPP. (author)

  18. A new option for exploitage of future nuclear energy. Accelerator driven radioactive clean nuclear power system

    International Nuclear Information System (INIS)

    Ding Dazhao

    2000-01-01

    Nuclear energy is an effective, clean and safe energy resource. But some shortages of the nuclear energy system presently commercial available obstruct further development of the nuclear energy by heavy nuclear fission. Those are final disposal of the high level radioactive waste, inefficient use of the uranium resource and safety issue of the system. Innovative technical option is seeking for by the nuclear scientific community in recent ten years in aiming to overcome these obstacles, namely, accelerator driven sub-critical system (ADS). This hybrid system may bridge over the gap between presently commercial available nuclear power system and the full exploitation of the fusion energy. The basic principle of ADS is described and its capability in waste transmutation, conversion of the nuclear fuel are demonstrated by two examples--AD-fast reactor and AD-heavy water thermal reactor. The feasibility of ADS and some projects in US, Japan, etc are briefly discussed. The rationale in promoting the R and D of ADS in China is emphasized as China is at the beginning stage of its ambitious project in construction of the nuclear power

  19. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops.

    Science.gov (United States)

    Bohra, Abhishek; Jha, Uday C; Adhimoolam, Premkumar; Bisht, Deepak; Singh, Narendra P

    2016-05-01

    A comprehensive understanding of CMS/Rf system enabled by modern omics tools and technologies considerably improves our ability to harness hybrid technology for enhancing the productivity of field crops. Harnessing hybrid vigor or heterosis is a promising approach to tackle the current challenge of sustaining enhanced yield gains of field crops. In the context, cytoplasmic male sterility (CMS) owing to its heritable nature to manifest non-functional male gametophyte remains a cost-effective system to promote efficient hybrid seed production. The phenomenon of CMS stems from a complex interplay between maternally-inherited (mitochondrion) and bi-parental (nucleus) genomic elements. In recent years, attempts aimed to comprehend the sterility-inducing factors (orfs) and corresponding fertility determinants (Rf) in plants have greatly increased our access to candidate genomic segments and the cloned genes. To this end, novel insights obtained by applying state-of-the-art omics platforms have substantially enriched our understanding of cytoplasmic-nuclear communication. Concomitantly, molecular tools including DNA markers have been implicated in crop hybrid breeding in order to greatly expedite the progress. Here, we review the status of diverse sterility-inducing cytoplasms and associated Rf factors reported across different field crops along with exploring opportunities for integrating modern omics tools with CMS-based hybrid breeding.

  20. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    Science.gov (United States)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  1. Multi-locus estimates of population structure and migration in a fence lizard hybrid zone.

    Directory of Open Access Journals (Sweden)

    Adam D Leaché

    Full Text Available A hybrid zone between two species of lizards in the genus Sceloporus (S. cowlesi and S. tristichus on the Mogollon Rim in Arizona provides a unique opportunity to study the processes of lineage divergence and merging. This hybrid zone involves complex interactions between 2 morphologically and ecologically divergent subspecies, 3 chromosomal groups, and 4 mitochondrial DNA (mtDNA clades. The spatial patterns of divergence between morphology, chromosomes and mtDNA are discordant, and determining which of these character types (if any reflects the underlying population-level lineages that are of interest has remained impeded by character conflict. The focus of this study is to estimate the number of populations interacting in the hybrid zone using multi-locus nuclear data, and to then estimate the migration rates and divergence time between the inferred populations. Multi-locus estimates of population structure and gene flow were obtained from 12 anonymous nuclear loci sequenced for 93 specimens of Sceloporus. Population structure estimates support two populations, and this result is robust to changes to the prior probability distribution used in the Bayesian analysis and the use of spatially-explicit or non-spatial models. A coalescent analysis of population divergence suggests that gene flow is high between the two populations, and that the timing of divergence is restricted to the Pleistocene. The hybrid zone is more accurately described as involving two populations belonging to S. tristichus, and the presence of S. cowlesi mtDNA haplotypes in the hybrid zone is an anomaly resulting from mitochondrial introgression.

  2. Current Status and Future Perspective of Nuclear Cardiology

    International Nuclear Information System (INIS)

    Chung, June Key

    2009-01-01

    Coronary artery disease is on the rise over the world. Myocardial perfusion SPECT is a well established technique to detect coronary artery disease and to assess left ventricular function. In addition, it has the unique ability to predict the prognosis of the patients. Moreover, the application of ECG-gated images provided the quantitative data and improved the accuracy. This approach has been proved to be cost-effective and suitable for the emerging economies as well as developed countries. However, the utilization of nuclear cardiology procedures vary widely considering the different countries and region of the world. Korea exits 2-3 times less utilization than Japan, and 20 times than the United States. Recently, with the emerging of new technology, namely cardiac CT, cardiac MR and stress echocardiography, the clinical usefulness of nuclear cardiology has been called in question and its role has been redefined. For the proper promotion of nuclear cardiology, special educations should be conducted since the nuclear cardiology has the contact points between nuclear medicine and cardiology. Several innovations are in horizon which will impact the diagnostic accuracy as well as imaging time and cost savings. Development of new tracers, gamma camera technology and hybrid systems will open the new avenue in cardiac imaging. The future of nuclear cardiology based on molecular imaging is very exciting. The newly defined biologic targets involving atherosclerosis and vascular vulnerability will allow the answers for the key clinical questions. Hybrid techniques including SPECT/CT indicate the direction in which clinical nuclear cardiology may be headed in the immediate future. To what extent nuclear cardiology will be passively absorbed by other modalities, or will actively incorporate other modalities, is up to the present and next generation of nuclear cardiologists

  3. Current Status and Future Perspective of Nuclear Cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Chung, June Key [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2009-06-15

    Coronary artery disease is on the rise over the world. Myocardial perfusion SPECT is a well established technique to detect coronary artery disease and to assess left ventricular function. In addition, it has the unique ability to predict the prognosis of the patients. Moreover, the application of ECG-gated images provided the quantitative data and improved the accuracy. This approach has been proved to be cost-effective and suitable for the emerging economies as well as developed countries. However, the utilization of nuclear cardiology procedures vary widely considering the different countries and region of the world. Korea exits 2-3 times less utilization than Japan, and 20 times than the United States. Recently, with the emerging of new technology, namely cardiac CT, cardiac MR and stress echocardiography, the clinical usefulness of nuclear cardiology has been called in question and its role has been redefined. For the proper promotion of nuclear cardiology, special educations should be conducted since the nuclear cardiology has the contact points between nuclear medicine and cardiology. Several innovations are in horizon which will impact the diagnostic accuracy as well as imaging time and cost savings. Development of new tracers, gamma camera technology and hybrid systems will open the new avenue in cardiac imaging. The future of nuclear cardiology based on molecular imaging is very exciting. The newly defined biologic targets involving atherosclerosis and vascular vulnerability will allow the answers for the key clinical questions. Hybrid techniques including SPECT/CT indicate the direction in which clinical nuclear cardiology may be headed in the immediate future. To what extent nuclear cardiology will be passively absorbed by other modalities, or will actively incorporate other modalities, is up to the present and next generation of nuclear cardiologists.

  4. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    International Nuclear Information System (INIS)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin; Liu, Ke; Shang, Zheng-jun

    2014-01-01

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo

  5. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai [Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong Province (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Song, Yong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Department of Stomatology, Liu Zhou People' s Hospital, Guangxi (China); Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Liu, Ke, E-mail: liuke.1999@aliyun.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China)

    2014-10-15

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.

  6. Ukrainian Hybrid War – Quo Vadis?

    Directory of Open Access Journals (Sweden)

    Rotărescu Carmen

    2015-06-01

    Full Text Available Although it is known for a long time, hybrid war taken place in Ukraine under the umbrella of Russian Federation surprised the whole world and produced the greatest worry for humankind’s fate since the World War II. The political and military analysts appreciate if the World War III does not come will at least follow a long time of a new cold war. Remembering the hybrid war is not declared, can be prolonged in time and the adversary is unknown, thus neither the aggressor state, it is hard to settle which are the countermeasures and how should be act when this clever adversary attacks you using hostile propaganda, to the limit of trick and war perfidy (the first is allowed as method of war, the latter is not, influences the political decision-makers by blackmail, military, economic and energetic deterrence or nuclear bombardments and undergoes subversive, clandestine actions and particularly it is hard to predict their consequences.

  7. Activities in nuclear and high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    High energy and nuclear physics research concerning bubble chamber investigations, European hybrid system ACCMOR, WA 18, PETRA, PEP, VA 4, SING, LENA, LEP 3 and DELPHI experiments is summarized. Experiments with electron beams, and in pions and muons physics, and radiochemistry are reported on.

  8. Evidence of natural selection acting on a polymorphic hybrid incompatibility locus in Mimulus.

    Science.gov (United States)

    Sweigart, Andrea L; Flagel, Lex E

    2015-02-01

    As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci-hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)-to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species. Copyright © 2015 by the Genetics Society of America.

  9. Alterations in messenger RNA and small nuclear RNA metabolism resulting from fluorouracil incorporation

    International Nuclear Information System (INIS)

    Armstrong, R.D.; Cadman, E.C.

    1985-01-01

    Studies were completed to examine the effect of 5-fluorouracil (FUra) incorporation on messenger RNA (mRNA) and small molecular weight nuclear RNA (SnRNA) metabolism. Studies of mRNA were completed using cDNA-mRNA hybridization methods to specifically examine dihydrofolate reductase (DHFR) mRNA. C 3 -L5178Y murine leukemia cells which are gene-amplified for DHFR, were exposed to FUra for 6, 12 or 24 hr, and the nuclear and cytoplasmic levels of DHFR-mRNA determined by hybridization with 32 P-DHFR-cDNA. FUra produced a dose-dependent increase in nuclear DHFR-mRNA levels, while total cytoplasmic DHFR-mRNA levels appeared to be unchanged. To examine only mRNA synthesized during FUra exposure, cells were also treated concurrently with [ 3 H] cytidine, and the [ 3 H]mRNA-cDNA hybrids measured following S 1 -nuclease treatment. FUra produced a concentration-dependent increase in nascent nuclear DHFR-mRNA levels, and a decrease in nascent cytoplasmic DHFR-mRNAs levels. These results suggest that FUra produces either an inhibition of mRNA processing, or an inhibition of nuclear-cytoplasmic transport. Preliminary experiments to examine ATP-dependent mRNA transport were completed with isolated nuclei from cells treated with FUra for 1 or 24 hr and then pulse-labeled for 1 hr with [ 3 H] cytidine. The results demonstrate a FUra-concentration and time-dependent inhibition of ATP-mediated mRNA efflux

  10. Conceptual design of a fusion-fission hybrid reactor for transmutation of high level nuclear waste

    International Nuclear Information System (INIS)

    Qiu, L.J.; Wu, Y.C.; Yang, Y.W.; Wu, Y.; Luan, G.S.; Xu, Q.; Guo, Z.J.; Xiao, B.J.

    1994-01-01

    To assess the feasibility of the transmutation of long-lived radioactive waste using fusion-fission hybrid reactors, we are studying all the possible types of blanket, including a comparison of the thermal and fast neutron spectrum blankets. Conceptual designs of a small tokamak hybrid blanket with small inventory of actinides and fission products are presented. The small inventory of wastes makes the system safer. The small hybrid reactor system based on a fusion core with experimental parameters to be realized in the near future can effectively transmute actinides and fission products at a neutron wall loading of 1MWm -2 . An innovative energy system is also presented, including a fusion driver, fuel breeder, high level waste transmuter, fission reactor and so on. An optimal combination of all types of reactor is proposed in the system. ((orig.))

  11. Feasibility analysis of nuclear–coal hybrid energy systems from the perspective of low-carbon development

    International Nuclear Information System (INIS)

    Chen, QianQian; Tang, ZhiYong; Lei, Yang; Sun, YuHan; Jiang, MianHeng

    2015-01-01

    Highlights: • We report a nuclear–coal hybrid energy systems. • We address the high-carbon energy resource integrating with a low-carbon energy resource. • We establish a systematic techno-economic model. • Improving both energy and carbon efficiency. • A significantly lower CO 2 emission intensity is achieved by the system. - Abstract: Global energy consumption is expected to increase significantly due to the growth of the economy and population. The utilization of fossil resource, especially coal, will likely be constrained by carbon dioxide emissions, known to be the principal contributor to climate change. Therefore, the world is facing the challenge of how to utilize fossil resource without a large carbon footprint. In the present work, a nuclear–coal hybrid energy system is proposed as a potential solution to the aforementioned challenge. A high-carbon energy such as coal is integrated effectively with a low-carbon energy such as nuclear in a flexible and optimized manner, which is able to generate the chemicals and fuels with low carbon dioxide emissions. The nuclear–coal hybrid energy system is presented in this paper for the detailed analysis. In this case, the carbon resource required by the fuel syntheses and chemical production processes is mainly provided by coal while the hydrogen resource is derived from nuclear energy. Such integration can not only lead to a good balance between carbon and hydrogen, but also improve both energy and carbon efficiencies. More importantly, a significantly lower CO 2 emission intensity is achieved. A systematic techno-economic model is established, and a scenario analysis is carried out on the hybrid system to assess the economic competitiveness based on the considerations of various types of externalities. It is found that with the rising carbon tax and coal price as well as the decreasing cost of nuclear energy, the hybrid energy system will become more and more economically competitive with the

  12. Three-dimensional Monte Carlo calculation of some nuclear parameters

    Science.gov (United States)

    Günay, Mehtap; Şeker, Gökmen

    2017-09-01

    In this study, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa Ferritic steel structural material and the molten salt-heavy metal mixtures 99-95% Li20Sn80 + 1-5% RG-Pu, 99-95% Li20Sn80 + 1-5% RG-PuF4, and 99-95% Li20Sn80 + 1-5% RG-PuO2, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion-fission hybrid reactor system. Beryllium (Be) zone with the width of 3 cm was used for the neutron multiplication between the liquid first wall and blanket. This study analyzes the nuclear parameters such as tritium breeding ratio (TBR), energy multiplication factor (M), heat deposition rate, fission reaction rate in liquid first wall, blanket and shield zones and investigates effects of reactor grade Pu content in the designed system on these nuclear parameters. Three-dimensional analyses were performed by using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

  13. Three-dimensional Monte Carlo calculation of some nuclear parameters

    Directory of Open Access Journals (Sweden)

    Günay Mehtap

    2017-01-01

    Full Text Available In this study, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa Ferritic steel structural material and the molten salt-heavy metal mixtures 99–95% Li20Sn80 + 1-5% RG-Pu, 99–95% Li20Sn80 + 1-5% RG-PuF4, and 99–95% Li20Sn80 + 1-5% RG-PuO2, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion–fission hybrid reactor system. Beryllium (Be zone with the width of 3 cm was used for the neutron multiplication between the liquid first wall and blanket. This study analyzes the nuclear parameters such as tritium breeding ratio (TBR, energy multiplication factor (M, heat deposition rate, fission reaction rate in liquid first wall, blanket and shield zones and investigates effects of reactor grade Pu content in the designed system on these nuclear parameters. Three-dimensional analyses were performed by using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

  14. Recent applications of nuclear medicine in diagnostics (I part

    Directory of Open Access Journals (Sweden)

    Giorgio Treglia

    2013-04-01

    Full Text Available Introduction: Aim of this review is to describe the recent applications of nuclear medicine techniques in diagnostics, particularly in oncology. Materials and methods: We reviewed scientific literature data searching for the current role of tomographic nuclear medicine techniques (SPECTand PET in oncology and summarized the main applications of these techniques. Results: Nuclear medicine techniques have a key role in oncology allowing early diagnosis of many tumours, an accurate staging of disease and evalutation of treatment response. Hybrid SPECT/CT and PET/CT imaging systems now provide metabolic and functional information from SPECTor PETcombined with the high spatial resolution and anatomic information of CT. The most frequent applications of SPECT/CT in oncology concern thyroid tumours, neuroendocrine tumours, bone metastases and lymph node mapping. Furthermore the evaluation of many tumours may benefit from PET/CT imaging. Discussion: The recent development of new radiopharmaceuticals and the growth of hybrid tomographic devices, such as SPECT/CT and PET/CT, now permits molecular imaging of biologic processes at the cellular level to improve both the diagnosis and treatment of many tumours.

  15. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications.

    Science.gov (United States)

    Cui, Chenghua; Shu, Wei; Li, Peining

    2016-01-01

    Fluorescence in situ hybridization (FISH) is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes, and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains, and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbias and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH) allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH) using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells DNA and RNA FISH

  16. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications

    Directory of Open Access Journals (Sweden)

    Chenghua Cui

    2016-09-01

    Full Text Available Fluorescence in situ hybridization (FISH is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbials and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells

  17. Natural hybridization and introgression between Ligularia cymbulifera and L. tongolensis (Asteraceae, Senecioneae) in four different locations.

    Science.gov (United States)

    Yu, Jiaojun; Kuroda, Chiaki; Gong, Xun

    2014-01-01

    Natural hybridization has been considered to represent an important factor influencing the high diversity of the genus Ligularia Cass. in the Hengduan Mountains, China. Natural hybridization has been confirmed to occur frequently in Ligularia. To date, however, it has been demonstrated only within a single population. In this paper, we present evidence of natural hybridization in Ligularia from four different locations. The internal transcribed spacer (ITS) region of the nuclear ribosomal DNA and three chloroplast intergenic spacers (trnK-rps16, trnL-rpl32 and trnQ-5'rps16) of 149 accessions of putative hybrids and their putative parents (L. cymbulifera and L. tongolensis) were analyzed for evidence of hybridization. The ITS data clearly distinguished two putative parental species and sympatric L. vellerea and supported the hypothesis that those morphological intermediates were products of natural hybridization between L. cymbulifera and L. tongolensis. Moreover, several identified morphological parents were actual introgressed products. Because of hybridization and introgression, chloroplast DNA sequences generated a poorly resolved network. The present results indicate that varying degrees of hybridization and introgression occur differently depending on the habitat context. We conclude that gene flow caused by natural hybridization in Ligularia indeed plays an important role in the species diversity.

  18. Hybrid district heating system with heat supply from nuclear source

    International Nuclear Information System (INIS)

    Havelka, Z.; Petrovsky, I.

    1987-01-01

    Several designs are described of heat supply from large remote power sources (e.g., WWER-1000 nuclear power plants with a 1000 MW turbine) to localities where mainly steam distribution networks have been built but only some or none networks for hot water distribution. The benefits of the designs stem from the fact that they do not require the conversion of the local steam distribution system to a hot water system. They are based on heat supply from the nuclear power plant to the consumer area in hot water of a temperature of 150 degC to 200 degC. Part of the hot water heat will be used for the production of low-pressure steam which will be compressed using heat pumps (steam compressors) to achieve the desired steam distribution network specifications. Water of lower temperature can be used in the hot water network. The hot water feeder forms an automatic pressure safety barrier in heat supply of heating or technological steam from a nuclear installation. (Z.M.). 5 figs., 9 refs

  19. Nuclear and partonic dynamics in high energy elastic nucleus-nucleus scattering

    International Nuclear Information System (INIS)

    Malecki, A.

    1991-01-01

    A hybrid description of diffraction which combines a geometrical modelling of multiple scattering with many-channel effects resulting from intrinsic dynamics on nuclear and sub-nuclear level is presented. The application to the 4 He- 4 He elastic scattering is very satisfactory. Our analysis suggests that at large momentum transfers the parton constituents of nucleons immersed in nuclei are deconfined. (author)

  20. Source driven breeding fission power reactors and the nuclear energy strategy

    International Nuclear Information System (INIS)

    Greenspan, E.

    The nuclear energy economy is facing severe difficulties associated with low utilization of uranium resources, safety, non-proliferation and environmental issues. Energy policy makers face the dilemma: commercialize LMFBRs immediately with the risk of negative economical, proliferation or other consequences, or continue with R and D programs that will provide the information needed for sounder decisions, but now taking the risk of running out of economically exploitable uranium ore resources. The development of hybrid reactors can provide an assurance against the latter risk and offers many interesting new options for the nuclear energy strategy. Being based on the technology of LWRs and HWRs, Light Water Hybrid Reactors (LWHR) provide a most natural link between the fission reactor technology of the present and the fusion power technology of the future. The investment in their development in excess of that required for the development of fusion power reactors is expected to be relatively small, thus making the development of LWHRs potentially a high benefit-to-cost ratio program. It is recommended that the fission and fusion communities will cooperate in hybrids R and D programs aimed at assessing the technological and economical viability of hybrid reactors as reliably and soon as possible. (author)

  1. Energy for life

    International Nuclear Information System (INIS)

    Rosenbloom, S.

    2009-01-01

    'Full text:' The production of liquid fuels, whether based on petroleum or renewable feedstock requires heat, electricity, water and possibly hydrogen. Nuclear energy can provide all of these. Nuclear energy need not be viewed as competing with fossil or renewable sources. On the contrary, nuclear energy can be coupled to renewable and fossil fuel production thereby deferring huge amounts of fossil fuel use and CO 2 emissions from these other industries in converting feedstocks into liquid fuels. This maximizes the liquid fuel production per ton of feedstock. There is some experience in this option. Although in the U.S. and Canada nuclear energy is primarily used for producing electricity, worldwide over 80 nuclear reactors have been used for non electricity uses such as industrial process energy, district heating and desalting sea water. Advanced oil recovery methods (such as tar sands) currently use large amounts of natural gas. Nuclear process heat could replace this natural gas. Nuclear process heat would also be applicable to future highly advanced techniques such as shale oil production and deep geological heating (underground refining) to release oil trapped by capillary action in depleted oil fields. Substantial research funding is now being directed to biologically based methods of producing fuels such as bio based diesel, gasoline, advanced bio ethanol and even hydrogen production. Can waste energy be utilized for bio based fuel production? About 2/3 of the energy produced by nuclear energy is normally rejected to the environment at about 120 deg F. An interesting challenge would be to use the vast resources of low temperature waste energy for driving bio based processes especially processes such as algae based methods that are not planned for northern climates like Canada. Meeting the future challenges of large scale renewable fuel production will involve large amounts of transformational energy that could be met with the hybrid energy systems

  2. First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Nynke S. van den [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); Simon, Herve [Eurorad S.A., Eckbolsheim (France); Kleinjan, Gijs H. [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Engelen, Thijs [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands); Bunschoten, Anton; Welling, Mick M. [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); Tijink, Bernard M. [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands); Horenblas, Simon [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); Chambron, Jacques [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Leeuwen, Fijs W.B. van [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands)

    2015-10-15

    The clinical introduction of the hybrid tracer indocyanine green (ICG)-{sup 99m}Tc-nanocolloid, composed of a radioactive and a near-infrared (NIR) fluorescence component, has created the need for surgical (imaging) modalities that allow for simultaneous detection of both signals. This study describes the first-in-human use of a prototype opto-nuclear probe during sentinel node (SN) biopsy using ICG-{sup 99m}Tc-nanocolloid. To allow for fluorescence tracing, a derivative of the conventional gamma probe technology was generated in which two optical fibers were integrated to allow for excitation (785 nm) and emission signal collection (> 810 nm). The ability of this opto-nuclear probe to detect the fluorescence signal of the hybrid tracer ICG-{sup 99m}Tc-nanocolloid was firstly determined ex vivo in (non)SNs samples obtained from 41 patients who underwent hybrid tracer-based SN biopsy in the head and neck or urogenital area. In an in vivo proof-of-concept study in nine of these 41 patients, SNs were localized using combined gamma and fluorescence tracing with the opto-nuclear probe. Fluorescence tracing was performed in a similar manner as gamma tracing and under ambient light conditions. Ex vivo, the gamma tracing option of the opto-nuclear probe correctly identified the SN in all 150 evaluated (non)SN samples. Ex vivo fluorescence tracing in the low-sensitivity mode correctly identified 71.7 % of the samples. This increased to 98.9 % when fluorescence tracing was performed in the high-sensitivity mode. In vivo fluorescence tracing (high-sensitivity mode) accurately identified the SNs in all nine patients (20 SNs evaluated; 100 %). This study demonstrates the first-in-human evaluation of a hybrid modality capable of detecting both gamma and fluorescence signals during a surgical procedure. Fluorescence tracing could be performed in ambient light. (orig.)

  3. A hybrid approach to quantify software reliability in nuclear safety systems

    International Nuclear Information System (INIS)

    Arun Babu, P.; Senthil Kumar, C.; Murali, N.

    2012-01-01

    Highlights: ► A novel method to quantify software reliability using software verification and mutation testing in nuclear safety systems. ► Contributing factors that influence software reliability estimate. ► Approach to help regulators verify the reliability of safety critical software system during software licensing process. -- Abstract: Technological advancements have led to the use of computer based systems in safety critical applications. As computer based systems are being introduced in nuclear power plants, effective and efficient methods are needed to ensure dependability and compliance to high reliability requirements of systems important to safety. Even after several years of research, quantification of software reliability remains controversial and unresolved issue. Also, existing approaches have assumptions and limitations, which are not acceptable for safety applications. This paper proposes a theoretical approach combining software verification and mutation testing to quantify the software reliability in nuclear safety systems. The theoretical results obtained suggest that the software reliability depends on three factors: the test adequacy, the amount of software verification carried out and the reusability of verified code in the software. The proposed approach may help regulators in licensing computer based safety systems in nuclear reactors.

  4. NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids.

    Science.gov (United States)

    Leiss, Kirsten A; Choi, Young H; Abdel-Farid, Ibrahim B; Verpoorte, Robert; Klinkhamer, Peter G L

    2009-02-01

    Western flower thrips (Frankliniella occidentalis) has become a key insect pest of agricultural and horticultural crops worldwide. Little is known about host plant resistance to thrips. In this study, we investigated thrips resistance in F (2) hybrids of Senecio jacobaea and Senecio aquaticus. We identified thrips-resistant hybrids applying three different bioassays. Subsequently, we compared the metabolomic profiles of these hybrids applying nuclear magnetic resonance spectroscopy (NMR). The new developments of NMR facilitate a wide range coverage of the metabolome. This makes NMR especially suitable if there is no a priori knowledge of the compounds related to herbivore resistance and allows a holistic approach analyzing different chemical compounds simultaneously. We show that the metabolomes of thrips-resistant and -susceptible hybrids differed considerably. Thrips-resistant hybrids contained higher amounts of the pyrrolizidine alkaloids (PA), jacobine, and jaconine, especially in younger leaves. Also, a flavanoid, kaempferol glucoside, accumulated in the resistant plants. Both PAs and kaempferol are known for their inhibitory effect on herbivores. In resistant and susceptible F (2) hybrids, young leaves showed less thrips damage than old leaves. Consistent with the optimal plant defense theory, young leaves contained increased levels of primary metabolites such as sucrose, raffinose, and stachyose, but also accumulated jacaranone as a secondary plant defense compound. Our results prove NMR as a promising tool to identify different metabolites involved in herbivore resistance. It constitutes a significant advance in the study of plant-insect relationships, providing key information on the implementation of herbivore resistance breeding strategies in plants.

  5. Radiation stable, hybrid, chemical vapor infiltration/preceramic polymer joining of silicon carbide components

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, Hesham E., E-mail: hesham.khalifa@ga.com [General Atomics, 3550 General Atomics Ct., San Diego 92121, CA (United States); Koyanagi, Takaaki [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge 37831, TN (United States); Jacobsen, George M.; Deck, Christian P.; Back, Christina A. [General Atomics, 3550 General Atomics Ct., San Diego 92121, CA (United States)

    2017-04-15

    This paper reports on a nuclear-grade joining material for bonding of silicon carbide-based components. The joint material is fabricated via a hybrid preceramic polymer, chemical vapor infiltration process. The joint is comprised entirely of β-SiC and results in excellent mechanical and permeability performance. The joint strength, composition, and microstructure have been characterized before and after irradiation to 4.5 dpa at 730 °C in the High Flux Isotope Reactor. The hybrid preceramic polymer-chemical vapor infiltrated joint exhibited complete retention of shear strength and no evidence of microstructural evolution or damage was detected following irradiation.

  6. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  7. IAEA technical meeting on integrating analog and digital instrumentation and control systems in hybrid main control rooms at nuclear power plants. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    that digital technology offers are needed to increase cost-effective electricity production. As an integral part of the I and C modernization program at a nuclear power plant, the control room and other human-system interfaces (HSIs) will also be modernized. To support safe and effective operation, it is critical to specify, design, implement, operate, and maintain, as well as train for, the control room and HSI changes to take advantage of human cognitive processing abilities. This consideration of human factors is essential to increase performance and to reduce the likelihood of human errors. The plant I and C and HSI modifications can affect personnel in various ways. They can impact the role of personnel, the tasks to be performed, the way tasks are performed, and the knowledge, skills and training required of personnel. As part of modernization, HSIs are becoming more computer-based, incorporating features such as soft controls and computerized procedures, touch-screen interfaces, sit-down workstations, and large-screen overview displays. As computer-based technologies are integrated into control rooms that were largely based on conventional technology, hybrid control rooms are created. The potential benefits of implementing digital technology include more efficient operations and maintenance, leading to improved power plant availability and safety through the avoidance of transients, forced outages, and unnecessary shutdowns. The potential benefits also include increased efficiency and power output as well as reduced operating costs. New digital systems provide the opportunity to give personnel information they did not have with conventional systems. The importance of these issues has led the IAEA to organize (in conjunction with AECL) an international forum for presentations and discussions on the potential benefits and challenges related to the integration of Analog and Digital Instrumentation and Control Systems in Hybrid Main Control Rooms. Many of these

  8. Preparation and Physicochemical Properties of Functionalized Silica/Octamethacryl-Silsesquioxane Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Karolina Szwarc-Rzepka

    2013-01-01

    Full Text Available Alkoxysilane-grafted silica/polyhedral oligomeric silsesquioxane with methacryl substituents (SiO2/silane/POSS hybrid material was synthesized according to hydrolyzation and condensation reactions in the so-called “bifunctionalization process.” It is a new attractive system because of its physicochemical, especially thermal and structural, properties. This innovative method of preparation as well as specific physicochemical and useful properties determine the potential applications of such products in many industries. The structure and physicochemical parameters of obtained hybrid systems were characterized using infrared spectroscopy (FTIR, 13C and 29Si solid-state nuclear magnetic resonance (CP MAS NMR, and thermal analysis. The mechanism of bifunctionalization reaction was proposed. The chemical immobilization of silane coupling agent and Methacryl POSS onto silica support surface was noted during the study. Those changes caused a significant increase in the hydrophobic character of fillers obtained. Moreover, changes in thermal stability of SiO2/silane/POSS hybrid systems in comparison to pure POSS modifier were also observed.

  9. FAULT PROPAGATION AND EFFECTS ANALYSIS FOR DESIGNING AN ONLINE MONITORING SYSTEM FOR THE SECONDARY LOOP OF A NUCLEAR POWER PLANT PART OF A HYBRID ENERGY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huijuan; Diao, Xiaoxu; Li, Boyuan; Smidts, Carol; Bragg-Sitton, Shannon

    2017-03-01

    This paper studies the propagation and effects of faults of critical components that pertain to the secondary loop of a nuclear power plant found in Nuclear Hybrid Energy Systems (NHES). This information is used to design an on-line monitoring (OLM) system which is capable of detecting and forecasting faults that are likely to occur during NHES operation. In this research, the causes, features, and effects of possible faults are investigated by simulating the propagation of faults in the secondary loop. The simulation is accomplished by using the Integrated System Failure Analysis (ISFA). ISFA is used for analyzing hardware and software faults during the conceptual design phase. In this paper, the models of system components required by ISFA are initially constructed. Then, the fault propagation analysis is implemented, which is conducted under the bounds set by acceptance criteria derived from the design of an OLM system. The result of the fault simulation is utilized to build a database for fault detection and diagnosis, provide preventive measures, and propose an optimization plan for the OLM system.

  10. Development of a coordinated control system for BWR nuclear power plant and HVDC transmission system

    International Nuclear Information System (INIS)

    Ishikawa, M.; Hara, T.; Hirayama, K.; Sekiya, K.

    1986-01-01

    The combined use of dc and ac transmissions or so-called hybrid transmission was under study, employing both dc and ac systems to enable stable transmission of 10,000 MW of electric power generated by the BWR nuclear plant, scheduled to be built about 800 km away from the center of the load. It was thus necessary to develop a hybrid power transmission control system, the hybrid power transmission system consisting of a high voltage dc transmission system (HVDC) and an ultrahigh ac transmission system (UHVAC). It was also necessary to develop a control system for HVDC transmission which protects the BWR nuclear power plant from being influenced by any change in transmission mode that occurs as a result of faults on the UHVAC side when the entire power of the BWR plant is being sent by the HVDC transmission. This paper clarifies the requirements for the HVDC system control during hybrid transmission and also during dc transmission. The control method that satisfies these requirements was studied to develop a control algorithm

  11. Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake Tanganyika – the result of repeated introgressive hybridization

    Directory of Open Access Journals (Sweden)

    Blanc Michel

    2007-01-01

    Full Text Available Abstract Background The tribe Lamprologini is the major substrate breeding lineage of Lake Tanganyika's cichlid species flock. Among several different life history strategies found in lamprologines, the adaptation to live and breed in empty gastropod shells is probably the most peculiar. Although shell-breeding arose several times in the evolutionary history of the lamprologines, all obligatory and most facultative shell-breeders belong to the so called "ossified group", a monophyletic lineage within the lamprologine cichlids. Since their distinctive life style enables these species to live and breed in closest vicinity, we hypothesized that these cichlids might be particularly prone to accidental hybridization, and that introgression might have affected the evolutionary history of this cichlid lineage. Results Our analyses revealed discrepancies between phylogenetic hypotheses based on mitochondrial and nuclear (AFLP data. While the nuclear phylogeny was congruent with morphological, behavioral and ecological characteristics, several species – usually highly specialized shell-breeders – were placed at contradicting positions in the mitochondrial phylogeny. The discordant phylogenies strongly suggest repeated incidents of introgressive hybridization between several distantly related shell-breeding species, which reticulated the phylogeny of this group of cichlids. Long interior branches and high bootstrap support for many interior nodes in the mitochondrial phylogeny argue against a major effect of ancient incomplete lineage sorting on the phylogenetic reconstruction. Moreover, we provide morphological and genetic (mtDNA and microsatellites evidence for ongoing hybridization among distantly related shell-breeders. In these cases, the territorial males of the inferred paternal species are too large to enter the shells of their mate, such that they have to release their sperm over the entrance of the shell to fertilize the eggs. With sperm

  12. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  13. Ergonomic requirements on computer-based information- and handling engineering in nuclear power plants

    International Nuclear Information System (INIS)

    Fassmann, W.

    2002-01-01

    This project provides regulatory authorities with a set of criteria for evaluating hybrid man-machine interfaces in nuclear power plant control rooms from a human factors point of view. Such standards are necessary for two reasons: (1) More and more computerised information and control systems have been and will be introduced in nuclear power plant control rooms. One possible result of this trend will be the creation of hybrid man machine interfaces which will provide both conventional and computer-based display and control devices. (2) Available rules and regulations do not contain detailed requirements on how to integrate both types of interface in such a way that plant operation by means of hybrid interfaces will be performed at least as reliably and safely as by means of conventional ones. To fill this gap, criteria and methods were developed which support practical checks of requirements to be applied to hybrid control rooms. This approach is based on state of the art methods and criteria in ergonomics. It makes it possible to analyse and to describe personnel's actions in a consistent and structured way in order to provide the information which is necessary for evaluating human reliability of task performance. Reliability can be evaluated with respect to - accuracy of required information on displays, - networking of tasks, - possibilities of interrupting and cancelling measures which have already been initiated, - possibility to carry out required manuel actions, - level of mental work-strain, - workload level, - probability of erroneous actions. This method is part of a catalogue of recommendations for evaluating hybrid nuclear power plant control rooms. The catalogue also contains recommendations for the design of computerised parts of the man-machine-interface. Application of these design recommendations will help create favourable conditions for an acceptable level of work-strain and for reliable task performance. (orig.) [de

  14. Genomic markers reveal introgressive hybridization in the Indo-West Pacific mangroves: a case study.

    Directory of Open Access Journals (Sweden)

    Mei Sun

    2011-05-01

    Full Text Available Biodiversity of mangrove ecosystems is difficult to assess, at least partly due to lack of genetic verification of morphology-based documentation of species. Natural hybridization, on the one hand, plays an important role in evolution as a source of novel gene combinations and a mechanism of speciation. However, on the other hand, recurrent introgression allows gene flow between species and could reverse the process of genetic differentiation among populations required for speciation. To understand the dynamic evolutionary consequences of hybridization, this study examines genomic structure of hybrids and parental species at the population level. In the Indo-West Pacific, Bruguiera is one of the dominant mangrove genera and species ranges overlap extensively with one another. Morphological intermediates between sympatric Bruguiera gymnorrhiza and Bruguiera sexangula have been reported as a variety of B. sexangula or a new hybrid species, B. × rhynchopetala. However, the direction of hybridization and extent of introgression are unclear. A large number of species-specific inter-simple sequence repeat (ISSR markers were found in B. gymnorrhiza and B. sexangula, and the additive ISSR profiling of B. × rhynchopetala ascertained its hybrid status and identified its parental origin. The varying degree of scatterness among hybrid individuals in Principal Coordinate Analysis and results from NewHybrids analysis indicate that B. × rhynchopetala comprises different generations of introgressants in addition to F(1s. High genetic relatedness between B. × rhynchopetala and B. gymnorrhiza based on nuclear and chloroplast sequences suggests preferential hybrid backcrosses to B. gymnorrhiza. We conclude that B. × rhynchopetala has not evolved into an incipient hybrid species, and its persistence can be explained by recurrent hybridization and introgression. Genomic data provide insights into the hybridization dynamics of mangrove plants. Such information

  15. Condensate cleaning systems

    International Nuclear Information System (INIS)

    Yamamoto, Michiyoshi; Oosumi, Katsumi; Takashima, Yoshie; Mitani, Shinji.

    1982-01-01

    Purpose: To decrease the frequency for the backwash and regeneration operations due to the increase in the differential pressure resulted from claddings captured in a mixed floor type desalter, and decrease the amount of radioactive liquid wastes of claddings from the condensate systems by removing claddings with electromagnetic filters. Constitution: In an existent plant, a valves is disposed between a condensate pump and a mixed floor type desalter. A pipeway is branched from a condensate pipe between the condensate pipe and the valve, through which condensates are transferred by a pump to an electromagnetic filter such as of a high gradient type electromagntic filter to remove claddings, then returned to a condensate pipe between the valve and the mixed floor type desalter and, thereafter, are removed with ionic components in the mixed floor type desalter and fed to the reactor. (Yoshino, Y.)

  16. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  17. Overcoming the species hybridization barrier by ploidy manipulation in the genus Oryza.

    Science.gov (United States)

    Tonosaki, Kaoru; Sekine, Daisuke; Ohnishi, Takayuki; Ono, Akemi; Furuumi, Hiroyasu; Kurata, Nori; Kinoshita, Tetsu

    2018-02-01

    In most eudicot and monocot species, interspecific and interploidy crosses generally display abnormalities in the endosperm that are the major cause of a post-zygotic hybridization barrier. In some eudicot species, however, this type of hybridization barrier can be overcome by the manipulation of ploidy levels of one parental species, suggesting that the molecular mechanisms underlying the species hybridization barrier can be circumvented by genome dosage. We previously demonstrated that endosperm barriers in interspecific and interploidy crosses in the genus Oryza involve overlapping but different mechanisms. This result contrasts with those in the genus Arabidopsis, which shows similar outcomes in both interploidy and interspecific crosses. Therefore, we postulated that an exploration of pathways for overcoming the species hybridization barrier in Oryza endosperm, by manipulating the ploidy levels in one parental species, might provide novel insights into molecular mechanisms. We showed that fertile hybrid seeds could be produced by an interspecific cross of female tetraploid Oryza sativa and male diploid Oryza longistaminata. Although the rate of nuclear divisions did not return to normal levels in the hybrid endosperm, the timing of cellularization, nucellus degeneration and the accumulation of storage products were close to normal levels. In addition, the expression patterns of the imprinted gene MADS87 and YUCCA11 were changed when the species barrier was overcome. These results suggest that the regulatory machinery for developmental transitions and imprinted gene expression are likely to play a central role in overcoming species hybridization barriers by genome dosage in the genus Oryza. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  18. Genetic, morphological, and spectral characterization of relictual Niobrara River hybrid aspens (Populus × smithii).

    Science.gov (United States)

    Deacon, Nicholas John; Grossman, Jake Joseph; Schweiger, Anna Katharina; Armour, Isabella; Cavender-Bares, Jeannine

    2017-12-01

    Aspen groves along the Niobrara River in Nebraska have long been a biogeographic curiosity due to morphological differences from nearby remnant Populus tremuloides populations. Pleistocene hybridization between P. tremuloides and P. grandidentata has been proposed, but the nearest P. grandidentata populations are currently several hundred kilometers east. We tested the hybrid-origin hypothesis using genetic data and characterized putative hybrids phenotypically. We compared nuclear microsatellite loci and chloroplast sequences of Niobrara River aspens to their putative parental species. Parental species and putative hybrids were also grown in a common garden for phenotypic comparison. On the common garden plants, we measured leaf morphological traits and leaf-level spectral reflectance profiles, from which chemical traits were derived. The genetic composition of the three unique Niobrara aspen genotypes is consistent with the hybridization hypothesis and with maternal chloroplast inheritance from P. grandidentata . Leaf margin dentition and abaxial pubescence differentiated taxa, with the hybrids showing intermediate values. Spectral profiles allowed statistical separation of taxa in short-wave infrared wavelengths, with hybrids showing intermediate values, indicating that traits associated with internal structure of leaves and water absorption may vary among taxa. However, reflectance values in the visible region did not differentiate taxa, indicating that traits related to pigments are not differentiated. Both genetic and phenotypic results support the hypothesis of a hybrid origin for these genetically unique aspens. However, low genetic diversity and ongoing ecological and climatic threats to the hybrid taxon present a challenge for conservation of these relictual boreal communities. © 2017 Botanical Society of America.

  19. The future of nuclear medicine; El futuro de la medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Carrera, J. L.

    2003-07-01

    Nuclear Medicine (NM) is dedicated to medical applications of molecules labeled with radionuclides. The NM diagnostic images can surpass or complement other diagnostic imaging techniques in some clinical situations. The clinical usefulness of Positron Emission Tomography is more and more evident, especially in Oncology. PET-TAC and PET{sub N}MR hybrid images after new chances in diagnosis and Radiotherapy planning and new relations between the radiological specialties. Radio guided surgery and radionuclide therapy are other development techniques of the NM. (Author) 11 refs.

  20. Hitler's bomb: the secret story of Germans' attempts to get the nuclear weapon

    International Nuclear Information System (INIS)

    Karlsch, Rainer

    2007-01-01

    In this historical book, the author claims to have evidence concerning the development and testing of a possible 'nuclear weapon' by Nazi Germany in 1945. The 'weapon' in question is not alleged to be a standard nuclear weapon powered by nuclear fission, but something closer to either a radiological weapon (a so-called 'dirty bomb') or a hybrid-nuclear fusion weapon. Its new evidence is concerned primarily with the parts of the German nuclear energy project (an attempted clandestine scientific effort led by Germany to develop and produce atomic weapons during World War II) under Kurt Diebner, a German nuclear physicist who directed and administrated the project

  1. Hybride textuelle Strukturen und hybride textuelle Einheiten. Ein ...

    African Journals Online (AJOL)

    carrying set of all hybrid hierarchical structures are element-heterogeneous whilst the structure- carrying set of all ... grams of hierarchical hybrid article structures, the nodes for those text segments that establish the hybrid status of .... der; d ∈ ArtA ⊣ G|WAr (= Artikelangabe, anhand derer das Genus (= G) und zugleich die ...

  2. Fusion-fission hybrid as an alternative to the fast breeder reactor

    International Nuclear Information System (INIS)

    Barrett, R.J.; Hardie, R.W.

    1980-09-01

    This report compares the fusion-fission hybrid on the plutonium cycle with the classical fast breeder reactor (FBR) cycle as a long-term nuclear energy source. For the purpose of comparison, the current light-water reactor once-through (LWR-OT) cycle was also analyzed. The methods and models used in this study were developed for use in a comparative analysis of conventional nuclear fuel cycles. Assessment areas considered in this study include economics, energy balance, proliferation resistance, technological status, public safety, and commercial viability. In every case the characteristics of all fuel cycle facilities were accounted for, rather than just those of the reactor

  3. Development and assessment of the CONTAIN hybrid flow solver

    International Nuclear Information System (INIS)

    Murata, K.K.; Stamps, D.W.

    1996-11-01

    A new gravitational head formulation for the treatment of stratified conditions has been developed for CONTAIN 1.2, a control volume code used primarily for the analyses of postulated accidents in nuclear power plants. The new CONTAIN formulation of gravitational heads, termed the hybrid formulation, is described. This method of calculating stratified conditions is compared with the old, average-density formulation used in code versions prior to CONTAIN 1.2. Both formulations are assessed in this report with experimental data from three large-scale experiments in which stratified conditions formed by injection of a buoyant gas were observed. In general, the hybrid formulation gives a substantially higher degree of stratification than the old formulation. For stable, fully developed stratifications, the hybrid formulation also gives much better agreement with the measured degree of stratification than the old formulation. In addition, the predicted degree of stratification is robust and not sensitive to nodalization, provided a set of nodalization guidelines are followed. However, for stratification behavior controlled by special physics not modeled in CONTAIN, such as momentum convection, plume entrainment, or bulk molecular diffusion, one should not expect good agreement with experiment unless special measures to accommodate the missing physics are taken

  4. Nuclear reprogramming of somatic nucleus hybridized with embryonic stem cells by electrofusion.

    Science.gov (United States)

    Tada, Masako; Tada, Takashi

    2006-01-01

    Cell fusion is a powerful tool for understanding the molecular mechanisms of epigenetic reprogramming. In hybrid cells of somatic cells and pluripotential stem cells, including embryonic stem (ES) and embryonic germ cells, somatic nuclei acquire pluripotential competence. ES and embryonic germ cells retain intrinsic trans activity to induce epigenetic reprogramming. For generating hybrid cells, we have used the technique of electrofusion. Electrofusion is a highly effective, reproducible, and biomedically safe in vitro system. For successful cell fusion, two sequential steps of electric pulse stimulation are required for the alignment (pearl chain formation) of two different types of cells between electrodes in response to alternating current stimulation and for the fusion of cytoplasmic membranes by direct current stimulation. Optimal conditions for electrofusion with a pulse generator are introduced for ES and somatic cell fusion. Topics in the field of stem cell research include the successful production of cloned animals via the epigenetic reprogramming of somatic cells and contribution of spontaneous cell fusion to generating intrinsic plasticity of tissue stem cells. Cell fusion technology may make important contributions to the fields of epigenetic reprogramming and regenerative medicine.

  5. Nuclear propulsion for the space exploration initiative

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1991-01-01

    President Bush's speech of July 20, 1989, outlining a goal to go back to the moon and then Mars initiated the Space Exploration Initiative (SEI). The US Department of Defense (DOD), US Department of Energy (DOE), and NASA have been working together in the planning necessary to initiate a program to develop a nuclear propulsion system. Applications of nuclear technology for in-space transfer of personnel and cargo between Earth orbit and lunar or Martian orbit are being considered as alternatives to chemical propulsion systems. Mission and system concept studies conducted over the past 30 yr have consistently indicated that use of nuclear technology can substantially reduce in-space propellant requirements. A variety of nuclear technology options are currently being studied, including nuclear thermal rockets, nuclear electrical propulsion systems, and hybrid nuclear thermal rockets/nuclear electric propulsion concepts. Concept performance in terms of thrust, weight, power, and efficiency are dependent, and appropriate concept application is mission dependent (i.e., lunar, Mars, cargo, personnel, trajectory, transit time, payload). A comprehensive evaluation of mission application, technology performance capability and maturity, technology development programmatics, and safety characteristics is required to optimize both technology and mission selection to support the Presidential initiative

  6. Electro-nuclear neutron generator–XADS at ITEP

    Indian Academy of Sciences (India)

    In this report, the purpose and status of the currently constructed ITEP experimental accelerator driven system (XADS) are discussed. This hybrid electro-nuclear facility of moderate power integrates the pulse proton linac (36 MeV, 0.5 mA) and heavy water sub-critical blanket assembly (heat power of 100 kW). Most parts of ...

  7. Hybrid Origins of Citrus Varieties Inferred from DNA Marker Analysis of Nuclear and Organelle Genomes

    Science.gov (United States)

    Kitajima, Akira; Nonaka, Keisuke; Yoshioka, Terutaka; Ohta, Satoshi; Goto, Shingo; Toyoda, Atsushi; Fujiyama, Asao; Mochizuki, Takako; Nagasaki, Hideki; Kaminuma, Eli; Nakamura, Yasukazu

    2016-01-01

    Most indigenous citrus varieties are assumed to be natural hybrids, but their parentage has so far been determined in only a few cases because of their wide genetic diversity and the low transferability of DNA markers. Here we infer the parentage of indigenous citrus varieties using simple sequence repeat and indel markers developed from various citrus genome sequence resources. Parentage tests with 122 known hybrids using the selected DNA markers certify their transferability among those hybrids. Identity tests confirm that most variant strains are selected mutants, but we find four types of kunenbo (Citrus nobilis) and three types of tachibana (Citrus tachibana) for which we suggest different origins. Structure analysis with DNA markers that are in Hardy–Weinberg equilibrium deduce three basic taxa coinciding with the current understanding of citrus ancestors. Genotyping analysis of 101 indigenous citrus varieties with 123 selected DNA markers infers the parentages of 22 indigenous citrus varieties including Satsuma, Temple, and iyo, and single parents of 45 indigenous citrus varieties, including kunenbo, C. ichangensis, and Ichang lemon by allele-sharing and parentage tests. Genotyping analysis of chloroplast and mitochondrial genomes using 11 DNA markers classifies their cytoplasmic genotypes into 18 categories and deduces the combination of seed and pollen parents. Likelihood ratio analysis verifies the inferred parentages with significant scores. The reconstructed genealogy identifies 12 types of varieties consisting of Kishu, kunenbo, yuzu, koji, sour orange, dancy, kobeni mikan, sweet orange, tachibana, Cleopatra, willowleaf mandarin, and pummelo, which have played pivotal roles in the occurrence of these indigenous varieties. The inferred parentage of the indigenous varieties confirms their hybrid origins, as found by recent studies. PMID:27902727

  8. Evaluation of potential blanket concepts for a Demonstration Tokamak Hybrid Reactor

    International Nuclear Information System (INIS)

    Chapin, D.L.; Chi, J.W.H.; Kelly, J.L.

    1978-01-01

    An evaluation has been made of several different blanket concepts for use in a near-term Demonstration Tokamak Hybrid Reactor (DTHR), whose main objective would be to produce a significant amount of fissile fuel while demonstrating the feasibility of the tokamak hybrid reactor concept. The desirability of a simple design using proven technology plus a proliferation resistant fuel cycle led to the selection of a low temperature and pressure water-cooled, zircaloy clad ThO 2 blanket concept to breed 233 U. The nuclear performance and thermal-hydraulics characteristics of the blanket were evaluated to arrive at a consistent design. The blanket was found to be feasible for producing a significant amount of fissile fuel even with the limited operating conditions and blanket coverage in the DTHR

  9. Self-sustaining nuclear pumped laser-fusion reactor experiment

    International Nuclear Information System (INIS)

    Boody, F.P.; Choi, C.K.; Miley, G.H.

    1977-01-01

    The features of a neutron feedback nuclear pumped (NFNP) laser-fusion reactor equipment were studied with the intention of establishing the feasibility of the concept. The NFNP laser-fusion concept is compared schematically to electrically pumped laser fusion. The study showed that, once a method of energy storage has been demonstrated, a self-sustaining fusion-fission hybrid reactor with a ''blanket multiplication'' of two would be feasible using nuclear pumped Xe F* excimer lasers having efficiencies of 1 to 2 percent and D-D-T pellets with gains of 50 to 100

  10. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power

  11. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and

  12. Hybrid platform. Economical hybrid drive for commercial vehicles; Hybrid Plattform. Wirtschaftlicher Hybridantrieb fuer Nutzfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, S.; Lamke, M.; Mohr, M.; Sedlacek, M.; Speck, F.D. [ZF Friedrichshafen AG, Friedrichshafen (Germany)

    2011-07-01

    Up to now, hybrid systems have been adapted to their specific requirements in the various applications for trucks, buses as well as mobile and building machines. From a technical point of view, this does indeed result in optimized hybrid drives for each single vehicle application, but due to small volumes, such single developments are critical from a business point of view. ZF Friedrichshafen AG is providing a solution to the technical and economical requirements of the cost-sensitive CV segment in the form of a modular CV parallel hybrid platform composed of a hybrid module system, an inverter, a battery system, and a hybrid software integrated into the overall vehicle. Thanks to the intelligent combination of assemblies and the use of as many identical parts as possible, platforms are realized which cover power ranges between 60 and 120 kW, voltage ranges between 350 and 650 V, and battery capacities between 2 and 4 kWh. The dimensions of the platform elements are such that integration into the diverse commercial vehicle applications is made easy. The hybrid software required for the vehicle-specific functions is also configurable for the mentioned CV applications. (orig.)

  13. Hybrid instrument applied to human reliability study in event of loss of external electric power in a nuclear power plant

    International Nuclear Information System (INIS)

    Martins, Eduardo Ferraz

    2015-01-01

    The study projects in highly complex installations involves robust modeling, supported by conceptual and mathematical tools, to carry out systematic research and structured the different risk scenarios that can lead to unwanted events from occurring equipment failures or human errors. In the context of classical modeling, the Probabilistic Safety Analysis (PSA) seeks to provide qualitative and quantitative information about the project particularity and their operational facilities, including the identification of factors or scenarios that contribute to the risk and consequent comparison options for increasing safety. In this context, the aim of the thesis is to develop a hybrid instrument (CPP-HI) innovative, from the integrated modeling techniques of Failure Mode and Effect Analysis (FMEA), concepts of Human Reliability Analysis and Probabilistic Composition of Preferences (PCP). In support of modeling and validation of the CPP-HI, a simulation was performed on a triggering event 'Loss of External Electric Power' - PEEE, in a Nuclear Power plant. The results were simulated in a virtual environment (sensitivity analysis) and are robust to the study of Human Reliability Analysis (HRA) in the context of the PSA. (author)

  14. Summary of Fukushima Dai-ni nuclear power plant No. 1 and by operation

    International Nuclear Information System (INIS)

    Murayama, Mamoru; Idesawa, Masato

    1984-01-01

    Fukushima No.2 Nuclear Power Station is located on the Pacific coast of Fukushima Prefecture, and the total area is about 1.5 million m 2 including about 200,000 m 2 of reclaimed land. No. 1 plant started the commercial operation on April 20, 1982, and continued the operation for 384 days. The first regular inspection was carried out for 111 days from May 9, 1983, and the second cycle operation was begun on September 13, 1983. This plant is a BWR plant of 1,100 MWe class, manufactured for the first time in Japan by Toshiba based on the BWR-5 standard design of GE. The auxiliary machine cooling system with intermediate fresh water pools, the canned motors for coolant purifying system, the automation of service equipment, long life type in-core neutron instrumentation, the analog trip circuit for the safety protection system, filtration type condensate desalting equipment, the low cobalt material for feed heater tubes and control rod pin rollers, and titanium condenser tubes are the features of this plant. Also the countermeasures to stress corrosion cracking, the improvement of the central control board, the adoption of the control rods with followers and the fuel of improved design, the concentrated treatment of radioactive wastes and so on were carried out. The results of operation are reported. (Kako, I.)

  15. The economics of nuclear power

    International Nuclear Information System (INIS)

    Monto, Geethanjali

    2011-01-01

    Nuclear power is seen by some as a partial solution to climate change. The obvious supporters include nuclear establishments, but the 'surprising' supporters comprise some environmentalists like James Lovelock. One of the 15 strategies proposed by Stephen Pacala and Robert Socolow as part of their wedge model is to substitute nuclear power for coal power. The addition of 700 GW of nuclear power, i.e. roughly twice the current global capacity, would constitute one wedge and could reduce one billion tonnes of carbon by mid-century. (The other 14 strategies include: efficient vehicles; reduced use of vehicles; efficient buildings; efficient baseload coal plants; gas baseload power for coal baseload power capture CO 2 at baseload power plant capture CO 2 at H 2 plant; capture CO 2 at coal-to-synfuels plant and geological storage; wind power for coal power; PV power for coal power; wind H 2 in fuel-cell car for gasoline in hybrid car; biomass fuel for fossil fuel; reduced deforestation, plus reforestation, afforestation, and new plantations, and conservation tillage

  16. Research Needs for Fusion-Fission Hybrid Systems. Report of the Research Needs Workshop (ReNeW) Gaithersburg, Maryland, September 30 - October 2, 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-30

    Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison

  17. Expression of proto-oncogenes in non-Hodgkin's lymphomas by in situ hybridization with biotinylated DNA probes

    International Nuclear Information System (INIS)

    Hamatani, Kiyohiro; Yoshida, Kuniko; Abe, Masumi; Shimaoka, Katsutaro; Shiku, Hiroshi; Akiyama, Mitoshi; Kondo, Hisayoshi.

    1989-11-01

    Expression of six proto-oncogenes (fos, myc, myb, Ki-ras, Ha-ras, and N-ras) in 43 cases of non-Hodgkin's lymphoma was analyzed by means of in situ hybridization. Biotinylated DNA probes of the six oncogenes and those of the immunoglobulin H-chain (IgH) gene and the T cell receptor β-chain (TCRβ) gene were used. The results of in situ hybridization performed under blind conditions by IgH and TCRβ gene probes were compatible with those of typing by cell surface markers. The nuclear protein-related proto-oncogenes, fos myc, and myb, were expressed in about 70 % - 80 % of all cases regardless of phenotypes, histology or histologic grade. On the contrary, genes of the ras family were expressed in fewer cases except for the Ki-ras gene which was more frequently expressed by cases of the T cell immunophenotype with a high malignancy grade. The results of dot hybridization with RNA extracted from some cases were compatible with those of in situ hybridization, further demonstrating the specificity of in situ hybridization. (author)

  18. Nuclear vlimata and aneuploidy in embryonic cells is caused by meiosis. Behaviour and properties of meiotic cells

    OpenAIRE

    Logothetou-Rella, H.

    1995-01-01

    This study demonstrates that human embryonic cells divide by meiosis. The use of trophoblastic tissue cells (early embryo) and amniotic cells (late embryo) exhibited the following characteristic events of meiosis: nuclear (NVs) and nucleolar (NuVs) vlimata formation; NV invasion in host cells; extrusion of chromosomes; nuclear fusion; metaphase fusion; hybrid cell formation; nuclear, nucleolar and cytoplasmic bridges, chromosomal transfer, variablesized nuc...

  19. Characterization of ureasil-polyethylene oxide/chitosan hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Paredes Zaldivar, M.; Pulcinelli, S.H.; Peniche Covas, C.; Santilli, C.V. [Universidad de la Habana, Havana (Cuba); Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica

    2016-07-01

    Full text: Siloxane-polyether hybrids are an interesting and versatile family of multifunctional organic-inorganic hybrid materials, also named ureasils. Ureasils have been the object of intensive studies in the last years due to their versatility and wide range of applications. Polyethylene oxide (PEO) and chitosan are biocompatible and low toxicity polymers that were used as organic phase while the inorganic phase was siloxane. Therefore, the aim of this work was the characterization of these hybrids that were prepared by the sol–gel route. Hydrochloric and acetic acids were used as catalysts. Due to the insolubility of chitosan in ethanol and organic solvents, water was used in the hydrolysis solution as the main component or alone. The obtained materials were transparent, rubbery, flexible and water-insoluble. They were characterized by different physicochemical techniques such as FTIR (Fourier Transform Infrared Spectroscopy), DSC (Differential Scanning Calorimetry), TG (Thermogravimetric Analysis), XRD (X-Ray Diffraction), SAXS (Small Angle X-ray Scattering) and NMR (Nuclear Magnetic Resonance Spectroscopy). Results showed that chitosan addition did not provoke appreciable changes in the thermal properties but modifies the polycondensation degree and the nanoscopic structure of the materials. Significant changes were not found neither by the hydrolysis solution nor by the type of acid, except in the thermal stability. It depended on the type of acid catalyst, being higher in hybrids prepared with HCl. We can conclude that these materials can be synthesized just with water as the hydrolysis solution and that any of the two acids can be used as catalyst without significantly affect its final properties. (author)

  20. The chloroplast and mitochondrial DNA type are correlated with the nuclear composition of somatic hybrid calli of Solanum tuberosum and Nicotiana plumbaginifolia.

    Science.gov (United States)

    Wolters, A M; Koornneef, M; Gilissen, L J

    1993-09-01

    This paper describes the analysis of chloroplast (cp) DNA and mitochondrial (mt) DNA in 21 somatic hybrid calli of Solanum tuberosum and Nicotiana plumbaginifolia by means of Southern-blot hybridization. Each of these calli contained only one type of cpDNA; 14 had the N. plumbaginifolia (Np) type and seven the S. tuberosum (St) type. N. plumbaginifolia cpDNA was present in hybrids previously shown to contain predominantly N. plumbaginifolia chromosomes whereas hybrids in which S. tuberosum chromosomes predominated possessed cpDNA from potato. We have analyzed the mtDNA of these 21 somatic hybrid calli using four restriction enzyme/probe combinations. Most fusion products had only, or mostly, mtDNA fragments from the parent that predominated in the nucleus. The hybrids containing mtDNA fragments from only one parent (and new fragments) also possessed chloroplasts from the same species. The results suggest the existence of a strong nucleo-cytoplasmic incongruity which affects the genome composition of somatic hybrids between distantly related species.

  1. Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems

    International Nuclear Information System (INIS)

    Chen, Jun; Rabiti, Cristian

    2017-01-01

    Hybrid energy systems consisting of multiple energy inputs and multiple energy outputs have been proposed to be an effective element to enable ever increasing penetration of clean energy. In order to better understand the dynamic and probabilistic behavior of hybrid energy systems, this paper proposes a model combining Fourier series and autoregressive moving average (ARMA) to characterize historical weather measurements and to generate synthetic weather (e.g., wind speed) data. In particular, Fourier series is used to characterize the seasonal trend in historical data, while ARMA is applied to capture the autocorrelation in residue time series (e.g., measurements with seasonal trends subtracted). The generated synthetic wind speed data is then utilized to perform probabilistic analysis of a particular hybrid energy system configuration, which consists of nuclear power plant, wind farm, battery storage, natural gas boiler, and chemical plant. Requirements on component ramping rate, economic and environmental impacts of hybrid energy systems, and the effects of deploying different sizes of batteries in smoothing renewable variability, are all investigated. - Highlights: • Computational model to synthesize artificial wind speed data with consistent characteristics with database. • Fourier series to capture seasonal trends in the database. • Monte Carlo simulation and probabilistic analysis of hybrid energy systems. • Investigation of the effect of battery in smoothing variability of wind power generation.

  2. Conceptual design of a Tokamak hybrid power reactor (THPR)

    International Nuclear Information System (INIS)

    Matsuoka, F.; Imamura, Y.; Inoue, M.; Asami, N.; Kasai, M.; Yanagisawa, I.; Ida, T.; Takuma, T.; Yamaji, K.; Akita, S.

    1987-01-01

    A conceptual design of a fusion-fission hybrid tokamak reactor has been carried out to investigate the engineering feasibility and promising scale of a commercial hybrid reactor power plant. A tokamak fusion driver based on the recent plasma scaling law is introduced in this design study. The major parameters and features of the reactor are R=6.06 m, a=1.66 m, Ip=11.8 MA, Pf=668 MW, double null divertor plasma and steady state burning with RF current drive. The fusion power has been determined with medium energy multiplication in the blanket so as to relieve thermal design problems and produce electric power around 1000 MW. Uranium silicide is used for the fast fission blanket material to promise good nuclear performance. The coolant of the blanket is FLIBE and the tritium breeding blanket material is Li 2 O ceramics providing breeding ratio above unity

  3. Feedback control of current drive by using hybrid wave in tokamaks; Asservissement de la generation de courant par l`onde hybride dans un plasma de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wijnands, T.J. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere

    1997-03-01

    This work is focussed on an important and recent development in present day Controlled Nuclear Fusion Research and Tokamaks. The aim is to optimise the energy confinement for a certain magnetic configuration by adapting the radial distribution of the current. Of particular interest are feedback control scenarios with stationary modifications of the current profile using current, driven by Lower Hybrid waves. A new feedback control system has been developed for Tore Supra and has made a large number of new operation scenarios possible. In one of the experiments described here, there is no energy exchange between the poloidal field system and the plasma, the current is controlled by the power of the Lower Hybrid waves while the launched wave spectrum is used to optimise the current profile shape and the energy confinement. (author) 151 refs.

  4. When biogeographical provinces collide: Hybridization of reef fishes at the crossroads of marine biogeographical provinces in the Arabian Sea

    KAUST Repository

    DiBattista, Joseph

    2015-04-01

    Aim: Suture zones are areas where closely related species from different biogeographical regions come into contact and interbreed. This concept originated from the study of terrestrial ecosystems but it remains unclear whether a similar phenomenon occurs in the marine environment. Here we investigate a potential suture zone from a previously unknown hybrid hotspot at the Socotra Archipelago (Yemen), located in the Arabian Sea, where fauna from the Red Sea, Gulf of Aden, Arabian Sea, western Indian Ocean and greater Indo-Polynesian Province intersect. Location: Red Sea, Gulf of Aden, Arabian Sea and Indian Ocean. Methods: Putative hybrid reef fish were identified based on intermediate coloration and morphology. Underwater observations and collections were conducted to determine: (1) whether parent species form heterospecific social groups or breeding pairs; (2) the sex and reproductive status of morphologically intermediate individuals; and (3) whether parent species were forming mixed species associations owing to a dearth of conspecific partners. To support hybrid status, morphologically intermediate and parental individuals were genotyped using mitochondrial DNA cytochrome c oxidase subunit I (COI), nuclear recombination-activating gene 2 (RAG2) and the nuclear TMO-4C4 (TMO) gene. Results: We observed putative hybrids involving 14 species from four reef fish families at Socotra. Most cases involved a parental species with a restricted distribution (e.g. Red Sea or Arabian Sea) and a broadly distributed Indo-Pacific species. In most cases, at least one of the parent species was rare at Socotra. Hybrid gene flow was largely unidirectional, and although introgression was rare, we found evidence that some butterflyfish and surgeonfish hybrids were fertile and formed breeding groups with parental species. Main conclusions: The rate of hybrid discovery at Socotra is much greater than that recorded elsewhere in the marine environment and involved both allopatric and

  5. Characterization of oligosaccharides with capillary high performance anion exchange chromatography hyphenated to pulsed amperometric detection and ion trap mass spectrometry : application to the analysis of human lysosomal disorders

    NARCIS (Netherlands)

    Bruggink, Cornelis

    The development of a capillary ion chromatograph is described together with a matching desalter. This desalter made it possible to use on-line a mass spectrometer. The mass spectrometer enables partly to characterize carbohydrates eluting from the anion exchange column. This separation technology is

  6. Comprehensive exergetic and economic comparison of PWR and hybrid fossil fuel-PWR power plants

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Sabzaligol, Tooraj

    2010-01-01

    A typical 1000 MW Pressurized Water Reactor (PWR) nuclear power plant and two similar hybrid 1000 MW PWR plants operate with natural gas and coal fired fossil fuel superheater-economizers (Hybrid PWR-Fossil fuel plants) are compared exergetically and economically. Comparison is performed based on energetic and economic features of three systems. In order to compare system at their optimum operating point, three workable base case systems including the conventional PWR, and gas and coal fired hybrid PWR-Fossil fuel power plants considered and optimized in exergetic and exergoeconomic optimization scenarios, separately. The thermodynamic modeling of three systems is performed based on energy and exergy analyses, while an economic model is developed according to the exergoeconomic analysis and Total Revenue Requirement (TRR) method. The objective functions based on exergetic and exergoeconomic analyses are developed. The exergetic and exergoeconomic optimizations are performed using the Genetic Algorithm (GA). Energetic and economic features of exergetic and exergoeconomic optimized conventional PWR and gas and coal fired Hybrid PWR-Fossil fuel power plants are compared and discussed comprehensively.

  7. Hybridization between Cottus gobio and Cottus poecilopus in the Odra River drainage basin (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Marešová, Eva; Lusková, Věra; Lojkásek, B.

    2012-01-01

    Roč. 67, č. 4 (2012), s. 788-795 ISSN 0006-3088 R&D Projects: GA MŽP(CZ) SPII2D1/9/07 Institutional support: RVO:68081766 Keywords : bullheads * hybrid zones * microsatellites * S7 nuclear gene Subject RIV: EG - Zoology Impact factor: 0.506, year: 2012

  8. Corporate Hybrid Bonds

    OpenAIRE

    Ahlberg, Johan; Jansson, Anton

    2016-01-01

    Hybrid securities do not constitute a new phenomenon in the Swedish capital markets. Most commonly, hybrids issued by Swedish real estate companies in recent years are preference shares. Corporate hybrid bonds on the other hand may be considered as somewhat of a new-born child in the family of hybrid instruments. These do, as all other hybrid securities, share some equity-like and some debt-like characteristics. Nevertheless, since 2013 the interest for the instrument has grown rapidly and ha...

  9. Genetic investigation of natural hybridization between rainbow and coastal cutthroat trout in the copper River Delta, Alaska

    Science.gov (United States)

    Williams, I.; Reeves, G.H.; Graziano, S.L.; Nielsen, J.L.

    2007-01-01

    Molecular genetic methods were used to quantify natural hybridization between rainbow trout Oncorhynchus mykiss or steelhead (anadromous rainbow trout) and coastal cutthroat trout O. clarkii clarkii collected in the Copper River delta, Southeast Alaska. Eleven locations were sampled to determine the extent of hybridization and the distribution of hybrids. Four diagnostic nuclear microsatellite loci and four species-specific simple sequence repeat markers were used in combination with restriction fragment length polymorphism analyses of NADH dehydrogenase 5/6 (ND5/6) mitochondrial DNA (mtDNA) to investigate the genetic structure of trout from both species and identify putative interspecific hybrids. Hybrids were found in 7 of the 11 streams sampled in the Copper River delta, the extent of hybridization across all streams varying from 0% to 58%. Hybrid trout distribution appeared to be nonrandom, most individuals of mixed taxonomic ancestry being detected in streams containing rainbow trout rather than in streams containing coastal cutthroat trout. Genotypic disequilibrium was observed among microsatellite loci in populations with high levels of hybridization. We found no significant correlation between unique stream channel process groups and the number of hybrid fish sampled. Eighty-eight percent of fish identified as first-generation hybrids (F1) in two populations contained coastal cutthroat trout mtDNA, suggesting directionality in hybridization. However, dominance of coastal cutthroat trout mtDNA was not observed at a third location containing F1 hybrids, indicating that interspecific mating behavior varied among locations. Backcrossed individuals were found in drainages lacking F1 hybrids and in populations previously thought to contain a single species. The extent and distribution of backcrossed individuals suggested that at least some hybrids are reproductively viable and backcrossed hybrid offspring move throughout the system.

  10. Development of hybrid track detector using CR39 and photographic plate

    International Nuclear Information System (INIS)

    Kuge, K.; Endo, Y.; Hayashi, K.; Iwakiri, S.; Hasegawa, A.; Yasuda, N.; Kumagai, H.

    2005-01-01

    To improve the hybrid track detector using both CR39 and silver halide photography the gold deposition development technique was applied to this. Nuclear tracks composed of gold clusters were obtained. This method has several advantages; 1. no filament formation, 2. easy control of the cluster size owing to the independence of the size of silver halide grain, 3. easy treatment of the waste solution of developer. (author)

  11. Enhanced fuel production in thorium fusion hybrid blankets utilizing uranium multipliers

    International Nuclear Information System (INIS)

    Pitulski, R.H.; Chapin, D.L.; Klevans, E.

    1979-01-01

    The multiplication of 14 MeV D-T fusion neutrons via (n,2n), (n,3n), and fission reactions by 238 U is well known and established. This study consistently evaluates the effectiveness of a depleted (tails) UO 2 multiplier on increasing the production of 233 U and tritium in a thorium/lithium fusion--fission hybrid blanket. Nuclear performance is evaluated as a function of exposure and zone thickness

  12. Med-Ro Hybrid desalination as option to supply fresh water in BABEL Islands Province

    International Nuclear Information System (INIS)

    Siti Alimah; Sudi Ariyanto; June Mellawati; Budiarto

    2011-01-01

    Med-Ro hybrid desalination systems are combining both thermal (Med) and membrane (Ro) desalination processes with power generation systems. This configuration has more economical and operational benefits in comparison with single desalination plant. Hybrid configurations are characterized by flexibility in operation, specific energy consumption (33.50 kWh/m 3 ) is lower than Med (36.54 kWh/m 3 ) and high plant availability. The objective of study is to analyze the Med-Ro hybrid desalination as an option to add supply fresh water in Babel Islands Province, in terms of technology and economy aspects. The result of study showed that adopting nuclear power plants as dual-purpose for power generation and producing fresh water is has economic competitiveness than fossil-fired generation plants. Med-Ro hybrid configuration, with feed Ro from heat rejection of Med system is suitable as fresh water supply add option because increase of Ro feed temperature will increase flux. Economic analysis of water cost are performed using the Deep-3.2. Water cost of hybrid Med-Ro desalination with energy of NPP (0.581 $/m ) is lower than that of Med water cost (0.752 $/m ) . Water cost of hybrid Med-Ro with energy of NPP (0.581 $/m ) is lower than that of water cost of energy with fossil-fired generation plants (0.720 $/m 3 ). (author)

  13. Feedback control of current drive by using hybrid wave in tokamaks

    International Nuclear Information System (INIS)

    Wijnands, T.J.; CEA Centre d'Etudes de Cadarache, 13 - Saint-Paul-lez-Durance

    1997-03-01

    This work is focussed on an important and recent development in present day Controlled Nuclear Fusion Research and Tokamaks. The aim is to optimise the energy confinement for a certain magnetic configuration by adapting the radial distribution of the current. Of particular interest are feedback control scenarios with stationary modifications of the current profile using current, driven by Lower Hybrid waves. A new feedback control system has been developed for Tore Supra and has made a large number of new operation scenarios possible. In one of the experiments described here, there is no energy exchange between the poloidal field system and the plasma, the current is controlled by the power of the Lower Hybrid waves while the launched wave spectrum is used to optimise the current profile shape and the energy confinement. (author)

  14. Application of a hybrid method based on the combination of genetic algorithm and Hopfield neural network for burnable poison placement

    International Nuclear Information System (INIS)

    Khoshahval, F.; Fadaei, A.

    2012-01-01

    Highlights: ► The performance of GA, HNN and combination of them in BPP optimization in PWR core are adequate. ► It seems HNN + GA arrives to better final parameter value in comparison with the two other methods. ► The computation time for HNN + GA is higher than GA and HNN. Thus a trade-off is necessary. - Abstract: In the last decades genetic algorithm (GA) and Hopfield Neural Network (HNN) have attracted considerable attention for the solution of optimization problems. In this paper, a hybrid optimization method based on the combination of the GA and HNN is introduced and applied to the burnable poison placement (BPP) problem to increase the quality of the results. BPP in a nuclear reactor core is a combinatorial and complicated problem. Arrangement and the worth of the burnable poisons (BPs) has an impressive effect on the main control parameters of a nuclear reactor. Improper design and arrangement of the BPs can be dangerous with respect to the nuclear reactor safety. In this paper, increasing BP worth along with minimizing the radial power peaking are considered as objective functions. Three optimization algorithms, genetic algorithm, Hopfield neural network optimization and a hybrid optimization method, are applied to the BPP problem and their efficiencies are compared. The hybrid optimization method gives better result in finding a better BP arrangement.

  15. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  16. Fusion-fission hybrid design with analysis of direct enrichment and non-proliferation features (the SOLASE-H study)

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.; Kulcinski, G.L.; Larsen, E.; Maynard, C.W.; Magheb, M.M.H.; Sviatolslavsky, I.N.; Vogelsang, W.F.; Wolfer, W.G.

    1981-01-01

    The role of a fusion-fission hybrid in the context of a nuclear economy with and without reprocessing is examined. An inertial confinement fusion driver is assumed and a consistent set of reactor parameters are developed. The form of the driver is not critical, however, to the general concepts. The use of the hybrid as a fuel factory within a secured fuel production and reprocessing center is considered. Either the hybrid or a low power fission reactor can be used to mildly irradiate fuel prior to shipment to offsite reactors thereby rendering the fuel resistant to diversion. A simplified economic analysis indicates a hybrid providing fuel to 10 fission reactors of equal thermal power is insensitive to the recirculating power fraction provided reprocessing is permitted. If reprocessing is not allowed, the hybrid can be used to directly enrich light water reactor fuel bundles fabricated initially from fertile fuel (either ThO 2 or 238 UO 2 ). A detailed neutronic analysis indicates such direct enrichments is feasible but the support ratio for 233 U or 239 Pu production is only 2, making such an approach highly sensitive to the hybrid cost. The hybrid would have to produce considerable net power for economic feasibility in this case. Inertial confinement fusion performance requirements for hybrid application are also examined and an integrated design, SOLASE-H, is described based upon the direct enrichment concept. (orig.)

  17. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  18. The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range.

    Directory of Open Access Journals (Sweden)

    Patrik Inderbitzin

    Full Text Available Hybridization plays a central role in plant evolution, but its overall importance in fungi is unknown. New plant pathogens are thought to arise by hybridization between formerly separated fungal species. Evolution of hybrid plant pathogens from non-pathogenic ancestors in the fungal-like protist Phytophthora has been demonstrated, but in fungi, the most important group of plant pathogens, there are few well-characterized examples of hybrids. We focused our attention on the hybrid and plant pathogen Verticillium longisporum, the causal agent of the Verticillium wilt disease in crucifer crops. In order to address questions related to the evolutionary origin of V. longisporum, we used phylogenetic analyses of seven nuclear loci and a dataset of 203 isolates of V. longisporum, V. dahliae and related species. We confirmed that V. longisporum was diploid, and originated three different times, involving four different lineages and three different parental species. All hybrids shared a common parent, species A1, that hybridized respectively with species D1, V. dahliae lineage D2 and V. dahliae lineage D3, to give rise to three different lineages of V. longisporum. Species A1 and species D1 constituted as yet unknown taxa. Verticillium longisporum likely originated recently, as each V. longisporum lineage was genetically homogenous, and comprised species A1 alleles that were identical across lineages.

  19. Fuel Options for Vehicles in Korea and Role of Nuclear Energy

    International Nuclear Information System (INIS)

    Jeong, Yong Hoon; Chang, Soon Heung

    2005-01-01

    Nowadays, almost all vehicles in Korea are powered by gasoline or diesel and they are emitting about 25% of nationwide total carbon dioxide emission. With jetting up price of oil and concerns about global warming by use of fossil fuel, transition to the hydrogen economy gains more and more interest. As alternatives to the current fossil powered vehicles, hybrid, hydrogen, electricity powered vehicles are considered. In short term we will reduce dependence upon fossil fuel by using hybrid cars. However, in the long term, we have to escape from the dependence on fossil fuel. In this context, nuclear-driven hydrogen or electricity powered cars are the alternatives. In this study, we estimated the operation cost of cars powered by hydrogen and electricity from nuclear power and studied about the major blocks on the way to independence from fossil fuels. In the analysis, we put the capital cost of car aside

  20. Burn-up calculation of fusion-fission hybrid reactor using thorium cycle

    International Nuclear Information System (INIS)

    Shido, S.; Matsunaka, M.; Kondo, K.; Murata, I.; Yamamoto, Y.

    2006-01-01

    A burn-up calculation system has been developed to estimate performance of blanket in a fusion-fission hybrid reactor which is a fusion reactor with a blanket region containing nuclear fuel. In this system, neutron flux is calculated by MCNP4B and then burn-up calculation is performed by ORIGEN2. The cross-section library for ORIGEN2 is made from the calculated neutron flux and evaluated nuclear data. The 3-dimensional ITER model was used as a base fusion reactor. The nuclear fuel (reprocessed plutonium as the fission materials mixed with thorium as the fertile materials), transmutation materials (minor actinides and long-lived fission products) and tritium breeder were loaded into the blanket. Performances of gas-cooled and water-cooled blankets were compared with each other. As a result, the proposed reactor can meet the requirement for TBP and power density. As far as nuclear waste incineration is concerned, the gas-cooled blanket has advantages. On the other hand, the water cooled-blanket is suited to energy production. (author)

  1. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel. Summary

    International Nuclear Information System (INIS)

    1995-03-01

    The United States Department of Energy and United States Department of State are jointly proposing to adopt a policy to manage spent nuclear fuel from foreign research reactors. Only spent nuclear fuel containing uranium enriched in the United States would be covered by the proposed policy. The purpose of the proposed policy is to promote U.S. nuclear weapons nonproliferation policy objectives, specifically by seeking to reduce highly-enriched uranium from civilian commerce. This is a summary of the Draft Environmental Impact Statement. Environmental effects and policy considerations of three Management Alternative approaches for implementation of the proposed policy are assessed. The three Management Alternatives analyzed are: (1) acceptance and management of the spent nuclear fuel by the Department of Energy in the United States, (2) management of the spent nuclear fuel at one or more foreign facilities (under conditions that satisfy United States nuclear weapons nonproliferation policy objectives), and (3) a combination of components of Management Alternatives 1 and 2 (Hybrid Alternative). A No Action Alternative is also analyzed. For each Management Alternative, there are a number of alternatives for its implementation. For Management Alternative 1, this document addresses the environmental effects of various implementation alternatives such as varied policy durations, management of various quantities of spent nuclear fuel, and differing financing arrangements. Environmental impacts at various potential ports of entry, along truck and rail transportation routes, at candidate management sites, and for alternate storage technologies are also examined. For Management Alternative 2, this document addresses two subalternatives: (1) assisting foreign nations with storage; and (2) assisting foreign nations with reprocessing of the spent nuclear fuel

  2. Desalination of seawater with nuclear power reactors in cogeneration; Desalacion de agua de mar con reactores nucleares de potencia en cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Flores E, R M

    2004-07-01

    The growing demand for energy and hydraulic resources for satisfy the domestic, industrial, agricultural activities, etc. has wakened up the interest to carry out concerning investigations to study the diverse technologies guided to increase the available hydraulic resources, as well as to the search of alternatives of electric power generation, economic and socially profitable. In this sense the possible use of the nuclear energy is examined in cogeneration to obtain electricity and drinkable water for desalination of seawater. The technologies are analysed involved in the nuclear cogeneration (desalination technology, nuclear and desalination-nuclear joining) available in the world. At the same time it is exemplified the coupling of a nuclear reactor and a process of hybrid desalination that today in day the adult offers and economic advantages. Finally, the nuclear desalination is presented as a technical and economically viable solution in regions where necessities of drinkable water are had for the urban, agricultural consumption and industrial in great scale and that for local situations it is possible to satisfy it desalinating seawater. (Author)

  3. Possibility of combining nuclear level pumping in plasma with lasing in solid

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Carroll, J.J.

    2002-01-01

    Nuclear isomers can be used for the storage and release of 'clean' nuclear energy, and the visible schemes are discussed. Resonance between the atomic and nuclear transitions may be manifested in a form of the hybridization of atomic-nuclear excitation at the appropriate case. The nuclear levels - candidates for triggering via atomic transitions are described. A variety of the ionization states and atomic-shell configurations arises in hot plasma generated by the short powerful pulse of laser light. The nonradiative conversion of the ionization energy within atom can be suppressed in the hot-plasma surroundings. Time-scales of different processes in nuclear, atomic and condensed-matter subsystems are compared. The processes of fast ionization in solid, X-ray radiance in plasma, sample melting and recrystallisation may precede nuclear fluorescence. Time-scale shorter 0.1 ns makes this sequence promising for the group excitation of short-lived modes in nuclear subsystem

  4. Anniversary Paper: Nuclear medicine: Fifty years and still counting

    International Nuclear Information System (INIS)

    Williams, Lawrence E.

    2008-01-01

    The history, present status, and possible future of nuclear medicine are presented. Beginning with development of the rectilinear scanner and gamma camera, evolution to the present forms of hybrid technology such as single photon emission computed tomography/computed tomography (CT) and positron emission tomography/CT is described. Both imaging and therapy are considered and the recent improvements in dose estimation using hybrid technologies are discussed. Future developments listed include novel radiopharmaceuticals created using short chains of nucleic acids and varieties of nanostructures. Patient-specific radiotherapy is an eventual outcome of this work. Possible application to proving the targeting of potential chemotherapeutics is also indicated

  5. Parental partners effects on progenies characteristics on hybridization within the Larix genus

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, J.; Frydl, J. [Forestry and Game Management Research Inst., Jiloviste (Czech Republic)

    1995-12-31

    Larch progenies of maternal clone No. 52-4-11 (Larix decidua Mill.) combined with the series of paternal clones of the same species and further of the Larix leptolepis Gord. and L. gmelini (Rupr.) Ledeb. species were evaluated on three research plots with larch (Larix sp.). Growth in height and thickness as well as stem forming were monitored at the age of 11 and 22 years. There was found out a significant share of variance falling on the action of mother, hence the existence of extra-nuclear heredity can be anticipated, particularly in interspecific hybrids. Comparing with the control in interspecific hybrids mostly luxuriant growth is displayed. On one of the studied plots there was found out the assumed growth depression in the quantitative characters of progenies originated from self-pollination. Some results of the research can be used as an auxiliary criterion in the selection of progenies and trees within the progenies for the establishment of seed orchards to produce hybrid seed of F2 generation. 24 refs, 6 figs, 6 tabs

  6. Parental partners effects on progenies characteristics on hybridization within the Larix genus

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, J; Frydl, J [Forestry and Game Management Research Inst., Jiloviste (Czech Republic)

    1996-12-31

    Larch progenies of maternal clone No. 52-4-11 (Larix decidua Mill.) combined with the series of paternal clones of the same species and further of the Larix leptolepis Gord. and L. gmelini (Rupr.) Ledeb. species were evaluated on three research plots with larch (Larix sp.). Growth in height and thickness as well as stem forming were monitored at the age of 11 and 22 years. There was found out a significant share of variance falling on the action of mother, hence the existence of extra-nuclear heredity can be anticipated, particularly in interspecific hybrids. Comparing with the control in interspecific hybrids mostly luxuriant growth is displayed. On one of the studied plots there was found out the assumed growth depression in the quantitative characters of progenies originated from self-pollination. Some results of the research can be used as an auxiliary criterion in the selection of progenies and trees within the progenies for the establishment of seed orchards to produce hybrid seed of F2 generation. 24 refs, 6 figs, 6 tabs

  7. Recent introgressive hybridization revealed by exclusive mtDNA transfer from Oreochromis leucostictus (Trewavas, 1933) to Oreochromis niloticus (Linnaeus, 1758) in Lake Baringo, Kenya

    OpenAIRE

    Nyingi, Dorothy W.; Agnèse, Jean-François

    2007-01-01

    Nuclear DNA and mtDNA polymorphisms were surveyed in various species of East African Oreochromis. In Lake Baringo, where only Oreochromis niloticus baringoensis is present, alien mtDNA haplotypes were observed, apparently the result of introgressive hybridization with Oreochromis leucostictus. This introgression is not accompanied by any substantial or recorded transfer of nuclear genes into O. n. baringoensis.

  8. The existence of fertile hybrids of closely related model earthworm species, Eisenia andrei and E. fetida.

    Directory of Open Access Journals (Sweden)

    Barbara Plytycz

    Full Text Available Lumbricid earthworms Eisenia andrei (Ea and E. fetida (Ef are simultaneous hermaphrodites with reciprocal insemination capable of self-fertilization while the existence of hybridization of these two species was still debatable. During the present investigation fertile hybrids of Ea and Ef were detected. Virgin specimens of Ea and Ef were laboratory crossed (Ea+Ef and their progeny was doubly identified. 1 -identified by species-specific maternally derived haploid mitochondrial DNA sequences of the COI gene being either 'a' for worms hatched from Ea ova or 'f' for worms hatched from Ef ova. 2 -identified by the diploid maternal/paternal nuclear DNA sequences of 28s rRNA gene being either 'AA' for Ea, 'FF' for Ef, or AF/FA for their hybrids derived either from the 'aA' or 'fF' ova, respectively. Among offspring of Ea+Ef pairs in F1 generation there were mainly aAA and fFF earthworms resulted from the facilitated self-fertilization and some aAF hybrids from aA ova but none fFA hybrids from fF ova. In F2 generation resulting from aAF hybrids mated with aAA a new generations of aAA and aAF hybrids were noticed, while aAF hybrids mated with fFF gave fFF and both aAF and fFA hybrids. Hybrids intercrossed together produced plenty of cocoons but no hatchlings independently whether aAF+aAF or aAF+fFA were mated. These results indicated that Ea and Ef species, easy to maintain in laboratory and commonly used as convenient models in biomedicine and ecotoxicology, may also serve in studies on molecular basis of interspecific barriers and mechanisms of introgression and speciation. Hypothetically, their asymmetrical hybridization can be modified by some external factors.

  9. Structure and magnetic properties of SiO{sub 2}/PCL novel sol–gel organic–inorganic hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Cristina Mozzati, Maria [Department of Physics, CNISM and INSTM, University of Pavia, Via Bassi 6, 27100 Pavia (Italy); Ferrara, Chiara; Mustarelli, Piercarlo [Department of Chemistry, Section of Physical Chemistry, University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia (Italy)

    2013-07-15

    Organic–inorganic nanocomposite materials have been synthesized via sol–gel. They consist of an inorganic SiO{sub 2} matrix, in which different percentages of poly(ε-caprolactone) (PCL) have been incorporated. The formation of H-bonds among the carbonyl groups of the polymer chains and Si–OH group of the inorganic matrix has been proved by means of Fourier transform infrared spectroscopy (FT-IR) analysis and has been confirmed by solid-state nuclear magnetic resonance (NMR). X-Ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials. Scanning electron microscope (SEM) micrograph and atomic force microscope (AFM) topography showed their homogeneous morphology and nanostructure nature. Considering the opportunity to synthesize these hybrid materials under microgravity conditions by means of magnetic levitation, superconducting quantum interference device (SQUID) magnetometry has been used to quantify their magnetic susceptibility. This measure has shown that the SiO{sub 2}/PCL hybrid materials are diamagnetic and that their diamagnetic susceptibility is independent of temperature and increases with the PCL amount. - Graphical abstract: Characterization and magnetic properties of SiO{sub 2}/PCL organic–inorganic hybrid materials synthesized via sol–gel. FT-IR, Fourier transform infrared spectroscopy; solid-state NMR: solid-state nuclear magnetic resonance; SQUID: superconducting quantum interference device. - Highlights: • Sol–gel synthesis of SiO{sub 2}/PCL amorphous class I organic–inorganic hybrid materials. • FT-IR and NMR analyses show the hydrogen bonds formation between SiO{sub 2} and PCL. • AFM and SEM analyses confirm that the SiO{sub 2}/PCL are homogenous hybrid materials. • The SQUID measures show that the simples are diamagnetic. • Diamagnetic susceptibility of SiO{sub 2}/PCL materials increases with the PCL amount.

  10. Nuclear-powered Hysat spacecraft: comparative design study

    International Nuclear Information System (INIS)

    Raab, B.

    1975-08-01

    The study shows that the all-nuclear spacecraft can have a substantial weight advantage over a hybrid (nuclear/solar) or all-solar spacecraft, owing to a further reduction in power requirement, and to the elimination of such equipment as the sensor gimbal and rotating joint assemblies. Because the need for a sun-oriented section is eliminated, the all-nuclear spacecraft can be designed as a monolithic structure, with the sensor and other payload firmly secured in a fixed position on the structure. This enhances attitude stability while minimizing structural weight and eliminating the need for flexible fluid lines. Sensor motion can be produced, varied, and controlled within the limits specified by the study contractors by moving the entire spacecraft in the prescribed pattern. A simple attitude control system using available hardware suffices to meet all requirements

  11. Hybrid origin of Asian aspermic Fasciola flukes is confirmed by analyzing two single-copy genes, pepck and pold

    Science.gov (United States)

    HAYASHI, Kei; ICHIKAWA-SEKI, Madoka; MOHANTA, Uday Kumar; SHORIKI, Takuya; CHAICHANASAK, Pannigan; ITAGAKI, Tadashi

    2017-01-01

    Nuclear gene markers, phosphoenolpyruvate carboxykinase (pepck) and DNA polymerase delta (pold), have been developed for precise discrimination of Fasciola flukes instead of internal transcribed spacer 1. In this study, these two genes of 730 Fasciola flukes from eight Asian countries were analyzed. The results were compared with their mitochondrial NADH dehydrogenase subunit 1 (nad1) lineages for obtaining a definitive evidence of the hybrid origin of aspermic Fasciola flukes. All the flukes categorized into the aspermic nad1 lineages possessed both the fragment patterns of F. hepatica and F. gigantica (mixed types) in pepck and/or pold. These findings provide clear evidence for the hybrid origin of aspermic Fasciola lineages and suggest that “aspermic Fasciola flukes” should hereafter be called “hybrid Fasciola flukes”. PMID:29187710

  12. The plus-hybrid effect on the grain yield of two ZP maize hybrids

    Directory of Open Access Journals (Sweden)

    Božinović Sofija

    2010-01-01

    Full Text Available The combined effect of cytoplasmic male sterility and xenia on maize hybrid traits is referred to as the plus-hybrid effect. Two studied ZP hybrids differently responded to this effect for grain yield. All plus-hybrid combinations of the firstly observed hybrid had a higher yield than their fertile counterparts, but not significantly, while only one combination of the second hybrid positively responded, also without statistical significance. It seems that the observed effect mostly depended on the genotype of the female component.

  13. Role of nuclear produced hydrogen for global environment and energy

    International Nuclear Information System (INIS)

    Tashimo, M.; Kurosawa, A.; Ikeda, K.

    2004-01-01

    Sustainability on economical growth, energy supply and environment are major issues for the 21. century. Within this context, one of the promising concepts is the possibility of nuclear-produced hydrogen. In this study, the effect of nuclear-produced hydrogen on the environment is discussed, based on the output of the computer code 'Grape', which simulates the effects of the energy, environment and economy in 21. century. Five cases are assumed in this study. The first case is 'Business as usual by Internal Combustion Engine (ICE)', the second 'CO 2 limited to 550 ppm by ICE', the third 'CO 2 limited to 550 ppm by Hybrid Car', the fourth 'CO 2 limited to 550 ppm by Fuel Cell Vehicle (FCV) with Hydrogen produced by conventional Steam Methane Reforming (SMR)' and the fifth 'CO 2 limited to 550 ppm by FCV with Nuclear Produced-Hydrogen'. The energy used for transportation is at present about 25% of the total energy consumption in the world and is expected to be the same in the future, if there is no improvement of energy efficiency for transportation. On this point, the hybrid car shows the much better efficiency, about 2 times better than traditional internal combustion engines. Fuel Cell powered Vehicles are expected to be a key to resolving the combined issue of the environment and energy in this century. The nuclear-produced hydrogen is a better solution than conventional hydrogen production method using steam methane reforming. (author)

  14. A hybrid method of prediction of the void fraction during depressurization of diabatic systems

    International Nuclear Information System (INIS)

    Inayatullah, G.; Nicoll, W.B.; Hancox, W.T.

    1977-01-01

    The variation in vapour volumetric fraction during transient pressure, flow and power is of considerable importance in water-cooled nuclear power-reactor safety analysis. The commonly adopted procedure to predict the transient void is to solve the conservation equations using finite differences. This present method is intermediate between numerical and analytic, hence 'hybrid'. Space and time are divided into discrete intervals. Their size, however, is dictated by the imposed heat flux and pressure variations, and not by truncation error, stability or convergence, because within an interval, the solutions applied are analytic. The relatively simple hybrid method presented here can predict the void distribution in a variety of transient, diabatic, two-phase flows with simplicity, accuracy and speed. (Auth.)

  15. Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers

    International Nuclear Information System (INIS)

    Pitulski, R.H.

    1979-10-01

    A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U 233 in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U 233 , Pu 239 , and H 3 production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m -2 ) exposure period. Although the results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids

  16. Toronto hybrid taxi pilot

    International Nuclear Information System (INIS)

    Stevens, M.; Marans, B.

    2009-10-01

    This paper provided details of a hybrid taxi pilot program conducted to compare the on-road performance of Toyota Camry hybrid vehicles against conventional vehicles over a 1-year period in order to determine the business case and air emission reductions associated with the use of hybrid taxi cabs. Over 750,000 km worth of fuel consumption was captured from 10 Toyota Camry hybrids, a Toyota Prius, and 5 non-hybrid Camry vehicles over an 18-month period. The average real world fuel consumption for the taxis demonstrated that the Toyota Prius has the lowest cost of ownership, while the non-hybrid Camry has the highest cost of ownership. Carbon dioxide (CO 2 ) reductions associated with the 10 Camry hybrid taxis were calculated at 236 tonnes over a 7-year taxi service life. Results suggested that the conversion of Toronto's 5680 taxis would yield annual CO 2 emission reductions of over 19,000 tonnes. All hybrid purchasers identified themselves as highly likely to purchase a hybrid again. 5 tabs., 9 figs.

  17. Toronto hybrid taxi pilot

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, M. [CrossChasm Technologies, Cambridge, ON (Canada); Marans, B. [Toronto Atmospheric Fund, ON (Canada)

    2009-10-15

    This paper provided details of a hybrid taxi pilot program conducted to compare the on-road performance of Toyota Camry hybrid vehicles against conventional vehicles over a 1-year period in order to determine the business case and air emission reductions associated with the use of hybrid taxi cabs. Over 750,000 km worth of fuel consumption was captured from 10 Toyota Camry hybrids, a Toyota Prius, and 5 non-hybrid Camry vehicles over an 18-month period. The average real world fuel consumption for the taxis demonstrated that the Toyota Prius has the lowest cost of ownership, while the non-hybrid Camry has the highest cost of ownership. Carbon dioxide (CO{sub 2}) reductions associated with the 10 Camry hybrid taxis were calculated at 236 tonnes over a 7-year taxi service life. Results suggested that the conversion of Toronto's 5680 taxis would yield annual CO{sub 2} emission reductions of over 19,000 tonnes. All hybrid purchasers identified themselves as highly likely to purchase a hybrid again. 5 tabs., 9 figs.

  18. Chapter 2: Genetic Variability in Nuclear Ribosomal and Chloroplast DNA in Utah (Juniperus Osteosperma) and Western (J. Occidentalis) Juniper (Cupressaceae): Evidence for Interspecific Gene Flow1

    Energy Technology Data Exchange (ETDEWEB)

    Terry, Randall G.; Tausch, Robin J.; Nowak, Robert S.

    1998-02-14

    Early studies of evolutionary change in chloroplast DNA indicated limited variability within species. This finding has been attributed to relatively low rates of sequence evolution and has been maintained as justification for the lack of intraspecific sampling in studies examining, relationships at the species level and above. However, documentation of intraspecific variation in cpDNA has become increasingly common and has been attributed in many cases to ''chloroplast capture'' following genetic exchange across species boundaries. Rleseberg and Wendel (1993) list 37 cases of proposed hybridization in plants that include intraspecific variation in cpDNA, 24 (65%) of which they considered to be probable instances of introgression. Rieseberg (1995) suspected that a review of the literature at that time would reveal over 100 cases of intraspecific variation in CPDNA that could be attributed to hybridization and introgression. That intraspecific variation in cpDNA is potentially indicative of hybridization is founded on the expectation that slowly evolving loci or genomes will produce greater molecular variation between than within species. In cases where a species is polymorphic for CPDNA and at least one of the molecular variants is diagnostic for a second species, interspecific hybridization is a plausible explanation. Incongruence between relationships suggested by cpDNA variation and those supported by other types of data (e.g., morphology or molecular data from an additional locus) provides additional support for introgression. One aspect of hybridization in both animals and plants that has become increasingly evident is incongruence in the phylogenetic and geographic distribution of cytoplasmic and nuclear markers. In most cases cytoplasmic introgression appears to be more pervasive than nuclear exchange. This discordance appears attributable to several factors including differences in the mutation rate, number of effective alleles, and modes

  19. Continuity controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation

  20. Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species.

    Science.gov (United States)

    Macaya-Sanz, D; Suter, L; Joseph, J; Barbará, T; Alba, N; González-Martínez, S C; Widmer, A; Lexer, C

    2011-10-01

    Molecular genetic analyses of experimental crosses provide important information on the strength and nature of post-mating barriers to gene exchange between divergent populations, which are topics of great interest to evolutionary geneticists and breeders. Although not a trivial task in long-lived organisms such as trees, experimental interspecific recombinants can sometimes be created through controlled crosses involving natural F(1)'s. Here, we used this approach to understand the genetics of post-mating isolation and barriers to introgression in Populus alba and Populus tremula, two ecologically divergent, hybridizing forest trees. We studied 86 interspecific backcross (BC(1)) progeny and >350 individuals from natural populations of these species for up to 98 nuclear genetic markers, including microsatellites, indels and single nucleotide polymorphisms, and inferred the origin of the cytoplasm of the cross with plastid DNA. Genetic analysis of the BC(1) revealed extensive segregation distortions on six chromosomes, and >90% of these (12 out of 13) favored P. tremula donor alleles in the heterospecific genomic background. Since selection was documented during early diploid stages of the progeny, this surprising result was attributed to epistasis, cyto-nuclear coadaptation, heterozygote advantage at nuclear loci experiencing introgression or a combination of these. Our results indicate that gene flow across 'porous' species barriers affects these poplars and aspens beyond neutral, Mendelian expectations and suggests the mechanisms responsible. Contrary to expectations, the Populus sex determination region is not protected from introgression. Understanding the population dynamics of the Populus sex determination region will require tests based on natural interspecific hybrid zones.

  1. Estimation of lung shunt fraction from simultaneous fluoroscopic and nuclear images

    Science.gov (United States)

    van der Velden, Sandra; Bastiaannet, Remco; Braat, Arthur J. A. T.; Lam, Marnix G. E. H.; Viergever, Max A.; de Jong, Hugo W. A. M.

    2017-11-01

    Radioembolisation with yttrium-90 (90Y) is increasingly used as a treatment of unresectable liver malignancies. For safety, a scout dose of technetium-99m macroaggregated albumin (99mTc-MAA) is used prior to the delivery of the therapeutic activity to mimic the deposition of 90Y. One-day procedures are currently limited by the lack of nuclear images in the intervention room. To cope with this limitation, an interventional simultaneous fluoroscopic and nuclear imaging device is currently being developed. The purpose of this simulation study was to evaluate the accuracy of estimating the lung shunt fraction (LSF) of the scout dose in the intervention room with this device and compare it against current clinical methods. Methods: A male and female XCAT phantom, both with two respiratory profiles, were used to simulate various LSFs resulting from a scout dose of 150 MBq 99mTc-MAA. Hybrid images were Monte Carlo simulated for breath-hold (5 s) and dynamic breathing (10 frames of 0.5 s) acquisitions. Nuclear images were corrected for attenuation with the fluoroscopic image and for organ overlap effects using a pre-treatment CT-scan. For comparison purposes, planar scintigraphy and mobile gamma camera images (both 300 s acquisition time) were simulated. Estimated LSFs were evaluated for all methods and compared to the phantom ground truth. Results: In the clinically relevant range of 10-20% LSF, hybrid imaging overestimated LSF with approximately 2 percentage points (pp) and 3 pp for the normal and irregular breathing phantoms, respectively. After organ overlap correction, LSF was estimated with a more constant error. Errors in planar scintigraphy and mobile gamma camera imaging were more dependent on LSF, body shape and breathing profile. Conclusion: LSF can be estimated with a constant minor error with a hybrid imaging device. Estimated LSF is highly dependent on true LSF, body shape and breathing pattern when estimated with current clinical methods. The hybrid

  2. Hybrid Coatings Enriched with Tetraethoxysilane for Corrosion Mitigation of Hot-Dip Galvanized Steel in Chloride Contaminated Simulated Concrete Pore Solutions

    Science.gov (United States)

    Figueira, Rita B.; Callone, Emanuela; Silva, Carlos J. R.; Pereira, Elsa V.; Dirè, Sandra

    2017-01-01

    Hybrid sol-gel coatings, named U(X):TEOS, based on ureasilicate matrices (U(X)) enriched with tetraethoxysilane (TEOS), were synthesized. The influence of TEOS addition was studied on both the structure of the hybrid sol-gel films as well as on the electrochemical properties. The effect of TEOS on the structure of the hybrid sol-gel films was investigated by solid state Nuclear Magnetic Resonance. The dielectric properties of the different materials were investigated by electrochemical impedance spectroscopy. The corrosion behavior of the hybrid coatings on HDGS was studied in chloride-contaminated simulated concrete pore solutions (SCPS) by polarization resistance measurements. The roughness of the HDGS coated with hybrids was also characterized by atomic force microscopy. The structural characterization of the hybrid materials proved the effective reaction between Jeffamine® and 3-isocyanate propyltriethoxysilane (ICPTES) and indicated that the addition of TEOS does not seem to affect the organic structure or to increase the degree of condensation of the hybrid materials. Despite the apparent lack of influence on the hybrids architecture, the polarization resistance measurements confirmed that TEOS addition improves the corrosion resistance of the hybrid coatings (U(X):TEOS) in chloride-contaminated SCPS when compared to samples prepared without any TEOS (U(X)). This behavior could be related to the decrease in roughness of the hybrid coatings (due TEOS addition) and to the different metal coating interaction resulting from the increase of the inorganic component in the hybrid matrix. PMID:28772667

  3. The combined hybrid system: A symbiotic thermal reactor/fast reactor system for power generation and radioactive waste toxicity reduction

    International Nuclear Information System (INIS)

    Hollaway, W.R.

    1991-08-01

    If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issue through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW e IFR capacity for every three MW e Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years)

  4. Hybrid systems, optimal control and hybrid vehicles theory, methods and applications

    CERN Document Server

    Böhme, Thomas J

    2017-01-01

    This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering pr...

  5. Localization of the Norrie disease gene mRNA by in situ hybridization.

    Science.gov (United States)

    Hartzer, M K; Cheng, M; Liu, X; Shastry, B S

    1999-07-15

    Norrie disease is a rare X-linked recessive neurodevelopmental disorder. The affected males manifest congenital blindness, which is often associated with hearing loss, mental retardation and psychiatric problems. Genetic linkage studies have localized the gene to the short arm of the X-chromosome and the gene has been isolated recently. The encoded protein is a member of the superfamily of growth factors containing a cystine knot motif and may be involved in cell adhesion and neurodevelopment. Molecular genetic analysis revealed a large number of missense, nonsense, deletion, and splice-site mutations among Norrie patients. In order to further determine the role of the Norrie disease gene, we studied the distribution pattern of its mRNA in the retina and in brain by in situ hybridization. The results show abundant hybridization signals in outer nuclear, inner nuclear, and ganglion cell layers of the retina in all three species (mice, rabbit, and human) examined. There was no significant expression in the vitreous body, lens, and rod outer segment. High expression levels were also observed in the cerebellar granular layer, hippocampus, olfactory bulb, cortex, and epithelium of the rabbit brain. These data suggest that the Norrie disease gene could play a critical role in the differentiation or maintenance of the differentiated state of the retina.

  6. Continuity Controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  7. Continuity controlled hybrid automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  8. Continuity controlled hybrid automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2006-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  9. Hybridization study of wild rice Oryza glumaepatula with varieties of cultivated rice (O. sativa) and wild (O. grandiglumis)

    International Nuclear Information System (INIS)

    Villalobos Cascante, Eddier

    2015-01-01

    The process of interspecific hybridization of the wild species O. glumaepatula is studied with commercial varieties of the species O. sativa and O. grandiglumis, by morphological evaluation and hybrid flow cytometry. Hybrid plants were evaluated of cross between O. glumaepatula, located in the wetlands of Rio Medio Queso and two varieties of O. sativa, Puita Inta and CFX 18 resistant to a herbicide. The technique of Polymerase Chain Reaction Allele Specifies Oligonucleotide (PCR-ASO) was used to detect allelic mutations in the ALS gene conferring herbicide resistance, and it is confirmed the hybrid nature of the plants obtained at crossings. 68 hybrids were obtained: O. glumaepatula x P. Inta, 21 hybrids P. Inta x O. glumaepatula, 4 hybrids O. glumaepatula x CFX-18 and 15 hybrids CFX-18 x O. glumaepatula. 10 morphological descriptors of the genus Oryza were evaluated and determined that are indifferent to the direction and type of crossing, the hybrids resemble to the wild species O. glumaepatula for characters: height, panicle length and ligule length. All hybrids have showed similarity to commercial varieties in flag leaf length. Other characters evaluated in the hybrids have presented maternal effect, heterosis and intermediate values. The protocol of flow cytometry (FCM) is standardized species for Oryza genus analyzing nuclear DNA content of 106 samples of leaf tissue of wild species O. glumaepatula, O. grandiglumis; whose average has been of 0.73 picograms, and natural hybrids product of the cross of these species. The result has been intermediate compared with O. grandiglumis and O. glumaepatula that have made available to 1.0 picograms and 0.50 of DNA respectively. The molecular nature of the hybrids was confirmed in this way. (author) [es

  10. The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ferris Vanessa

    2008-02-01

    Full Text Available Abstract Background Trypanosoma brucei undergoes genetic exchange in its insect vector, the tsetse fly, by an unknown mechanism. The difficulties of working with this experimental system of genetic exchange have hampered investigation, particularly because the trypanosome life cycle stages involved cannot be cultured in vitro and therefore must be examined in the insect. Searching for small numbers of hybrid trypanosomes directly in the fly has become possible through the incorporation of fluorescent reporter genes, and we have previously carried out a successful cross using a reporter-repressor strategy. However, we could not be certain that all fluorescent trypanosomes observed in that cross were hybrids, due to mutations of the repressor leading to spontaneous fluorescence, and we have therefore developed an alternative strategy. Results To visualize the production of hybrids in the fly, parental trypanosome clones were transfected with a gene encoding Green Fluorescent Protein (GFP or Red Fluorescent Protein (RFP. Co-infection of flies with red and green fluorescent parental trypanosomes produced yellow fluorescent hybrids, which were easily visualized in the fly salivary glands. Yellow trypanosomes were not seen in midgut or proventricular samples and first appeared in the glands as epimastigotes as early as 13 days after fly infection. Cloned progeny originating from individual salivary glands had yellow, red, green or no fluorescence and were confirmed as hybrids by microsatellite, molecular karyotype and kinetoplast (mitochondrial DNA analyses. Hybrid clones showed biparental inheritance of both nuclear and kinetoplast genomes. While segregation and reassortment of the reporter genes and microsatellite alleles were consistent with Mendelian inheritance, flow cytometry measurement of DNA content revealed both diploid and polyploid trypanosomes among the hybrid progeny clones. Conclusion The strategy of using production of yellow hybrids

  11. Desalination of seawater with nuclear power reactors in cogeneration

    International Nuclear Information System (INIS)

    Flores E, R.M.

    2004-01-01

    The growing demand for energy and hydraulic resources for satisfy the domestic, industrial, agricultural activities, etc. has wakened up the interest to carry out concerning investigations to study the diverse technologies guided to increase the available hydraulic resources, as well as to the search of alternatives of electric power generation, economic and socially profitable. In this sense the possible use of the nuclear energy is examined in cogeneration to obtain electricity and drinkable water for desalination of seawater. The technologies are analysed involved in the nuclear cogeneration (desalination technology, nuclear and desalination-nuclear joining) available in the world. At the same time it is exemplified the coupling of a nuclear reactor and a process of hybrid desalination that today in day the adult offers and economic advantages. Finally, the nuclear desalination is presented as a technical and economically viable solution in regions where necessities of drinkable water are had for the urban, agricultural consumption and industrial in great scale and that for local situations it is possible to satisfy it desalinating seawater. (Author)

  12. CM-244 as multiplier and breeder in a ThO/sub 2/ hybrid blanket driven by a (D,T) source

    International Nuclear Information System (INIS)

    Sahin, S.; Al-Kusayer, T.A.

    1986-01-01

    The safeguard aspects of Cm-244 - a nuclear waste product in LWRs - in a cylindrical hybrid blanket, driven by a (D,T) fusion neutron source have been analyzed. Cm-244 is investigated for two different applications: 1) as a neutron multiplier between the first wall and the fuel zone in a blanket with ThO/sub 2/; and 2) as a component of the mixed fuel, ThO/sub 2/-Cm/sup 244/O/sub 2/, used for power flattening in a hybrid blanket. The calculations show that a relatively small driven with 100 MW/sub th/ fusion power could produce about 5 kg/year Cm-245, enough to provide nuclear fuel for up to 50 explosives. The study suggests an extension of the safe-guarding regulations prior to the commercial introduction of fusion reactors in the energy market

  13. Nuclear energy's future: lifting the regulatory cloud

    International Nuclear Information System (INIS)

    Walske, C.

    1983-01-01

    Nuclear energy provides 13% of US and 10% of world electricity, with an exemplary safety record and less insult to the environment than any other power source. Walske argues that nuclear power is 15% cheaper than coal despite the high capital and regulatory costs, but regulatory delays in the construction and licensing periods have increased 70% to 10 to 14 years, more than twice the lead time in France and Japan. The long lead time exaggerates the difficulty in forecasting demand, and allows interruptions for fundamental design changes after construction has begun. Walske outlines new legislation for site pre-approval, plant standardization, combined construction and operating licenses, and hybrid procedures for public hearings that would make regulation less uncertain

  14. Hybrid functional pseudopotentials

    Science.gov (United States)

    Yang, Jing; Tan, Liang Z.; Rappe, Andrew M.

    2018-02-01

    The consistency between the exchange-correlation functional used in pseudopotential construction and in the actual density functional theory calculation is essential for the accurate prediction of fundamental properties of materials. However, routine hybrid density functional calculations at present still rely on generalized gradient approximation pseudopotentials due to the lack of hybrid functional pseudopotentials. Here, we present a scheme for generating hybrid functional pseudopotentials, and we analyze the importance of pseudopotential density functional consistency for hybrid functionals. For the PBE0 hybrid functional, we benchmark our pseudopotentials for structural parameters and fundamental electronic gaps of the Gaussian-2 (G2) molecular dataset and some simple solids. Our results show that using our PBE0 pseudopotentials in PBE0 calculations improves agreement with respect to all-electron calculations.

  15. Off-line NDA measurement of actinides in reprocessing solution using hybrid K-edge/K-XRF densitometer

    International Nuclear Information System (INIS)

    Bootharajan, M.; Swaminathan, K.; Venkata Subramani, C.R.; Kumar, R.

    2015-01-01

    A versatile, nondestructive assay (NDA) system of a hybrid K-edge/K-XRF facility adapted to a glove box facility has been developed at RCL, IGCAR for the analysis of U and Pu in process solutions obtained from the reprocessing of spent nuclear fuels. This paper describes i) The development of a hybrid K-edge/K-XRF facility adapted to a glove box system ii) The results obtained using conditioner solution of burn up 155 GWd/t with a dose of 20 R/h and iii) Comparison of the results with the parallel analyses of the same by Isotope dilution mass spectrometry. The hybrid K-edge cum K-XRF densitometer is ideally suited for dissolver solutions as well as U and Pu product solutions from reprocessing plant. This method can be useful in the analysis of mixed solution of Special Nuclear Materials (SNM) without chemical separation. To assay solutions with high radiation background, the hybrid K-edge/K-XRF system is designed and fabricated inside a glove box with adequate shielding from both source X-rays and the sample radiation. The theory and preliminary experiments are described elsewhere. Around 5 mL of the conditioner solution (burn up of 155 GWd/t with a dose of 20 R/h) was taken in a poly propylene vial placed concentrically in to another poly propylene vial. The concentration was estimated by K-edge densitometry with X-ray tube operated with 150 kV and 1 mA and counting period of 3000s. Background correction was obtained with the X-ray tube in OFF condition. The solution was analysed parallelly using isotopic dilution mass spectrometry

  16. Ploidy of Bovine Nuclear Transfer Blastocysts Blastomere Donors

    DEFF Research Database (Denmark)

    Booth, P J; VIUFF, D; THOMSEN, P D

    2000-01-01

    The higher rate of embryonic loss in nuclear transfer compared to in vitro produced embryos may be due to chromosome abnormalities that occur during preimplantation in vitro devel- opment. Because little is known about ploidy errors in nuclear transfer embryos, this was ex- amined using embryos...... cultured until day 7 at which time blastocyst nuclei were extracted and chromosome abnormalities were evaluated by fluorescent in situ hybridization using two probes that bind to the subcentromeric regions on chromosomes 6 and 7. In 16 nuclear transfer blastocysts generated from 5 donor embryos, 53.8 6 20...... comprised mainly triploid (8.2 6 10.3 [0–26.3]: SD [range]) and tetraploid (10.6 6 19.9 [0–54.9]) nuclei with other ploidy com- binations accounting for only 0.9 6 2.1 [0–2.1]% of deviant nuclei. The proportion of com- pletely normal nuclear transfer embryos was no less than those produced by in vitro...

  17. The hybrid K-edge/K-XRF densitometer: Principles - design - performance

    International Nuclear Information System (INIS)

    Ottmar, H.; Eberle, H.

    1991-02-01

    The Euratom Safeguards Directorate (ESD) has recently installed a hybrid K-edge/K-XRF densitometer in a commerical reprocessing plant for the safeguarding of nuclear materials. This instrument, developed at KfK Karlsruhe, offers for the first time analytical measurement capabilities for timely on-site input accountancy verification. Lectures providing informations on measurement principles, instrument design features and performance data have been given to inspectors of ESD to make them familiar with the new instrument. This report summarizes the essential materials presented during these courses. (orig.) [de

  18. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2014-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  19. Study on Microstructure and Mechanical Properties of 304 Stainless Steel Joints by Tig-Mig Hybrid Welding

    Science.gov (United States)

    Ogundimu, Emmanuel O.; Akinlabi, Esther T.; Erinosho, Mutiu F.

    Stainless steel is a family of Fe-based alloys having excellent resistance to corrosion and as such has been used imperatively for kitchen utensils, transportation, building constructions and much more. This paper presents the work conducted on the material characterizations of a tungsten inert gas (TIG)-metal inert gas (MIG) hybrid welded joint of type 304 austenitic stainless steel. The welding processes were conducted in three phases. The phases of welding employed are MIG welding using a current of 170A, TIG welding using a current of 190A, and a hybrid TIG-MIG welding with currents of 190/170A, respectively. The MIG, TIG, and hybrid TIG-MIG weldments were characterized with incomplete penetration, full penetration and excess penetration of weld. Intergranular austenite was created toward transition and heat affected zones. The thickness of the delta ferrite (δ-Fe) formed in the microstructures of the TIG weld is more than the thickness emerged in the microstructures of MIG and hybrid TIG-MIG welds. A TIG-MIG hybrid weld of specimen welded at the currents of 190/170A has the highest ultimate tensile strength value and percentage elongation of 397.72MPa and 35.7%. The TIG-MIG hybrid welding can be recommended for high-tech industrial applications such as nuclear, aircraft, food processing, and automobile industry.

  20. Reactor water quality degradation suppressing method upon reactor start up

    International Nuclear Information System (INIS)

    Maeda, Katsuharu.

    1993-01-01

    Preceding to reactor start-up, vacuum degree in a condenser is increased, and after the vacuum degree has been increased sufficiently, a desalting tower is inserted. Then, water feed to the reactor is started and the reactor is operated so that water is supplied gradually. Thus, dissolved oxygen in the feedwater and condensates is kept low and an entire organic carbon leaching rate from resins in the condensate desalting tower is reduced. Further, since feedwater is gradually supplied after the start-up, the entire organic carbon brought into the reactor is decomposed by heat and radiation and efficiently removed by a reactor coolant cleanup system. As a result, corrosion of stainless steel or the like is suppressed, as well as integrity of fuels can be maintained. Further, degradation of water quality can be suppressed effectively not by additionally putting the condensate desalting towers to in-service in accordance with the increase of the feedwater flow rate accompanying the power up but by previously putting the condensate desalting towers to in-service. (N.H.)

  1. Theoretical nuclear physics

    International Nuclear Information System (INIS)

    Rost, E.; Shephard, J.R.

    1992-08-01

    This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self- consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the triangle-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to bar pp → bar Λ Λ reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field

  2. Hybride textuelle Strukturen und hybride textuelle Einheiten. Ein Beitrag zur Theorie der Wörterbuchform

    Directory of Open Access Journals (Sweden)

    Herbert Ernst Wiegand

    2011-10-01

    Full Text Available

    ZUSAMMENFASSUNG: In diesem Beitrag wird die Bildung, Darstellung und Leistung von hybriden textuellen Strukturen, die akzessive Einträge aufweisen, am Beispiel von Wörterbuchartikeln behandelt sowie erklärt, welche Eigenschaften hybride textuelle Einheiten haben. Ein Wörterbuchartikel eines Printwörterbuchs weist immer dann neben einer hierarchischen reinen eine hierarchische hybride Textkonstituentenstruktur auf, wenn in ihm mindestens ein funktionaler Angabezusatz auftritt, z.B. ein oben oder unten erweiternder oder ein binnenerweiternder. Da funktionale Angabezusätze Textsegmente mit Angabefunktion aber ohne Textkonstituentenstatus sind, werden sie durch nichtfunktionale Segmentation ermittelt, so dass neben funktionalen auch nichtfunktionale Textsegmente gegeben sind, die dann bei der Strukturbildung in die Trägermengen eingehen, so dass die Trägermengen aller hybriden hierarchischen Strukturen elementenheterogen, während die Trägermengen aller hierarchischen reinen Strukturen elementenhomogen sind. In den Strukturgraphen für hierarchische hybride Artikelstrukturen sind dann die Knoten für diejenigen Textsegmente, die den Hybridstatus der Strukturen bewirken, entweder durch Pfeilkanten für die textarchitektonischen oberhalb/unterhalb-Relationen mit den Knoten für die Textkonstituenten verbunden, so dass die Strukturgraphen architektonisch angereichert sind, oder durch besonders markierte Kanten, die die Knoten für die nichtfunktionalen Textsegmente und die für die binnenerweiternden funktionalen Angabezusätze mit den Knoten für die Textkonstituenten verbinden. Zu jedem Typ von hierarchischer reiner Artikelstruktur gehören mehrere Typen von hybriden Artikelstrukturen; entsprechendes gilt für hierarchische reine Angabestrukturen. Nur eine Auswahl aus den Typologien der hybriden Artikel- und Angabestrukturen wird behandelt sowie eine kleine Auswahl von hybriden textuellen Einheiten, die kriteriale Eigenschaften von zwei

  3. Mirror hybrid reactor blanket and power conversion system conceptual design

    International Nuclear Information System (INIS)

    Schultz, K.R.; Backus, G.A.; Baxi, C.B.; Dee, J.B.; Estrine, E.A.; Rao, R.; Veca, A.R.

    1976-01-01

    The conceptual design of the blanket and power conversion system for a gas-cooled mirror hybrid fusion-fission reactor is presented. The designs of the fuel, blanket module and power conversion system are based on existing gas-cooled fission reactor technology that has been developed at General Atomic Company. The uranium silicide fuel is contained in Inconel-clad rods and is cooled by helium gas. The fuel is contained in 16 spherical segment modules which surround the fusion plasma. The hot helium is used to raise steam for a conventional steam cycle turbine generator. The details of the method of support for the massive blanket modules and helium ducts remain to be determined. Nevertheless, the conceptual design appears to be technically feasible with existing gas-cooled technology. A preliminary safety analysis shows that with the development of a satisfactory method of primary coolant circuit containment and support, the hybrid reactor could be licensed under existing Nuclear Regulatory Commission regulations

  4. Controlling a nuclear spin in a nanodiamond

    Science.gov (United States)

    Knowles, Helena S.; Kara, Dhiren M.; Atatüre, Mete

    2017-09-01

    The sensing capability of a single optically bright electronic spin in diamond can be enhanced by making use of proximal dark nuclei as ancillary spins. Such systems, so far realized only in bulk diamond, can provide orders of magnitude higher sensitivity and spectral resolution in the case of magnetic sensing, as well as improved readout fidelity and state storage time in quantum information schemes. Nanodiamonds offer opportunities for scanning and embedded nanoscale probes, yet electronic-nuclear spin complexes have so far remained inaccessible. Here, we demonstrate coherent control of a 13C nuclear spin located 4 Å from a nitrogen-vacancy center in a nanodiamond and show coherent exchange between the two components of this hybrid spin system. We extract a free precession time T2* of 26 μ s for the nuclear spin, which exceeds the bare-electron free-precession time in nanodiamond by two orders of magnitude.

  5. Status on the Development of a Modeling and Simulation Framework for the Economic Assessment of Nuclear Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon Michelle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert Arthur [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deason, Wesley Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard Doin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    An effort to design and build a modeling and simulation framework to assess the economic viability of Nuclear Hybrid Energy Systems (NHES) was undertaken in fiscal year 2015 (FY15). The purpose of this report is to document the various tasks associated with the development of such a framework and to provide a status on its progress. Several tasks have been accomplished. First, starting from a simulation strategy, a rigorous mathematical formulation has been achieved in which the economic optimization of a Nuclear Hybrid Energy System is presented as a constrained robust (under uncertainty) optimization problem. Some possible algorithms for the solution of the optimization problem are presented. A variation of the Simultaneous Perturbation Stochastic Approximation algorithm has been implemented in RAVEN and preliminary tests have been performed. The development of the software infrastructure to support the simulation of the whole NHES has also moved forward. The coupling between RAVEN and an implementation of the Modelica language (OpenModelica) has been implemented, migrated under several operating systems and tested using an adapted model of a desalination plant. In particular, this exercise was focused on testing the coupling of the different code systems; testing parallel, computationally expensive simulations on the INL cluster; and providing a proof of concept for the possibility of using surrogate models to represent the different NHES subsystems. Another important step was the porting of the RAVEN code under the Windows™ operating system. This accomplishment makes RAVEN compatible with the development environment that is being used for dynamic simulation of NHES components. A very simplified model of a NHES on the electric market has been built in RAVEN to confirm expectations on the analysis capability of RAVEN to provide insight into system economics and to test the capability of RAVEN to identify limit surfaces even for stochastic constraints. This

  6. Human hybrid hybridoma

    Energy Technology Data Exchange (ETDEWEB)

    Tiebout, R.F.; van Boxtel-Oosterhof, F.; Stricker, E.A.M.; Zeijlemaker, W.P.

    1987-11-15

    Hybrid hybridomas are obtained by fusion of two cells, each producing its own antibody. Several authors have reported the construction of murine hybrid hybridomas with the aim to obtain bispecific monoclonal antibodies. The authors have investigated, in a model system, the feasibility of constructing a human hybrid hybridoma. They fused two monoclonal cell lines: an ouabain-sensitive and azaserine/hypoxanthine-resistant Epstein-Barr virus-transformed human cell line that produces an IgG1kappa antibody directed against tetanus toxiod and an azaserine/hypoxanthine-sensitive and ouabain-resistant human-mouse xenohybrid cell line that produces a human IgG1lambda antibody directed against hepatitis-B surface antigen. Hybrid hybridoma cells were selected in culture medium containing azaserine/hypoxanthine and ouabain. The hybrid nature of the secreted antibodies was analyzed by means of two antigen-specific immunoassay. The results show that it is possible, with the combined use of transformation and xenohybridization techniques, to construct human hybrid hybridomas that produce bispecific antibodies. Bispecific antibodies activity was measured by means of two radioimmunoassays.

  7. 18F-FDG hybrid PET in patients with suspected spondylitis

    International Nuclear Information System (INIS)

    Gratz, S.; Behr, T.M.; Behe, M.; Doerner, J.; Fischer, U.; Grabbe, E.; Altenvoerde, G.; Meller, J.; Becker, W.

    2002-01-01

    This study investigated the value of fluorine-18 2'-deoxy-2-fluoro-D-glucose (FDG) imaging with a double-headed gamma camera operated in coincidence (hybrid PET) detection mode in patients with suspected spondylitis. Comparison was made with conventional nuclear medicine imaging modalities and magnetic resonance imaging (MRI). Sixteen patients with suspected spondylitis (nine male, seven female, mean age 59 years) prospectively underwent FDG hybrid PET (296 MBq) and MRI. For intra-individual comparison, the patients were also imaged with technetium-99m methylene diphosphonate (MDP) (555 MBq) (n=13) and/or gallium-67 citrate (185 MBq) (n=11). For FDG hybrid PET, two or three transverse scans were performed. Ratios of infected (target) to non-infected (background) (T/B) vertebral bodies were calculated. MR images were obtained of the region of interest. Patients found positive for spondylitis with MRI and/or FDG hybrid PET underwent surgical intervention and histological grading of the individual infected foci. Twelve out of 16 patients were found to be positive for spondylitis. Independent of the grade of infection and the location in the spine, all known infected vertebrae (n=23, 9 thoracic, 12 lumbar, 2 sacral) were detected by FDG hybrid PET. T/B ratios higher than 1.45±0.05 (at 1 h p.i.) were indicative of infectious disease, whereas ratios below this value were found in cases of degenerative change. FDG hybrid PET was superior to MRI in patients who had a history of surgery and suffered from a high-grade infection in combination with paravertebral abscess formation (n=2; further computed tomography was needed) and in those with low-grade spondylitis (n=2, no oedema) or discitis (n=2, mild oedema). False-positive 67 Ga citrate images (n=5: 2 spondylodiscitis, 1 aortitis, 1 pleuritis, 1 pulmonary tuberculosis) and 99m Tc-MDP SPET (n=4: 1 osteoporosis, 2 spondylodiscitis, 1 fracture) were equally well detected by FDG hybrid PET and MRI. No diagnostic problems

  8. Water and nuclear power cogeneration with desalination: the U.S. projects and prospects

    International Nuclear Information System (INIS)

    Faibish, Ron S.

    2004-01-01

    Recent dramatic increases in water shortages across the globe necessitate exploring innovative and practical methods for increasing the world's ever-depleting water and energy supplies. One proposed solution to alleviate water shortage, which is gaining popularity around the world, is to desalt seawater and produce potable water, i.e., via seawater desalination. Indeed, the basic technological know-how is readily available from extensive previous experience, especially in the Middle East and Arabian Gulf regions. However, new proposals for coupling desalination plants with power plants for the convenient cogeneration of water and power are rapidly emerging and requiring re-evaluation of process technology and economics

  9. Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Pitulski, R.H.

    1979-10-01

    A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U/sup 233/ in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U/sup 233/, Pu/sup 239/, and H/sup 3/ production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m/sup -2/) exposure period. Although the results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids.

  10. Hybrid sterility in crosses between two Brazilian sibling species of the Anopheles albitarsis complex.

    Science.gov (United States)

    Fontoura, Nathalia Giglio; Araki, Alejandra Saori; Van Der Maas Azevedo, Renata; Galardo, Allan Kardec Ribeiro; Peixoto, Alexandre Afranio; Lima, José Bento Pereira

    2014-12-04

    Complexes of cryptic species are common in several taxa and this is also the case in the Anopheles genus, a group including all known human malaria vectors. The Anopheles albitarsis complex comprises at least nine cryptic species, some of which are implicated as vectors of human malaria. Several different types of data have been generated for this species complex such as cytogenetics, alloenzymes, morphological and feeding behavioral, hybridization experiments, RAPD-PCR and RFLP and mitochondrial and nuclear markers. Studies focused on its postzygotic isolation are still somewhat rare in the literature despite their importance to understand the speciation process and the level of gene flow potentially occurring among the different sibling species. Hybridization experiments between Anopheles albitarsis s.s. and Anopheles marajoara, as well as backcrosses between hybrids and Anopheles albitarsis s.s., were performed using the induced mating technique. Results were compared to intraspecific crosses. Larva-to-adult viability and sex ratio were also assessed. Male hybrids show very low insemination rates and nearly complete sterility, apparently due to abnormalities in their reproductive organs. Evidence of partial sterility among the hybrid females was also observed. Our data indicated that Anopheles albitarsis s.s. and Anopheles marajoara show a high level of postzygotic isolation with a strong hybrid male sterility. This result is consistent with the Haldane's rule which states that in interspecific crosses the heterogametic sex is the first to be affected. However, the fact that the females are not completely sterile raises the possibility of introgression between these two siblings species.

  11. Optimization of CHA-PCFC Hybrid Material for the Removal of Radioactive Cs from Waste Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keun-Young; Kim, Jimin; Park, Minsung; Kim, Kwang-Wook; Lee, Eil-Hee; Chung, Dong-Yong; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The liquid waste treatment processes in the normal operation of nuclear power plant are commercialized, those in the abnormal accidents have not been fully developed until now. In the present study, as a preliminary research for the development of precipitation-based treatment process specialized for the removal of Cs from waste seawater generated in the emergency case, the performance test of a hybrid material combining chabazite and potassium cobalt ferrocyanide was conducted. Also the synthesis method for the hybrid adsorbent was optimized for the best Cs removal efficiency on the actual contamination level of waste seawater. Because the temperature effect on the synthesis of PCFC was confirmed by preliminary experiments, the optimization of CHA-PCFC synthesis was also conducted. The hybrid material synthesized at 40 .deg. C showed the highest distribution coefficient of Cs in the same manner of the performance of PCFC synthesized at the lower temperature than that of conventional methods.

  12. Expression of Recombinant Human Alpha-Lactalbumin in the Milk of Transgenic Goats Using a Hybrid Pomoter/Enhancer

    Directory of Open Access Journals (Sweden)

    Yu-Guo Yuan

    2014-01-01

    Full Text Available To improve nutrient content of goat milk, we describe the construction of a vector (pBLAC containing a hybrid goat β-lactoglobulin (BLG promoter/cytomegalovirus (CMV enhancer. We also describe the generation of transgenic goats expressing rhLA by somatic cell nuclear transfer (SCNT. Of 334 one-cell stage embryos derived from three transgenic cell lines and 99 embryos derived from non-transgenic (NT cells surgically transferred to the oviducts of 37 recipients, two recipients delivered two kids (2% from the non-transfected line and five recipients delivered six kids (1.8% from transgenic cell lines, three of which died within 2 days. Compared to the NT donor cells, transfection of donor cells does not negatively affect the development of nuclear transfer embryos into viable transgenic offspring. However, the clone efficiency in cell line number 1 was lower than that in numbers 2 and 3, and in the NT lines (0.9% versus 1.9% 2.4% and 2%; P<0.05. Two transgenic cloned goats expressed rhLA in the milk at 0.1–0.9 mg/mL. The mammary gland-specific expression vector pBLAC with hybrid BLG/CMV can drive the hLA gene to express in vitro and in vivo. These data establish the basis for use of a hybrid promoter/enhancer strategy to produce rhLA transgenic goats.

  13. How neutron stars constrain the nuclear equation of state

    Directory of Open Access Journals (Sweden)

    Hell Thomas

    2014-03-01

    Full Text Available Recent neutron star observations set new constraints for the equation of state of baryonic matter. A chiral effective field theory approach is used for the description of neutron-dominated nuclear matter present in the outer core of neutron stars. Possible hybrid stars with quark matter in the inner core are discussed using a three-flavor Nambu–Jona-Lasinio model.

  14. Current trends in Nuclear Cardiology. Cuban scenario

    International Nuclear Information System (INIS)

    Peix González, Amalia

    2016-01-01

    The study concludes with the following recommendations. Nuclear Cardiology extend to the entire country. Conduct cost-effectiveness studies comparing different imaging techniques in cardiology. Develop metabolic studies and coronary flow by PET. Introducing the study of adrenergic innervation. Develop hybrid imaging in cardiology. Establish committees of experts to analyze the value of different imaging techniques in Cardiology According to our possibilities and resources, toward implementation of a medicine individualized for our patients

  15. NUClear: A Loosely Coupled Software Architecture for Humanoid Robot Systems

    Directory of Open Access Journals (Sweden)

    Trent eHouliston

    2016-04-01

    Full Text Available This paper discusses the design and interface of NUClear, a new hybrid message-passing architecture for embodied humanoid robotics. NUClear is modular, low latency and promotes functional and expandable software design. It greatly reduces the latency for messages passed between modules as the messages routes are established at compile time. It also reduces the number of functions that must be written using a system called co-messages which aids in dealing with multiple simultaneous data. NUClear has primarily been evaluated on a humanoid robotic soccer platform and on a robotic boat platform, with evaluations showing that NUClear requires fewer callbacks and cache variables over existing message-passing architectures. NUClear does have limitations when applying these techniques on multi-processed systems. It performs best in lower power systems where computational resources are limited. Future work will focus on applying the architecture to new platforms, including a larger form humanoid platform and a virtual reality platform and further evaluating the impact of the novel techniques introduced.

  16. Recent advances with a hybrid micro-pattern gas detector operated in low pressure H2 and He, for AT-TPC applications

    Directory of Open Access Journals (Sweden)

    Cortesi Marco

    2018-01-01

    Full Text Available In view of a possible application as a charge-particle track readout for an Active-Target Time Projection Chamber (AT-TPC, the operational properties and performances of a hybrid Micro-Pattern Gaseous Detector (MPGD were investigated in pure low-pressure Hydrogen (H2 and Helium (He. The detector consists of a MICROMEsh GAseous Structure (MICROMEGAS coupled to a two-cascade THick Gaseous Electron Multiplier (THGEM as a pre-amplification stage. This study reports the effective gain dependence of the hybrid-MPGD at relevant pressure (in the range of 200-760 torr for different detector arrangements. The results of this work are relevant in the field of avalanche mechanism in low-pressure, low-mass noble gases, in particularly for applications of MPGD end-cap readout for active-target Time Projection Chambers (TPC in the field of nuclear physics and nuclear astrophysics.

  17. Henkin and Hybrid Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria

    2014-01-01

    Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...... Henkin’s techniques are so important in hybrid logic. We do so by proving a completeness result for a hybrid type theory called HTT, probably the strongest hybrid logic that has yet been explored. Our completeness result builds on earlier work with a system called BHTT, or basic hybrid type theory...... is due to the first-order perspective, which lies at the heart of Henin’s best known work and hybrid logic....

  18. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    Science.gov (United States)

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  19. Water desalination price from recent performances: Modelling, simulation and analysis

    International Nuclear Information System (INIS)

    Metaiche, M.; Kettab, A.

    2005-01-01

    The subject of the present article is the technical simulation of seawater desalination, by a one stage reverse osmosis system, the objectives of which are the recent valuation of cost price through the use of new membrane and permeator performances, the use of new means of simulation and modelling of desalination parameters, and show the main parameters influencing the cost price. We have taken as the simulation example the Seawater Desalting centre of Djannet (Boumerdes, Algeria). The present performances allow water desalting at a price of 0.5 $/m 3 , which is an interesting and promising price, corresponding with the very acceptable water product quality, in the order of 269 ppm. It is important to run the desalting systems by reverse osmosis under high pressure, resulting in further decrease of the desalting cost and the production of good quality water. Aberration in choice of functioning conditions produces high prices and unacceptable quality. However there exists the possibility of decreasing the price by decreasing the requirement on the product quality. The seawater temperature has an effect on the cost price and quality. The installation of big desalting centres, contributes to the decrease in prices. A very important, long and tedious calculation is effected, which is impossible to conduct without programming and informatics tools. The use of the simulation model has been much efficient in the design of desalination centres that can perform at very improved prices. (author)

  20. New types of nuclear energy concepts

    International Nuclear Information System (INIS)

    Ledinegg, E.; Heindler, M.

    1978-10-01

    The article summarises the results of a conference on new concepts of nuclear energy, held from 29 - 31 March 1978. Principles of known systems are briefly outlined, mainly from the standpoint of neutron formation by fission, blanket breeding etc, and power production by plasma focussing and thermonuclear fusion. The new concepts include the Migma system and micro-explosions. A section is included on 'hybrid' reactors using a electronuclear source (ENQ) as neutron supply, and 'symbiotic' reactors using ENQ for fuel supply. (G.C.)

  1. A portable system for nuclear, chemical agent, and explosives identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.; Caffrey, A.J.

    2001-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electromechanically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine a prompt-gamma neutron-activation analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  2. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Caffrey, A.J.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.

    2000-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  3. Species and hybrids in the genus Diaphanosoma Fischer, 1850 (Crustacea: Branchiopoda: Cladocera).

    Science.gov (United States)

    Liu, Ping; Xu, Lei; Xu, Shao-Lin; Martínez, Alejandro; Chen, Hua; Cheng, Dan; Dumont, Henri J; Han, Bo-Ping; Fontaneto, Diego

    2018-01-01

    Cladocerans are well-studied planktonic crustaceans, especially those of the genus Daphnia in which interesting evolutionary questions have been addressed on speciation processes. The aim of the present study is to demonstrate that other genera of cladocerans show similar levels of cryptic diversity, intraspecific gene flow, and thus become useful model systems for comparison. In order to do so, we chose the genus Diaphanosoma, widespread in tropical and temperate areas. We started with a survey of species diversity in the genus Diaphanosoma in Asia using a morphological approach, then obtained sequences from a mitochondrial and a nuclear marker from multiple individuals of different species, performed tests on DNA taxonomy and molecular phylogenies, and assessed the role of hybridization in explaining the cases of mitonuclear discordance. The results are that cryptic diversity occurs in Diaphanosoma, and mitonuclear discordance was found in about 6% of the sequenced animals. Past hybridization is supported as the most likely explanation for the discordance: no evidence was found of first generation hybrids with heterozygous sequences. Our analysis on patterns of genetic diversity in Diaphanosoma supports similarities and differences with what is known in Daphnia. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Sorting through the chaff, nDNA gene trees for phylogenetic inference and hybrid identification of annual sunflowers (Helianthus sect. Helianthus).

    Science.gov (United States)

    Moody, Michael L; Rieseberg, Loren H

    2012-07-01

    The annual sunflowers (Helianthus sect. Helianthus) present a formidable challenge for phylogenetic inference because of ancient hybrid speciation, recent introgression, and suspected issues with deep coalescence. Here we analyze sequence data from 11 nuclear DNA (nDNA) genes for multiple genotypes of species within the section to (1) reconstruct the phylogeny of this group, (2) explore the utility of nDNA gene trees for detecting hybrid speciation and introgression; and (3) test an empirical method of hybrid identification based on the phylogenetic congruence of nDNA gene trees from tightly linked genes. We uncovered considerable topological heterogeneity among gene trees with or without three previously identified hybrid species included in the analyses, as well as a general lack of reciprocal monophyly of species. Nonetheless, partitioned Bayesian analyses provided strong support for the reciprocal monophyly of all species except H. annuus (0.89 PP), the most widespread and abundant annual sunflower. Previous hypotheses of relationships among taxa were generally strongly supported (1.0 PP), except among taxa typically associated with H. annuus, apparently due to the paraphyly of the latter in all gene trees. While the individual nDNA gene trees provided a useful means for detecting recent hybridization, identification of ancient hybridization was problematic for all ancient hybrid species, even when linkage was considered. We discuss biological factors that affect the efficacy of phylogenetic methods for hybrid identification.

  5. S 400 BlueHYBRID. First hybrid vehicle with Li-ion technology; S 400 BlueHYBRID. Erstes Hybridfahrzeug mit Li-Ionen-Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Vollrath, Oliver; Armstrong, Neil; Schenk, Juergen; Bitsche, Otmar; Lamm, Arnold [Daimler AG, Stuttgart (Germany)

    2009-07-01

    Mercedes Benz advances the electrification of the drive strand in all performance classes and in all models from the start-stop system till to the full hybrid. Thereby, the S 400 BlueHYBRID presents the first Mercedes-Benz hybrid. Equipped with the characteristics of a start-stop system, with a recovery of the brake energy and with an electrical support of the drive, this hybrid obtains a saving of the consumption of approximately 20 %. By means of the design of the components and by means of the selection of a standard installation size, all hybrid-specific construction units in the vehicle porch could be arranged. Here, a special role comes to the used battery technology, since it became possible to arrange the hybrid battery in the size and the building area of a conventional starter battery accordingly.

  6. Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors

    International Nuclear Information System (INIS)

    Bertolucci, E.; Maiorino, M.; Mettivier, G.; Montesi, M.C.; Russo, P.

    2002-01-01

    We are investigating the feasibility of an intraoperative imaging probe for lymphoscintigraphy with Tc-99m tracer, for sentinel node radioguided surgery, using the Medipix series of hybrid detectors coupled to a collimator. These detectors are pixelated semiconductor detectors bump-bonded to the Medipix1 photon counting read-out chip (64x64 pixel, 170 μm pitch) or to the Medipix2 chip (256x256 pixel, 55 μm pitch), developed by the European Medipix collaboration. The pixel detector we plan to use in the final version of the probe is a semi-insulating GaAs detector or a 1-2 mm thick CdZnTe detector. For the preliminary tests presented here, we used 300-μm thick silicon detectors, hybridized via bump-bonding to the Medipix1 chip. We used a tungsten parallel-hole collimator (7 mm thick, matrix array of 64x64 100 μm circular holes with 170 μm pitch), and a 22, 60 and 122 keV point-like (1 mm diameter) radioactive sources, placed at various distances from the detector. These tests were conducted in order to investigate the general feasibility of this imaging probe and its resolving power. Measurements show the high resolution but low efficiency performance of the detector-collimator set, which is able to image the 122 keV source with <1 mm FWHM resolution

  7. Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model

    International Nuclear Information System (INIS)

    Steven R. Sherman

    2007-01-01

    The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant

  8. Lifetimes of #betta#'s and μ's and short-distance nuclear phenomena

    International Nuclear Information System (INIS)

    Kisslinger, L.S.

    1982-06-01

    It is shown that short distance phenomena and thus quark structure play vital roles in the theory of #betta# and μ decays in nuclei. A hybrid two-baryon-quark shell model is used to estimate the lifetimes for nonmesonic decays of #betta#'s and μ's in nuclear matter

  9. Neutronic behavior of thorium fuel cycles in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Rodriguez Garcia, Lorena; Milian Perez, Daniel; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel; Velasco, Abanades

    2013-01-01

    Nuclear energy needs to guarantee four important issues to be successful as a sustainable energy source: nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. Pebble bed reactors (PBR), which are very high temperature systems together with fuel cycles based in Thorium, they could offer the opportunity to meet the sustainability demands. Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. This paper shows the main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a variety of fuel cycles with Thorium (Th+U 233 , Th+Pu 239 and Th+U). The parameters related to the neutronic behavior like deep burn, nuclear fuel breeding, Minor Actinide stockpile, power density profiles and other are used to compare the fuel cycles using the well-known MCNPX computational code. (author)

  10. Neutronic behavior of thorium fuel cycles in a very high temperature hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Garcia, Lorena; Milian Perez, Daniel; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel, E-mail: dperez@instec.cu, E-mail: cgh@instec.cu, E-mail: dmilian@instec.cu [Higher Institute of Technologies and Applied Sciences, Havana (Cuba); Velasco, Abanades, E-mail: abanades@etsii.upm.es [Department of Simulation of Thermo Energy Systems, Polytechnic University of Madrid (Spain)

    2013-07-01

    Nuclear energy needs to guarantee four important issues to be successful as a sustainable energy source: nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. Pebble bed reactors (PBR), which are very high temperature systems together with fuel cycles based in Thorium, they could offer the opportunity to meet the sustainability demands. Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. This paper shows the main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a variety of fuel cycles with Thorium (Th+U{sup 233}, Th+Pu{sup 239} and Th+U). The parameters related to the neutronic behavior like deep burn, nuclear fuel breeding, Minor Actinide stockpile, power density profiles and other are used to compare the fuel cycles using the well-known MCNPX computational code. (author)

  11. Hydrogen and oxygen production with nuclear heat

    International Nuclear Information System (INIS)

    Barnert, H.

    1979-09-01

    After some remarks on the necessity of producing secondary energy sources for the heat market, the thermodynamic fundamentals of the processes for producing hydrogen and oxygen from water on the basis of nuclear thermal energy are briefly explained. These processes are summarized as one class of the 'thermochemical cycle process' for the conversion of thermal into chemical energy. A number of thermochemical cycle processes are described. The results of the design work so far are illustrated by the example of the 'sulphuric acid hybrid process'. The nuclear heat source of the thermochemical cycle process is the high-temperature reactor. Statements concerning rentability are briefly commented upon, and the research and development efforts and expenditure required are sketched. (orig.) 891 GG/orig. 892 MB [de

  12. A hybrid HTGR system producing electricity, hydrogen and such other products as water demanded in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X., E-mail: yan.xing@jaea.go.jp; Noguchi, H.; Sato, H.; Tachibana, Y.; Kunitomi, K.; Hino, R.

    2014-05-01

    Alternative energy products are being considered by the Middle East countries for both consumption and export. Electricity, water, and hydrogen produced not from oil and gas are amongst those desirable. A hybrid nuclear production system, GTHTR300C, under development in JAEA can achieve this regional strategic goal. The system is based on a 600 MWt HTGR and equipped to cogenerate electricity by gas turbine and seawater desalination by using only the nuclear plant waste heat. Hydrogen is produced via a thermochemical water-splitting process driven by the reactor's 950 °C heat. Additionally process steam may be produced for industrial uses. An example is shown of manufacturing soda ash, an internationally traded commodity, from using the steam produced and the brine discharged from desalination. The nuclear reactor satisfies nearly all energy requirements for the hybrid generations without emitting CO{sub 2}. The passive safety of the reactor as described in the paper permits proximity of siting the reactor with the production facilities to enhance energy transmission. Production flowsheet of the GTHTR300C is given for up to 300 MWe electricity, 58 t/day hydrogen, 56,000 m{sup 3}/day potable water, 3500 t/day steam, and 1000 t/day soda ash. The production thermal efficiency reaches 88%.

  13. Hybrid imaging with contrast enhanced CT scan: A nuclear physician's point of view

    International Nuclear Information System (INIS)

    Houzard, C.; Tychyj-Pinel, C.; Defez, D.; Valette, P.J.; Giammarile, F.; Houzard, C.; Valette, P.J.; Giammarile, F.

    2010-01-01

    The ongoing development of hybrid imaging, with physical association of CT scan and PET or SPECT scan, allows integrating morphological and functional information on a single exam. This important technological evolution changes diagnostic and therapeutic strategy in a major manner, essentially in oncology. The possibility to inject intravenously iodinated contrast media in order to enhance CT image contrast is still a controversial question in France. We present our experience in this domain by approaching technical problems and diagnostic advantages. (authors)

  14. Hybrid quantum-classical master equations

    International Nuclear Information System (INIS)

    Diósi, Lajos

    2014-01-01

    We discuss hybrid master equations of composite systems, which are hybrids of classical and quantum subsystems. A fairly general form of hybrid master equations is suggested. Its consistency is derived from the consistency of Lindblad quantum master equations. We emphasize that quantum measurement is a natural example of exact hybrid systems. We derive a heuristic hybrid master equation of time-continuous position measurement (monitoring). (paper)

  15. Production of intertribal somatic hybrids between Brassica napus L. and Lesquerella fendleri (Gray) Wats

    International Nuclear Information System (INIS)

    Skarzhinskaya, M.; Landgren, M.; Glimelius, K.

    1996-01-01

    Intertribal Brassica napus (+) Lesquerella fendleri hybrids have been produced by polyethylene glycol-induced fusions of B. napus hypocotyl and L. fendleri mesophyll protoplasts. Two series of experiments were performed. In the first, symmetric fusion experiments, protoplasts from the two materials were fused without any pretreatments. In the second, asymmetric fusion experiments, X-ray irradiation at doses of 180 and 200 Gy were used to limit the transfer of the L. fendleri genome to the hybrids. X-ray irradiation of L. fendleri mesophyll protoplasts did not suppress the proliferation rate and callus formation of the fusion products but did significantly decrease growth and differentiation of non-fused L. fendleri protoplasts. In total, 128 regenerated plants were identified as intertribal somatic hybrids on the basis of morphological criteria. Nuclear DNA analysis performed on 80 plants, using species specific sequences, demonstrated that 33 plants from the symmetric fusions and 43 plants from the asymmetric fusions were hybrids. Chloroplast and mitochondrial DNA analysis revealed a biased segregation that favoured B. napus organelles in the hybrids from the symmetric fusion experiments. The bias was even stronger in the hybrids from the asymmetric fusion experiments where no hybrids with L. fendleri organelles were found. X-ray irradiation of L. fendleri protoplasts increased the possibility of obtaining mature somatic hybrid plants with improved fertility. Five plants from the symmetric and 24 plants from the asymmetric fusion experiments were established in the greenhouse. From the symmetric fusions 2 plants could be fertilised and set seeds after cross-pollination with B. napus. From the asymmetric fusions 9 plants could be selfed as well as fertilised when backcrossed with B. napus. Chromosome analysis was performed on all of the plants but 1 that were transferred to the greenhouse. Three plants from the symmetric fusions contained 50 chromosomes, which

  16. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  17. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  18. Hybridization and genome evolution I: The role of contingency during hybrid speciation

    Directory of Open Access Journals (Sweden)

    Fabrice EROUKHMANOFF, Richard I. BAILEY, Glenn-Peter SæTRE

    2013-10-01

    Full Text Available Homoploid hybrid speciation (HHS involves the recombination of two differentiated genomes into a novel, functional one without a change in chromosome number. Theoretically, there are numerous ways for two parental genomes to recombine. Hence, chance may play a large role in the formation of a hybrid species. If these genome combinations can evolve rapidly following hybridization and sympatric situations are numerous, recurrent homoploid hybrid speciation is a possibility. We argue that three different, but not mutually exclusive, types of contingencies could influence this process. First, many of these “hopeful monsters” of recombinant parent genotypes would likely have low fitness. Only specific combinations of parental genomic contributions may produce viable, intra-fertile hybrid species able to accommodate potential constraints arising from intragenomic conflict. Second, ecological conditions (competition, geography of the contact zones or the initial frequency of both parent species might favor different outcomes ranging from sympatric coexistence to the formation of hybrid swarms and ultimately hybrid speciation. Finally, history may also play an important role in promoting or constraining recurrent HHS if multiple hybridization events occur sequentially and parental divergence or isolation differs along this continuum. We discuss under which conditions HHS may occur multiple times in parallel and to what extent recombination and selection may fuse the parent genomes in the same or different ways. We conclude by examining different approaches that might help to solve this intriguing evolutionary puzzle [Current Zoology 59 (5: 667-674, 2013]. 

  19. Interspecific somatic hybrids between Cyclamen persicum and C. coum, two sexually incompatible species.

    Science.gov (United States)

    Prange, Anika Nadja Sabine; Bartsch, Melanie; Meiners, Julia; Serek, Margrethe; Winkelmann, Traud

    2012-04-01

    By applying polyethylene glycol (PEG)-mediated protoplast fusion, the first somatic hybrids were obtained between Cyclamen persicum (2n = 2x = 48) and C. coum (2n = 2x = 30)-two species that cannot be combined by cross breeding. Heterofusion was detected by double fluorescent staining with fluorescein diacetate and scopoletin. The highest heterofusion frequencies (of about 5%) resulted from a protocol using a protoplast density of 1 × 10(6)/mL and 40% PEG. The DNA content of C. coum was estimated for the first time by propidium iodide staining to be 14.7 pg/2C and was 4.6 times higher than that of C. persicum. Among 200 in vitro plantlets regenerated from fusion experiments, most resembled the C. coum parent, whereas only 5 plants showed typical C. persicum phenotypes and 46 had a deviating morphology. By flow cytometry, six putative somatic hybrids were identified. A species-specific DNA marker was developed based on the sequence of the 5.8S gene in the ribosomal nuclear DNA and its flanking internal transcribed spacers ITS1 and ITS2. The hybrid status of only one plant could be verified by the species-specific DNA marker as well as sequencing of the amplification product. RAPD markers turned out to be less informative and applicable for hybrid identification, as no clear additivity of the parental marker bands was observed. Chromosome counting in root tips of four hybrids revealed the presence of the 30 C. coum chromosomes and 2-41 additional ones indicating elimination of C. persicum chromosomes. © Springer-Verlag 2011

  20. Hybridization among distantly related species: Examples from the polyploid genus Curcuma (Zingiberaceae).

    Science.gov (United States)

    Záveská, Eliška; Fér, Tomáš; Šída, Otakar; Marhold, Karol; Leong-Škorničková, Jana

    2016-07-01

    Discerning relationships among species evolved by reticulate and/or polyploid evolution is not an easy task, although it is widely discussed. The economically important genus Curcuma (ca. 120 spp.; Zingiberaceae), broadly distributed in tropical SE Asia, is a particularly interesting example of a group of palaeopolyploid origin whose evolution is driven mainly by hybridization and polyploidization. Although a phylogeny and a new infrageneric classification of Curcuma, based on commonly used molecular markers (ITS and cpDNA), have recently been proposed, significant evolutionary questions remain unresolved. We applied a multilocus approach and a combination of modern analytical methods to this genus to distinguish causes of gene tree incongruence and to identify hybrids and their parental species. Five independent regions of nuclear DNA (DCS, GAPDH, GLOBOSA3, LEAFY, ITS) and four non-coding cpDNA regions (trnL-trnF, trnT-trnL, psbA-trnH and matK), analysed as a single locus, were employed to construct a species tree and hybrid species trees using (*)BEAST and STEM-hy. Detection of hybridogenous species in the dataset was also conducted using the posterior predictive checking approach as implemented in JML. The resulting species tree outlines the relationships among major evolutionary lineages within Curcuma, which were previously unresolved or which conflicted depending upon whether they were based on ITS or cpDNA markers. Moreover, by using the additional markers in tests of plausible topologies of hybrid species trees for C. vamana, C. candida, C. roscoeana and C. myanmarensis suggested by previous molecular and morphological evidence, we found strong evidence that all the species except C. candida are of subgeneric hybrid origin. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Overview of hybrid subspace methods for uncertainty quantification, sensitivity analysis

    International Nuclear Information System (INIS)

    Abdel-Khalik, Hany S.; Bang, Youngsuk; Wang, Congjian

    2013-01-01

    Highlights: ► We overview the state-of-the-art in uncertainty quantification and sensitivity analysis. ► We overview new developments in above areas using hybrid methods. ► We give a tutorial introduction to above areas and the new developments. ► Hybrid methods address the explosion in dimensionality in nonlinear models. ► Representative numerical experiments are given. -- Abstract: The role of modeling and simulation has been heavily promoted in recent years to improve understanding of complex engineering systems. To realize the benefits of modeling and simulation, concerted efforts in the areas of uncertainty quantification and sensitivity analysis are required. The manuscript intends to serve as a pedagogical presentation of the material to young researchers and practitioners with little background on the subjects. We believe this is important as the role of these subjects is expected to be integral to the design, safety, and operation of existing as well as next generation reactors. In addition to covering the basics, an overview of the current state-of-the-art will be given with particular emphasis on the challenges pertaining to nuclear reactor modeling. The second objective will focus on presenting our own development of hybrid subspace methods intended to address the explosion in the computational overhead required when handling real-world complex engineering systems.

  2. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    Science.gov (United States)

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.

  3. Theoretical nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Rost, E.; Shephard, J.R.

    1992-08-01

    This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self- consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the {triangle}-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to {bar p}p {yields} {bar {Lambda} {Lambda}} reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field.

  4. First-Order Hybrid Logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Hybrid logic is an extension of modal logic which allows us to refer explicitly to points of the model in the syntax of formulas. It is easy to justify interest in hybrid logic on applied grounds, with the usefulness of the additional expressive power. For example, when reasoning about time one...... often wants to build up a series of assertions about what happens at a particular instant, and standard modal formalisms do not allow this. What is less obvious is that the route hybrid logic takes to overcome this problem often actually improves the behaviour of the underlying modal formalism....... For example, it becomes far simpler to formulate proof-systems for hybrid logic, and completeness results can be proved of a generality that is simply not available in modal logic. That is, hybridization is a systematic way of remedying a number of known deficiencies of modal logic. First-order hybrid logic...

  5. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  6. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  7. Managing hybrid marketing systems.

    Science.gov (United States)

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  8. Nuclear energy synergetics and molten-salt technology

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1988-01-01

    There are various problems with nuclear energy techniques in terms of resources, safety, environmental effects, nuclear proliferation, reactor size reduction and overall economics. To overcome these problems, future studies should be focused on utilization of thorium resources, separation of multiplication process and power generation process, and application of liquid nuclear fuel. These studies will lead to the development of molten thorium salt nuclear synergetics. The most likely candidate for working medium is Lif-BeF 2 material (flibe). 233 U production facilities are required for the completion of the Th cycle. For this, three ideas have been proposed: accelerator M.S. breeder, impact fusion MSB and inertial conf. fusion hybrid MSB. The first step toward the development of molten Th salt nuclear energy synergetics will be the construction of a pilot plant of an extreme small size. As candidate reactor, the author has selected mini FUJI-II (7.0 MWe), an extremely small molten salt power reactor. Mini FUJI-II facilities are expected to be developed in 7 - 8 years. For the next step (demonstration step), the designing of a small power reactor (FUJI 160 MWe) has already been carried out. A small molten salt reactor will have good safety characteristics in terms of chemistry, material, structure, nuclear safety and design basis accidents. Such reactors will also have favorable economic aspects. (Nogami, K.)

  9. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops.

    Science.gov (United States)

    Wu, Yongzhong; Fox, Tim W; Trimnell, Mary R; Wang, Lijuan; Xu, Rui-Ji; Cigan, A Mark; Huffman, Gary A; Garnaat, Carl W; Hershey, Howard; Albertsen, Marc C

    2016-03-01

    We have developed a novel hybridization platform that utilizes nuclear male sterility to produce hybrids in maize and other cross-pollinating crops. A key component of this platform is a process termed Seed Production Technology (SPT). This process incorporates a transgenic SPT maintainer line capable of propagating nontransgenic nuclear male-sterile lines for use as female parents in hybrid production. The maize SPT maintainer line is a homozygous recessive male sterile transformed with a SPT construct containing (i) a complementary wild-type male fertility gene to restore fertility, (ii) an α-amylase gene to disrupt pollination and (iii) a seed colour marker gene. The sporophytic wild-type allele complements the recessive mutation, enabling the development of pollen grains, all of which carry the recessive allele but with only half carrying the SPT transgenes. Pollen grains with the SPT transgenes exhibit starch depletion resulting from expression of α-amylase and are unable to germinate. Pollen grains that do not carry the SPT transgenes are nontransgenic and are able to fertilize homozygous mutant plants, resulting in nontransgenic male-sterile progeny for use as female parents. Because transgenic SPT maintainer seeds express a red fluorescent protein, they can be detected and efficiently separated from seeds that do not contain the SPT transgenes by mechanical colour sorting. The SPT process has the potential to replace current approaches to pollen control in commercial maize hybrid seed production. It also has important applications for other cross-pollinating crops where it can unlock the potential for greater hybrid productivity through expanding the parental germplasm pool. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Impact of nuclear research on the future technology of nuclear power

    International Nuclear Information System (INIS)

    Iyengar, P.K.

    1979-01-01

    Policy makers in the developing countries tend to assess the value of any research project by its end-results. As research projects in the field of applied science or technology promise immediate and tangible benefits to the society, high priority is given to such projects in fund allocation by policy makers. On the other hand, basic or ''pure'' science is usually viewed as pursuit of knowledge for its own sake. It has been pointed out that such a view is a mistaken one and there is no real demarcation between basic science and applied science. More often than not, results of research in basic science form the basis of transforming old technologies into better ones and giving rise to new ones. On this background, a case has been emphatically put forward: (1) to identify areas of science, particularly in nuclear science, which may not appear relevant to the immediate problems but look promising in their application and (2) to make investments, even though heavy, for research in such areas. In case of nuclear science, research areas of potential application are high energy accelerators, implosion, fusion reactions, laser fusion, tokamak devices, fusion-fission hybrid reactor systems, breeding of fissile materials from fertile ones by accelerator based neutron sources. Impact of research in these areas on and its relevance to nuclear power generation is indicated and the-state-of-art in these areas in India is described. An appendix lucidly explains generation of nuclear energy from fission and discusses thermal and fast breeder reactors. (M.G.B.)

  11. Memory-built-in quantum cloning in a hybrid solid-state spin register

    Science.gov (United States)

    Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.

    2015-07-01

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.

  12. Hybrid Imaging Labels: Providing the Link Between Mass Spectrometry-Based Molecular Pathology and Theranostics

    Science.gov (United States)

    Buckle, Tessa; van der Wal, Steffen; van Malderen, Stijn J.M.; Müller, Larissa; Kuil, Joeri; van Unen, Vincent; Peters, Ruud J.B.; van Bemmel, Margaretha E.M.; McDonnell, Liam A.; Velders, Aldrik H.; Koning, Frits; Vanhaeke, Frank; van Leeuwen, Fijs W. B.

    2017-01-01

    Background: Development of theranostic concepts that include inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) imaging can be hindered by the lack of a direct comparison to more standardly used methods for in vitro and in vivo evaluation; e.g. fluorescence or nuclear medicine. In this study a bimodal (or rather, hybrid) tracer that contains both a fluorescent dye and a chelate was used to evaluate the existence of a direct link between mass spectrometry (MS) and in vitro and in vivo molecular imaging findings using fluorescence and radioisotopes. At the same time, the hybrid label was used to determine whether the use of a single isotope label would allow for MS-based diagnostics. Methods: A hybrid label that contained both a DTPA chelate (that was coordinated with either 165Ho or 111In) and a Cy5 fluorescent dye was coupled to the chemokine receptor 4 (CXCR4) targeting peptide Ac-TZ14011 (hybrid-Cy5-Ac-TZ4011). This receptor targeting tracer was used to 1) validate the efficacy of (165Ho-based) mass-cytometry in determining the receptor affinity via comparison with fluorescence-based flow cytometry (Cy5), 2) evaluate the microscopic binding pattern of the tracer in tumor cells using both fluorescence confocal imaging (Cy5) and LA-ICP-MS-imaging (165Ho), 3) compare in vivo biodistribution patterns obtained with ICP-MS (165Ho) and radiodetection (111In) after intravenous administration of hybrid-Cy5-Ac-TZ4011 in tumor-bearing mice. Finally, LA-ICP-MS-imaging (165Ho) was linked to fluorescence-based analysis of excised tissue samples (Cy5). Results: Analysis with both mass-cytometry and flow cytometry revealed a similar receptor affinity, respectively 352 ± 141 nM and 245 ± 65 nM (p = 0.08), but with a much lower detection sensitivity for the first modality. In vitro LA-ICP-MS imaging (165Ho) enabled clear discrimination between CXCR4 positive and negative cells, but fluorescence microscopy was required to determine the

  13. The nuclear energy of the future: the researches and the objectives

    International Nuclear Information System (INIS)

    2005-01-01

    Today energy problems are global problems. That is why the new generation of energy production by nuclear power must be realized basely on serious forecasts at a world scale. The nuclear energy presents many trumps for an energetic answer, at long-dated, concerning the environment and the resources. This will be for two main conditions: the ability to answer the public opinion anxiety and the development of new systems more high- performance in terms of safety and economy in the framework of the sustainable development and the non proliferation policy. These subjects are at the earth of the CEA missions. This document proposes a detailed presentation of the nuclear origins, the fuel and its cycle, the radioactive wastes and their management,the dismantling and the decommissioning of the nuclear installations, the challenges of the nuclear safety, the energy in the world, the nuclear economy, the nuclear in the world, the researches of the future, the third generation reactors, the research on radioactive wastes, the fuel cycle of the nuclear systems of the future, the uranium resources, the generation four forum, the gas coolant reactors, the thorium, hybrid systems and the thermonuclear fusion. (A.L.B.)

  14. Foundations of a long-term strategy for nuclear power development in Japan

    International Nuclear Information System (INIS)

    Murata, H.

    1975-01-01

    A long-term strategy for nuclear power developments in Japan is proposed. The situation in the world has greatly changed in the recent years due to the rise in oil prices as well as the considerable concern about the environmental problems caused by the nuclear power plants. Stress is being placed on the harmonization with the environmental protection rather than on the economical generation of the nuclear power. In order to meet the future requirements, five systems are given for the short, medium and long ranges beyond the year 2000. For the final stage a system is proposed that combines fusion-fission hybrid reactors with very high temperature gas cooled reactors to supply clean energy. (author)

  15. Fingerprinting and genetic purity assessment of F1 barley hybrids and their salt-tolerant parental lines using nSSR molecular markers.

    Science.gov (United States)

    Ben Romdhane, Mériam; Riahi, Leila; Jardak, Rahma; Ghorbel, Abdelwahed; Zoghlami, Nejia

    2018-01-01

    Hybridity and the genuineness of hybrids are prominent characteristics for quality control of seeds and thereby for varietal improvement. In the current study, the cross between two local barley genotypes (Ardhaoui: female; Testour: male) previously identified as susceptible/tolerant to salt stress in Tunisia was achieved. The hybrid genetic purity of the generated F 1 putative hybrids and the fingerprinting of the parents along with their offspring were assessed using a set of 17 nuclear SSR markers. Among the analyzed loci, 11 nSSR were shown polymorphic among the parents and their offspring. Based on the applied 11 polymorphic SSR loci, a total of 28 alleles were detected with an average of 2.54 alleles per locus. The locus HVM33 presented the highest number of alleles. The highest polymorphism information content value was detected for the locus HVM33 (0.6713) whereas the lowest PIC value (0.368) was revealed by the loci BMAC0156 , EBMAC0970 and BMAG0013 with a mean value of 0.4619. The probabilities of identical genotypes PI for the 11 microsatellite markers were 8.63 × 10 -7 . Banding patterns among parents and hybrids showed polymorphic fragments. The 11 SSR loci had produced unique fingerprints for each analyzed genotype and segregate between the two parental lines and their four hybrids. Parentage analysis confirms the hybrid purity of the four analyzed genotypes. Six Tunisian barley accessions were used as an outgroup in the multivariate analysis to confirm the efficiency of the employed 11 nSSR markers in genetic differentiation among various barley germplasms. Thus, neighbor joining and factorial analysis revealed clearly the discrimination among the parental lines, the four hybrids and the outgroup accessions. Out of the detected polymorphic 11 nuclear SSR markers, a set of five markers ( HVM33 , WMC1E8 , BMAC0154 , BMAC0040 and BMAG0007 ) were shown to be sufficient and informative enough to discriminate among the six genotypes representing the two

  16. The water desalination complex based on ABV-type reactor plant

    International Nuclear Information System (INIS)

    Panov, Yu.K.; Fadeev, Yu.P.; Vorobiev, V.M.; Baranaev, Yu.D.

    1997-01-01

    A floating nuclear desalination complex with two barges, one for ABV type reactor plant, with twin reactor 2 x 6 MW(e), and one for reverse osmosis desalination plant, was described. The principal specifications of the ABV type reactor plant and desalination barge were given. The ABV type reactor has a traditional two-circuit layout using an integral type reactor vessel with all mode natural convection of primary coolant. The desalted water cost was estimated to be around US $0.86 per cubic meter. R and D work has been performed and preparations for commercial production are under way. (author)

  17. Effective doses associated with the common hybrid scans performed in nuclear medicine to adult patients

    International Nuclear Information System (INIS)

    Camacho Lopez, C.; Garcia Martinez, M. T.; Martin Vidal, J. F.; Falgas Lacuela, M.; Vercher Conejero, J. L.

    2011-01-01

    The main objective of this paper is to outline the effective dose (E) that can be taught in hybrid SPECT-CT scans and PET-CT performed more common in adult patients. E is expressed as the Natural Radiation Equivalent Time (TERN) and consider, for each scan, the percentage of the total dose due to TC.

  18. Hybrid vehicle potential assessment. Volume 7: Hybrid vehicle review

    Science.gov (United States)

    Leschly, K. O.

    1979-01-01

    Review of hybrid vehicles built during the past ten years or planned to be built in the near future is presented. An attempt is made to classify and analyze these vehicles to get an overall picture of their key characteristics. The review includes onroad hybrid passenger cars, trucks, vans, and buses.

  19. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would

  20. Generation of auroral kilometric radiation in upper hybrid wave-lower hybrid soliton interaction

    International Nuclear Information System (INIS)

    Pottelette, R.; Dubouloz, N.; Treumann, R.A.

    1992-01-01

    Sporadic bursts of auroral kilometric radiation (AKR) associated with strong bursty electrostatic turbulence in the vicinity of the lower hybrid frequency have been frequently recorded in the AKR source region by the Viking satellite. The variation time scale of these emissions is typically 1 s, long enough for lower hybrid waves to grow to amplitudes of several hundred millivolts per meter and to evolve nonlinearly into solitons. On the basis on these observations it is suggested that formation of lower hybrid solitons may play a role in the generation of AKR. A theoretical model is proposed which is based on the direct acceleration of electrons in the combined lower hybrid soliton and upper hybrid wave fields. The solitons act as sporadic, localized antennas allowing for efficient conversions of the electrostatic energy stored in upper hybrid waves into electromagnetic radiation at a frequency above the X mode cutoff. Excitation of lower hybrid waves is due to the presence of energetic electron beams in the auroral zone found to be associated with steep plasma density gradients. Upper hybrid waves can be excited by a population of energetic electrons with loss cone distributions. The power of the electromagnetic radiation obtained is only noticeable in regions where the plasma frequency is less than the electron gyrofrequency. The theory predicts spectral power densities of the order of 10 -11 to 10 -9 W m -2 Hz -1 in the source region, in good agreement with the Viking observations. The sporadic nature of the radiation derives from lower hybrid soliton collapses which occur on ∼1-s time scales