WorldWideScience

Sample records for hybridization probes generated

  1. Fluorescent hybridization probes for nucleic acid detection.

    Science.gov (United States)

    Guo, Jia; Ju, Jingyue; Turro, Nicholas J

    2012-04-01

    Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.

  2. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries.

    OpenAIRE

    1996-01-01

    A new and highly effective method, termed suppression subtractive hybridization (SSH), has been developed for the generation of subtracted cDNA libraries. It is based primarily on a recently described technique called suppression PCR and combines normalization and subtraction in a single procedure. The normalization step equalizes the abundance of cDNAs within the target population and the subtraction step excludes the common sequences between the target and driver populations. In a model sys...

  3. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z. (National Institutes of Health, Bethesda, MD (USA))

    1990-08-01

    We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies.

  4. Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B

    Science.gov (United States)

    Khazanov, G. V.; Boardsen, S.; Krivorutsky, E. N.; Engebretson, M. J.; Sibeck, D.; Chen, S.; Breneman, A.

    2017-01-01

    We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of 0.86. We assume that the correlation is the result of LHFR wave generation by the ions' polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD) parallel and perpendicular to the ambient magnetic field to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions' polarization drift in the electric field of an EMIC wave.

  5. Hybrid thermoelectric piezoelectric generator

    Science.gov (United States)

    Montgomery, D. S.; Hewitt, C. A.; Carroll, D. L.

    2016-06-01

    This work presents an integration of flexible thermoelectric and piezoelectric materials into a single device structure. This device architecture overcomes several prohibitive issues facing the combination of traditional thermoelectric and piezoelectric generators, while optimizing performance of the combined power output. The structure design uses a carbon nanotube/polymer thin film as a flexible thermoelectric generator that doubles as an electrode on a piezoelectric generator made of poly(vinylidene fluoride). An example 2 × 2 array of devices is shown to generate 89% of the maximum thermoelectric power, and provide 5.3 times more piezoelectric voltage when compared with a traditional device.

  6. Probing Compositional Variation within Hybrid Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yuhas, Benjamin D.; Habas, Susan E.; Fakra, Sirine C.; Mokari, Taleb

    2010-06-22

    We present a detailed analysis of the structural and magnetic properties of solution-grown PtCo-CdS hybrid structures in comparison to similar free-standing PtCo alloy nanoparticles. X-ray absorption spectroscopy is utilized as a sensitive probe for identifying subtle differences in the structure of the hybrid materials. We found that the growth of bimetallic tips on a CdS nanorod substrate leads to a more complex nanoparticle structure composed of a PtCo alloy core and thin CoO shell. The core-shell architecture is an unexpected consequence of the different nanoparticle growth mechanism on the nanorod tip, as compared to free growth in solution. Magnetic measurements indicate that the PtCo-CdS hybrid structures are superparamagnetic despite the presence of a CoO shell. The use of X-ray spectroscopic techniques to detect minute differences in atomic structure and bonding in complex nanosystems makes it possible to better understand and predict catalytic or magnetic properties for nanoscale bimetallic hybrid materials.

  7. Photonics at the frontiers. Generation of few-cycle light pulses via NOPCPA and real-time probing of charge transfer in hybrid photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Daniel

    2011-11-11

    this thesis for the first time succeeded to resolve the photoinduced charge-transfer in the conjugate polymer polythiophene and in hybrid polythiophene/silicon solar cells in real time. Thereby a controverse debate about the nature of the primary photoexcitation in organic semiconductors is resolved: Excitons dissociate with 140 fs time constant to polarons (charge carriers). Deciding parameters (for instance structural order, charge-carrier mobility) for the efficiency of the generation and extraction of free charge carriers can be determined. Further ultrashort-time experiments at novel organic solar cells have here been begun and indicated.

  8. Fluorescence In Situ Hybridization Probe Preparation.

    Science.gov (United States)

    Tolomeo, Doron; Stanyon, Roscoe R; Rocchi, Mariano

    2017-01-01

    The public human genome sequencing project utilized a hierarchical approach. A large number of BAC/PAC clones, with an insert size approximate from 50 kb to 300 kb, were identified and finely mapped with respect to the Sequence Tagged Site (STS) physical map and with respect to each other. A "golden path" of BACs, covering the entire human genome, was then selected and each clone was fully sequenced. The large number of remaining BACs was not fully sequenced, but the availability of the end sequence (~800-1000 bp) at each end allowed them to be very precisely mapped on the human genome.The search for copy number variations of the human genome used several strategies. One of these approaches took advantage of the fact that fosmid clones, contrary to BAC/PAC clones, have a fixed insert size (~40 kb) (Kidd et al., Nature 453: 56-64, 2008). In this context, the ends of ~7 million fosmid clones were sequenced, and therefore it was possible to precisely map these clones on the human genome.In summary, a large number of genomic clones (GC) are available for FISH experiments. They usually yield bright FISH signals and are extremely precious for molecular cytogenetics, and in particular cancer cytogenetics. The already-labeled probes available commercially are usually based on a combination of such GCs. The present chapter summarizes the protocols for extracting, labeling, and hybridization onto slides of DNA obtained from GC.

  9. Interactive fluorophore and quencher pairs for labeling fluorescent nucleic acid hybridization probes.

    Science.gov (United States)

    Marras, Salvatore A E

    2008-03-01

    The use of fluorescent nucleic acid hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. Real-time nucleic acid amplification assays markedly improves the ability to obtain qualitative and quantitative results. Furthermore, these assays can be carried out in sealed tubes, eliminating carryover contamination. Fluorescent nucleic acid hybridization probes are available in a wide range of different fluorophore and quencher pairs. Multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. In order to develop robust, highly sensitive and specific real-time nucleic acid amplification assays it is important to carefully select the fluorophore and quencher labels of hybridization probes. Selection criteria are based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This article provides an overview of different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers currently available.

  10. A comparative hybridization analysis of yeast DNA with Paramecium parafusin- and different phosphoglucomutase-specific probes.

    Science.gov (United States)

    Wyroba, E; Satir, B H

    2000-01-01

    Molecular probes designed for the parafusin (PFUS), the Paramecium exocytic-sensitive phosphoglycoprotein, gave distinct hybridization patterns in Saccharomyces cerevisiae genomic DNA when compared with different phosphoglucomutase specific probes. These include two probes identical to segments of yeast phosphoglucomutase (PGM) genes 1 and 2. Neither of the PGM probes revealed the 7.4 and 5.9 kb fragments in Bgl II-cut yeast DNA digest detected with the 1.6 kb cloned PFUS cDNA and oligonucleotide constructed to the PFUS region (insertion 3--I-3) not found in other species. PCR amplification with PFUS-specific primers generated yeast DNA-species of the predicted molecular size which hybridized to the I-3 probe. A search of the yeast genome database produced an unassigned nucleotide sequence that showed 55% identity to parafusin gene and 37% identity to PGM2 (the major isoform of yeast phosphoglucomutase) within the amplified region.

  11. Automated design of probes for rRNA-targeted fluorescence in situ hybridization reveals the advantages of using dual probes for accurate identification.

    Science.gov (United States)

    Wright, Erik S; Yilmaz, L Safak; Corcoran, Andrew M; Ökten, Hatice E; Noguera, Daniel R

    2014-08-01

    Fluorescence in situ hybridization (FISH) is a common technique for identifying cells in their natural environment and is often used to complement next-generation sequencing approaches as an integral part of the full-cycle rRNA approach. A major challenge in FISH is the design of oligonucleotide probes with high sensitivity and specificity to their target group. The rapidly expanding number of rRNA sequences has increased awareness of the number of potential nontargets for every FISH probe, making the design of new FISH probes challenging using traditional methods. In this study, we conducted a systematic analysis of published probes that revealed that many have insufficient coverage or specificity for their intended target group. Therefore, we developed an improved thermodynamic model of FISH that can be applied at any taxonomic level, used the model to systematically design probes for all recognized genera of bacteria and archaea, and identified potential cross-hybridizations for the selected probes. This analysis resulted in high-specificity probes for 35.6% of the genera when a single probe was used in the absence of competitor probes and for 60.9% when up to two competitor probes were used. Requiring the hybridization of two independent probes for positive identification further increased specificity. In this case, we could design highly specific probe sets for up to 68.5% of the genera without the use of competitor probes and 87.7% when up to two competitor probes were used. The probes designed in this study, as well as tools for designing new probes, are available online (http://DECIPHER.cee.wisc.edu).

  12. RNA probes, transcribed from synthetic DNA, for in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Brysch, W.; Hagendorff, G.; Schlingensiepen, K.H.

    1988-03-25

    Single stranded cRNA probes are ideal for in-situ-hybridization. Synthetic oligodesoxy-ribonucleotides on the other hand allow one to chose nucleotide sequences independently of restriction sites and availability of cloned templates. To combine the advantages of these two methods, the authors used an oligonucleotide, containing a T7-RNA-polymerase promotor sequence and a starting sequence of 6 bases as a template for an in-vitro-transcription reaction with T7-RNA-polymerase. A second oligonucleotide, complementary to basepairs 1-101 was also synthesized and the two strands heated to 95/sup 0/ for 3 min, then kept at 65/sup 0/C for one hour in 80 mM Tris, 12mM MgCl, 4 mM Spermidine, 0,04% Triton and finally cooled on ice. The resulting double stranded DNA was used as a template to transcribe /sup 35/S-labelled cRNA, using DNA, T7-Polymerase, /sup 35/S-UTP, ATP, GTP and CTP and RNasin (Promega). No difference could be observed comparing the resulting hybridization pattern with that obtained by using a plasmid derived cRNA probe of rat brain sodium channel II. Moreover the hybridization signal was clearly distinct from the background labelling resulting from hybridization with a sense control probe of the same specific activity.

  13. Next-generation hybridization and introgression

    Science.gov (United States)

    Twyford, A D; Ennos, R A

    2012-01-01

    Hybridization has a major role in evolution—from the introgression of important phenotypic traits between species, to the creation of new species through hybrid speciation. Molecular studies of hybridization aim to understand the class of hybrids and the frequency of introgression, detect the signature of ancient hybridization, and understand the behaviour of introgressed loci in their new genomic background. This often involves a large investment in the design and application of molecular markers, leading to a compromise between the depth and breadth of genomic data. New techniques designed to assay a large sub-section of the genome, in association with next-generation sequencing (NGS) technologies, will allow genome-wide hybridization and introgression studies in organisms with no prior sequence data. These detailed genotypic data will unite the breadth of sampling of loci characteristic of population genetics with the depth of sequence information associated with molecular phylogenetics. In this review, we assess the theoretical and methodological constraints that limit our understanding of natural hybridization, and promote the use of NGS for detecting hybridization and introgression between non-model organisms. We also make recommendations for the ways in which emerging techniques, such as pooled barcoded amplicon sequencing and restriction site-associated DNA tags, should be used to overcome current limitations, and enhance our understanding of this evolutionary significant process. PMID:21897439

  14. Cloned polynucleotide and synthetic oligonucleotide probes used in colony hybridization are equally efficient in the identification of enterotoxigenic Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Sommerfelt, H.; Kalland, K.H.; Raj, P.; Moseley, S.L.; Bhan, M.K.; Bjorvatn, B.

    1988-11-01

    Restriction endonuclease-generated polynucleotide and synthetically produced oligonucleotide gene probes used in colony hybridization assays proved to be efficient for the detection and differentiation of enterotoxigenic Escherichia coli. To compare their relative efficiencies, these two sets of probes were radiolabeled with /sup 32/P and were applied to 74 strains of E. coli with known enterotoxin profiles and to 156 previously unexamined E. coli isolates. The enterotoxigenic bacteria Vibrio cholerae O1, Vibrio cholerae non-O1 (NAG), Yersinia enterocolitica, and E. coli harboring the plasmid vectors of the polynucleotide gene probes were examined for further evaluation of probe specificity. The two classes of probes showed a perfect concordance in their specific detection and differentiation of enterotoxigenic E. coli. In the analysis of six strains, the signal strength on autoradiography after hybridization with oligonucleotides was weaker than that obtained after hybridization with polynucleotide probes. The probes did not hybridize with DNA from V. cholerae O1, V. cholerae non-O1 (NAG), or Y. enterocolitica. The strains of E. coli harboring the plasmid vectors of the polynucleotide gene probes were, likewise, negative in the hybridization assays.

  15. Design of Digital Hybrid Chaotic Sequence Generator

    Institute of Scientific and Technical Information of China (English)

    RAO Nini; ZENG Dong

    2004-01-01

    The feasibility of the hybrid chaotic sequences as the spreading codes in code divided multiple access(CDMA) system is analyzed.The design and realization of the digital hybrid chaotic sequence generator by very high speed integrated circuit hardware description language(VHDL) are described.A valid hazard canceledl method is presented.Computer simulations show that the stable digital sequence waveforms can be produced.The correlations of the digital hybrid chaotic sequences are compared with those of m-sequences.The results show that the correlations of the digital hybrid chaotic sequences are almost as good as those of m-sequences.The works in this paper explored a road for the practical applications of chaos.

  16. A novel fluorescent probe: europium complex hybridized T7 phage.

    Science.gov (United States)

    Liu, Chin-Mei; Jin, Qiaoling; Sutton, April; Chen, Liaohai

    2005-01-01

    We report on the creation of a novel fluorescent probe of europium-complex hybridized T7 phage. It was made by filling a ligand-displayed T7 ghost phage with a fluorescent europium complex particle. The structure of the hybridized phage, which contains a fluorescent inorganic core surrounded by a ligand-displayed capsid shell, was confirmed by electron microscope, energy-dispersive X-ray analysis (EDX), bioassays, and fluorescence spectrometer. More importantly, as a benefit of the phage display technology, the hybridized phage has the capability to integrate an affinity reagent against virtually any target molecules. The approach provides an original method to fluorescently "tag" a bioligand and/or to "biofunctionalize" a fluorophore particle. By using other types of materials such as radioactive or magnetic particles to fill the ghost phage, we envision that the hybridized phages represent a new class of fluorescent, magnetic, or radioprobes for imaging and bioassays and could be used both in vitro and in vivo.

  17. Probe hybridization array typing: a binary typing method for Escherichia coli.

    Science.gov (United States)

    Srinivasan, U; Zhang, L; France, A M; Ghosh, D; Shalaby, W; Xie, J; Marrs, C F; Foxman, B

    2007-01-01

    The ability to distinguish between Escherichia coli strains is critical for outbreak investigations. Binary typing, based on the presence or absence of genetic material, provides a high-throughput alternative to gel- and PCR-based typing techniques that generate complex banding patterns and lack uniform interpretation criteria. We developed, validated, and determined the discriminatory power of an E. coli binary typing method, probe hybridization array typing (PHAT). In PHAT, the absence or presence of genetic material is identified by using DNA hybridization to produce a reproducible and portable fingerprint for each genome. PHAT probes were generated from genome subtractive hybridization experiments. We PHAT typed the ECOR collection of strains from a variety of geographical locations, and 33 rectal E. coli strains selected from college-aged women with urinary tract infection. In the set of 33 human rectal strains, the discriminatory power of PHAT (98%) equaled that of multilocus sequence typing (MLST) and pulsed-field gel electrophoresis. However, for ECOR strains, which include nonhuman strains, the current set of PHAT probes was less discriminating than MLST, ribotyping, and enterobacterial repetitive intergenic consensus sequence PCR (80% versus 97, 92, and 97%, respectively). When we limited the analysis to ECOR strains of B2 and D lineage, which are associated with human infection, current PHAT probes were highly discriminatory (94%). PHAT can be applied in a high-throughput format (i.e., "library on a slide"), the discriminatory ability can be varied based on the probe set, and PHAT is readily adapted to other bacterial species with high variation in genetic content.

  18. Synthesis of RNA probes by the direct in vitro transcription of PCR-generated DNA templates.

    Science.gov (United States)

    Urrutia, R; McNiven, M A; Kachar, B

    1993-05-01

    We describe a novel method for the generation of RNA probes based on the direct in vitro transcription of DNA templates amplified by polymerase chain reaction (PCR) using primers with sequence hybrids between the target gene and those of the T7 and T3 RNA polymerases promoters. This method circumvents the need for cloning and allows rapid generation of strand-specific RNA molecules that can be used for the identification of genes in hybridization experiments. We have successfully applied this method to the identification of DNA sequences by Southern blot analysis and library screening.

  19. Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes

    Science.gov (United States)

    Harrington, Walter N.; Haji, Mwafaq R.; Galanzha, Ekaterina I.; Nedosekin, Dmitry A.; Nima, Zeid A.; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S.; Zharov, Vladimir P.

    2016-11-01

    Photoswitchable fluorescent proteins with controllable light-dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive light-dark states and spectral shifts in absorption can be switched through controllable photothermal heating of doped nanoparticles. The proof-of-concept is demonstrated through the use of two different types of temperature-sensitive dyes doped with magnetic nanoparticles and reversibly photoswitched by a near-infrared laser. Photoacoustic imaging revealed the high contrast of these probes, which is sufficient for their visualization in cells and deep tissue. Our results suggest that these new photoswitchable multicolour probes can be used for multimodal cellular diagnostics and potentially for magnetic and photothermal therapy.

  20. Small Next-Generation Atmospheric Probe (SNAP) Concept

    Science.gov (United States)

    Sayanagi, K. M.; Dillman, R. A.; Simon, A. A.; Atkinson, D. H.; Wong, M. H.; Spilker, T. R.; Saikia, S.; Li, J.; Hope, D.

    2017-01-01

    We present the Small Next-Generation Atmospheric Probe (SNAP) as a secondary payload concept for future missions to giant planets. As a case study, we examine the advantages, cost and risk of adding SNAP to the future Uranus Orbiter and Probe flag-ship mission; in combination with the missions main probe, SNAP would perform atmospheric in-situ measurements at a second location.

  1. Hybrid compensation arrangement in dispersed generation systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    This paper presents a hybrid compensation system consisting of an active filter and distributed passive filters. In the system, each individual passive filter is connected to a distortion source and designed to eliminate main harmonics and supply reactive power for the distortion source, while...... are performed for a power system including the dispersed generation units connected into the system through power electronic converters and diode rectifier loads, which produce the distorted waveforms. The simulation results have demonstrated that good compensation effects can be achieved by using the combined...

  2. Hard probes and the event generator EPOS

    CERN Document Server

    Guiot, Benjamin

    2014-01-01

    After a short presentation of the event generator EPOS, we discuss the production of heavy quarks and prompt photons which has been recently implemented. Whereas we have satisfying results for the charm, work on photons is still in progress.

  3. [Fluorescence in situ hybridization with DNA probes derived from individual chromosomes and chromosome regions].

    Science.gov (United States)

    Bogomolov, A G; Karamysheva, T V; Rubtsov, N B

    2014-01-01

    A significant part of the eukaryotic genomes consists of repetitive DNA, which can form large clusters or distributed along euchromatic chromosome regions. Repeats located in chromosomal regions make a problem in analysis and identification of the chromosomal material with fluorescence in situ hybridization (FISH). In most cases, the identification of chromosome regions using FISH requires detection of the signal produced with unique sequences. The feasibility, advantages and disadvantages of traditional methods of suppression of repetitive DNA hybridization, methods of repeats-free probe construction and methods of chromosome-specific DNA sequences visualization using image processing of multicolor FISH results are considered in the paper. The efficiency of different techniques for DNA probe generation, different FISH protocols, and image processing of obtained microscopic images depends on the genomic size and structure of analyzing species. This problem was discussed and different approaches were considered for the analysis of the species with very large genome, rare species and species which specimens are too small in size to obtain the amount of genomic and Cot-1 DNA required for suppression of repetitive DNA hybridization.

  4. Carrier-phonon interactions in hybrid halide perovskites probed with ultrafast anisotropy studies

    Science.gov (United States)

    Rivett, Jasmine P. H.; Richter, Johannes M.; Price, Michael B.; Credgington, Dan; Deschler, Felix

    2016-09-01

    Hybrid halide perovskites are at the frontier of optoelectronic research due to their excellent semiconductor properties and solution processability. For this reason, much attention has recently been focused on understanding photoexcited charge-carrier generation and recombination in these materials. Conversely, very few studies have so far been devoted to understanding carrier-carrier and carrier-phonon scattering mechanisms in these materials. This is surprising given that carrier scattering mechanisms fundamentally limit charge-carrier motilities and therefore the performance of photovoltaic devices. We apply linear polarization selective transient absorption measurements to polycrystalline CH3NH3PbBr3 hybrid halide perovskite films as an effective way of studying the scattering processes in these materials. Comparison of the photo induced bleach signals obtained when the linear polarizations of the pump and probe are aligned either parallel or perpendicular to one another, reveal a significant difference in spectral intensity and shape within the first few hundred femtoseconds after photoexcitation.

  5. Dramatically improved RNA in situ hybridization signals using LNA-modified probes

    DEFF Research Database (Denmark)

    Thomsen, Rune; Nielsen, Peter Stein; Jensen, Torben Heick

    2005-01-01

    In situ detection of RNA by hybridization with complementary probes is a powerful technique. Probe design is a critical parameter in successful target detection. We have evaluated the efficiency of fluorescent DNA oligonucleotides modified to contain locked nucleic acid (LNA) residues. This incre......In situ detection of RNA by hybridization with complementary probes is a powerful technique. Probe design is a critical parameter in successful target detection. We have evaluated the efficiency of fluorescent DNA oligonucleotides modified to contain locked nucleic acid (LNA) residues....... This increases the thermal stability of hybrids formed with RNA. The LNA-based probes detect specific RNAs in fixed yeast cells with an efficiency far better than conventional DNA oligonucleotide probes of the same sequence. Using this probe design, we were also able to detect poly(A)+ RNA accumulation within...

  6. Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes.

    Science.gov (United States)

    Marras, Salvatore A E; Tyagi, Sanjay; Kramer, Fred Russell

    2006-01-01

    A number of formats for nucleic acid hybridization have been developed to identify DNA and RNA sequences that are involved in cellular processes and that aid in the diagnosis of genetic and infectious diseases. The introduction of hybridization probes with interactive fluorophore pairs has enabled the development of homogeneous hybridization assays for the direct identification of nucleic acids. A change in the fluorescence of these probes indicates the presence of a target nucleic acid, and there is no need to separate unbound probes from hybridized probes. The advantages of homogeneous hybridization assays are their speed and simplicity. In addition, homogeneous assays can be combined with nucleic acid amplification, enabling the detection of rare target nucleic acids. These assays can be followed in real time, providing quantitative determination of target nucleic acids over a broad range of concentrations.

  7. Application of locked nucleic acid-based probes in fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Carvalho, Daniel R; Guimarães, Nuno

    2016-01-01

    Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2′-O-methyl (2′-OMe) RNA modifications have...... on the probe that is targeting microorganisms is unknown. In this study, the melting and hybridization efficiency properties of 18 different probes in regards to their use in FISH for the detection of the 16S rRNA of Helicobacter pylori were compared. For the same sequence and target, probe length and the type...

  8. Surface density dependence of PCR amplicon hybridization on PNA/DNA probe layers

    DEFF Research Database (Denmark)

    Yao, Danfeng; Kim, Junyoung; Yu, Fang

    2005-01-01

    at an intermediate sodium concentration (approximately 100 mM). These effects were mainly ascribed to the electrostatic cross talk among the hybridized DNA molecules and the secondary structure of PCR amplicons. For the negatively charged DNA probes, the hybridization reaction was subjected additionally to the DNA...

  9. Dramatically improved RNA in situ hybridization signals using LNA-modified probes

    DEFF Research Database (Denmark)

    Thomsen, Rune; Nielsen, Peter Stein; Jensen, Torben Heick

    2005-01-01

    In situ detection of RNA by hybridization with complementary probes is a powerful technique. Probe design is a critical parameter in successful target detection. We have evaluated the efficiency of fluorescent DNA oligonucleotides modified to contain locked nucleic acid (LNA) residues. This incre...... the nucleus/ nucleolus of wild-type cells. LNA-based probes should be readily applicable to a diverse array of cells and tissue samples....

  10. Plasmon assisted enhanced second-harmonic generation in single hybrid Au/ZnS nanowires

    Science.gov (United States)

    Jassim, Nadia M.; Wang, Kai; Han, Xiaobo; Long, Hua; Wang, Bing; Lu, Peixiang

    2017-02-01

    We demonstrate the enhanced second-harmonic generation (SHG) in single ZnS nanowires (NWs) attached with gold nanoparticles (Au NPs). The hybrid Au/ZnS NWs with different densities of the attached Au NPs were prepared by a simple solution impregnation method. By comparing with bare ZnS NWs, ∼1.3, ∼6.6, ∼7 and ∼2 times enhancement of SH intensity was achieved in the hybrid Au/ZnS NWs with low, moderate, high and ultrahigh densities of the attached Au NPs, respectively. The enhanced SHG in the hybrid Au/ZnS NWs is attributed to the strong local-fields from the Au cluster under the near-resonant condition, which is supported by the related dark-field scattering spectra. This hybrid Au/ZnS NWs provide a simple platform for enhancing nonlinear optical responses, which have potential applications in nano-probing and nano-sensing.

  11. Hybridization probe for femtomolar quantification of selected nucleic acid sequences on a disposable electrode.

    Science.gov (United States)

    Jenkins, Daniel M; Chami, Bilal; Kreuzer, Matthias; Presting, Gernot; Alvarez, Anne M; Liaw, Bor Yann

    2006-04-01

    Mixed monolayers of electroactive hybridization probes on gold surfaces of a disposable electrode were investigated as a technology for simple, sensitive, selective, and rapid gene identification. Hybridization to the ferrocene-labeled hairpin probes reproducibly diminished cyclic redox currents, presumably due to a displacement of the label from the electrode. Observed peak current densities were roughly 1000x greater than those observed in previous studies, such that results could easily be interpreted without the use of algorithms to correct for background polarization currents. Probes were sensitive to hybridization with a number of oligonucleotide sequences with varying homology, but target oligonucleotides could be distinguished from competing nontarget sequences based on unique "melting" profiles from the probe. Detection limits were demonstrated down to nearly 100 fM, which may be low enough to identify certain genetic conditions or infections without amplification. This technology has rich potential for use in field devices for gene identification as well as in gene microarrays.

  12. A simple and rapid method for the preparation of homologous DNA oligonucleotide hybridization probes from heterologous gene sequences and probes.

    Science.gov (United States)

    Maxwell, E S; Sarge, K D

    1988-11-30

    We describe a simple and rapid method for the preparation of homologous DNA oligonucleotide probes for hybridization analysis and/or cDNA/genomic library screening. With this method, a synthetic DNA oligonucleotide derived from a known heterologous DNA/RNA/protein sequence is annealed to an RNA preparation containing the gene transcript of interest. Any unpaired 3'-terminal oligonucleotides of the heterologous DNA primer are then removed using the 3' exonuclease activity of the DNA Polymerase I Klenow fragment before primer extension/dideoxynucleotide sequencing of the annealed RNA species with AMV reverse transcriptase. From the determined RNA sequence, a completely homologous DNA oligonucleotide probe is then prepared. This approach has been used to prepare a homologous DNA oligonucleotide probe for the successful library screening of the yeast hybRNA gene starting with a heterologous mouse hybRNA DNA oligonucleotide probe.

  13. Bubble colloidal AFM probes formed from ultrasonically generated bubbles.

    Science.gov (United States)

    Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz

    2008-02-05

    Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.

  14. Probing hybrid modified gravity by stellar motion around Galactic Centre

    CERN Document Server

    Borka, D; Jovanović, P; Jovanović, V Borka

    2015-01-01

    We consider possible signatures for the so called {\\it hybrid gravity} within the Galactic Central Parsec. This modified theory of gravity consists of a superposition of the metric Einstein-Hilbert Lagrangian with an $f(R)$ term constructed {\\it \\`{a} la Palatini } and can be easily reduced to an equivalent scalar-tensor theory. The present analysis is based on the S2 star orbital precession around the massive compact dark object at the Galactic Centre where the simulated orbits in hybrid modified gravity are compared with astronomical observations. These simulations result with strong constraints on the range of hybrid gravity interaction parameter $\\phi_0$ and show that its most probable value, in the case of S2 star, is around -0.0009 to -0.0002. At the same time, we are also able to obtain reliable constrains on the effective mass parameter $m_{\\phi}$ of hybrid modified gravity. Its most probable value, in the case of S2 star, is around -0.0034 to -0.0025. Furthermore, the hybrid gravity potential induces...

  15. Fluoroscence in situ hybridization of chicken intestinal samples with bacterial rRNA targeted oligonucleotide probes

    DEFF Research Database (Denmark)

    Olsen, Katja Nyholm; Francesch, M.; Christensen, Henrik

    2006-01-01

    The objective was to develop a fast and accurate molecular method for the quantification of the intestinal flora in chickens by rRNA fluorescence in situ hybridization (FISH). Seven weeks old conventionally reared Lohmann hens were used to set up the method. To sample ileal intestinal content......, the distal part from Meckels diverticulum to the ileo-caecal junction was removed. Fixation was performed in ethanol and phosphate buffered saline. After washing by centrifugation, the sample was resuspended in pre-heated hybridization buffer with oligonucleotide probe labelled with Cy3 (10ng/µl). The cells...... were hybridized for 24-72h, centrifuged, washed with pre-heated hybridization buffer, centrifuged and resuspended in Millipore quality water before filtration onto a 0.22 µm black polycarbonate filter. The probes used in this study were, LGC354A, LGC354B, LGC354C, Strc493, Bacto1080, Sal3, Chis150, EUB...

  16. Brightness through Local Constraint-LNA-Enhanced FIT Hybridization Probes for In Vivo Ribonucleotide Particle Tracking

    DEFF Research Database (Denmark)

    Hövelmann, Felix; Gaspar, Imre; Loibl, Simon

    2014-01-01

    Imaging the dynamics of RNA in living cells is usually performed by means of transgenic approaches that require modification of RNA targets and cells. Fluorogenic hybridization probes would also allow the analysis of wild-type organisms. We developed nuclease-resistant DNA forced intercalation (FIT......) probes that combine the high enhancement of fluorescence upon hybridization with the high brightness required to allow tracking of individual ribonucleotide particles (RNPs). In our design, a single thiazole orange (TO) intercalator dye is linked as a nucleobase surrogate and an adjacent locked nucleic...

  17. Fiber-based hybrid probe for non-invasive cerebral monitoring in neonatology

    Science.gov (United States)

    Rehberger, Matthias; Giovannella, Martina; Pagliazzi, Marco; Weigel, Udo; Durduran, Turgut; Contini, Davide; Spinelli, Lorenzo; Pifferi, Antonio; Torricelli, Alessandro; Schmitt, Robert

    2015-07-01

    Improved cerebral monitoring systems are needed to prevent preterm infants from long-term cognitive and motor restrictions. Combining advanced near-infrared diffuse spectroscopy measurement technologies, time-resolved spectroscopy (TRS) and diffuse correlation spectroscopy (DCS) will introduce novel indicators of cerebral oxygen metabolism and blood flow for neonatology. For non-invasive sensing a fiber-optical probe is used to send and receive light from the infant head. In this study we introduce a new fiber-based hybrid probe that is designed for volume production. The probe supports TRS and DCS measurements in a cross geometry, thus both technologies gain information on the same region inside the tissue. The probe is highly miniaturized to perform cerebral measurements on heads of extreme preterm infants down to head diameters of 6cm. Considerations concerning probe production focus on a reproducible accuracy in shape and precise optical alignment. In this way deviations in measurement data within a series of probes should be minimized. In addition to that, requirements for clinical use like robustness and hygiene are considered. An additional soft-touching sleeve made of FDA compatible silicone allows for a flexible attachment with respect to the individual anatomy of each patient. We present the technical concept of the hybrid probe and corresponding manufacturing methods. A prototype of the probe is shown and tested on tissue phantoms as well as in vivo to verify its operational reliability.

  18. Phenylethynylpyrene excimer forming hybridization probes for fluorescence SNP detection

    DEFF Research Database (Denmark)

    Prokhorenko, Igor A.; Astakhova, Irina V.; Momynaliev, Kuvat T.

    2009-01-01

    Excimer formation is a unique feature of some fluorescent dyes (e.g., pyrene) which can be used for probing the proximity of biomolecules. Pyrene excimer fluorescence has previously been used for homogeneous detection of single nucleotide polymorphism (SNP) on DNA. 1-Phenylethynylpyrene (1-1-PEPy...

  19. Performance evaluation of stand alone hybrid PV-wind generator

    Science.gov (United States)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  20. Performance evaluation of stand alone hybrid PV-wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H. [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia); Yahaya, M. S. [Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia)

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  1. In situ hybridization with labeled probes: assessment of african Swine Fever virus in formalin-fixed paraffin-embedded tissues.

    Science.gov (United States)

    Ballester, Maria; Rodríguez, Fernando

    2015-01-01

    In situ hybridization (ISH) has become a very valuable molecular diagnostic tool to detect specific DNA or RNA sequences in biological samples through the use of complementary DNA- or RNA-labeled probes. Here, we describe an optimized in situ hybridization protocol to detect African swine fever virus (ASFV) DNA in formalin-fixed, paraffin-embedded tissues using digoxigenin-labeled probes.

  2. Identification of Cannabis sativa L. using the 1-kbTHCA synthase-fluorescence in situ hybridization probe.

    Science.gov (United States)

    Jeangkhwoa, Pattraporn; Bandhaya, Achirapa; Umpunjun, Puangpaka; Chuenboonngarm, Ngarmnij; Panvisavas, Nathinee

    2017-03-01

    This study reports a successful application of fluorescence in situ hybridization (FISH) technique in the identification of Cannabis sativa L. cells recovered from fresh and dried powdered plant materials. Two biotin-16-dUTP-labeled FISH probes were designed from the Cannabis-specific tetrahydrocannabinolic acid synthase (THCAS) gene and the ITS region of the 45S rRNA gene. Specificity of probe-target hybridization was tested against the target and 4 non-target plant species, i.e., Humulus lupulus, Mitragyna speciosa, Papaver sp., and Nicotiana tabacum. The 1-kb THCA synthase hybridization probe gave Cannabis-specific hybridization signals, unlike the 700-bp Cannabis-ITS hybridization probe. Probe-target hybridization was also confirmed against 20 individual Cannabis plant samples. The 1-kb THCA synthase and 700-bp Cannabis-ITS hybridization probes clearly showed 2 hybridization signals per cell with reproducibility. The 1-kb THCA synthase probe did not give any FISH signal when tested against H. lupulus, its closely related member of the Canabaceae family. It was also showed that 1-kb THCA synthase FISH probe can be applied to identify small amount of dried powdered Cannabis material with an addition of rehydration step prior to the experimental process. This study provided an alternative identification method for Cannabis trace. Copyright © 2016. Published by Elsevier B.V.

  3. Hybridization-based biosensor containing hairpin probes and use thereof

    Science.gov (United States)

    Miller, Benjamin L.; Strohsahl, Christopher M.

    2010-10-12

    A sensor chip that includes: a fluorescence quenching surface; a nucleic acid probe that contains first and second ends with the first end bound to the fluorescence quenching surface, and is characterized by being able to self-anneal into a hairpin conformation; and a first fluorophore bound to the second end of the first nucleic acid molecule. When the first nucleic acid molecule is in the hairpin conformation, the fluorescence quenching surface substantially quenches fluorescent emissions by the first fluorophore; and when the first nucleic acid molecule is in a non-hairpin conformation, fluorescent emissions by the fluorophore are substantially free of quenching by the fluorescence quenching surface. Various nucleic acid probes, methods of making the sensor chip, biological sensor devices that contain the sensor chip, and their methods of use are also disclosed.

  4. Edge turbulence measurement in Heliotron J using a combination of hybrid probe system and fast cameras

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, N., E-mail: nishino@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima (Japan); Zang, L. [Kyoto University, Gokasho, Uji, Kyoto (Japan); Takeuchi, M. [JAEA, Naka, Ibaraki (Japan); Mizuuchi, T.; Ohshima, S. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasajima, K.; Sha, M. [Kyoto University, Gokasho, Uji, Kyoto (Japan); Mukai, K. [NIFS, Toki, Gifu (Japan); Lee, H.Y. [Kyoto University, Gokasho, Uji, Kyoto (Japan); Nagasaki, K.; Okada, H.; Minami, T.; Kobayashi, S.; Yamamoto, S.; Konoshima, S.; Nakamura, Y.; Sano, F. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2013-07-15

    The hybrid probe system (a combination of Langmuir probes and magnetic probes), fast camera and gas puffing system were installed at the same toroidal section to study edge plasma turbulence/fluctuation in Heliotron J, especially blob (intermittent filament). Fast camera views the location of the probe head, so that the probe system yields the time evolution of the turbulence/fluctuation while the camera images the spatial profile. Gas puff at the same toroidal section was used to control the plasma density and simultaneous gas puff imaging technique. Using this combined system the filamentary structure associated with magnetic fluctuation was found in Heliotron J at the first time. The other kind of fluctuation was also observed at another experiment. This combination measurement enables us to distinguish MHD activity and electro-static activity.

  5. Probing Structure and Composition of Nickel/Titanium Carbide Hybrid Interfaces at the Atomic Scale (Preprint)

    Science.gov (United States)

    2010-01-01

    The transition in structure and composition across the titanium carbide /nickel hybrid interface has been determined at near atomic resolution by...coupling high-resolution transmission electron microscopy with three-dimensional atom probe tomography. The titanium carbide phase adopts a rocksalt-type

  6. Rapid generation of region-specific probes by chromosome microdissection: Application to the identification of chromosomal rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Trent, J.M.; Guan, X.Y.; Zang, J.; Meltzer, P.S. (Univ. of Michigan, Ann Arbor (United States))

    1993-01-01

    The authors present results using a novel strategy for chromosome microdissection and direct in vitro amplification of specific chromosomal regions, to identify cryptic chromosome alterations, and to rapidly generate region-specific genomic probes. First, banded chromosomes are microdissected and directly PCR amplified by a procedure which eliminates microchemistry (Meltzer, et al., Nature Genetics, 1:24, 1992). The resulting PCR product can be used for several applications including direct labeling for fluorescent in situ hybridization (FISH) to normal metaphase chromosomes. A second application of this procedure is the extremely rapid generation of chromosome region-specific probes. This approach has been successfully used to determine the derivation of chromosome segments unidentifiable by standard chromosome banding analysis. In selected instances these probes have also been used on interphase nuclei and provides the potential for assessing chromosome abnormalities in a variety of cell lineages. The microdissection probes (which can be generated in <24 hours) have also been utilized in direct library screening and provide the possibility of acquiring a significant number of region-specific probes for any chromosome band. This procedure extends the limits of conventional cytogenetic analysis by providing an extremely rapid source of numerous band-specific probes, and by enabling the direct analysis of essentially any unknown chromosome region.

  7. Cascaded third harmonic generation in hybrid graphene-semiconductor waveguides

    CERN Document Server

    Smirnova, Daria A

    2015-01-01

    We study cascaded harmonic generation of hybrid surface plasmons in integrated planar waveguides composed of a graphene layer and a doped-semiconductor slab. We derive a comprehensive model of cascaded third harmonic generation through phase-matched nonlinear interaction of fundamental, second harmonic and third harmonic plasmonic modes supported by the structure. We show that hybrid graphene-semiconductor waveguides can simultaneously phase-match these three interacting harmonics, increasing the total third-harmonic output by a factor of 5 compared to the non-cascaded regime.

  8. A Novel Method of Utilizing Hybrid Generator as Renewable Source

    Directory of Open Access Journals (Sweden)

    K.Fathima

    2015-12-01

    Full Text Available Energy production and consumption in the future may depend on renewable energy sources and also depends on the efficiency of utilizing it. Here, a hybrid system, a combination of solar cells and thermoelectric generators is controlled by open circuit voltage method which is normally used for linear electrical characteristics. The proposed system is supported by theoretical analysis and simulation. Lead acid battery is used to accumulate the harvested energy. Cuk converters are used here to improve the efficiency and helps in reduction of noises. Hybrid generators are found to be efficient and more stable.

  9. Detection of cyclin D1 mRNA by hybridization sensitive NIC-oligonucleotide probe.

    Science.gov (United States)

    Kovaliov, Marina; Segal, Meirav; Kafri, Pinhas; Yavin, Eylon; Shav-Tal, Yaron; Fischer, Bilha

    2014-05-01

    A large group of fluorescent hybridization probes, includes intercalating dyes for example thiazole orange (TO). Usually TO is coupled to nucleic acids post-synthetically which severely limits its use. Here, we have developed a phosphoramidite monomer, 10, and prepared a 2'-OMe-RNA probe, labeled with 5-(trans-N-hexen-1-yl-)-TO-2'-deoxy-uridine nucleoside, dU(TO), (Nucleoside bearing an Inter-Calating moiety, NIC), for selective mRNA detection. We investigated a series of 15-mer 2'-OMe-RNA probes, targeting the cyclin D1 mRNA, containing one or several dU(TO) at various positions. dU(TO)-2'-OMe-RNA exhibited up to 7-fold enhancement of TO emission intensity upon hybridization with the complementary RNA versus that of the oligomer alone. This NIC-probe was applied for the specific detection of a very small amount of a breast cancer marker, cyclin D1 mRNA, in total RNA extract from cancerous cells (250 ng/μl). Furthermore, this NIC-probe was found to be superior to our related NIF (Nucleoside with Intrinsic Fluorescence)-probe which could detect cyclin D1 mRNA target only at high concentrations (1840 ng/μl). Additionally, dU(T) can be used as a monomer in solid-phase oligonucleotide synthesis, thus avoiding the need for post-synthetic modification of oligonucleotide probes. Hence, we propose dU(TO) oligonucleotides, as hybridization probes for the detection of specific RNA in homogeneous solutions and for the diagnosis of breast cancer.

  10. Optimizing Hybrid Wind/Diesel Generator System Using BAT Algorithm

    Directory of Open Access Journals (Sweden)

    Sudhir Sharma,

    2016-01-01

    Full Text Available Hybrid system comprising of Wind/Diesel generation system for a practical standalone application considers Wind turbine generators and diesel generator as primary power sources for generating electricity. Battery banks are considered as a backup power source. The total value of cost is reduced by meeting energy demand required by the customers. Bat optimization technique is implemented to optimize wind and battery modules. Wind and battery banks are considered as primary sources and diesel generator as a secondary power source for the system

  11. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  12. A hybrid generative-discriminative approach to speaker diarization

    NARCIS (Netherlands)

    Noulas, A.K.; van Kasteren, T.; Kröse, B.J.A.

    2008-01-01

    In this paper we present a sound probabilistic approach to speaker diarization. We use a hybrid framework where a distribution over the number of speakers at each point of a multimodal stream is estimated with a discriminative model. The output of this process is used as input in a generative model

  13. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    Directory of Open Access Journals (Sweden)

    Yuji Miyahara

    2013-02-01

    Full Text Available Peptide nucleic acid (PNA has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  14. Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes.

    Science.gov (United States)

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-02-07

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  15. Generation and effects of EMIC waves observed by the Van Allen Probes on 18 March 2013

    Science.gov (United States)

    Zhang, J.; Saikin, A.; Gamayunov, K. V.; Spence, H. E.; Larsen, B.; Geoffrey, R.; Smith, C. W.; Torbert, R. B.; Kurth, W. S.; Kletzing, C.

    2015-12-01

    Electromagnetic ion cyclotron (EMIC) waves play a crucial role in particle dynamics in the Earth's magnetosphere. The free energy for EMIC wave generation is usually provided by the temperature anisotropy of the energetic ring current ions. EMIC waves can in turn cause particle energization and losses through resonant wave-particle interactions. Using measurements from the Van Allen Probes, we perform a case study of EMIC waves and associated plasma conditions observed on 18 March 2013. From 0204 to 0211 UT, the Van Allen Probe-B detected He+-band EMIC wave activity in the post-midnight sector (MLT=4.6-4.9) at very low L-shells (L=2.6-2.9). The event occurred right outside the inward-pushed plasmapause in the early recovery phase of an intense geomagnetic storm - min. Dst = -132 nT at 2100 UT on 17 March 2013. During this event, the fluxes of energetic (> 1 keV), anisotropic O+ dominate both the H+ and He+ fluxes in this energy range. Meanwhile, O+ fluxes at low energies (coefficient (Dαα) of the EMIC wave packets by using nominal ion composition, derived total ion density from the frequencies of upper hybrid resonance, and measured ambient and wave magnetic field. EMIC wave growth rates are also calculated to evaluate the role of loss-cone distributed ring current ions in the EMIC wave generation.

  16. Generation of chicken Z-chromosome painting probes by microdissection for screening large-insert genomic libraries.

    Science.gov (United States)

    Zimmer, R; King, W A; Verrinder Gibbins, A M

    1997-01-01

    A strategy for rapid generation of chicken sex chromosome-Z painting probes has been developed using microdissection. Whole chromosome painting probes (WCPs) were prepared from 10-15 copies of mitotic metaphase chicken Z chromosomes. The microisolated chromosomes were subjected to PEG/proteinase K treatment in a collection drop to release DNA, which was then amplified using a degenerate oligonucleotide-primed shuttle PCR (DOP-Shuttle-PCR) strategy. Size distributions of the PCR products were analyzed by agarose gel electrophoresis and smears of DNA were revealed that ranged in size from 200-800 bp, without any evidence of preferential amplification. Both specificity and complexity of the probes have been analyzed by Southern blot and fluorescence in situ hybridization (FISH). Non-specific hybridization was efficiently blocked by using chicken competitor DNA. Analysis of the WCPs produced shows that collectively they provide uniform hybridization signals along the entire length of the chicken Z chromosome. To demonstrate one possible application of these complex probes, we screened a large-insert bacterial artificial chromosome (BAC) chicken genomic library to select Z chromosome-specific clones. To address specificity of the selected clones and to physically map them to the Z chromosome, FISH analysis was used. Of the 3 clones initially tested, one clone (C3) carrying a 250-kb insert mapped to the distal portion of the short arm of the chicken Z chromosome. Therefore, this technique has provided appropriate probes for screening large-insert genomic libraries. Further application of these probes includes the analysis of chromosome rearrangements, studies of cases of heteroploidy involving the Z chromosome, positional cloning of Z-linked genes and studies on mechanisms of sex-chromosome evolution in birds.

  17. Multiple orbital angular momentum generated by dielectric hybrid phase element

    Science.gov (United States)

    Wang, Xuewen; Kuchmizhak, Aleksandr; Hu, Dejiao; Li, Xiangping

    2017-09-01

    Vortex beam carrying multiple orbital angular momentum provides a new degree of freedom to manipulate light leading to the various exciting applications as trapping, quantum optics, information multiplexing, etc. Helical wavefront can be generated either via the geometric or the dynamic phase arising from a space-variant birefringence (q-plate) or from phase accumulation through propagation (spiral-phase-plate), respectively. Using fast direct laser writing technique we fabricate and characterize novel hybrid q-plate generating vortex beam simultaneously carrying two different high-order topological charges, which arise from the spin-orbital conversion and the azimuthal height variation of the recorded structures. We approve the versatile concept to generate multiple-OAM vortex beams combining the spin-orbital interaction and the phase accumulation in a single micro-scale device, a hybrid dielectric phase plate.

  18. Probing cooperative force generation in collective cancer invasion

    Science.gov (United States)

    Alobaidi, Amani A.; Xu, Yaopengxiao; Chen, Shaohua; Jiao, Yang; Sun, Bo

    2017-08-01

    Collective cellular dynamics in the three-dimensional extracellular matrix (ECM) plays a crucial role in many physiological processes such as cancer invasion. Both chemical and mechanical signaling support cell-cell communications on a variety of length scales, leading to collective migratory behaviors. Here we conduct experiments using 3D in vitro tumor models and develop a phenomenological model in order to probe the cooperativity of force generation in the collective invasion of breast cancer cells. In our model, cell-cell communication is characterized by a single parameter that quantifies the correlation length of cellular migration cycles. We devise a stochastic reconstruction method to generate realizations of cell colonies with specific contraction phase correlation functions and correlation length a. We find that as a increases, the characteristic size of regions containing cells with similar contraction phases grows. For small a values, the large fluctuations in individual cell contraction phases smooth out the temporal fluctuations in the time-dependent deformation field in the ECM. For large a values, the periodicity of an individual cell contraction cycle is clearly manifested in the temporal variation of the overall deformation field in the ECM. Through quantitative comparisons of the simulated and experimentally measured deformation fields, we find that the correlation length for collective force generation in the breast cancer diskoid in geometrically micropatterned ECM (DIGME) system is a≈ 25~μ \\text{m} , which is roughly twice the linear size of a single cell. One possible mechanism for this intermediate cell correlation length is the fiber-mediated stress propagation in the 3D ECM network in the DIGME system.

  19. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  20. Identification of cDNAs by direct hybridization using cosmid probes

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, G.G.; Lieuallen, K.

    1993-12-01

    The goal of this effort is to quickly obtain as many chromosome-specific cDNAs with as much map and sequence detail as possible. Many techniques have been proposed to isolate and identify genes within defined genomic regions; the technique discussed here is direct hybridization of a relatively complex genomic probe, an entire cosmid clone, to cDNA libraries. This method continues to be a straightforward technique with a fair number of successes.

  1. Thermal analysis of solar biomass hybrid co-generation plants

    Science.gov (United States)

    Kaushika, N. D.; Mishra, Anuradha; Chakravarty, M. N.

    2005-12-01

    This article describes a co-generation plant based on the biogas being produced from the waste of distillery plant and highlights the possible configuration in which the plant can be hybridized with auxiliary solar energy source having the advantage of using financial incentives in several countries. In hybridization, the solar heat is used for heating the boiler feed water. The solar heat-generating unit consists of line focus parabolic trough collector, heat transportation system and heat delivery unit such as heat exchanger. The simulation model of heat and mass transfer processes in the solar field as well as the balance of the system is developed to investigate the technological feasibility of the concept in terms of plant yield and matching of subsystems.

  2. Hybrid layer difference between sixth and seventh generation bonding agent

    Directory of Open Access Journals (Sweden)

    Grace Syavira Suryabrata

    2006-03-01

    Full Text Available Since etching is completed at the same stage as priming and bonding, when applying the sixth and seventh generation bonding, the exposed smear layers are constantly surrounded by primer and bonding and cannot collapse. The smear layer and the depth of penetration of resin bonding in dentinal tubules are completely integrated into hybrid layer. The purpose of this laboratory research was to study the penetration depth of two self etching adhesive. Fourteen samples of human extracted teeth were divided into two groups. Each groups consisted of seven samples, each of them was treated with sixth generation bonding agent and the other was treated with seventh generation bonding agent. The results disclosed that the penetration into dentinal tubules of seventh generation bonding agent was deeper than sixth generation bonding agent. Conclusion: bond strength will improve due to the increasing of penetration depth of resin bonding in dentinal tubules.

  3. Use of a thermophotovoltaic generator in a hybrid electric vehicle

    Science.gov (United States)

    Morrison, Orion; Seal, Michael; West, Edward; Connelly, William

    1999-03-01

    Viking 29 is the World's first thermophotovoltaic (TPV) powered automobile. The prototype was funded by the Department of Energy and designed and built by students and faculty at the Vehicle Research Institute (VRI) at Western Washington University. Viking 29 is a series hybrid electric vehicle that utilizes TPV generators to charge its battery pack. Acceleration, speed, and handling compare to modern high performance sports cars, while emissions are cleaner than current internal combustion engine vehicles.

  4. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas

    Institute of Scientific and Technical Information of China (English)

    Heiko Linnenbank; Yevgen Grynko; Jens F(o)rstner; Stefan Linden

    2016-01-01

    Plasmonic nanoantennas provide unprecedented opportunities to concentrate light fields in subwavelength-sized volumes.By placing a nonlinear dielectric nanoparticle in such a hot spot,one can hope to take advantage of beth the field enhancement provided by nanoantennas and the large,nonlinear optical susceptibility of dielectric nanoparticles.To test this concept,we combine gold gap nanoantennas with second-order,nonlinear zinc sulfide nanoparticles,and perform second harmonic generation (SHG) spectroscopy onthe combined hybrid dielectric/plasmonic nanoantennas as well as on the individual constituents.We find that SHG from the bare gold nanoantennas,even though it should be forbidden due to symmetry reasons,is several orders of magnitude larger than that of the bare zinc sulfide nanoparticles.Even stronger second harmonic signals are generated by the hybrid dielectric/plasmonic nanoantennas.Control experiments with nanoantennas containing linear lanthanum fluoride nanoparticles reveal;however,that the increased SHG efficiency of the hybrid dielectric/plasmonic nanoantennas does not depend on the nonlinear optical susceptibility of the dielectric nanoparticles but is an effect of the modification of the dielectric environment.The combination of a hybrid dielectric/plasmonic nanoantenna,which is only resonant for the incoming pump light field,with a second nanoantenna,which is resonant for the generated second harmonic light,allows for a further increase in the efficiency of SHG.As the second nanoantenna mediates the coupling of the second harmonic light to the far field,this double-resonant approach also provides us with control over the polarization of the generated light.

  5. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB

    Directory of Open Access Journals (Sweden)

    Ahsan Munir

    2017-05-01

    Full Text Available Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs. Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R2 = 0.8131.

  6. Application of hybridization control probe to increase accuracy on ligation detection or minisequencing diagnostic microarrays

    Directory of Open Access Journals (Sweden)

    Hultman Jenni

    2009-12-01

    Full Text Available Abstract Background Nucleic acid detection based on ligation reaction or single nucleotide extension of ssDNA probes followed by tag microarray hybridization provides an accurate and sensitive detection tool for various diagnostic purposes. Since microarray quality is crucial for reliable detection, these methods can benefit from correcting for microarray artefacts using specifically adapted techniques. Findings Here we demonstrate the application of a per-spot hybridization control oligonucleotide probe and a novel way of computing normalization for tag array data. The method takes into account the absolute value of the detection probe signal and the variability in the control probe signal to significantly alleviate problems caused by artefacts and noise on low quality microarrays. Conclusions Diagnostic microarray platforms require experimental and computational tools to enable efficient correction of array artefacts. The techniques presented here improve the signal to noise ratio and help in determining true positives with better statistical significance and in allowing the use of arrays with poor quality that would otherwise be discarded.

  7. Uprobe 2008: an online resource for universal overgo hybridization-based probe retrieval and design.

    Science.gov (United States)

    Sullivan, Robert T; Morehouse, Caroline B; Thomas, James W

    2008-07-01

    Cross-species sequence comparisons are a prominent method for analyzing genomic DNA and an ever increasing number of species are being selected for whole-genome sequencing. Targeted comparative genomic sequencing is a complementary approach to whole-genome shotgun sequencing and can produce high-quality sequence assemblies of orthologous chromosomal regions of interest from multiple species. Genomic libraries necessary to support targeted mapping and sequencing projects are available for more than 90 vertebrates. An essential step for utilizing these and other genomic libraries for targeted mapping and sequencing is the development of the hybridization-based probes, which are necessary to screen a genomic library of interest. The Uprobe website (http://uprobe.genetics.emory.edu) provides a public online resource for identifying or designing 'universal' overgo-hybridization probes from conserved sequences that can be used to efficiently screen one or more genomic libraries from a designated group of species. Currently, Uprobe provides the ability to search or design probes for use in broad groups of species, including mammals and reptiles, as well as more specific clades, including marsupials, carnivores, rodents and nonhuman primates. In addition, Uprobe has the capability to design custom probes from multiple-species sequence alignments provided by the user, thus providing a general tool for targeted comparative physical mapping.

  8. Brain anatomical structure segmentation by hybrid discriminative/generative models.

    Science.gov (United States)

    Tu, Z; Narr, K L; Dollar, P; Dinov, I; Thompson, P M; Toga, A W

    2008-04-01

    In this paper, a hybrid discriminative/generative model for brain anatomical structure segmentation is proposed. The learning aspect of the approach is emphasized. In the discriminative appearance models, various cues such as intensity and curvatures are combined to locally capture the complex appearances of different anatomical structures. A probabilistic boosting tree (PBT) framework is adopted to learn multiclass discriminative models that combine hundreds of features across different scales. On the generative model side, both global and local shape models are used to capture the shape information about each anatomical structure. The parameters to combine the discriminative appearance and generative shape models are also automatically learned. Thus, low-level and high-level information is learned and integrated in a hybrid model. Segmentations are obtained by minimizing an energy function associated with the proposed hybrid model. Finally, a grid-face structure is designed to explicitly represent the 3-D region topology. This representation handles an arbitrary number of regions and facilitates fast surface evolution. Our system was trained and tested on a set of 3-D magnetic resonance imaging (MRI) volumes and the results obtained are encouraging.

  9. Hybrid Test Bed of Wind Electric Generator with Photovoltaic Panels

    Directory of Open Access Journals (Sweden)

    G.D.Anbarasi Jebaselvi

    2014-03-01

    Full Text Available Driven by the increasing costs of power production and decreasing fossil fuel reserves with the addition of global environmental concerns, renewable energy is now becoming significant fraction of total electricity production in the world. Advancements in the field of wind electric generator technology and power electronics help to achieve rapid progress in hybrid power system which mainly involves wind, solar and diesel energy with a good battery back-up. Here the discussion brings about the installation of real time test bed with a small electric generator and dynamic solar panels with battery backups.

  10. Photovoltaic-wind hybrid autonomous generation systems in Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Dei, Tsutomu; Ushiyama, Izumi

    2005-01-01

    Two hybrid stand-alone (autonomous) power systems, each with wind and PV generation, were studied as installed at health clinics in semi-desert and mountainous region in Mongolia. Meteorological and system operation parameters, including power output and the consumption of the system, were generally monitored by sophisticated monitoring. However, where wind and solar site information was lacking, justifiable estimates were made. The results show that there is a seasonal complementary relationship between wind and solar irradiation in Tarot Sum. The users understood the necessity of Demand Side Management of isolated wind-PV generation system through technology transfer seminars and actually executed DSM at both sites. (author)

  11. Analysis and Design of Hybrid Excitation Permanent Magnet Synchronous Generators

    Institute of Scientific and Technical Information of China (English)

    JIN Wan-bing; ZHANG Dong; AN Zhong-liang; TAN Ren-yuan

    2006-01-01

    On the basis of a conventional permanent magnet (PM) synchronous generator's construction,a novel kind of Hybrid Excitation Permanent Magnet Synchronous Generator (HEPMSG) is introduced by inserting exciting winding in the stator or rotor.Firstly,the construction of HEPMSG is improved with the addition of PM excitation on the ferromagnetic pole,and its working principle and design method are studied in detail.Then,an appropriate exciting current control system is presented considering the characteristics of HEPMSG.Finally,a prototype is made,and test results confirm the analysis and design.

  12. Designing hybrid grass genomes to control runoff generation

    Science.gov (United States)

    MacLeod, C.; Binley, A.; Humphreys, M.; King, I. P.; O'Donovan, S.; Papadopoulos, A.; Turner, L. B.; Watts, C.; Whalley, W. R.; Haygarth, P.

    2010-12-01

    Sustainable management of water in landscapes requires balancing demands of agricultural production whilst moderating downstream effects like flooding. Pasture comprises 69% of global agricultural areas and is essential for producing food and fibre alongside environmental goods and services. Thus there is a need to breed forage grasses that deliver multiple benefits through increased levels of productivity whilst moderating fluxes of water. Here we show that a novel grass hybrid that combines the entire genomes of perennial ryegrass (Lolium perenne - the grass of choice for Europe’s forage agriculture) and meadow fescue (Festuca pratensis) has a significant role in flood prevention. Field plot experiments established differences in runoff generation with the hybrid cultivar reducing runoff by 50% compared to perennial ryegrass cultivar, and by 35% compared to a meadow fescue cultivar (34 events over two years, replicated randomized-block design, statistically significant differences). This important research outcome was the result of a project that combined plant genetics, soil physics and plot scale hydrology to identify novel grass genotypes that can reduce runoff from grassland systems. Through a coordinated series of experiments examining effects from the gene to plot scale, we have identified that the rapid growth and then turnover of roots in the L. perenne x F. pratensis hybrid is likely to be a key mechanism in reducing runoff generation. More broadly this is an exciting first step to realizing the potential to design grass genomes to achieve both food production, and to deliver flood control, a key ecosystem service.

  13. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization.

    Science.gov (United States)

    Shahmuradyan, Anna; Krull, Ulrich J

    2016-03-15

    Quantum dots (QDs) have been widely used in chemical and biosensing due to their unique photoelectrical properties and are well suited as donors in fluorescence resonance energy transfer (FRET). Selective hybridization interactions of oligonucleotides on QDs have been determined by FRET. Typically, the QD-FRET constructs have made use of labeled targets or have implemented labeled sandwich format assays to introduce dyes in proximity to the QDs for the FRET process. The intention of this new work is to explore a method to incorporate the acceptor dye into the probe molecule. Thiazole orange (TO) derivatives are fluorescent intercalating dyes that have been used for detection of double-stranded nucleic acids. One such dye system has been reported in which single-stranded oligonucleotide probes were doubly labeled with adjacent thiazole orange derivatives. In the absence of the fully complementary (FC) oligonucleotide target, the dyes form an H-aggregate, which results in quenching of fluorescence emission due to excitonic interactions between the dyes. The hybridization of the FC target to the probe provides for dissociation of the aggregate as the dyes intercalate into the double stranded duplex, resulting in increased fluorescence. This work reports investigation of the dependence of the ratiometric signal on the type of linkage used to conjugate the dyes to the probe, the location of the dye along the length of the probe, and the distance between adjacent dye molecules. The limit of detection for 34mer and 90mer targets was found to be identical and was 10 nM (2 pmol), similar to analogous QD-FRET using labeled oligonucleotide target. The detection system could discriminate a one base pair mismatch (1BPM) target and was functional without substantial compromise of the signal in 75% serum. The 1BPM was found to reduce background signal, indicating that the structure of the mismatch affected the environment of the intercalating dyes.

  14. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh

    2005-12-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) under Cooperative Agreement DE-FC2601NT40779 for the US Department of Energy, National Energy Technology Laboratory (DoE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a gas turbine. A conceptual hybrid system design was selected for analysis and evaluation. The selected system is estimated to have over 65% system efficiency, a first cost of approximately $650/kW, and a cost of electricity of 8.4 cents/kW-hr. A control strategy and conceptual control design have been developed for the system. A number of SOFC module tests have been completed to evaluate the pressure impact to performance stability. The results show that the operating pressure accelerates the performance degradation. Several experiments were conducted to explore the effects of pressure on carbon formation. Experimental observations on a functioning cell have verified that carbon deposition does not occur in the cell at steam-to-carbon ratios lower than the steady-state design point for hybrid systems. Heat exchanger design, fabrication and performance testing as well as oxidation testing to support heat exchanger life analysis were also conducted. Performance tests of the prototype heat exchanger yielded heat transfer and pressure drop characteristics consistent with the heat exchanger specification. Multicell stacks have been tested and performance maps were obtained under hybrid operating conditions. Successful and repeatable fabrication of large (>12-inch diameter) planar SOFC cells was demonstrated using the tape calendering process. A number of large area cells and stacks were successfully performance tested at ambient and pressurized conditions. A 25 MW plant configuration was

  15. Single and multiple molecular beacon probes for DNA hybridization studies on a silica glass surface

    Science.gov (United States)

    Fang, Xiaohong; Liu, Xiaojing; Tan, Weihong

    1999-05-01

    Surface immobilizable molecular beacons have been developed for DNA hybridization studies on a silica glass plate. Molecular beacons are a new class of oligonucleotide probes that have a loop-and-stem structure with a fluorophore and a quencher attached to the two ends of the stem. They only emit intense fluorescence when hybridize to their target molecules. This provides an excellent selectivity for the detection of DNA molecules. We have designed biotinylated molecular beacons which can be immobilized onto a solid surface. The molecular beacon is synthesized using DABCYL as the quencher and an optical stable dye, tetramethylrhodamine, as the fluorophore. Mass spectrometry is used to confirm the synthesized molecular beacon. The molecular beacons have been immobilized onto a silica surface through biotin-avidin binding. The surface immobilized molecular beacons have been used for the detection of target DNA with subnanomolar analytical sensitivity. have also immobilized two different molecular beacons on a silica surface in spatially resolved microscopic regions. The hybridization study of these two different molecular beacon probes has shown excellent selectivity for their target sequences. The newly designed molecular beacons are intended for DNA molecular interaction studies at an interface and for the development of ultrasensitive DNA sensors for a variety of applications including disease diagnosis, disease mechanism studies, new drug development, and in the investigation of molecular interactions between DNA molecules and other interesting biomolecules.

  16. Stochastic generation of currents by lower-hybrid waves

    Energy Technology Data Exchange (ETDEWEB)

    Gell, Y.; Nakach, R.

    1984-03-01

    A scheme for current generation based on a stochastic driving mechanism is proposed. The current in this approach is generated by launching into the plasma two lower-hybrid waves having appropriate different frequencies, wave numbers, and amplitudes. The phase-space analysis of the electron motion in such a configuration reveals the existence of a relatively broad stochastic layer far away from the separatrix, allowing for diffusion in velocity space of high-velocity electrons. The diffusion coefficient of this process is evaluated and the solution of the Fokker-Planck equation for the electron velocity distribution function is used to calculate the current J and the power dissipated P/sub d/ in generating it. A favorable J-to-P/sub d/ ratio for steady-current drive is found.

  17. Label-free DNA hybridization detection by various spectroscopy methods using triphenylmethane dyes as a probe.

    Science.gov (United States)

    Tu, Jiaojiao; Cai, Changqun; Ma, Ying; Luo, Lin; Weng, Chao; Chen, Xiaoming

    2012-12-01

    A new assay is developed for direct detection of DNA hybridization using triphenylmethane dye as a probe. It is based on various spectroscopic methods including resonance light scattering (RLS), circular dichroism (CD), ultraviolet spectra and fluorescence spectra, as well as atomic force microscopy (AFM), six triphenylmethane dyes interact with double strand DNA (dsDNA) and single strand DNA (ssDNA) were investigated, respectively. The interaction results in amplified resonance light scattering signals and enables the detection of hybridization without the need for labeling DNA. Mechanism investigations have shown that groove binding occurs between dsDNA and these triphenylmethane dyes, which depends on G-C sequences of dsDNA and the molecular volumes of triphenylmethane dyes. Our present approaches display the advantages of simple and fast, accurate and reliable, and the artificial samples were determined with satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Classifier Directed Data Hybridization for Geographic Sample Supervised Segment Generation

    Directory of Open Access Journals (Sweden)

    Christoff Fourie

    2014-11-01

    Full Text Available Quality segment generation is a well-known challenge and research objective within Geographic Object-based Image Analysis (GEOBIA. Although methodological avenues within GEOBIA are diverse, segmentation commonly plays a central role in most approaches, influencing and being influenced by surrounding processes. A general approach using supervised quality measures, specifically user provided reference segments, suggest casting the parameters of a given segmentation algorithm as a multidimensional search problem. In such a sample supervised segment generation approach, spatial metrics observing the user provided reference segments may drive the search process. The search is commonly performed by metaheuristics. A novel sample supervised segment generation approach is presented in this work, where the spectral content of provided reference segments is queried. A one-class classification process using spectral information from inside the provided reference segments is used to generate a probability image, which in turn is employed to direct a hybridization of the original input imagery. Segmentation is performed on such a hybrid image. These processes are adjustable, interdependent and form a part of the search problem. Results are presented detailing the performances of four method variants compared to the generic sample supervised segment generation approach, under various conditions in terms of resultant segment quality, required computing time and search process characteristics. Multiple metrics, metaheuristics and segmentation algorithms are tested with this approach. Using the spectral data contained within user provided reference segments to tailor the output generally improves the results in the investigated problem contexts, but at the expense of additional required computing time.

  19. [Stain hybridization method with pRepHind probe for the diagnosis of Plasmodium falciparum].

    Science.gov (United States)

    Moleón Borodowsky, I

    1992-01-01

    A study was conducted on the parasitemia detection level and the specificity of the pRepHind DNA probe for diagnosing Plasmodium falciparum by the stain hybridization method. The parasitemia detection level was studied by using dilutions of a P. falciparum in vitro culture, adjusted by direct microscopic examination to 1; 0.1; 0.01; 0.001; 0.0001 and 0.00001% of parasited red cells. Specificity was increased by using DNA extractions from P. Yoelii, P. berghei and human leucocytes. The results showed that the method was able to detect 0.0001% of parasitemia starting from DNA extractions of 100 L infected red cells. The pRepHind probe only detected specifically DNA from P. falciparum. It is concluded that the method is suitable for being used in the diagnosis of infection due to P. falciparum.

  20. Identification of triclosan-degrading bacteria using stable isotope probing, fluorescence in situ hybridization and microautoradiography

    DEFF Research Database (Denmark)

    Lolas, Ihab Bishara Lolas; Chen, Xijuan; Bester, Kai

    2012-01-01

    Triclosan is considered a ubiquitous pollutant and can be detected in a wide range of environmental samples. Triclosan removal by wastewater treatment plants has been largely attributed to biodegradation processes; however, very little is known about the micro-organisms involved. In this study, DNA......-based stable isotope probing (DNA-SIP) combined with microautoradiography-fluorescence in situ hybridization (MAR-FISH) was applied to identify active triclosan degraders in an enrichment culture inoculated with activated sludge. Clone library sequences of 16S rRNA genes derived from the heavy DNA fractions...... of enrichment culture incubated with 13C-labelled triclosan showed a predominant enrichment of a single bacterial clade most closely related to the betaproteobacterial genus Methylobacillus. To verify that members of the genus Methylobacillus were actively utilizing triclosan, a specific probe targeting...

  1. Fitness and morphological outcomes of many generations of hybridization in the copepod Tigriopus californicus.

    Science.gov (United States)

    Pritchard, V L; Knutson, V L; Lee, M; Zieba, J; Edmands, S

    2013-02-01

    Hybridization between genetically divergent populations is an important evolutionary process, with an outcome that is difficult to predict. We used controlled crosses and freely mating hybrid swarms, followed for up to 30 generations, to examine the morphological and fitness consequences of interpopulation hybridization in the copepod Tigriopus californicus. Patterns of fitness in two generations of controlled crosses were partly predictive of long-term trajectories in hybrid swarms. For one pair of populations, controlled crosses revealed neutral or beneficial effects of hybridization after the F1 generation, and hybrid swarm fitness almost always equalled or exceeded that of the midparent. For a second pair, controlled crosses showed F2 hybrid breakdown, but increased fitness in backcrosses, and hybrid swarm fitness deviated both above and below that of the parentals. Nevertheless, individual swarm replicates exhibited different fitness trajectories over time that were not related in a simple manner to their hybrid genetic composition, and fixation of fitter hybrid phenotypes was not observed. Hybridization did not increase overall morphological variation, and underlying genetic changes may have been masked by phenotypic plasticity. Nevertheless, one type of hybrid swarm exhibited a repeatable pattern of transgressively large eggsacs, indicating a positive effect of hybridization on individual fecundity. Additionally, both parental and hybrid swarms exhibited common phenotypic trends over time, indicating common selective pressures in the laboratory environment. Our results suggest that, in a system where much work has focused on F2 hybrid breakdown, the long-term fitness consequences of interpopulation hybridization are surprisingly benign.

  2. Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes.

    Science.gov (United States)

    Bruder, Lena M; Dörkes, Marcel; Fuchs, Bernhard M; Ludwig, Wolfgang; Liebl, Wolfgang

    2016-10-01

    The gut microbiome represents a key contributor to human physiology, metabolism, immune function, and nutrition. Elucidating the composition and genetics of the gut microbiota under various conditions is essential to understand how microbes function individually and as a community. Metagenomic analyses are increasingly used to study intestinal microbiota. However, for certain scientific questions it is sufficient to examine taxon-specific submetagenomes, covering selected bacterial genera in a targeted manner. Here we established a new variant of fluorescence in situ hybridization (FISH) combined with fluorescence-activated cell sorting (FACS), providing access to the genomes of specific taxa belonging to the complex community of the intestinal microbiota. In contrast to standard oligonucleotide probes, the RNA polynucleotide probe used here, which targets domain III of the 23S rRNA gene, extends the resolution power in environmental samples by increasing signal intensity. Furthermore, cells hybridized with the polynucleotide probe are not subjected to harsh pretreatments, and their genetic information remains intact. The protocol described here was tested on genus-specifically labeled cells in various samples, including complex fecal samples from different laboratory mouse types that harbor diverse intestinal microbiota. Specifically, as an example for the protocol described here, RNA polynucleotide probes could be used to label Enterococcus cells for subsequent sorting by flow cytometry. To detect and quantify enterococci in fecal samples prior to enrichment, taxon-specific PCR and qPCR detection systems have been developed. The accessibility of the genomes from taxon-specifically sorted cells for subsequent molecular analyses was demonstrated by amplification of functional genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Effect of unlabeled helper probes on detection of an RNA target by bead-based sandwich hybridization

    DEFF Research Database (Denmark)

    Barken, K.B.; Cabig-Ciminska, M.; Holmgren, A.;

    2004-01-01

    Unlabeled helper oligonucleotides assisting a bead-based sandwich hybridization assay were tested for the optimal placement of the capture and detection probes. The target used was a full-length in vitro synthesized mRNA molecule. Helper probes complementary to regions adjacent to the binding sit....... Using an electrical chip linked to the detection probe for the detection of p-ominophenol, which is produced by alkaline phosphatase, a detection limit of 2 x 10(-13) M mRNA molecules was reached without the use of a nucleic acid amplification step.......Unlabeled helper oligonucleotides assisting a bead-based sandwich hybridization assay were tested for the optimal placement of the capture and detection probes. The target used was a full-length in vitro synthesized mRNA molecule. Helper probes complementary to regions adjacent to the binding site...

  4. Photocurrent generation in carbon nanotube/cubic-phase HfO2 nanoparticle hybrid nanocomposites

    Directory of Open Access Journals (Sweden)

    Protima Rauwel

    2016-07-01

    Full Text Available A hybrid material consisting of nonfunctionalized multiwall carbon nanotubes (MWCNTs and cubic-phase HfO2 nanoparticles (NPs with an average diameter of 2.6 nm has been synthesized. Free standing HfO2 NPs present unusual optical properties and a strong photoluminescence emission in the visible region, originating from surface defects. Transmission electron microscopy studies show that these NPs decorate the MWCNTs on topological defect sites. The electronic structure of the C K-edge in the nanocomposites was probed by electron energy loss spectroscopy, highlighting the key role of the MWCNT growth defects in anchoring HfO2 NPs. A combined optical emission and absorption spectroscopy approach illustrated that, in contrast to HfO2 NPs, the metallic MWCNTs do not emit light but instead expose their discrete electronic structure in the absorption spectra. The hybrid material manifests characteristic absorption features with a gradual merger of the MWCNT π-plasmon resonance band with the intrinsic defect band and fundamental edge of HfO2. The photoluminescence of the nanocomposites indicates features attributed to combined effects of charge desaturation of HfO2 surface states and charge transfer to the MWCNTs with an overall reduction of radiative recombination. Finally, photocurrent generation under UV–vis illumination suggests that a HfO2 NP/MWCNT hybrid system can be used as a flexible nanodevice for light harvesting applications.

  5. A hybrid-type quantum random number generator

    Science.gov (United States)

    Hai-Qiang, Ma; Wu, Zhu; Ke-Jin, Wei; Rui-Xue, Li; Hong-Wei, Liu

    2016-05-01

    This paper proposes a well-performing hybrid-type truly quantum random number generator based on the time interval between two independent single-photon detection signals, which is practical and intuitive, and generates the initial random number sources from a combination of multiple existing random number sources. A time-to-amplitude converter and multichannel analyzer are used for qualitative analysis to demonstrate that each and every step is random. Furthermore, a carefully designed data acquisition system is used to obtain a high-quality random sequence. Our scheme is simple and proves that the random number bit rate can be dramatically increased to satisfy practical requirements. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178010 and 11374042), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China, and the Fundamental Research Funds for the Central Universities of China (Grant No. bupt2014TS01).

  6. Design Optimization of Gas Generator Hybrid Propulsion Boosters

    Science.gov (United States)

    Weldon, Vincent; Phillips, Dwight; Fink, Larry

    1990-01-01

    A methodology used in support of a study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specific optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.

  7. Generator voltage stabilisation for series-hybrid electric vehicles.

    Science.gov (United States)

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  8. Multi-element eddy current probe. For inspecting steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Savin, E.; Sartre, B. [FRAMATOME, 92 - Paris-La-Defense (France); Placko, D.; Premel, D. [Ecole Nationale Superieure de Cachan, 94 (France)

    2000-10-01

    Framatome and the Ecole Normale Superieure de Cachan are developing a multi-element eddy current probe for inspecting steam generator tubes of 900 MWe PWR reactors. The device is intended to replace much slower rotating probes. Using its measurements, the conductivity image of any point in the tube can be reconstructed, thanks to a numerical, thanks to a numerical model, thus allowing diagnosis. The first trial results on mockups seem already competitive with those obtained using a rotary probe. (authors)

  9. Wood Quality of Acacia Hybrid and Second-Generation Acacia mangium

    OpenAIRE

    Ismail Jusoh; Farawahida Abu Zaharin; Nur Syazni Adam

    2013-01-01

    Two new tree variants, namely Acacia hybrid and second-generation Acacia mangium, have been introduced in plantation forests in Sarawak, Malaysia, and their wood qualities were examined. The mean basic density of Acacia hybrid was comparable with Acacia mangium. However basic density and strength properties of second-generation A. mangium were significantly lower compared to Acacia hybrid. The mean fibre length and fibre wall thickness in the hybrid were found to be greater than that of secon...

  10. A Review of Hybrid Renewable Energy Systems for Electric Power Generation

    OpenAIRE

    Md. Ibrahim; Abul Khair

    2015-01-01

    Integration and combined utilization of renewable energy sources are becoming increasingly attractive. This paper is a review of hybrid renewable energy systems technologies for power generation, important issues and challenges in their design stage. Generation technology selection and unit sizing, System configurations and Energy management and control are discussed. Applications of hybrid energy systems, advantages of hybrid energy systems, issues and problems related to hybrid ...

  11. Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Montesi, M C; Russo, P

    2002-01-01

    We are investigating the feasibility of an intraoperative imaging probe for lymphoscintigraphy with Tc-99m tracer, for sentinel node radioguided surgery, using the Medipix series of hybrid detectors coupled to a collimator. These detectors are pixelated semiconductor detectors bump-bonded to the Medipix1 photon counting read-out chip (64x64 pixel, 170 mu m pitch) or to the Medipix2 chip (256x256 pixel, 55 mu m pitch), developed by the European Medipix collaboration. The pixel detector we plan to use in the final version of the probe is a semi-insulating GaAs detector or a 1-2 mm thick CdZnTe detector. For the preliminary tests presented here, we used 300-mu m thick silicon detectors, hybridized via bump-bonding to the Medipix1 chip. We used a tungsten parallel-hole collimator (7 mm thick, matrix array of 64x64 100 mu m circular holes with 170 mu m pitch), and a 22, 60 and 122 keV point-like (1 mm diameter) radioactive sources, placed at various distances from the detector. These tests were conducted in order ...

  12. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gyoyeon [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon (Korea, Republic of); Lee, Hansol [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Jiyeon, E-mail: jylee@kist.re.kr [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon (Korea, Republic of)

    2015-11-13

    The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Pt conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH. - Highlights: • We prepared a probe linked between QD and telomeric oligonucleotide with platinum-guanine bonding. • Telomeres were detected by our new telomere probes successfully in three different human metaphase chromosomes. • QDPt-DNA probe has high fluorescence intensity in comparison with organic dye-DNA probe.

  13. Highly Sensitive Fluorescent-labeled Probes and Glass Slide Hybridization for the Detection of Plant RNA Viruses and a Viroid

    Institute of Scientific and Technical Information of China (English)

    Zhiyou DU; Bo JIN; Wenhong LIU; Liang CHEN; Jishuang CHEN

    2007-01-01

    In this study, a modified method of the conventional RNA dot-blot hybridization was established, by replacing 32P labels with CY5 labels and replacing nylon membranes with positive-charged glass slides, for detecting plant RNA viruses and a viroid. The modified RNA dot-blot hybridization method was named glass slide hybridization. The optimum efficiency of RNA binding onto the surfaces of activated glass slide was achieved using aminosilane-coated glass slide as a solid matrix and 5×saline sodium citrate (SSC) as a spotting solution. Using a CY5-labeled DNA probe prepared through PCR amplification, the optimized glass slide hybridization could detect as little as 1.71 pg of tobacco mosaic virus (TMV) RNA.The sensitivity of the modified method was four times that of dot-blot hybridization on nylon membrane with a 32P-labeled probe. The absence of false positive within the genus Potyvirus [potato virus A, potato virus Y (PVY) and zucchini yellow mosaic virus] showed that this method was highly specific. Furthermore,potato spindle tuber viroid (PSTVd) was also detected specifically. A test of 40 field potato samples showed that this method was equivalent to the conventional dot-blot hybridization for detecting PVY and PSTVd. To our knowledge, this is the first report of using dot-blot hybridization on glass slides with fluorescent-labeled probes for detecting plant RNA viruses and a viroid.

  14. A Review of Hybrid Renewable Energy Systems for Electric Power Generation

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim

    2015-08-01

    Full Text Available Integration and combined utilization of renewable energy sources are becoming increasingly attractive. This paper is a review of hybrid renewable energy systems technologies for power generation, important issues and challenges in their design stage. Generation technology selection and unit sizing, System configurations and Energy management and control are discussed. Applications of hybrid energy systems, advantages of hybrid energy systems, issues and problems related to hybrid energy systems and an overview of energy storage technologies for renewable energy systems are presented. This paper also highlights the future trends of Hybrid energy systems, which represent a promising sustainable solution for power generation.

  15. Wind Generator & Biomass No-draft Gasification Hybrid

    Science.gov (United States)

    Hein, Matthew R.

    The premise of this research is that underutilized but vast intermittent renewable energy resources, such as wind, can become more market competitive by coupling with storable renewable energy sources, like biomass; thereby creating a firm capacity resource. Specifically, the Midwest state of South Dakota has immense wind energy potential that is not used because of economic and logistic barriers of electrical transmission or storage. Coupling the state's intermittent wind resource with another of the state's energy resources, cellulosic non-food biomass, by using a wind generator and no-draft biomass gasification hybrid system will result in a energy source that is both firm and storable. The average energy content of common biomass feedstock was determined, 14.8 MJ/kg (7.153 Btu/lb), along with the assumed typical biomass conversion efficiency of the no-draft gasifier, 65%, so that an average electrical energy round trip efficiency (RTE) of 214% can be expected (i.e. One unit of wind electrical energy can produce 2.14 kWh of electrical energy stored as syngas.) from a wind generator and no-draft biomass gasification system. Wind characteristics are site specific so this analysis utilizes a synthetic wind resource to represent a statistically sound gross representation of South Dakota's wind regime based on data from the Wind Resource Assessment Network (WRAN) locations. A synthetic wind turbine generated from common wind turbine power curves and scaled to 1-MW rated capacity was utilized for this analysis in order to remove equipment bias from the results. A standard 8,760-hour BIN Analysis model was constructed within HOMER, powerful simulation software developed by the National Renewable Energy Laboratory (NREL) to model the performance of renewable power systems. It was found that the optimum configuration on a per-megawatt-transmitted basis required a wind generator (wind farm) rated capacity of 3-MW with an anticipated annual biomass feedstock of 26,132 GJ

  16. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.

    Science.gov (United States)

    Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel

    2013-01-30

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  17. Reactive Microcontact Printing of DNA Probes on (DMA-NAS-MAPS) Copolymer-Coated Substrates for Efficient Hybridization Platforms.

    Science.gov (United States)

    Castagna, Rossella; Bertucci, Alessandro; Prasetyanto, Eko Adi; Monticelli, Marco; Conca, Dario Valter; Massetti, Matteo; Sharma, Parikshit Pratim; Damin, Francesco; Chiari, Marcella; De Cola, Luisa; Bertacco, Riccardo

    2016-04-05

    High-performing hybridization platforms fabricated by reactive microcontact printing of DNA probes are presented. Multishaped PDMS molds are used to covalently bind oligonucleotides over a functional copolymer (DMA-NAS-MAPS) surface. Printed structures with minimum width of about 1.5 μm, spaced by 10 μm, are demonstrated, with edge corrugation lower than 300 nm. The quantification of the immobilized surface probes via fluorescence imaging gives a remarkable concentration of 3.3 × 10(3) oligonucleotides/μm(2), almost totally active when used as probes in DNA-DNA hybridization assays. Indeed, fluorescence and atomic force microscopy show a 95% efficiency in target binding and uniform DNA hybridization over printed areas.

  18. Design of time interval generator based on hybrid counting method

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yuan [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Zhaoqi [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lu, Houbing [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei Electronic Engineering Institute, Hefei 230037 (China); Chen, Lian [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jin, Ge, E-mail: goldjin@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-10-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some “off-the-shelf” TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  19. Design of time interval generator based on hybrid counting method

    Science.gov (United States)

    Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge

    2016-10-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some "off-the-shelf" TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  20. Transmit-receive eddy current probes for defect detection and sizing in steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Obrutsky, L.S.; Cecco, V.S.; Sullivan, S.P. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1997-02-01

    Inspection of steam generator tubes in aging Nuclear Generating Stations is increasingly important. Defect detection and sizing, especially in defect prone areas such as the tubesheet, support plates and U-bend regions, are required to assess the fitness-for-service of the steam generators. Information about defect morphology is required to address operational integrity issues, i.e., risk of tube rupture, number of tubes at risk, consequential leakage. A major challenge continues to be the detection and sizing of circumferential cracks. Utilities around the world have experienced this type of tube failure. Conventional in-service inspection, performed with eddy current bobbin probes, is ineffectual in detecting circumferential cracks in tubing. It has been demonstrated in CANDU steam generators, with deformation, magnetite and copper deposits that multi-channel probes with transmit-receive eddy current coils are superior to those using surface impedance coils. Transmit-receive probes have strong directional properties, permitting probe optimization according to crack orientation. They are less sensitive to lift-off noise and magnetite deposits and possess good discrimination to internal defects. A single pass C3 array transmit-receive probe developed by AECL can detect and size circumferential stress corrosion cracks as shallow as 40% through-wall. Since its first trial in 1992, it has been used routinely for steam generator in-service inspection of four CANDU plants, preventing unscheduled shutdowns due to leaking steam generator tubes. More recently, a need has surfaced for simultaneous detection of both circumferential and axial cracks. The C5 probe was designed to address this concern. It combines transmit-receive array probe technology for equal sensitivity to axial and circumferential cracks with a bobbin probe for historical reference. This paper will discuss the operating principles of transmit-receive probes, along with inspection results.

  1. Hybrid Generative/Discriminative Learning for Automatic Image Annotation

    CERN Document Server

    Yang, Shuang Hong; Zha, Hongyuan

    2012-01-01

    Automatic image annotation (AIA) raises tremendous challenges to machine learning as it requires modeling of data that are both ambiguous in input and output, e.g., images containing multiple objects and labeled with multiple semantic tags. Even more challenging is that the number of candidate tags is usually huge (as large as the vocabulary size) yet each image is only related to a few of them. This paper presents a hybrid generative-discriminative classifier to simultaneously address the extreme data-ambiguity and overfitting-vulnerability issues in tasks such as AIA. Particularly: (1) an Exponential-Multinomial Mixture (EMM) model is established to capture both the input and output ambiguity and in the meanwhile to encourage prediction sparsity; and (2) the prediction ability of the EMM model is explicitly maximized through discriminative learning that integrates variational inference of graphical models and the pairwise formulation of ordinal regression. Experiments show that our approach achieves both su...

  2. Mitochondrial Genome Variation after Hybridization and Differences in the First and Second Generation Hybrids of Bream Fishes.

    Directory of Open Access Journals (Sweden)

    Wei-Zhuo Zhang

    Full Text Available Hybridization plays an important role in fish breeding. Bream fishes contribute a lot to aquaculture in China due to their economically valuable characteristics and the present study included five bream species, Megalobrama amblycephala, Megalobrama skolkovii, Megalobrama pellegrini, Megalobrama terminalis and Parabramis pekinensis. As maternal inheritance of mitochondrial genome (mitogenome involves species specific regulation, we aimed to investigate in which way the inheritance of mitogenome is affected by hybridization in these fish species. With complete mitogenomes of 7 hybrid groups of bream species being firstly reported in the present study, a comparative analysis of 17 mitogenomes was conducted, including representatives of these 5 bream species, 6 first generation hybrids and 6 second generation hybrids. The results showed that these 17 mitogenomes shared the same gene arrangement, and had similar gene size and base composition. According to the phylogenetic analyses, all mitogenomes of the hybrids were consistent with a maternal inheritance. However, a certain number of variable sites were detected in all F1 hybrid groups compared to their female parents, especially in the group of M. terminalis (♀ × M. amblycephala (♂ (MT×MA, with a total of 86 variable sites between MT×MA and its female parent. Among the mitogenomes genes, the protein-coding gene nd5 displayed the highest variability. The number of variation sites was found to be related to phylogenetic relationship of the parents: the closer they are, the lower amount of variation sites their hybrids have. The second generation hybrids showed less mitogenome variation than that of first generation hybrids. The non-synonymous and synonymous substitution rates (dN/dS were calculated between all the hybrids with their own female parents and the results indicated that most PCGs were under negative selection.

  3. Multifaceted, cross-generational costs of hybridization in sibling Drosophila species.

    Directory of Open Access Journals (Sweden)

    Erin M Myers

    Full Text Available Maladaptive hybridization, as determined by the pattern and intensity of selection against hybrid individuals, is an important factor contributing to the evolution of prezygotic reproductive isolation. To identify the consequences of hybridization between Drosophila pseudoobscura and D. persimilis, we estimated multiple fitness components for F1 hybrids and backcross progeny and used these to compare the relative fitness of parental species and their hybrids across two generations. We document many sources of intrinsic (developmental and extrinsic (ecological selection that dramatically increase the fitness costs of hybridization beyond the well-documented F1 male sterility in this model system. Our results indicate that the cost of hybridization accrues over multiple generations and reinforcement in this system is driven by selection against hybridization above and beyond the cost of hybrid male sterility; we estimate a fitness loss of >95% relative to the parental species across two generations of hybridization. Our findings demonstrate the importance of estimating hybridization costs using multiple fitness measures from multiple generations in an ecologically relevant context; so doing can reveal intense postzygotic selection against hybridization and thus, an enhanced role for reinforcement in the evolution of populations and diversification of species.

  4. Optical transponder DC probe [for pulsed power generator

    CERN Document Server

    Thompson, M C

    1999-01-01

    The Atlas Pulse Power, Marx Bank will produce significant electromagnetic interference potential (EMI) via its 192 spark-gaps and trigger systems (36 more spark gaps). The authors have a need to measure DC charge components to a fair degree of accuracy during charge to ensure a safe and balanced system. Isolation from elevated- deck and/or high EMI environments during DC voltage or current measurement has classically been approached using frequency modulation (FM) of an imposed carrier on an optical fiber coupled system. There are shortcomings in most systems that can generally be compensated for by various means. In their application of remote sensing, the power to run this remote probe was a central issue. As such the authors took another approach to monitor the DC charge record for the Atlas' Marx banks. (0 refs).

  5. Characteristics of fertile somatic hybrids of G. hirsutum L. and G. trilobum generated via protoplast fusion.

    Science.gov (United States)

    Yu, X S; Chu, B J; Liu, R E; Sun, J; Brian, Joseph Jones; Wang, H Z; Shuijin, Zhu; Sun, Y Q

    2012-11-01

    Fertile somatic hybrids between tetraploid upland cotton G. hirsutum L. cv. Coker 312 and wild cotton G. trilobum were generated by symmetric electrofusion. Comparisons of morphology, combined with flow cytometric, RAPD, SRAP and AFLP analyses confirmed the hybrid nature of the regenerated plants. The hybrids differed morphologically from the parent plants. Flow cytometric analysis showed that the hybrids had DNA similar in amount to the total combined DNA content of the two parents, and the use of molecular markers revealed that the hybrids contained genomic fragments from both fusion parents, further indicating the hybrid nature of the regenerated plants. The stability of the morphological features of the hybrids was examined in following generations. The hexaploid fusion plants showed strong photosynthesis and a high expression level of some photosystem-related genes. Our results suggest that novel traits may be incorporated in cotton breeding programs through the production of somatic hybrids and the backcrossing of these plants with elite cultivars.

  6. Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Leite, Marina; Guimarães, Nuno

    2015-01-01

    acid (LNA)/ 2' O-methyl RNA (2'OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization......In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo...

  7. Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes.

    Science.gov (United States)

    Stender, H; Kurtzman, C; Hyldig-Nielsen, J J; Sørensen, D; Broomer, A; Oliveira, K; Perry-O'Keefe, H; Sage, A; Young, B; Coull, J

    2001-02-01

    A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomyces isolates from wine, show that the spoilage organism Brettanomyces belongs to the species D. bruxellensis and that the new method is able to identify Brettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity.

  8. Dominant Microbial Composition and Its Vertical Distribution in Saline Meromictic Lake Kaiike (Japan) as Revealed by Quantitative Oligonucleotide Probe Membrane Hybridization

    OpenAIRE

    Koizumi, Yoshikazu; Kojima, Hisaya; Fukui, Manabu

    2004-01-01

    Vertical distributions of dominant bacterial populations in saline meromictic Lake Kaiike were investigated throughout the water column and sediment by quantitative oligonucleotide probe membrane hybridization. Three oligonucleotide probes specific for the small-subunit (SSU) rRNA of three groups of Chlorobiaceae were newly designed. In addition, three general domain (Bacteria, Archaea, and Eukarya)-specific probes, two δ-Proteobacteria-specific probes, a Chlorobiaceae-specific probe, and a C...

  9. Genotyping of the CCR5 chemokine receptor by isothermal NASBA amplification and differential probe hybridization.

    Science.gov (United States)

    Romano, J W; Tetali, S; Lee, E M; Shurtliff, R N; Wang, X P; Pahwa, S; Kaplan, M H; Ginocchio, C C

    1999-11-01

    The human CCR5 chemokine receptor functions as a coreceptor with CD4 for infection by macrophage-tropic isolates of human immunodeficiency virus type 1 (HIV-1). A mutated CCR5 allele which encodes a protein that does not function as a coreceptor for HIV-1 has been identified. Thus, expression of the wild-type and/or mutation allele is relevant to determining the infectability of patient peripheral blood mononuclear cells (PBMC) and affects disease progression in vivo. We developed a qualitative CCR5 genotyping assay using NASBA, an isothermal nucleic acid amplification technology. The method involves three enzymes and two oligonucleotides and targets the CCR5 mRNA, which is expressed in PBMC at a copy number higher than 2, the number of copies of DNA present encoding the gene. The single oligonucleotide set amplifies both alleles, and genotyping is achieved by separate hybridizations of wild-type- and mutation-specific probes directly to the single-stranded RNA amplification product. Assay sensitivity and specificity were demonstrated with RNAs produced in vitro from plasmid clones bearing the DNA encoding each allele. No detectable cross-reactivity between wild-type and mutation probes was found, and 50 copies of each allele were readily detectable. Analysis of patient samples found that 20% were heterozygous and 1% were homozygous for the CCR5 mutation. Thus, NASBA is a sensitive and specific means of rapidly determining CCR5 genotype and provides several technical advantages over alternative assay systems.

  10. Estimate of true incomplete exchanges using fluorescence in situ hybridization with telomere probes

    Science.gov (United States)

    Wu, H.; George, K.; Yang, T. C.

    1998-01-01

    PURPOSE: To study the frequency of true incomplete exchanges in radiation-induced chromosome aberrations. MATERIALS AND METHODS: Human lymphocytes were exposed to 2 Gy and 5 Gy of gamma-rays. Chromosome aberrations were studied using the fluorescence in situ hybridization (FISH) technique with whole chromosome-specific probes, together with human telomere probes. Chromosomes 2 and 4 were chosen in the present study. RESULTS: The percentage of incomplete exchanges was 27% when telomere signals were not considered. After excluding false incomplete exchanges identified by the telomere signals, the percentage of incomplete exchanges decreased to 11%. Since telomere signals appear on about 82% of the telomeres, the percentage of true incomplete exchanges should be even lower and was estimated to be 3%. This percentage was similar for chromosomes 2 and 4 and for doses of both 2 Gy and 5 Gy. CONCLUSIONS: The percentage of true incomplete exchanges is significantly lower in gamma-irradiated human lymphocytes than the frequencies reported in the literature.

  11. A Sensitive Alternative for MicroRNA In Situ Hybridizations Using Probes of 2'-O-Methyl RNA + LNA

    DEFF Research Database (Denmark)

    Søe, Martin Jensen; Møller, Trine; Dufva, Martin;

    2011-01-01

    The use of short, high-affinity probes consisting of a combination of DNA and locked nucleic acid (LNA) has enabled the specific detection of microRNAs (miRNAs) by in situ hybridization (ISH). However, detection of low–copy number miRNAs is still not always possible. Here the authors show...... that probes consisting of 2'-O-methyl RNAs (2OMe) and LNA at every third base (2:1 ratio), under optimized hybridization conditions, excluding yeast RNA from the hybridization buffer, can provide superior performance in detection of miRNA targets in terms of sensitivity and signal-to-noise ratio compared...... to DNA + LNA probes. Furthermore, they show that hybridizations can be performed in buffers of 4M urea instead of 50% formamide, thereby yielding an equally specific but nontoxic assay. The use of 2OMe + LNA–based probes and the optimized ISH assay enable simple and fast detection of low–copy number mi...

  12. A LightCycler real-time PCR hybridization probe assay for detecting food-borne thermophilic Campylobacter

    DEFF Research Database (Denmark)

    Perelle, S.; Josefsen, Mathilde Hartmann; Hoorfar, Jeffrey

    2004-01-01

    Cycler real-time PCR assay (LC-PCR), which used fluorescent hybridization probes was developed. The test incorporated an internal amplification control co-amplified with the 16S rRNA gene of Campylobacter to monitor potential PCR inhibitors and ensure successful amplifications. The specificity study involving...

  13. Exploring the Hybridization Thermodynamics of Spherical Nucleic Acids to Tailor Probes for Diagnostic and Therapeutic Applications

    Science.gov (United States)

    Randeria, Pratik Shailesh

    Spherical nucleic acids (SNAs), three-dimensional nanoparticle conjugates composed of densely packed and highly oriented oligonucleotides around organic or inorganic nanoparticles, are an emergent class of nanostructures that show promise as single-entity agents for intracellular messenger RNA (mRNA) detection and gene regulation. SNAs exhibit superior biocompatibility and biological properties compared to linear oligonucleotides, enabling them to overcome many of the limitations of linear oligonucleotides for use in biomedical applications. However, the origins of these biologically attractive properties are not well understood. In this dissertation, the chemistry underlying one such property is studied in detail, and the findings are applied towards the rational design of more effective SNAs for diagnostic and therapeutic applications. Chapter 1 introduces the synthesis of SNAs, the unique properties that make them superior to linear nucleic acids for biomedicine, and previously studied applications of these structures. Chapter 2 focuses on quantitatively studying the impact of the chemical structure of the SNA on its ability to hybridize multiple complementary nucleic acids. This chapter lays the groundwork for understanding the factors that govern SNA hybridization thermodynamics and how to tailor SNAs to increase their binding affinity to target mRNA strands. Chapters 3 and 4 capitalize on this knowledge to engineer probes for intracellular mRNA detection and gene regulation applications. Chapter 3 reports the development of an SNA-based probe that can simultaneously report the expression level of two different mRNA transcripts in live cells and differentiate diseased cells from non-diseased cells. Chapter 4 investigates the use of topically-applied SNAs to down-regulate a critical mediator of impaired wound healing in diabetic mice to accelerate wound closure. This study represents the first topical therapeutic application of SNA nanotechnology to treat open

  14. Generating and probing entangled states for optical atomic clocks

    Science.gov (United States)

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan

    2016-05-01

    The precision of quantum measurements is inherently limited by projection noise caused by the measurement process itself. Spin squeezing and more complex forms of entanglement have been proposed as ways of surpassing this limitation. In our system, a high-finesse asymmetric micromirror-based optical cavity can mediate the atom-atom interaction necessary for generating entanglement in an 171 Yb optical lattice clock. I will discuss approaches for creating, characterizing, and optimally utilizing these nonclassical states for precision measurement, as well as recent progress toward their realization. This research is supported by DARPA QuASAR, NSF, and NSERC.

  15. Second Harmonic Generation in Scanning Probe Microscopy for Edge Localization

    Institute of Scientific and Technical Information of China (English)

    HU Xiao-Gen; LI Yu-He; LIN Hao-Shan; WANG Dong-Sheng; QI Xin

    2011-01-01

    We present an approach of second harmonic generation for edge localization of nano-scale defects measurement,based on the impact of the oscillating tip on the sample that induces higher harmonics of the excitation frequency.The harmonic signals of tip motion are measured by the heterodyne interferornetry. The edge amplitude ratio for the edge characterization can be calculated by a mechanics model and the threshold of edge localization is experimentally determined by second harmonic profiles. This approach has been successfully utilized to measure the pitch of a standard sample. The results show that the second harmonic is sensitive to locating the edge of nano-scale defects with high accuracy.%@@ We present an approach of second harmonic generation for edge localization of nano-scale defects measurement,based on the impact of the oscillating tip on the sample that induces higher harmonics of the excitation frequency.The harmonic signals of tip motion are measured by the heterodyne interferometry.The edge amplitude ratio for the edge characterization can be calculated by a mechanics model and the threshold of edge localization is experimentally determined by second harmonic profiles.This approach has been successfully utilized to measure the pitch of a standard sample.The results show that the second harmonic is sensitive to locating the edge of nano-scale defects with high accuracy.

  16. Probing the SELEX process with next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Tatjana Schütze

    Full Text Available BACKGROUND: SELEX is an iterative process in which highly diverse synthetic nucleic acid libraries are selected over many rounds to finally identify aptamers with desired properties. However, little is understood as how binders are enriched during the selection course. Next-generation sequencing offers the opportunity to open the black box and observe a large part of the population dynamics during the selection process. METHODOLOGY: We have performed a semi-automated SELEX procedure on the model target streptavidin starting with a synthetic DNA oligonucleotide library and compared results obtained by the conventional analysis via cloning and Sanger sequencing with next-generation sequencing. In order to follow the population dynamics during the selection, pools from all selection rounds were barcoded and sequenced in parallel. CONCLUSIONS: High affinity aptamers can be readily identified simply by copy number enrichment in the first selection rounds. Based on our results, we suggest a new selection scheme that avoids a high number of iterative selection rounds while reducing time, PCR bias, and artifacts.

  17. A logistical model for performance evaluations of hybrid generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, F.; Consoli, A.; Raciti, A. [Univ. of Catania (Italy). Dept. of Electrical, Electronic, and Systems Engineering; Lombardo, S. [Schneider Electric SpA, Torino (Italy)

    1998-11-01

    In order to evaluate the fuel and energy savings, and to focus on the problems related to the exploitation of combined renewable and conventional energies, a logistical model for hybrid generation systems (HGS`s) has been prepared. A software package written in ACSL, allowing easy handling of the models and data of the HGS components, is presented. A special feature of the proposed model is that an auxiliary fictitious source is introduced in order to obtain the power electric balance at the busbars during the simulation state and, also, in the case of ill-sized components. The observed imbalance powers are then used to update the system design. As a case study, the simulation program is applied to evaluate the energetic performance of a power plant relative to a small isolated community, and island in the Mediterranean Sea, in order to establish the potential improvement achievable via an optimal integration of renewable energy sources in conventional plants. Evaluations and comparisons among different-sized wind, photovoltaic, and diesel groups, as well as of different management strategies have been performed using the simulation package and are reported and discussed in order to present the track followed to select the final design.

  18. Multi-objective generation scheduling with hybrid energy resources

    Science.gov (United States)

    Trivedi, Manas

    In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly

  19. LNA probes substantially improve the detection of bacterial endosymbionts in whole mount of insects by fluorescent in-situ hybridization

    Directory of Open Access Journals (Sweden)

    Priya Natarajan

    2012-05-01

    Full Text Available Abstract Background Detection of unculturable bacteria and their localization in the host, by fluorescent in-situ hybridization (FISH, is a powerful technique in the study of host-bacteria interaction. FISH probes are designed to target the 16 s rRNA region of the bacteria to be detected. LNA probes have recently been used in FISH studies and proven to be more efficient. To date no report has employed LNA probes for FISH detection of bacterial endosymbiont in the whole mount tissues. Further, though speculated, bacteriocytes have not been reported from males of Bemisia tabaci. Results In this study, we compared the efficiency in detecting bacteria by fluorescent DNA oligonucleotides versus modified probes containing Locked Nucleic Acid (LNA substitution in their structure. We used the insect Bemisia tabaci as the experimental material since it carried simultaneous infection by two bacteria: one a primary endosymbiont, Portiera (and present in more numbers while the other a secondary endosymbiont Arsenophonus (and present in less numbers. Thus a variation in the abundance of bacteria was expected. While detecting both the bacteria, we found a significant increase in the signal whenever LNA probes were used. However, the difference was more pronounced in detecting the secondary endosymbiont, wherein DNA probes gave weak signals when compared to LNA probes. Also, signal to noise ratio for LNA probes was higher than DNA probes. We found that LNA considerably improved sensitivity of FISH, as compared to the commonly used DNA oligonucleotide probe. Conclusion By employing LNA probes we could detect endosymbiotic bacteria in males, which have never been reported previously. We were able to detect bacteriocytes containing Portiera and Arsenophonus in the males of B. tabaci. Thus, employing LNA probes at optimized conditions will help to significantly improve detection of bacteria at the lowest concentration and may give a comprehensible depiction

  20. Evaluation of different genetic procedures for the generation of artificial hybrids in Saccharomyces genus for winemaking.

    Science.gov (United States)

    Pérez-Través, Laura; Lopes, Christian A; Barrio, Eladio; Querol, Amparo

    2012-05-15

    Several methods based on recombinant DNA techniques have been proposed for yeast strain improvement; however, the most relevant oenological traits depend on a multitude of loci, making these techniques difficult to apply. In this way, hybridization techniques involving two complete genomes became interesting. Natural hybrid strains between different Saccharomyces species have been detected in diverse fermented beverages including wine, cider and beer. These hybrids seem to be better adapted to fluctuating situations typically observed in fermentations due to the acquisition of particular physiological properties of both parental strains. In this work we evaluated the usefulness of three different hybridization methods: spore to spore mating, rare-mating and protoplast fusion for the generation of intra- and inter-specific stable hybrids, being the first report about the comparison of different methods to obtain artificial hybrids to be used in fermentations. Spore to spore mating is an easy but time-consuming method; hybrids generated with this technique could lack some of the industrially relevant traits present in the parental strains because of the segregation occurred during meiosis and spore generation prior to hybridization. Hybrids obtained by protoplast fusion get the complete information of both parents but they are currently considered as genetically modified organisms (GMOs). Finally, hybrids obtained by rare-mating are easily obtained by the optimized methodology described in this work, they originally contain a complete set of chromosomes of both parents and they are not considered as GMOs. Hybrids obtained by means of the three methodological approaches showed a high genetic variability; however, a loss of genetic material was detected in most of them. Based on these results, it became evident that a last crucial aspect to be considered in every hybridization program is the genetic stabilization of recently generated hybrids that guarantee its

  1. Fluorescent in situ hybridization analysis of open lactic acid fermentation of kitchen refuse using rRNA-targeted oligonucleotide probes.

    Science.gov (United States)

    Sakai, Kenji; Mori, Masatsugu; Fujii, Akira; Iwami, Yuko; Chukeatirote, Ekachai; Shirai, Yoshihito

    2004-01-01

    Reproducible amounts of lactic acid accumulate in minced kitchen refuse under open conditions with intermittent pH neutralization [Sakai et al., Food Sci. Technol. Res., 6, 140 (2000)]. Here, we showed that such pH-controlled open fermentation of kitchen refuse reproducibly resulted a selective proliferation of a major lactic acid bacterial (LAB) species. In one experiment, the predominant microorganisms isolated during the early phase (6 h) were Gammaproteobacteria. In contrast, those that predominated during the late phase (48 h) were always Lactobacillus plantarum in three independent experiments. To further quantify the microbial community within open lactic acid fermentation, we performed fluorescent in situ hybridization (FISH) analysis targeting 16S (23S) rRNA. We designed two new group-specific DNA probes: LAC722(L) was active for most LAB including the genera Lactobacillus, Pediococcus, Leuconostoc and Weisella, whereas Lplan477 was specific for L. plantarum and its related species. We then optimized sample preparation using lysozyme and hybridization conditions including temperature, as well as the formamide concentration and the salt concentration in the washing buffer. We succeeded in quantification of microorganisms in semi-solid, complex biological materials such as minced kitchen refuse by taking color microphotographs in modified RGB balance on pre-coated slides. FISH analysis of the fermentation of kitchen refuse indicated that control of the pH swing leads to domination by the LAB population in minced kitchen refuse under open conditions. We also confirmed that L. plantarum, which generates lactic acid in high quantities but with low optical activity, became the dominant microorganism in kitchen refuse during the late phase of open fermentation.

  2. Probing Gravity with Next Generation Lunar Laser Ranging

    Science.gov (United States)

    Martini, Manuele; Dell'Agnello, Simone

    Lunar and satellite laser ranging (LLR/SLR) are consolidated techniques which provide a precise, and at the same time, cost-effective method to determine the orbits of the Moon and of satellites equipped with laser retroreflectors with respect to the International Celestial Reference System. We describe the precision tests of general relativity and of new theories of gravity that can be performed with second-generation LLR payloads on the surface of the Moon (NASA/ASI MoonLIGHT project), and with SLR/LLR payloads deployed on spacecraft in the Earth-Moon system. A new wave of lunar exploration and lunar science started in 2007-2008 with the launch of three missions (Chang'e by China, Kaguya by Japan, Chandrayaan by India), missions in preparation (LCROSS, LRO, GRAIL/LADEE by NASA) and other proposed missions (like MAGIA in Italy). This research activity will be greatly enhanced by the future robotic deployment of a lunar geophysics network (LGN) on the surface of the Moon. A scientific concept of the latter is the International Lunar Network (ILN, see http://iln.arc.nasa.gov/). The LLR retroreflector payload developed by a US-Italy team described here and under space qualification at the National Laboratories of Frascati (LNF) is the optimum candidate for the LGN, which will be populated in the future by any lunar landing mission.

  3. Probing Radiative Neutrino Mass Generation through Monotop Production

    CERN Document Server

    Ng, John N

    2014-01-01

    We present a generalization of a model where the right-handed up-type quarks serve as messengers for neutrino mass generation and as a portal for dark matter. Within this framework the Standard Model is extended with a single Majorana neutrino, a coloured electroweak-singlet scalar and a coloured electroweak-triplet scalar. We calculate the relic abundance of dark matter and show that we can match the latest experimental results. Furthermore, the implications from the scattering between nuclei and the dark matter candidate are studied and we implement the latest experimental constraints arising from flavour changing interactions, Higgs production and decay and LHC collider searches for a single jet and jets plus missing energy. In addition, we implement constraints arising from scalar top quark pair-production. We also study the production of a single top in association with missing energy and calculate the sensitivity of the LHC to the top quark hadronic and semi-leptonic decay modes with the current $20$ fb...

  4. Generation of hybrid meshes for the simulation of petroleum reservoirs; Generation de maillages hybrides pour la simulation de reservoirs petroliers

    Energy Technology Data Exchange (ETDEWEB)

    Balaven-Clermidy, S.

    2001-12-01

    Oil reservoir simulations study multiphase flows in porous media. These flows are described and evaluated through numerical schemes on a discretization of the reservoir domain. In this thesis, we were interested in this spatial discretization and a new kind of hybrid mesh has been proposed where the radial nature of flows in the vicinity of wells is directly taken into account in the geometry. Our modular approach described wells and their drainage area through radial circular meshes. These well meshes are inserted in a structured reservoir mesh (a Corner Point Geometry mesh) made up with hexahedral cells. Finally, in order to generate a global conforming mesh, proper connections are realized between the different kinds of meshes through unstructured transition ones. To compute these transition meshes that we want acceptable in terms of finite volume methods, an automatic method based on power diagrams has been developed. Our approach can deal with a homogeneous anisotropic medium and allows the user to insert vertical or horizontal wells as well as secondary faults in the reservoir mesh. Our work has been implemented, tested and validated in 2D and 2D1/2. It can also be extended in 3D when the geometrical constraints are simplicial ones: points, segments and triangles. (author)

  5. Robust hybridization-based genotyping probes for HPV 6, 11, 16 and 18 obtained via in vitro selection

    Directory of Open Access Journals (Sweden)

    Ivan B. Brukner

    2010-04-01

    Full Text Available This paper describes the technical and analytical performance of a novel set of hybridization probes for the four GARDASIL® vaccine-relevant HPV types (6, 11, 16 and 18. These probes are obtained through in vitro selection from a pool of random oligonucleotides, rather than the traditional “rational design” approach typically used as the initial step in assay development. The type-specific segment of the HPV genome was amplified using a GP5+/6+ PCR protocol and 39 synthetic oligonucleotide templates derived from each of the HPV types, as PCR targets. The robust performance of the 4 selected hybridization probes was demonstrated by monitoring the preservation of the specificity and sensitivity of the typing assay over all 39 HPV types, using a different spectrum of HPV (genome equivalent: 103-109 and human DNA concentrations (10-100 ng as well as temperature and buffer composition variations. To the Authors’ knowledge, this is a unique hybridization-based multiplex typing assay. It performs at ambient temperatures, does not require the strict temperature control of hybridization conditions, and is functional with a number of different non-denaturing buffers, thereby offering downstream compatibility with a variety of detection methods. Studies aimed at demonstrating clinical performance are needed to validate the applicability of this strategy.

  6. Dot-Blot Hybridization for Detection of Five Cucurbit Viruses by Digoxigenin-Labelled cDNA Probes

    Institute of Scientific and Technical Information of China (English)

    MENG Juan; GU Qin-sheng; LIN Shi-ming; PENG Bin; LIU Li-feng; TIAN Yan-ping; LI Li

    2007-01-01

    Dot-blot hybridization was applied in this paper to detect five viruses infecting cucurbitaceous crops,Zuccini yellow mosaic virus(ZYMV),Watermelon mosaic virus(WMV),Cucumber mosaic virus(CMV),Papaya ringspot virus watermelon strain(PRSV-W)and Squash mosaic virus(SqMV),as a good alternative assay in seed health test and epidemiological and transgenic research.Digoxigenin-labelled cDNA probes of the five viruses were synthesized by PCR with the specific primers and applied in dot-blot hybridization to detect five viruses in crude extraction of the infected leaves.And three SqMV probes of different lengths(0.55,1.6,and 2.7 kb,respectively)were designed to investigate the effect of hybridization.The results showed that the sensitivity for detecting the crude extraction of infected leaves by ZYMV,WMV,CMV,PRSV-W,and SqMV was down to 1:160,1:160,1:320,1:160,and 1:320,respectively.Three SqMV probes of different length showed no differences on the sensitivity and specificity.The digoxigenin-labelled probes prepared by PCR could be used for accurate and rapid identification of 5 viruses infecting cucurbitaceous crops with good stabilities,sensitivities,specificity,and reproducibilities.

  7. Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation

    Science.gov (United States)

    Le Bourdais, Florian; Marchand, Benoit

    2015-03-01

    Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of a newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.

  8. Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation

    Energy Technology Data Exchange (ETDEWEB)

    Le Bourdais, Florian, E-mail: florian.lebourdais@cea.fr; Marchand, Benoit, E-mail: florian.lebourdais@cea.fr [CEA LIST, Centre de Saclay F-91191 Gif-sur-Yvette (France)

    2015-03-31

    Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of a newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.

  9. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.

    Science.gov (United States)

    de los Reyes, F L; Ritter, W; Raskin, L

    1997-03-01

    Foaming in activated sludge systems is characterized by the formation of a thick, chocolate brown-colored scum that floats on the surface of aeration basins and secondary clarifiers. These viscous foams have been associated with the presence of filamentous mycolic acid-containing actinomycetes. To aid in evaluating the microbial representation in foam, we developed and characterized group-, genus-, and species-specific oligonucleotide probes targeting the small subunit rRNA of the Mycobacterium complex, Gordona spp., and Gordona (Nocardia) amarae, respectively. The use of a universal base analog, 5-nitroindole, in oligonucleotide probe design was evaluated by comparing the characteristics of two different versions of the Mycobacterium complex probe. The temperature of dissociation of each probe was determined. Probe specificity studies with a diverse collection of 67 target and nontarget rRNAs demonstrated the specificity of the probes to the target groups. Whole-cell hybridizations with fluorescein- and rhodamine-labeled probes were performed with pure cultures of various members of the Mycobacterium complex as well as with environmental samples from a full-scale activated sludge plant which experienced foaming. Quantitative membrane hybridizations with activated sludge and anaerobic digester foam showed that 15.0 to 18.3% of the total small-subunit rRNAs could be attributed to members of the Mycobacterium complex, of which a vast majority consisted of Gordona rRNA. Several G. amarae strains made up only a very small percentage of the Gordona strains present. We demonstrated that group-specific rRNA probes are useful tools for the in situ monitoring and identification of filamentous bacteria in activated sludge systems.

  10. Demand response impacts on off-grid hybrid photovoltaic-diesel generator microgrids

    OpenAIRE

    Aaron St. Leger

    2015-01-01

    Hybrid microgrids consisting of diesel generator set(s) and converter based power sources, such as solar photovoltaic or wind sources, offer an alternative to generator based off-grid power systems. The hybrid approach has been shown to be economical in many off-grid applications and can result in reduced generator operation, fuel requirements, and maintenance. However, the intermittent nature of demand and renewable energy sources typically require energy storage, such as batteries, to prope...

  11. Probing nanoscale chemical segregation and surface properties of antifouling hybrid xerogel films.

    Science.gov (United States)

    Destino, Joel F; Gatley, Caitlyn M; Craft, Andrew K; Detty, Michael R; Bright, Frank V

    2015-03-24

    Over the past decade there has been significant development in hybrid polymer coatings exhibiting tunable surface morphology, surface charge, and chemical segregation-all believed to be key properties in antifouling (AF) coating performance. While a large body of research exists on these materials, there have yet to be studies on all the aforementioned properties in a colocalized manner with nanoscale spatial resolution. Here, we report colocalized atomic force microscopy, scanning Kelvin probe microscopy, and confocal Raman microscopy on a model AF xerogel film composed of 1:9:9 (mol:mol:mol) 3-aminopropyltriethoxysilane (APTES), n-octyltriethoxysilane (C8), and tetraethoxysilane (TEOS) formed on Al2O3. This AF film is found to consist of three regions that are chemically and physically unique in 2D and 3D across multiple length scales: (i) a 1.5 μm thick base layer derived from all three precursors; (ii) 2-4 μm diameter mesa-like features that are enriched in free amine (from APTES), depleted in the other species and that extend 150-400 nm above the base layer; and (iii) 1-2 μm diameter subsurface inclusions within the base layer that are enriched in hydrogen-bonded amine (from APTES) and depleted in the other species.

  12. Evaluating a hybrid three-dimensional metrology system: merging data from optical and touch probe devices

    Science.gov (United States)

    Gerde, Janice R.; Christens-Barry, William A.

    2011-08-01

    In a project to meet requirements for CBP Laboratory analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS), a hybrid metrology system comprising both optical and touch probe devices has been assembled. A unique requirement must be met: To identify the interface-typically obscured in samples of concern-of the "external surface area upper" (ESAU) and the sole without physically destroying the sample. The sample outer surface is determined by discrete point cloud coordinates obtained using laser scanner optical measurements. Measurements from the optically inaccessible insole region are obtained using a coordinate measuring machine (CMM). That surface similarly is defined by point cloud data. Mathematically, the individual CMM and scanner data sets are transformed into a single, common reference frame. Custom software then fits a polynomial surface to the insole data and extends it to intersect the mesh fitted to the outer surface point cloud. This line of intersection defines the required ESAU boundary, thus permitting further fractional area calculations to determine the percentage of materials present. With a draft method in place, and first-level method validation underway, we examine the transformation of the two dissimilar data sets into the single, common reference frame. We also will consider the six previously-identified potential error factors versus the method process. This paper reports our on-going work and discusses our findings to date.

  13. Genetic consequences of many generations of hybridization between divergent copepod populations.

    Science.gov (United States)

    Edmands, S; Feaman, H V; Harrison, J S; Timmerman, C C

    2005-01-01

    Crosses between populations of the copepod Tigriopus californicus typically result in outbreeding depression. In this study, replicate hybrid populations were initiated with first generation backcross hybrids between two genetically distinct populations from California: Royal Palms (RP) and San Diego (SD). Reciprocal F(1) were backcrossed to SD, resulting in expected starting frequencies of 25% RP/75% SD nuclear genes on either a pure RP cytoplasmic or a pure SD cytoplasmic background. After 1 year of hybridization (up to 15 generations), seven microsatellite loci were scored in two replicates on each cytoplasmic background. Frequencies of the rarer RP alleles increased significantly in all four replicates, regardless of cytoplasmic source, producing a mean hybridity of 0.97 (maximum = 1), instead of the expected 0.50. Explicit tests for heterozygote excess across loci and replicates showed significant deviations. Only the two physically linked markers showed linkage disequilibrium in all replicates. Subsequent fitness assays in parental populations and early generation hybrids revealed lower fitness in RP than SD, and significant F(2) breakdown. Computer simulations showed that selection must be invoked to explain the shift in allele frequencies. Together, these results suggest that hybrid inferiority in early generations gave way to hybrid superiority in later generations.

  14. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    Directory of Open Access Journals (Sweden)

    A. Hajizadeh

    2013-12-01

    Full Text Available This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid power system is simulated in MATLAB/ SIMIULINK environment and different operating conditions have been considered to evaluate the response of power management strategy.

  15. The novel generating algorithm and properties of hybrid-P-ary generalized bridge functions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, we develop novel non-sine functions, named hybrid-P-ary generalized bridge functions, based on the copy and shift methods. The generating algorithm of hybrid-P-ary generalized bridge functions is introduced based on the hybrid-P-ary generalized Walsh function's copy algorithm. The main property, product property, is also discussed. This function may be viewed as the generalization of the theory of bridge functions. And a lot of non-sine orthogonal functions are the special subset of these novel functions. The hybrid-P-ary generalized bridge functions can be used to search many unknown non-sine functions by defining different parameters.

  16. Functional tooth restoration by next-generation bio-hybrid implant as a bio-hybrid artificial organ replacement therapy.

    Science.gov (United States)

    Oshima, Masamitsu; Inoue, Kaoru; Nakajima, Kei; Tachikawa, Tetsuhiko; Yamazaki, Hiromichi; Isobe, Tomohide; Sugawara, Ayaka; Ogawa, Miho; Tanaka, Chie; Saito, Masahiro; Kasugai, Shohei; Takano-Yamamoto, Teruko; Inoue, Takashi; Tezuka, Katsunari; Kuboki, Takuo; Yamaguchi, Akira; Tsuji, Takashi

    2014-01-01

    Bio-hybrid artificial organs are an attractive concept to restore organ function through precise biological cooperation with surrounding tissues in vivo. However, in bio-hybrid artificial organs, an artificial organ with fibrous connective tissues, including muscles, tendons and ligaments, has not been developed. Here, we have enveloped with embryonic dental follicle tissue around a HA-coated dental implant, and transplanted into the lower first molar region of a murine tooth-loss model. We successfully developed a novel fibrous connected tooth implant using a HA-coated dental implant and dental follicle stem cells as a bio-hybrid organ. This bio-hybrid implant restored physiological functions, including bone remodelling, regeneration of severe bone-defect and responsiveness to noxious stimuli, through regeneration with periodontal tissues, such as periodontal ligament and cementum. Thus, this study represents the potential for a next-generation bio-hybrid implant for tooth loss as a future bio-hybrid artificial organ replacement therapy.

  17. Pre-service baseline inspection using x-probe of Oconee replacement steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Addario, M.; Shipp, P. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada)]. E-mail: pwshipp@babcock.com; Davis, K. [Duke Power, Charlotte, North Carolina (United States); Fogal, C. [R and D Tech, Port Hope, Ontario (Canada)

    2003-07-01

    The eddy current method has been the industry standard for inspecting steam generator tubing for many years and the level of sophistication of coil technology has continued to evolve during that time. State of the art array probe systems now employ multiple sensitivity zones in the probe to better detect and characterize defects in an efficient manner. Owners and regulators of nuclear power plants are interested in the most effective and efficient inspection possible. The ultimate goal has been to meet or exceed new and existing regulatory and design requirements by maximizing the quantity and quality of eddy current data collected while minimizing both the time needed to perform the inspection and the radiation exposure. The X-Probe is an example of this new eddy current array technology. Qualified to detect all types of known defects in steam generator tubing, the technology is comprised of a system of probe, data acquisition instrumentation, computer and human interface software. Recently, Duke Power, along with Babcock and Wilcox Canada and the system developer R/D Tech, collaborated to implement this technology in a first of a kind full scale pre-service inspection of replacement steam generators for Duke Power's Oconee nuclear generating station at Babcock and Wilcox Canada's Cambridge plant. The discussion in this paper will briefly describe the X-Probe technology, describe the system required to perform the inspection, present the general results of the inspection and finally draw some comparative benefit conclusions for both pre-service and in-service applications. (author)

  18. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    Science.gov (United States)

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay.

  19. Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    DEFF Research Database (Denmark)

    Hansen, K.W.; Ahring, Birgitte Kiær; Raskin, L.

    1999-01-01

    -beta-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature of-dissociation and specificity studies, To demonstrate the usefulness of the probes for the detection and quantification of saturated......Small-subunit rRNA sequences were obtained for two saturated fatty acid-beta-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYE, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S, wolfei LYE was closely related...... fatty acid-beta-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria-and methanogens were compared to specific methanogenic activities...

  20. Feasibility study of a hybrid plants (photovoltaic–LPG generator system for rural electrification

    Directory of Open Access Journals (Sweden)

    Adouane Mabrouk

    2016-01-01

    Full Text Available The present study investigates the possibility of using a stand-alone photovoltaic/LPG (liquid petroleum gas generator hybrid power system for low-cost electricity production which can satisfy the energy load requirements of a typical remote and isolated rural area. In this context, the optimal dimensions to improve the technical and economical performances of the hybrid system are determined according to the load energy requirements. The proposed system's installation and operating costs are simulated using the Hybrid Optimization Model for Electric Renewable (HOMER, the solar radiation and the system components costs as inputs; and then compared with those of other supply options such as diesel generation.

  1. Second harmonic generation at the probe tip for background-free near-field optical imaging.

    Science.gov (United States)

    Dong, Zhaogang; Soh, Yeng Chai

    2012-08-13

    Second harmonic generation (SHG) has been applied to reduce background signals in near-field optical imaging, but this technique is usually limited to samples with strong second-order nonlinear susceptibilities. To overcome this limitation, in this paper, we present a versatile background-free SHG configuration, where it utilizes the second-order nonlinear susceptibility of the probe which essentially functions as a near-field polarizer capable of filtering out the background signal component. In the theoretical analysis, we first model the probe-sample optical interactions at both the fundamental frequency and the second harmonic frequency by using the coupled dipole method. The theoretical model reveals that the proposed versatile background-free SHG configuration requires two conditions. The first condition is that the incident optical field must be s-polarized. The second condition is that the probe must be made of crystals from symmetry class 222, symmetry class 622, symmetry class 422, symmetry class 42m, symmetry class 43m or symmetry class 23. To demonstrate the effectiveness of the proposed versatile background-free SHG configuration, a probe made of deuterated potassium dideuterium phosphate (DKDP) crystal from symmetry class 42m is analyzed numerically. It is shown that when imaging samples with negligible second-order nonlinear susceptibilities, the proposed background-free SHG configuration improves the imaging contrast by more than one-order of magnitude as compared to all other imaging configurations. Moreover, we also investigate the dependence of its performance on other parameters, such as the probe-sample distance, the relative size between probe and sample, and the tilt angle of probe crystal. It is believed that the proposed configuration could be widely used to achieve high contrast near-field optical imaging.

  2. Development and field validation of advanced array probes for steam generator inspection

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, C.V.; Pate, J.R. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    The aging of the steam generators at the nation`s nuclear power plants has led to the appearance of new forms of degradation in steam generator tubes and an increase in the frequency of forced outages due to major tube leak events. The eddy-current techniques currently being used for the inspection of steam generator tubing are no longer adequate to ensure that flaws will be detected before they lead to a shutdown of the plant. To meet the need for a fast and reliable method of inspection, ORNL has designed a 16-coil eddy-current array probe which combines an inspection speed similar to that of the bobbin coil with a sensitivity to cracks of any orientation similar to the rotating pancake coil. In addition, neural network and least square methods have been developed for the automatic analysis of the data acquired with the new probes. The probes and analysis software have been tested at two working steam generators where we have found an increase in the signal-to-noise ratio of a factor of five an increase in the inspection speed of a factor of 75 over the rotating pancake coil which maintaining similar detection and characterization capabilities.

  3. New generation of hybrid solar PV/T collectors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on the suitability of commercially available panels using amorphous silicon (a-Si) technology for use in hybrid photovoltaic-thermal collectors. A previously made feasibility study is quoted that showed that the competitiveness of hybrid collectors depends on the technical requirements placed on the integrated photovoltaic modules. The detail results of tests made on unencapsulated samples of a-Si modules based on various different substrates are presented. These include assessment of absorption factors on the basis of spectrometric and calorimetric measurements, testing of the thermal stability of the a-Si cells and emissivity measurements made on the top-cover materials used in the panels. The report is concluded with recommendations for the development of new encapsulation materials with low emissivity and improved durability at high temperatures.

  4. Multi-Agent System based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper proposes multi-agent system based event- triggered hybrid controls for guaranteeing energy supply of a hybrid energy generation system with high security. First, a mul-ti-agent system is constituted by an upper-level central coordi-nated control agent combined with several lower...... switching control, distributed dynamic regulation and coordinated switching con-trol are designed fully dependent on the hybrid behaviors of all distributed energy resources and the logical relationships be-tween them, and interact with each other by means of the mul-ti-agent system to form hierarchical......-level unit agents. Each lower-level unit agent is responsible for dealing with internal switching control and distributed dynamic regula-tion for its unit system. The upper-level agent implements coor-dinated switching control to guarantee the power supply of over-all system with high security. The internal...

  5. Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle.

    Science.gov (United States)

    Fujino, Akinori; Ueda, Naonori; Saito, Kazumi

    2008-03-01

    This paper presents a method for designing semi-supervised classifiers trained on labeled and unlabeled samples. We focus on probabilistic semi-supervised classifier design for multi-class and single-labeled classification problems, and propose a hybrid approach that takes advantage of generative and discriminative approaches. In our approach, we first consider a generative model trained by using labeled samples and introduce a bias correction model, where these models belong to the same model family, but have different parameters. Then, we construct a hybrid classifier by combining these models based on the maximum entropy principle. To enable us to apply our hybrid approach to text classification problems, we employed naive Bayes models as the generative and bias correction models. Our experimental results for four text data sets confirmed that the generalization ability of our hybrid classifier was much improved by using a large number of unlabeled samples for training when there were too few labeled samples to obtain good performance. We also confirmed that our hybrid approach significantly outperformed generative and discriminative approaches when the performance of the generative and discriminative approaches was comparable. Moreover, we examined the performance of our hybrid classifier when the labeled and unlabeled data distributions were different.

  6. Positively charged polymer brush-functionalized filter paper for DNA sequence determination following Dot blot hybridization employing a pyrrolidinyl peptide nucleic acid probe.

    Science.gov (United States)

    Laopa, Praethong S; Vilaivan, Tirayut; Hoven, Voravee P

    2013-01-07

    As inspired by the Dot blot analysis, a well known technique in molecular biology and genetics for detecting biomolecules, a new paper-based platform for colorimetric detection of specific DNA sequences employing peptide nucleic acid (PNA) as a probe has been developed. In this particular study, a pyrrolidinyl PNA bearing a conformationally rigid d-prolyl-2-aminocyclopentanecarboxylic acid backbone (acpcPNA) was used as a probe. The filter paper was modified to be positively charged with grafted polymer brushes of quaternized poly(dimethylamino)ethyl methacrylate (QPDMAEMA) prepared by surface-initiated polymerization of 2-(dimethylamino)ethyl methacrylate from the filter paper via ARGET ATRP followed by quaternization with methyl iodide. Following the Dot blot format, a DNA target was first immobilized via electrostatic interactions between the positive charges of the QPDMAEMA brushes and negative charges of the phosphate backbone of DNA. Upon hybridization with the biotinylated pyrrolidinyl peptide nucleic acid (b-PNA) probe, the immobilized DNA can be detected by naked eye observation of the yellow product generated by the enzymatic reaction employing HRP-labeled streptavidin. It has been demonstrated that this newly developed assay was capable of discriminating between complementary and single base mismatch targets at a detection limit of at least 10 fmol. In addition, the QPDMAEMA-grafted filter paper exhibited a superior performance to the commercial membranes, namely Nylon 66 and nitrocellulose.

  7. Generation of New Genotypic and Phenotypic Features in Artificial and Natural Yeast Hybrids

    Directory of Open Access Journals (Sweden)

    Walter P. Pfliegler

    2014-01-01

    Full Text Available Evolution and genome stabilization have mostly been studied on the Saccharomyces hybrids isolated from natural and alcoholic fermentation environments. Genetic and phenotypic properties have usually been compared to the laboratory and reference strains, as the true ancestors of the natural hybrid yeasts are unknown. In this way the exact impact of different parental fractions on the genome organization or metabolic activity of the hybrid yeasts is difficult to resolve completely. In the present work the evolution of geno- and phenotypic properties is studied in the interspecies hybrids created by the cross-breeding of S. cerevisiae with S. uvarum or S. kudriavzevii auxotrophic mutants. We hypothesized that the extent of genomic alterations in S. cerevisiae × S. uvarum and S. cerevisiae × S. kudriavzevii should affect the physiology of their F1 offspring in different ways. Our results, obtained by amplified fragment length polymorphism (AFLP genotyping and karyotyping analyses, showed that both subgenomes of the S. cerevisiae x S. uvarum and of S. cerevisiae × S. kudriavzevii hybrids experienced various modifications. However, the S. cerevisiae × S. kudriavzevii F1 hybrids underwent more severe genomic alterations than the S. cerevisiae × S. uvarum ones. Generation of the new genotypes also influenced the physiological performances of the hybrids and the occurrence of novel phenotypes. Significant differences in carbohydrate utilization and distinct growth dynamics at increasing concentrations of sodium chloride, urea and miconazole were observed within and between the S. cerevisiae × S. uvarum and S. cerevisiae × S. kudriavzevii hybrids. Parental strains also demonstrated different contributions to the final metabolic outcomes of the hybrid yeasts. A comparison of the genotypic properties of the artificial hybrids with several hybrid isolates from the wine-related environments and wastewater demonstrated a greater genetic variability of

  8. Experimental characterization of the lower hybrid wave field on the first pass using a magnetic probe array

    Science.gov (United States)

    Shinya, T.; Baek, S. G.; Wallace, G. M.; Parker, R. R.; Shiraiwa, S.; Takase, Y.

    2016-10-01

    Experimental characterization of the lower hybrid (LH) wave propagation from the launcher to the core plasma is important to validate an antenna spectrum model and to identify parasitic wave-edge plasma interactions occurring in front of the launcher. On Alcator C-Mod, the wave frequency spectrum and dominant parallel wavenumber are characterized with two probe arrays installed near the edge plasma. The first one is mounted on a radially movable structure that is about 108 deg toroidally away from the launcher. A phasing scan experiment at moderate density suggests a resonance-cone propagation of the launched slow LH wave with a finite spectral width. As plasma density is raised, the measured power decreases, correlated with the observed loss of efficiency. Recently, the second probe array with an increased number of probes has been installed on a limiter that is 54 deg. toroidally away from the launcher, which is expected to be dominantly sensitive to the wave-field directly leaving the launcher. An initial measurement shows that the probe array detects a coherent wave field. A full-wave model to evaluate the wave electric-field pattern in front of the probe array is under development. If available, further experimental and modeling results will be presented. Supported by USDoE Award(s) DE-FC02-99ER54512 and Japan/U.S. Cooperation in Fusion Research and Development.

  9. Generator maintenance scheduling in power systems using metaheuristic-based hybrid approaches

    Energy Technology Data Exchange (ETDEWEB)

    Dahal, Keshav P. [School of Informatics, University of Bradford, Bradford (United Kingdom); Chakpitak, Nopasit [College of Arts, Media and Technology, Chiang Mai University, Chiang Mai (Thailand)

    2007-05-15

    The effective maintenance scheduling of power system generators is very important for the economical and reliable operation of a power system. This represents a tough scheduling problem which continues to present a challenge for efficient optimization solution techniques. This paper presents the application of metaheuristic approaches, such as a genetic algorithm (GA), simulated annealing (SA) and their hybrid for generator maintenance scheduling (GMS) in power systems using an integer representation. This paper mainly focuses on the application of GA/SA and GA/SA/heuristic hybrid approaches. GA/SA hybrid uses the probabilistic acceptance criterion of SA within the GA framework. GA/SA/heuristic hybrid combines heuristic approaches within the GA/SA hybrid to seed the initial population. A case study is formulated in this paper as an integer programming problem using a reliability-based objective function and typical problem constraints. The implementation and performance of the metaheuristic approaches and their hybrid for the test case study are discussed. The results obtained are promising and show that the hybrid approaches are less sensitive to the variations of technique parameters and offer an effective alternative for solving the generator maintenance scheduling problem. (author)

  10. Ultrasound-guided probe-generated artifacts stimulating ventricular tachycardia: A rare phenomenon

    Directory of Open Access Journals (Sweden)

    Rafat Shamim

    2017-01-01

    Full Text Available Electrocardiographic (ECG artifacts may arise due to interference, faulty earthing, and current leakages in biomedical equipment which might create clinical dilemmas in the perioperative settings. Piezoelectric signals generated by ultrasonography probe are another uncommon source which might be sensed by the ECG electrodes and produce tracings similar to pathological arrhythmias triggering false alarms and avoidable therapies. Anesthesiologists should be familiar with these uncommon sources which might produce these artifacts and they should be identified swiftly.

  11. Ultrasound-guided probe-generated artifacts stimulating ventricular tachycardia: A rare phenomenon

    Science.gov (United States)

    Shamim, Rafat; Haldar, Rudrashish; Kaushal, Ashutosh

    2017-01-01

    Electrocardiographic (ECG) artifacts may arise due to interference, faulty earthing, and current leakages in biomedical equipment which might create clinical dilemmas in the perioperative settings. Piezoelectric signals generated by ultrasonography probe are another uncommon source which might be sensed by the ECG electrodes and produce tracings similar to pathological arrhythmias triggering false alarms and avoidable therapies. Anesthesiologists should be familiar with these uncommon sources which might produce these artifacts and they should be identified swiftly. PMID:28217063

  12. A Hybrid Generative/Discriminative Classifier Design for Semi-supervised Learing

    Science.gov (United States)

    Fujino, Akinori; Ueda, Naonori; Saito, Kazumi

    Semi-supervised classifier design that simultaneously utilizes both a small number of labeled samples and a large number of unlabeled samples is a major research issue in machine learning. Existing semi-supervised learning methods for probabilistic classifiers belong to either generative or discriminative approaches. This paper focuses on a semi-supervised probabilistic classifier design for multiclass and single-labeled classification problems and first presents a hybrid approach to take advantage of the generative and discriminative approaches. Our formulation considers a generative model trained on labeled samples and a newly introduced bias correction model, whose belongs to the same model family as the generative model, but whose parameters are different from the generative model. A hybrid classifier is constructed by combining both the generative and bias correction models based on the maximum entropy principle, where the combination weights of these models are determined so that the class labels of labeled samples are as correctly predicted as possible. We apply the hybrid approach to text classification problems by employing naive Bayes as the generative and bias correction models. In our experimental results on three English and one Japanese text data sets, we confirmed that the hybrid classifier significantly outperformed conventional probabilistic generative and discriminative classifiers when the classification performance of the generative classifier was comparable to the discriminative classifier.

  13. Towards Fluorescence In Vivo Hybridization (FIVH Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes.

    Directory of Open Access Journals (Sweden)

    Sílvia Fontenete

    Full Text Available In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo FISH-based method (FIVH that directly detects and allows the visualization of the bacterium within the human body would significantly reduce the time of analysis, allowing the diagnosis to be performed during endoscopy. In a previous study we designed and synthesized a phosphorothioate locked nucleic acid (LNA/ 2' O-methyl RNA (2'OMe probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH. In conclusion, this methodology is a promising approach that might be used in vivo in the future in combination with a confocal laser endomicroscope for H. pylori visualization.

  14. Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes

    Science.gov (United States)

    Fontenete, Sílvia; Leite, Marina; Guimarães, Nuno; Madureira, Pedro; Ferreira, Rui Manuel; Figueiredo, Céu; Wengel, Jesper; Azevedo, Nuno Filipe

    2015-01-01

    In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo FISH-based method (FIVH) that directly detects and allows the visualization of the bacterium within the human body would significantly reduce the time of analysis, allowing the diagnosis to be performed during endoscopy. In a previous study we designed and synthesized a phosphorothioate locked nucleic acid (LNA)/ 2’ O-methyl RNA (2’OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH). In conclusion, this methodology is a promising approach that might be used in vivo in the future in combination with a confocal laser endomicroscope for H. pylori visualization. PMID:25915865

  15. Probing the electric field in organic double layer-system by optical second harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Eunju; Shibata, Yoshinori; Manaka, Takaaki [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Iwamoto, Mitsumasa, E-mail: iwamoto@ome.pe.titech.ac.j [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2009-11-30

    Optical electric field induced second harmonic generation (EFISHG) measurements were employed to probe the electric field in the active layer of organic field effect transistors (OFETs) and organic light emitting diodes (OLEDs). The OFETs used were double-layered with an active layer of pentacene/poly (3-hexyl thiophene) P3HT on SiO{sub 2} gate insulator with Au source and drain electrodes. It was shown that SHG from the P3HT bottom layer could be selectively probed at a wavelength of 450 nm. Similarly, by using OLEDs comprised of a double layer of Tris(8-hydroxyquinolinato) aluminium (Alq{sub 3}) and N'-di(1-naphthyl)-N,N'-diphenylbenzidine ({alpha}-NPD) with a device structure of indium-zinc oxide (IZO)/{alpha}-NPD/Alq{sub 3}/Al, it was shown that EFISHG from the Alq{sub 3} layer could be selectively probed at a wavelength of 1000 nm by reflective laser beam irradiation from IZO-side. The results show that the spectroscopic nature of materials allows us to selectively probe the electric field distribution in each layer of multi-layer in organic devices.

  16. Demand response impacts on off-grid hybrid photovoltaic-diesel generator microgrids

    Directory of Open Access Journals (Sweden)

    Aaron St. Leger

    2015-08-01

    Full Text Available Hybrid microgrids consisting of diesel generator set(s and converter based power sources, such as solar photovoltaic or wind sources, offer an alternative to generator based off-grid power systems. The hybrid approach has been shown to be economical in many off-grid applications and can result in reduced generator operation, fuel requirements, and maintenance. However, the intermittent nature of demand and renewable energy sources typically require energy storage, such as batteries, to properly operate the hybrid microgrid. These batteries increase the system cost, require proper operation and maintenance, and have been shown to be unreliable in case studies on hybrid microgrids. This work examines the impacts of leveraging demand response in a hybrid microgrid in lieu of energy storage. The study is performed by simulating two different hybrid diesel generator—PV microgrid topologies, one with a single diesel generator and one with multiple paralleled diesel generators, for a small residential neighborhood with varying levels of demand response. Various system designs are considered and the optimal design, based on cost of energy, is presented for each level of demand response. The solar resources, performance of solar PV source, performance of diesel generators, costs of system components, maintenance, and operation are modeled and simulated at a time interval of ten minutes over a twenty-five year period for both microgrid topologies. Results are quantified through cost of energy, diesel fuel requirements, and utilization of the energy sources under varying levels of demand response. The results indicate that a moderate level of demand response can have significant positive impacts to the operation of hybrid microgrids through reduced energy cost, fuel consumption, and increased utilization of PV sources.

  17. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac, E-mail: jaehacko@pkusz.edu.cn

    2015-07-15

    Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.

  18. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors.

    Science.gov (United States)

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac

    2015-07-01

    Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10months. The hybrid bioreactors were operated in an aerobic-anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia-nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75d and 60d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4L/kgvs and 113.2L/kgvs. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.

  19. Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    DEFF Research Database (Denmark)

    Hansen, K.W.; Ahring, Birgitte Kiær; Raskin, L.

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-beta-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYE, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S, wolfei LYE was closely related...... to S. wolfei subsp. wolfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas, Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid...... fatty acid-beta-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria-and methanogens were compared to specific methanogenic activities...

  20. Application of rRNA probes and fluorescence in situ hybridization for rapid detection of the toxic dinoflagellate Alexandrium minutum

    Science.gov (United States)

    Tang, Xianghai; Yu, Rencheng; Zhou, Mingjiang; Yu, Zhigang

    2012-03-01

    The dinoflagellate Alexandrium minutum is often associated with harmful algal blooms (HABs). This species consists of many strains that differ in their ability to produce toxins but have similar morphology, making identification difficult. In this study, species-specific rRNA probes were designed for whole-cell fluorescence in situ hybridization (FISH) to distinguish A. minutum from two phylogenetic clades. We acquired the complete SSU to LSU rDNA sequences (GenBank accession numbers JF906989-JF906999) of 11 Alexandrium strains and used these to design rRNA targeted oligonucleotide probes. Three ribotype-specific probes, M-GC-1, M-PC-2, and M-PC-3, were designed. The former is specific for the GC clade ("Global clade") of A. minutum, the majority of which have been found non-toxic, and the latter two are specific for the PSP (paralytic shellfish poisoning)-producing PC clade ("Pacific clade"). The specificity of these three probes was confirmed by FISH. All cells in observed fields of view were fluorescently labeled when probes and target species were incubated under optimized FISH conditions. However, the accessibility of rRNA molecules in ribosomes varied among the probe binding positions. Thus, there was variation in the distribution of positive signals in labeled cells within nucleolus and cytosol (M-GC-1, M-PC-3), or just nucleolus (M-PC-2). Our results provide a methodological basis for studying the biogeography and population dynamics of A. minutum, and providing an early warning of toxic HABs.

  1. Application of rRNA probes and fluorescence in situ hybridization for rapid detection of the toxic dinoflagellate Alexandrium minutum

    Institute of Scientific and Technical Information of China (English)

    TANG Xianghai; YU Rencheng; ZHOU Mingjiang; YU Zhigang

    2012-01-01

    The dinoflagellate Alexandrium minutum is often associated with harmful algal blooms (HABs).This species consists of many strains that differ in their ability to produce toxins but have similar morphology,making identification difficult.In this study,species-specific rRNA probes were designed for whole-cell fluorescence in situ hybridization (FISH) to distinguish A.minutum from two phylogenetic clades.We acquired the complete SSU to LSU rDNA sequences (GenBank accession numbers JF906989-JF906999) of 11 Alexandrium strains and used these to design rRNA targeted oligonucleotide probes.Three ribotype-specific probes,M-GC-1,M-PC-2,and M-PC-3,were designed.The former is specific for the GC clade (“Global clade”) of A.minutum,the majority of which have been found non-toxic,and the latter two are specific for the PSP (paralytic shellfish poisoning)-producing PC clade (“Pacific clade”).The specificity of these three probes was confirmed by FISH.All cells in observed fields of view were fluorescently labeled when probes and target species were incubated under optimized FISH conditions.However,the accessibility of rRNA molecules in ribosomes varied among the probe binding positions.Thus,there was variation in the distribution of positive signals in labeled cells within nucleolus and cytosol (M-GC-1,M-PC-3),or just nucleolus (M-PC-2).Our results provide a methodological basis for studying the biogeography and population dynamics of A.minutum,and providing an early warning of toxic HABs.

  2. Validation of break-apart and fusion MYC probes using a digital fluorescence in situ hybridization capture and imaging system

    Directory of Open Access Journals (Sweden)

    Michael Liew

    2016-01-01

    Full Text Available Introduction: Detection of MYC translocations using fluorescence in situ hybridization (FISH is important in the evaluation of lymphomas, in particular, Burkitt lymphoma and diffuse large B-cell lymphoma. Our aim was to validate a digital FISH capture and imaging system for the detection of MYC 8q24 translocations using LSI-MYC (a break-apart probe and MYC 8;14 translocation using IGH-MYC (a fusion probe. Materials and Methods: LSI-MYC probe was evaluated using tissue sections from 35 patients. IGH-MYC probe was evaluated using tissue sections from forty patients. Sections were processed for FISH and analyzed using traditional methods. FISH slides were then analyzed using the GenASIs capture and analysis system. Results: Results for LSI-MYC had a high degree of correlation between traditional method of FISH analysis and digital FISH analysis. Results for IGH-MYC had a 100% concordance between traditional method of FISH analysis and digital FISH analysis. Conclusion: Annotated whole slide images of H and E and FISH sections can be digitally aligned, so that areas of tumor within a section can be matched and evaluated with a greater degree of accuracy. Images can be archived permanently, providing a means for examining the results retrospectively. Digital FISH imaging of the MYC translocations provides a better diagnostic tool compared to traditional methods for evaluating lymphomas.

  3. Validation of break-apart and fusion MYC probes using a digital fluorescence in situ hybridization capture and imaging system

    Science.gov (United States)

    Liew, Michael; Rowe, Leslie; Clement, Parker W.; Miles, Rodney R.; Salama, Mohamed E.

    2016-01-01

    Introduction: Detection of MYC translocations using fluorescence in situ hybridization (FISH) is important in the evaluation of lymphomas, in particular, Burkitt lymphoma and diffuse large B-cell lymphoma. Our aim was to validate a digital FISH capture and imaging system for the detection of MYC 8q24 translocations using LSI-MYC (a break-apart probe) and MYC 8;14 translocation using IGH-MYC (a fusion probe). Materials and Methods: LSI-MYC probe was evaluated using tissue sections from 35 patients. IGH-MYC probe was evaluated using tissue sections from forty patients. Sections were processed for FISH and analyzed using traditional methods. FISH slides were then analyzed using the GenASIs capture and analysis system. Results: Results for LSI-MYC had a high degree of correlation between traditional method of FISH analysis and digital FISH analysis. Results for IGH-MYC had a 100% concordance between traditional method of FISH analysis and digital FISH analysis. Conclusion: Annotated whole slide images of H and E and FISH sections can be digitally aligned, so that areas of tumor within a section can be matched and evaluated with a greater degree of accuracy. Images can be archived permanently, providing a means for examining the results retrospectively. Digital FISH imaging of the MYC translocations provides a better diagnostic tool compared to traditional methods for evaluating lymphomas. PMID:27217970

  4. Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian

    2017-07-01

    An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.

  5. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.

    Science.gov (United States)

    Gao, Zhuangqiang; Qiu, Zhenli; Lu, Minghua; Shu, Jian; Tang, Dianping

    2017-03-15

    This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer.

  6. Visual tracker using sequential bayesian learning: discriminative, generative, and hybrid.

    Science.gov (United States)

    Lei, Yun; Ding, Xiaoqing; Wang, Shengjin

    2008-12-01

    This paper presents a novel solution to track a visual object under changes in illumination, viewpoint, pose, scale, and occlusion. Under the framework of sequential Bayesian learning, we first develop a discriminative model-based tracker with a fast relevance vector machine algorithm, and then, a generative model-based tracker with a novel sequential Gaussian mixture model algorithm. Finally, we present a three-level hierarchy to investigate different schemes to combine the discriminative and generative models for tracking. The presented hierarchical model combination contains the learner combination (at level one), classifier combination (at level two), and decision combination (at level three). The experimental results with quantitative comparisons performed on many realistic video sequences show that the proposed adaptive combination of discriminative and generative models achieves the best overall performance. Qualitative comparison with some state-of-the-art methods demonstrates the effectiveness and efficiency of our method in handling various challenges during tracking.

  7. Dominant microbial composition and its vertical distribution in saline meromictic Lake Kaiike (Japan) as revealed by quantitative oligonucleotide probe membrane hybridization.

    Science.gov (United States)

    Koizumi, Yoshikazu; Kojima, Hisaya; Fukui, Manabu

    2004-08-01

    Vertical distributions of dominant bacterial populations in saline meromictic Lake Kaiike were investigated throughout the water column and sediment by quantitative oligonucleotide probe membrane hybridization. Three oligonucleotide probes specific for the small-subunit (SSU) rRNA of three groups of Chlorobiaceae were newly designed. In addition, three general domain (Bacteria, Archaea, and Eukarya)-specific probes, two delta-Proteobacteria-specific probes, a Chlorobiaceae-specific probe, and a Chloroflexi-specific probe were used after optimization of their washing conditions. The abundance of the sum of SSU rRNAs hybridizing with probes specific for three groups of Chlorobiaceae relative to total SSU rRNA peaked in the chemocline, accounting for up to 68%. The abundance of the delta-proteobacterial SSU rRNA relative to total SSU rRNA rapidly increased just below the chemocline up to 29% in anoxic water and peaked at the 2- to 3-cm sediment depth at ca. 34%. The abundance of SSU rRNAs hybridizing with the probe specific for the phylum Chloroflexi relative to total SSU rRNA was highest (31 to 54%) in the top of the sediment but then steeply declined with depth and became stable at 11 to 19%, indicating the robust coexistence of sulfate-reducing bacteria and Chloroflexi in the top of the sediment. Any SSU rRNA of Chloroflexi in the water column was under the detection limit. The summation of the signals of group-specific probes used in this study accounted for up to 89% of total SSU rRNA, suggesting that the DGGE-oligonucleotide probe hybridization approach, in contrast to conventional culture-dependent approaches, was very effective in covering dominant populations.

  8. Construction of a repeat-free dual color fluorescent in situ hybridization probe for ROS1 gene in non-small cell lung cancer diagnosis

    Institute of Scientific and Technical Information of China (English)

    程弘夏

    2014-01-01

    Objective To establish a repeat-free ROS1 gene fluorescence in situ hybridization(FISH)probe,and to compare its efficacy with those of commercial FISH probes in non-small cell lung cancer.Methods The probe was constructed by combining human Cot-1 DNA genome into double-stranded sequence,and then digested by duples specific nuclease to establish a repeat-free sequene.The final repeat-free ROS1 FISH probe was labeled by red and green fluoresceins.Results Compared

  9. Study of applying a hybrid standalone wind-photovoltaic generation system

    Directory of Open Access Journals (Sweden)

    Aissa Dahmani

    2015-01-01

    Full Text Available The purpose of this paper is the study of applying a hybrid system wind/photovoltaic to supply a community in southern Algeria. Diesel generators are always used to provide such remote regions with energy. Using renewable energy resources is a good alternative to overcome such pollutant generators. Hybrid Optimization Model for Electric Renewable (HOMER software is used to determine the economic feasibility of the proposed configuration. Assessment of renewable resources consisting in wind and solar potentials, load profile determination and sensitivity of different parameters analysis were performed. The cost of energy (COE of 0.226 $/kWh is very competitive with those found in literature.

  10. Formation of a hybrid plasmonic waveguide mode probed by dispersion measurement

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H. [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo 152-8551 (Japan); Kurata, H., E-mail: kurata@eels.kuicr.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2015-04-07

    Hybrid waveguides, i.e., dielectric waveguides combined with plasmonic waveguides, have great potential for concomitantly exhibiting subwavelength confinement and long range propagation, enabling a highly integrated photonic circuit. We report the characterization of hybrid waveguide modes excited in Si/SiO{sub 2}/Al films, by dispersion measurement using angle-resolved electron energy-loss spectroscopy. This experiment directly verifies the formation of the hybrid waveguide mode with a strongly localized electromagnetic field in a 6-nm-thick SiO{sub 2} layer. The results clearly describe the characteristic behavior of the hybrid waveguide mode, which depends on the effective index of the constituent dielectric waveguide and the surface plasmon-polariton modes.

  11. Bimodal Imaging Probes for Combined PET and OI: Recent Developments and Future Directions for Hybrid Agent Development

    Directory of Open Access Journals (Sweden)

    Uwe Seibold

    2014-01-01

    Full Text Available Molecular imaging—and especially positron emission tomography (PET—has gained increasing importance for diagnosis of various diseases and thus experiences an increasing dissemination. Therefore, there is also a growing demand for highly affine PET tracers specifically accumulating and visualizing target structures in the human body. Beyond the development of agents suitable for PET alone, recent tendencies aim at the synthesis of bimodal imaging probes applicable in PET as well as optical imaging (OI, as this combination of modalities can provide clinical advantages. PET, due to the high tissue penetration of the γ-radiation emitted by PET nuclides, allows a quantitative imaging able to identify and visualize tumors and metastases in the whole body. OI on the contrary visualizes photons exhibiting only a limited tissue penetration but enables the identification of tumor margins and infected lymph nodes during surgery without bearing a radiation burden for the surgeon. Thus, there is an emerging interest in bimodal agents for PET and OI in order to exploit the potential of both imaging techniques for the imaging and treatment of tumor diseases. This short review summarizes the available hybrid probes developed for dual PET and OI and discusses future directions for hybrid agent development.

  12. Experimental investigation on thermoelectric generator of micro hybrid power source

    Science.gov (United States)

    Shang, Yonghong; Li, Yanqiu; Yu, Hongyun; Sun, Hongguang; Su, Bo

    2007-12-01

    The micro power system, which is composed of photovoltaic solar cell, heat conductor, thermoelectric generator (TEG) module and fin heat sink has been developed in our laboratory. A photovoltaic silicon solar cell of the P-N junction type is sensitive to radiant energy of wavelength from 5,000 Å to 12,000 Å. Radiation under and within this range is converted not only into electric energy but also into heat energy. The wavelength longer than this range is also converted into heat energy, which degrades the conversion efficiency of the solar cell. TEG produces electrical power from temperature difference via Seebeck effect that can be put under the solar cell to absorb the heat. The heat energy can be converted into electrical power. It was found that when TEG surface area was 150mm×60mm, it could generate 0.24V output voltage and 4.18mA short circuit at ambient temperature varying between 5-10°C at winter. It also could generate 1.3V output voltage and 16mA short circuit at ambient temperature varying between 30-36°C at summer. In fact we can use a dc-dc boost up converter to enlarge the output voltage to meet the requirements of wireless sensor network nodes or its recharging battery. It will be an alternative power source for many portable electronic types of equipment.

  13. Hybrid centralized-distributed power conditioning system for thermoelectric generator with high energy efficiency

    DEFF Research Database (Denmark)

    Wu, Hongfei; Sun, Kai; Chen, Min;

    2013-01-01

    The unbalanced temperature distribution influences the power output of thermoelectric generator (TEG) system, which leads to mismatch power among TEG modules. This mismatch power degrades the energy efficiency of TEG systems based on the series-connected TEG modules. A hybrid centralized-distribu......The unbalanced temperature distribution influences the power output of thermoelectric generator (TEG) system, which leads to mismatch power among TEG modules. This mismatch power degrades the energy efficiency of TEG systems based on the series-connected TEG modules. A hybrid centralized...... the proposed system, which benefits for implementing high MPPT efficiency and high conversion efficiency simultaneously. A hybrid MPPT control strategy is proposed for this HCD power conditioning system. The characteristics, circuit implementation and operation principles of the proposed system are presented...

  14. Nanocrystal-based hybrid white light generation with tunable colour parameters

    Science.gov (United States)

    Nizamoglu, S.; Demir, H. V.

    2007-09-01

    We present the hybridization of CdSe/ZnS core shell nanocrystals (NCs) on InGaN/GaN based blue/near-UV LEDs to generate light widely tunable across the visible spectral range and especially within the white region of the CIE (1931) chromaticity diagram. We report on the design, growth, fabrication and characterization of these hybrid NC-LEDs. In 26 NC-LED samples, we experimentally show the effect of the NC concentration and NC film thickness on tuning the colour properties of the generated light (tristimulus coordinates, colour rendering index and correlated temperature) and further compare layer by layer assembly and blending of NCs for integration in LEDs. With greatly tunable colour properties, these hybrid white light sources hold promise for future lighting and display applications.

  15. Mode of inheritance for fruit firmness in tomato hybrids of F1 generation (Lycoperscum esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Sušić Zoran

    2000-01-01

    Full Text Available Present day program for tomato selection are aimed at creating the genotypes with firm fruit. The fruits with this quality surfer from minor injuries while being harvested and transported, which directly affects their better consumption purpose. By crossing seven divergent tomato genotypes that differed among themselves in fruit firmness, and by applying the method of full diallel without reciprocal crossings, we obtained 21 hybrids of F1 generation. Upon analyzing the components of the genetic variance we found out that dominant genes prevailed in inheriting this feature. Considering all the crossing combinations together, it could be concluded that super dominance was the mode of inheritance recorded in Fl generation. The hybrid combination obtained by crossing the two hybrids with the best general combining ability (V-100 x No-10 was characterized by the best specific combining ability. .

  16. Hybridization study of developmental plastid gene expression in mustard (Sinapsis alba L.) with cloned probes for most plastid DNA regions.

    Science.gov (United States)

    Link, G

    1984-07-01

    An approach to assess the extent of developmental gene expression of various regions of plastid (pt)DNA in mustard (Sinapis alba L.) is described. It involves cloning of most ptDNA regions. The cloned regions then serve as hybridization probes to detect and assess the abundance of complementary RNA sequences represented in total plastid RNA. By comparison of the hybridization pattern observed with plastid RNA from either dark-grown or light-grown plants it was found that many ptDNA regions are constitutively expressed, while several 'inducible' regions account for much higher transcript levels in the chloroplast than in the etioplast stage. The reverse situation, i.e. 'repressed' regions which would account for higher transcript levels in the etioplast, was not observed. The hybridization results obtained with RNA from 'intermediatetype' plastids suggest that transient gene expression is a common feature during light-induced chloroplast development. The time-course of gene expression differs for various ptDNA regions.

  17. Detection of Helicobacter Pylori Genome with an Optical Biosensor Based on Hybridization of Urease Gene with a Gold Nanoparticles-Labeled Probe

    Science.gov (United States)

    Shahrashoob, M.; Mohsenifar, A.; Tabatabaei, M.; Rahmani-Cherati, T.; Mobaraki, M.; Mota, A.; Shojaei, T. R.

    2016-05-01

    A novel optics-based nanobiosensor for sensitive determination of the Helicobacter pylori genome using a gold nanoparticles (AuNPs)-labeled probe is reported. Two specific thiol-modified capture and signal probes were designed based on a single-stranded complementary DNA (cDNA) region of the urease gene. The capture probe was immobilized on AuNPs, which were previously immobilized on an APTES-activated glass, and the signal probe was conjugated to different AuNPs as well. The presence of the cDNA in the reaction mixture led to the hybridization of the AuNPs-labeled capture probe and the signal probe with the cDNA, and consequently the optical density of the reaction mixture (AuNPs) was reduced proportionally to the cDNA concentration. The limit of detection was measured at 0.5 nM.

  18. Generation of ordinary mode electromagnetic radiation near the upper hybrid frequency in the magnetosphere

    Science.gov (United States)

    Ashour-Abdalla, M.; Okuda, H.

    1984-01-01

    It is shown by means of plasma numerical simulations that long-wavelength ordinary mode electromagnetic radiation can be generated from short-wavelength electrostatic waves near the upper hybrid resonance frequency in an inhomogeneous plasma. A possible relation of this process to nonthermal continuum radiation in the magnetosphere is discussed.

  19. A Hybrid Column Generation approach for an Industrial Waste Collection Routing Problem

    DEFF Research Database (Denmark)

    Hauge, Kristian; Larsen, Jesper; Lusby, Richard Martin;

    2014-01-01

    , real-world problem instances. Results indicate that the hybrid column generation outperforms a purely heuristic approach in terms of both running time and solution quality. High quality solutions to problems containing up to 100 orders can be solved in approximately 15 minutes....

  20. Computationally Probing the Performance of Hybrid, Heterogeneous, and Homogeneous Iridium-Based Catalysts for Water Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    García-Melchor, Max [SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford CA (United States); Vilella, Laia [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST),Tarragona (Spain); Departament de Quimica, Universitat Autonoma de Barcelona, Barcelona (Spain); López, Núria [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona (Spain); Vojvodic, Aleksandra [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park CA (United States)

    2016-04-29

    An attractive strategy to improve the performance of water oxidation catalysts would be to anchor a homogeneous molecular catalyst on a heterogeneous solid surface to create a hybrid catalyst. The idea of this combined system is to take advantage of the individual properties of each of the two catalyst components. We use Density Functional Theory to determine the stability and activity of a model hybrid water oxidation catalyst consisting of a dimeric Ir complex attached on the IrO2(110) surface through two oxygen atoms. We find that homogeneous catalysts can be bound to its matrix oxide without losing significant activity. Hence, designing hybrid systems that benefit from both the high tunability of activity of homogeneous catalysts and the stability of heterogeneous systems seems feasible.

  1. Chromosome engineering: generation of mono- and dicentric isochromosomes in a somatic cell hybrid system.

    Science.gov (United States)

    Higgins, A W; Schueler, M G; Willard, H F

    1999-08-01

    The most common isochromosome found in humans involves the long arm of the X, i(Xq), and is associated with a subset of Turner syndrome cases. To study the formation and behavior of isochromosomes in a more tractable experimental system, we have developed a somatic cell hybrid model system that allows for the selection of mono- or dicentric isochromosomes involving the short arm of the X, i(Xp). Simultaneous positive and negative counterselection of a mouse/human somatic cell hybrid containing a human X chromosome, selecting for retention of the UBE1 locus in Xp but against the HPRT locus in Xq, results in a variety of abnormalities of the X chromosome involving deletions of Xq. We have generated 70 such "Pushmi-Pullyu" hybrids derived from seven independent X chromosomes. Cytogenetic analysis of these hybrids using fluorescence in situ hybridization showed i(Xp) chromosomes in approximately 19% of the hybrids. Southern blot and polymerase chain reaction analyses of the Pushmi-Pullyu hybrids revealed a distribution of breakpoints along Xq. The distance between the centromeres of the dicentric i(Xp)s generated ranged from approximately 2 Mb to approximately 20 Mb. To examine centromeric activity in these dicentric i(Xp)s, we used indirect immunofluorescence with antibodies to centromere protein E (CENP-E). CENP-E was detected at only one of the centromeres of a dicentric i(Xp) with approximately 2-3 Mb of Xq DNA. In contrast, CENP-E was detected at both centromeres of a dicentric i(Xp) with approximately 14 Mb of Xq DNA. Two other dicentric i(Xp) chromosomes were heterogeneous with respect to centromeric activity, suggesting that centromeric activity and chromosome stability of dicentric chromosomes may be more complicated than previously thought. The Pushmi-Pullyu model system presented in this study may provide a tool for examining the structure and function of mammalian centromeres.

  2. A Hybrid Estimator for Active/Reactive Power Control of Single-Phase Distributed Generation Systems with Energy Storage

    OpenAIRE

    Pahlevani, Majid; Eren, Suzan; Guerrero, Josep M.; Jain, Praveen

    2016-01-01

    This paper presents a new active/reactive power closed-loop control system for a hybrid renewable energy generation system used for single-phase residential/commercial applications.The proposed active/reactive control method includes a hybrid estimator, which is able to quickly and accurately estimate the active/reactive power values. The proposed control system enables the hybrid renewable energy generation system to be able to perform real-time grid interconnection services such as active v...

  3. In situ hybridization of cytokine mRNA using alkaline phosphatase-labelled oligodeoxynucleotide probes

    DEFF Research Database (Denmark)

    Clausen, Bettina Hjelm; Fenger, Christina; Finsen, B.

    2013-01-01

    In situ hybridization is a powerful tool for visualizing cellular gene expression in morphologically preserved brain tissue giving precise information on the regional expression of specific mRNA sequences in cells of diverse phenotype. Here, we describe a sensitive, simple, and robust method using...

  4. Generation of Five New Musa Hybrids With Resistance To Black Sigatoka and High Yield

    Directory of Open Access Journals (Sweden)

    Ricardo Hernandez

    2007-01-01

    Full Text Available The ability to identify genetic variation is indispensable to effective management and use of genetic resources. This work is the first approach concerning to generation and genetic differentiation of new Musa hybrid lines obtained in INIVIT (Cuba, crossing Musa acuminata male diploid (AA x female triploid (ABB, genotypes selected by their resistant character to pests and diseases. From the obtained hybrids, only five were chosen because of their agronomic behavior and were genetically discriminated among them and also respect to the commercial clone FHIA-18 by AFLP polymorphism. Thanks to this prior genetic characterization Musa breeding programs could be consistently dinamised.

  5. Thermoeconomic Analysis of Hybrid Power Plant Concepts for Geothermal Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2014-07-01

    Full Text Available We present a thermo-economic analysis for a low-temperature Organic Rankine Cycle (ORC in a combined heat and power generation (CHP case. For the hybrid power plant, thermal energy input is provided by a geothermal resource coupled with the exhaust gases of a biogas engine. A comparison to alternative geothermal CHP concepts is performed by considering variable parameters like ORC working fluid, supply temperature of the heating network or geothermal water temperature. Second law efficiency as well as economic parameters show that hybrid power plants are more efficient compared to conventional CHP concepts or separate use of the energy sources.

  6. Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies.

    Science.gov (United States)

    Ayub, Suleman; Gentet, Luc J; Fiáth, Richárd; Schwaerzle, Michael; Borel, Mélodie; David, François; Barthó, Péter; Ulbert, István; Paul, Oliver; Ruther, Patrick

    2017-09-01

    This article reports on the development, i.e., the design, fabrication, and validation of an implantable optical neural probes designed for in vivo experiments relying on optogenetics. The probes comprise an array of ten bare light-emitting diode (LED) chips emitting at a wavelength of 460 nm and integrated along a flexible polyimide-based substrate stiffened using a micromachined ladder-like silicon structure. The resulting mechanical stiffness of the slender, 250-μm-wide, 65-μm-thick, and 5- and 8-mm-long probe shank facilitates its implantation into neural tissue. The LEDs are encapsulated by a fluropolymer coating protecting the implant against the physiological conditions in the brain. The electrical interface to the external control unit is provided by 10-μm-thick, highly flexible polyimide cables making the probes suitable for both acute and chronic in vivo experiments. Optical and electrical properties of the probes are reported, as well as their in vivo validation in acute optogenetic studies in transgenic mice. The depth-dependent optical stimulation of both excitatory and inhibitory neurons is demonstrated by altering the brain activity in the cortex and the thalamus. Local network responses elicited by 20-ms-long light pulses of different optical power (20 μW and 1 mW), as well as local modulation of single unit neuronal activity to 1-s-long light pulses with low optical intensity (17 μW) are presented. The ability to modulate neural activity makes these devices suitable for a broad variety of optogenetic experiments.

  7. Robust Power Management Control for Stand-Alone Hybrid Power Generation System

    Science.gov (United States)

    Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa

    2017-01-01

    This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method.

  8. Sustainable electricity generation by solar pv/diesel hybrid system without storage for off grids areas

    Science.gov (United States)

    Azoumah, Y.; Yamegueu, D.; Py, X.

    2012-02-01

    Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original "flexy energy" concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.

  9. Stand-alone hybrid wind-photovoltaic power generation systems optimal sizing

    Science.gov (United States)

    Crǎciunescu, Aurelian; Popescu, Claudia; Popescu, Mihai; Florea, Leonard Marin

    2013-10-01

    Wind and photovoltaic energy resources have attracted energy sectors to generate power on a large scale. A drawback, common to these options, is their unpredictable nature and dependence on day time and meteorological conditions. Fortunately, the problems caused by the variable nature of these resources can be partially overcome by integrating the two resources in proper combination, using the strengths of one source to overcome the weakness of the other. The hybrid systems that combine wind and solar generating units with battery backup can attenuate their individual fluctuations and can match with the power requirements of the beneficiaries. In order to efficiently and economically utilize the hybrid energy system, one optimum match design sizing method is necessary. In this way, literature offers a variety of methods for multi-objective optimal designing of hybrid wind/photovoltaic (WG/PV) generating systems, one of the last being genetic algorithms (GA) and particle swarm optimization (PSO). In this paper, mathematical models of hybrid WG/PV components and a short description of the last proposed multi-objective optimization algorithms are given.

  10. IF-WS2/Nanostructured Carbon Hybrids Generation and Their Characterization

    Directory of Open Access Journals (Sweden)

    Claudia C. Luhrs

    2014-05-01

    Full Text Available With the aim to develop a new generation of materials that combine either the known energy absorbing properties of carbon nanofibers (CNF, or the carbon-carbon bond strength of graphene sheets (G, with the shock resistance properties reported for Inorganic Fullerene type WS2 structures (IF-WS2, hybrid CNF/IF-WS2 and G/IF-WS2 were generated, characterized and tested. Experimentation revealed that in situ growth of carbon nanostructures with inorganic fullerene tungsten disulfide particulates had to be performed from particular precursors and fabrication conditions to avoid undesirable byproducts that hinder fiber growth or deter graphene generation. The novel protocols that allowed us to integrate the IF-WS2 with the carbon nanostructures, producing dispersions at the nanoscale, are reported. Resulting hybrid CNF/IF-WS2 and G/IF-WS2 products were analyzed by X-ray Diffraction (XRD, Scanning Electron Microscope (SEM and TEM (Transmission Electron Microscopy. The thermal stability of samples in air was evaluated by Thermogravimetric Analysis (TGA. CNF/IF-WS2 and G/IF-WS2 hybrids were introduced into epoxy matrices, and the mechanical properties of the resulting composites were analyzed using nanoindentation. Epoxy composite samples showed drastic improvements in the Young’s modulus and hardness values by the use of only 1% hybrid weight loadings. The carbon nanofiber inclusions seem to have a much greater impact on the mechanical properties of the composite than the graphene based counterparts.

  11. Design and analysis of mismatch probes for long oligonucleotide microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  12. Design and analysis of mismatch probes for long oligonucleotide microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  13. Broad-Bandwidth Chiral Sum Frequency Generation Spectroscopy for Probing the Kinetics of Proteins at Interfaces.

    Science.gov (United States)

    Wang, Zhuguang; Fu, Li; Ma, Gang; Yan, Elsa C Y

    2015-10-27

    The kinetics of proteins at interfaces plays an important role in biological functions and inspires solutions to fundamental problems in biomedical sciences and engineering. Nonetheless, due to the lack of surface-specific and structural-sensitive biophysical techniques, it still remains challenging to probe protein kinetics in situ and in real time without the use of spectroscopic labels at interfaces. Broad-bandwidth chiral sum frequency generation (SFG) spectroscopy has been recently developed for protein kinetic studies at interfaces by tracking the chiral vibrational signals of proteins. In this article, we review our recent progress in kinetic studies of proteins at interfaces using broad-bandwidth chiral SFG spectroscopy. We illustrate the use of chiral SFG signals of protein side chains in the C-H stretch region to monitor self-assembly processes of proteins at interfaces. We also present the use of chiral SFG signals from the protein backbone in the N-H stretch region to probe the real-time kinetics of proton exchange between protein and water at interfaces. In addition, we demonstrate the applications of spectral features of chiral SFG that are typical of protein secondary structures in both the amide I and the N-H stretch regions for monitoring the kinetics of aggregation of amyloid proteins at membrane surfaces. These studies exhibit the power of broad-bandwidth chiral SFG to study protein kinetics at interfaces and the promise of this technique in research areas of surface science to address fundamental problems in biomedical and material sciences.

  14. Using NV centers to probe magnetization dynamics in normal metal/magnetic insulator hybrid system at the nanoscale

    Science.gov (United States)

    Zhang, Huiliang; Ku, Mark J. H.; Han, Minyong; Casola, Francesco; van der Sar, Toeno; Yacoby, Amir; Walsworth, Ronald L.

    2016-05-01

    Understanding magnetization dynamics induced by electric current is of great interest for both fundamental and practical reasons. Great endeavor has been dedicated to spin-orbit torques (SOT) in metallic structures, while quantitative study of analogous phenomena in magnetic insulators remains challenging where transport measurements are not feasible. Recently we have developed techniques using nitrogen vacancy (NV) centers in diamond to probe few-nanometre-scale correlated-electron magnetic excitations (i.e., spin waves). Here we demonstrate how this powerful tool can be implemented to study magnetization dynamics inside ferromagnetic insulator, Yttrium iron garnet (YIG) with spin injection from electrical current through normal metal (Platinum in our case). Particularly our work will focus on NV magnetic detection, imaging, and spectroscopy of coherent auto-oscillations in Pt/YIG microdisc. Magnetic fluctuations and local temperature measurements, both with nearby NV centers, will also be interesting topics relevant to SOT physics in Pt/YIG hybrid system.

  15. Analysis of messenger RNA expression by in situ hybridization using RNA probes synthesized via in vitro transcription

    Science.gov (United States)

    Carter, Bradley S.; Fletcher, Jonathan S.; Thompson, Robert C.

    2010-01-01

    The analysis of the spatial patterning of mRNA expression is critically important for assigning functional and physiological significance to a given gene product. Given the tens of thousands of mRNAs in the mammalian genome, a full assessment of individual gene functions would ideally be overlaid upon knowledge of the specific cell types expressing each mRNA. In situ hybridization approaches represent a molecular biological/histological method that can reveal cellular patterns of mRNA expression. Here, we present detailed procedures for the detection of specific mRNAs using radioactive RNA probes in tissue sections followed by autoradiographic detection. These methods allow for the specific and sensitive detection of spatial patterns of mRNA expression, thereby linking mRNA expression with cell type and function. Radioactive detection methods also facilitate semi-quantitative analyses of changes in mRNA gene expression. PMID:20699122

  16. The extent and position of homoeologous recombination in a distant hybrid of Alstroemeria: a molecular cytogenetic assessment of first generation backcross progenies.

    Science.gov (United States)

    Kamstra, S A; Kuipers, A G; De Jeu, M J; Ramanna, M S; Jacobsen, E

    1999-04-01

    To estimate the extent and position of homoeologous recombination during meiosis in an interspecific hybrid between two distantly related Alstroemeria species, the chromosome constitution of six first generation backcross (BC1) plants was analysed using sequential fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH) analysis. Four different probes were used for the FISH analysis: two species-specific and two rDNA probes. The six BC1 plants were obtained from crosses between the hybrid A. aurea x A. inodora with its parent A. inodora. GISH clearly identified all chromosomes of both parental genomes as well as recombinant chromosomes. The sequential GISH and FISH analysis enabled the accurate identification of all individual chromosomes in the BC1 plants, resulting in the construction of detailed karyotypes of the plants. The identification of the recombinant chromosomes provided evidence which chromosomes of the two species are homoeologous. Two of the BC1 plants were aneuploid (2n=2x+1=17) and four triploid (2n=3x=24), indicating that both n and 2n gametes were functional in the F1 hybrid. Using GISH, it was possible to estimate homeologous recombination in two different types of gametes in the F1 hyrid. The positions of the crossover points ranged from highly proximal to distal and the maximum number of crossover points per chromosome arm was three. Compared with the aneuploid plants, the triploid plants (which received 2n gametes) clearly possessed fewer crossovers per chromosome, indicating reduced chromosome pairing/recombination prior to the formation of the 2n gametes. Besides homeologous recombination, evidence was found for the presence of structural rearrangements (inversion and translocation) between the chromosomes of the parental species. The presence of the ancient translocation was confirmed through FISH analysis of mitotic and meiotic chromosomes.

  17. Research on Operation Principle and Control of Novel Hybrid Excitation Bearingless Permanent Magnet Generator

    Directory of Open Access Journals (Sweden)

    Huangqiu Zhu

    2016-08-01

    Full Text Available Under the condition of load changing, the magnetic field of traditional permanent magnet generators (PMG is hard to be adjusted, and the mechanical bearings are significantly worn. To overcome the drawbacks above, a novel hybrid excitation bearingless permanent magnet generator (HEBPMG is proposed in this paper, which has integrated the merits of hybrid excitation permanent magnet generators and magnetic bearings. Firstly, the structure and winding configuration of the HEBPMG are introduced, and then the principles of radial suspension and power generation are presented. The suspension principle as well as power generation principle is analyzed in this paper. Then, the flux linkage and induced voltage equations are derived, and the accurate mathematical model of radial suspension force is built based on the Maxwell tensor method. Subsequently, by means of the finite element analysis software-ANSYS Maxwell, the corresponding electromagnetic characteristics are analyzed to verify the correctness of the mentioned models. In addition, a compensation control strategy based on flux-linkage observation is proposed to solve the problems of unstable suspension force and generating voltage under variable load condition in this paper. Meanwhile, the corresponding control system is constructed and its feasibility is validated by simulation results. Finally, an experimental prototype of a 2.2 kW HEBPMG is tested. Experimental researches show that the HEBPMG can operate steadily under variable load condition and possess good suspension performance and power generation quality.

  18. Comparison of viable cell counts and fluorescence in situ hybridization using specific rRNA-based probes for the quantification of human fecal bacteria

    NARCIS (Netherlands)

    Harmsen, HJM; Gibson, GR; Elfferich, P; Raangs, GC; Wildeboer-Veloo, ACM; Argaiz, A; Roberfroid, MB; Welling, GW

    2000-01-01

    Conventional cultivation and fluorescence in situ hybridization (FISH) using 16S rRNA-based probes were compared for the enumeration of human colonic bacteria. Groups of common intestinal anaerobic bacteria were enumerated in slurries prepared From fecal samples of three healthy volunteers. To intro

  19. QUANTITATIVE FLUORESCENCE IN-SITU HYBRIDIZATION OF BIFIDOBACTERIUM SPP WITH GENUS-SPECIFIC 16S RIBOSOMAL-RNA-TARGETED PROBES AND ITS APPLICATION IN FECAL SAMPLES

    NARCIS (Netherlands)

    LANGENDIJK, PS; SCHUT, F; JANSEN, GJ; RAANGS, GC; KAMPHUIS, GR; WILKINSON, MHF; WELLING, GW

    1995-01-01

    Three 16S rRNA hybridization probes were developed and tested for genus-specific detection of Bifidobacterium species in the human fecal flora. Variable regions V2, V4, and VS of the 16S rRNA contained sequences unique to this genus and proved applicable as target sites for oligodeoxynucleotide prob

  20. Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator.

    Science.gov (United States)

    Wang, Xin; Wen, Zhen; Guo, Hengyu; Wu, Changsheng; He, Xu; Lin, Long; Cao, Xia; Wang, Zhong Lin

    2016-12-27

    Ocean energy, in theory, is an enormous clean and renewable energy resource that can generate electric power much more than that required to power the entire globe without adding any pollution to the atmosphere. However, owing to a lack of effective technology, such blue energy is almost unexplored to meet the energy requirement of human society. In this work, a fully packaged hybrid nanogenerator consisting of a rolling triboelectric nanogenerator (R-TENG) and an electromagnetic generator (EMG) is developed to harvest water motion energy. The outstanding output performance of the R-TENG (45 cm(3) in volume and 28.3 g in weight) in the low-frequency range (energy conversion efficiency and broaden the operating frequency simultaneously. In terms of charging capacitors, this hybrid nanogenerator provides not only high voltage and consistent charging from the TENG component but also fast charging speed from the EMG component. The practical application of the hybrid nanogenerator is also demonstrated to power light-emitting diodes by harvesting energy from stimulated tidal flow. The high robustness of the R-TENG is also validated based on the stable electrical output after continuous rolling motion. Therefore, the hybrid R-TENG and EMG device renders an effective and sustainable approach toward large-scale blue energy harvesting in a broad frequency range.

  1. Hybrid mesh generation for the new generation of oil reservoir simulators: 3D extension; Generation de maillage hybride pour les simulateurs de reservoir petrolier de nouvelle generation: extension 3D

    Energy Technology Data Exchange (ETDEWEB)

    Flandrin, N.

    2005-09-15

    During the exploitation of an oil reservoir, it is important to predict the recovery of hydrocarbons and to optimize its production. A better comprehension of the physical phenomena requires to simulate 3D multiphase flows in increasingly complex geological structures. In this thesis, we are interested in this spatial discretization and we propose to extend in 3D the 2D hybrid model proposed by IFP in 1998 that allows to take directly into account in the geometry the radial characteristics of the flows. In these hybrid meshes, the wells and their drainage areas are described by structured radial circular meshes and the reservoirs are represented by structured meshes that can be a non uniform Cartesian grid or a Corner Point Geometry grids. In order to generate a global conforming mesh, unstructured transition meshes based on power diagrams and satisfying finite volume properties are used to connect the structured meshes together. Two methods have been implemented to generate these transition meshes: the first one is based on a Delaunay triangulation, the other one uses a frontal approach. Finally, some criteria are introduced to measure the quality of the transition meshes and optimization procedures are proposed to increase this quality under finite volume properties constraints. (author)

  2. Probing the structure and function of biopolymer-carbon nanotube hybrids with molecular dynamics

    Science.gov (United States)

    Johnson, Robert R.

    2009-12-01

    Nanoscience deals with the characterization and manipulation of matter on the atomic/molecular size scale in order to deepen our understanding of condensed matter and develop revolutionary technology. Meeting the demands of the rapidly advancing nanotechnological frontier requires novel, multifunctional nanoscale materials. Among the most promising nanomaterials to fulfill this need are biopolymer-carbon nanotube hybrids (Bio-CNT). Bio-CNT consists of a single-walled carbon nanotube (CNT) coated with a self-assembled layer of biopolymers such as DNA or protein. Experiments have demonstrated that these nanomaterials possess a wide range of technologically useful properties with applications in nanoelectronics, medicine, homeland security, environmental safety and microbiology. However, a fundamental understanding of the self-assembly mechanics, structure and energetics of Bio-CNT is lacking. The objective of this thesis is to address this deficiency through molecular dynamics (MD) simulation, which provides an atomic-scale window into the behavior of this unique nanomaterial. MD shows that Bio-CNT composed of single-stranded DNA (ssDNA) self-assembles via the formation of high affinity contacts between DNA bases and the CNT sidewall. Calculation of the base-CNT binding free energy by thermodynamic integration reveals that these contacts result from the attractive pi--pi stacking interaction. Binding affinities follow the trend G > A > T > C. MD reveals that long ssDNA sequences are driven into a helical wrapping about CNT with a sub-10 nm pitch by electrostatic and torsional interactions in the backbone. A large-scale replica exchange molecular dynamics simulation reveals that ssDNA-CNT hybrids are disordered. At room temperature, ssDNA can reside in several low-energy conformations that contain a sequence-specific arrangement of bases detached from CNT surface. MD demonstrates that protein-CNT hybrids composed of the Coxsackie-adenovirus receptor are biologically

  3. A nucleic acid probe labeled with desmethyl thiazole orange: a new type of hybridization-sensitive fluorescent oligonucleotide for live-cell RNA imaging.

    Science.gov (United States)

    Okamoto, Akimitsu; Sugizaki, Kaori; Yuki, Mizue; Yanagisawa, Hiroyuki; Ikeda, Shuji; Sueoka, Takuma; Hayashi, Gosuke; Wang, Dan Ohtan

    2013-01-14

    A new fluorescent nucleotide with desmethyl thiazole orange dyes, D'(505), has been developed for expansion of the function of fluorescent probes for live-cell RNA imaging. The nucleoside unit of D'(505) for DNA autosynthesis was soluble in organic solvents, which made the preparation of nucleoside units and the reactions in the cycles of DNA synthesis more efficient. The dyes of D'(505)-containing oligodeoxynucleotide were protonated below pH 7 and the oligodeoxynucleotide exhibited hybridization-sensitive fluorescence emission through the control of excitonic interactions of the dyes of D'(505). The simplified procedure and effective hybridization-sensitive fluorescence emission produced multicolored hybridization-sensitive fluorescent probes, which were useful for live-cell RNA imaging. The acceptor-bleaching method gave us information on RNA in a specific cell among many living cells.

  4. Identification of vibration loads on hydro generator by using hybrid genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Shouju Li; Yingxi Liu

    2006-01-01

    Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators.An algorithm is developed for identifying vibration dynamic characteristics by means of hybrid genetic algorithm.From the measured dynamic responses of a hydro generator,an appropriate estimation algorithm is needed to identify the loading parameters,including the main frequencies and amplitudes of vibrating forces.In order to identify parameters in an efficient and robust manner,an optimization method is proposed that combines genetic algorithm with simulated annealing and elitist strategy.The hybrid genetic algorithm is then used to tackle an ill-posed problem of parameter identification.In which the effectiveness of the proposed optimization method is confirmed by its comparison with actual observation data.

  5. Hybrid renewable energy system using doubly-fed induction generator and multilevel inverter

    Science.gov (United States)

    Ahmed, Eshita

    The proposed hybrid system generates AC power by combining solar and wind energy converted by a doubly-fed induction generator (DFIG). The DFIG, driven by a wind turbine, needs rotor excitation so the stator can supply a load or the grid. In a variable-speed wind energy system, the stator voltage and its frequency vary with wind speed, and in order to keep them constant, variable-voltage and variable-frequency rotor excitation is to be provided. A power conversion unit supplies the rotor, drawing power either from AC mains or from a PV panel depending on their availability. It consists of a multilevel inverter which gives lower harmonic distortion in the stator voltage. Maximum power point tracking techniques have been implemented for both wind and solar power. The complete hybrid renewable energy system is implemented in a PSIM-Simulink interface and the wind energy conversion portion is realized in hardware using dSPACE controller board.

  6. Comparison of PMAC Machines for Starter-Generator Application in a Series Hybrid-Electric Bus

    OpenAIRE

    Sinisa Jurkovic; Strangas, Elias G.

    2011-01-01

    This paper presents a comparative study of outer rotor PMAC machine candidates for starter-generator application in hybrid bus with series power train configuration. PMAC machines with interior and surface mount permanent magnets are considered and compared, although a complete analysis is only carried out for the SPM. Different design aspects such as concentrated versus distributed windings as well as interior and exterior rotor structures are evaluated. Different slot numbers per p...

  7. Thermoeconomic Analysis of Hybrid Power Plant Concepts for Geothermal Combined Heat and Power Generation

    OpenAIRE

    Florian Heberle; Dieter Brüggemann

    2014-01-01

    We present a thermo-economic analysis for a low-temperature Organic Rankine Cycle (ORC) in a combined heat and power generation (CHP) case. For the hybrid power plant, thermal energy input is provided by a geothermal resource coupled with the exhaust gases of a biogas engine. A comparison to alternative geothermal CHP concepts is performed by considering variable parameters like ORC working fluid, supply temperature of the heating network or geothermal water temperature. Second law efficiency...

  8. Probing superstructure of chicken corneal stroma by Fourier transform second harmonic generation microscopy

    Science.gov (United States)

    Lee, Sheng-Lin; Chen, Yang-Fang; Dong, Chen-Yuan

    2017-02-01

    The unique organization of the corneal stromal collagen is responsible for mechanical strength and optical clarity of the eye. However, factors and reasons on formation of the corneal stroma is still not fully understood. Second-harmonic generation (SHG) is a nonlinear second order optical process occurring in noncentrosymmetric systems with a large hyperpolarizability. Through the combination of the second harmonic generation (SHG) microcopy and optimized Fourier-transform analysis, mature chicken corneas are investigated to probe the depth-dependent collagen organization of the corneal stroma. Our results show that the anterior stroma behaves like a fan-like distribution of successively and counterclockwisely rotated fibrous lamellae for paired corneas from the same chicken. However, the posterior stroma maintains a non-rotating pattern while increasing in depth. Surprisingly, the thickness of the anterior stroma remains almost constant throughout the temporal-nasal direction, but the posterior stroma does not behave the same. Through quantitative analysis, the natural transition of the anterior and posterior stroma is also determined. These findings enhance our understanding of the collagen-rich tissue in the chicken cornea model. Moreover, the Fourier-transformbased modality, in combination with SHG microscopy, serves as a promising tool to determine collagen alignment in embryonic development, tissue engineering and corneal diseases.

  9. Parametric Harmonic Generation as a Probe of Unconstrained Spin Magnetization Precession in the Shallow Barrier Limit.

    Science.gov (United States)

    Capua, Amir; Rettner, Charles; Parkin, Stuart S P

    2016-01-29

    We study the parametric excitation of high orders of magnetization precession in ultrathin films having perpendicular magnetic anisotropy. We observe that for a given driving field amplitude the harmonic generation can be increased by lowering the barrier with the application of an in-plane magnetic field in the manner of the Smit-Beljers effect. In this effect, the magnetic stiffness is reduced not by lowering the magnitude of the magnetic field upon which the spins precess, but rather by effectively releasing the field's "anchoring" point. This results in a shallow energy barrier where the electrons' spin is locally unconstrained. While the observation is unveiled in the form of nonlinear high harmonic generation, we believe that the physics whereby the barrier is suppressed by an external magnetic field may apply to other phenomena associated with ultrathin films. In these cases, such unconstrained motion may serve as a sensitive probe of the torques associated with proximate spin currents. Moreover, our approach may be used as a model system for the study of phase transitions in the field of nonlinear dynamics.

  10. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Energy Technology Data Exchange (ETDEWEB)

    Fehm, Thomas Felix; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Faculty of Medicine, Technische Universität München, Munich (Germany); Deán-Ben, Xosé Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany)

    2014-10-27

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  11. Multiple wavelength generation using a compacted hybrid Raman / Bi-EDF amplifier

    Directory of Open Access Journals (Sweden)

    Shirazi M. R.

    2013-05-01

    Full Text Available A multiple wavelength laser source is generated by a Brillouin seed signal and a compacted hybrid Raman / bismuth-based erbium doped fiber amplifier (Bi-EDFA in a linear cavity. The gain media of the Raman/Bi-EDFA is only a 2.15 m Bi-EDF pumped bi-directionally by two laser diodes (LDs. In comparison to all of the conventional multiple wavelength sources generated via using the same Bi-EDF and LDs, the proposed multiple wavelength source has much more number of lines due to using Raman and EDF amplification.

  12. Design of Engine-Generator Work Mode for Hybrid Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    何洪文; 余晓江; 孙逢春

    2004-01-01

    From electric circuit theory view, a system model of series hybrid electric vehicle was built which uses engine-generator and battery pack as its on-board energy source in this paper. Based on the analysis for the constant power work mode and constant bus voltage work mode of engine-generator, a third work mode was put forward which combined the advantages of constant power and constant bus voltage work modes. The new work mode is reasonable to keep the battery in good working conditions and to extend its life. Also the working conditions of engine can be bettered to get low pollution and high efficiency.

  13. The use of a PCR-generated invA probe for the detection of Salmonella spp. in artificially and naturally contaminated foods.

    Science.gov (United States)

    Bülte, M; Jakob, P

    1995-08-01

    Part of the invasion A gene (invA) of slamonellae (Rahn et al., 1992) was amplified and labelled simultaneously with digoxigenin by the polymerase chain reaction (PCR). This was used as gene probe for a colony hybridization assay which included nitrocellulose filter incubation on modified Rambach agar. 312 Salmonella and 268 non-Salmonella strains were hybridized with the invA probe. No false-negative or false-positive results were obtained. In 11 beef samples, which had been contaminated artificially with Salmonella, the test strain was recovered quantitatively with the invA probe. Salmonellae could be detected in 29 samples of 104 further foods of animal origin by means of the gene probe assay in contrast to 27 samples which were positive by the standard method. The invA probe assay allows for the quantitative estimation of Salmonella in fresh meat samples within 48 h. However, with frozen samples a pre-enrichment step is necessary.

  14. Design of wearable hybrid generator for harvesting heat energy from human body depending on physiological activity

    Science.gov (United States)

    Kim, Myoung-Soo; Kim, Min-Ki; Kim, Kyongtae; Kim, Yong-Jun

    2017-09-01

    We developed a prototype of a wearable hybrid generator (WHG) that is used for harvesting the heat energy of the human body. This WHG is constructed by integrating a thermoelectric generator (TEG) in a circular mesh polyester knit fabric, circular-shaped pyroelectric generator (PEG), and quick sweat-pickup/dry-fabric. The fabric packaging enables the TEG part of the WHG to generate energy steadily while maintaining a temperature difference in extreme temperature environments. Moreover, when the body sweats, the evaporation heat of the sweat leads to thermal fluctuations in the WHG. This phenomenon further leads to an increase in the output power of the WHG. These characteristics of the WHG make it possible to produce electrical energy steadily without reduction in the conversion efficiency, as both TEG and PEG use the same energy source of the human skin and the ambient temperature. Under a temperature difference of ˜6.5 °C and temperature change rate of ˜0.62 °C s-1, the output power and output power density of the WHG, respectively, are ˜4.5 nW and ˜1.5 μW m-2. Our hybrid approach will provide a framework to enhance the output power of the wearable generators that harvest heat energy from human body in various environments.

  15. Improving Probe Immobilization for Label-Free Capacitive Detection of DNA Hybridization on Microfabricated Gold Electrodes

    Directory of Open Access Journals (Sweden)

    Sandro Carrara

    2008-02-01

    Full Text Available Alternative approaches to labeled optical detection for DNA arrays are actively investigated for low-cost point-of-care applications. In this domain, label-free capacitive detection is one of the most intensely studied techniques. It is based on the idea to detect the Helmholtz ion layer displacements when molecular recognition occurs at the electrodes/solution interface. The sensing layer is usually prepared by using thiols terminated DNA single-strength oligonucleotide probes on top of the sensor electrodes. However, published data shows evident time drift, which greatly complicates signal conditioning and processing and ultimately increases the uncertainty in DNA recognition sensing. The aim of this work is to show that newly developed ethylene-glycol functionalized alkanethiols greatly reduce time drift, thereby significantly improving capacitance based label-free detection of DNA.

  16. Pressurisation of IP-SOFC technology for second generation hybrid application

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L.

    2005-07-01

    The Integrated Planar Solid Oxide Fuel Cell (IP-SOFC) technology developed by Rolls-Royce plc is a hybrid fuel cell technology considered highly suitable for the distributed power generation market. This report presents the results of a project to examine the technical viability of the IP-SOFC technology and some of the associated hybrid system component technologies under pressurised conditions and to investigate the validity of the predicted pressurisation phenomena. The work included: identification of critical material specifications, construction processes, control parameters, etc; the design and commissioning of two pressurised IP-SOFC test rigs at Rolls Royce in Derby; testing two multi-bundle strips at high temperature and atmospheric pressure; testing an active IP-SOFC bundle at high temperature and pressure; testing an experimental steam reforming unit at high temperature and pressure; testing a novel low pressure drop, off-gas combustor concept under atmospheric and pressurised conditions; design studies to identify key parameters affecting the successful integration and packaging of the fuel cell stack with certain associated hybrid components; and designing a hybrid system experimental verification rig. Significant progress was made in addressing the development challenges associated with the IP-SOFC of leakage, performance, durability, yield and geometry, the reaction rate of steam reforming and emissions from the off-gas combustor. Recommendations for future work are made.

  17. Single-Board-Computer-Based Traffic Generator for a Heterogeneous and Hybrid Smart Grid Communication Network

    Directory of Open Access Journals (Sweden)

    Do Nguyet Quang

    2014-02-01

    Full Text Available In smart grid communication implementation, network traffic pattern is one of the main factors that affect the system’s performance. Examining different traffic patterns in smart grid is therefore crucial when analyzing the network performance. Due to the heterogeneous and hybrid nature of smart grid, the type of traffic distribution in the network is still unknown. The traffic that popularly used for simulation and analysis no longer reflects the real traffic in a multi-technology and bi-directional communication system. Hence, in this study, a single-board computer is implemented as a traffic generator which can generate network traffic similar to those generated by various applications in the fully operational smart grid. By placing in a strategic and appropriate position, a collection of traffic generators allow network administrators to investigate and test the effect of heavy traffic on performance of smart grid communication system.

  18. Experimental study into a hybrid PCCI/CI concept for next-generation heavy-duty diesel engines

    NARCIS (Netherlands)

    Doosje, E.; Willems, F.P.T.; Baert, R.S.G.; Dijk, M.D. van

    2012-01-01

    This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load conven

  19. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lilai, E-mail: llxu@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Gao, Peiqing, E-mail: peiqing15@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China); Cui, Shenghui, E-mail: shcui@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Liu, Chun, E-mail: xmhwlc@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China)

    2013-06-15

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  20. Differentiation of Moraxella nonliquefaciens, M. lacunata, and M. bovis by using multilocus enzyme electrophoresis and hybridization with pilin-specific DNA probes.

    Science.gov (United States)

    Tønjum, T; Caugant, D A; Bøvre, K

    1992-12-01

    Genetic relationships among strains of Moraxella nonliquefaciens, M. lacunata, and M. bovis were studied by using multilocus enzyme electrophoresis and DNA-DNA hybridization. The 74 isolates analyzed for electrophoretic variation at 12 enzyme loci were assigned to 59 multilocus genotypes. The multilocus genotypes were grouped in four major clusters, one representing strains of M. nonliquefaciens, two representing strains of M. lacunata, and one comprising strains of M. bovis and the single strain of M. equi analyzed. DNA-DNA hybridization with total genomic probes also revealed four major distinctive entities that corresponded to those identified by multilocus enzyme electrophoresis. The two distinct clusters recognized among the M. lacunata strains apparently corresponded to the species previously designated M. lacunata and M. liquefaciens. Distinction of the four entities was improved by hybridization with polymerase chain reaction products of nonconserved parts of pilin genes as DNA probes. With these polymerase chain reaction probes, new isolates of M. nonliquefaciens, M. lacunata, M. liquefaciens, and M. bovis can be identified easily by hybridization.

  1. MODELING, SIMULATON AND SIZING OF PHOTOVOLTAIC/WIND/FUEL CELL HYBRID GENERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr.S.LATHA

    2012-05-01

    Full Text Available The depleting fossil fuel reserves and increasing concern towards global warming have created the need to surge for the alternative power generation options. Renewable energy sources like Wind, Solar-PV, Biomass and fuel cells are gaining prominence nowadays, as they are more energy efficient, reduce pollution and also they serveas a promising solution to the toughest energy crisis faced during the recent years. This paper focuses on the modeling and simulation of solar – photovoltaic, wind and fuel cell hybrid energy systems using MATLAB/Simulink software. The intermittent nature of solar and wind energy sources make them unreliable. Hence Maximum Power Point Tracking (MPPT is used to extract maximum power from the wind and sunwhen it is available. The standard perturb and observe method of MPPT is used for the PV system and for the wind generation system. The simulation results of the PV/Wind /Fuel cell hybrid system are presented in graph showing the effectiveness of the proposed system model. Also, hardware implementation of microcontroller based MPPT for solar-PV alone and unit sizing of the hybrid system for the PG simulation lab in EEE Dept. of Thiagarajar College of Engineering is depicted in the paper.

  2. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    Science.gov (United States)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-10-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  3. Development of a hybrid photovoltaic-liquid fueled thermoelectric generator for Arctic locations

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, H. (Global Thermoelectric Power Systems Ltd., Bassano, AB (Canada))

    1988-08-01

    The solar irradiation levels in arctic and antarctic regions vary dramatically from summer to winter. It was the objective of this project to develop a photovoltaic-liquid fueled thermoelectric hybrid power system that will take advantage of the available solar irradiation during the period during which the levels are high and switch to a liquid fueled thermoelectric generator during periods when the solar irradiation levels are low. In addition, the system is to provide heating to keep electronics and batteries above a preset minimum temperature. A remote start feature was designed and built into an existing liquid fueled thermoelectric generator. A prototype system was then assembled with a panel factor of about 4.88. Arctic summer conditions of solar irradiation were simulated by adjustment of the panel tilt angle. The performance of the liquid fueled generator was disappointing, numerous failures of the generator were a major impediment to the complete success of the project. It was found that the panel factor should be increased by about 15 to 20% and that the constant voltage battery recharge method is not efficient for this type of system. A cost comparison of the hybrid versus two other alternative remote power systems indicates that it is a cost-effective system. 2 refs., 9 figs., 1 tab.

  4. Probing particle acceleration in lower hybrid turbulence via synthetic diagnostics produced by PIC simulations

    Science.gov (United States)

    Cruz, F.; Fonseca, R. A.; Silva, L. O.; Rigby, A.; Gregori, G.; Bamford, R. A.; Bingham, R.; Koenig, M.

    2016-10-01

    Efficient particle acceleration in astrophysical shocks can only be achieved in the presence of initial high energy particles. A candidate mechanism to provide an initial seed of energetic particles is lower hybrid turbulence (LHT). This type of turbulence is commonly excited in regions where space and astrophysical plasmas interact with large obstacles. Due to the nature of LH waves, energy can be resonantly transferred from ions (travelling perpendicular to the magnetic field) to electrons (travelling parallel to it) and the consequent motion of the latter in turbulent shock electromagnetic fields is believed to be responsible for the observed x-ray fluxes from non-thermal electrons produced in astrophysical shocks. Here we present PIC simulations of plasma flows colliding with magnetized obstacles showing the formation of a bow shock and the consequent development of LHT. The plasma and obstacle parameters are chosen in order to reproduce the results obtained in a recent experiment conducted at the LULI laser facility at Ecole Polytechnique (France) to study accelerated electrons via LHT. The wave and particle spectra are studied and used to produce synthetic diagnostics that show good qualitative agreement with experimental results. Work supported by the European Research Council (Accelerates ERC-2010-AdG 267841).

  5. In situ hybridization of bat chromosomes with human (TTAGGGn probe, after previous digestion with Alu I

    Directory of Open Access Journals (Sweden)

    Karina de Cassia Faria

    2002-01-01

    Full Text Available The purpose of this work was to verify the ability of the enzyme Alu I to cleave and/or remove satellite DNA sequences from heterochromatic regions in chromosomes of bats, by identifying the occurrence of modifications in the pattern of fluorescence in situ hybridization with telomeric DNA. The localization and fluorescence intensity of the telomeric DNA sites of the Alu-digested and undigested chromosomes of species Eumops glaucinus, Carollia perspicillata, and Platyrrhinus lineatus were analyzed. Telomeric sequences were detected at the termini of chromosomes of all three species, although, in C. perspicillata, the signals were very faint or absent in most chromosomes. This finding was interpreted as being due to a reduced number of copies of the telomeric repeat, resulting from extensive telomeric association and/or rearrangements undergone by the chromosomes of Carollia. Fluorescent signals were also observed in centromeric and pericentromeric regions in several two-arm chromosomes of E. glaucinus and C. perspicillata. In E. glaucinus and P. lineatus, some interstitial and terminal telomeric sites were observed to be in association with regions of constitutive heterochromatin and ribosomal DNA (NORs. After digestion, these telomeric sites showed a significant decrease in signal intensity, indicating that enzyme Alu I cleaves and/or removes part of the satellite DNA present in these regions. These results suggest that the telomeric sequence is a component of the heterochromatin, and that the C-band- positive regions of bat chromosomes have a different DNA composition.

  6. Highly Flexible, Fire Resistant HybridSil Foams for Next Generation Fireproofing, Insulation, and Energy Absorption NASA Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I STTR program is to adapt NanoSonic's HybridSil™ nanocomposite technology for the creation of next generation highly flexible, fire...

  7. Chiral vibrational structures of proteins at interfaces probed by sum frequency generation spectroscopy.

    Science.gov (United States)

    Fu, Li; Wang, Zhuguang; Yan, Elsa C Y

    2011-01-01

    We review the recent development of chiral sum frequency generation (SFG) spectroscopy and its applications to study chiral vibrational structures at interfaces. This review summarizes observations of chiral SFG signals from various molecular systems and describes the molecular origins of chiral SFG response. It focuses on the chiral vibrational structures of proteins and presents the chiral SFG spectra of proteins at interfaces in the C-H stretch, amide I, and N-H stretch regions. In particular, a combination of chiral amide I and N-H stretches of the peptide backbone provides highly characteristic vibrational signatures, unique to various secondary structures, which demonstrate the capacity of chiral SFG spectroscopy to distinguish protein secondary structures at interfaces. On the basis of these recent developments, we further discuss the advantages of chiral SFG spectroscopy and its potential application in various fields of science and technology. We conclude that chiral SFG spectroscopy can be a new approach to probe chiral vibrational structures of protein at interfaces, providing structural and dynamic information to study in situ and in real time protein structures and dynamics at interfaces.

  8. Proteins at interfaces probed by chiral vibrational sum frequency generation spectroscopy.

    Science.gov (United States)

    Yan, Elsa C Y; Wang, Zhuguang; Fu, Li

    2015-02-19

    Characterizations of protein structures at interfaces are important in solving an array of fundamental and engineering problems, including understanding transmembrane signal transduction and molecular transport processes and development of biomaterials to meet the needs of biomedical and energy research. However, in situ and real-time characterization of protein secondary structures is challenging because it requires physical methods that are selective to both interface and secondary structures. Here, we summarize recent experimental developments in our laboratory of chiral vibrational sum frequency generation spectroscopy (SFG) for analyzing protein structures at interfaces. We showed that chiral SFG provides vibrational optical signatures of the peptide N-H stretch and amide I modes that can distinguish various protein secondary structures. Using these signatures, we further applied chiral SFG to probe orientations and folding kinetics of proteins at interfaces. Our results show that chiral SFG is a background-free, label-free, in situ, and real-time vibrational method for studying proteins at interfaces. This recent progress demonstrates the potential of chiral SFG in solving problems related to proteins and other chiral biopolymers at interfaces.

  9. Hybrid column generation and large neighborhood search for the dial-a-ride problem

    Science.gov (United States)

    Parragh, Sophie N.; Schmid, Verena

    2013-01-01

    Demographic change towards an ever aging population entails an increasing demand for specialized transportation systems to complement the traditional public means of transportation. Typically, users place transportation requests, specifying a pickup and a drop off location and a fleet of minibuses or taxis is used to serve these requests. The underlying optimization problem can be modeled as a dial-a-ride problem. In the dial-a-ride problem considered in this paper, total routing costs are minimized while respecting time window, maximum user ride time, maximum route duration, and vehicle capacity restrictions. We propose a hybrid column generation and large neighborhood search algorithm and compare different hybridization strategies on a set of benchmark instances from the literature. PMID:23471127

  10. Hybrid column generation and large neighborhood search for the dial-a-ride problem.

    Science.gov (United States)

    Parragh, Sophie N; Schmid, Verena

    2013-01-01

    Demographic change towards an ever aging population entails an increasing demand for specialized transportation systems to complement the traditional public means of transportation. Typically, users place transportation requests, specifying a pickup and a drop off location and a fleet of minibuses or taxis is used to serve these requests. The underlying optimization problem can be modeled as a dial-a-ride problem. In the dial-a-ride problem considered in this paper, total routing costs are minimized while respecting time window, maximum user ride time, maximum route duration, and vehicle capacity restrictions. We propose a hybrid column generation and large neighborhood search algorithm and compare different hybridization strategies on a set of benchmark instances from the literature.

  11. Motion Planning Using an Impact-Based Hybrid Control for Trajectory Generation in Adaptive Walking

    Directory of Open Access Journals (Sweden)

    Umar Asif

    2011-09-01

    Full Text Available This paper aims to solve a major drawback of walking robots i.e. their inability to react to environmental disturbances while navigating in natural rough terrains. This problem is reduced here by suggesting the use of a hybrid force‐position control based trajectory generation with the impact dynamics into consideration that compensates for the stability variations, thus helping the robot react stably in the face of environmental disturbances. As a consequence, the proposed impact‐based hybrid control helps the robot achieve better and stable motion planning than conventional position‐based control algorithms. Dynamic simulations and real world outdoor experiments performed on a six legged hexapod robot show a relevant improvement in the robot locomotion.

  12. Simulated Annealing Based Hybrid Forecast for Improving Daily Municipal Solid Waste Generation Prediction

    Directory of Open Access Journals (Sweden)

    Jingwei Song

    2014-01-01

    Full Text Available A simulated annealing (SA based variable weighted forecast model is proposed to combine and weigh local chaotic model, artificial neural network (ANN, and partial least square support vector machine (PLS-SVM to build a more accurate forecast model. The hybrid model was built and multistep ahead prediction ability was tested based on daily MSW generation data from Seattle, Washington, the United States. The hybrid forecast model was proved to produce more accurate and reliable results and to degrade less in longer predictions than three individual models. The average one-week step ahead prediction has been raised from 11.21% (chaotic model, 12.93% (ANN, and 12.94% (PLS-SVM to 9.38%. Five-week average has been raised from 13.02% (chaotic model, 15.69% (ANN, and 15.92% (PLS-SVM to 11.27%.

  13. Prospects of Wind-Diesel Generator-Battery Hybrid Power System: A Feasibility Study in Algeria

    Directory of Open Access Journals (Sweden)

    Djohra Saheb-Koussa

    2013-01-01

    Full Text Available The present work analyses the feasibility of a wind-diesel generator-battery hybrid system. The wind energy resource data are collected from the weather station at the Renewable Energy Development Center of Bouzareah in Algeria. The recorded values vary from 5.5 m/s to 7 m/s at 25 m. The hybrid system analysis has shown that for a household consuming 1,270 kWh/yr, the cost of energy is 1.205 USD/kWh and produces 2,493 kWh/yr in which 93% of electricity comes from wind energy. From this study, it is clear that the optimized hybrid system is more cost effective compared to the diesel generator system alone where the NPC and COE are equal, respectively, to 19,561 USD and 1.205 USD/kWh and 47,932 USD and 2.952 USD/kWh. The sensitivity analysis predicts that the grid extension distance varies from 1.25 to 1.85 km depending on wind speed and fuel price which indicate a positive result to implement a stand-alone hybrid power system as an alternative to grid extension. In addition to the feasibility of this system, it can reduce the emission of the CO2, SO2, and NOx, respectively, from 4758 to 147, from 9.45 to 0.294, and from 105 to 3.23 kg/yr. Investments in autonomous renewable energy systems should be considered particularly in remote areas. They can be financed in the framework of the National Energy Action Plan of Algeria.

  14. Hybrid Systems of Distributed Generation with Renewable Sources: Modeling and Analysis of Their Operational Modes in Electric Power System

    Directory of Open Access Journals (Sweden)

    A. Gashimov

    2013-01-01

    Full Text Available The paper considers problems pertaining to modeling and simulation of operational hybrid system modes of the distributed generation comprising conventional sources – modular diesel generators, gas-turbine power units; and renewable sources – wind and solar power plants. Operational modes of the hybrid system have been investigated under conditions of electrical connection with electric power system and in case of its isolated operation. As a consequence

  15. Stochastic Hybrid Systems Modeling and Middleware-enabled DDDAS for Next-generation US Air Force Systems

    Science.gov (United States)

    2017-03-30

    AFRL-AFOSR-VA-TR-2017-0075 Stochastic Hybrid Systems Modeling and Middleware-enabled DDDAS for Next-generation US Air Force Systems Aniruddha...release. Air Force Research Laboratory AF Office Of Scientific Research (AFOSR)/RTA2 4/6/2017https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll a...Sep 2013 to 31 Dec 2016 4. TITLE AND SUBTITLE Stochastic Hybrid Systems Modeling and Middleware-enabled DDDAS for Next- generation US Air Force

  16. Localization of cannabinoid CB1 receptor mRNA using ribonucleotide probes: methods for double- and single-label in situ hybridization.

    Science.gov (United States)

    Hohmann, Andrea G

    2006-01-01

    This chapter presents a reliable, detailed method for performing double-label in situ hybridization (ISH) that has been validated for use in studies identifying the co-localization of cannabinoid CB1 receptor mRNA with other distinct species of mRNAs. This method permits simultaneous detection of two different species of mRNA within the same tissue section. Double-label ISH may be accomplished by hybridizing tissue sections with a combination of radiolabeled and digoxigenin-labeled RNA probes that are complementary to their target mRNAs. Single-label ISH may be accomplished by following the procedures described for use with radioisotopic probes (here [35S]-labeled) only. Silver grains derived from conventional emulsion autoradiography are used to detect the radiolabeled cRNA probe. An alkaline phosphatase-dependent chromogen reaction product is used to detect the nonisotopic (here, digoxigenin-labeled) cRNA probe. Necessary controls that are required to document the specificity of the labeling of the digoxigenin and radiolabeled probes are described. The methods detailed herein may be employed to detect even low levels of a target mRNA. These methods may be utilized to study co-localization and coregulation of expression of a particular gene within identified neurons in multiple systems.

  17. Homoeologous chromosome pairing in the distant hybrid Alstroemeria aurea x A. inodora and the genome composition of its backcross derivatives determined by fluorescence in situ hybridization with species-specific probes.

    Science.gov (United States)

    Kamstra, S A; Ramanna, M S; de Jeu, M J; Kuipers, A G; Jacobsen, E

    1999-01-01

    A distant hybrid between two diploid species (2n = 2x = 16), Alstroemeria aurea and A. inodora, was investigated for homoeologous chromosome pairing, crossability with A. inodora and chromosome transmission to its BC1 offspring. Fluorescence in situ hybridization (FISH) with two species-specific probes, A001-I (A. aurea specific) and D32-13 (A. inodora specific), was used to analyse chromosome pairing in the hybrid and the genome constitution of its BC1 progeny plants. High frequencies of associated chromosomes were observed in both genotypes of the F1 hybrid, A1P2-2 and A1P4. In the former, both univalents and bivalents were found at metaphase I, whereas the latter plant also showed tri- and quadrivalents. Based on the hybridization sites of DNA probes on the chromosomes of both parental species, it was established that hybrid A1P4 contains a reciprocal translocation between the short arm of chromosome 1 and the long arm of chromosome 8 of A. inodora. Despite regular homoeologous chromosome pairing in 30% of the pollen mother cells, both hybrids were highly sterile. They were backcrossed reciprocally with one of the parental species, A. inodora. Two days after pollination, embryo rescue was applied and, eventually, six BC1 progeny plants were obtained. Among these, two were aneuploids (2n = 2x + 1 = 17) and four were triploids (2n = 3x = 24). The aneuploid plants had originated when the interspecific hybrid was used as a female parent, indicating that n eggs were functional in the hybrid. In addition, 2n gametes were also functional in the hybrid, resulting in the four triploid BC1 plants. Of these four plants, three had received 2n pollen grains from the hybrid and one a 2n egg. Using FISH, homoeologous crossing over between the chromosomes of the two parental species in the hybrid was clearly detected in all BC1 plants. The relevance of these results for the process of introgression and the origin of n and 2n gametes are discussed.

  18. Generation of acoustic terahertz waves in hybrid InGaN/GaN quantum wells

    Science.gov (United States)

    Mahat, Meg; Llopis, Antonia; Choi, Tae Youl; Periera, Sergio; Watson, Ian; Neogi, Arup

    2015-03-01

    We have carried out differential transmission measurements on InGaN/ GaN quantum wells with Au nanoparticles inserted inside V-pits with high filling fraction. We have observed acoustic wave packets generated with multiple THz frequencies as 0.12 THz from GaN buffer layer, 0.22 THz from Au-InGaN multiple quantum wells region, 0.07 THz from sapphire substrate, and 0.17 THz mixed signals from the sample. These THz wave packets are observed as a result of generation of coherent acoustic phonons propagating in hybrid Au-InGaN quantum wells. The study of these acoustic THz wave generation is crucial for the imaging of nanostructures.

  19. Data Mining Empowers the Generation of a Novel Class of Chromosome-specific DNA Probes

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Hui; Weier, Heinz-Ulrich G.; Kwan, Johnson; Wang, Mei; O' Brien, Benjamin

    2011-03-08

    Probes that allow accurate delineation of chromosome-specific DNA sequences in interphase or metaphase cell nuclei have become important clinical tools that deliver life-saving information about the gender or chromosomal make-up of a product of conception or the probability of an embryo to implant, as well as the definition of tumor-specific genetic signatures. Often such highly specific DNA probes are proprietary in nature and have been the result of extensive probe selection and optimization procedures. We describe a novel approach that eliminates costly and time consuming probe selection and testing by applying data mining and common bioinformatics tools. Similar to a rational drug design process in which drug-protein interactions are modeled in the computer, the rational probe design described here uses a set of criteria and publicly available bioinformatics software to select the desired probe molecules from libraries comprised of hundreds of thousands of probe molecules. Examples describe the selection of DNA probes for the human X and Y chromosomes, both with unprecedented performance, but in a similar fashion, this approach can be applied to other chromosomes or species.

  20. A Hybrid Estimator for Active/Reactive Power Control of Single-Phase Distributed Generation Systems with Energy Storage

    DEFF Research Database (Denmark)

    Pahlevani, Majid; Eren, Suzan; Guerrero, Josep M.;

    2016-01-01

    This paper presents a new active/reactive power closed-loop control system for a hybrid renewable energy generation system used for single-phase residential/commercial applications. The proposed active/reactive control method includes a hybrid estimator, which is able to quickly and accurately...... estimate the active/reactive power values. The proposed control system enables the hybrid renewable energy generation system to be able to perform real-time grid interconnection services such as active voltage regulation, active power control, and fault ride-through.Simulation and experimental results...... demonstrate the superior performance of the proposed closed-loop control system....

  1. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization.

    Science.gov (United States)

    Tse, Jenny; Wang, Yuanyuan; Zengeya, Thomas; Rozners, Eriks; Tan-Wilson, Anna

    2015-02-01

    We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin-streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the "warhead") and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl-PNA:PNA-biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Determination of self generated magnetic field and the plasma density using Cotton Mouton polarimetry with two color probes

    Directory of Open Access Journals (Sweden)

    Joshi A.S.

    2013-11-01

    Full Text Available Self generated magnetic fields (SGMF in laser produced plasmas are conventionally determined by measuring the Faraday rotation angle of a linearly polarized laser probe beam passing through the plasma along with the interferogram for obtaining plasma density. In this paper, we propose a new method to obtain the plasma density and the SGMF distribution from two simultaneous measurements of Cotton Mouton polarimetry of two linearly polarized probe beams of different colors that pass through plasma in a direction normal to the planar target. It is shown that this technique allows us to determine the distribution of SGMF and the plasma density without doing interferometry of laser produced plasmas.

  3. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Ashish Gupta

    2002-06-01

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  4. Design and development of hybrid energy generator (photovoltaics) with solar tracker

    Science.gov (United States)

    Mohiuddin, A. K. M.; Sabarudin, Mohamad Syabil Bin; Khan, Ahsan Ali; Izan Ihsan, Sany

    2017-03-01

    This paper is the outcome of a small scale hybrid energy generator (hydro and photovoltaic) project. It contains the photovoltaics part of the project. The demand of energy resources is increasing day by day. That is why people nowadays tend to move on and changes their energy usage from using fossil fuels to a cleaner and green energy like hydro energy, solar energy etc. Nevertheless, energy is hard to come by for people who live in remote areas and also campsites in the remote areas which need continuous energy sources to power the facilities. Thus, the purpose of this project is to design and develop a small scale hybrid energy generator to help people that are in need of power. This main objective of this project is to develop and analyze the effectiveness of solar trackers in order to increase the electricity generation from solar energy. Software like Solidworks and Arduino is used to sketch and construct the design and also to program the microcontroller respectively. Experimental results show the effectiveness of the designed solar tracker sytem.

  5. Interaction between O{sub 2} and ZnO films probed by time-dependent second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S. V., E-mail: sva@nano.aau.dk [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark); Vandalon, V.; Bosch, R. H. E. C.; Loo, B. W. H. van de; Kessels, W. M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Pedersen, K. [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)

    2014-02-03

    The interaction between O{sub 2} and ZnO thin films prepared by atomic layer deposition has been investigated by time-dependent second-harmonic generation, by probing the electric field induced by adsorbed oxygen molecules on the surface. The second-harmonic generated signal decays upon laser exposure due to two-photon assisted desorption of O{sub 2}. Blocking and unblocking the laser beam for different time intervals reveals the adsorption rate of O{sub 2} onto ZnO. The results demonstrate that electric field induced second-harmonic generation provides a versatile non-contact probe of the adsorption kinetics of molecules on ZnO thin films.

  6. Dynamic Economic Dispatch Using Hybrid DE-SQP for Generating Units with Valve-Point Effects

    Directory of Open Access Journals (Sweden)

    A. M. Elaiw

    2012-01-01

    Full Text Available This paper presents hybrid differential evolution (DE and sequential quadratic programming (SQP for solving the dynamic economic dispatch (DED problem for generating units with valve-point effects. DE is used as a global optimizer and SQP is used as a fine tuning to determine the optimal solution at the final. The feasibility of the proposed method is validated with five-and ten-unit test systems. Results obtained by DE-SQP method are compared with other techniques in the literature.

  7. Widely tunable second-harmonic generation in a chalcogenide-tellurite hybrid optical fiber.

    Science.gov (United States)

    Cheng, Tonglei; Gao, Weiqing; Kawashima, Hiroyasu; Deng, Dinghuan; Liao, Meisong; Matsumoto, Morio; Misumi, Takashi; Suzuki, Takenobu; Ohishi, Yasutake

    2014-04-01

    When a chalcogenide-tellurite hybrid optical fiber with a high refractive index difference Δn=0.24 is pumped by an optical parametric oscillator with a pump wavelength from 1700 to 3000 nm, widely tunable second-harmonic generation (SHG) from 850 to 1502 nm is obtained. The observation of SHG is primarily due to the surface nonlinearity polarization at the core-cladding interface and the second-harmonic signal remains stable at the maximal level throughout the laser pulse irradiation.

  8. Development of Control Structure for Hybrid Wind Generators with Active Power Capability

    Directory of Open Access Journals (Sweden)

    Mehdi Niroomand

    2014-01-01

    Full Text Available A hierarchical control structure is proposed for hybrid energy systems (HES which consist of wind energy system (WES and energy storage system (ESS. The proposed multilevel control structure consists of four blocks: reference generation and mode select, power balancing, control algorithms, and switching control blocks. A high performance power management strategy is used for the system. Also, the proposed system is analyzed as an active power filter (APF with ability to control the voltage, to compensate the harmonics, and to deliver active power. The HES is designed with parallel DC coupled structure. Simulation results are shown for verification of the theoretical analysis.

  9. FEM-based Analysis of a Hybrid Synchronous Generator with Skewed Stator Slots

    Directory of Open Access Journals (Sweden)

    MUNTEANU, A.

    2011-11-01

    Full Text Available The paper presents a simulation study of a hybrid synchronous generator (dual excitation system - permanent magnets and electromagnets with skewed stator slots. The main goal is to establish if the skewing of the slots brings a significant improvement of the air-gap flux density and of the induced stator voltage. The skewness angle is the parameter in discussion. The study is based on finite element method analysis. Due to the particular geometry of the stator slots, a multilayer approach is employed.

  10. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.

    Science.gov (United States)

    Pan, Indranil; Das, Saptarshi

    2016-05-01

    This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants.

  11. Optimization and field demonstration of hybrid hydrogen generator/high efficiency furnace system

    Energy Technology Data Exchange (ETDEWEB)

    Entchev, E.; Coyle, I.; Szadkowski, F. [CANMET Energy Technology Centre, 1 Haanel Dr., Ottawa, Ontario K1A-1M1 (Canada); Manning, M.; Swinton, M. [National Research Council Ottawa, Ontario (Canada); Graydon, J.; Kirk, D. [University of Toronto, Toronto, Ontario (Canada)

    2009-05-15

    Hydrogen is seen as an energy carrier of the future and significant research on hydrogen generation, storage and utilization is accomplished around the world. However, an appropriate intermediate step before wide hydrogen introduction will be blending conventional fuels such as natural gas, oil or diesel with hydrogen and follow up combustion through conventional means. Due to changes in the combustion and flame characteristics of the system additional research is needed to access the limits and the impact of the fuel mix on the combustion systems performance. The hybrid system consists of a 5 kW{sub el} electrolyzer and a residential 15 kW{sub th} high efficiency gas fired furnace. The electrolyzer was integrated with the furnace gas supply and setup to replace 5-25% of the furnace natural gas flow with hydrogen. A mean for proper mixing of hydrogen with natural gas was provided and a control system for safe system operation was developed. Prior to the start of the field trial the hybrid system was investigated in laboratory environment. It was subjected to a variety of steady state and cycling conditions and a detailed performance and optimization analysis was performed with a range of hydrogen/natural gas mixtures. The optimized system was then installed at the Canadian Centre for Housing Technologies (CCHT) Experimental research house. The energy performance of the hybrid system was compared to the energy performance of an identical high efficiency furnace in the Control research house next door. (author)

  12. Second generation hybrid polar compounds are potent inducers of transformed cell differentiation.

    Science.gov (United States)

    Richon, V M; Webb, Y; Merger, R; Sheppard, T; Jursic, B; Ngo, L; Civoli, F; Breslow, R; Rifkind, R A; Marks, P A

    1996-06-11

    Hybrid polar compounds, of which hexamethylenebisacetamide (HMBA) is the prototype, are potent inducers of differentiation of murine erythroleukemia (MEL) cells and a wide variety of other transformed cells. HMBA has been shown to induce differentiation of neoplastic cells in patients, but is not an adequate therapeutic agent because of dose-limiting toxicity. We report on a group of three potent second generation hybrid polar compounds, diethyl bis-(pentamethylene-N,N-dimethylcarboxamide) malonate (EMBA), suberoylanilide hydroxamic acid (SAHA), and m-carboxycinnamic acid bis-hydroxamide (CBHA) with optimal concentrations for inducing MEL cells of 0.4 mM, 2 microM, and 4 microM, respectively, compared to 5 mM for HMBA. All three agents induce accumulation of underphosphorylated pRB; increased levels of p2l protein, a prolongation of the initial G1 phase of the cell cycle; and accumulation of hemoglobin. However, based upon their effective concentrations, the cross-resistance or sensitivity of an HMBA-resistant MEL cell variant, and differences in c-myb expression during induction, these differentiation-inducing hybrid polar compounds can be grouped into two subsets, HMBA/EMBA and SAHA/CBHA. This classification may prove of value in selecting and planning prospective preclinical and clinical studies toward the treatment of cancer by differentiation therapy.

  13. Using a third tone to probe the physiological generation site of distortion product otoacoustic emissions in gerbil

    Science.gov (United States)

    Dong, Wei

    2015-12-01

    The generation of distortion product otoacoustic emissions (DPOAEs) has been summarized using a two-mechanism theory consisting of nonlinear distortion and linear coherent reflection. However, the precise generation site in the cochlea is still unclear. The current study in gerbils used a third tone in different cochlear regions to probe the cochlear origin site of DPOAEs. DPOAEs and their intracochlear sources, distortion products (DPs), were simultaneously measured. Our results suggest that the major generation site of DPOAEs evoked by an f2/f1 ratio of 1.25 extends basal to the primary f2 place, which is consistent with notions about the location of the cochlear amplifier.

  14. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    Science.gov (United States)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  15. Identification and quantification of Bifidobacterium species isolated from food with genus-specific 16S rRNA-targeted probes by colony hybridization and PCR.

    Science.gov (United States)

    Kaufmann, P; Pfefferkorn, A; Teuber, M; Meile, L

    1997-01-01

    A Bifidobacterium genus-specific target sequence in the V9 variable region of the 16S rRNA has been elaborated and was used to develop a hybridization probe. The specificity of this probe, named lm3 (5'-CGGGTGCTI*CCCACTTTCATG-3'), was used to identify all known type strains and distinguish them from other bacteria. All of the 30 type strains of Bifidobacterium which are available at the German culture collection Deutsche Sammlung von Mikroorganismen und Zellkulturen, 6 commercially available production strains, and 34 closely related relevant strains (as negative controls) were tested. All tested bifidobacteria showed distinct positive signals by colony hybridization, whereas all negative controls showed no distinct dots except Gardnerella vaginalis DSM4944 and Propionibacterium freudenreichii subsp. shermanii DSM4902, which gave slight signals. Furthermore, we established a method for isolation and identification of bifidobacteria from food by using a PCR assay without prior isolation of DNA but breaking the cells with proteinase K. By this method, all Bifidobacterium strains lead to a DNA product of the expected size. We also established a quick assay to quantitatively measure Bifidobacterium counts in food and feces by dilution plating and colony hybridization. We were able to demonstrate that 2.1 x 10(6) to 2.3 x 10(7) colonies/g of sour milk containing bifidobacteria hybridized with the specific nucleotide probe. With these two methods, genus-specific colony hybridization and genus-specific PCR, it is now possible to readily and accurately detect any bifidobacteria in food and fecal samples and to discriminate between them and members of other genera. PMID:9097423

  16. Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments.

    Science.gov (United States)

    Ambroise, Matthieu; Levi, Timothée; Joucla, Sébastien; Yvert, Blaise; Saïghi, Sylvain

    2013-01-01

    This investigation of the leech heartbeat neural network system led to the development of a low resources, real-time, biomimetic digital hardware for use in hybrid experiments. The leech heartbeat neural network is one of the simplest central pattern generators (CPG). In biology, CPG provide the rhythmic bursts of spikes that form the basis for all muscle contraction orders (heartbeat) and locomotion (walking, running, etc.). The leech neural network system was previously investigated and this CPG formalized in the Hodgkin-Huxley neural model (HH), the most complex devised to date. However, the resources required for a neural model are proportional to its complexity. In response to this issue, this article describes a biomimetic implementation of a network of 240 CPGs in an FPGA (Field Programmable Gate Array), using a simple model (Izhikevich) and proposes a new synapse model: activity-dependent depression synapse. The network implementation architecture operates on a single computation core. This digital system works in real-time, requires few resources, and has the same bursting activity behavior as the complex model. The implementation of this CPG was initially validated by comparing it with a simulation of the complex model. Its activity was then matched with pharmacological data from the rat spinal cord activity. This digital system opens the way for future hybrid experiments and represents an important step toward hybridization of biological tissue and artificial neural networks. This CPG network is also likely to be useful for mimicking the locomotion activity of various animals and developing hybrid experiments for neuroprosthesis development.

  17. Real-time biomimetic Central Pattern Generators into FPGA for hybrid experiments

    Directory of Open Access Journals (Sweden)

    Matthieu eAmbroise

    2013-11-01

    Full Text Available This article investigates the neural network system in the leech heartbeat and develops a real-time biomimetic digital hardware using few-resource implementation for hybrid experiments. The leech heartbeat neural network is one of the most simple central pattern generators (CPG. In biology, CPG provide for rhythmic bursts of spikes and is the basis for all muscles contractions orders (heartbeat and locomotion (walking, running….. The leech neural network system was already investigated and this CPG has been already formalized with Hodgkin-Huxley neural model (HH that is the most complex neuron model. However, the resources needed for a neural model is proportional to its complexity. To answer to this issue, this article describes a biomimetic implementation into FPGA (Field Programmable Gate Array of a network of 240 CPGs using a simple model (Izhikevich model and by proposing a new synapse model: activity dependent depression synapse. The architecture of the network implementation allows working on a single computation core. This digital system works in real-time, needs few resources and has the same bursting activity behavior than complex model. To validate our implementation of this CPG, we compare it firstly with a simulation of the complex model. Then we match its activity with the pharmacological data of the activity of the rat’s spinal cord. This digital system allows future hybrid experiments and will be a great step towards hybridation between biological tissue and artificial neural network. This network of CPG could be also useful for mimic the activity of a different animal locomotion or developing hybrid experiments for neuroprosthesis development.

  18. Microsatellite instability typing in serum and tissue of patients with colorectal cancer: comparing real time PCR with hybridization probe and high-performance liquid chromatography.

    Science.gov (United States)

    Mokarram, P; Rismanchi, M; Alizadeh Naeeni, M; Mirab Samiee, S; Paryan, M; Alipour, A; Honardar, Z; Kavousipour, S; Naghibalhossaini, F; Mostafavi-Pour, Z; Monabati, A; Hosseni, S V; Shamsdin, S A

    2014-05-01

    Allelic variation of BAT-25 (a 25-repeat quasimonomorphic poly T) and BAT-26 (a 26-repeat quasimonomorphic polyA) loci as two mononucleotide microsatellite markers, were analyzed with high-performance liquid chromatography (HPLC) compared with Real-Time PCR using hybridization probes. BAT-26 and BAT-25 markers were used to determine an appropriate screening technique with high sensitivity and specificity to diagnose microsatellite instability (MSI) status in patients with colorectal cancer (CRC). One of the pathways in colorectal tumor genesis is microsatellite instability (MSI+). MSI is detected in about 15% of all CRCs; 3% are of these are associated with Lynch syndrome and the other 12% are caused by sporadic. Colorectal tumors with MSI have distinctive features compared with microsatellite stable tumors. Due to the high percentage of MSI+ CRC in Iran, screening of this type of CRC is imperative. Two markers were analyzed in tissues and sera of 44 normal volunteers and tumor and matched normal mucosal tissues as well as sera of 44 patients with sporadic CRC. The sensitivity and specificity of BAT-26 with real time PCR method (Hybridization probe) were 100% in comparison with sequencing method as the gold standard, while HPLC had a lower sensitivity and specificity. According to HPLC data, BAT-26 was more sensitive than BAT-25 in identifying MSI tumors. Therefore, MSI typing using the BAT-26 hybridization probe method compared to HPLC could be considered as an accurate method for diagnosing MSI in CRC tumors but not in serum circulating DNAs.

  19. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes.

    Science.gov (United States)

    Zhou, Haibin; Zhang, Yongmin; Han, Ruoyu; Jing, Yan; Wu, Jiawei; Liu, Qiaojue; Ding, Weidong; Qiu, Aici

    2016-04-22

    Underwater shock waves (SWs) generated by underwater electrical wire explosions (UEWEs) have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs). This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable.

  20. Temperature controlling system based on FISH probe hybridization facility%基于FISH探针杂交设备的温度控制系统

    Institute of Scientific and Technical Information of China (English)

    李天庆; 张化; 张婉尧

    2015-01-01

    以玻片为基础的FISH,它的变性杂交过程完全实现自动化.FISH探针杂交仪内置一个ARM7微处理器,以控制不同温度变化,满足变性、杂交和固定温度等不同模式,可预置用按键编程进去的程序(显示屏上能指导编程),方便客户调用,提高工作效率.温度控制系统是FISH探针杂交设备的核心部分,决定了杂交仪的可靠性、稳定性及精准性.%By using FISH based on slide,automation in the degeneration process of hybrid can be achieved.Installed an internal ARM7 microprocessor,the FISH probe hybridization facility can control temperature,meet different modes such as denaturation,hybridization,fixed temperature,and so on.Procedure input by means of push-button can be preset(there are guidance on display screen)to make things easy for user,as a result,work efficiency can be improved.The temperature controlling system,which is the core of FISH probe hybridization facility and ensure its reliability,stability and accuracy.

  1. Biosolar energy generation and harvesting from biomolecule-copolymer hybrid systems

    Science.gov (United States)

    Chu, Bong-Chieh Benjamin

    Alternative energy sources have become an increasingly important topic as energy needs outpace supply. Furthermore, as the world moves into the digital age of portable electronics, highly efficient and lightweight energy sources will need to be developed. Current technology, such as lithium ion batteries, provide enough power to run portable electronics for hours or days, but can still allow for improvement in their power density (W/kg). Utilizing energy-transducing membrane proteins, which are by nature highly efficient, it is possible to engineer biological-based energy sources with energy densities far greater than any solid-state systems. Furthermore, solar powered membrane proteins have the added benefit of a virtually unlimited supply of energy. This work has developed protein-polymer hybrid films and nanoscale vesicles for a variety of applications from fuel-cell technology to biological-based photovoltaics. Bacteriorhodopsin (BR), a light-activated proton pump, and Cytochrome C Oxidase (COX), a protein involved in the electron transport chain in mitochondria, were reconstituted into biomimetic triblock copolymer membranes. Block copolymer membranes mimic the amphiphilic nature of a natural lipid bilayer but exhibit greater mechanical stability due to UV-polymerizable endgroups. In BR/COX functionalized nanovesicles, proton gradients generated by the light-activated proton pumping of BR are used to drive COX in reverse to generate electrons, providing a hybrid biologically-active polymer to convert solar energy to chemical energy, and finally to electrical energy. This work has found protein activity in planar membranes through the photoelectric current generation by BR and the proton pumping activity of BR-functionalized polymer membranes deposited onto proton exchange membranes, as well as the coupled functionality of BR and COX through current generation in cyclic voltammetry and direct current measurements. Current switching between light and dark

  2. Generation expansion planning in Pool market: A hybrid modified game theory and particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Moghddas-Tafreshi, S.M. [Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saliminia Lahiji, A. [Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Rabiee, A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Aghaei, J., E-mail: aghaei@iust.ac.i [Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of)

    2011-02-15

    Unlike the traditional policy, Generation Expansion Planning (GEP) problem in competitive framework is complicated. In the new policy, each GENeration COmpany (GENCO) decides to invest in such a way that obtains as much profit as possible. This paper presents a new hybrid algorithm to determine GEP in a Pool market. The proposed algorithm is divided in two programming levels: master and slave. In the master level a modified game theory (MGT) is proposed to evaluate the contrast of GENCOs by the Independent System Operator (ISO). In the slave level, a particle swarm optimization (PSO) method is used to find the best solution of each GENCO for decision-making of investment. The validity of the proposed method is examined in the case study including three GENCOs with multi-types of power plants. The results show that the presented method is both satisfactory and consistent with expectation.

  3. Generation Expansion Planning in pool market: A hybrid modified game theory and improved genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Shayanfar, H.A.; Lahiji, A. Saliminia; Aghaei, J.; Rabiee, A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran (Iran)

    2009-05-15

    Unlike the traditional policy, Generation Expansion Planning (GEP) problem in competitive framework is complicated. In the new policy, each Generation Company (GENCO) decides to invest in such a way that obtains as much profit as possible. This paper presents a new hybrid algorithm to determine GEP in a Pool market. The proposed algorithm is divided in two programming levels: master and slave. In the master level a Modified Game Theory (MGT) is proposed to evaluate the contrast of GENCOs by the Independent System Operator (ISO). In the slave level, an Improved Genetic Algorithm (IGA) method is used to find the best solution of each GENCO for decision-making of investment. The validity of the proposed method is examined in the case study including three GENCOs with multi-type of power plants. The results show that the presented method is both satisfactory and consistent with expectation. (author)

  4. Trajectory generation algorithm for smooth movement of a hybrid-type robot Rocker-Pillar

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Min; Choi, Dong Kyu; Kim, Jong Won [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Hwa Soo [Dept. of Mechanical System Engineering, Kyonggi University, Suwon (Korea, Republic of)

    2016-11-15

    While traveling on rough terrain, smooth movement of a mobile robot plays an important role in carrying out the given tasks successfully. This paper describes the trajectory generation algorithm for smooth movement of hybrid-type mobile robot Rocker-Pillar by adjusting the angular velocity of its caterpillar as well as each wheel velocity in such a manner to minimize a proper index for smoothness. To this end, a new Smoothness index (SI) is first suggested to evaluate the smoothness of movement of Rocker-Pillar. Then, the trajectory generation algorithm is proposed to reduce the undesired oscillations of its Center of mass (CoM). The experiment are performed to examine the movement of Rocker-Pillar climbing up the step whose height is twice larger than its wheel radius. It is verified that the resulting SI is improved by more than 40 % so that the movement of Rocker-Pillar becomes much smoother by the proposed trajectory algorithm.

  5. A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves.

    Science.gov (United States)

    Harb, M S; Yuan, F G

    2015-08-01

    A rapid, fully non-contact, hybrid system which encompasses an air-coupled transducer (ACT) and a laser Doppler vibrometer (LDV) is presented for profiling A0 Lamb wave dispersion of an isotropic aluminum plate. The ACT generates ultrasonic pressure incident upon the surface of the plate. The pressure waves are partially refracted into the plate. The LDV is employed to measure the out-of-plane velocity of the excited Lamb wave mode at some distances where the Lamb waves are formed in the plate. The influence of the ACT angle of incidence on Lamb wave excitation is investigated and Snell's law is used to directly compute Lamb wave dispersion curves including phase and group velocity dispersion curves in aluminum plates from incident angles found to generate optimal A0 Lamb wave mode. The measured curves are compared to results obtained from a two-dimensional (2-D) Fast Fourier transform (FFT), Morlet wavelet transform (MWT) and theoretical predictions. It was concluded that the experimental results obtained using Snell's law concept are well in accordance with the theoretical solutions. The high degree of accuracy in the measured data with the theoretical results proved a high sensitivity of the air-coupled and laser ultrasound in characterizing Lamb wave dispersion in plate-like structures. The proposed non-contact hybrid system can effectively characterize the dispersive relation without knowledge of neither the materials characteristics nor the mathematical model.

  6. Design and Modeling of Grid Connected Hybrid Renewable Energy Power Generation

    Directory of Open Access Journals (Sweden)

    M. Kishore Reddy,

    2014-09-01

    Full Text Available This paper proposes a design and modeling of grid connected hybrid renewable energy power generation. The energy system having a photo voltaic (PV panel, Srg wind turbine and fuel cell (sofc for continuous power flow management. Fuel cells (storage & generating are added to ensure uninterrupted power supply due to the discontinuous nature of solar and wind resources. Renewable energy generated during times of plenty can be stored for use during periods when sufficient electricity is not available. But storing this energy is a difficult task: batteries and similar technologies perform well over short timescales, but over periods of weeks or months a different approach is necessary. Energy storage in the form of hydrogen is one such possibility: excess electricity is fed into an electrolyser to split water into its constituent parts, oxygen and hydrogen. The hydrogen is then used in fuel cells to produce electricity when needed which will overcome the problem of storage. This work is mainly concentrated on the design, analysis and modelling of Fuel cells and Analysis and modelling of Switched Reluctance Generator (SRG in the application of Wind Energy Generation and pv cell. Also an effective approach is proposed in this thesis to ensure renewable energy diversity and effective utilization. The pv cell, wind and fuel cell renewable energy system is digitally simulated using the MATLAB/SIMULINK software environment and fully validated for efficient energy utilizations and enhanced interface power quality under different operating conditions and load excursions

  7. Real-time Walking Pattern Generation for a Biped Robot with Hybrid CPG-ZMP Algorithm

    Directory of Open Access Journals (Sweden)

    Bin He

    2014-10-01

    Full Text Available Biped robots have better mobility than conventional wheeled robots. The bio-inspired method based on a central pattern generator (CPG can be used to control biped robot walking in a manner like human beings. However, to achieve stable locomotion, it is difficult to modulate the parameters for the neural networks to coordinate every degree of freedom of the walking robot. The zero moment point (ZMP method is very popular for the stability control of biped robot walking. However, the reference trajectories have low energy efficiency, lack naturalness and need significant offline calculation. This paper presents a new method for biped real-time walking generation using a hybrid CPG-ZMP control algorithm. The method can realize a stable walking pattern by combining the ZMP criterion with rhythmic motion control. The CPG component is designed to generate the desired motion for each robot joint, which is modulated by phase resetting according to foot contact information. By introducing the ZMP location, the activity of the CPG output signal is adjusted to coordinate the limbs’ motion and allow the robot to maintain balance during the process of locomotion. The numerical simulation results show that, compared with the CPG method, the new hybrid CPG-ZMP algorithm can enhance the robustness of the CPG parameters and improve the stability of the robot. In addition, the proposed algorithm is more energy efficient than the ZMP method. The results also demonstrate that the control system can generate an adaptive walking pattern through interactions between the robot, the CPG and the environment.

  8. The extent and position of homoeologous recombination in a distant hybrid of Alstroemeria: a molecular cytogenetic assessment of first generation backcross progenies

    NARCIS (Netherlands)

    Kamstra, S.A.; Kuipers, A.G.J.; Jeu, de M.J.; Ramanna, M.S.; Jacobsen, E.

    1999-01-01

    To estimate the extent and position of homoeologous recombination during meiosis in an interspecific hybrid between two distantly related Alstroemeria species, the chromosome constitution of six first generation backcross (BC1) plants was analysed using sequential fluorescent in situ hybridization

  9. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Amicucci, L., E-mail: luca.amicucci@enea.it; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Tuccillo, A. A. [EUROfusion-ENEA, Centro Ricerche Frascati, Unità Fusione, Frascati (Italy); Ding, B. J.; Li, M. H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-12-10

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  10. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    Science.gov (United States)

    Amicucci, L.; Ding, B. J.; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Li, M. H.; Tuccillo, A. A.

    2015-12-01

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  11. Hybrid electro-optical stimulation of the rat sciatic nerve induces force generation in the plantarflexor muscles

    Science.gov (United States)

    Duke, Austin R.; Peterson, Erik; Mackanos, Mark A.; Atkinson, James; Tyler, Dustin; Jansen, E. Duco

    2012-12-01

    Objective. Optical methods of neural activation are becoming important tools for the study and treatment of neurological disorders. Infrared nerve stimulation (INS) is an optical technique exhibiting spatially precise activation in the native neural system. While this technique shows great promise, the risk of thermal damage may limit some applications. Combining INS with traditional electrical stimulation, a method known as hybrid electro-optical stimulation, reduces the laser power requirements and mitigates the risk of thermal damage while maintaining spatial selectivity. Here we investigate the capability of inducing force generation in the rat hind limb through hybrid stimulation of the sciatic nerve. Approach. Hybrid stimulation was achieved by combining an optically transparent nerve cuff for electrical stimulation and a diode laser coupled to an optical fiber for infrared stimulation. Force generation in the rat plantarflexor muscles was measured in response to hybrid stimulation with 1 s bursts of pulses at 15 and 20 Hz and with a burst frequency of 0.5 Hz. Main results. Forces were found to increase with successive stimulus trains, ultimately reaching a plateau by the 20th train. Hybrid evoked forces decayed at a rate similar to the rate of thermal diffusion in tissue. Preconditioning the nerve with an optical stimulus resulted in an increase in the force response to both electrical and hybrid stimulation. Histological evaluation showed no signs of thermally induced morphological changes following hybrid stimulation. Our results indicate that an increase in baseline temperature is a likely contributor to hybrid force generation. Significance. Extraneural INS of peripheral nerves at physiologically relevant repetition rates is possible using hybrid electro-optical stimulation.

  12. Small-Signal Analysis of Autonomous Hybrid Distributed Generation Systems in Presence of Ultracapacitor and Tie-Line Operation

    Science.gov (United States)

    Ray, Prakash K.; Mohanty, Soumya R.; Kishor, Nand

    2010-07-01

    This paper presents small-signal analysis of isolated as well as interconnected autonomous hybrid distributed generation system for sudden variation in load demand, wind speed and solar radiation. The hybrid systems comprise of different renewable energy resources such as wind, photovoltaic (PV) fuel cell (FC) and diesel engine generator (DEG) along with the energy storage devices such as flywheel energy storage system (FESS) and battery energy storage system (BESS). Further ultracapacitors (UC) as an alternative energy storage element and interconnection of hybrid systems through tie-line is incorporated into the system for improved performance. A comparative assessment of deviation of frequency profile for different hybrid systems in the presence of different storage system combinations is carried out graphically as well as in terms of the performance index (PI), ie integral square error (ISE). Both qualitative and quantitative analysis reflects the improvements of the deviation in frequency profiles in the presence of the ultracapacitors (UC) as compared to other energy storage elements.

  13. COMPARATIVE STUDY OF HYBRIDS OF THE FIRST AND SECOND GENERATIONS OF DURUM WINTER WHEAT OF VARIOUS CROSS-BREEDING

    Directory of Open Access Journals (Sweden)

    Samofalova N. E.

    2015-12-01

    Full Text Available The article substantiates a necessity to apply the method of interspecific hybridization in durum winter wheat breeding, using the present soft winter varieties for improvement of frost and drought tolerance at the beginning of germination; resistance to snow mold, fusariosis and bacteriosis of ears and grain. The article presents the results of a comparative study of different types of crossbreeding at interspecific and intraspecific hybridization due to germination, emergence, productivity. It has been shown that intraspecific hybrids ‘T. durum оз. х T. durum оз.’, interspecific hybrids ‘T. durum оз. х Т. аestivum оз’ and ‘Т. аestivum оз. х T. durum оз.’ possessed the highest germination and emergence with 71,8/75,3% for direct and 60,4/82,5% for backward, 42,8 and 35,5% and 55,4 and 64,1% respectively. In backward (triplecross cross-breeding of F1 interspecific hybrids with durum winter wheat the grain germination was down to 37,4 and 36,6%, but the emergence was up to 64,1 and 69,7% and reached the level of intraspecific hybrids. According to the elements of ear (head productivity (grain mass per head, number of seeds per head, interspecific double-cross hybrids of the first and the second generation significantly conceded to intraspecific hybrids, but they matched them in a number of spikelets and grain size. The triple-cross hybrids exceed the double interspecific hybrids in this respect, but they concede to double-cross and triple-cross intraspecific hybrids. We studied the principle of splitting of interspecific hybrids of the second generation ‘T. durum оз. х Т. аestivum оз.’ and ‘T. durum оз. х T. durum оз.’ (direct and backward and the triple-cross hybrids obtained from cross-breeding of interspecific and intraspecific double-cross hybrids F1 with durum winter wheat

  14. Hybrid electrical generation system utilizing wind, diesel and hydropower for operation of an underground zinc mine in southern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Gridley, Norman [Minera El Toqui (Chile); Banto, Marcelo [Seawind Chile (Chile)

    2010-07-01

    This paper presents a hybrid electrical generation system used for underground zinc mine operations that utilizes wind, diesel and hydropower. This mine is located in Coyhaique and had a total energy consumption of 32,567 MWh in 2010 which is anticipated to increase by 25% in 2011. Power generation in this mine is independent of the power grid. It consists of four main portals: ventilation, electrical and drainage systems and ramp access to all mining zones. The technical details for all the parts of the mine and the hybrid generation system are given. A tabular form shows the energy consumed every month from 2005-2010 for all three systems involved, namely wind power generation, diesel generation and the hydro generation system. Benefits of this hybrid system include stability and constant power generation under variable loads. This system can also be applied to other mines using a grid. From the study it can be concluded that the hybrid system is environmentally friendly, economical and sustainable.

  15. Modeling and sizing optimization of hybrid photovoltaic/wind power generation system

    Science.gov (United States)

    Yazdanpanah, Mohammad-Ali

    2014-03-01

    The rapid industrialization and growth of world's human population have resulted in the unprecedented increase in the demand for energy and in particular electricity. Depletion of fossil fuels and impacts of global warming caused widespread attention using renewable energy sources, especially wind and solar energies. Energy security under varying weather conditions and the corresponding system cost are the two major issues in designing hybrid power generation systems. In this paper, the match evaluation method (MEM) is developed based on renewable energy supply/demand match evaluation criteria to size the proposed system in lowest cost. This work is undertaken with triple objective function: inequality coefficient, correlation coefficient, and annualized cost of system. It provides optimum capacity of as many numbers of supplies as required to match with a load demand in lowest investment, so it can handle large-scale design problems. Meteorological data were collected from the city of Zabol, located in south-east of Iran, as a case study. Six types of wind turbine and also six types of PV modules, with different output powers and costs, are considered for this optimization procedure. A battery storage system is used to even out irregularities in meteorological data. A multi-objective particle swarm optimization algorithm has been used for the prediction of an optimized set of design based on the MEM technique. The results of this study are valuable for evaluating the performance of future stand-alone hybrid power system. It is worth mentioning that the proposed methodology can be effectively employed for any composition of hybrid energy systems in any locations taking into account the meteorological data and the consumer's demand.

  16. A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai

    2016-08-01

    To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.

  17. A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai

    2017-05-01

    To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.

  18. Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review

    Directory of Open Access Journals (Sweden)

    Longzhou Zhang

    2012-01-01

    Full Text Available Photovoltaic (PV power generation is one of the attractive choices for efficient utilization of solar energy. Considering that the efficiency and cost of PV cells cannot be significantly improved in near future, a relatively cheap concentrator to replace part of the expensive solar cells could be used. The photovoltaic thermal hybrid system (PV/T, combining active cooling with thermal electricity and providing both electricity and usable heat, can enhance the total efficiency of the system with reduced cell area. The effect of nonuniform light distribution and the heat dissipation on the performance of concentrating PV/T was discussed. Total utilization of solar light by spectral beam splitting technology was also introduced. In the last part, we proposed an integrated compound parabolic collector (CPC plate with low precision solar tracking, ensuring effective collection of solar light with a significantly lowered cost. With the combination of beam splitting of solar spectrum, use of film solar cell, and active liquid cooling, efficient and full spectrum conversion of solar light to electricity and heat, in a low cost way, might be realized. The paper may offer a general guide to those who are interested in the development of low cost concentrating PV/T hybrid system.

  19. Control strategy of hybrid fuel cell/battery distributed generation system for grid-connected operation

    Institute of Scientific and Technical Information of China (English)

    Masoud Aliakbar GOLKAR; Amin HAJIZADEH

    2009-01-01

    This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fuel cell (SOFC) power plant,battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between the fuel cell power plant and the battery energy storage, a neuro-fuzzy controller has been developed. Also, for controlling the active and reactive power independently in distribution systems, the current control strategy based on two fuzzy logic controllers has been presented. A Matlab/Simulink simulation model is developed for the HDG system by combining the individual component models and their controllers. Simulation results show the overall system performance including load-following and power management of the HDG system.

  20. Topological Properties and Transition Features Generated by a New Hybrid Preferential Model

    Institute of Scientific and Technical Information of China (English)

    FANG Jin-Qing; LIANG Yong

    2005-01-01

    @@ A new hybrid preferential model (HPM) is proposed for generating both scale-free and small world properties.The topological transition features in the HPM from random preferential attachment to deterministic preferential attachment are investigated. It is found that the exponents γ of the power law are very sensitive to the hybrid ratio (d/r) of determination to random attachment, and γincreases as the ratio d/r increases. It is also found that there exists a threshold at d/r = 1/1, beyond which γ increases rapidly and can tend to infinity if there is no random preferential attachment (r = 0), which implies that the power law scaling disappears completely.Moreover, it is also found that when the ratio d/r increases, the average path length L is decreased, while the average clustering coefficient C is increased. Compared to the BA model and random graph, the new HPM has both the smallest L and the biggest C, which is consistent with most real-world growing networks.

  1. Cellular delivery of quantum dot-bound hybridization probe for detection of intracellular pre-microRNA using chitosan/poly(γ-glutamic acid complex as a carrier.

    Directory of Open Access Journals (Sweden)

    Yao Geng

    Full Text Available A quantum dot (QD-bound hybridization probe was designed for detection of intracellular pre-miRNA using chitosan (CS/poly(γ-glutamic acid (γ-PGA complex as a gene vector. The probe was prepared by assembling thiolated RNA to gold nanoparticle (Au NP via Au-S bond and then binding 3'-end amine of the RNA to the carboxy group capped on quantum dot surface. The QD-RNA-Au NP probe was assembled on the vector by mixing with aqueous γ-PGA solution and then CS solution to construct a gene delivery system for highly effective cellular uptake and delivery. After the probe was released from CS/γ-PGA complex to the cytoplasm by electrostatic repulsion at intracellular pH, it hybridized with pre-miRNA precursor as target. The formed product was then cleaved by RNase III Dicer, leading to the separation of QDs from Au NPs and fluorescence emission of QDs, which could be detected by confocal microscopic imaging to monitor the amount of the intracellular pre-miRNA precursor. The in vitro assays revealed that the QD-RNA-Au NP was a robust, sensitive and selective probe for quantitative detection of target pre-miRNA. Using MDA-MB231 and MCF-7 breast cancer cells as models, the relative amount of pre-miRNA let-7a could be successfully compared. Since the amount of miRNA is related to the progress and prognosis of cancer, this strategy could be expected to hold promising application potential in medical research and clinical diagnostics.

  2. Dual-action Hybrid Compounds - A New Dawn in the Discovery of Multi-target Drugs: Lead Generation Approaches.

    Science.gov (United States)

    Abdolmalekia, Azizeh; Ghasemi, Jahan B

    2016-09-27

    Finding high quality beginning compounds is a critical job at the start of the lead generation stage for multi-target drug discovery (MTDD). Designing hybrid compounds as a selective multi-target chemical entity is a challenge, opportunity, and new idea to better act against specific multiple targets. One hybrid molecule is formed by two (or more) pharmacophore group's participation. So, these new compounds often exhibit two or more activities going about as multi-target drugs (mt-drugs) and may have superior safety or efficacy. Application of integrating a range of information and sophisticated new in silico, bioinformatics, structural biology, pharmacogenomics methods may be useful to discover/design, and synthesis of the new hybrid molecules. In this regard, many rational and screening approaches have followed by medicinal chemists for the lead generation in MTDD. Here, we review some popular lead generation approaches that have been used for designing multiple ligands (DMLs). This paper focuses on dual- acting chemical entities that incorporate a part of two drugs or bioactive compounds to compose hybrid molecules. Also, it presents some of key concepts and limitations/strengths of lead generation methods by comparing combination framework method with screening approaches. Besides, a number of examples to represent applications of hybrid molecules in the drug discovery are included.

  3. A modular molecular photovoltaic system based on phospholipid/alkanethiol hybrid bilayers: photocurrent generation and modulation.

    Science.gov (United States)

    Xie, Hong; Jiang, Kai; Zhan, Wei

    2011-10-21

    Monolayer quantities of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), incorporated with either fullerenes or ruthenium tris(bipyridyl) (Ru(bpy)(3)(2+)) complexes, were formed on ferrocene-terminated C11-alkanethiol self-assembled monolayers (SAMs) through lipid fusion. Thus formed hybrid structures are characterized by quartz crystal microbalance, UV-vis spectroscopy, cyclic voltammetry and impedance analysis. In comparison to lipid monolayers deposited on C12-alkanethiol SAMs, photocurrent generation from these ferrocene-based structures is significantly modulated, displaying attenuated anodic photocurrents and enhanced cathodic photocurrents. While a similar trend was observed for the two photoagents studied, the degree of such modulations was always found to be greater in fullerene-incorporated bilayers. These findings are evaluated in the context of the film structure, energetics of the involved photo(electrochemical) species and cross-membrane electron-transfer processes.

  4. Solution of wind integrated thermal generation system for environmental optimal power flow using hybrid algorithm

    Directory of Open Access Journals (Sweden)

    Ambarish Panda

    2016-09-01

    Full Text Available A new evolutionary hybrid algorithm (HA has been proposed in this work for environmental optimal power flow (EOPF problem. The EOPF problem has been formulated in a nonlinear constrained multi objective optimization framework. Considering the intermittency of available wind power a cost model of the wind and thermal generation system is developed. Suitably formed objective function considering the operational cost, cost of emission, real power loss and cost of installation of FACTS devices for maintaining a stable voltage in the system has been optimized with HA and compared with particle swarm optimization algorithm (PSOA to prove its effectiveness. All the simulations are carried out in MATLAB/SIMULINK environment taking IEEE30 bus as the test system.

  5. Generation of novel functional metalloproteins via hybrids of cytochrome c and peroxidase.

    Science.gov (United States)

    Ying, Tianlei; Zhong, Fangfang; Wang, Zhong-Hua; Xie, Jin; Tan, Xiangshi; Huang, Zhong-Xian

    2013-06-01

    The continued interest in protein engineering has led to intense efforts in developing novel stable enzymes, which could not only give boost to industrial and biomedical applications, but also enhance our understanding of the structure-function relationships of proteins. We present here the generation of three hybrid proteins of cytochrome c (cyt c) and peroxidase via structure-based rational mutagenesis of cyt c. Several residues (positions 67, 70, 71 and 80) in the distal heme region of cyt c were mutated to the highly conserved amino acids in the heme pocket of peroxidases. The multiple mutants were found to exhibit high peroxidase activity and conserve the impressive stability of cyt c. We expect that this strategy could be extended to other cases of metalloprotein engineering, and lead to the development of stable and active biocatalysts for industrial uses. Besides, this study also provides insight into the structure-function relationships of hemoproteins.

  6. Overview of Power Generation Sector of Bangladesh and Proposed Grid Connected Hybrid Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Md. Raju Ahmed

    2014-11-01

    Full Text Available Electricity is the most usable form of energy, and one of the most crucial strategic issues for the sustainable development of a country. The projection of demand of electricity is an integral part of the planning process. Severe power crisis compelled the government to enter into contractual agreements for high-cost temporary solution such as rental power and small IPPS, on an emergency basis, most of these are diesel or liquid-fuel based. Load shading is an acute problem for the country. The country is confronting a simultaneous shortage of electricity. However, the country has substantial amount of renewable energy resources. The overview of power generation section of Bangladesh is presented; the potentiality of renewable energy sources in Bangladesh is discussed. Finally, a grid connected hybrid renewable energy system is proposed to overcome the problem of power crisis using sustainable clean energy at rural area.

  7. Modified Grid-Connected CSI for Hybrid PV/Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    D. Amorndechaphon

    2012-01-01

    Full Text Available The principle of a power conditioning unit for hybrid PV/wind power generation system is proposed. The proposed power conditioner is based on the current source inverter (CSI topology. All energy sources are connected in parallel with a DC-bus through the modified wave-shaping circuits. To achieve the unity power factor at the utility grid, the DC-link current can be controlled via the wave-shaping circuits with the sinusoidal PWM scheme. In this work, the carrier-based PWM scheme is also proposed to minimize the utility current THD. The power rating of the proposed system can be increased by connecting more PV/wind modules through their wave-shaping circuits in parallel with the other modules. The details of the operating principles, the system configurations, and the design considerations are described. The effectiveness of the proposed CSI is demonstrated by simulation results.

  8. Wind data analysis for the design of a hybrid generation system at the Algodoal Island - Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, U.H.; Pinho, J.T.; J.C. da Cunha, D. de; Araujo, A.C.S. [Universidade Federal do Para (Brazil)

    1997-12-31

    The northeastern coast of the State of Para and the Marajo Island - in Brazil, exhibit a wind potential that seems adequate to the generation of electric energy to supply local demands. These local demands are mostly formed by small towns and villages located invariably far from the big urban centers with little or no possibility to be supplied by the utility grid. In this paper it is intended to report the studies being conducted to design a hybrid wind diesel system to attend a small population center, namely the Algodoal Island, that is a representative sample of this region. It will be described the process of data acquisition and statistical treatment as well as some environmental, social and economic aspects regarding the Algodoal Island. Finally it will be presented a preliminary estimate of energy demand for this locality as well as a probable wind-diesel system arrangement to supply this demand.

  9. Discrepancy between fluorescence in situ hybridization and multiplex ligation-dependent probe amplification in orbital recurrence of uveal melanoma 26 years after enucleation.

    Science.gov (United States)

    Russo, Andrea; Rene, Cornelius; Coupland, Sarah E; Sagili, Suresh; Damato, Bertil

    2012-01-01

    Cytogenetic analysis has transformed the management of uveal melanoma in recent years and allows categorization of such tumors into low-grade tumors with a favorable prognosis and high-grade tumors that metastasize with a fatal outcome. The authors report the case of a 73-year-old man who presented with recurrent melanoma in his left socket, 26 years after enucleation for uveal melanoma. Chromosomal analysis by multiplex ligation-dependent probe amplification revealed partial loss of chromosome 3 and gains in chromosomes 6 and 8, which were missed with fluorescence in situ hybridization. The patient developed multiple liver metastases 14 months after orbital exenteration and died 8 months later. To the best of authors' knowledge, this is the first report of late recurrence of uveal melanoma after enucleation, in which multiplex ligation-dependent probe amplification chromosomal analysis has been used. The case also highlights the limitations of fluorescence in situ hybridization and the benefits of multiplex ligation-dependent probe amplification, which is more reliable at predicting survival.

  10. Oblique Bernstein Mode Generation Near the Upper-hybrid Frequency in Solar Pre-flare Plasmas

    Science.gov (United States)

    Kryshtal, A.; Fedun, V.; Gerasimenko, S.; Voitsekhovska, A.

    2015-11-01

    We study analytically the generation process of the first harmonics of the pure electron weakly oblique Bernstein modes. This mode can appear as a result of the rise and development of a corresponding instability in a solar active region. We assume that this wave mode is modified by the influence of pair Coulomb collisions and a weak large-scale sub-Dreicer electric field in the pre-flare chromosphere near the footpoints of a flare loop. To describe the pre-flare plasma we used the model of the solar atmosphere developed by Fontenla, Avrett, and Loeser ( Astrophys. J. 406, 319, 1993). We show that the generated first harmonic is close to the upper-hybrid frequency. This generation process begins at the very low threshold values of the sub-Dreicer electric field and well before the beginning of the preheating phase of a flare. We investigate the necessary conditions for the existence of non-damped first harmonics of oblique Bernstein waves with small amplitudes in the flare area.

  11. Investigation of Solar Hybrid Electric/Thermal System with Radiation Concentrator and Thermoelectric Generator

    Directory of Open Access Journals (Sweden)

    Edgar Arturo Chávez Urbiola

    2013-01-01

    Full Text Available An experimental study of a solar-concentrating system based on thermoelectric generators (TEGs was performed. The system included an electrical generating unit with 6 serially connected TEGs using a traditional semiconductor material, Bi2Te3, which was illuminated by concentrated solar radiation on one side and cooled by running water on the other side. A sun-tracking concentrator with a mosaic set of mirrors was used; its orientation towards the sun was achieved with two pairs of radiation sensors, a differential amplifier, and two servomotors. The hot side of the TEGs at midday has a temperature of around 200°C, and the cold side is approximately 50°C. The thermosiphon cooling system was designed to absorb the heat passing through the TEGs and provide optimal working conditions. The system generates 20 W of electrical energy and 200 W of thermal energy stored in water with a temperature of around 50°C. The hybrid system studied can be considered as an alternative to photovoltaic/thermal systems, especially in countries with abundant solar radiation, such as Mexico, China, and India.

  12. PSO based Optimal Power Flow with Hybrid Distributed Generators and UPFC

    Directory of Open Access Journals (Sweden)

    S.G. Bharathi dasan

    2012-09-01

    Full Text Available Distributed Generation (DG is a small source of electric power conversion from nonconventionalenergy sources and Hybrid DGs is often the most cost-effective and reliable way toproduce power. Optimal Power flow (OPF study is conducted on a power system to achieve one of the following objectives: cost/loss minimization or Available transfer capability (ATCcalculation in a deregulated environment. The optimality of control variables would definitely change with respect to the location, quantity and combination of power injection by DGs. On the other hand, FACTS controllers are effective in utilizing the existing transmission network whichis very important especially in a deregulated system. Unified Power flow controller (UPFC, a second generation FACTS controller, is well known for minimizing the cost of generation/losses with a good voltage profile as well as for ATC improvement. This paper conducts a detailed OPF study on a 9 bus system [7] for the above mentioned three objectives, with DGs and UPFC. To solve the OPF problem, Particle Swarm Optimization (PSO, a non conventional technique is used.

  13. Dynamic Modelling of a Wind/Fuel-Cell/Ultra-Capacitor-Based Hybrid Power Generation System

    Directory of Open Access Journals (Sweden)

    J. Vanishree

    2014-01-01

    Full Text Available Recent research and development of alternative energy sources have shown excellent potential as a form of contribution to conventional power generation systems. In order to meet sustained load demands during varying natural conditions, different energy sources and converters need to be integrated with each other for extended usage of alternative energy. The paper focuses on the combination of wind, Fuel Cell (FC and Ultra-Capacitor (UC systems for sustained power generation. As the wind turbine output power varies with the wind speed: an FC system with a UC bank can be integrated with the wind turbine to ensure that the system performs under all conditions. A dynamic model, design and simulation of a wind/FC/UC hybrid power generation system with power flow controllers is proposed. In the proposed system, when the wind speed is sufficient, the wind turbine can meet the load demand. If the available power from the wind turbine cannot satisfy the load demand, the FC system can meet the excess power demand, while the UC can meet the load demand above the maximum power available from the FC system for short durations. Furthermore, this system can tolerate the rapid changes in wind speed and suppress the effects of these fluctuations on the equipment side voltage in a novel topology.

  14. Bright future of photovoltaic-hybrid systems as main option for electricity generation in remote communities

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, Ahmad [Solar Energy Applications Research Group (Australia)

    2000-07-01

    The most common power option for remotely located communities, facilities, schools, etc., is the engine generator powered by diesel fuel. Over the past 15 years, many remote communities with limited and costly site access for maintenance and fuel delivery have had their engine-based power systems modified to photovoltaic hybrid power systems. As a result, hybrid power systems with photovoltaic as the main generator are becoming the preferred power option. The reasons for this change are simple: the engine-based power systems require regular oil and filter changes (in average after 150 hrs of operation); the maintenance cost is relatively high; the cost of travel to and from the site to perform maintenance is restricted during certain time of the year and can be more expensive than the actual maintenance itself. Photovoltaic generators are gradually replacing the diesel generators and thus are becoming the primary source in remote communities. As electricity is required for 24 hours of operation and photovoltaic are not able to generate power for 24 h, batteries are added to the system as storage units, and the diesel generators are used as a back-up power supply. The objective of this paper is to present the results obtained from a study which has been carried out on a PV-hybrid power system from the desired performance point of view. [Spanish] La opcion mas comun de energia para las comunidades, instalaciones, escuelas, etc. localizadas en lugares remotos, es el generador que utiliza diesel como combustible. En los ultimos 15 anos, muchas comunidades remotas con acceso limitado y costoso para el mantenimiento y la entrega de combustible han modificado sus sistemas de energia basados en motores por sistemas de energia hibridos fotovoltaicos. Como resultado, los sistemas hibridos de energia con generadores fotovoltaicos como principal generador se estan convirtiendo en la opcion preferida de generacion de electricidad. Las razones para este cambio son simples: los

  15. Generation of polymerase chain reaction-specific probes for library screening using single degenerate primers.

    Science.gov (United States)

    Hommes, N G; Arp, D J; Sayavedra-Soto, L A

    1995-03-01

    Degenerate oligonucleotide primers were made to peptide sequences from hydroxylamine oxidoreductase (HAO) from Nitrosomonas europaea. The primers were used singly in PCR reactions to amplify portions of the gene for HAO from genomic DNA. Southern hybridizations using fragments amplified with each primer showed that they labeled the same genomic DNA fragments. The PCR-amplified fragments were successfully used to screen a gene library for clones containing the HAO gene. The method of isolating genes by PCR with single primers has general utility.

  16. MorphologiCal and Cytogenetic Analysis on the Advanced Generations of Generic Hybrids between Brassica napus and Orychophragmus violaceu

    Institute of Scientific and Technical Information of China (English)

    Zhigang ZHAO; Dezhi DU; Zaiyun LI

    2012-01-01

    Objective This study aimed to reveal the genetic changes of advanced generation hybrids between Brassica napus and Orychophragmus violaceus. [Method] The morphological characteristics such as the plant shape, branching sites, leaf shape, leaf color, primary branches and secondary branches, as well as the cytolog- ical characteristics of the advanced generation hybrids (Fs-F10) between B. napus and O. violaceus were observed. [Result] The morphology analysis revealed that the hybrid progeny was more like B. rapa in leaf shape, leaf color, plant shape and ear- ly flowering phenotype, whereas more like B. napus in number of secondary branch- es, silique length and 1 000-seed weight. Analysis on the cytogenetics characteristics showed that these advanced inbred progenies were hypoploids with less than 38 chromosomes; moreover, all the chromosomes from O. violaceus had been lost. Chromosome pairings at meiotic diakinesis of hybrids between the advanced inbred progenies and B. rapa revealed that chromosomes lost in hypoploids possibly be- longed to the C genome of B. oleracea. With generations developing, chromosomes number of plants from two populations gradually increased and developed into the number of B. napus (2n=38). [Conclusion] This study will provide reference to reveal the source of chromosome lost in hypoploids and the morphological change of hybrids.

  17. Hybridization-Based Detection of Helicobacter pylori at Human Body Temperature Using Advanced Locked Nucleic Acid (LNA) Probes

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Guimarães, Nuno; Leite, Marina

    2013-01-01

    the possibility of developing a variant of fluorescence in situ hybridization (FISH), named fluorescence in vivo hybridization (FIVH), for the detection of Helicobacter pylori. Using oligonucleotide variations comprising locked nucleic acids (LNA) and 2'-O-methyl RNAs (2'OMe) with two types of backbone linkages...

  18. Quantifying filamentous microorganisms in activated sludge before, during, and after an incident of foaming by oligonucleotide probe hybridizations and antibody staining.

    Science.gov (United States)

    Oerther, D B; de los Reyes, F L; de los Reyes, M F; Raskin, L

    2001-10-01

    Quantitative oligonucleotide probe hybridizations, immunostaining, and a simple foaming potential test were used to follow an incident of seasonal filamentous foaming at the Urbana-Champaign Sanitary District, Northeast Wastewater Treatment Plant. A positive correlation was observed between an increase in foaming potential and the appearance of foam on the surfaces of aeration basins and secondary clarifiers. In addition, during the occurrence of foaming, the mass and activity of Gordonia spp. increased as measured by fluorescence in situ hybridization, antibody staining, and quantitative membrane hybridization of RNA extracts. An increase in Gordonia spp. rRNA levels from 0.25 to 1.4% of total rRNA was observed using quantitative membrane hybridizations, whereas during the same period, the fraction of mixed liquor volatile suspended solids attributed to Gordonia spp. increased from 4% to more than 32% of the total mixed liquor volatile suspended solids. These results indicate that both the activity and biomass level of Gordonia spp. in activated sludge increased relative to the activity aid the biomass level of the complete microbial community during a seasonal occurrence of filamentous foaming. Thus, Gordonia spp. may represent a numerically dominant but metabolically limited fraction of the total biomass, and the role of Gordonia spp. in filamentous foaming may be linked more tightly to the physical presence of filamentous microorganisms than to the metabolic activity of the cells.

  19. Detection of Listeria monocytogenes by direct colony hybridization on hydrophobic grid-membrane filters by using a chromogen-labeled DNA probe.

    Science.gov (United States)

    Peterkin, P I; Idziak, E S; Sharpe, A N

    1991-02-01

    A DNA probe specific for Listeria monocytogenes was isolated from a beta-hemolytic recombinant clone of an L. monocytogenes gene bank. It was labeled with horseradish peroxidase and used in a direct colony hybridization method on hydrophobic grid-membrane filters for the detection of the organism. Following color development of the chromogen, a commercial counter (HGMF Interpreter) was able to detect and count the organisms electronically. The method gave a positive reaction with 70 L. monocytogenes strains, while showing a negative reaction with 10 strains of other Listeria spp. and with 20 organisms of other genera.

  20. Observation of Lower Hybrid Current Drive Improved Confinement with a Graphite Probe at the Last Closed Flux Surface of the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    徐国盛; 万宝年; 宋梅; 凌必利; 匡光力; 丁伯江

    2002-01-01

    High time resolution measurements of the electrostatic fluctuations, radial electric field Er and turbulence-induced electron flux Гe have been performed across the transition of lower hybrid current drive improved confinement with a graphite Langmuir probe array at the last closed flux surface of the HT-7 tokamak. The decrease of Гe is dominated by the suppression of fluctuation levels, which follows the change of Er. A reversal of the poloidal propagation direction of turbulence demonstrates that the poloidal propagation is dominated by Eт× Bφ drift. The enhancement of poloidal coherence accompanies the fluctuation suppression, which suggests the subtle variation of turbulence features.

  1. Split-probe hybrid femtosecond/picosecond rotational CARS for time-domain measurement of S-branch Raman linewidths within a single laser shot.

    Science.gov (United States)

    Patterson, Brian D; Gao, Yi; Seeger, Thomas; Kliewer, Christopher J

    2013-11-15

    We introduce a multiplex technique for the single-laser-shot determination of S-branch Raman linewidths with high accuracy and precision by implementing hybrid femtosecond (fs)/picosecond (ps) rotational coherent anti-Stokes Raman spectroscopy (CARS) with multiple spatially and temporally separated probe beams derived from a single laser pulse. The probe beams scatter from the rotational coherence driven by the fs pump and Stokes pulses at four different probe pulse delay times spanning 360 ps, thereby mapping collisional coherence dephasing in time for the populated rotational levels. The probe beams scatter at different folded BOXCARS angles, yielding spatially separated CARS signals which are collected simultaneously on the charge coupled device camera. The technique yields a single-shot standard deviation (1σ) of less than 3.5% in the determination of Raman linewidths and the average linewidth values obtained for N(2) are within 1% of those previously reported. The presented technique opens the possibility for correcting CARS spectra for time-varying collisional environments in operando.

  2. Model-based optimal control of a hybrid power generation system consisting of photovoltaic arrays and fuel cells

    Science.gov (United States)

    Zervas, P. L.; Sarimveis, H.; Palyvos, J. A.; Markatos, N. C. G.

    Hybrid renewable energy systems are expected to become competitive to conventional power generation systems in the near future and, thus, optimization of their operation is of particular interest. In this work, a hybrid power generation system is studied consisting of the following main components: photovoltaic array (PV), electrolyser, metal hydride tanks, and proton exchange membrane fuel cells (PEMFC). The key advantage of the hybrid system compared to stand-alone photovoltaic systems is that it can store efficiently solar energy by transforming it to hydrogen, which is the fuel supplied to the fuel cell. However, decision making regarding the operation of this system is a rather complicated task. A complete framework is proposed for managing such systems that is based on a rolling time horizon philosophy.

  3. Optimal reactive power and voltage control in distribution networks with distributed generators by fuzzy adaptive hybrid particle swarm optimisation method

    DEFF Research Database (Denmark)

    Chen, Shuheng; Hu, Weihao; Su, Chi

    2015-01-01

    A new and efficient methodology for optimal reactive power and voltage control of distribution networks with distributed generators based on fuzzy adaptive hybrid PSO (FAHPSO) is proposed. The objective is to minimize comprehensive cost, consisting of power loss and operation cost of transformers...... and capacitors, and subject to constraints such as minimum and maximum reactive power limits of distributed generators, maximum deviation of bus voltages, maximum allowable daily switching operation number (MADSON). Particle swarm optimization (PSO) is used to solve the corresponding mixed integer non......-linear programming problem (MINLP) and the hybrid PSO method (HPSO), consisting of three PSO variants, is presented. In order to mitigate the local convergence problem, fuzzy adaptive inference is used to improve the searching process and the final fuzzy adaptive inference based hybrid PSO is proposed. The proposed...

  4. Experimental and theoretical analysis of a hybrid solar thermoelectric generator with forced convection cooling

    Science.gov (United States)

    Sundarraj, Pradeepkumar; Taylor, Robert A.; Banerjee, Debosmita; Maity, Dipak; Sinha Roy, Susanta

    2017-01-01

    Hybrid solar thermoelectric generators (HSTEGs) have garnered significant research attention recently due to their potential ability to cogenerate heat and electricity. In this paper, theoretical and experimental investigations of the electrical and thermal performance of a HSTEG system are reported. In order to validate the theoretical model, a laboratory scale HSTEG system (based on forced convection cooling) is developed. The HSTEG consists of six thermoelectric generator modules, an electrical heater, and a stainless steel cooling block. Our experimental analysis shows that the HSTEG is capable of producing a maximum electrical power output of 4.7 W, an electrical efficiency of 1.2% and thermal efficiency of 61% for an average temperature difference of 92 °C across the TEG modules with a heater power input of 382 W. These experimental results of the HSTEG system are found to be in good agreement with the theoretical prediction. This experimental/theoretical analysis can also serve as a guide for evaluating the performance of the HSTEG system with forced convection cooling.

  5. Comparative evaluation of biomass power generation systems in China using hybrid life cycle inventory analysis.

    Science.gov (United States)

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  6. Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets.

    Science.gov (United States)

    Muluneh, M; Issadore, D

    2013-12-21

    Microfluidic chips have been developed to generate droplets and microparticles with control over size, shape, and composition not possible using conventional methods. However, it has remained a challenge to scale-up production for practical applications due to the inherently limited throughput of micro-scale devices. To address this problem, we have developed a self-contained microchip that integrates many (N = 512) micro-scale droplet makers. This 3 × 3 cm(2) PDMS microchip consists of a two-dimensional array of 32 × 16 flow-focusing droplet makers, a network of flow channels that connect them, and only two inputs and one output. The key innovation of this technology is the hybrid use of both soft-lithography and direct laser-micromachining. The microscale resolution of soft lithography is used to fabricate flow-focusing droplet makers that can produce small and precisely defined droplets. Deeply engraved (h ≈ 500 μm) laser-machined channels are utilized to supply each of the droplet makers with its oil phase, aqueous phase, and access to an output channel. The engraved channels' low hydrodynamic resistance ensures that each droplet maker is driven with the same flow rates for highly uniform droplet formation. To demonstrate the utility of this approach, water droplets (d ≈ 80 μm) were generated in hexadecane on both 8 × 1 and 32 × 16 geometries.

  7. Torque Split Strategy for Parallel Hybrid Electric Vehicles with an Integrated Starter Generator

    Directory of Open Access Journals (Sweden)

    Zhumu Fu

    2014-01-01

    Full Text Available This paper presents a torque split strategy for parallel hybrid electric vehicles with an integrated starter generator (ISG-PHEV by using fuzzy logic control. By combining the efficiency map and the optimum torque curve of the internal combustion engine (ICE with the state of charge (SOC of the batteries, the torque split strategy is designed, which manages the ICE within its peak efficiency region. Taking the quantified ICE torque, the quantified SOC of the batteries, and the quantified ICE speed as inputs, and regarding the output torque demanded on the ICE as an output, a fuzzy logic controller (FLC with relevant fuzzy rules has been developed to determine the optimal torque distribution among the ICE, the ISG, and the electric motor/generator (EMG effectively. The simulation results reveal that, compared with the conventional torque control strategy which uses rule-based controller (RBC in different driving cycles, the proposed FLC improves the fuel economy of the ISG-PHEV, increases the efficiency of the ICE, and maintains batteries SOC within its operation range more availably.

  8. Unit Sizing and Cost Analysis of Renewable Energy based Hybrid Power Generation System - A Case Study

    Directory of Open Access Journals (Sweden)

    Nitin AGARWAL

    2014-01-01

    Full Text Available A simulation model is developed for optimal sizing and analysis of a PV-diesel-battery based hybrid power generation system with the objectives to minimize life cycle cost and CO2 emission, while maintaining the desired system autonomy. A case study of a boy’s hostel in Moradabad district is taken for analysis purposes. It has 91 rooms with a capacity of 3 boys in each room. The decision variables included in the optimization methodology are total PV area, number of PV modules of 600 Wp, diesel generator power, fuel consumption per year and number of 24 V and 150 Ah batteries. The simulation result shows that the PV percentage of 86 % and diesel penetration of 14 % gives the most optimized solution with minimum LCC of $110,547 and average CO2 emission of 28 kg/day. The developed model has been validated by comparing its results with earlier research work.doi:10.14456/WJST.2014.24

  9. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Directory of Open Access Journals (Sweden)

    Huacai Liu

    2014-01-01

    Full Text Available There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  10. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Simple Modes

    Science.gov (United States)

    Sutliff, Daniel, L.; Brown, Clifford, A.; Walker, Bruce, E.

    2012-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the Langley Research Center s 14- by 22-Foot wind tunnel test of the Hybrid Wing Body (HWB) full three-dimensional 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of candidate engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft and to provide a database for shielding code validation. A range of frequencies, and a parametric study of modes were generated from exhaust and inlet nacelle configurations. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular to the axis of the nacelle (in its 0 orientation) and three planes parallel were acquired from the array sweep. In each plane the linear array traversed five sweeps, for a total span of 160 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Level, and integrated Power Levels are presented in this paper; as well as the in-duct modal structure.

  11. Design of a hybrid wind power storage and generation system for a remote community

    Energy Technology Data Exchange (ETDEWEB)

    Devgan, S.S.; Walker, D.R. Jr. [Tennessee State Univ., Nashville, TN (United States)

    1995-12-31

    There are thousands of small communities in various parts of the world, even in developed countries, that are too far away to be economically connected to an electric supply system. Clean water is essential for health and well being and electric energy is essential for economic development of the community. This paper describes the design of a {open_quotes}hybrid{close_quotes} Wind/Diesel power generation and storage system. and the electric power distribution system for a small rural community of 50 persons and live stock. The most cost effective and reliable system designed to satisfy reasonable growth over the next twenty-five years consists of three 10 kW wind turbines, a 30 kWh storage battery and a 17.5 kW backup diesel generator. This paper also describe efforts to train a neural network to predict wind power over the next time interval and few more time intervals. This is very essential for significant penetration of wind power systems.

  12. Generation of 8.5-fs pulses at 1.3 microm for ultrabroadband pump-probe spectroscopy.

    Science.gov (United States)

    Brida, Daniele; Bonora, Stefano; Manzoni, Cristian; Marangoni, Marco; Villoresi, Paolo; De Silvestri, Sandro; Cerullo, Giulio

    2009-07-20

    We report on a near-infrared non-collinear optical parametric amplifier (NOPA) based on periodically poled stoichiometric lithium tantalate. The NOPA generates muJ-energy pulses with spectrum spanning the 1-1.7 microm wavelength range, which are compressed to nearly transformlimited 8.5 fs duration by a deformable mirror. By synchronizing this source with a sub-10-fs visible NOPA, we demonstrate an unprecedented combination of temporal resolution and spectral coverage in two-colour pump-probe spectroscopy.

  13. Anticrossing double Fano resonances generated in metallic/dielectric hybrid nanostructures using nonradiative anapole modes for enhanced nonlinear optical effects.

    Science.gov (United States)

    Zhai, Wu-Chao; Qiao, Tie-Zhu; Cai, Dong-Jin; Wang, Wen-Jie; Chen, Jing-Dong; Chen, Zhi-Hui; Liu, Shao-Ding

    2016-11-28

    Third-harmonic generation with metallic or dielectric nanoparticles often suffer from, respectively, small modal volumes and weak near-field enhancements. This study propose and demonstrate that a metallic/dielectric hybrid nanostructure composed of a silver double rectangular nanoring and a silicon square nanoplate can be used to overcome these obstacles for enhanced third-harmonic generation. It is shown that the nonradiative anapole mode of the Si plate can be used as a localized source to excite the dark subradiant octupole mode of the Ag ring, and the mode hybridization leads to the formation of an antibonding and a bonding subradiant collective mode, thereby forming anticrossing double Fano resonances. With the strong coupling between individual particles and the effectively suppressed radiative losses of the Fano resonances, several strong hot spots are generated around the Ag ring due to the excitation of the octupole mode, and electromagnetic fields within the Si plate are also strongly amplified, making it possible to confine more incident energy inside the dielectric nanoparticle. Calculation results reveal that the confined energy inside the Si plate and the Ag ring for the hybrid structures can be about, respectively, more than three times and four orders stronger than that of the corresponding isolated nanoparticles, which makes the designed hybrid nanostructure a promising platform for enhanced third-harmonic generation.

  14. QUASAR-370 hybrid phototube as a prototype of a photodetector for the next generation of deep underwater neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Lubsandorzhiev, B.K. [Institute for Nuclear Research of the Russian Academy of Sciences, pr-t 60th Anniversary of October, 7A, 117312 Moscow (Russian Federation); Kepler Center for Astro and Particle Physics, University of Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)], E-mail: lubsand@inr.ac.ru

    2009-10-21

    In this paper we show that QUASAR-370 large area hybrid phototube, developed for and successfully used in a number of astroparticle physics experiments, the Lake Baikal deep underwater neutrino experiment among them, could be used as a prototype of a photodetector for the next generation of giant neutrino telescopes.

  15. Large magnetocaloric effect in a dense and stable inorganic-organic hybrid cobridged by in situ generated sulfate and oxalate.

    Science.gov (United States)

    Han, Song-De; Miao, Xiao-Hong; Liu, Sui-Jun; Bu, Xian-He

    2014-11-01

    A dense and stable inorganic-organic hybrid with distorted cubic [Gd4O4] units as building blocks bridged by in situ generated sulfate and oxalate was synthesized. Magnetic measurements indicate that the title complex features a -ΔS(m)(max)=51.49 J kg(-1) K(-1), which is among the highest values reported so far.

  16. Preliminary Modelling Results for an Otto Cycle/Stirling Cycle Hybrid-engine-based Power Generation System

    OpenAIRE

    Cullen, Barry; McGovern, Jim; Feidt, Michel; Petrescu, Stoian

    2009-01-01

    This paper presents preliminary data and results for a system mathematical model for a proposed Otto Cycle / Stirling Cycle hybrid-engine-based power generation system. The system is a combined cycle system with the Stirling cycle machine operating as a bottoming cycle on the Otto cycle exhaust. The application considered is that of a stationary power generation scenario wherein the Stirling cycle engine operates as a waste heat recovery device on the exhaust stream of the Otto cycle engine. ...

  17. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals.

    Science.gov (United States)

    Kobayashi, Hisataka; Longmire, Michelle R; Ogawa, Mikako; Choyke, Peter L

    2011-09-01

    In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references).

  18. Suppression Subtractive Hybridization Versus Next-Generation Sequencing in Plant Genetic Engineering: Challenges and Perspectives.

    Science.gov (United States)

    Sahebi, Mahbod; Hanafi, Mohamed M; Azizi, Parisa; Hakim, Abdul; Ashkani, Sadegh; Abiri, Rambod

    2015-10-01

    Suppression subtractive hybridization (SSH) is an effective method to identify different genes with different expression levels involved in a variety of biological processes. This method has often been used to study molecular mechanisms of plants in complex relationships with different pathogens and a variety of biotic stresses. Compared to other techniques used in gene expression profiling, SSH needs relatively smaller amounts of the initial materials, with lower costs, and fewer false positives present within the results. Extraction of total RNA from plant species rich in phenolic compounds, carbohydrates, and polysaccharides that easily bind to nucleic acids through cellular mechanisms is difficult and needs to be considered. Remarkable advancement has been achieved in the next-generation sequencing (NGS) field. As a result of progress within fields related to molecular chemistry and biology as well as specialized engineering, parallelization in the sequencing reaction has exceptionally enhanced the overall read number of generated sequences per run. Currently available sequencing platforms support an earlier unparalleled view directly into complex mixes associated with RNA in addition to DNA samples. NGS technology has demonstrated the ability to sequence DNA with remarkable swiftness, therefore allowing previously unthinkable scientific accomplishments along with novel biological purposes. However, the massive amounts of data generated by NGS impose a substantial challenge with regard to data safe-keeping and analysis. This review examines some simple but vital points involved in preparing the initial material for SSH and introduces this method as well as its associated applications to detect different novel genes from different plant species. This review evaluates general concepts, basic applications, plus the probable results of NGS technology in genomics, with unique mention of feasible potential tools as well as bioinformatics.

  19. The surface properties of SOA generated from limonene and toluene using specific molecular probes: exploration of a new experimental technique

    Directory of Open Access Journals (Sweden)

    B. Demirdjian

    2005-02-01

    Full Text Available A new experimental technique of characterizing the aerosol-atmosphere surface has been explored using three examples: the secondary organic aerosols (SOA resulting from the reaction of limonene with O3 and from the photooxidation of toluene in comparison with the combustion aerosol (soot from a toluene diffusion flame. Rather than investigating the bulk composition of the aerosol by complete chemical analysis and identification of the many dozens if not more of constituent compounds we have interrogated the type and number of functional groups located at the aerosol surface by interacting them with specific molecular probes such as O3, NO2, N(CH33, and NH2OH to probe for the presence of oxidizable sites, acidic sites and carbonyl functionalities, respectively, that are present on the surface of the aerosol particle. In practice, typical amounts of one to a few mg of laboratory-generated SOA of limonene, toluene and soot have been deposited on a PTFE membrane filter that subsequently has been transferred to a molecular flow reactor used for the titration reaction of the surface functional groups by the molecular probes. Absolute amounts Ni with i=O3, NO2, N(CH33, NH2OH of probe molecules taken up by the filter sample measured using molecular beam sampling mass spectrometry have been converted into the number of surface group functionalities per unit surface area S using the aerosol particle distribution function (PDF of limonene and toluene SOA and the BET total surface area of toluene flame soot to result in Ni/S. Arguments are presented that support the transfer of the PDF of the suspended to the aerosol collected on the Teflon filter.

  20. Development and evaluation of a panel of filovirus sequence capture probes for pathogen detection by next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    Full Text Available A detailed understanding of the circulating pathogens in a particular geographic location aids in effectively utilizing targeted, rapid diagnostic assays, thus allowing for appropriate therapeutic and containment procedures. This is especially important in regions prevalent for highly pathogenic viruses co-circulating with other endemic pathogens such as the malaria parasite. The importance of biosurveillance is highlighted by the ongoing Ebola virus disease outbreak in West Africa. For example, a more comprehensive assessment of the regional pathogens could have identified the risk of a filovirus disease outbreak earlier and led to an improved diagnostic and response capacity in the region. In this context, being able to rapidly screen a single sample for multiple pathogens in a single tube reaction could improve both diagnostics as well as pathogen surveillance. Here, probes were designed to capture identifying filovirus sequence for the ebolaviruses Sudan, Ebola, Reston, Taï Forest, and Bundibugyo and the Marburg virus variants Musoke, Ci67, and Angola. These probes were combined into a single probe panel, and the captured filovirus sequence was successfully identified using the MiSeq next-generation sequencing platform. This panel was then used to identify the specific filovirus from nonhuman primates experimentally infected with Ebola virus as well as Bundibugyo virus in human sera samples from the Democratic Republic of the Congo, thus demonstrating the utility for pathogen detection using clinical samples. While not as sensitive and rapid as real-time PCR, this panel, along with incorporating additional sequence capture probe panels, could be used for broad pathogen screening and biosurveillance.

  1. Alteration of chromosome behavior and synchronization of parental chromosomes after successive generations in Brassica napus x Orychophragmus violaceus hybrids.

    Science.gov (United States)

    Zhao, Zhigang; Ma, Ni; Li, Zaiyun

    2007-02-01

    In an earlier study, the progenies of intergeneric hybrids Brassica napus (2n = 38) x Orychophragmus violaceus (2n = 24) were investigated in successive generations (F1-F4) for the cytological phenomenon of parental genome separation during mitotic and meiotic division. In the present study, inbred lines (F5-F8) derived from 1 such hybrid were characterized for morphology, chromosome pairing behaviour, and genome composition. One F5 plant (2n = 31) with slightly yellow petals and 12:19 and 15:16 segregation ratios in its pollen mother cells (PMCs) produced F6 plants with distinct morphological characteristics and wide variations in fertility and chromosome numbers (2n = 25-38). F7 and F8 lines with distinctive morphology and wide ranges in chromsome numbers were established. In PMCs of F7 plants from 4 F6 plants, 0-12 labelled chromosomes from O. violaceus, which predominantly appeared as bivalents, were identified by genomic in situ hybridization. They behaved synchronously with B. napus chromosomes during meiotic division. The results provide molecular cytogenetic evidence of the inclusion of O. violaceus chromosomes in the original hybrids and the cytology in the hybrids documented earlier. They also show that chromosome behaviour was altered and the parental chromosomes became synchronized after successive generations.

  2. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    Science.gov (United States)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  3. Modeling and control of hybrid wind/photovoltaic/fuel cell distributed generation systems

    Science.gov (United States)

    Wang, Caisheng

    Due to ever increasing energy consumption, rising public awareness of environmental protection, and steady progress in power deregulation, alternative (i.e., renewable and fuel cell based) distributed generation (DG) systems have attracted increased interest. Wind and photovoltaic (PV) power generation are two of the most promising renewable energy technologies. Fuel cell (FC) systems also show great potential in DG applications of the future due to their fast technology development and many merits they have, such as high efficiency, zero or low emission (of pollutant gases) and flexible modular structure. The modeling and control of a hybrid wind/PV/FC DG system is addressed in this dissertation. Different energy sources in the system are integrated through an AC bus. Dynamic models for the main system components, namely, wind energy conversion system (WECS), PV energy conversion system (PVECS), fuel cell, electrolyzer, power electronic interfacing circuits, battery, hydrogen storage tank, gas compressor and gas pressure regulator, are developed. Two types of fuel cells have been modeled in this dissertation: proton exchange membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Power control of a grid-connected FC system as well as load mitigation control of a stand-alone FC system are investigated. The pitch angle control for WECS, the maximum power point tracking (MPPT) control for PVECS, and the control for electrolyzer and power electronic devices, are also addressed in the dissertation. Based on the dynamic component models, a simulation model for the proposed hybrid energy system has been developed using MATLAB/Simulink. The overall power management strategy for coordinating the power flows among the different energy sources is presented in the dissertation. Simulation studies have been carried out to verify the system performance under different scenarios using a practical load profile and real weather data. The results show that the overall power

  4. Detection of oligonucleotide hybridization on a single microparticle by time-resolved fluorometry: hybridization assays on polymer particles obtained by direct solid phase assembly of the oligonucleotide probes.

    Science.gov (United States)

    Hakala, H; Heinonen, P; Iitiä, A; Lönnberg, H

    1997-01-01

    Oligodeoxyribonucleotides were assembled by conventional phosphoramidite chemistry on uniformly sized (50 microns) porous glycidyl methacrylate/ethylene dimethacrylate (SINTEF) and compact polystyrene (Dynosphere) particles, the aminoalkyl side chains of which were further derivatized with DMTrO-acetyl groups. The linker was completely resistant toward ammonolytic deprotection of the base moieties. The quality of oligonucleotides was assessed by repeating the synthesis on the same particles derivatized with a cleavable ester linker. The ability of the oligonucleotide-coated particles to bind complementary sequences via hybridization was examined by following the attachment of oligonucleotides bearing a photoluminescent europium(III) chelate to the particles. The fluorescence emission was measured directly on a single particle. The effects of the following factors on the kinetics and efficiency of hybridization were studied: number of particles in a given volume of the assay solution, loading of oligonucleotide on the particle, concentration of the target oligonucleotide in solution, length of the hybridizing sequence, presence of noncomplementary sequences, and ionic strength. The fluorescence signal measured on a single particle after hybridization was observed to be proportional to the concentration of the target oligonucleotide in solution over a concentration range of 5 orders of magnitude.

  5. Diagnosis of canine visceral leishmaniasis with radiolabelled probes: comparison of the kDNA PCR-hybridization with three molecular methods in different clinical samples

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Aline Leandra C.; Ferreira, Sidney A.; Carregal, Virginia M.; Andrade, Antero Silva R., E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia; Melo, Maria N., E-mail: melo@icb.ufmg.br [Departamento de Parasitologia. Instituto de Ciencias Biologicas. Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2011-07-01

    Leishmania (Leishmania) chagasi is responsible for visceral leishmaniasis (VL) in Brazil and the dog is the main domestic reservoir. Disease control is based on the elimination of infected animals and the use of a sensitive and specific diagnostic test is necessary. The Brazilian VL control program emphasizes serologic surveys, mainly using the enzyme-linked immunosorbent assay (ELISA) and the immunofluorescence antibody test (IFAT), followed by the elimination of the seropositive dogs. However, these techniques present limitations in terms of sensitivity and specificity. The Polymerase Chain Reaction (PCR) associated to hybridization with DNA probes labeled with {sup 32}P has been recognized as a valuable tool for Leishmania identification. In this study, the sensitivity of kDNA PCR hybridization method was compared with three other molecular methods: Internal Transcribed Spacer 1 Nested PCR (ITS-1nPCR), Leishmania nested PCR (LnPCR) and Seminested kDNA PCR (kDNA snPCR). The comparison was performed in different clinical specimens: conjunctival swab, skin, blood and bone marrow. A group of thirty symptomatic dogs, positive in the parasitological and serological tests, was used. When. The techniques targeting kDNA mini-circles (kDNA snPCR and KDNA PCR-hybridization) showed the worst result for blood samples. The KDNA-PCR hybridization showed the best sensitivity for conjunctival swab. By comparing the samples on the basis of positivity obtained by the sum of all methods, the blood showed the worst outcome (71/120).The bone marrow showed the highest positivity (106/120), followed by conjunctival swab (100/120) and skin (89/120). Since the bone marrow samples are unsuitable for routine epidemiological surveys, the conjunctival swab was recommended because it allows high sensitivity, especially when associated with kDNA PCR hybridization method, and is a noninvasive sampling method. (author)

  6. A hydrophobic dye-encapsulated nano-hybrid as an efficient fluorescent probe for living cell imaging.

    Science.gov (United States)

    Chang, Shu; Wu, Xumeng; Li, Yongsheng; Niu, Dechao; Ma, Zhi; Zhao, Wenru; Gu, Jinlou; Dong, Wenjie; Ding, Feng; Zhu, Weihong; Shi, Jianlin

    2012-07-01

    Water-soluble hydrophobic-dye@nano-hybrids (DPN@NHs) with extraordinarily enhanced fluorescent performance were fabricated by encapsulating the hydrophobic dye molecules into the core of the hybrid nanospheres based on the self-assembly of amphiphilic block copolymers followed by shell cross-linking using 3-mercaptopropyltrimethoxy-silane. The DPN@NHs are 50 nm in size, are monodispersed in aqueous solution and have a quantum yield enhanced by 30 times.

  7. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R. [Department of Physics, Royal Military College of Canada, Kingston, ON (Canada)

    2014-02-18

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.

  8. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    Science.gov (United States)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R.

    2014-02-01

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.

  9. Rapid Genotyping of the Human Renin (REN Gene by the LightCycler® Instrument: Identification of Unexpected Nucleotide Substitutions within the Selected Hybridization Probe Area

    Directory of Open Access Journals (Sweden)

    Line Wee

    2010-01-01

    Full Text Available Preeclampsia is a serious disorder affecting nearly 3% of all in the Western world. It is associated with hypertension and proteinuria, and several lines of evidence suggest that the renin-angiotensin system (RAS may be involved in the development of hypertension at different stages of a preeclamptic pregnancy. In this study, we developed rapid genotyping assays on the LightCycler® instrument to allow the detection of genetic variants in the renin gene (REN that may predispose to preeclampsia. The method is based on real-time PCR and allele-specific hybridization probes, followed by fluorescent melting curve analysis to expose a change in melting temperature (Tm. Ninety-two mother-father-child triads (n=276 from preeclamptic pregnancies were genotyped for three haplotype-tagging single nucleotide polymorphisms (htSNPs in REN. All three htSNPs (rs5705, rs1464816 and rs3795575 were successfully genotyped. Furthermore, two unexpected nucleotide substitutions (rs11571084 and rs61757041 were identified within the selected hybridization probe area of rs1464816 and rs3795575 due to aberrant melting peaks. In conclusion, genotyping on the LightCycler® instrument proved to be rapid and highly reproducible. The ability to uncover additional nucleotide substitutions is particularly important in that it allows the identification of potentially etiological variants that might otherwise be overlooked by other genotyping methods.

  10. The Interaction of the Solar Wind with Solar Probe Plus - 3D Hybrid Simulation. Report 1; The Study for the Distance 4.5Rs

    Science.gov (United States)

    Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.

    2010-01-01

    Our report devotes a 3D numerical hybrid model of the interaction of the solar wind with the Solar Probe spacecraft. The Solar Probe Plus (SPP) model includes 3 main parts, namely, a non-conducting heat shield, a support system, and cylindrical section or spacecraft bus that contains the particle analysis devices and antenna. One observes an excitation of the low frequency Alfven and whistler type wave directed by the magnetic field with an amplitude of about (0.06-0.6) V/m. The compression waves and the jumps in an electric field with an amplitude of about (0.15-0.7) V/m were also observed. The wave amplitudes are comparable to or greater than previously estimated max wave amplitudes that SPP is expected to measure. The results of our hybrid simulation will be useful for understanding the plasma environment near the SPP spacecraft at the distance 4.5 Rs. Future simulation will take into account the charging of the spacecraft, the charge separation effects, an outgassing from heat shield, a photoionization and an electron impact ionization effects near the spacecraft.

  11. Inverse determinations of the parameters of three-layered plate using angle probe generated Lamb waves

    Institute of Scientific and Technical Information of China (English)

    LIUZhenqing; LIUXiao; TADe'an

    2003-01-01

    The study on the inverse problems in the ultrasonic nondestructive testing (NDT) has a wide application field in various industries. An error function based inversion algorithm is introduced to determine the parameters of three-layered plates from the measured velocity of multi-mode Lamb waves. A mixed-spectral estimation is proposed to combine FFT with AR model for exact determination of the ultrasonic phase velocity. Experiments are performed using two conventional angle probes as transmitter and receiver on the same surface of three-layered laminates. Inverse analyses of one parameter (thickness) and two parameters (longitudinal and transverse wave velocities in a layer, or thickness of two layers) of three-layered laminates are made. The experimental results show that the inverse approach is in good agreement with the actual value.

  12. Design and Generation of MLPA Probe Sets for Combined Copy Number and Small-Mutation Analysis of Human Genes: EGFR as an Example

    Directory of Open Access Journals (Sweden)

    Malgorzata Marcinkowska

    2010-01-01

    Full Text Available Multiplex ligation-dependent probe amplification (MLPA is a multiplex copy number analysis method that is routinely used to identify large mutations in many clinical and research labs. One of the most important drawbacks of the standard MLPA setup is a complicated, and therefore expensive, procedure of generating long MLPA probes. This drawback substantially limits the applicability of MLPA to those genomic regions for which ready-to-use commercial kits are available. Here we present a simple protocol for designing MLPA probe sets that are composed entirely of short oligonucleotide half-probes generated through chemical synthesis. As an example, we present the design and generation of an MLPA assay for parallel copy number and small-mutation analysis of the EGFR gene.

  13. A New Starting Method of the Hybrid Power Filter for Wind Power Generation Systems with Soft Starter

    Science.gov (United States)

    Yamada, Hiroaki; Hiraki, Eiji; Tanaka, Toshihiko

    This paper proposes a new method of starting the hybrid power filter for wind power generation systems with soft starter. In the proposed method, an active filter of the hybrid power filter behaves a resistor for the source current under the starting condition. Thus the inrush phenomena of the passive filter are perfectly suppressed. The basic principle of the proposed starting method is discussed, and then confirmed by digital computer simulation using PSCAD/EMTDC. Simulation results demonstrate that the proposed starting method can overcome the inrush currents for the passive filter, building up the dc voltage of the active filter.

  14. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M.; Walkowicz, K.

    2012-09-01

    A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. The hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.

  15. A 3D hybrid grid generation technique and a multigrid/parallel algorithm based on anisotropic agglomeration approach

    Institute of Scientific and Technical Information of China (English)

    Zhang Laiping; Zhao Zhong; Chang Xinghua; He Xin

    2013-01-01

    A hybrid grid generation technique and a multigrid/parallel algorithm are presented in this paper for turbulence flow simulations over three-dimensional (3D) complex geometries.The hybrid grid generation technique is based on an agglomeration method of anisotropic tetrahedrons.Firstly,the complex computational domain is covered by pure tetrahedral grids,in which anisotropic tetrahedrons are adopted to discrete the boundary layer and isotropic tetrahedrons in the outer field.Then,the anisotropic tetrahedrons in the boundary layer are agglomerated to generate prismatic grids.The agglomeration method can improve the grid quality in boundary layer and reduce the grid quantity to enhance the numerical accuracy and efficiency.In order to accelerate the convergence history,a multigrid/parallel algorithm is developed also based on anisotropic agglomeration approach.The numerical results demonstrate the excellent accelerating capability of this multigrid method.

  16. Ordering in bio-inorganic hybrid nanomaterials probed by in situ scanning transmission X-ray microscopy

    Science.gov (United States)

    Lee, Jonathan R. I.; Bagge-Hansen, Michael; Tunuguntla, Ramya; Kim, Kyunghoon; Bangar, Mangesh; Willey, Trevor M.; Tran, Ich C.; Kilcoyne, David A.; Noy, Aleksandr; van Buuren, Tony

    2015-05-01

    variations that could critically impact the performance of the 1D phospholipid-Si NW composites. In this manuscript, we use scanning transmission X-ray microscopy (STXM) to probe bond orientation and bilayer thickness as a function of position with a spatial resolution of ~30 nm for Δ9-cis 1,2-dioleoyl-sn-glycero-3-phosphocholine layers prepared Si NWs. When coupled with small angle X-ray scattering measurements, the STXM data reveal structural motifs of the Si NWs that give rise to multi-bilayer formation and enable assignment of the orientation of specific bonds known to affect the order and rigidity of phospholipid bilayers. Electronic supplementary information (ESI) available: Details of the building block model used to generate theoretical resonance intensity ratios, discussion of beam damage, details of the method used to determine relative DOPC layer thicknesses, relative intensity maps for data collected across the Si and C K-edges. See DOI: 10.1039/c5nr00622h

  17. Development of quadruped walking locomotion gait generator using a hybrid method

    Science.gov (United States)

    Jasni, F.; Shafie, A. A.

    2013-12-01

    The earth, in many areas is hardly reachable by the wheeled or tracked locomotion system. Thus, walking locomotion system is becoming a favourite option for mobile robot these days. This is because of the ability of walking locomotion to move on the rugged and unlevel terrains. However, to develop a walking locomotion gait for a robot is not a simple task. Central Pattern Generator (CPGs) method is a biological inspired method that is introduced as a method to develop the gait for the walking robot recently to tackle the issue faced by the conventional method of pre-designed trajectory based method. However, research shows that even the CPG method do have some limitations. Thus, in this paper, a hybrid method that combines CPG and the pre-designed trajectory based method is introduced to develop a walking gait for quadruped walking robot. The 3-D foot trajectories and the joint angle trajectories developed using the proposed method are compared with the data obtained via the conventional method of pre-designed trajectory to confirm the performance.

  18. Simple hybrid wire-wireless fiber laser sensor by direct photonic generation of beat signal.

    Science.gov (United States)

    Liu, Shengchun; Gao, Liang; Yin, Zuowei; Shi, Yuechun; Zhang, Liang; Chen, Xiangfei; Cheng, Jianchun

    2011-04-20

    Based on direct photonic generation of a beat signal, a simple hybrid wire-wireless fiber laser sensor is proposed. In the sensor, an improved multilongitudinal modes fiber laser cavity is set up by only a fiber Bragg grating, a section of erbium-doped fiber, and a broadband reflector. A photodetector is used to detect the electrical beat signal. Next, the beat signal including the sensor information can access the wireless network through the wireless transmission. At last, a frequency spectrum analyzer is used to demodulate the sensing information. With this method, the long-distance real-time monitor of the fiber sensor can be realized. The proposed technique offers a simple and cheap way for sensing information of the fiber sensor to access the wireless sensor network. An experiment was implemented to measure the strain and the corresponding root mean square deviation is about -5.7 με at 916 MHz and -3.8 με at 1713 MHz after wireless transmission.

  19. Next generation population synthesis of accreting white dwarfs: I. Hybrid calculations using BSE + MESA

    CERN Document Server

    Chen, Hai-Liang; Yungelson, L R; Gilfanov, M; Han, Zhanwen

    2014-01-01

    Accreting, nuclear-burning white dwarfs have been deemed to be candidate progenitors of SNe Ia, and to account for supersoft X-ray sources, novae, etc. We have carried out a binary population synthesis (BPS) study of hydrogen-accreting WDs. First, we use the BPS code \\textsf{BSE} as a baseline for the commonly used "rapid" approach. Second, we apply a "hybrid" approach: we use \\textsf{BSE} to generate a population of WDs with non-degenerate companions on the verge of mass transfer. We then follow their evolution using the detailed stellar evolutionary code \\textsf{MESA}. We investigate the evolution of the number of rapidly accreting white dwarfs (RAWDs), stably nuclear-burning white dwarfs (SNBWDs), and the SNe Ia rate produced by "single-degenerate" systems (SD). The two algorithms differ significantly in the predicted numbers of SNBWDs at early and late times, and also in the delay time distribution (DTD) of SD SNe Ia. The differences in the treatment of mass transfer may partially account for differences ...

  20. Hybrid scheduling mechanisms for Next-generation Passive Optical Networks based on network coding

    Science.gov (United States)

    Zhao, Jijun; Bai, Wei; Liu, Xin; Feng, Nan; Maier, Martin

    2014-10-01

    Network coding (NC) integrated into Passive Optical Networks (PONs) is regarded as a promising solution to achieve higher throughput and energy efficiency. To efficiently support multimedia traffic under this new transmission mode, novel NC-based hybrid scheduling mechanisms for Next-generation PONs (NG-PONs) including energy management, time slot management, resource allocation, and Quality-of-Service (QoS) scheduling are proposed in this paper. First, we design an energy-saving scheme that is based on Bidirectional Centric Scheduling (BCS) to reduce the energy consumption of both the Optical Line Terminal (OLT) and Optical Network Units (ONUs). Next, we propose an intra-ONU scheduling and an inter-ONU scheduling scheme, which takes NC into account to support service differentiation and QoS assurance. The presented simulation results show that BCS achieves higher energy efficiency under low traffic loads, clearly outperforming the alternative NC-based Upstream Centric Scheduling (UCS) scheme. Furthermore, BCS is shown to provide better QoS assurance.

  1. Probing the neutrino mass matrix in next generation neutrino oscillation experiments

    OpenAIRE

    2005-01-01

    We review the current status of the neutrino mass and mixing parameters needed to reconstruct the neutrino mass matrix. A comparative study of the precision in the measurement of oscillation parameters expected from the next generation solar, atmospheric, reactor and accelerator based experiments is presented. We discuss the potential of $0\

  2. Next generation of optical diagnostics for bladder cancer using probe-based confocal laser endomicroscopy

    Science.gov (United States)

    Liu, Jen-Jane; Chang, Timothy C.; Pan, Ying; Hsiao, Shelly T.; Mach, Kathleen E.; Jensen, Kristin C.; Liao, Joseph C.

    2012-02-01

    Real-time imaging with confocal laser endomicroscopy (CLE) probes that fit in standard endoscopes has emerged as a clinically feasible technology for optical biopsy of bladder cancer. Confocal images of normal, inflammatory, and neoplastic urothelium obtained with intravesical fluorescein can be differentiated by morphologic characteristics. We compiled a confocal atlas of the urinary tract using these diagnostic criteria to be used in a prospective diagnostic accuracy study. Patients scheduled to undergo transurethral resection of bladder tumor underwent white light cystoscopy (WLC), followed by CLE, and histologic confirmation of resected tissue. Areas that appeared normal by WLC were imaged and biopsied as controls. We imaged and prospectively analyzed 135 areas in 57 patients. We show that CLE improves the diagnostic accuracy of WLC for diagnosing benign tissue, low and high grade cancer. Interobserver studies showed a moderate level of agreement by urologists and nonclinical researchers. Despite morphologic differences between inflammation and cancer, real-time differentiation can still be challenging. Identification of bladder cancer-specific contrast agents could provide molecular specificity to CLE. By using fluorescently-labeled antibodies or peptides that bind to proteins expressed in bladder cancer, we have identified putative molecular contrast agents for targeted imaging with CLE. We describe one candidate agent - anti-CD47 - that was instilled into bladder specimens. The tumor and normal urothelium were imaged with CLE, with increased fluorescent signal demonstrated in areas of tumor compared to normal areas. Thus, cancer-specificity can be achieved using molecular contrast agents ex vivo in conjunction with CLE.

  3. Generating Entanglement between Atomic Spins with Low-Noise Probing of an Optical Cavity

    CERN Document Server

    Cox, Kevin C; Greve, Graham P; Thompson, James K

    2015-01-01

    Atomic projection noise limits the ultimate precision of all atomic sensors, including clocks, inertial sensors, magnetometers, etc. The independent quantum collapse of $N$ atoms into a definite state (for example spin up or down) leads to an uncertainty $\\Delta \\theta_{SQL}=1/\\sqrt{N}$ in the estimate of the quantum phase accumulated during a Ramsey sequence or its many generalizations. This phase uncertainty is referred to as the standard quantum limit. Creating quantum entanglement between the $N$ atoms can allow the atoms to partially cancel each other's quantum noise, leading to reduced noise in the phase estimate below the standard quantum limit. Recent experiments have demonstrated up to $10$~dB of phase noise reduction relative to the SQL by making collective spin measurements. This is achieved by trapping laser-cooled Rb atoms in an optical cavity and precisely measuring the shift of the cavity resonance frequency by an amount that depends on the number of atoms in spin up. Detecting the probe light ...

  4. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection.

    Science.gov (United States)

    Kasagi, M; Fujita, K; Tsuji, M; Takewaki, I

    2016-02-01

    A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency) earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency) and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.

  5. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection

    Directory of Open Access Journals (Sweden)

    M. Kasagi

    2016-02-01

    Full Text Available A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.

  6. Monitoring DNA hybridization and thermal dissociation at the silica/water interface using resonantly enhanced second harmonic generation spectroscopy.

    Science.gov (United States)

    Azam, Md Shafiul; Gibbs-Davis, Julianne M

    2013-09-03

    The immobilization of oligonucleotide sequences onto glass supports is central to the field of biodiagnostics and molecular biology with the widespread use of DNA microarrays. However, the influence of confinement on the behavior of DNA immobilized on silica is not well understood owing to the difficulties associated with monitoring this buried interface. Second harmonic generation (SHG) is an inherently surface specific technique making it well suited to observe processes at insulator interfaces like silica. Using a universal 3-nitropyrolle nucleotide as an SHG-active label, we monitored the hybridization rate and thermal dissociation of a 15-mer of DNA immobilized at the silica/aqueous interface. The immobilized DNA exhibits hybridization rates on the minute time scale, which is much slower than hybridization kinetics in solution but on par with hybridization behavior observed at electrochemical interfaces. In contrast, the thermal dissociation temperature of the DNA immobilized on silica is on average 12 °C lower than the analogous duplex in solution, which is more significant than that observed on other surfaces like gold. We attribute the destabilizing affect of silica to its negatively charged surface at neutral pH that repels the hybridizing complementary DNA.

  7. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation.

    Science.gov (United States)

    Bustamante, Mauricio; Liao, Wei

    2017-06-01

    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m(2)) and biogas storage (35m(3)), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m(2) and 105m(3), respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Probing turbulent, magnetized star formation with ALMA observations and next-generation AREPO simulations

    Science.gov (United States)

    Hull, Charles L. H.; Mocz, Philip; Burkhart, Blakesley K.; Miquel Girart, Josep; Goodman, Alyssa A.; Cortes, Paulo; Li, Zhi-Yun; Lai, Shih-Ping; Hernquist, Lars; Springel, Volker

    2017-01-01

    The first polarization data from ALMA have been delivered, and are both expanding and confounding our understanding of the role of magnetic fields in low-mass star formation. Here I will show the highest resolution and highest sensitivity polarization images ever made of a Class 0 protostellar source. These new ALMA observations of the source, known as Ser-emb 8, achieve 140 AU resolution, allowing us to probe polarization -- and thus magnetic field orientation -- in the innermost regions surrounding the protostar. The collapse of strongly magnetized dense gas is predicted to pinch the magnetic field into an hourglass shape that persists down to scales <100 AU. However, in contrast with more than 50 years of theory, the ALMA data definitively rule out an hourglass morphology and instead reveal a chaotic magnetic field that has not been inherited from the field in the interstellar medium surrounding the source. We have simulated the star formation process with cutting-edge, moving-mesh AREPO simulations on scales from a million AU (5 pc) down to 60 AU. We find that only in the case of a very strong magnetic field (~100 microgauss on 5 pc scales) is the field direction preserved from cloud to disk scales. When the field is weak, turbulence in the interstellar gas shapes the field on large scales, and the forming star system re-shapes the field again on small scales, divorcing the field from its history on larger scales. We conclude that this is what has happened in Ser-emb 8. The main distinction from the strong-field star formation model is that in the weak-field case it is turbulence -- not the magnetic field -- that shapes the material that forms the protostar.

  9. Optical Tweezers Array and Nimble Tweezers Probe Generated by Spatial- Light Modulator

    Science.gov (United States)

    Decker, Arthur J.; Jassemnejad, Baha; Seibel, Robin E.; Weiland, Kenneth E.

    2003-01-01

    An optical tweezers is being developed at the NASA Glenn Research Center as a visiblelight interface between ubiquitous laser technologies and the interrogation, visualization, manufacture, control, and energization of nanostructures such as silicon carbide (SiC) nanotubes. The tweezers uses one or more focused laser beams to hold micrometer-sized particles called tools (sometimes called tips in atomic-force-microscope terminology). A strongly focused laser beam has an associated light-pressure gradient that is strong enough to pull small particles to the focus, in spite of the oppositely directed scattering force; "optical tweezers" is the common term for this effect. The objective is to use the tools to create carefully shaped secondary traps to hold and assemble nanostructures that may contain from tens to hundreds of atoms. The interaction between a tool and the nanostructures is to be monitored optically as is done with scanning probe microscopes. One of the initial efforts has been to create, shape, and control multiple tweezers beams. To this end, a programmable spatial-light modulator (SLM) has been used to modify the phase of a laser beam at up to 480 by 480 points. One program creates multiple, independently controllable tweezer beams whose shapes can be tailored by making the SLM an adaptive mirror in an interferometer (ref. 1). The beams leave the SLM at different angles, and an optical Fourier transform maps these beams to different positions in the focal plane of a microscope objective. The following figure shows two arrays of multiple beams created in this manner. The patterns displayed above the beam array control the intensity-to-phase transformation required in programming the SLM. Three of the seven beams displayed can be used as independently controllable beams.

  10. Probes for 4th generation constituents of dark atoms in Higgs boson studies at the LHC

    CERN Document Server

    Khlopov, M Yu

    2014-01-01

    The nonbaryonic dark matter of the Universe can consist of new stable charged species, bound in heavy neutral "atoms" by ordinary Coulomb interaction. Stable $\\bar U$ (anti-$U$)quarks of 4th generation, bound in stable colorless ($\\bar U \\bar U \\bar U $) clusters, are captured by the primordial helium, produced in Big Bang Nucleosynthesis, thus forming neutral "atoms" of O-helium (OHe), a specific nuclear interacting dark matter that can provide solution for the puzzles of direct dark matter searches. However, the existence of the 4th generation quarks and leptons should influence the production and decay rates of Higgs boson and is ruled out by the experimental results of the Higgs boson searches at the LHC, if the Higgs boson coupling to 4th generation fermions with is not suppressed. Here we argue that the difference between the three known quark-lepton families and the 4th family can naturally lead to suppression of this coupling, relating the accelerator test for such a composite dark matter scenario to ...

  11. Implementation and verification of a four-probe motion error measurement system for a large-scale roll lathe used in hybrid manufacturing

    Science.gov (United States)

    Chen, Yuan-Liu; Niu, Zengyuan; Matsuura, Daiki; Lee, Jung Chul; Shimizu, Yuki; Gao, Wei; Oh, Jeong Seok; Park, Chun Hong

    2017-10-01

    In this paper, a four-probe measurement system is implemented and verified for the carriage slide motion error measurement of a large-scale roll lathe used in hybrid manufacturing where a laser machining probe and a diamond cutting tool are placed on two sides of a roll workpiece for manufacturing. The motion error of the carriage slide of the roll lathe is composed of two straightness motion error components and two parallelism motion error components in the vertical and horizontal planes. Four displacement measurement probes, which are mounted on the carriage slide with respect to four opposing sides of the roll workpiece, are employed for the measurement. Firstly, based on the reversal technique, the four probes are moved by the carriage slide to scan the roll workpiece before and after a 180-degree rotation of the roll workpiece. Taking into consideration the fact that the machining accuracy of the lathe is influenced by not only the carriage slide motion error but also the gravity deformation of the large-scale roll workpiece due to its heavy weight, the vertical motion error is thus characterized relating to the deformed axis of the roll workpiece. The horizontal straightness motion error can also be synchronously obtained based on the reversal technique. In addition, based on an error separation algorithm, the vertical and horizontal parallelism motion error components are identified by scanning the rotating roll workpiece at the start and the end positions of the carriage slide, respectively. The feasibility and reliability of the proposed motion error measurement system are demonstrated by the experimental results and the measurement uncertainty analysis.

  12. A new route for local probing of inner interactions within a layered double hydroxide/benzene derivative hybrid material.

    Science.gov (United States)

    Fleutot, S; Dupin, J C; Baraille, I; Forano, C; Renaudin, G; Leroux, F; Gonbeau, D; Martinez, H

    2009-05-14

    This paper presents the preparation and characterization of hybrid hydrotalcite-type layered double hydroxides (Zn1-xAlx(OH)2HBSx.nH2O, with x=0.33) where HBS is the 4-phenol sulfonate, with a detailed analysis of the grafting process of this organic entity onto the host lattice. As a set of the usual techniques (XRD, TG-DT/MS, FTIR and 27Al MAS NMR) was used to characterize the hybrid materials, this work focuses on a joint study by X-ray photoelectron spectroscopy and some quantum-calculation modeling in order to highlight the nature of the interactions between the organic and the mineral sub-systems. For the as-prepared hybrid material, the main results lead to a quasi-vertical orientation of the organic molecules within the mineral sheets via H-bond stabilization. By heating the hybrid material up to 200 degrees C, the structure shrinks with the condensation of the organics; the different theoretical modeling done gives an energy-stable situation when a direct attachment of the HBS sulfonate group sets up with the mineral layers, in agreement with the recorded XPS experimental data.

  13. Probing the local environment of hybrid materials designed from ionic liquids and synthetic clay by Raman spectroscopy

    Science.gov (United States)

    Siqueira, Leonardo J. A.; Constantino, Vera R. L.; Camilo, Fernanda F.; Torresi, Roberto M.; Temperini, Marcia L. A.; Ribeiro, Mauro C. C.; Izumi, Celly M. S.

    2014-03-01

    Hybrid organic-inorganic material containing Laponite clay and ionic liquids forming cations have been prepared and characterized by FT-Raman spectroscopy, X-ray diffraction, and thermal analysis. The effect of varying the length of the alkyl side chain and conformations of cations has been investigated by using different ionic liquids based on piperidinium and imidazolium cations. The structure of the N,N-butyl-methyl-piperidinium cation and the assignment of its vibrational spectrum have been further elucidated by quantum chemistry calculations. The X-ray data indicate that the organic cations are intercalated parallel to the layers of the clay. Comparison of Raman spectra of pure ionic liquids with different anions and the resulting solid hybrid materials in which the organic cations have been intercalated into the clay characterizes the local environment experienced by the cations in the hybrid materials. The Raman spectra of hybrid materials suggest that the local environment of all confined cations, in spite of this diversity in properties, resembles the liquid state of ionic liquids with a relatively disordered structure.

  14. Demonstrating the feasibility of probing the neutron star equation of state with second-generation gravitational wave detectors

    CERN Document Server

    Del Pozzo, Walter; Agathos, Michalis; Broeck, Chris Van Den; Vitale, Salvatore

    2013-01-01

    Fisher matrix and related studies have suggested that with second-generation gravitational wave detectors, it may be possible to infer the equation of state of neutron stars using tidal effects in binary inspiral. Here we present the first fully Bayesian investigation of this problem. We simulate a realistic data analysis setting by performing a series of numerical experiments of binary neutron star signals hidden in detector noise, assuming the projected final design sensitivity of the Advanced LIGO- Virgo network. With an astrophysical distribution of events (in particular, uniform in co-moving volume), we find that only a few tens of detections will be required to arrive at strong constraints, even for some of the softest equations of state in the literature. Thus, direct gravitational wave detection will provide a unique probe of neutron star structure.

  15. Localization of defects in steam generator tubes using a multi-coil eddy current probe dedicated to high speed inspection

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, P.-Y.; Le Bihan, Y.; Placko, D. [Ecole Normale Superieure de Cachan (France). Laboratoire d' Electricite Signaux et Robotique

    2002-07-01

    Steam generator (SG) tubing of pressurized water reactor in nuclear plants must be rapidly and accurately checked in order to detect defects in their early stages. In this paper, the authors present a multi-coil eddy current (EC) probe allowing both high speed inspection and circumferential localization of defects in the tube wall. A method of multi-coil EC signal processing, based on a continuous wavelet transform combined with a maximum likelihood diagnosis, is elaborated in order to enhance the detection performances and to provide automatic localization of defects. The inspection of SG tube samples shows good localization performances for defects as small as 10% deep, 15 mm long and 100 {mu}m wide outer diameter notches, of both circumferential and axial orientations. (author)

  16. Demonstrating the feasibility of probing the neutron-star equation of state with second-generation gravitational-wave detectors.

    Science.gov (United States)

    Del Pozzo, Walter; Li, Tjonnie G F; Agathos, Michalis; Van Den Broeck, Chris; Vitale, Salvatore

    2013-08-16

    Fisher matrix and related studies have suggested that, with second-generation gravitational-wave detectors, it may be possible to infer the equation of state of neutron stars using tidal effects in a binary inspiral. Here, we present the first fully Bayesian investigation of this problem. We simulate a realistic data analysis setting by performing a series of numerical experiments of binary neutron-star signals hidden in detector noise, assuming the projected final design sensitivity of the Advanced LIGO-Virgo network. With an astrophysical distribution of events (in particular, uniform in comoving volume), we find that only a few tens of detections will be required to arrive at strong constraints, even for some of the softest equations of state in the literature. Thus, direct gravitational-wave detection will provide a unique probe of neutron-star structure.

  17. Specific detection of neuronal cell bodies: in situ hybridization with a biotin-labelled neurofilament cDNA probe.

    NARCIS (Netherlands)

    P. Liesi; J-P. Julien (Jean-Pierre); P. Vilja; F.G. Grosveld (Frank); L. Rechardt

    1986-01-01

    textabstractWe have used a biotinylated, 300-nucleotide cDNA probe which encodes the 68,000 MW neurofilament protein to detect neurofilament-specific mRNA in situ. The neurofilament message specifically demonstrates the neuronal cell bodies, in contrast to the usual antibody staining which detects t

  18. New generation low-energy probes for ultralight axion and scalar dark matter

    CERN Document Server

    Stadnik, Yevgeny V

    2015-01-01

    We present a brief overview of a new generation of high-precision laboratory and astrophysical measurements to search for ultralight (sub-eV) axion, axion-like pseudoscalar and scalar dark matter, which form either a coherent condensate or topological defects (solitons). In these new detection methods, the sought effects are linear in the interaction constant between dark matter and ordinary matter, which is in stark contrast to traditional searches for dark matter, where the sought effects are quadratic or higher order in the underlying interaction constants (which are extremely small).

  19. Nanoscale optical properties of metal nanoparticles probed by Second Harmonic Generation microscopy.

    Science.gov (United States)

    Shen, Hong; Nguyen, Ngoc; Gachet, David; Maillard, Vincent; Toury, Timothée; Brasselet, Sophie

    2013-05-20

    We report spatial and vectorial imaging of local fields' confinement properties in metal nanoparticles with branched shapes, using Second Harmonic Generation (SHG) microscopy. Taking advantage of the coherent nature of this nonlinear process, the technique provides a direct evidence of the coupling between the excitation polarization and both localization and polarization specificities of local fields at the sub-diffraction scale. These combined features, which are governed by the nanoparticles' symmetry, are not accessible using other contrasts such as linear optical techniques or two-photon luminescence.

  20. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Mengjuan [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Chengquan [School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013 (China); Qian, Jing, E-mail: qianj@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kan; Yang, Zhenting; Liu, Qian; Mao, Hanping [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kun, E-mail: wangkun@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-08-12

    We herein proposed a simple and effective strategy for preparing graphene quantum dots (GQDs)-based core-satellite hybrid spheres and further explored the feasibility of using such spheres as the ratiometric fluorescence probe for the visual determination of Hg{sup 2+}. The red-emitting CdTe QDs were firstly entrapped in the silica nanosphere to reduce their toxicity and improve their photo and chemical stabilities, thus providing a built-in correction for environmental effects, while the GQDs possessing good biocompatibility and low toxicity were electrostatic self-assembly on the silica surface acting as reaction sites. Upon exposure to the increasing contents of Hg{sup 2+}, the blue fluorescence of GQDs can be gradually quenched presumably due to facilitating nonradiative electron/hole recombination annihilation. With the embedded CdTe QDs as the internal standard, the variations of the tested solution display continuous fluorescence color changes from blue to red, which can be easily observed by the naked eye without any sophisticated instrumentations and specially equipped laboratories. This sensor exhibits high sensitivity and selectivity toward Hg{sup 2+} in a broad linear range of 10 nM–22 μM with a low detection limit of 3.3 nM (S/N = 3), much lower than the allowable Hg{sup 2+} contents in drinking water set by U.S. Environmental Protection Agency. This prototype ratiometric probe is of good simplicity, low toxicity, excellent stabilities, and thus potentially attractive for Hg{sup 2+} quantification related biological systems. - Highlights: • A facile strategy for preparing GQDs based core-satellite hybrid spheres was reported. • Such spheres can be used as the ratiometric fluorescence probe for Hg{sup 2+} detection. • The Hg{sup 2+} content can be easily distinguished by the naked eye. • The sensor shows high sensitivity and selectivity toward Hg{sup 2+} detection. • The ratiometric probe is of good simplicity, low toxicity, and

  1. Development of a 13-in. Hybrid Avalanche Photo-Detector (HAPD) for a next generation water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, H. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)]. E-mail: nakkan@hep.phys.s.u-tokyo.ac.jp; Kusaka, A. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kakuno, H. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Abe, T. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Iwasaki, M. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Aihara, H. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Shiozawa, M. [Institute for Cosmic Ray Research, University of Tokyo, Higashi-Mozumi, Kamioka-cho, Hida city, Gifu 506-1205 (Japan); Tanaka, M. [Institute for Particle and Nuclear Studies, High Energy Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Kyushima, H. [Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Simokanzo, Iwata City 438-0193, Shizuoka (Japan); Suyama, M. [Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Simokanzo, Iwata City 438-0193, Shizuoka (Japan); Kawai, Y. [Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Simokanzo, Iwata City 438-0193, Shizuoka (Japan)

    2006-11-01

    We have developed a 13-in. Hybrid Avalanche Photo-Detector (HAPD) for photosensors in next generation water Cherenkov type detectors. We study the performance of the HAPD and the results show good time resolution better than {sigma}=1ns, good sensitivity for single photon detection, wide dynamic range, and good uniformity on the photocathode. The HAPD is also expected to be less expensive than large PMTs because of its simpler structure without dynodes.

  2. Photochemical properties in flag leaves of a super-high-yielding hybrid rice and a traditional hybrid rice (Oryza sativa L.) probed by chlorophyll a fluorescence transient.

    Science.gov (United States)

    Zhang, Meiping; Shan, YongJie; Kochian, Leon; Strasser, Reto J; Chen, GuoXiang

    2015-12-01

    Chlorophyll a fluorescence of flag leaves in a super-high-yielding hybrid rice (Oryza sativa L.) LYPJ, and a traditional hybrid rice SY63 cultivar with lower grain yield, which were grown in the field, were investigated from emergence through senescence of flag leaves. As the flag leaf matured, there was an increasing trend in photosynthetic parameters such as quantum efficiency of primary photochemistry ([Formula: see text] Po) and efficiency of electron transport from PS II to PS I (Ψ Eo). The overall photosynthetic performance index (PIABS) was significantly higher in the high-yielding LYPJ compared to SY63 during the entire reproductive stage of the plant, the same to MDA content. However, [Formula: see text] Po(=F V/F M), an indicator of the primary photochemistry of the flag leaf, did not display significant changes with leaf age and was not significantly different between the two cultivars, suggesting that PIABS is a more sensitive parameter than [Formula: see text] Po (=F V/F M) during leaf age for distinguishing between cultivars differing in yield.

  3. Activity recognition using hybrid generative/discriminative models on home environments using binary sensors.

    Science.gov (United States)

    Ordóñez, Fco Javier; de Toledo, Paula; Sanchis, Araceli

    2013-04-24

    Activities of daily living are good indicators of elderly health status, and activity recognition in smart environments is a well-known problem that has been previously addressed by several studies. In this paper, we describe the use of two powerful machine learning schemes, ANN (Artificial Neural Network) and SVM (Support Vector Machines), within the framework of HMM (Hidden Markov Model) in order to tackle the task of activity recognition in a home setting. The output scores of the discriminative models, after processing, are used as observation probabilities of the hybrid approach. We evaluate our approach by comparing these hybrid models with other classical activity recognition methods using five real datasets. We show how the hybrid models achieve significantly better recognition performance, with significance level p < 0.05, proving that the hybrid approach is better suited for the addressed domain.

  4. Activity Recognition Using Hybrid Generative/Discriminative Models on Home Environments Using Binary Sensors

    Directory of Open Access Journals (Sweden)

    Araceli Sanchis

    2013-04-01

    Full Text Available Activities of daily living are good indicators of elderly health status, and activity recognition in smart environments is a well-known problem that has been previously addressed by several studies. In this paper, we describe the use of two powerful machine learning schemes, ANN (Artificial Neural Network and SVM (Support Vector Machines, within the framework of HMM (Hidden Markov Model in order to tackle the task of activity recognition in a home setting. The output scores of the discriminative models, after processing, are used as observation probabilities of the hybrid approach. We evaluate our approach by comparing these hybrid models with other classical activity recognition methods using five real datasets. We show how the hybrid models achieve significantly better recognition performance, with significance level p < 0:05, proving that the hybrid approach is better suited for the addressed domain.

  5. Performance analysis of different ORC configurations for thermal energy and LNG cold energy hybrid power generation system

    Science.gov (United States)

    Sun, Zhixin; Wang, Feng; Wang, Shujia; Xu, Fuquan; Lin, Kui

    2017-01-01

    This paper presents a thermal energy and Liquefied natural gas (LNG) cold energy hybrid power generation system. Performances of four different Organic Rankine cycle (ORC) configurations (the basic, the regenerative, the reheat and the regenerative-reheat ORCs) are studied based on the first and the second law of thermodynamics. Dry organic fluid R245fa is selected as the typical working fluid. Parameter analysis is also conducted in this paper. The results show that regeneration could not increase the thermal efficiency of the thermal and cold energy hybrid power generation system. ORC with the reheat process could produce more specific net power output but it may also reduce the system thermal efficiency. The basic and the regenerative ORCs produce higher thermal efficiency while the regenerative-reheat ORC performs best in the exergy efficiency. A preheater is necessary for the thermal and cold energy hybrid power generation system. And due to the presence of the preheater, there will be a step change of the system performance as the turbine inlet pressure rises.

  6. Dynamic modeling of hybrid energy storage systems coupled to photovoltaic generation in residential applications

    OpenAIRE

    Maclay, JD; J. Brouwer; Samuelsen, GS

    2007-01-01

    A model of a photovoltaic (PV) powered residence in stand-alone configuration was developed and evaluated. The model assesses the sizing, capital costs, control strategies, and efficiencies of reversible fuel cells (RFC), batteries, and ultra-capacitors (UC) both individually, and in combination, as hybrid energy storage devices. The choice of control strategy for a hybrid energy storage system is found to have a significant impact on system efficiency, hydrogen production and component utili...

  7. Probe of Multi-electron Dynamics in Xenon by Caustics in High Order Harmonic Generation

    CERN Document Server

    Faccialà, Davide; Bruner, Barry D; Ciriolo, Anna G; De Silvestri, Sandro; Devetta, Michele; Negro, Matteo; Soifer, Hadas; Stagira, Salvatore; Dudovich, Nirit; Vozzi, Caterina

    2016-01-01

    We investigated the giant resonance in Xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a non-perturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring sub-cycles resulting in the appearance of spectral caustics at two distinct cut-off energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this paper we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in Xenon. The collective excitations of the giant dipole resonance in Xenon combined with the spectral manipulation associated with the two color driving field allow to see features that are normally not accessible and to obtain a quantitative good agreement between the experimental results and the theoretical predictions.

  8. Probing supernova shock waves and neutrino flavor transitions in next-generation water-Cherenkov detectors

    CERN Document Server

    Fogli, G L; Mirizzi, A; Montanino, D

    2004-01-01

    Several current projects aim at building a large water-Cherenkov detector, with a fiducial volume about 20 times larger than in the current Super-Kamiokande experiment. These projects include the Underground nucleon decay and Neutrino Observatory (UNO) in the Henderson Mine (Colorado), the Hyper-Kamiokande (HK) detector in the Tochibora Mine (Japan), and the MEgaton class PHYSics (MEMPHYS) detector in the Frejus site (Europe). We study the physics potential of a reference next-generation detector (0.4 Mton of fiducial mass) in providing information on supernova neutrino flavor transitions with unprecedented statistics. After discussing the ingredients of our calculations, we compute neutrino event rates from inverse beta decay ($\\bar\

  9. Probe of Multielectron Dynamics in Xenon by Caustics in High-Order Harmonic Generation

    Science.gov (United States)

    Faccialà, D.; Pabst, S.; Bruner, B. D.; Ciriolo, A. G.; De Silvestri, S.; Devetta, M.; Negro, M.; Soifer, H.; Stagira, S.; Dudovich, N.; Vozzi, C.

    2016-08-01

    We investigated the giant resonance in xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a nonperturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring subcycles resulting in the appearance of spectral caustics at two distinct cutoff energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this Letter we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in xenon. The collective excitations of the giant dipole resonance in xenon combined with the spectral manipulation associated with the two-color driving field allow us to see features that are normally not accessible and to obtain a good agreement between the experimental results and the theoretical predictions.

  10. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleicacid probes and tyramide signal amplification

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli N.; Nolting, Dorrit; Andersen, Lars Dyrskjøt;

    2007-01-01

    The ability to determine spatial and temporal microRNA (miRNA) accumulation at the tissue, cell and subcellular levels is essential for understanding the biological roles of miRNAs and miRNA-associated gene regulatory networks. This protocol describes a method for fast and effective detection of mi......RNAs in frozen tissue sections using fluorescence in situ hybridization (FISH). The method combines the unique miRNA recognition properties of locked nucleic acid (LNA)-modified oligonucleotide probes with FISH using the tyramide signal amplification (TSA) technology. Although both approaches have previously...... protocol can be completed within approximately 6 h and allows miRNA detection in a wide variety of animal tissue cryosections as well as in human tumor biopsies at high cellular resolution....

  11. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleicacid probes and tyramide signal amplification

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli N.; Nolting, Dorrit; Andersen, Lars Dyrskjøt

    2007-01-01

    RNAs in frozen tissue sections using fluorescence in situ hybridization (FISH). The method combines the unique miRNA recognition properties of locked nucleic acid (LNA)-modified oligonucleotide probes with FISH using the tyramide signal amplification (TSA) technology. Although both approaches have previously...... been shown to increase detection sensitivity in FISH, combining these techniques into one protocol significantly decreases the time needed for miRNA detection in cryosections, while simultaneously retaining high detection sensitivity. Starting with fixation of the tissue sections, this miRNA FISH...... protocol can be completed within approximately 6 h and allows miRNA detection in a wide variety of animal tissue cryosections as well as in human tumor biopsies at high cellular resolution....

  12. Diffusion of chlorin-p6 across phosphatidyl choline liposome bilayer probed by second harmonic generation.

    Science.gov (United States)

    Saini, R K; Dube, A; Gupta, P K; Das, K

    2012-04-12

    We have investigated the diffusion of the photosensitizer Chlorin-p(6) (Cp(6)) across a egg lecithin lipid bilayer at different pH by the Second Harmonic Generation (SHG) method. Cp(6) has three ionizable carboxylic acid groups, and consequently, neutral and several ionic forms of Cp(6) are expected to be present in the pH range 3-8. The absorption spectra of Cp(6) get considerably modified in the presence of liposomes as the pH is decreased indicating that the drug liposome binding is pH dependent. The first pK(a) of interconversion (D-C) has been identified at pH ~7.0 by fluorescence measurement in an earlier work. In this work, the second pK(a) of interconversion (C-B) has been identified at pH ~4.8 by the hyper-Rayleigh scattering method. At acidic pH (3, 4, and 5), where species A, B, and C are dominant, the addition of liposomes to a Cp(6) solution generates an instantaneous rise (less than 1 s) in the second harmonic (SH) signal followed by decays whose time constants ranged from ten to hundreds of seconds. The instantaneous rise is attributed to the adsorption of Cp(6) to the outer lipid bilayer, and the decay is attributed to the diffusion of the neutral and charged (A and B) species of the drug. The observed fast and slow time constants for diffusion in the pH range 3-5 are attributed to the neutral (A) and ionic form (B) of Cp(6), respectively. At pH 6, the intensity of the generated SH signals on the addition of liposome reduced, and at physiological pH, it was too weak to be detected. These results are consistent with previous studies that show that the interaction between Cp(6) and egg-PC liposomes is pH dependent. At lower pH due to the presence of the hydrophobic species (A and B) of Cp(6), its interaction with liposomes is strong, and at higher pH, the abundance of the negatively charged hydrophilic species (C and D) decreases the interaction with the like charged liposomes. We have also studied the effect of increasing the bilayer rigidity by

  13. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.

    OpenAIRE

    de los Reyes, F L; Ritter, W; Raskin, L.

    1997-01-01

    Foaming in activated sludge systems is characterized by the formation of a thick, chocolate brown-colored scum that floats on the surface of aeration basins and secondary clarifiers. These viscous foams have been associated with the presence of filamentous mycolic acid-containing actinomycetes. To aid in evaluating the microbial representation in foam, we developed and characterized group-, genus-, and species-specific oligonucleotide probes targeting the small subunit rRNA of the Mycobacteri...

  14. Diagnostic probes for particle and molecule distributions in laser-generated plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrell, S.M.

    1990-10-17

    Laser microprobe analysis (LMA) offers good spatial and depth resolution for solid sampling of virtually any material. Coupled with numerous optical spectroscopic and mass spectrometric detection methods, LMA is a powerful analytical tool. Yet, fundamental understanding of the interaction between the laser and the sample surface leading to the formation of the high temperature plasma (plume) is far from complete. To better understand the process of plume formation, an imaging method based on acousto-optic laser beam deflection has been coupled with light scattering methods and absorption methods to record temporal and spatial maps of the particle and molecule distributions in the plume with good resolution. Because particles can make up a major fraction of the vaporized material under certain operating conditions, they can reflect a large loss of atomic signal for elemental analysis, even when using auxiliary excitation to further vaporized the particles. Characterization of the particle size distributions in plumes should provide insight into the vaporization process and information necessary for studies of efficient particle transfer. Light scattering methods for particle size analysis based on the Mie Theory are used to determine the size of particles in single laser-generated plumes. The methods used, polarization ratio method and dissymmetry ratio method, provide good estimates of particle size with good spatial and temporal resolution for this highly transient system. Large particles, on the order of 0.02-0.2{mu}m in radius, were observed arising directly from the sample surface and from condensation.

  15. Field enhancement at silicon surfaces by gold ellipsoids probed by optical second-harmonic generation spectroscopy

    Science.gov (United States)

    Ulriksen, Hans Ulrik; Pedersen, Kjeld

    2016-12-01

    Optical second-harmonic generation (SHG) spectroscopy has been used to determine the field enhancements from Au nanoparticles on a silicon substrate. Au particles with diameters from 30 to 250 nm have been deposited on a Si substrate passivated by a 1 nm thick surface oxide. The linear optical spectra are dominated by a horizontal plasmon resonance near 1.0 eV, and the experimental spectra are modelled by the island film model in order to extract the linear properties of the metal particles. SHG spectroscopy from this system shows resonances from the metal particles and from the silicon/oxide substrate. By following the evolution of these Si resonances with the size of the Au particles, the field enhancement in the Si surface has been modelled. The effect of the Au particles on SHG at the Si E1 resonance is a combination of charge transfer through the thin oxide that changes the space charge region and an enhancement of the optical field in a thin surface layer of the Si substrate.

  16. Probing unexplored territories with MUSE: a second generation instrument for the VLT

    CERN Document Server

    Bacon, R; Böhm, P; Boudon, D; Brau-Nogue, S; Caillier, P; Capoani, L; Carollo, C M; Champavert, N; Contini, T; Daguise, E; Dalle, D; Delabre, B; Devriendt, J; Dreizler, S; Du Bois, J; Dupieux, M; Dupin, J P; Emsellem, E; Ferruit, P; Franx, M; Gallou, G; Gerssen, J; Guiderdoni, B; Hahn, T; Hofmann, D; Jarno, A; Kelz, A; Köhler, C; Kollatschny, W; Kosmalski, J; Laurent, F; Lilly, S J; Lizon, J; Loupias, M; Lynn, S; Manescau, A; McDermid, R M; Monstein, C; Nicklas, H; Pares, L; Pasquini, L; Pecontal-Rousset, A; Pécontal, E; Pellò, R; Petit, C; Picat, J P; Popow, E; Quirrenbach, Andreas G; Reiss, R; Renault, E; Roth, M; Schaye, J; Soucail, G; Steinmetz, M; Stroebele, S; Stuik, R; Weilbacher, P; Wozniak, H; De Zeeuw, P T

    2006-01-01

    The Multi Unit Spectroscopic Explorer (MUSE) is a second-generation VLT panoramic integral-field spectrograph under preliminary design study. MUSE has a field of 1x1 arcmin**2 sampled at 0.2x0.2 arcsec**2 and is assisted by the VLT ground layer adaptive optics ESO facility using four laser guide stars. The simultaneous spectral range is 465-930 nm, at a resolution of R~3000. MUSE couples the discovery potential of a large imaging device to the measuring capabilities of a high-quality spectrograph, while taking advantage of the increased spatial resolution provided by adaptive optics. This makes MUSE a unique and tremendously powerful instrument for discovering and characterizing objects that lie beyond the reach of even the deepest imaging surveys. MUSE has also a high spatial resolution mode with 7.5x7.5 arcsec**2 field of view sampled at 25 milli-arcsec. In this mode MUSE should be able to obtain diffraction limited data-cubes in the 600-930 nm wavelength range. Although the MUSE design has been optimized f...

  17. Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP

    Science.gov (United States)

    Kuo, Spencer; Snyder, Arnold

    2013-05-01

    High Frequency Active Auroral Research Program digisonde was operated in a fast mode to record ionospheric modifications by the HF heating wave. With the O mode heater of 3.2 MHz turned on for 2 min, significant virtual height spread was observed in the heater off ionograms, acquired beginning the moment the heater turned off. Moreover, there is a noticeable bump in the virtual height spread of the ionogram trace that appears next to the plasma frequency (~ 2.88 MHz) of the upper hybrid resonance layer of the HF heating wave. The enhanced spread and the bump disappear in the subsequent heater off ionograms recorded 1 min later. The height distribution of the ionosphere in the spread situation indicates that both electron density and temperature increases exceed 10% over a large altitude region (> 30 km) from below to above the upper hybrid resonance layer. This "mini cusp" (bump) is similar to the cusp occurring in daytime ionograms at the F1-F2 layer transition, indicating that there is a small ledge in the density profile reminiscent of F1-F2 layer transitions. Two parametric processes exciting upper hybrid waves as the sidebands by the HF heating waves are studied. Field-aligned purely growing mode and lower hybrid wave are the respective decay modes. The excited upper hybrid and lower hybrid waves introduce the anomalous electron heating which results in the ionization enhancement and localized density ledge. The large-scale density irregularities formed in the heat flow, together with the density irregularities formed through the parametric instability, give rise to the enhanced virtual height spread. The results of upper hybrid instability analysis are also applied to explain the descending feature in the development of the artificial ionization layers observed in electron cyclotron harmonic resonance heating experiments.

  18. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang

    2015-05-20

    A novel pressure retarded osmosis−membrane distillation (PRO−MD) hybrid process has been experimentally conceived for sustainable production of renewable osmotic power and clean water from various waters. The proposed PRO−MD system may possess unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic energy from freshwater but also from wastewater. When employing a 2 M NaCl MD concentrate as the draw solution, ultrahigh power densities of 31.0 W/m2 and 9.3 W/m2 have been demonstrated by the PRO subsystem using deionized water and real wastewater brine as the feeds, respectively. Simultaneously, high purity potable water with a flux of 32.5−63.1 L/(m2.h) can be produced by the MD subsystem at 40−60 °C without any detrimental effects of fouling. The energy consumption in the MD subsystem might be further reduced by applying a heat exchanger in the hybrid system and using low-grade heat or solar energy to heat up the feed solution. The newly developed PRO−MD hybrid process would provide insightful guidelines for the exploration of alternative green technologies for renewable osmotic energy and clean water production.

  19. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe.

    Science.gov (United States)

    Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.

  20. Limits on SUSY GUTs and Defects Formation in Hybrid Inflationary Models with Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations

    CERN Document Server

    Fraisse, A A

    2006-01-01

    We confront the predicted effects of hybrid inflationary models on the Cosmic Microwave Background (CMB) with three years of Wilkinson Microwave Anisotropy Probe (WMAP) observations. Using model selection, we compare the ability of a simple flat power-law LCDM model to describe the data to hybrid inflationary models involving global or local cosmic strings, or global textures. We find that it is statistically impossible to distinguish between these models: they all give a similar description of the data, the maximum ratio of the various evidences involved being never higher than e^{0.1 \\pm 0.5}. We then derive the maximum contribution that topological defects can make to the CMB, and place an upper bound on the possible value of cosmic strings tension of G\\mu \\leq 2.1 \\times 10^{-7} (68% CL). Finally, we give the corresponding constraints on the strings and D-strings masses, as well as limits on the D- and F-term coupling constants (\\kappa and \\lambda) and mass scales (M and \\sqrt{\\xi}).

  1. FP7 HBB-Next, a proposal for a European 7th Framework Project on next-generation Hybrid Broadcast Broadband

    NARCIS (Netherlands)

    Deventer, M.O. van; Niamut, O.A.

    2011-01-01

    This is the FP7 proposal HBB-Next: Next-Generation Hybrid Broadcast Broadband. It was submitted on 18 January 2011 for FP7 call no.7, objective 1.5a. So far, Hybrid Broadcast Internet applications have only linked Internet and broadcast content by offering over‐the‐top On‐Demand content in addition

  2. FP7 HBB-Next, a proposal for a European 7th Framework Project on next-generation Hybrid Broadcast Broadband

    NARCIS (Netherlands)

    Deventer, M.O. van; Niamut, O.A.

    2011-01-01

    This is the FP7 proposal HBB-Next: Next-Generation Hybrid Broadcast Broadband. It was submitted on 18 January 2011 for FP7 call no.7, objective 1.5a. So far, Hybrid Broadcast Internet applications have only linked Internet and broadcast content by offering over‐the‐top On‐Demand content in addition

  3. Frequencies of complex chromosome exchange aberrations induced by 238Pu alpha-particles and detected by fluorescence in situ hybridization using single chromosome-specific probes.

    Science.gov (United States)

    Griffin, C S; Marsden, S J; Stevens, D L; Simpson, P; Savage, J R

    1995-04-01

    We undertook an analysis of chromosome-type exchange aberrations induced by alpha-particles using fluorescence in situ hybridization (FISH) with whole chromosome-specific probes for human chromosomes 1 or 4, together with a pan-centromeric probe. Contact-inhibited primary human fibroblasts (in G1) were irradiated with 0.41-1.00 Gy 238Pu alpha-particles and aberrations were analysed at the next mitosis following a single chromosome paint. Exchange and aberration painting patterns were classified according to Savage and Simpson (1994a). Of exchange aberrations, 38-47% were found to be complex derived, i.e. resulting from three or more breaks in two or more chromosomes, and the variation with dose was minimal. The class of complex aberrations most frequently observed were insertions, derived from a minimum of three breaks in two chromosomes. There was also an elevated frequency of rings. The high level of complex aberrations observed after alpha-particle irradiation indicates that, when chromosome domains are traversed by high linear energy transfer alpha-particle tracks, there is an enhanced probability of production of multiple localized double-strand breaks leading to more complicated interactions.

  4. Identification of human DNA in forensic evidence by loop-mediated isothermal amplification combined with a colorimetric gold nanoparticle hybridization probe.

    Science.gov (United States)

    Watthanapanpituck, Khanistha; Kiatpathomchai, Wansika; Chu, Eric; Panvisavas, Nathinee

    2014-11-01

    A DNA test based on loop-mediated isothermal amplification (LAMP) and colorimetric gold nanoparticle (AuNP) hybridization probe to detect the presence of human DNA in forensic evidence was developed. The LAMP primer set targeted eight regions of the human cytochrome b, and its specificity was verified against the DNA of 11 animal species, which included animals closely related to humans, such as chimpanzee and orangutan. By using the AuNP probe, sequence-specific LAMP product could be detected and the test result could be visualized through the change in color. The limit of detection was demonstrated with reproducibility to be as low as 718 fg of genomic DNA, which is equivalent to approximately 100 plasmid DNA copies containing the cytochrome b DNA target region. A simple DNA extraction method for the commonly found forensic biological samples was also devised to streamline the test process. This LAMP-AuNP human DNA test showed to be a robust, specific, and cost-effective tool for the forensic identification of human specimens without requiring sophisticated laboratory instruments.

  5. Probing into hybrid organic-molecule and InAs quantum-dots nanosystem with multistacked dots-in-a-well units

    DEFF Research Database (Denmark)

    Chen, Miaoxiang Max; Kobashi, Kazufumi

    2012-01-01

    Hybridizing air-stable organic-molecules with advanced III-V semiconductor quantum-dots (QDs) structures can be utilized to create a new generation of biochemical sensing devices. In order to enhance their optical performances, the active regions in these QDs structures commonly consist...... of multistacked dots-in-a-well (DWELL) units. The effects of grafted molecules on the performances of the QDs structures with multistacked DWELLs, however, still remain unclear. Here, we show the significant improvements in the optical properties of InAs QDs in a hybrid nanosystem obtained by grafting...... biocompatible diazonium salt compound (amine donor) atop InAs QDs structure. Since its interface between the QDs structure and molecular monolayer retains an uncontaminated and non-oxidized condition, the nanosystem is an ideal platform to study the intrinsic properties of charge-carrier transport inside...

  6. PCR associated with hybridization with DNA radioactive probes for diagnosis of asymptomatic infection caused by Leishmania Chagasi; PCR associado a hibridizacao com sondas radioativas de DNA para a identificacao de infeccao subclinica causada por Leishmania Chagasi

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Antero Silva Ribeiro de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Moreno, Elizabeth Castro [Fundacao Nacional de Saude, Belo Horizonte, MG (Brazil). Coordenacao Regional de Minas Gerais; Gomes, Rosangela Fatima; Melo, Maria Norma de; Carneiro, Mariangela [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Parasitologia; Fernandes, Octavio [Fundacao Inst. Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil). Dept. de Medicina Tropical

    2002-07-01

    Detection systems for diagnosis of leishmaniasis based on PCR are very promising due to their sensitivity and specificity. Secondary detection by specific radioactive DNA probes, able to type the PCR amplified products, increase the specificity and raise about tem-fold the sensitivity of the assay. The aim of this work was evaluate PCR and hybridization as a tool to identify Leishmania (Leishmania) chagasi (the specie that cause the visceral leishmaniasis in Brazil) infection in asymptomatic persons living in a endemic area. Material and Methods: A group of 226 asymptomatic individuals, living in General Carneiro (MG), was selected. Blood samples were harvested and the DNA extracted from the mononucleate cells. PCR was performed using primers addressed to the kinetoplast DNA minicircles. This protocol gives a positive reaction for all Leishmania species. The amplified products were further hybridized with cloned L.chagasi minicircles labeled with {sup 32} P. Results: were identified 111 samples PCR positive, 2 of them hybridization negative and 133 samples hybridization positive, 24 of them PCR negative. The occurrence of samples with hybridization positive and PCR negative was expected since hybridization, with DNA probes labeled with {sup 32} P, increase the sensitivity of the assay. The samples that presented positive PCR and negative hybridization were probably due the presence of other Leishmania species, likely L. (V.) braziliensis (that produce tegumentary leishmaniasis in the region), since L. (L.) chagasi cloned minicircles were used as hybridization probe. We conclude that this procedure is a valuable tool to access subclinical L. (L.) chagasi infections in epidemiological studies. (author)

  7. Signal enhancement for gene detection based on a redox reaction of [Fe(CN)(6)](4-) mediated by ferrocene at the terminal of a peptide nucleic acid as a probe with hybridization-amenable conformational flexibility.

    Science.gov (United States)

    Aoki, Hiroshi; Tao, Hiroaki

    2008-07-01

    Electrochemically enhanced DNA detection was demonstrated by utilizing the couple of a synthesized ferrocene-terminated peptide nucleic acid (PNA) with a cysteine anchor and a sacrificial electron donor [Fe(CN)(6)](4-). DNA detection sensors were prepared by modifying a gold electrode surface with a mixed monolayer of the probe PNA and 11-hydroxy-1-undecanethiol (11-HUT), protecting [Fe(CN)(6)](4-) from any unexpected redox reaction. Before hybridization, the terminal ferrocene moiety of the probe was subject to a redox reaction due to the flexible probe structure and, in the presence of [Fe(CN)(6)](4-), the observed current was amplified based on regeneration of the ferrocene moiety. Hybridization decreased the redox current of the ferrocene. This occurred because hybridization rigidified the probe structure: the ferrocene moiety was then removed from the electrode surface, and the redox reaction of [Fe(CN)(6)](4-) was again prevented. The change in the anodic current before and after hybridization was enhanced 1.75-fold by using the electron donor [Fe(CN)(6)](4-). Sequence-specific detection of the complementary target DNA was also demonstrated.

  8. A second generation radiation hybrid map to aid the assembly of the bovine genome sequence

    Directory of Open Access Journals (Sweden)

    Janitz Michal

    2006-11-01

    Full Text Available Abstract Background Several approaches can be used to determine the order of loci on chromosomes and hence develop maps of the genome. However, all mapping approaches are prone to errors either arising from technical deficiencies or lack of statistical support to distinguish between alternative orders of loci. The accuracy of the genome maps could be improved, in principle, if information from different sources was combined to produce integrated maps. The publicly available bovine genomic sequence assembly with 6× coverage (Btau_2.0 is based on whole genome shotgun sequence data and limited mapping data however, it is recognised that this assembly is a draft that contains errors. Correcting the sequence assembly requires extensive additional mapping information to improve the reliability of the ordering of sequence scaffolds on chromosomes. The radiation hybrid (RH map described here has been contributed to the international sequencing project to aid this process. Results An RH map for the 30 bovine chromosomes is presented. The map was built using the Roslin 3000-rad RH panel (BovGen RH map and contains 3966 markers including 2473 new loci in addition to 262 amplified fragment-length polymorphisms (AFLP and 1231 markers previously published with the first generation RH map. Sequences of the mapped loci were aligned with published bovine genome maps to identify inconsistencies. In addition to differences in the order of loci, several cases were observed where the chromosomal assignment of loci differed between maps. All the chromosome maps were aligned with the current 6× bovine assembly (Btau_2.0 and 2898 loci were unambiguously located in the bovine sequence. The order of loci on the RH map for BTA 5, 7, 16, 22, 25 and 29 differed substantially from the assembled bovine sequence. From the 2898 loci unambiguously identified in the bovine sequence assembly, 131 mapped to different chromosomes in the BovGen RH map. Conclusion Alignment of the

  9. Piezoelectric properties of the new generation active matrix hybrid (micro-nano) composites

    Science.gov (United States)

    Parali, Levent; Şabikoğlu, İsrafil; Kurbanov, Mirza A.

    2014-11-01

    A hybrid piezoelectric composite structure is obtained by addition of nano-sized BaTiO3, SiO2 to the micro-sized PZT and polymers composition. Although the PZT material itself has excellent piezoelectric properties, PZT-based composite variety is limited. Piezoelectric properties of PZT materials can be varied with an acceptor or a donor added to the material. In addition, varieties of PZT-based sensors can be increased with doping polymers which have physical-mechanical, electrophysical, thermophysical and photoelectrical properties. The active matrix hybrid structure occurs when bringing together the unique piezoelectric properties of micro-sized PZT with electron trapping properties of nano-sized insulators (BaTiO3 or SiO2), and their piezoelectric, mechanic and electromechanic properties significantly change. In this study, the relationship between the piezoelectric constant and the coupling factor values of microstructure (PZT-PVDF) and the hybrid structure (PZT-PVDF-BaTiO3) composite are compared. The d33 value and the coupling factor of the hybrid structure have shown an average of 54 and 62% increase according to microstructure composite, respectively. In addition, the d33 value and the coupling factor of the hybrid structure (PZT-HDPE-SiO2) have exhibited about 68 and 52% increase according to microstructure composite (PZT-HDPE), respectively.

  10. Hybrid Radio/Free-Space Optical Design for Next Generation Backhaul Systems

    KAUST Repository

    Douik, Ahmed

    2016-04-22

    The deluge of date rate in today\\'s networks imposes a cost burden on the backhaul network design. Developing cost-efficient backhaul solutions becomes an exciting, yet challenging, problem. Traditional technologies for backhaul networks, including either radio-frequency (RF) backhauls or optical fibers (OF). While RF is a cost-effective solution as compared with OF, it supports the lower data rate requirements. Another promising backhaul solution is the free-space optics (FSO) as it offers both a high data rate and a relatively low cost. The FSO, however, is sensitive to nature conditions, e.g., rain, fog, and line-of-sight. This paper combines both the RF and FSO advantages and proposes a hybrid RF/FSO backhaul solution. It considers the problem of minimizing the cost of the backhaul network by choosing either OF or hybrid RF/FSO backhaul links between the base stations, so as to satisfy data rate, connectivity, and reliability constraints. It shows that under a specified realistic assumption about the cost of OF and hybrid RF/FSO links, the problem is equivalent to a maximum weight clique problem, which can be solved with moderate complexity. Simulation results show that the proposed solution shows a close-to-optimal performance, especially for reasonable prices of the hybrid RF/FSO links. They further reveal that the hybrid RF/FSO is a cost-efficient solution and a good candidate for upgrading the existing backhaul networks. © 2016 IEEE.

  11. The behavior of maize hybrids generated from contrasting progenies regarding the use of nitrogen

    Directory of Open Access Journals (Sweden)

    Fernando Lisboa Guedes

    2014-11-01

    Full Text Available The purpose of this study was to evaluate the performance of maize hybrids synthesized from contrasting genotypes with regard to the use of nitrogen that were selected for their performance in topcrosses. Sixty-seven S0:1 progenies derived from the germplasm bank of Ufla were evaluated in topcross combinations with two testers  at two nitrogen levels. The six progenies with the greatest tolerance and responsiveness to nitrogen (RT and the five with the least tolerance and responsiveness (RnTn were selected and, were, afterwards, crossed in a complete diallel, for a total of 55 hybrid combinations. The following genetic parameters were estimated: genetic variance among the hybrids (σ^2G, broad sense heritability in the mean of the hybrids, and selective accuracy (r^2gg. It was observed that the genetic parameters were greater in the environments with available nitrogen and that the early selection by performance in topcrosses of progenies tolerant to low N levels may not be made with high intensity. The hybrids tolerant to low N levels were obtained by crossing contrasting parents.

  12. Hybrid System Modeling and Full Cycle Operation Analysis of a Two-Stroke Free-Piston Linear Generator

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2017-02-01

    Full Text Available Free-piston linear generators (FPLGs have attractive application prospects for hybrid electric vehicles (HEVs owing to their high-efficiency, low-emissions and multi-fuel flexibility. In order to achieve long-term stable operation, the hybrid system design and full-cycle operation strategy are essential factors that should be considered. A 25 kW FPLG consisting of an internal combustion engine (ICE, a linear electric machine (LEM and a gas spring (GS is designed. To improve the power density and generating efficiency, the LEM is assembled with two modular flat-type double-sided PM LEM units, which sandwich a common moving-magnet plate supported by a middle keel beam and bilateral slide guide rails to enhance the stiffness of the moving plate. For the convenience of operation processes analysis, the coupling hybrid system is modeled mathematically and a full cycle simulation model is established. Top-level systemic control strategies including the starting, stable operating, fault recovering and stopping strategies are analyzed and discussed. The analysis results validate that the system can run stably and robustly with the proposed full cycle operation strategy. The effective electric output power can reach 26.36 kW with an overall system efficiency of 36.32%.

  13. A hybrid solar photovoltaic-wind turbine-Rankine cycle for electricity generation in Turkish Republic of Northern Cyprus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available This paper presents an energy demand model by designing a hybrid solar-wind-thermal power generation system of the Turkish Republic of Northern Cyprus, a promising substitute for the expensive battery banks. The study models the future energy demand of Turkish Republic of Northern Cyprus based on the IPCC emissions scenario A1B and A2 by designing a new hybrid solar-wind-thermal power system that satisfies the current and future requirements of firm capacity during peak periods. The study suggests an improvement in a hybrid solar-wind-thermal power system performance by predicting reliable outputs that can integrate renewable energy technologies to conventional power generation. The energy consumption prediction model emphasizes the energy requirement that has a growing demand from 300 to 400 GWh in scenario A1B and 150–450 GWh in scenario A2 from 2010 to 2050. The proposed design can meet 400 GWh of electricity demand in TRNC based on IPCC scenario A1B and 450 GWh of electricity demand in TRNC based on IPCC scenario A2. The percentage contribution of solar, wind and thermal energy for 2010, 2020, 2030, 2040 and 2050 are presented along with CO2 emissions and water consumption for each of the years.

  14. Free-standing carbon nanotube/graphene hybrid papers as next generation adsorbents.

    Science.gov (United States)

    Dichiara, Anthony B; Sherwood, Tyler J; Benton-Smith, Jared; Wilson, Jonathan C; Weinstein, Steven J; Rogers, Reginald E

    2014-06-21

    The adsorption of a series of aromatic compounds from aqueous solution onto purified, free-standing single-walled carbon nanotube/graphene nanoplatelet hybrid papers is studied both experimentally and theoretically. Experimental data is obtained via changes in optical absorption spectra of the aqueous solutions and is used to extract all parameters required to implement a semi-empirical mass-transfer model. Agreement between experiment and theory is excellent and data from all compounds can be cast on a universal adsorption curve. Results indicate that the rate of adsorption and long-time capacity of many aromatic compounds on hybrid paper adsorbent significantly exceeds that of activated carbon by at least an order of magnitude. The combination of carbon nanotubes and graphene also promotes on the order of a 25% improvement in adsorption rates and capacities than either component alone. Hybrid nanocomposites show significant promise as adsorption materials used for environmental remediation efforts.

  15. Intermediate fertile Triticum aestivum (+) Agropyron elongatum somatic hybrids are generated by low doses of UV irradiation

    Institute of Scientific and Technical Information of China (English)

    Ai Xia CHENG; Guang Min XIA; Da Ying ZHI; Hui Min CHEN

    2004-01-01

    We report the production and characterization of somatic hybrids between Triticum aestivum L. and Agropyron elongatum (Host) Nevishi (the synonym is Thinopyrum ponticum). Asymmetric protoplast fusion was performed between Agropyron elongatum protoplasts irradiated with a low UV dose and protoplasts of wheat taken from nonregenerable suspension cultures. More than 40 green plantlets were obtained from 15 regenerated clones and one of them produced seeds. The phenotypes of the hybrid plants and seeds were intermediate between wheat and Agropyron elongatum. All of the regenerated calli and plants were verified as intergeneric hybrids on the basis of morphological observation and analysis of isozyme,cytological,5SrDNA spacer sequences and random amplified polymorphic DNA (RAPD). RFLP analysis of the mitochondrial genome revealed evidence of random segregation and recombination of mtDNA.

  16. A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices

    CERN Document Server

    Schell, Andreas W; Schröder, Tim; Wolters, Janik; Aichele, Thomas; Benson, Oliver

    2011-01-01

    Integrated quantum optical hybrid devices consist of fundamental constituents such as single emitters and tailored photonic nanostructures. A reliable fabrication method requires the controlled deposition of active nanoparticles on arbitrary nanostructures with highest precision. Here, we describe an easily adaptable technique that employs picking and placing of nanoparticles with an atomic force microscope combined with a confocal setup. In this way, both the topography and the optical response can be monitored simultaneously before and after the assembly. The technique can be applied to arbitrary particles. Here, we focus on nanodiamonds containing single nitrogen vacancy centers, which are particularly interesting for quantum optical experiments on the single photon and single emitter level.

  17. Development of Convergence Nanoparticles (Phase II): Detection and Therapeutics of Pathogen Targets by Using Multi-Mode Hybrid Nanoparticle Probe

    Science.gov (United States)

    2010-04-05

    using heat generation effect of magnetic component. 15. SUBJECT TERMS Bio -applications, Nanotechnology 16. SECURITY CLASSIFICATION OF: 17...for the next generation biomedical sensing techniques, which will be very useful for anti-pathogenic and anti- bio /chemical warfares as well as normal...components such as magnetic, bio -active, optical, radioactive, and heat-generating materials into a single nanosystem via molecular linkers, it was

  18. Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field

    DEFF Research Database (Denmark)

    Mehrali, Mohammad; Sadeghinezhad, Emad; Akhiani, Amir Reza

    2017-01-01

    The heat transfer characteristics and entropy generation rate of hybrid graphene-magnetite nanofluids under forced laminar flow that subjected to the permanent magnetic fields were investigated. For this purpose, a nanoscale reduced graphene oxide-Fe3O4 hybrid was synthesized by using graphene...... oxide, iron salts and tannic acid as the reductant and stabilizer. The thermophysical and magnetic properties of the hybrid nanofluid have been widely characterized and thermal conductivity has shown an enhancement of 11%. The experimental results indicated that the heat transfer enhancement of hybrid...

  19. A hybrid soliton-based system: generation and steering of cavity solitons by means of photorefractive soliton electro-activation

    CERN Document Server

    Columbo, Lorenzo; Brambilla, Massimo; Prati, Franco; Tissoni, Giovanna

    2012-01-01

    We propose a hybrid soliton-based system consisting of a centrosymmetric photorefractive crystal, supporting photorefractive solitons, coupled to a vertical cavity surface emitting laser, supporting multistable cavity solitons. The composite nature of the system, which couples a propagative/conservative field dynamics to a stationary/dissipative one, allows to observe a more general and unified system phenomenology and to conceive novel photonic functionalities. The potential of the proposed hybrid system becomes clear when investigating the generation and control of cavity solitons by propagating a plane wave through electro-activated solitonic waveguides in the crystal. By changing the electro-activation voltage of the crystal, we prove that cavity solitons can be turned on and shifted with controlled velocity across the device section. The scheme can be exploited for applications to optical information encoding and processing.

  20. Focused upon hybridization: rapid and high sensitivity detection of DNA using isotachophoresis and peptide nucleic acid probes.

    Science.gov (United States)

    Ostromohov, Nadya; Schwartz, Ortal; Bercovici, Moran

    2015-09-15

    We present a novel assay for rapid and high sensitivity detection of nucleic acids without amplification. Utilizing the neutral backbone of peptide nucleic acids (PNA), our method is based on the design of low electrophoretic mobility PNA probes, which do not focus under isotachophoresis (ITP) unless bound to their target sequence. Thus, background noise associated with free probes is entirely eliminated, significantly improving the signal-to-noise ratio while maintaining a simple single-step assay requiring no amplification steps. We provide a detailed analytical model and experimentally demonstrate the ability to detect targets as short as 17 nucleotides (nt) and a limit of detection of 100 fM with a dynamic range of 5 decades. We also demonstrate that the assay can be successfully implemented for detection of DNA in human serum without loss of signal. The assay requires 15 min to complete, and it could potentially be used in applications where rapid and highly sensitive amplification-free detection of nucleic acids is desired.

  1. Dynamic modeling of hybrid energy storage systems coupled to photovoltaic generation in residential applications

    Science.gov (United States)

    Maclay, James D.; Brouwer, Jacob; Samuelsen, G. Scott

    A model of a photovoltaic (PV) powered residence in stand-alone configuration was developed and evaluated. The model assesses the sizing, capital costs, control strategies, and efficiencies of reversible fuel cells (RFC), batteries, and ultra-capacitors (UC) both individually, and in combination, as hybrid energy storage devices. The choice of control strategy for a hybrid energy storage system is found to have a significant impact on system efficiency, hydrogen production and component utilization. A hybrid energy storage system comprised of batteries and RFC has the advantage of reduced cost (compared to using a RFC as the sole energy storage device), high system efficiency and hydrogen energy production capacity. A control strategy that preferentially used the RFC before the battery in meeting load demand allows both grid independent operation and better RFC utilization compared to a system that preferentially used the battery before the RFC. Ultra-capacitors coupled with a RFC in a hybrid energy storage system contain insufficient energy density to meet dynamic power demands typical of residential applications.

  2. Fourth Generation Broadband Delivered by Hybrid FttH Solution — A Techno-Economic Study

    NARCIS (Netherlands)

    Phillipson, F.; Smit-Rietveld, C.J.C.; Verhagen, W.P.

    2013-01-01

    The use of fibre will be inevitable for transporting hundreds of Mb/s to and from end-users, but this does not necessary mean that fibre has to be deployed all the way up to a point into the home. An alternative is bringing fibre up to the Home (Hybrid FttH) and reusing existing telephony wiring for

  3. [Application of somatic hybrids between dihaploids of potato Solanum tuberosum L. and wild diploid species from Mexico in breeding: generation and backcrossing of dihaploids of somatic hybrids].

    Science.gov (United States)

    Ermishin, A P; Makhan'ko, O V; Voronkova, E V

    2006-12-01

    The efficiency of an original approach to involvement of the valuable genetic pool of wild diploid potato species from Mexico is estimated. The essence of this method is in generation of dihaploids (2n = 2x = 24) of tetraploid somatic hybrids (2n = 4x = 48) followed by backcrossing with dihaploids of Solanum tuberosum. A haploid producer, S. phureja IvP35, was used to generate ten dihaploids of S. tuberosum + S. pinnatisectum, all of which crossed with fertile S. tuberosum dihaploids and developed plump viable seeds. This gives the possibility of an efficient introgression of the genes valuable for breeding from wild species to the bred plants at a diploid level, which has several advantages compared with the corresponding procedure at a tetraploid level. A part of the dihaploids produced was compatible (the pollen tubes reached the ovary) with diploid and tetraploid forms of S. pinnatisectum; however, no viable seeds were developed. The attempt to generate the dihaploids of S. tuberosum + S. bulbocastanum somatic hydrides using the haploid producer S. phureja IvP35 was unsuccessful.

  4. A novel method to characterize bacterial communities affected by carbon source and electricity generation in microbial fuel cells using stable isotope probing and Illumina sequencing.

    Science.gov (United States)

    Song, Yang; Xiao, Li; Jayamani, Indumathy; He, Zhen; Cupples, Alison M

    2015-01-01

    Stable isotope probing and high throughput sequencing were used to characterize the microbial communities involved in carbon uptake in microbial fuel cells at two levels of electricity generation. With acetate, the dominant phylotypes involved in carbon uptake included Geobacter and Rhodocyclaceae. With glucose, both Enterobacteriaceae and Geobacter were dominant.

  5. Hybrid Atmospheric, Land, and Oceanic (HALO) Measurements for Next-Generation Remote Sensing Applications

    Science.gov (United States)

    Bernhard, G. H.; Morrow, J. H.; Booth, C. R.; Hooker, S.

    2011-12-01

    In response to the need for oceanographers to be able to make atmospheric and oceanic observations during mission calibration exercises, NASA partnered with Biospherical Instruments Inc to develop a new class of instruments based on very small and highly accurate microradiometers. These innovative radiometers have been developed as part of a new vicarious calibration paradigm called the Optical Sensors for Planetary Radiant Energy (OSPREy) project with emphasis on achieving greater spectral resolution in optically complex (coastal) waters. An OSPREy sensor suite includes radiometers equipped with cosine diffusers and robotic shadow bands to measure global and diffuse irradiance, as well as radiometers with 2.5° field-of-view radiance optics mounted on pointing units to measure the Sun, Moon, sky, and sea. OSPREy sensors are temperature-stabilized, hybrid instruments consisting of up to 19 fixed-wavelength (filter) microradiometers (spanning 320 to 1640 nm) and a Zeiss spectrograph (300 to 785 or 1100 nm). The filter channels have a bandwidth of 10 nm, a dynamic range of 10 orders of magnitude, and can sample simultaneously at rates up to 20 Hz. Sensors are NIST traceable and can be calibrated using a new instrument called the OSPREy Transfer Radiometer (OXR). OSPREy radiance radiometers have a nine-position filter-wheel in line with the spectrograph fiber optics to permit hyperspectral polarimetric measurements, direct-Sun viewing, stray-light correction, and dark current measurements. A miniature camera is integrated in radiance sensors for locating the Sun (accuracy of ±0.02°) and verifying the condition of all targets (cloud-free solar disk, cloud presence in sky data, and sea surface debris or foam detection). The pointing device has an angular velocity of up to 50° per second for sky observations, including almucantar and principle plane scans. Atmospheric data from a field commissioning exercise are presented, focusing on global, diffuse, and direct

  6. Towards 4th generation biomaterials: a covalent hybrid polymer-ormoglass architecture

    Science.gov (United States)

    Sachot, N.; Mateos-Timoneda, M. A.; Planell, J. A.; Velders, A. H.; Lewandowska, M.; Engel, E.; Castaño, O.

    2015-09-01

    Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed on its surface mimicking the structure of the ECM of bone. Here, polylactic acid electrospun fibers have been successfully and reproducibly coated with a bioactive organically modified glass (ormoglass, Si-Ca-P2 system) covalently. In comparison with the pure polymeric mats, the fibers obtained showed improved hydrophilicity and mechanical properties, bioactive ion release, exhibited a nanoroughness and enabled good cell adhesion and spreading after just one day of culture (rMSCs and rEPCs). The fibers were coated with different ormoglass compositions to tailor their surface properties (roughness, stiffness, and morphology) by modifying the experimental parameters. Knowing that cells modulate their behavior according to the exposed physical and chemical signals, the development of this instructive material is a valuable advance in the design of functional regenerative biomaterials.Hybrid materials are being extensively investigated with the aim of mimicking the ECM microenvironment to develop effective solutions for bone tissue engineering. However, the common drawbacks of a hybrid material are the lack of interactions between the scaffold's constituents and the masking of its bioactive phase. Conventional hybrids often degrade in a non-homogeneous manner and the biological response is far from optimal. We have developed a novel material with strong interactions between constituents. The bioactive phase is directly exposed

  7. Next-generation repeat-free FISH probes for DNA amplification in glioblastoma in vivo: Improving patient selection to MDM2-targeted inhibitors.

    Science.gov (United States)

    Brunelli, Matteo; Eccher, Albino; Cima, Luca; Trippini, Tobia; Pedron, Serena; Chilosi, Marco; Barbareschi, Mattia; Scarpa, Aldo; Pinna, Giampietro; Cabrini, Giulio; Pilotto, Sara; Carbognin, Luisa; Bria, Emilio; Tortora, Giampaolo; Fioravanzo, Adele; Schiavo, Nicola; Meglio, Mario; Sava, Teodoro; Belli, Laura; Martignoni, Guido; Ghimenton, Claudio

    2017-01-01

    A next-generation FISH probe mapping to the MDM2 locus-specific region has recently been designed. The level of MDM2 gene amplification (high versus low) may allow selection of patients for cancer treatment with MDM2 inhibitors and may predict their responsiveness. We investigated the spectrum of MDM2 gene alterations using the new probes in vivo after visualizing single neoplastic cells in situ from a series of glioblastomas. Signals from next-generation repeat-free FISH interphase probes were identified in tissue microarrays that included 3 spots for each of the 48 cases. The murine double minutes (MDM2)-specific DNA probe and the satellite enumeration probe for chromosome 12 were used. Three cases (6%) showed more than 25 signals (high gene amplification), and 7 (15%) showed 3-10 signals (gains); among these, 4 cases (8%) had an equal number of MDM2 and centromeric signals on chromosome 12 (polyploidy). Genomic heterogeneity was observed only in 3 cases with low gene amplification. In our series, 6% of glioblastomas exhibited high MDM2 amplification (in vivo) with a pattern related to the known double minutes/chromothripsis phenomenon (in situ), and only cases with low amplification showed genomic heterogeneity. We concluded that the rate of MDM2 gene amplification can be a useful predictive biomarker to improve patient selection.

  8. Traffic dynamics in empirical probe vehicle data studied with three-phase theory: Spatiotemporal reconstruction of traffic phases and generation of jam warning messages

    Science.gov (United States)

    Kerner, Boris S.; Rehborn, Hubert; Schäfer, Ralf-Peter; Klenov, Sergey L.; Palmer, Jochen; Lorkowski, Stefan; Witte, Nikolaus

    2013-01-01

    Empirical and theoretical analyses of the spatiotemporal dynamics of traffic flow reconstructed from randomly distributed probe vehicle data are presented. For the empirical analysis, probe vehicle data generated by TomTom’s navigation devices in the commercial TomTom’s HD-traffic service as well as road detector data measured at the same road section are used. A stochastic microscopic (car-following) three-phase model is further developed for simulations of a real empirical complex spatiotemporal traffic dynamics measured over a three-lane long road stretch with several different bottlenecks. Physical features and limitations of simulations of real spatiotemporal traffic dynamics are revealed. Phase transition points between free flow (F), synchronized flow (S), and wide moving jam (J) are identified along trajectories of empirical and simulated probe vehicles randomly distributed in traffic flow. As predicted by three-phase theory, the empirical probe vehicle data shows that traffic breakdown is an F→S transition and wide moving jams emerge only in synchronized flow, i.e., due to S→J transitions. Through the use of the simulations, it has been found that already about 2% of probe vehicle data allows us to reconstruct traffic dynamics in space and time with an accuracy that is high enough for most applications like the generation of jam warning messages studied in the article.

  9. Enhanced optical second harmonic generation in hybrid polymer nanoassemblies based on coupled surface plasmon resonance of a gold nanoparticle array

    Science.gov (United States)

    Ishifuji, Miki; Mitsuishi, Masaya; Miyashita, Tokuji

    2006-07-01

    Effective utilization of coupled surface plasmon resonance from gold nanoparticles was demonstrated experimentally for optoelectronic applications based on second-order nonlinear optics. Hybrid polymer nanoassemblies were constructed by manipulating gold nanoparticle arrays with nonlinear optical active polymer nanosheets to investigate the second harmonic generation. The gold nanoparticle arrays were assembled on heterodeposited polymer nanosheets. The second harmonic light intensity was enhanced by a factor of 8. The observed enhancement was attributed to coupling of surface plasmons between two adjacent gold nanoparticles, thereby enhancing the surface electromagnetic field around the nanoparticles at the fundamental light wavelength (1064nm).

  10. Next-generation sequencing analysis of lager brewing yeast strains reveals the evolutionary history of interspecies hybridization.

    Science.gov (United States)

    Okuno, Miki; Kajitani, Rei; Ryusui, Rie; Morimoto, Hiroya; Kodama, Yukiko; Itoh, Takehiko

    2016-02-01

    The lager beer yeast Saccharomyces pastorianus is considered an allopolyploid hybrid species between S. cerevisiae and S. eubayanus. Many S. pastorianus strains have been isolated and classified into two groups according to geographical origin, but this classification remains controversial. Hybridization analyses and partial PCR-based sequence data have indicated a separate origin of these two groups, whereas a recent intertranslocation analysis suggested a single origin. To clarify the evolutionary history of this species, we analysed 10 S. pastorianus strains and the S. eubayanus type strain as a likely parent by Illumina next-generation sequencing. In addition to assembling the genomes of five of the strains, we obtained information on interchromosomal translocation, ploidy, and single-nucleotide variants (SNVs). Collectively, these results indicated that the two groups of strains share S. cerevisiae haploid chromosomes. We therefore conclude that both groups of S. pastorianus strains share at least one interspecific hybridization event and originated from a common parental species and that differences in ploidy and SNVs between the groups can be explained by chromosomal deletion or loss of heterozygosity.

  11. Assessing the Impact of Wind/PV Power Generation and Market Policies on Decentralized Hybrid Systems

    DEFF Research Database (Denmark)

    S.M. Arnoux, Luciana; Santiago, Leonardo

    either on forecasting the energy potential or assessing the expected economic viability of the hybrid system. However, our approach allows decision makers to investigate the impact of key design features and market policies on several levels of system performance metrics, as opposed to only the expected...... level. Therefore, we appropriately assess the inherent uncertainty and design options. First, we use linear and quantile regression models to estimate the wind speed and solar insolation. Then, we use different quantiles as an input for the hybrid system design to assess market policies (e.g., net...... metering). Finally, we shed light on the performance metrics of the energy system: reliability, economy, and efficiency. We illustrate our approach by using data from a city in Brazil and analyze the behavior of system’s key parameters. We close by suggesting possible implications for managing new...

  12. Single-Board-Computer-Based Traffic Generator for a Heterogeneous and Hybrid Smart Grid Communication Network

    OpenAIRE

    Do Nguyet Quang; Ong Hang See; Lai Lee Chee; Che Yung Xuen; Shashiteran A/L. Karuppiah

    2014-01-01

    In smart grid communication implementation, network traffic pattern is one of the main factors that affect the system’s performance. Examining different traffic patterns in smart grid is therefore crucial when analyzing the network performance. Due to the heterogeneous and hybrid nature of smart grid, the type of traffic distribution in the network is still unknown. The traffic that popularly used for simulation and analysis no longer reflects the real traffic in a multi-technology and bi-dir...

  13. Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems

    KAUST Repository

    Dahrouj, Hayssam

    2015-10-28

    The rapid pace of demand for mobile data services and the limited supply of capacity in the current wireless access networks infrastructure are leading network operators to increase the density of base station deployments to improve network performance. This densification, made possible by small-cell deployment, also brings a novel set of challenges, specifically related to the cost of ownership, in which backhaul is of primary concern. This article proposes a cost-effective hybrid RF/free-space optical (FSO) solution to combine the advantages of RF backhauls (low cost, NLOS applications) and FSO backhauls (high-rate, low latency). To first illustrate the cost advantages of the RF backhaul solution, the first part of this article presents a business case of NLOS wireless RF backhaul, which has a low cost of ownership as compared to other backhaul candidates. RF backhaul, however, is limited by latency problems. On the other side, an FSO solution, which offers better latency and higher data rate than RF backhauls, remains sensitive to weather and nature conditions (e.g., rain, fog). To combine RF and FSO advantages, the second part of this article proposes a lowcost hybrid RF/FSO solution, wherein base stations are connected to each other using either optical fiber or hybrid RF/FSO links. This part addresses the problem of minimizing the cost of backhaul planning under reliability, connectivity, and data rate constraints, and proposes choosing the appropriate cost-effective backhaul connection between BSs (i.e., either OF or hybrid RF/FSO) using graph theory techniques.

  14. Mechanisms generating modification of benthos following tidal flat invasion by a Spartina hybrid.

    Science.gov (United States)

    Neira, Carlos; Grosholz, Edwin D; Levin, Lisa A; Blake, Rachael

    2006-08-01

    Many coastal habitats are being substantially altered by introduced plants. In San Francisco Bay, California, USA, a hybrid form of the eastern cordgrass Spartina alterniflora is rapidly invading open mudflats in southern and central sections of the Bay, altering habitat, reducing macrofaunal densities, and shifting species composition. The invasion has resulted in significant losses of surface-feeding amphipods, bivalves, and cirratulid polychaetes, while subsurface feeding groups such as tubificid oligochaetes and capitellid polychaetes have been unaffected. In the present paper, we document the causes and mechanisms underlying the changes observed. Through a series of in situ manipulative experiments we examined the influence of hybrid Spartina canopy on a range of physical, chemical, and biological properties. The hybrid Spartina canopy exerted a strong influence on the hydrodynamic regime, triggering a series of physical, chemical, and biological changes in the benthic system. Relative to tidal flats, water velocity was reduced in hybrid patches, promoting deposition of fine-grained, organic-rich particles. The resulting changes in the sediment environment included increased porewater sulfide concentrations and anoxia, which led to poor survivorship of surface feeders such as bivalves, amphipods, and polychaetes. These are key taxa that support higher trophic levels including migratory shorebirds that feed on tidal flats. Altered flow in the Spartina canopy further contributed to changes in barnacle recruitment and resuspension of adult benthic invertebrates. Increased crab-induced predation pressure associated with Spartina invasion also contributed to changes in benthic invertebrate communities. Our results suggest that multiple physical, chemical, biotic, and trophic impacts of the Spartina invasion have resulted in substantial changes in benthic communities that are likely to have important effects on the entire ecosystem.

  15. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    Science.gov (United States)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The

  16. Towards generating a new supernova equation of state: A systematic analysis of cold hybrid stars

    CERN Document Server

    Heinimann, Oliver; Thielemann, Friedrich-Karl

    2016-01-01

    The hadron-quark phase transition in core-collapse supernovae (CCSNe) has the potential to trigger explosions in otherwise non-exploding models. However, those hybrid supernova equations of state (EOS) shown to trigger an explosion do not support the observational 2 M_sun neutron star maximum mass constraint. In this work, we analyze cold hybrid stars by the means of a systematic parameter scan for the phase transition properties, with the aim to develop a new hybrid supernova EOS. The hadronic phase is described with the state-of-the-art supernova EOS HS(DD2), and quark matter by an EOS with a constant speed of sound ("CSS"). We find promising cases which meet the 2 M_sun criterion and are interesting for CCSN explosions. We show that the very simple CSS EOS is transferable into the well known thermodynamic bag model, important for future application in CCSN simulations. In the second part, the occurrence of reconfinement and multiple phase transitions is discussed. In the last part, the influence of hyperon...

  17. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    Science.gov (United States)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2016-07-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  18. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    Science.gov (United States)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2017-02-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  19. Design of species-specific oligonucleotide probes for the detection of Bacteroides and Parabacteroides by fluorescence in situ hybridization and their application to the analysis of mouse caecal Bacteroides-Parabacteroides microbiota.

    Science.gov (United States)

    Momose, Y; Park, S H; Miyamoto, Y; Itoh, K

    2011-07-01

    To develop species-specific monitoring techniques for rapid detection of Bacteroides and Parabacteroides inhabiting the mouse intestine by fluorescence in situ hybridization. The specificity of oligonucleotide probes was evaluated by fluorescence whole-cell hybridization. Oligonucleotide probes specific for each species hybridized only with the target bacteria. Using these probes, caecal Bacteroides-Parabacteroides microbiota of conventional mice and specific pathogen-free (SPF) mice from three different breeders were analysed. It was shown that Bacteroides acidifaciens Group-1, Group-2 and Group-3 were dominant in conventional mice and SPF mice from two out of three breeders. Bacteroides vulgatus and Parabacteroides distasonis were detected in one of these two SPF breeding colonies in addition to Bact. acidifaciens. SPF mice of the remaining breeder harboured characteristic Bacteroides-Parabacteroides microbiota, consisting of Bacteroides sp. ASF519 and Bacteroides caccae. Bacteroides acidifaciens is the dominant and most typical species in the mouse Bacteroides-Parabacteroides microbiota. The Group-3 was identified as a novel group and revealed to occupy a major niche together with Bact. acidifaciens Group-1 and Group-2. The species-specific probe set developed in this study was the efficient tool for rapid detection of target bacterial groups inhabiting the mouse intestine. The results of this study provide important new information on the mouse Bacteroides-Parabacteroides community. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  20. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    Science.gov (United States)

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  1. Home and away: hybrid perspective on identity formation in 1.5 and second generation adolescent immigrants in Israel.

    Directory of Open Access Journals (Sweden)

    Robin A. Harper

    2013-12-01

    Full Text Available Immigration is not only about changing countries, but also about shifting identities. This change is especially important for adolescents. This article examines identity formation among 1.5 and 2nd generation adolescent immigrants to Israel. A survey of 125 children of immigrants aged 12-19 examined the role of social structures such as pace of life, culture, religion and language on identity formation in 1.5 and 2nd generational groups. We have identified several significant factors affecting the identities of children of migrants in each group. Looking beyond self-labeling, we argue that identity formation among children of immigrants is a continuous process in which the host country and origin country, both or neither of them, create dynamic hybrid patterns of identifications.

  2. Material and cooling requirements for poly-Bitter resistive magnets and hybrid inserts generating continuous fields up to 50 T

    Energy Technology Data Exchange (ETDEWEB)

    Gao, B.J.; Bird, M.D.; Eyssa, Y.M.; Schneider-Muntau, H.J. [National High Magnetic Field Lab., Tallahassee, FL (United States)

    1994-07-01

    The new National High Magnetic Field Laboratory (NHMFL), equipped with a 40 MW DC power supply, will design and construct the next generation of high field resistive magnets and hybrid inserts generating DC fields up to 50 T. The authors present a study on the required materials and the necessary cooling characteristics, these magnets need. The configuration selected for this study consists of a combination of thin poly-Bitter and thick Bitter coils optimized in dimensions and power under constraint of maximum design stress and heat removal to obtain maximum field. The study shows that each design requires a different optimum ratio of conductor strength to electrical conductivity and that efficient cooling is only advantageous if strong copper alloys are used. For efficient use of the available power the development of new high strength, high conductivity materials will be necessary. Equally important are improvements in the heat transfer characteristics of these high power density magnets.

  3. Integration of Hybrid PV/Wind Generation System Using Fuzzy MPPT in Grid Connected System for Remote Area

    Directory of Open Access Journals (Sweden)

    Soedibyo

    2016-01-01

    Full Text Available Photovoltaic and wind are renewable energy resources that widely used and grow rapidly in fulfilling electricity demand. Powers from both technologies depend on sunlight intensity and wind speed. For small scale power generation, DC voltage from both technologies is low and requires step-up converter to raise DC voltage ratio before converted into AC voltage. To optimize this system, step-up converter must have high ratio and efficiency to a distance of wide voltage input. This paper proposed an operation simulation and arrangement of DC-DC converter along with DC-AC from hybrid source PV-Wind which integrated to grid utilities without using storage device. High Gain Integrated Cascade Boost (HGICB is DC-DC converter that has quadratic voltage ratio and used in this research. Then DC link connected to Voltage Source Inverter (VSI which interconnected with utility grid and controlled by current control method. The total installed capacity of hybrid source is 4.4 kW. Wind turbine uses PMSG along with full bridge rectifier. To maximize and stabilize the generated power, MPPT fuzzy is used. Result from the simulation shows that converter capable to maintain maximum power whether from PV and wind turbine which canalized to utility grid in various irradiation condition, wind speed, and grid load alteration.

  4. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids

    Science.gov (United States)

    Zhang, Xin; Du, Zengfeng; Zheng, Ronger; Luan, Zhendong; Qi, Fujun; Cheng, Kai; Wang, Bing; Ye, Wangquan; Liu, Xiaorui; Lian, Chao; Chen, Changan; Guo, Jinjia; Li, Ying; Yan, Jun

    2017-05-01

    Hydrothermal vent fluids, cold seep fluids, their associated chemosynthetic communities, and the biogeochemical anaerobic oxidation of methane (AOM) play very important roles in the biogeochemical sulfur and carbon cycles in the ocean. Based on our previous success developing and deploying a deep-sea sediment pore water Raman probe, we developed a new deep-sea hybrid Raman insertion probe (RiP) designed to operate at temperatures up to 450 °C that can be inserted directly into high-temperature fluids emerging from hydrothermal vents. By routinely exchanging the various tips and optics of the probe, we can analyze the geochemistry of hydrothermal vent fluids, cold seep fluids, and sediment pore water profiles (0-60 cm) in situ. The instrument ensemble also includes a new deep-sea laser Raman spectrometer in a custom-designed, 6000-m titanium pressure housing, which is powered, controlled and deployed by the remotely operated vehicle (ROV) Faxian down to a maximum water depth of 4500 m. The new RiP was deployed at the Izena Hole hydrothermal area in the middle Okinawa Trough back-arc basin; the Papua-Australia-Canada-Manus (PACManus) hydrothermal vent area in the Manus back-arc basin, Papua New Guinea; and a cold seep field at Formosa Ridge in the northern South China Sea. The Raman peaks of CO2, CH4, H2S, HS-, SO42- and S8 were obtained in situ from high-temperature hydrothermal vents (290 °C), low-temperature cold seep fluids (2 °C) and the surrounding sediment pore water. Dissolved CH4 and S8 were identified for the first time in the fluids under the lush chemosynthetic communities of the cold seep. Several sediment pore water profiles collected near the cold seep were characterized by the loss of SO42- and increased CH4, H2S and HS- peaks. Additionally, the in situ pH range of the pore water profile was between 6.95 and 7.22. Thus, the RiP system provides a very useful tool for investigating the geochemistry of hydrothermal vent and cold seep fluids.

  5. Flexible Transmission Network Expansion Planning Considering Uncertain Renewable Generation and Load Demand Based on Hybrid Clustering Analysis

    Directory of Open Access Journals (Sweden)

    Yun-Hao Li

    2015-12-01

    Full Text Available This paper presents a flexible transmission network expansion planning (TNEP approach considering uncertainty. A novel hybrid clustering technique, which integrates the graph partitioning method and rough fuzzy clustering, is proposed to cope with uncertain renewable generation and load demand. The proposed clustering method is capable of recognizing the actual cluster distribution of complex datasets and providing high-quality clustering results. By clustering the hourly data for renewable generation and load demand, a multi-scenario model is proposed to consider the corresponding uncertainties in TNEP. Furthermore, due to the peak distribution characteristics of renewable generation and heavy investment in transmission, the traditional TNEP, which caters to rated renewable power output, is usually uneconomic. To improve the economic efficiency, the multi-objective optimization is incorporated into the multi-scenario TNEP model, while the curtailment of renewable generation is considered as one of the optimization objectives. The solution framework applies a modified NSGA-II algorithm to obtain a set of Pareto optimal planning schemes with different levels of investment costs and renewable generation curtailments. Numerical results on the IEEE RTS-24 system demonstrated the robustness and effectiveness of the proposed approach.

  6. Next Generation Mapping of Enological Traits in an F2 Interspecific Grapevine Hybrid Family

    Science.gov (United States)

    Sun, Qi; Manns, David C.; Sacks, Gavin L.; Mansfield, Anna Katharine; Luby, James J.; Londo, Jason P.; Reisch, Bruce I.; Cadle-Davidson, Lance E.; Fennell, Anne Y.

    2016-01-01

    In winegrapes (Vitis spp.), fruit quality traits such as berry color, total soluble solids content (SS), malic acid content (MA), and yeast assimilable nitrogen (YAN) affect fermentation or wine quality, and are important traits in selecting new hybrid winegrape cultivars. Given the high genetic diversity and heterozygosity of Vitis species and their tendency to exhibit inbreeding depression, linkage map construction and quantitative trait locus (QTL) mapping has relied on F1 families with the use of simple sequence repeat (SSR) and other markers. This study presents the construction of a genetic map by single nucleotide polymorphisms identified through genotyping-by-sequencing (GBS) technology in an F2 mapping family of 424 progeny derived from a cross between the wild species V. riparia Michx. and the interspecific hybrid winegrape cultivar, ‘Seyval’. The resulting map has 1449 markers spanning 2424 cM in genetic length across 19 linkage groups, covering 95% of the genome with an average distance between markers of 1.67 cM. Compared to an SSR map previously developed for this F2 family, these results represent an improved map covering a greater portion of the genome with higher marker density. The accuracy of the map was validated using the well-studied trait berry color. QTL affecting YAN, MA and SS related traits were detected. A joint MA and SS QTL spans a region with candidate genes involved in the malate metabolism pathway. We present an analytical pipeline for calling intercross GBS markers and a high-density linkage map for a large F2 family of the highly heterozygous Vitis genus. This study serves as a model for further genetic investigations of the molecular basis of additional unique characters of North American hybrid wine cultivars and to enhance the breeding process by marker-assisted selection. The GBS protocols for identifying intercross markers developed in this study can be adapted for other heterozygous species. PMID:26974672

  7. Next Generation Mapping of Enological Traits in an F2 Interspecific Grapevine Hybrid Family.

    Directory of Open Access Journals (Sweden)

    Shanshan Yang

    Full Text Available In winegrapes (Vitis spp., fruit quality traits such as berry color, total soluble solids content (SS, malic acid content (MA, and yeast assimilable nitrogen (YAN affect fermentation or wine quality, and are important traits in selecting new hybrid winegrape cultivars. Given the high genetic diversity and heterozygosity of Vitis species and their tendency to exhibit inbreeding depression, linkage map construction and quantitative trait locus (QTL mapping has relied on F1 families with the use of simple sequence repeat (SSR and other markers. This study presents the construction of a genetic map by single nucleotide polymorphisms identified through genotyping-by-sequencing (GBS technology in an F2 mapping family of 424 progeny derived from a cross between the wild species V. riparia Michx. and the interspecific hybrid winegrape cultivar, 'Seyval'. The resulting map has 1449 markers spanning 2424 cM in genetic length across 19 linkage groups, covering 95% of the genome with an average distance between markers of 1.67 cM. Compared to an SSR map previously developed for this F2 family, these results represent an improved map covering a greater portion of the genome with higher marker density. The accuracy of the map was validated using the well-studied trait berry color. QTL affecting YAN, MA and SS related traits were detected. A joint MA and SS QTL spans a region with candidate genes involved in the malate metabolism pathway. We present an analytical pipeline for calling intercross GBS markers and a high-density linkage map for a large F2 family of the highly heterozygous Vitis genus. This study serves as a model for further genetic investigations of the molecular basis of additional unique characters of North American hybrid wine cultivars and to enhance the breeding process by marker-assisted selection. The GBS protocols for identifying intercross markers developed in this study can be adapted for other heterozygous species.

  8. Molecular fingerprint recombination: generating hybrid fingerprints for similarity searching from different fingerprint types.

    Science.gov (United States)

    Nisius, Britta; Bajorath, Jürgen

    2009-11-01

    Molecular fingerprints have a long history in computational medicinal chemistry and continue to be popular tools for similarity searching. Over the years, a variety of fingerprint types have been introduced. We report an approach to identify preferred bit subsets in fingerprints of different design and "recombine" these bit segments into "hybrid fingerprints". These compound class-directed fingerprint representations are found to increase the similarity search performance of their parental fingerprints, which can be rationalized by the often complementary nature of distinct fingerprint features.

  9. Directly modulated and fully tunable hybrid silicon lasers for future generation of coherent colorless ONU.

    Science.gov (United States)

    de Valicourt, G; Le Liepvre, A; Vacondio, F; Simonneau, C; Lamponi, M; Jany, C; Accard, A; Lelarge, F; Make, D; Poingt, F; Duan, G H; Fedeli, J-M; Messaoudene, S; Bordel, D; Lorcy, L; Antona, J-C; Bigo, S

    2012-12-10

    We propose and demonstrate asymmetric 10 Gbit/s upstream--100 Gbit/s downstream per wavelength colorless WDM/TDM PON using a novel hybrid-silicon chip integrating two tunable lasers. The first laser is directly modulated in burst mode for upstream transmission over up to 25 km of standard single mode fiber and error free transmission over 4 channels across the C-band is demonstrated. The second tunable laser is successfully used as local oscillator in a coherent receiver across the C-band simultaneously operating with the presence of 80 downstream co-channels.

  10. Hybrid centralized-distributed power conditioning system for thermoelectric generator with high energy efficiency

    DEFF Research Database (Denmark)

    Wu, Hongfei; Sun, Kai; Chen, Min

    2013-01-01

    the proposed system, which benefits for implementing high MPPT efficiency and high conversion efficiency simultaneously. A hybrid MPPT control strategy is proposed for this HCD power conditioning system. The characteristics, circuit implementation and operation principles of the proposed system are presented......-distributed (HCD) power conditioning system for TEG and its control strategy are proposed in this paper. The HCD power conditioning system is composed by a centralized power conversion stage and multiple distributed power conversion stages. Most of the power is processed by the centralized power conversion stage...

  11. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification.

    Science.gov (United States)

    Silahtaroglu, Asli N; Nolting, Dorrit; Dyrskjøt, Lars; Berezikov, Eugene; Møller, Morten; Tommerup, Niels; Kauppinen, Sakari

    2007-01-01

    The ability to determine spatial and temporal microRNA (miRNA) accumulation at the tissue, cell and subcellular levels is essential for understanding the biological roles of miRNAs and miRNA-associated gene regulatory networks. This protocol describes a method for fast and effective detection of miRNAs in frozen tissue sections using fluorescence in situ hybridization (FISH). The method combines the unique miRNA recognition properties of locked nucleic acid (LNA)-modified oligonucleotide probes with FISH using the tyramide signal amplification (TSA) technology. Although both approaches have previously been shown to increase detection sensitivity in FISH, combining these techniques into one protocol significantly decreases the time needed for miRNA detection in cryosections, while simultaneously retaining high detection sensitivity. Starting with fixation of the tissue sections, this miRNA FISH protocol can be completed within approximately 6 h and allows miRNA detection in a wide variety of animal tissue cryosections as well as in human tumor biopsies at high cellular resolution.

  12. The hybrid generation systems of Campinas-Amazonas and Joanes-Para

    Energy Technology Data Exchange (ETDEWEB)

    Moszkowicz, M.; Ribeiro, C. M.; Borba, A. J. V. [Centro de Pesquisas de Energia Electrica (CEPEL), (Brazil)

    1997-12-31

    The Brazilian Amazon region is an ideal location for isolated mini-grid systems. Thousands of Diesel systems have been installed to supply electricity to this sparsely populated region. However, the availability of renewable resources makes the Amazon well-suited to renewable energy systems. This paper describes the technical characteristics and touches economic aspects of two hybrid systems being installed in this region through the cooperative effort of multiple partners: Brazilian CEPEL/ELETROBRAS and State Electric Utilities and U.S. Department of Energy, through NREL. It focuses on the market potential for hybrid systems in Northern Brazil and discusses the configuration of the two prototypes, the effort to implement both systems and the preliminary results of these projects. [Espanol] La region Brasilena del Amazonas es un lugar ideal para los sistemas aislados de mini-red. Se han instalado miles de sistemas Diesel para proporcionar electricidad a esta region escasamente poblada. Sin embargo, la disponibilidad de fuentes renovables hacen la Amazonia muy adecuada para sistemas renovables de energia. Este articulo describe las caracteristicas tecnicas y toca aspectos economicos de dos sistemas hibridos que se estan instalando en esta region mediante el esfuerzo cooperativo de multiples participantes: La brasilena CEPEL/ELECTROBRAS y las Empresas Electrica Estatales, el U.S. Departament of Energy, a traves de NREL. Se enfoca al mercado potencial de sistemas hibridos en Brasil del Norte y analiza la configuracion de los dos prototipos, el esfuerzo de instaurar ambos sistemas y los resultados preliminares de estos proyectos.

  13. Solar PV power generation forecasting using hybrid intelligent algorithms and uncertainty quantification based on bootstrap confidence intervals

    Science.gov (United States)

    AlHakeem, Donna Ibrahim

    This thesis focuses on short-term photovoltaic forecasting (STPVF) for the power generation of a solar PV system using probabilistic forecasts and deterministic forecasts. Uncertainty estimation, in the form of a probabilistic forecast, is emphasized in this thesis to quantify the uncertainties of the deterministic forecasts. Two hybrid intelligent models are proposed in two separate chapters to perform the STPVF. In Chapter 4, the framework of the deterministic proposed hybrid intelligent model is presented, which is a combination of wavelet transform (WT) that is a data filtering technique and a soft computing model (SCM) that is generalized regression neural network (GRNN). Additionally, this chapter proposes a model that is combined as WT+GRNN and is utilized to conduct the forecast of two random days in each season for 1-hour-ahead to find the power generation. The forecasts are analyzed utilizing accuracy measures equations to determine the model performance and compared with another SCM. In Chapter 5, the framework of the proposed model is presented, which is a combination of WT, a SCM based on radial basis function neural network (RBFNN), and a population-based stochastic particle swarm optimization (PSO). Chapter 5 proposes a model combined as a deterministic approach that is represented as WT+RBFNN+PSO, and then a probabilistic forecast is conducted utilizing bootstrap confidence intervals to quantify uncertainty from the output of WT+RBFNN+PSO. In Chapter 5, the forecasts are conducted by furthering the tests done in Chapter 4. Chapter 5 forecasts the power generation of two random days in each season for 1-hour-ahead, 3-hour-ahead, and 6-hour-ahead. Additionally, different types of days were also forecasted in each season such as a sunny day (SD), cloudy day (CD), and a rainy day (RD). These forecasts were further analyzed using accuracy measures equations, variance and uncertainty estimation. The literature that is provided supports that the proposed

  14. Hybridization Capture Using RAD Probes (hyRAD, a New Tool for Performing Genomic Analyses on Collection Specimens.

    Directory of Open Access Journals (Sweden)

    Tomasz Suchan

    Full Text Available In the recent years, many protocols aimed at reproducibly sequencing reduced-genome subsets in non-model organisms have been published. Among them, RAD-sequencing is one of the most widely used. It relies on digesting DNA with specific restriction enzymes and performing size selection on the resulting fragments. Despite its acknowledged utility, this method is of limited use with degraded DNA samples, such as those isolated from museum specimens, as these samples are less likely to harbor fragments long enough to comprise two restriction sites making possible ligation of the adapter sequences (in the case of double-digest RAD or performing size selection of the resulting fragments (in the case of single-digest RAD. Here, we address these limitations by presenting a novel method called hybridization RAD (hyRAD. In this approach, biotinylated RAD fragments, covering a random fraction of the genome, are used as baits for capturing homologous fragments from genomic shotgun sequencing libraries. This simple and cost-effective approach allows sequencing of orthologous loci even from highly degraded DNA samples, opening new avenues of research in the field of museum genomics. Not relying on the restriction site presence, it improves among-sample loci coverage. In a trial study, hyRAD allowed us to obtain a large set of orthologous loci from fresh and museum samples from a non-model butterfly species, with a high proportion of single nucleotide polymorphisms present in all eight analyzed specimens, including 58-year-old museum samples. The utility of the method was further validated using 49 museum and fresh samples of a Palearctic grasshopper species for which the spatial genetic structure was previously assessed using mtDNA amplicons. The application of the method is eventually discussed in a wider context. As it does not rely on the restriction site presence, it is therefore not sensitive to among-sample loci polymorphisms in the restriction sites

  15. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  16. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  17. Automatic Mesh Generation of Hybrid Mesh on Valves in Multiple Positions in Feedline Systems

    Science.gov (United States)

    Ross, Douglass H.; Ito, Yasushi; Dorothy, Fredric W.; Shih, Alan M.; Peugeot, John

    2010-01-01

    Fluid flow simulations through a valve often require evaluation of the valve in multiple opening positions. A mesh has to be generated for the valve for each position and compounding. The problem is the fact that the valve is typically part of a larger feedline system. In this paper, we propose to develop a system to create meshes for feedline systems with parametrically controlled valve openings. Herein we outline two approaches to generate the meshes for a valve in a feedline system at multiple positions. There are two issues that must be addressed. The first is the creation of the mesh on the valve for multiple positions. The second is the generation of the mesh for the total feedline system including the valve. For generation of the mesh on the valve, we will describe the use of topology matching and mesh generation parameter transfer. For generation of the total feedline system, we will describe two solutions that we have implemented. In both cases the valve is treated as a component in the feedline system. In the first method the geometry of the valve in the feedline system is replaced with a valve at a different opening position. Geometry is created to connect the valve to the feedline system. Then topology for the valve is created and the portion of the topology for the valve is topology matched to the standard valve in a different position. The mesh generation parameters are transferred and then the volume mesh for the whole feedline system is generated. The second method enables the user to generate the volume mesh on the valve in multiple open positions external to the feedline system, to insert it into the volume mesh of the feedline system, and to reduce the amount of computer time required for mesh generation because only two small volume meshes connecting the valve to the feedline mesh need to be updated.

  18. Capacity optimization of battery-generator hybrid power system: Toward minimizing maintenance cost in expeditionary basecamp/operational energy applications

    Science.gov (United States)

    Onwuanumkpe, Jude C.

    Low and transient load condition are known to have deleterious impact on the efficiency and health of diesel generators (DGs). Extensive operation under such loads reduces fuel consumption and energy conversion efficiency, and contribute to diesel engine degradation, damage, or catastrophic failure. Non-ideal loads are prevalent in expeditionary base camps that support contingency operations in austere environments or remote locations where grid electricity is either non-existent or inaccessible. The impact of such loads on DGs exacerbates already overburdened basecamp energy logistics requirements. There is a need, therefore, to eliminate or prevent the occurrence of non-ideal loads. Although advances in diesel engine technologies have improved their performance, DGs remain vulnerable to the consequences of non-ideal loads and inherent inefficiencies of combustion. The mechanisms through which DGs respond to and mitigate non-ideal loads are also mechanically stressful and energy-intensive. Thus, this research investigated the idea of using batteries to prevent DGs from encountering non-ideal loads, as a way to reduce basecamp energy logistics requirements. Using a simple semi-empirical approach, the study modeled and simulated a battery-DG hybrid system under various load conditions. The simulation allowed for synthesis of design space in which specified battery and generator capacity can achieve optimal savings in fuel consumption and maintenance cost. Results show that a right-sized battery-diesel generator system allows for more than 50% cost savings relative to a standalone generator.

  19. Energy Analysis and Environmental Impacts of Hybrid Giant Napier (Pennisetum Hydridum) Direct-fired Power Generation in South China

    Science.gov (United States)

    Liao, Yanfen; Fang, Hailin; Zhang, Hengjin; Yu, Zhaosheng; Liu, Zhichao; Ma, Xiaoqian

    2017-05-01

    To meet with the demand of energy conservation and emission reduction policies, the method of life cycle assessment (LCA) was used to assess the feasibility of Hybrid Giant Napier (HGN) direct-fired power generation in this study. The entire life cycle is consisted of five stages (cultivation and harvesting, transportation, drying and comminuting, direct-fired power generation, constructing and decommissioning of biomass power plant). Analytical results revealed that to generate 10000kWh electricity, 10.925 t of customized HGN fuel (moisture content: 30 wt%) and 6659.430 MJ of energy were required. The total environmental impact potential was 0.927 PET2010 (person equivalents, targeted, in 2010) and the global warming (GW), acidification (AC), and nutrient (NE) emissions were 339.235 kg CO2-eq, 22.033 kg SO2-eq, and 25.486 kg NOx-eq respectively. The effect of AC was the most serious among all calculated category impacts. The energy requirements and environmental impacts were found to be sensitive to single yield, average transport distance, cutting frequency, and moisture content. The results indicated that HGN direct-fired power generation accorded well with Chinese energy planning; in addition, HGN proved to be a promising contribution to reducing non-renewable energy consumption and had encouraging prospects as a renewable energy plant.

  20. Evaluation of the Effect of Operating Parameters on Thermal Performance of an Integrated Starter Generator in Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2015-08-01

    Full Text Available The belt-driven-type integrated starter generator motor in a hybrid electric vehicle is vulnerable to thermal problems owing to its high output power and proximity to the engine. These problems may cause demagnetization and insulation breakdown, reducing the performance and durability of the motor. Hence, it is necessary to evaluate the thermal performance and enhance the cooling capacity of the belt-driven type Integrated Starter Generator. In this study, the internal temperature variations of the motor were investigated with respect to the operating parameters, particularly the rotation speed and environment temperature. At a maximum ambient temperature of 105 °C and rotation speed (motor design point of 4500 rpm, the coil of the motor was heated to approximately 189 °C in generating mode. The harsh conditions of the starting mode were analyzed by assuming that the motor operates during the start-up time at a maximum ambient temperature of 105 °C and rotation speed (motor design point of 800 rpm; the coil was heated to approximately 200 °C, which is close to the insulation temperature limit. The model for analyzing the thermal performance of the ISG was verified by comparing its results with those obtained through a generating-mode-based experiment

  1. The characteristics of novel bimodal Ag-TiO2 nanoparticles generated by hybrid laser-ultrasonic technique

    Science.gov (United States)

    Hamad, Abubaker; Li, Lin; Liu, Zhu; Zhong, Xiang Li; Burke, Grace; Wang, Tao

    2016-04-01

    Silver-titania (Ag-TiO2) nanoparticles with smaller Ag nanoparticles attached to larger TiO2 nanoparticles were generated by hybrid ultrasonic vibration and picosecond laser ablation of Ag and Ti bulk targets in deionised water, for the first time. The laser has a wavelength of 1064 nm and a pulse duration of 10 ps. It was observed that without the ultrasonic vibration, Ag and TiO2 nanoparticles did not combine, thus the role of ultrasonic vibration is essential. In addition, colloidal TiO2 and Ag nanoparticles were generated separately for comparison under the same laser beam characteristics and process conditions. The absorption spectra of colloidal Ag-TiO2 cluster nanoparticles were examined by UV-Vis spectroscopy, and size distribution was characterised using transmission electron microscopy. The morphology and composition of Ag-TiO2 nanoparticles were examined using scanning transmission electron microscopy in high-angle annular dark field, and energy-dispersive X-ray spectroscopy. The crystalline structures were investigated by X-ray diffraction. The size of larger TiO2 particles was in the range 30-150 nm, and the smaller-sized Ag nanoparticles attached to the TiO2 was mainly in the range of 10-15 nm. The yield is more than 50 % with the remaining nanoparticles in the form of uncombined Ag and TiO2. The nanoparticles generated had strong antibacterial effects as tested against E. coli. A discussion is given on the role of ultrasonic vibration in the formation of Ag-TiO2 hybrid nanoparticles by picosecond laser ablation.

  2. Simulation of generalized hybrid model for solar and wind power generation

    Directory of Open Access Journals (Sweden)

    Vankadara Sampath kumar

    2015-03-01

    Full Text Available Due to urbanization, globalization and industrialization the demand for energy is rapidly increasing allows the world and India is not an exception. Out of all energies electrical energy is playing a major role in developed as well as developing countries. The energy is mostly produced by fossil fuels which are developing day his is to by day .they also produce lot of pollutants which totally damage the environment the alternative to this is to encourage renewable energy source. Now days the energy production at domestic level is becoming popular with the help of solar and wind energies . These technologies are widely used now days in the present paper an attempt has been made to simulate a generalized hybrid model including solar and wind.

  3. Day-Ahead Self-Scheduling of Thermal Generator in Competitive Electricity Market Using Hybrid PSO

    DEFF Research Database (Denmark)

    Pindoriya, N.M.; Singh, Sri Niwas; Østergaard, Jacob

    2009-01-01

    in day-ahead energy market subject to operational constraints and 2) at the same time, to minimize the risk due to uncertainty in price forecast. Therefore, it is a conflicting biobjective optimization problem which has both binary and continuous optimization variables considered as constrained mixed......This paper presents a hybrid particle swarm optimization algorithm (HPSO) to solve the day-ahead selfscheduling for thermal power producer in competitive electricity market. The objective functions considered to model the selfscheduling problem are: 1) to maximize the profit from selling energy...... integer nonlinear programming. To demonstrate the effectiveness of the proposed method for self-scheduling in a dayahead energy market, the locational margin price (LMP) forecast uncertainty in PJM electricity market is considered. An adaptive wavelet neural network (AWNN) is used to forecast the dayahead...

  4. Hybrid simulations of whistler waves generation and current closure by a pulsed tether in the ionosphere

    Science.gov (United States)

    Chang, C. L.; Lipatov, A. S.; Drobot, A. T.; Papadopoulos, K.; Satya-Narayana, P.

    1994-01-01

    The dynamic response of a magnetized collisionless plasma to an externally driven, finite size, sudden switch-on current source across the magnetic field has been studied using a two dimensional hybrid code. It was found that the predominant plasma response was the excitation of whistler waves and the formation of current closure by induced currents in the plasma. The results show that the current closure path consists of: (a) two antiparallel field-aligned current channels at the end of the imposed current sheet; and (b) a cross-field current region connecting these channels. The formation of the current closure path occured in the whistler timescale much shorter than that of MHD and the closure region expanded continuously in time. The current closure process was accompanied by significant energy loss due to whistler radiation.

  5. Picosecond pulse generation in a hybrid Q-switched laser source by using a microelectromechanical mirror.

    Science.gov (United States)

    Couderc, Vincent; Crunteanu, Aurelian; Fabert, Marc; Doutre, Florent; El Bassri, Farid; Pagnoux, Dominique; Jalocha, Alain

    2012-02-27

    We present a novel Q-switched laser source using a micro-optical-electromechanical mirror (MOEM) designed for short pulse emission. It is based on a hybrid configuration including a passively Q-switched microchip laser coupled to a fiber cavity closed by a cantilever type MOEM acting as an active modulator. This specially designed mirror with a single reflecting gold membrane is switched by low bias voltage ~50 V (peak to peak). This device emits pulses at tunable repetition rates up to 1.6 kHz, with ~564 ps duration and 3.4 kW peak power, which constitutes the shortest pulse duration ever reported with MOEMs based pulsed lasers.

  6. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes.

    Directory of Open Access Journals (Sweden)

    Qiuying Huang

    Full Text Available Probe-based fluorescence melting curve analysis (FMCA is a powerful tool for mutation detection based on melting temperature generated by thermal denaturation of the probe-target hybrid. Nevertheless, the color multiplexing, probe design, and cross-platform compatibility remain to be limited by using existing probe chemistries. We hereby explored two dual-labeled, self-quenched probes, TaqMan and shared-stem molecular beacons, in their ability to conduct FMCA. Both probes could be directly used for FMCA and readily integrated with closed-tube amplicon hybridization under asymmetric PCR conditions. Improved flexibility of FMCA by using these probes was illustrated in three representative applications of FMCA: mutation scanning, mutation identification and mutation genotyping, all of which achieved improved color-multiplexing with easy probe design and versatile probe combination and all were validated with a large number of real clinical samples. The universal cross-platform compatibility of these probes-based FMCA was also demonstrated by a 4-color mutation genotyping assay performed on five different real-time PCR instruments. The dual-labeled, self-quenched probes offered unprecedented combined advantage of enhanced multiplexing, improved flexibility in probe design, and expanded cross-platform compatibility, which would substantially improve FMCA in mutation detection of various applications.

  7. Categorical, Narrative, and Hybrid Behavior Generation in the GENIE Environment for Interactive Narrative Virtual Worlds

    NARCIS (Netherlands)

    Lindley, C.A.; Nack, F.-M.

    2001-01-01

    The GEneric Narrative Interaction Environment (GENIE) is a conceptual architecture for the exploration of interactive narrative generation in virtual worlds. Specific research demonstrators implement different aspects of the GENIE architecture, with the longer term goal of implementing the full syst

  8. Sensitive Glycoprotein Sandwich Assays by the Synergistic Effect of In Situ Generation of Raman Probes and Plasmonic Coupling of Ag Core-Au Satellite Nanostructures.

    Science.gov (United States)

    Bi, Xiaoshuang; Li, Xueyuan; Chen, Dong; Du, Xuezhong

    2016-05-01

    Sensitive surface-enhanced Raman scattering (SERS) assays of glycoproteins have been proposed using p-aminothiophenol (PATP)-embedded Ag core-Au satellite nanostructures modified with p-mercaptophenylboronic acid (PMBA) and the self-assembled monolayer of PMBA on a smooth gold-coated wafer. The apparent Raman probe PATP on the surfaces of the Ag cores underwent a photodimerization to generate 4,4'-dimercaptoazobenzene (DMAB) in situ upon excitation of laser, and the in situ generated DMAB acted as the actual Raman probe with considerably strong SERS signals, which was further enhanced by the plasmonic coupling of the Ag core-Au satellite nanostructures due to the synergistic effect. The sandwich assays of glycoproteins showed high sensitivity and excellent selectivity against nonglycoproteins. The Ag core-Au satellite SERS nanostructures can be used for highly sensitive SERS assays of other analytes.

  9. Investigation of Solar Hybrid Electric/Thermal System with Radiation Concentrator and Thermoelectric Generator

    OpenAIRE

    Edgar Arturo Chávez Urbiola; Yuri Vorobiev

    2013-01-01

    An experimental study of a solar-concentrating system based on thermoelectric generators (TEGs) was performed. The system included an electrical generating unit with 6 serially connected TEGs using a traditional semiconductor material, Bi2Te3, which was illuminated by concentrated solar radiation on one side and cooled by running water on the other side. A sun-tracking concentrator with a mosaic set of mirrors was used; its orientation towards the sun was achieved with two pairs of radiation ...

  10. One-year monitoring of an oligonucleotide fluorescence in situ hybridization probe panel laboratory-developed test for bladder cancer detection

    Directory of Open Access Journals (Sweden)

    Tinawi-Aljundi R

    2015-04-01

    Full Text Available Rima Tinawi-Aljundi,1 Lauren King,2 Shannon T Knuth,2 Michael Gildea,2 Carrie Ng,2 Josh Kahl,2 Jacqueline Dion,2 Chris Young,2 Edward W Schervish,1 J Rene Frontera,1 Jason Hafron,1 Kenneth M Kernen,1 Robert Di Loreto,1 Joan Aurich-Costa21Michigan Institute of Urology, St Claire Shores, MI, USA; 2Cellay, Inc., Cambridge, MA, USA Background: Previously, we had developed and manufactured an oligonucleotide fluorescence in situ hybridization (OligoFISH probe panel based on the most clinically sensitive chromosomes found in a reference set of bladder carcinoma cases. The panel was clinically validated for use as a diagnostic and monitoring assay for bladder cancer, reaching 100% correlation with the results of the UroVysion test. After 1 year of using this probe panel, we present here the comparison of cytology, cystoscopy, and pathology findings to the OligoFISH probe panel results to calculate its clinical performance. Materials and methods: In order to calculate clinical performance, we compared the OligoFISH results to the cytology and cystoscopy/pathology findings for 147 initial diagnoses and 399 recurrence monitorings. Finally, we compared clinical performance to published values for the UroVysion test, including both low- and high-grade tumors. Results: Chromosomes 3, 6, 7, and 20 were highly involved in bladder carcinoma aneuploidy. At the initial diagnosis, we obtained 90.5% (95% confidence interval [CI]: 84.5%–94.7% accuracy, 96.8% sensitivity (95% CI: 91.0%–99.3%, 79.2% specificity (95% CI: 65.9%–87.8%, 89.2% positive predictive value (PPV; 95% CI: 81.5%–94.5%, and 93.3% negative predictive value (NPV; 95% CI: 81.7%–97.3%. When monitoring for recurrence, we obtained 85.2% accuracy (95% CI: 81.3%–88.5%, 82.0% sensitivity (95% CI: 76.0%–87.1%, 88.4% specificity (95% CI: 83.2%–92.5%, 87.7% PPV (95% CI: 82.1%–92.0%, and 83.0% NPV (95% CI: 77.3%–87.8%. When looking at low- and high-grade tumors, the test showed 100

  11. Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo-Sanz, Sancho; Perez-Bellido, Angel M.; Ortiz-Garcia, Emilio G.; Portilla-Figueras, Antonio [Department of Signal Theory and Communications, Universidad de Alcala, Madrid (Spain); Prieto, Luis [Wind Resource Department, Iberdrola Renovables, Madrid (Spain); Paredes, Daniel [Department of Physics of the Earth, Astronomy and Astrophysics II, Universidad Complutense de Madrid (Spain)

    2009-06-15

    This paper presents the hybridization of the fifth generation mesoscale model (MM5) with neural networks in order to tackle a problem of short-term wind speed prediction. The mean hourly wind speed forecast at wind turbines in a wind park is an important parameter used to predict the total power production of the park. Our model for short-term wind speed forecast integrates a global numerical weather prediction model and observations at different heights (using atmospheric soundings) as initial and boundary conditions for the MM5 model. Then, the outputs of this model are processed using a neural network to obtain the wind speed forecast in specific points of the wind park. In the experiments carried out, we present some results of wind speed forecasting in a wind park located at the south-east of Spain. The results are encouraging, and show that our hybrid MM5-neural network approach is able to obtain good short-term predictions of wind speed at specific points. (author)

  12. Spontaneous polyploidy, gynogenesis and androgenesis in second generation (F2 ) koi Cyprinus carpio × goldfish Carassius auratus hybrids.

    Science.gov (United States)

    Delomas, T A; Gomelsky, B; Anil, A; Schneider, K J; Warner, J L

    2017-01-01

    The objective of this study was to characterize the genetics of second generation (F2 ) koi Cyprinus carpio × goldfish Carassius auratus hybrids. Spermatozoa produced by a novel, fertile F1 male were found to be diploid by flow-cytometric analysis. Backcross (F1 female × C. carpio male and C. carpio female × F1 male) juveniles were triploid, confirming that female and male F1 hybrids both produced diploid gametes. The vast majority of surviving F2 juveniles was diploid and small proportions were aneuploid (2·1n-2·3n and 3·1n-3·9n), triploid (3n) and tetraploid (4n). Microsatellite genotyping showed that F2 diploids repeated either the complete maternal or the complete paternal genotype. Fish with the maternal genotype were female and fish with the paternal genotype were male. This demonstrates that F2 diploids were the result of spontaneous gynogenesis and spontaneous androgenesis. Analysis of microsatellite inheritance and the sex ratio in F2 crosses showed that spontaneous gynogenesis and androgenesis did not always occur in equal proportions. One cross was found to have an approximate equal number of androgenetic and gynogenetic offspring while in several other crosses spontaneous androgenesis was found to occur more frequently than spontaneous gynogenesis.

  13. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link

    DEFF Research Database (Denmark)

    Wang, L.; Lee, D. J.; Lee, W. J.

    2008-01-01

    This paper presents both time-domain and frequency-domain simulated results of a novel marine hybrid renewable-energy power generation/energy storage system (PG/ESS) feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore......) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for fuel cells (FCs) are also included in the PG subsystems. The ES subsystems consist of a flywheel energy storage system(FESS) and a compressed air energy storage (CAES) system to balance the required energy...... in the hybrid PG/ESS. It can be concluded from the simulation results that the proposed hybrid marine PG/ESS feeding isolated loads can stably operate to achieve system power-frequency balance condition....

  14. Performance of Irikura Recipe Rupture Model Generator in Earthquake Ground Motion Simulations with Graves and Pitarka Hybrid Approach

    Science.gov (United States)

    Pitarka, Arben; Graves, Robert; Irikura, Kojiro; Miyake, Hiroe; Rodgers, Arthur

    2017-02-01

    We analyzed the performance of the Irikura and Miyake (Pure and Applied Geophysics 168(2011):85-104, 2011) (IM2011) asperity-based kinematic rupture model generator, as implemented in the hybrid broadband ground motion simulation methodology of Graves and Pitarka (Bulletin of the Seismological Society of America 100(5A):2095-2123, 2010), for simulating ground motion from crustal earthquakes of intermediate size. The primary objective of our study is to investigate the transportability of IM2011 into the framework used by the Southern California Earthquake Center broadband simulation platform. In our analysis, we performed broadband (0-20 Hz) ground motion simulations for a suite of M6.7 crustal scenario earthquakes in a hard rock seismic velocity structure using rupture models produced with both IM2011 and the rupture generation method of Graves and Pitarka (Bulletin of the Seismological Society of America, 2016) (GP2016). The level of simulated ground motions for the two approaches compare favorably with median estimates obtained from the 2014 Next Generation Attenuation-West2 Project (NGA-West2) ground motion prediction equations (GMPEs) over the frequency band 0.1-10 Hz and for distances out to 22 km from the fault. We also found that, compared to GP2016, IM2011 generates ground motion with larger variability, particularly at near-fault distances (1 s). For this specific scenario, the largest systematic difference in ground motion level for the two approaches occurs in the period band 1-3 s where the IM2011 motions are about 20-30% lower than those for GP2016. We found that increasing the rupture speed by 20% on the asperities in IM2011 produced ground motions in the 1-3 s bandwidth that are in much closer agreement with the GMPE medians and similar to those obtained with GP2016. The potential implications of this modification for other rupture mechanisms and magnitudes are not yet fully understood, and this topic is the subject of ongoing study. We concluded

  15. The DOE Next-Generation Drivetrain for Wind Turbine Applications: Gearbox, Generator, and Advanced Si/SiC Hybrid Inverter System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Erdman, William; Keller, Jonathan

    2016-08-01

    This paper reports on the design and testing results from the U.S. Department of Energy Next-Generation Wind Turbine Drivetrain Project. The drivetrain design reduces the cost of energy by increasing energy capture through drivetrain efficiency improvements; by reducing operation and maintenance costs through reducing gearbox failures; and by lowering capital costs through weight reduction and a series of mechanical and electronic innovations. The paper provides an overview of the drivetrain gearbox and generator and provides a deeper look into the power converter system. The power converter has a number of innovations including the use of hybrid silicon (Si)/silicon carbide (SiC) isolated baseplate switching modules. Switching energies are compared between SiC and Si PIN diodes. The efficiency improvement by use of the SiC diode in a three-level converter is also described. Finally, a brief discussion covering utility interconnect requirements for turbines is provided with a particular focus on utility events that lead to high transient torque loads on drivetrain mechanical elements.

  16. A bi-directional DC/DC converter for hybrid wind generator/battery system with state machine control

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C.C.; Liao, Y.C. [National Yunlin Univ. of Science and Technology, Yunlin, Taiwan (China). Dept. of Electrical Engineering

    2008-07-01

    A bi-directional DC to DC converter used in a hybrid wind generator/lead-acid battery power system was presented. A state machine control strategy was used to control both the system power flow and load distribution. It was also used to increase the power capacity of the system. The battery was also charged or discharged through the bi-directional DC to DC converter. Multi-stage current charging control of the batteries was accomplished by adjusting the duty cycle of the power converter. This also improved the charging efficiency by the maximum power point tracking algorithm. It was concluded that the proposed control method can be readily extended to other renewable energy conversion systems. 6 refs., 13 figs.

  17. Highly entangled photon pairs generated from the biexciton cascade transition in a quantum-dot-metal-nanoparticle hybrid system

    Science.gov (United States)

    Moradi, T.; Harouni, M. Bagheri; Naderi, M. H.

    2017-08-01

    The entanglement between photon pairs generated from the biexciton cascade transition in a semiconductor quantum dot located in the vicinity of a metal nanoparticle is theoretically investigated. In the model scheme, the biexciton-exciton and exciton-ground-state transitions are assumed to be coupled to two principal plasmon modes of orthogonal polarizations. For a broad spectral window, because the horizontal and vertical spectra overlap, the biexciton and exciton photons are degenerate in energy. This allows us to overcome the natural splitting between the intermediate exciton states. Moreover, the degree of entanglement depends on the geometrical parameters of the system, i.e., the radius of the metal nanoparticle and the distance between the quantum dot and the nanoparticle. The results reveal that such a hybrid system profoundly modifies the photon entanglement even in the absence of strong coupling between the emitter and the metal nanosphere.

  18. Mode-locked Erbium-doped fiber laser generation using hybrid ZnO/GO saturable absorber

    Science.gov (United States)

    Hassan, H.; Ariannejad, M. M.; Safaei, R.; Amiri, I. S.; Ahmad, H.

    2017-06-01

    Mode-locked generation of erbium-doped fiber laser (EDFL) with hybrid zinc oxide/graphene oxide (ZnO/GO) thin film as saturable absorber (SA) is proposed and practically demonstrated. The SA shows the modulation depth of 18.69% and it has been sandwiched between the fiber ferrules. Mode-locked pulse occurred at pump power of 14.8 mW and by varying the pump power to maximum threshold 27.43 mW, the repetition rate of the pulse fixed at 19.98 MHz at 1563 nm of central wavelength. The pulse width is estimated as 0.90 ps, whereas the pulse energy is calculated as 27.0 nJ.

  19. Pederin-type pathways of uncultivated bacterial symbionts: analysis of o-methyltransferases and generation of a biosynthetic hybrid.

    Science.gov (United States)

    Zimmermann, Katrin; Engeser, Marianne; Blunt, John W; Munro, Murray H G; Piel, Jörn

    2009-03-04

    The complex polyketide pederin is a potent antitumor agent isolated from Paederus spp. rove beetles. We have previously isolated a set of genes from a bacterial endosymbiont that are good candidates for pederin biosynthesis. To biochemically study this pathway, we expressed three methyltransferases from the putative pederin pathway and used the partially unmethylated analogue mycalamide A from the marine sponge Mycale hentscheli as test substrate. Analysis by high-resolution MS/MS and NMR revealed that PedO regiospecifically methylates the marine compound to generate the nonnatural hybrid compound 18-O-methylmycalamide A with increased cytotoxicity. To our knowledge, this is the first biochemical evidence that invertebrates can obtain defensive complex polyketides from bacterial symbionts.

  20. Application of a hybrid generation/utility assessment heuristic to a class of scheduling problems

    Science.gov (United States)

    Heyward, Ann O.

    1989-01-01

    A two-stage heuristic solution approach for a class of multiobjective, n-job, 1-machine scheduling problems is described. Minimization of job-to-job interference for n jobs is sought. The first stage generates alternative schedule sequences by interchanging pairs of schedule elements. The set of alternative sequences can represent nodes of a decision tree; each node is reached via decision to interchange job elements. The second stage selects the parent node for the next generation of alternative sequences through automated paired comparison of objective performance for all current nodes. An application of the heuristic approach to communications satellite systems planning is presented.

  1. Solution Approach to Automatic Generation Control Problem Using Hybridized Gravitational Search Algorithm Optimized PID and FOPID Controllers

    Directory of Open Access Journals (Sweden)

    DAHIYA, P.

    2015-05-01

    Full Text Available This paper presents the application of hybrid opposition based disruption operator in gravitational search algorithm (DOGSA to solve automatic generation control (AGC problem of four area hydro-thermal-gas interconnected power system. The proposed DOGSA approach combines the advantages of opposition based learning which enhances the speed of convergence and disruption operator which has the ability to further explore and exploit the search space of standard gravitational search algorithm (GSA. The addition of these two concepts to GSA increases its flexibility for solving the complex optimization problems. This paper addresses the design and performance analysis of DOGSA based proportional integral derivative (PID and fractional order proportional integral derivative (FOPID controllers for automatic generation control problem. The proposed approaches are demonstrated by comparing the results with the standard GSA, opposition learning based GSA (OGSA and disruption based GSA (DGSA. The sensitivity analysis is also carried out to study the robustness of DOGSA tuned controllers in order to accommodate variations in operating load conditions, tie-line synchronizing coefficient, time constants of governor and turbine. Further, the approaches are extended to a more realistic power system model by considering the physical constraints such as thermal turbine generation rate constraint, speed governor dead band and time delay.

  2. An Operating Method Using Prediction of Photovoltaic Power for a Photovoltaic-Diesel Hybrid Power Generation System

    Science.gov (United States)

    Yamamoto, Shigehiro; Sumi, Kazuyoshi; Nishikawa, Eiichi; Hashimoto, Takeshi

    This paper describes a novel operating method using prediction of photovoltaic (PV) power for a photovoltaic-diesel hybrid power generation system. The system is composed of a PV array, a storage battery, a bi-directional inverter and a diesel engine generator (DG). The proposed method enables the system to save fuel consumption by using PV energy effectively, reducing charge and discharge energy of the storage battery, and avoiding low-load operation of the DG. The PV power is simply predicted from a theoretical equation of solar radiation and the observed PV energy for a constant time before the prediction. The amount of fuel consumption of the proposed method is compared with that of other methods by a simulation based on measurement data of the PV power at an actual PV generation system for one year. The simulation results indicate that the amount of fuel consumption of the proposed method is smaller than that of any other methods, and is close to that of the ideal operation of the DG.

  3. Comparison of hybrid and pure Monte Carlo shower generators on an event by event basis

    CERN Document Server

    Allen, Jeff; Farrar, Glennys

    2007-01-01

    SENECA is a hybrid air shower simulation written by H. Drescher that utilizes both Monte Carlo simulation and cascade equations. By using the cascade equations only in the high energy portion of the shower, where the shower is inherently one-dimensional, SENECA is able to utilize the advantages in speed from the cascade equations yet still produce complete, three dimensional particle distributions at ground level which capture the shower to shower variations coming from the early interactions. We present a comparison, on an event by event basis, of SENECA and CORSIKA, a well trusted MC simulation code. By using the same first interaction in both SENECA and CORSIKA, the effect of the cascade equations can be studied within a single shower, rather than averaged over many showers. Our study shows that for showers produced in this manner, SENECA agrees with CORSIKA to a very high accuracy with respect to densities, energies, and timing information for individual species of ground-level particles from both iron an...

  4. Retroviral hybrid LTR vector strategy: functional analysis of LTR elements and generation of endothelial cell specificity.

    Science.gov (United States)

    Richardson, T B; Kaspers, J; Porter, C D

    2004-05-01

    Transcriptional targeting is an important aspect of developing gene therapy vectors in order to restrict transgene expression to selected target cells. One approach, when using retroviral vectors, is to replace viral transcriptional control elements within the long terminal repeat (LTR) with sequences imparting the desired specificity. We have developed such hybrid LTR retroviruses, incorporating sequences from each of the human promoters for flt-1, ICAM-2 and KDR, as part of our antivascular cancer gene therapy strategy targeting tumour endothelial cells. The chosen fragments were used to replace the enhancer or combined enhancer and proximal promoter regions of the viral LTR. All showed activity in primary human breast microvascular endothelial cells, with viruses incorporating ICAM-2 sequences exhibiting the greatest specificity versus nonendothelial cells in vitro and a marked alteration of specificity towards endothelial cells in a subcutaneous xenograft model in vivo. Moreover, our study documents the effect of enhancer and/or proximal promoter deletion on LTR activity and reports that differential dependence in different cell lines can give the false impression of specificity if experiments are not adequately controlled. This finding also has implications for other retroviral vector designs seeking to provide transcriptional specificity and for their safety with respect to prevention of gene activation at sites of proviral integration.

  5. Evaluation of the Plug-in Hybrid Electric Vehicle Considering Power Generation Best Mix

    Science.gov (United States)

    Shinoda, Yukio; Tanaka, Hideo; Akisawa, Atsushi; Kashiwagi, Takao

    In transport section, it is necessary to reduce amount of CO2 emissions and Oil dependence. Bio fuels and Fuel Cell Vehicle (FCV), Electric Vehicle (EV) and Plug-in Hybrid Electric Vehicle (PHEV) are expected to reduce CO2 emissions and Oil dependence. We focus on PHEV. PHEV can reduce total energy Consumptions because of its high efficiency and can run with both oil and electricity. Introduction of PHEV reduces oil consumptions, however it also increases electricity demands. Therefore we must evaluate PHEV's CO2 reduction potential, not only in transport section but also in power grid section. To take into account of the distribution of the daily travel distance is also very important. All energy charged in the PHEV's battery cannot always be used. That influences the evaluation. We formulate the total model that combines passenger car model and power utility grid model, and we also consider the distribution of the daily travel distance. With this model, we show the battery cost per kWh at which PHEV begins to be introduced and oil dependence in passenger car section is to be reduced to 80%. We also show PHEV's CO2 reduction potentials and effects on the power supply system.

  6. Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage

    NARCIS (Netherlands)

    van Vliet, O.P.R.|info:eu-repo/dai/nl/288519361; van den Broek, M.A.|info:eu-repo/dai/nl/092946895; Turkenburg, W.C.|info:eu-repo/dai/nl/073416355; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2011-01-01

    We examined the co-evolution of the transportation, and electricity and heat generation sectors in the Netherlands until 2040 using a MARKAL bottom-up cost optimisation model. All scenario variants investigated indicate a switch away from crude oil-based diesel and petrol for transportation. Lowest

  7. Tailoring bifunctional hybrid organic–inorganic nanoadsorbents by the choice of functional layer composition probed by adsorption of Cu2+ ions

    Science.gov (United States)

    Tomina, Veronika V; Melnyk, Inna V; Zub, Yuriy L; Kareiva, Aivaras; Vaclavikova, Miroslava; Kessler, Vadim G

    2017-01-01

    Spherical silica particles with bifunctional (≡Si(CH2)3NH2/≡SiCH3, ≡Si(CH2)3NH2/≡Si(CH2)2(CF2)5CF3) surface layers were produced by a one-step approach using a modified Stöber method in three-component alkoxysilane systems, resulting in greatly increased contents of functional components. The content of functional groups and thermal stability of the surface layers were analyzed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and 13C and 29Si solid-state NMR spectroscopy revealing their composition and organization. The fine chemical structure of the surface in the produced hybrid adsorbent particles and the ligand distribution were further investigated by electron paramagnetic resonance (EPR) and electron spectroscopy of diffuse reflectance (ESDR) spectroscopy using Cu2+ ion coordination as a probe. The composition and structure of the emerging surface complexes were determined and used to provide an insight into the molecular structure of the surfaces. It was demonstrated that the introduction of short hydrophobic (methyl) groups improves the kinetic characteristics of the samples during the sorption of copper(II) ions and promotes fixation of aminopropyl groups on the surface of silica microspheres. The introduction of long hydrophobic (perfluoroctyl) groups changes the nature of the surface, where they are arranged in alternately hydrophobic/hydrophilic patches. This makes the aminopropyl groups huddled and less active in the sorption of metal cations. The size and aggregation/morphology of obtained particles was optimized controlling the synthesis conditions, such as concentrations of reactants, basicity of the medium, and the process temperature. PMID:28243572

  8. Tailoring bifunctional hybrid organic-inorganic nanoadsorbents by the choice of functional layer composition probed by adsorption of Cu(2+) ions.

    Science.gov (United States)

    Tomina, Veronika V; Melnyk, Inna V; Zub, Yuriy L; Kareiva, Aivaras; Vaclavikova, Miroslava; Seisenbaeva, Gulaim A; Kessler, Vadim G

    2017-01-01

    Spherical silica particles with bifunctional (≡Si(CH2)3NH2/≡SiCH3, ≡Si(CH2)3NH2/≡Si(CH2)2(CF2)5CF3) surface layers were produced by a one-step approach using a modified Stöber method in three-component alkoxysilane systems, resulting in greatly increased contents of functional components. The content of functional groups and thermal stability of the surface layers were analyzed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and (13)C and (29)Si solid-state NMR spectroscopy revealing their composition and organization. The fine chemical structure of the surface in the produced hybrid adsorbent particles and the ligand distribution were further investigated by electron paramagnetic resonance (EPR) and electron spectroscopy of diffuse reflectance (ESDR) spectroscopy using Cu(2+) ion coordination as a probe. The composition and structure of the emerging surface complexes were determined and used to provide an insight into the molecular structure of the surfaces. It was demonstrated that the introduction of short hydrophobic (methyl) groups improves the kinetic characteristics of the samples during the sorption of copper(II) ions and promotes fixation of aminopropyl groups on the surface of silica microspheres. The introduction of long hydrophobic (perfluoroctyl) groups changes the nature of the surface, where they are arranged in alternately hydrophobic/hydrophilic patches. This makes the aminopropyl groups huddled and less active in the sorption of metal cations. The size and aggregation/morphology of obtained particles was optimized controlling the synthesis conditions, such as concentrations of reactants, basicity of the medium, and the process temperature.

  9. Tailoring bifunctional hybrid organic–inorganic nanoadsorbents by the choice of functional layer composition probed by adsorption of Cu2+ ions

    Directory of Open Access Journals (Sweden)

    Veronika V. Tomina

    2017-02-01

    Full Text Available Spherical silica particles with bifunctional (≡Si(CH23NH2/≡SiCH3, ≡Si(CH23NH2/≡Si(CH22(CF25CF3 surface layers were produced by a one-step approach using a modified Stöber method in three-component alkoxysilane systems, resulting in greatly increased contents of functional components. The content of functional groups and thermal stability of the surface layers were analyzed by diffuse reflectance infrared Fourier transform (DRIFT spectroscopy, and 13C and 29Si solid-state NMR spectroscopy revealing their composition and organization. The fine chemical structure of the surface in the produced hybrid adsorbent particles and the ligand distribution were further investigated by electron paramagnetic resonance (EPR and electron spectroscopy of diffuse reflectance (ESDR spectroscopy using Cu2+ ion coordination as a probe. The composition and structure of the emerging surface complexes were determined and used to provide an insight into the molecular structure of the surfaces. It was demonstrated that the introduction of short hydrophobic (methyl groups improves the kinetic characteristics of the samples during the sorption of copper(II ions and promotes fixation of aminopropyl groups on the surface of silica microspheres. The introduction of long hydrophobic (perfluoroctyl groups changes the nature of the surface, where they are arranged in alternately hydrophobic/hydrophilic patches. This makes the aminopropyl groups huddled and less active in the sorption of metal cations. The size and aggregation/morphology of obtained particles was optimized controlling the synthesis conditions, such as concentrations of reactants, basicity of the medium, and the process temperature.

  10. Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array.

    Science.gov (United States)

    Liao, Wen-Pin; Wu, Jih-Jen

    2013-06-06

    A nanoarchitectural hybrid polymer solar cell, integrating the ordered and the bulk heterojunction hybrid polymer solar cells, is fabricated by infiltrating the diethylzinc/poly(3-hexylthiophene) (P3HT) solution into the interstices of the TiO2 nanorod (NR) array. An inorganic network composed of tiny ZnO nanocrystals is constructed in the in-situ-generated hybrid within the interstice of the single-crystalline TiO2 NRs. The TiO2 NR array, which possesses a longer electron lifetime and an appropriate electron-transport rate, serves not only as an electron transporter/collector extended from fluorine-doped tin oxide (FTO) electrode to sustain the efficient electron collection but also as a scaffold to hold the sufficient amount of ZnO/P3HT hybrid. The in-situ-generated ZnO/P3HT hybrid layer with superior charge separation efficiency can therefore be thickened in the presence of a TiO2 NR array for increasing the light-harvesting efficiency. A notable efficiency of 2.46% is therefore attained in the TiO2 NR-ZnO/P3HT hybrid solar cell.

  11. Comparison of RNA expression profiles on generations of Porphyra yezoensis (Rhodophyta, based on suppression subtractive hybridization (SSH

    Directory of Open Access Journals (Sweden)

    Shen Songdong

    2011-10-01

    Full Text Available Abstract Background Porphyra yezoensis Ueda is one of the most important edible seaweed, with a dimorphic life cycle which consists of gametophyte as macroscopical blade and sporophyte as microscopic filamentous. Conspicuous differences exist in the two generations, such as morphology, cell structure, biochemistry, physiology, and so on. The developmental process of Porphyra yezoensis has been studied thoroughly, but the mechanism is still ambiguous and few studies on genetic expression have been carried out. In this study, the suppression subtractive hybridization (SSH method conducted to generate large-scale expressed sequence tags (EST is designed to identify gene candidates related to the morphological and physiological differences between the gametophytic and sporophytic generations of Porphyra yezoensis Ueda. Findings Each 300 clones of sporophyte and gametophyte cells were dipped onto the membrane for hybridization. The result of dot-blot suggested there were 222 positive clones in gametophyte library and 236 positive clones in sporophyte library. 383 positive clones of strongest signals had been sequenced, and 191 EST sequences of gametophyte and 192 of sporophyte were obtained. A total of 196 genes were obtained, within which 104 genes were identified from the gametophyte and 92 from the sporophyte. Thirty-nine genes of the gametophyte and 62 genes of the sporophyte showed sequence similarity to those genes with known or putative functions which were classified according to their putative biological roles and molecular functions. The GO annotation showed about 58% of the cellular component of sporophyte and gametophyte cells were mainly located in cytoplasm and nucleus. The special genes were located in Golgi apparatus, and high expression in plastid, ribosome and endoplasmic reticulum. The main biological functions of gametophyte cells contributed to DNA repair/replication, carbohydrate metabolism, transport and transcription

  12. SAUNA: A system for grid generation and flow simulation using hybrid structured/unstructured grids

    Science.gov (United States)

    Childs, P. N.; Shaw, J. A.; Peace, A. J.; Georgala, J. M.

    1992-05-01

    The development of a flow simulation facility for predicting the aerodynamics of complex configurations wherein the grid is composed of both structured and unstructured regions is described. Issues relating to the generation and analysis of such grids and to the accurate and efficient computation of both inviscid and viscous flows thereon are considered. Further the development of a comprehensive post-processing and visualization facility is explored. Techniques are illustrated throughout by application to realistic aircraft geometries.

  13. Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks

    Directory of Open Access Journals (Sweden)

    J. C. Ochoa-Rivera

    2002-01-01

    Full Text Available A model for multivariate streamflow generation is presented, based on a multilayer feedforward neural network. The structure of the model results from two components, the neural network (NN deterministic component and a random component which is assumed to be normally distributed. It is from this second component that the model achieves the ability to incorporate effectively the uncertainty associated with hydrological processes, making it valuable as a practical tool for synthetic generation of streamflow series. The NN topology and the corresponding analytical explicit formulation of the model are described in detail. The model is calibrated with a series of monthly inflows to two reservoir sites located in the Tagus River basin (Spain, while validation is performed through estimation of a set of statistics that is relevant for water resources systems planning and management. Among others, drought and storage statistics are computed and compared for both the synthetic and historical series. The performance of the NN-based model was compared to that of a standard autoregressive AR(2 model. Results show that NN represents a promising modelling alternative for simulation purposes, with interesting potential in the context of water resources systems management and optimisation. Keywords: neural networks, perceptron multilayer, error backpropagation, hydrological scenario generation, multivariate time-series..

  14. Mobile Game Probes

    DEFF Research Database (Denmark)

    Borup Lynggaard, Aviaja

    2006-01-01

    This paper will examine how probes can be useful for game designers in the preliminary phases of a design process. The work is based upon a case study concerning pervasive mobile phone games where Mobile Game Probes have emerged from the project. The new probes are aimed towards a specific target...... group and the goal is to specify the probes so they will cover the most relevant areas for our project. The Mobile Game Probes generated many interesting results and new issues occurred, since the probes came to be dynamic and favorable for the process in new ways....

  15. Hybrid-PIC modeling of laser-plasma interactions and hot electron generation in gold hohlraum walls

    Science.gov (United States)

    Thoma, C.; Welch, D. R.; Clark, R. E.; Rose, D. V.; Golovkin, I. E.

    2017-06-01

    The walls of the hohlraum used in experiments at the national ignition facility are heated by laser beams with intensities ˜ 10 15 W/cm2, a wavelength of ˜ 1 / 3 μm, and pulse lengths on the order of a ns, with collisional absorption believed to be the primary heating mechanism. X-rays generated by the hot ablated plasma at the gold walls are then used to implode a target in the hohlraum interior. In addition to the collisional absorption of laser energy at the walls, non-linear laser-plasma interactions (LPI), such as stimulated Raman scattering and two plasmon decay, are believed to generate a population of supra-thermal electrons which, if present in the hohlraum, can have a deleterious effect on target implosion. We describe results of hohlraum modeling using a hybrid particle-in-cell code. To enable this work, new particle-based algorithms for a multiple-ion magneto-hydrodynamic (MHD) treatment, and a particle-based ray-tracing model were developed. The use of such hybrid methods relaxes the requirement to resolve the laser wavelength, and allows for relatively large-scale hohlraum simulations with a reasonable number of cells. But the non-linear effects which are believed to be the cause of hot electron generation can only be captured by fully kinetic simulations with good resolution of the laser wavelength. For this reason, we employ a two-tiered approach to hohlraum modeling. Large-scale simulations of the collisional absorption process can be conducted using the fast quasi-neutral MHD algorithm with fluid particle species. From these simulations, we can observe the time evolution of the hohlraum walls and characterize the density and temperature profiles. From these results, we can transition to smaller-scale highly resolved simulations using traditional kinetic particle-in-cell methods, from which we can fully model all of the non-linear laser-plasma interactions, as well as assess the details of the electron distribution function. We find that vacuum

  16. Impact of adding artificially generated alert sound to hybrid electric vehicles on their detectability by pedestrians who are blind

    Directory of Open Access Journals (Sweden)

    Dae Shik Kim, PhD

    2012-04-01

    Full Text Available A repeated-measures design with block randomization was used for the study, in which 14 adults with visual impairments attempted to detect three different vehicles: a hybrid electric vehicle (HEV with an artificially generated sound (Vehicle Sound for Pedestrians [VSP], an HEV without the VSP, and a comparable internal combustion engine (ICE vehicle. The VSP vehicle (mean +/– standard deviation [SD] = 38.3 +/– 14.8 m was detected at a significantly farther distance than the HEV (mean +/– SD = 27.5 +/– 11.5 m, t = 4.823, p < 0.001, but no significant difference existed between the VSP and ICE vehicles (mean +/– SD = 34.5 +/– 14.3 m, t = 1.787, p = 0.10. Despite the overall sound level difference between the two test sites (parking lot = 48.7 dBA, roadway = 55.1 dBA, no significant difference in detection distance between the test sites was observed, F(1, 13 = 0.025, p = 0.88. No significant interaction was found between the vehicle type and test site, F(1.31, 16.98 = 0.272, p = 0.67. The findings of the study may help us understand how adding an artificially generated sound to an HEV could affect some of the orientation and mobility tasks performed by blind pedestrians.

  17. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Mortensen, Paw Vestergård; Enkeshafi, Ali A.

    2011-01-01

    and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating......One of the most obvious early market applications for thermoelectric generators (TEG) is decentralized micro combined heat and power (CHP) installations of 0.5 kWe to 5 kWe based on fuel cell technology. Through the use of TEG technology for waste heat recovery it is possible to increase...... the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business...

  18. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies

    Science.gov (United States)

    Bose, Bimal K.; Kim, Min-Huei

    1995-01-01

    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  19. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    Science.gov (United States)

    Rosendahl, L. A.; Mortensen, Paw V.; Enkeshafi, Ali A.

    2011-05-01

    One of the most obvious early market applications for thermoelectric generators (TEG) is decentralized micro combined heat and power (CHP) installations of 0.5 kWe to 5 kWe based on fuel cell technology. Through the use of TEG technology for waste heat recovery it is possible to increase the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating purposes.

  20. Impact of adding artificially generated alert sound to hybrid electric vehicles on their detectability by pedestrians who are blind.

    Science.gov (United States)

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2012-01-01

    A repeated-measures design with block randomization was used for the study, in which 14 adults with visual impairments attempted to detect three different vehicles: a hybrid electric vehicle (HEV) with an artificially generated sound (Vehicle Sound for Pedestrians [VSP]), an HEV without the VSP, and a comparable internal combustion engine (ICE) vehicle. The VSP vehicle (mean +/- standard deviation [SD] = 38.3 +/- 14.8 m) was detected at a significantly farther distance than the HEV (mean +/- SD = 27.5 +/- 11.5 m), t = 4.823, p < 0.001, but no significant difference existed between the VSP and ICE vehicles (mean +/- SD = 34.5 +/- 14.3 m), t = 1.787, p = 0.10. Despite the overall sound level difference between the two test sites (parking lot = 48.7 dBA, roadway = 55.1 dBA), no significant difference in detection distance between the test sites was observed, F(1, 13) = 0.025, p = 0.88. No significant interaction was found between the vehicle type and test site, F(1.31, 16.98) = 0.272, p = 0.67. The findings of the study may help us understand how adding an artificially generated sound to an HEV could affect some of the orientation and mobility tasks performed by blind pedestrians.

  1. A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery.

    Science.gov (United States)

    Liu, Zhiwen; He, Zhengjia; Guo, Wei; Tang, Zhangchun

    2016-03-01

    In order to extract fault features of large-scale power equipment from strong background noise, a hybrid fault diagnosis method based on the second generation wavelet de-noising (SGWD) and the local mean decomposition (LMD) is proposed in this paper. In this method, a de-noising algorithm of second generation wavelet transform (SGWT) using neighboring coefficients was employed as the pretreatment to remove noise in rotating machinery vibration signals by virtue of its good effect in enhancing the signal-noise ratio (SNR). Then, the LMD method is used to decompose the de-noised signals into several product functions (PFs). The PF corresponding to the faulty feature signal is selected according to the correlation coefficients criterion. Finally, the frequency spectrum is analyzed by applying the FFT to the selected PF. The proposed method is applied to analyze the vibration signals collected from an experimental gearbox and a real locomotive rolling bearing. The results demonstrate that the proposed method has better performances such as high SNR and fast convergence speed than the normal LMD method.

  2. A hybrid approach for generating ultra-short bunches for advanced accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-01

    Generation of electron beams with high phase-space density, short bunch length and high peak current is an essential requirement for future linear colliders and bright electron beam sources. Unfortunately, such bunches cannot be produced directly from the source since forces from the mutual repulsion of electrons would destroy the brilliance of the beam within a short distance. Here, we detail a beam dynamics study of an innovative two-stage compression scheme that can generate ultra-short bunches without degrading the beam quality. In the first stage, the beam is compressed with an advanced velocity bunching technique in which the longitudinal phase space is rotated so that electrons on the bunch tail become faster than electrons in the bunch head. In the second stage, the beam is further compressed with a conventional magnetic chicane. With the aid of numerical simulations we show that our two-staged scheme is capable to increase the current of a 50 pC bunch to a notable factor of 100 while the emittance growth can be suppressed to 1% with appropriate tailoring of the initial beam distribution.

  3. A Novel Hybrid Model for Short-Term Forecasting in PV Power Generation

    Directory of Open Access Journals (Sweden)

    Yuan-Kang Wu

    2014-01-01

    Full Text Available The increasing use of solar power as a source of electricity has led to increased interest in forecasting its power output over short-time horizons. Short-term forecasts are needed for operational planning, switching sources, programming backup, reserve usage, and peak load matching. However, the output of a photovoltaic (PV system is influenced by irradiation, cloud cover, and other weather conditions. These factors make it difficult to conduct short-term PV output forecasting. In this paper, an experimental database of solar power output, solar irradiance, air, and module temperature data has been utilized. It includes data from the Green Energy Office Building in Malaysia, the Taichung Thermal Plant of Taipower, and National Penghu University. Based on the historical PV power and weather data provided in the experiment, all factors that influence photovoltaic-generated energy are discussed. Moreover, five types of forecasting modules were developed and utilized to predict the one-hour-ahead PV output. They include the ARIMA, SVM, ANN, ANFIS, and the combination models using GA algorithm. Forecasting results show the high precision and efficiency of this combination model. Therefore, the proposed model is suitable for ensuring the stable operation of a photovoltaic generation system.

  4. A hybrid approach for generating ultra-short bunches for advanced accelerator applications

    Science.gov (United States)

    Stratakis, Diktys

    2016-06-01

    Generation of electron beams with high phase-space density, short bunch length and high peak current is an essential requirement for future linear colliders and bright electron beam sources. Unfortunately, such bunches cannot be produced directly from the source since forces from the mutual repulsion of electrons would destroy the brilliance of the beam within a short distance. Here, we detail a beam dynamics study of a two-stage compression scheme that can generate ultra-short bunches without degrading the beam quality. In the first stage, a magnetized beam is compressed with a velocity bunching technique in which the longitudinal phase space is rotated so that electrons on the bunch tail become faster than electrons in the bunch head. In the second stage, the beam is further compressed with a magnetic chicane. With the aid of numerical simulations we show that our two-staged scheme is capable to increase the current of a 50 pC bunch by a notable factor of 100 (from 15 A to 1.5 kA) while the emittance growth can be suppressed to 1% with appropriate tailoring of the initial beam distribution.

  5. HYBRID EVOLUTIONARY ALGORITHMS FOR FREQUENCY AND VOLTAGE CONTROL IN POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    A. Soundarrajan

    2010-10-01

    Full Text Available Power generating system has the responsibility to ensure that adequate power is delivered to the load, both reliably and economically. Any electrical system must be maintained at the desired operating level characterized by nominal frequency and voltage profile. But the ability of the power system to track the load is limited due to physical and technical consideration. Hence, a Power System Control is required to maintain a continuous balance between power generation and load demand. The quality of power supply is affected due to continuous and random changes in load during the operation of the power system. Load Frequency Controller (LFC and Automatic Voltage Regulator (AVR play an important role in maintaining constant frequency and voltage in order to ensure the reliability of electric power. The fixed gain PID controllers used for this application fail to perform under varying load conditions and hence provide poor dynamic characteristics with large settling time, overshoot and oscillations. In this paper, Evolutionary Algorithms (EA like, Enhanced Particle Swarm Optimization (EPSO, Multi Objective Particle Swarm Optimization (MOPSO, and Stochastic Particle Swarm Optimization (SPSO are proposed to overcome the premature convergence problem in a standard PSO. These algorithms reduce transient oscillations and also increase the computational efficiency. Simulation results demonstrate that the proposed controller adapt themselves appropriate to varying loads and hence provide better performance characteristics with respect to settling time, oscillations and overshoot.

  6. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  7. Identification of chromosome abnormalities in the horse using a panel of chromosome-specific painting probes generated by microdissection.

    Science.gov (United States)

    Bugno, Monika; Słota, Ewa; Pieńkowska-Schelling, Aldona; Schelling, Claude

    2009-09-01

    Fluorescent in situ hybridisation (FISH) using a panel of molecular probes for all chromosome pairs obtained by chromosome microdissection of the domestic horse ( Equus caballus ) was used to diagnose karyotype abnormalities in 35 horses (32 mares, 2 stallions and 1 intersex), which were selected for the study due to infertility (23 horses), reduced fertility (10 horses) and developmental anomalies (2 horses). The use of the FISH technique with probes for each horse chromosome pair enabled the diagnosis of many different chromosome aberrations in this population. Among the horses analysed, 21 animals had normal karyotype - 64,XX (19 mares) and 64,XY (2 stallions). Fourteen animals, constituting 40% of the population studied, showed the following chromosome abnormalities: 63,X (1 mare); 63,X/64,XX (6 mares); 63,X/64,XX/65,XXX (3 mares); 63,X/65,XXX (1 mare); 64,XX/65,XX+Xp (1 mare); 63,X/64,XX/65,XX+Xq (1 mare), and 63,X/64,XX/65,XX+delY (1 intersex). When only the mares studied because of complete infertility were taken into consideration, this proportion exceeded 56%. Due to the increased frequency of the above-mentioned aberrations in the mosaic form of two or more lines, it was necessary to analyse a large number (100-300) of metaphase spreads. The use of specific molecular probes obtained by chromosome microdissection made these diagnoses much easier.

  8. Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Whei-Min; Hong, Chih-Ming [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 804 (China); Ou, Ting-Chia; Chiu, Tai-Ming [Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 325 (China)

    2011-02-15

    This paper presents the design of a fuzzy sliding mode loss-minimization control for the speed of a permanent magnet synchronous generator (PMSG) and a high-performance on-line training radial basis function network (RBFN) for the turbine pitch angle control. The back-propagation learning algorithm is used to regulate the RBFN controller. The PMSG speed uses maximum power point tracking below the rated speed, which corresponds to low and high wind speed, and the maximum energy can be captured from the wind. A sliding mode controller with an integral-operation switching surface is designed, in which a fuzzy inference mechanism is utilized to estimate the upper bound of uncertainties. Furthermore, the fuzzy inference mechanism with center adaptation is investigated to estimate the optimal bound of uncertainties. (author)

  9. Mathematical model of an off-grid hybrid solar and wind power generating system

    Directory of Open Access Journals (Sweden)

    Blasone M.

    2014-01-01

    Full Text Available The dynamics of an off-grid power generating system, coupled to a storage unit and to household appliances, is described by means of an analytic hydrodynamic analog. Following this analogy, by noticing that the effux rate from a leaking bucket is described, in terms of the liquid content, by Torricelli's formula, we denote as “Torricelli's smart consumer” a user being able to calibrate its energy consumption rate with respect to the energy level in the storage unit as if the hydrodynamic model would strictly apply. Simple solutions to the nonlinear dynamic problem associated to this type of smart consumer are found and generalization to other types of smart consumers are sought.

  10. Torque Distribution Strategy for Integrated Starter/ Generator Hybrid Bus Implemented by Fuzzy Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHONG Hu; AO Guo-qiang; WANG Feng; MA Zi-lin; MAO Xiao-jian; ZHUO Bin

    2008-01-01

    A torque distribution strategy was designed by using fuzzy logic to realize the optimal control. Thevehicle load zones were dynamically divided into several zones by several torque lines to indicate the driversdemand and the high or low efficient operating areas of the diesel engine. The fuzzy logic controller withtrapezoid membership function and Mamdani rule reference mechanism was utilized. There are over 100 rulesused in this fuzzy-based torque distribution strategy which are sorted into four rule-bases. The fuel economyand acceleration tests were designed to test and validate the integrated starter/generator (ISG) bus perfor-mance using fuzzy-based torque distribution strategy. The fuel economy is improved 7.7% compared with therule-based strategy. Finally the road test results reveal that there is about 157% improvement of fuel economy.And the 0-50 km/h acceleration time is 9.5% shorter than the original bus.

  11. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link

    Science.gov (United States)

    Wang, Li; Lee, Dong-Jing; Lee, Wei-Jen; Chen, Zhe

    This paper presents both time-domain and frequency-domain simulated results of a novel marine hybrid renewable-energy power generation/energy storage system (PG/ESS) feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore wind turbines and Wells turbines to respectively capture wind energy and wave energy from marine wind and ocean wave. In addition to wind-turbine generators (WTGs) and wave-energy turbine generators (WETGs) employed in the studied system, diesel-engine generators (DEGs) and an aqua electrolyzer (AE) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for fuel cells (FCs) are also included in the PG subsystems. The ES subsystems consist of a flywheel energy storage system (FESS) and a compressed air energy storage (CAES) system to balance the required energy in the hybrid PG/ESS. It can be concluded from the simulation results that the proposed hybrid marine PG/ESS feeding isolated loads can stably operate to achieve system power-frequency balance condition.

  12. Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems

    Science.gov (United States)

    Luo, Yu; Shi, Yixiang; Zheng, Yi; Cai, Ningsheng

    2017-02-01

    Renewable energy (RE) is expected to be the major part of the future energy. Presently, the intermittence and fluctuation of RE lead to the limitation of its penetration. Reversible solid oxide fuel cell (RSOFC) as the energy storage device can effectively store the renewable energy and build a bidirectional connection with natural gas (NG). In this paper, the energy storage strategy was designed to improve the RE penetration and dynamic operation stability in a distributed system coupling wind generators, internal combustion engine, RSOFC and lithium-ion batteries. By compromising the relative deviation of power supply and demand, RE penetration, system efficiency and capacity requirement, the strategy that no more than 36% of the maximum wind power output is directly supplied to users and the other is stored by the combination of battery and reversible solid oxide fuel cell is optimal for the distributed system. In the case, the RE penetration reached 56.9% and the system efficiency reached 55.2%. The maximum relative deviation of power supply and demand is also lower than 4%, which is significantly superior to that in the wind curtailment case.

  13. Probing of Ehrlich ascites carcinoma cell using in situ aggregates of Au-NPs as SERS label created by plasmon exciting hybrid- TEM*11 laser mode

    Science.gov (United States)

    Kumar, R.; Mehta, D. S.; Saraswati, S.; Shakher, C.

    2012-02-01

    Apart from commonly employed target-specific labeling/adsorption of antibodies over Au-NPs surface for the creation of localized aggregates, an alternative approach using optical tweezers (OT) driven by hybrid-TEM*11 mode has been devised and exploited for in vitro detection of Ehrlich ascites carcinoma cells (EAC) relying on enhanced scattering. Intra-cavity generated spatially featured asymmetric (SFA) laser beam (λ = 532 nm) has effected simultaneous trapping of mice-EAC cells and in-situ crowd/assembly of incubated Au-NPs/small gold nano-aggregates (created from two or more individual Au-NPs). Relatively larger focus spot created by tightly focused SFA beam than frequently employed Gaussian-mode in OT has offered an extended working area and hence dilute heating has taken care of EAC cells. GNA improves significantly the sensitivity of diagnostics relying on scattered light and the safety and efficacy of therapeutic nanotechnologies for the diseases of cancer and vascular system in medicine.

  14. A 16S rRNA-targeted Probe for Detection of Lactobacilli and Enterococci in Faecal Samples by Fluorescent In Situ Hybridization

    OpenAIRE

    Harmsen, Hermie J. M.; Elfferich, Peter; Schut, Frits; Welling, Gjalt W

    2011-01-01

    A group-specific 16S rRNA-targeted oligonucleotide probe S-G-Lab-0158-a-A20 (Lab158) was designed and validated to quantify species of the phylogenetic group lactobacilli-enterococci. The Lab158 probe detects nearly all species of the genera Lactobacillus, Enterococcus, Pediococcus, Weissella, Vagococcus, Leuconostoc and Oenococcus. The specificity of the probe was tested on various species of the target group and on a range of common intestinal bacteria. For these experiments, procedures to ...

  15. Facile semi-automated forensic body fluid identification by multiplex solution hybridization of NanoString® barcode probes to specific mRNA targets.

    Science.gov (United States)

    Danaher, Patrick; White, Robin Lynn; Hanson, Erin K; Ballantyne, Jack

    2015-01-01

    A DNA profile from the perpetrator does not reveal, per se, the circumstances by which it was transferred. Body fluid identification by mRNA profiling may allow extraction of contextual 'activity level' information from forensic samples. Here we describe the development of a prototype multiplex digital gene expression (DGE) method for forensic body fluid/tissue identification based upon solution hybridization of color-coded NanoString(®) probes to 23 mRNA targets. The method identifies peripheral blood, semen, saliva, vaginal secretions, menstrual blood and skin. We showed that a simple 5 min room temperature cellular lysis protocol gave equivalent results to standard RNA isolation from the same source material, greatly enhancing the ease-of-use of this method in forensic sample processing. We first describe a model for gene expression in a sample from a single body fluid and then extend that model to mixtures of body fluids. We then describe calculation of maximum likelihood estimates (MLEs) of body fluid quantities in a sample, and we describe the use of likelihood ratios to test for the presence of each body fluid in a sample. Known single source samples of blood, semen, vaginal secretions, menstrual blood and skin all demonstrated the expected tissue-specific gene expression for at least two of the chosen biomarkers. Saliva samples were more problematic, with their previously identified characteristic genes exhibiting poor specificity. Nonetheless the most specific saliva biomarker, HTN3, was expressed at a higher level in saliva than in any of the other tissues. Crucially, our algorithm produced zero false positives across this study's 89 unique samples. As a preliminary indication of the ability of the method to discern admixtures of body fluids, five mixtures were prepared. The identities of the component fluids were evident from the gene expression profiles of four of the five mixtures. Further optimization of the biomarker 'CodeSet' will be required

  16. In vitro evaluation of human hybrid cell lines generated by fusion of B-lymphoblastoid cells and ex vivo tumour cells as candidate vaccines for haematological malignancies.

    Science.gov (United States)

    Mohamed, Yehia S; Dunnion, Debbie; Teobald, Iryna; Walewska, Renata; Browning, Michael J

    2012-10-12

    Fusions of dendritic cells (DCs) and tumour cells have been shown to induce protective immunity to tumour challenge in animal models, and to represent a promising approach to cancer immunotherapy. The broader clinical application of this approach, however, is potentially constrained by the lack of replicative capacity and limited standardisation of fusion cell preparations. We show here that fusion of ex vivo tumour cells isolated from patients with a range of haematological malignancies with the human B-lymphoblastoid cell line (LCL), HMy2, followed by chemical selection of the hybridomas, generated stable, self-replicating human hybrid cell lines that grew continuously in tissue culture, and survived freeze/thawing cycles. The hybrid cell lines expressed HLA class I and class II molecules, and the major T-cell costimulatory molecules, CD80 and CD86. All but two of 14 hybrid cell lines generated expressed tumour-associated antigens that were not expressed by HMy2 cells, and were therefore derived from the parent tumour cells. The hybrid cell lines stimulated allogeneic T-cell proliferative responses and interferon-gamma release in vitro to a considerably greater degree than their respective parent tumour cells. The enhanced T-cell stimulation was inhibited by CTLA4-Ig fusion protein, and by blocking antibodies to MHC class I and class II molecules. Finally, all of five LCL/tumour hybrid cell lines tested induced tumour antigen-specific cytotoxic T-cell responses in vitro in PBL from healthy, HLA-A2+ individuals, as detected by HLA-A2-peptide pentamer staining and cellular cytotoxicity. These data show that stable hybrid cell lines, with enhanced immunostimulatory properties and potential for therapeutic vaccination, can be generated by in vitro fusion and chemical selection of B-LCL and ex vivo haematological tumour cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Improved cider fermentation performance and quality with newly generated Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids.

    Science.gov (United States)

    Magalhães, Frederico; Krogerus, Kristoffer; Vidgren, Virve; Sandell, Mari; Gibson, Brian

    2017-08-01

    Yeast cryotolerance may be advantageous for cider making, where low temperatures are usually employed. Here, we crossed the cryotolerant S. eubayanus with a S. cerevisiae wine strain and assessed the suitability of the hybrids for low-temperature cider fermentation. All strains fermented the juice to 5% ABV, but at different rates; hybrid strains outperformed S. cerevisiae, which was sensitive to low temperatures. The best hybrid fermented similarly to S. eubayanus. S. eubayanus produced sulphurous off flavours which masked a high concentration of fruity ester notes. This phenotype was absent in the hybrid strains, resulting in distinctly fruitier ciders. Aroma was assessed by an independent consumer panel, which rated the hybrid ciders as identical to the wine strain cider. Both were significantly more pleasant than the S. eubayanus cider. Interspecific hybridization can apparently be used effectively to improve low-temperature fermentation performance without compromising product quality.

  18. A Coordinated Control for Photovoltaic Generators and Energy Storages in Low-Voltage AC/DC Hybrid Microgrids under Islanded Mode

    DEFF Research Database (Denmark)

    Liu, Yao; Hou, Xiaochao; Wang, Xiaofeng;

    2016-01-01

    The increasing penetration of renewable generators can be a significant challenge due to the fluctuation of their power generation. Energy storage (ES) units are one solution to improve power supply quality and guarantee system stability. In this paper, a hybrid microgrid is built based...... on photovoltaic (PV) generator and ES; and coordinated control is proposed and developed to achieve power management in a decentralized manner. This control scheme contains three different droop strategies according to characteristics of PV and ES. First, the modified droop control is proposed for PV, which can...... for alternating current (AC)-side ES. Thus, the ES lifetime is prolonged. Moreover, interlinking converters (ICs) provide a bridge between AC/DC buses in a hybrid microgrid. The power control of IC is enabled when the AC- or DC-side suffer from active power demand shortage. In particular, if the AC microgrid does...

  19. Alien DNA introgression and wheat DNA rearrangements in a stable wheat line derived from the early generation of distant hybridization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lianquan; LIU Dengcai; YAN Zehong; ZHENG Youliang

    2005-01-01

    Polyploidy has been found to be common in plants. Bread or common wheat (Triticum aestivum L., 2n = 42) is a good example of allopolyploid made up of three diploid genomes A, B and D. In recent years, by the study of mimicking the origination of common wheat, it was found that changes of DNA sequence and gene expression occurred at the early stages of artificial allohexaploid between tetraploid wheat and Aegilops tauschii, which was probably favorable to genetic diploidization of new synthetic hexaploid wheat. Common wheat 99L2 is a new line stable in genetic, which was derived from the early self-pollinated generation of wide hybrids between common wheat and rye. In this study, it was found that at least two rye DNA segments had been introgressed into 99L2. This result suggested that a mechanism of alien DNA introgression may exist, which was different from the traditional mechanism of chromosome pairing and DNA recombination between wheat and alien species. Meanwhile, during the introgression process of alien rye DNA segments, the changes in DNA sequences of wheat itself occurred.

  20. Thermal Performance of Motor and Inverter in an Integrated Starter Generator System for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Sung Chul Kim

    2013-11-01

    Full Text Available If the integrated starter generator (ISG motor and inverter operate under continuously high loading conditions, the system’s performance and durability will decrease and the heat dissipation requirements will increase. Therefore, in this study, we developed two cooling designs for the ISG motor and inverter, and then carried out both a model analysis and an experiment on the fluid flow and thermal characteristics of the system under various operating conditions. As the outdoor temperature increased from 25 °C to 95 °C, the coil temperature of the air-cooled motor increased by about 82 °C. Under the harsh-air condition of 95 °C, the coil of the air-cooled motor increased to a maximum temperature of about 158.5 °C. We also determined that the temperature of the metal-oxide-semiconductor field-effect transistor (MOSFET chip in the liquid-cooled inverter increased to a maximum temperature of about 96.8 °C under a coolant flow rate of 4 L/min and a coolant temperature of 65 °C. The observed thermal performance of the ISG motor and inverter using the proposed cooling structures was found to be sufficient for heat loads under various real driving conditions for a hybrid electric vehicle (HEV.