WorldWideScience

Sample records for hybridization probe assay

  1. Continuously tunable nucleic acid hybridization probes.

    Science.gov (United States)

    Wu, Lucia R; Wang, Juexiao Sherry; Fang, John Z; Evans, Emily R; Pinto, Alessandro; Pekker, Irena; Boykin, Richard; Ngouenet, Celine; Webster, Philippa J; Beechem, Joseph; Zhang, David Yu

    2015-12-01

    In silico-designed nucleic acid probes and primers often do not achieve favorable specificity and sensitivity tradeoffs on the first try, and iterative empirical sequence-based optimization is needed, particularly in multiplexed assays. We present a novel, on-the-fly method of tuning probe affinity and selectivity by adjusting the stoichiometry of auxiliary species, which allows for independent and decoupled adjustment of the hybridization yield for different probes in multiplexed assays. Using this method, we achieved near-continuous tuning of probe effective free energy. To demonstrate our approach, we enforced uniform capture efficiency of 31 DNA molecules (GC content, 0-100%), maximized the signal difference for 11 pairs of single-nucleotide variants and performed tunable hybrid capture of mRNA from total RNA. Using the Nanostring nCounter platform, we applied stoichiometric tuning to simultaneously adjust yields for a 24-plex assay, and we show multiplexed quantitation of RNA sequences and variants from formalin-fixed, paraffin-embedded samples.

  2. Real-time PCR Detection of Brucella Abortus: A Comparative Study of SYBR Green I, 5'-exonuclease, and Hybridization Probe Assays

    Energy Technology Data Exchange (ETDEWEB)

    Newby, Deborah Trishelle; Hadfield, Ted; Roberto, Francisco Figueroa

    2003-08-01

    Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5'-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and the IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.

  3. Evaluation of a polymerase chain reaction reverse hybridization line probe assay for the detection and identification of medically important fungi in bronchoalveolar lavage fluids.

    NARCIS (Netherlands)

    Meletiadis, J.; Melchers, W.J.G.; Meis, J.F.G.M.; Hurk, P.J.J.C. van den; Jannes, G.; Verweij, P.E.

    2003-01-01

    An assay system in which polymerase chain reaction (PCR) amplification of the ITS-1 region of ribosomal DNA (rDNA) is combined with a reverse-hybridization line probe assay (LiPA) was used for the identification of six Candida species and four Aspergillus species in pure cultures of clinical

  4. Development of a PCR/LDR/flow-through hybridization assay using a capillary tube, probe DNA-immobilized magnetic beads and chemiluminescence detection.

    Science.gov (United States)

    Hommatsu, Manami; Okahashi, Hisamitsu; Ohta, Keisuke; Tamai, Yusuke; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2013-01-01

    A polymerase chain reaction (PCR)/ligase detection reaction (LDR)/flow-through hybridization assay using chemiluminescence (CL) detection was developed for analyzing point mutations in gene fragments with high diagnostic value for colorectal cancers. A flow-through hybridization format using a capillary tube, in which probe DNA-immobilized magnetic beads were packed, provided accelerated hybridization kinetics of target DNA (i.e. LDR product) to the probe DNA. Simple fluid manipulations enabled both allele-specific hybridization and the removal of non-specifically bound DNA in the wash step. Furthermore, the use of CL detection greatly simplified the detection scheme, since CL does not require a light source for excitation of the fluorescent dye tags on the LDR products. Preliminary results demonstrated that this analytical system could detect both homozygous and heterozygous mutations, without the expensive instrumentation and cumbersome procedures required by conventional DNA microarray-based methods.

  5. Nucleic acid hybridization assays employing dA-tailed capture probes. II. Advanced multiple capture methods

    International Nuclear Information System (INIS)

    Hunsaker, W.R.; Badri, H.; Lombardo, M.; Collins, M.L.

    1989-01-01

    A fourth capture is added to the reversible target capture procedure. This results in an improved radioisotopic detection limit of 7.3 x 10(-21) mol of target. In addition, the standard triple capture method is converted into a nonradioactive format with a detection limit of under 1 amol of target. The principal advantage of nonradioactive detection is that the entire assay can be performed in about 1 h. Nucleic acids are released from cells in the presence of the (capture probe) which contains a 3'-poly(dA) sequence and the (labeled probe) which contains a detectable nonradioactive moiety such as biotin. After a brief hybridization in solution, the target is captured on oligo(dT) magnetic particles. The target is further purified from sample impurities and excess labeled probe by recapture either once or twice more on fresh magnetic particles. The highly purified target is then concentrated to 200 nl by recapture onto a poly(dT) nitrocellulose filter and rapidly detected with streptavidin-alkaline phosphatase using bromochloroindolyl phosphate and nitroblue tetrazolium. Using this procedure, as little as 0.25 amol of a target plasmid has been detected nonradioactively in crude samples in just 1 h without prior purification of the DNA and RNA. Finally, a new procedure called background capture is introduced to complement the background-reducing power of RTC

  6. Oligonucleotide PIK3CA/Chromosome 3 Dual in Situ Hybridization Automated Assay with Improved Signals, One-Hour Hybridization, and No Use of Blocking DNA.

    Science.gov (United States)

    Zhang, Wenjun; Hubbard, Antony; Baca-Parkinson, Leslie; Stanislaw, Stacey; Vladich, Frank; Robida, Mark D; Grille, James G; Maxwell, Daniel; Tsao, Tsu-Shuen; Carroll, William; Gardner, Tracie; Clements, June; Singh, Shalini; Tang, Lei

    2015-09-01

    The PIK3CA gene at chromosome 3q26.32 was found to be amplified in up to 45% of patients with squamous cell carcinoma of the lung. The strong correlation between PIK3CA amplification and increased phosphatidylinositol 3-kinase (PI3K) pathway activities suggested that PIK3CA gene copy number is a potential predictive biomarker for PI3K inhibitors. Currently, all microscopic assessments of PIK3CA and chromosome 3 (CHR3) copy numbers use fluorescence in situ hybridization. PIK3CA probes are derived from bacterial artificial chromosomes whereas CHR3 probes are derived mainly from the plasmid pHS05. These manual fluorescence in situ hybridization assays mandate 12- to 18-hour hybridization and use of blocking DNA from human sources. Moreover, fluorescence in situ hybridization studies provide limited morphologic assessment and suffer from signal decay. We developed an oligonucleotide-based bright-field in situ hybridization assay that overcomes these shortcomings. This assay requires only a 1-hour hybridization with no need for blocking DNA followed by indirect chromogenic detection. Oligonucleotide probes produced discrete and uniform CHR3 stains superior to those from the pHS05 plasmid. This assay achieved successful staining in 100% of the 195 lung squamous cell carcinoma resections and in 94% of the 33 fine-needle aspirates. This robust automated bright-field dual in situ hybridization assay for the simultaneous detection of PIK3CA and CHR3 centromere provides a potential clinical diagnostic method to assess PIK3CA gene abnormality in lung tumors. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  7. Cloned polynucleotide and synthetic oligonucleotide probes used in colony hybridization are equally efficient in the identification of enterotoxigenic Escherichia coli

    International Nuclear Information System (INIS)

    Sommerfelt, H.; Kalland, K.H.; Raj, P.; Moseley, S.L.; Bhan, M.K.; Bjorvatn, B.

    1988-01-01

    Restriction endonuclease-generated polynucleotide and synthetically produced oligonucleotide gene probes used in colony hybridization assays proved to be efficient for the detection and differentiation of enterotoxigenic Escherichia coli. To compare their relative efficiencies, these two sets of probes were radiolabeled with 32 P and were applied to 74 strains of E. coli with known enterotoxin profiles and to 156 previously unexamined E. coli isolates. The enterotoxigenic bacteria Vibrio cholerae O1, Vibrio cholerae non-O1 (NAG), Yersinia enterocolitica, and E. coli harboring the plasmid vectors of the polynucleotide gene probes were examined for further evaluation of probe specificity. The two classes of probes showed a perfect concordance in their specific detection and differentiation of enterotoxigenic E. coli. In the analysis of six strains, the signal strength on autoradiography after hybridization with oligonucleotides was weaker than that obtained after hybridization with polynucleotide probes. The probes did not hybridize with DNA from V. cholerae O1, V. cholerae non-O1 (NAG), or Y. enterocolitica. The strains of E. coli harboring the plasmid vectors of the polynucleotide gene probes were, likewise, negative in the hybridization assays

  8. Cloned polynucleotide and synthetic oligonucleotide probes used in colony hybridization are equally efficient in the identification of enterotoxigenic Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Sommerfelt, H.; Kalland, K.H.; Raj, P.; Moseley, S.L.; Bhan, M.K.; Bjorvatn, B.

    1988-11-01

    Restriction endonuclease-generated polynucleotide and synthetically produced oligonucleotide gene probes used in colony hybridization assays proved to be efficient for the detection and differentiation of enterotoxigenic Escherichia coli. To compare their relative efficiencies, these two sets of probes were radiolabeled with /sup 32/P and were applied to 74 strains of E. coli with known enterotoxin profiles and to 156 previously unexamined E. coli isolates. The enterotoxigenic bacteria Vibrio cholerae O1, Vibrio cholerae non-O1 (NAG), Yersinia enterocolitica, and E. coli harboring the plasmid vectors of the polynucleotide gene probes were examined for further evaluation of probe specificity. The two classes of probes showed a perfect concordance in their specific detection and differentiation of enterotoxigenic E. coli. In the analysis of six strains, the signal strength on autoradiography after hybridization with oligonucleotides was weaker than that obtained after hybridization with polynucleotide probes. The probes did not hybridize with DNA from V. cholerae O1, V. cholerae non-O1 (NAG), or Y. enterocolitica. The strains of E. coli harboring the plasmid vectors of the polynucleotide gene probes were, likewise, negative in the hybridization assays.

  9. Mismatch discrimination of lipidated DNA and LNA-probes (LiNAs) in hybridization-controlled liposome assembly

    DEFF Research Database (Denmark)

    Jakobsen, Ulla; Vogel, Stefan

    2016-01-01

    Assays for mismatch discrimination and detection of single nucleotide variations by hybridization-controlled assembly of liposomes, which do not require tedious surface chemistry, are versatile for both DNA and RNA targets. We report herein a comprehensive study on different DNA and LNA (locked...... assay in the context of mismatch discrimination and SNP detection are presented. The advantages of membrane-anchored LiNA-probes compared to chemically attached probes on solid nanoparticles (e.g. gold nanoparticles) are described. Key functionalities such as non-covalent attachment of LiNA probes...... without the need for long spacers and the inherent mobility of membrane-anchored probes in lipid-bilayer membranes will be described for several different probe designs....

  10. High affinity γPNA sandwich hybridization assay for rapid detection of short nucleic acid targets with single mismatch discrimination.

    Science.gov (United States)

    Goldman, Johnathan M; Zhang, Li Ang; Manna, Arunava; Armitage, Bruce A; Ly, Danith H; Schneider, James W

    2013-07-08

    Hybridization analysis of short DNA and RNA targets presents many challenges for detection. The commonly employed sandwich hybridization approach cannot be implemented for these short targets due to insufficient probe-target binding strengths for unmodified DNA probes. Here, we present a method capable of rapid and stable sandwich hybridization detection for 22 nucleotide DNA and RNA targets. Stable hybridization is achieved using an n-alkylated, polyethylene glycol γ-carbon modified peptide nucleic acid (γPNA) amphiphile. The γPNA's exceptionally high affinity enables stable hybridization of a second DNA-based probe to the remaining bases of the short target. Upon hybridization of both probes, an electrophoretic mobility shift is measured via interaction of the n-alkane modification on the γPNA with capillary electrophoresis running buffer containing nonionic surfactant micelles. We find that sandwich hybridization of both probes is stable under multiple binding configurations and demonstrate single base mismatch discrimination. The binding strength of both probes is also stabilized via coaxial stacking on adjacent hybridization to targets. We conclude with a discussion on the implementation of the proposed sandwich hybridization assay as a high-throughput microRNA detection method.

  11. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  12. Investigation of parameters that affect the success rate of microarray-based allele-specific hybridization assays.

    Directory of Open Access Journals (Sweden)

    Lena Poulsen

    Full Text Available BACKGROUND: The development of microarray-based genetic tests for diseases that are caused by known mutations is becoming increasingly important. The key obstacle to developing functional genotyping assays is that such mutations need to be genotyped regardless of their location in genomic regions. These regions include large variations in G+C content, and structural features like hairpins. METHODS/FINDINGS: We describe a rational, stable method for screening and combining assay conditions for the genetic analysis of 42 Phenylketonuria-associated mutations in the phenylalanine hydroxylase gene. The mutations are located in regions with large variations in G+C content (20-75%. Custom-made microarrays with different lengths of complementary probe sequences and spacers were hybridized with pooled PCR products of 12 exons from each of 38 individual patient DNA samples. The arrays were washed with eight buffers with different stringencies in a custom-made microfluidic system. The data were used to assess which parameters play significant roles in assay development. CONCLUSIONS: Several assay development methods found suitable probes and assay conditions for a functional test for all investigated mutation sites. Probe length, probe spacer length, and assay stringency sufficed as variable parameters in the search for a functional multiplex assay. We discuss the optimal assay development methods for several different scenarios.

  13. Evaluation of Myc Gene Amplification in Prostate Cancer Using a Dual Color Chromogenic in-Situ Hybridization (Dual CISH) Assay

    OpenAIRE

    Daniel Lerda; Marta Cabrera; Jorge Flores; Luis Gutierrez; Armando Chierichetti; Martin Revol; Hernan Garcia Onto

    2013-01-01

    Objetive: The overall purpose of the study was to demonstrate applicability of the Dako dual-color chromogenic in situ hybridization (CISH) assay (DAKO Denmark, Glostrup) with respect to fluorescence in situ hybridization (FISH) probes MYC-C. Methods: MYC gene amplification by FISH and Dako dual-color CISH Results: The study showed that the dual-color CISH assay can convert Texas red and fluorescein isothiocyanate (FITC) signals into chromogenic signals. The dual –color CISH assay was p...

  14. Sandwich hybridization probes for the detection of Pseudo-nitzschia (Bacillariophyceae) species: An update to existing probes and a description of new probes.

    Science.gov (United States)

    Bowers, Holly A; Marin, Roman; Birch, James M; Scholin, Christopher A

    2017-12-01

    New sandwich hybridization assay (SHA) probes for detecting Pseudo-nitzschia species (P. arenysensis, P. fraudulenta, P. hasleana, P. pungens) are presented, along with updated cross-reactivity information on historical probes (SHA and FISH; fluorescence in situ hybridization) targeting P. australis and P. multiseries. Pseudo-nitzschia species are a cosmopolitan group of diatoms that produce varying levels of domoic acid (DA), a neurotoxin that can accumulate in finfish and shellfish and transfer throughout the food web. Consumption of infected food sources can lead to illness in humans (amnesic shellfish poisoning; ASP) and marine wildlife (domoic acid poisoning; DAP). The threat of human illness, along with economic loss from fishery closures has resulted in the implementation of monitoring protocols and intensive ecological studies. SHA probes have been instrumental in some of these efforts, as the technique performs well in complex heterogeneous sample matrices and has been adapted to benchtop and deployable (Environmental Sample Processor) platforms. The expanded probe set will enhance future efforts towards understanding spatial, temporal and successional patterns in species during bloom and non-bloom periods. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. PCR associated with hybridization with DNA radioactive probes for diagnosis of asymptomatic infection caused by Leishmania Chagasi

    International Nuclear Information System (INIS)

    Andrade, Antero Silva Ribeiro de; Moreno, Elizabeth Castro; Gomes, Rosangela Fatima; Melo, Maria Norma de; Carneiro, Mariangela; Fernandes, Octavio

    2002-01-01

    Detection systems for diagnosis of leishmaniasis based on PCR are very promising due to their sensitivity and specificity. Secondary detection by specific radioactive DNA probes, able to type the PCR amplified products, increase the specificity and raise about tem-fold the sensitivity of the assay. The aim of this work was evaluate PCR and hybridization as a tool to identify Leishmania (Leishmania) chagasi (the specie that cause the visceral leishmaniasis in Brazil) infection in asymptomatic persons living in a endemic area. Material and Methods: A group of 226 asymptomatic individuals, living in General Carneiro (MG), was selected. Blood samples were harvested and the DNA extracted from the mononucleate cells. PCR was performed using primers addressed to the kinetoplast DNA minicircles. This protocol gives a positive reaction for all Leishmania species. The amplified products were further hybridized with cloned L.chagasi minicircles labeled with 32 P. Results: were identified 111 samples PCR positive, 2 of them hybridization negative and 133 samples hybridization positive, 24 of them PCR negative. The occurrence of samples with hybridization positive and PCR negative was expected since hybridization, with DNA probes labeled with 32 P, increase the sensitivity of the assay. The samples that presented positive PCR and negative hybridization were probably due the presence of other Leishmania species, likely L. (V.) braziliensis (that produce tegumentary leishmaniasis in the region), since L. (L.) chagasi cloned minicircles were used as hybridization probe. We conclude that this procedure is a valuable tool to access subclinical L. (L.) chagasi infections in epidemiological studies. (author)

  16. Nucleic Acid Sandwich Hybridization Assay with Quantum Dot-Induced Fluorescence Resonance Energy Transfer for Pathogen Detection

    Science.gov (United States)

    Chou, Cheng-Chung; Huang, Yi-Han

    2012-01-01

    This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor) in a molar ratio of 10:1 (probe-to-QD), and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor) during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO) glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED), optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection. PMID:23211753

  17. Expanding probe repertoire and improving reproducibility in human genomic hybridization

    Science.gov (United States)

    Dorman, Stephanie N.; Shirley, Ben C.; Knoll, Joan H. M.; Rogan, Peter K.

    2013-01-01

    Diagnostic DNA hybridization relies on probes composed of single copy (sc) genomic sequences. Sc sequences in probe design ensure high specificity and avoid cross-hybridization to other regions of the genome, which could lead to ambiguous results that are difficult to interpret. We examine how the distribution and composition of repetitive sequences in the genome affects sc probe performance. A divide and conquer algorithm was implemented to design sc probes. With this approach, sc probes can include divergent repetitive elements, which hybridize to unique genomic targets under higher stringency experimental conditions. Genome-wide custom probe sets were created for fluorescent in situ hybridization (FISH) and microarray genomic hybridization. The scFISH probes were developed for detection of copy number changes within small tumour suppressor genes and oncogenes. The microarrays demonstrated increased reproducibility by eliminating cross-hybridization to repetitive sequences adjacent to probe targets. The genome-wide microarrays exhibited lower median coefficients of variation (17.8%) for two HapMap family trios. The coefficients of variations of commercial probes within 300 nt of a repetitive element were 48.3% higher than the nearest custom probe. Furthermore, the custom microarray called a chromosome 15q11.2q13 deletion more consistently. This method for sc probe design increases probe coverage for FISH and lowers variability in genomic microarrays. PMID:23376933

  18. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Krull, Ulrich J

    2013-08-06

    A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.

  19. A Paper-Based Sandwich Format Hybridization Assay for Unlabeled Nucleic Acid Detection Using Upconversion Nanoparticles as Energy Donors in Luminescence Resonance Energy Transfer.

    Science.gov (United States)

    Zhou, Feng; Noor, M Omair; Krull, Ulrich J

    2015-09-24

    Bioassays based on cellulose paper substrates are gaining increasing popularity for the development of field portable and low-cost diagnostic applications. Herein, we report a paper-based nucleic acid hybridization assay using immobilized upconversion nanoparticles (UCNPs) as donors in luminescence resonance energy transfer (LRET). UCNPs with intense green emission served as donors with Cy3 dye as the acceptor. The avidin functionalized UCNPs were immobilized on cellulose paper and subsequently bioconjugated to biotinylated oligonucleotide probes. Introduction of unlabeled oligonucleotide targets resulted in a formation of probe-target duplexes. A subsequent hybridization of Cy3 labeled reporter with the remaining single stranded portion of target brought the Cy3 dye in close proximity to the UCNPs to trigger a LRET-sensitized emission from the acceptor dye. The hybridization assays provided a limit of detection (LOD) of 146.0 fmol and exhibited selectivity for one base pair mismatch discrimination. The assay was functional even in undiluted serum samples. This work embodies important progress in developing DNA hybridization assays on paper. Detection of unlabeled targets is achieved using UCNPs as LRET donors, with minimization of background signal from paper substrates owing to the implementation of low energy near-infrared (NIR) excitation.

  20. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Shahmuradyan, Anna; Krull, Ulrich J

    2013-02-05

    A paper-based solid-phase assay is presented for transduction of nucleic acid hybridization using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) were FRET-paired with Cy3 acceptor. Hybridization of Cy3-labeled oligonucleotide targets provided the proximity required for FRET-sensitized emission from Cy3, which served as an analytical signal. The assay exhibited rapid transduction of nucleic acid hybridization within minutes. Without any amplification steps, the limit of detection of the assay was found to be 300 fmol with the upper limit of the dynamic range at 5 pmol. The implementation of glutathione-coated QDs for the development of nucleic acid hybridization assay integrated on a paper-based platform exhibited excellent resistance to nonspecific adsorption of oligonucleotides and showed no reduction in the performance of the assay in the presence of large quantities of noncomplementary DNA. The selectivity of nucleic acid hybridization was demonstrated by single-nucleotide polymorphism (SNP) detection at a contrast ratio of 19 to 1. The reuse of paper over multiple cycles of hybridization and dehybridization was possible, with less than 20% reduction in the performance of the assay in five cycles. This work provides an important framework for the development of paper-based solid-phase QD-FRET nucleic acid hybridization assays that make use of a ratiometric approach for detection and analysis.

  1. Radioactive and enzymatic cloned cDNA probes for bovine enteric coronavirus detection by molecular hybridization

    International Nuclear Information System (INIS)

    Collomb, J.; Finance, C.; Alabouch, S.; Laporte, J.

    1992-01-01

    Genomic RNA of F15 strain bovine enteric coronavirus (BECV) was cloned in E. coli. Three clones (174, 160, PG 78), selected in the cDNA library, including a large portion of the nucleocapsid (N), matrix (M) and peplomeric (S) protein genes , were used as probes for a slot blot hybridization assay. Two probe labelling techniques were compared, radiolabelling with 32 P and enzymatic labelling through covalent linkage to peroxidase and chemiluminescence detection. The radioactive probe 174 detected as little as 1 to 3 pg of viral RNA, while the less sensitive enzymatic probe could not reveal more than 100 pg of RNA. No significant detection amplification was achieved when a mixture of the three probes was used. Probe 174 allowed specific identification for BECV. No hybridization was noticed either with rotaviruses or even with other antigenically unrelated members of the family Coronaviridae such as transmissible gastroenteritis virus. The test proved valid for detection of BECV in the supernatant of infected HRT-18 cells: genomic RNA could be detected after direct spotting of samples, but prior nucleic acid extraction after proteinase K treatment improved virus detection. BECV diagnosis in faecal samples using enzymatic probe was compared with conventional diagnostic methods. (authors)

  2. Radioactive and enzymatic cloned cDNA probes for bovine enteric coronavirus detection by molecular hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Collomb, J; Finance, C; Alabouch, S [Lab. de Microbiologie Moleculaire, Faculte des Sciences Pharmaceutiques et Biologiques, Univ. de Nancy I, Nancy (France); Laporte, J [Station de Virologie et d' Immunologie Moleculaires, INRA, Jouy-en-Josas (France)

    1992-01-01

    Genomic RNA of F15 strain bovine enteric coronavirus (BECV) was cloned in E. coli. Three clones (174, 160, PG 78), selected in the cDNA library, including a large portion of the nucleocapsid (N), matrix (M) and peplomeric (S) protein genes , were used as probes for a slot blot hybridization assay. Two probe labelling techniques were compared, radiolabeled with [sup 32]P and enzymatic labeled through covalent linkage to peroxidase for chemiluminescence detection. The radioactive probe 174 detected as little as 1-3 pg of viral RNA, while the less sensitive enzymatic probe could not reveal more than 100 pg of RNA. No significant detection amplification was achieved when a mixture of the three probes was used. Probe 174 allowed specific identification for BECV. No hybridization was noticed either with rotaviruses or even with other antigenically unrelated members of the family Coronaviridae such as transmissible gastroenteritis virus. The test proved valid for detection of BECV in the supernatant of infected HRT-18 cells: genomic RNA could be detected after direct spotting of samples, but prior nucleic acid extraction after proteinase K treatment improved virus detection. BECV diagnosis in fecal samples using enzymatic probe was compared with conventional diagnostic methods. (authors).

  3. Luminescence resonance energy transfer-based nucleic acid hybridization assay on cellulose paper with upconverting phosphor as donors.

    Science.gov (United States)

    Zhou, Feng; Noor, M Omair; Krull, Ulrich J

    2014-03-04

    A bioassay based on DNA hybridization on cellulose paper is a promising format for gene fragment detection that may be suited for in-field and rapid diagnostic applications. We demonstrate for the first time that luminescence resonance energy transfer (LRET) associated with upconverting phosphors (UCPs) can be used to develop a paper-based DNA hybridization assay with high sensitivity, selectivity and fast response. UCPs with strong green emission were synthesized and subsequently functionalized with streptavidin (UCP-strep). UCP-strep particles were immobilized on cellulose paper, and then biotinylated single-stranded oligonucleotide probes were conjugated onto the UCPs via streptavidin-biotin linkage. The UCPs served as donors that were LRET-paired with Cy3-labeled target DNA. Selective DNA hybridization enabled the proximity required for LRET-sensitized emission from Cy3, which was used as the detection signal. Hybridization was complete within 2 min, and the limit of detection of the method was 34 fmol, which is a significant improvement in comparison to an analogous fluorescence resonance energy transfer (FRET) assay based on quantum dots. The assay exhibited excellent resistance to nonspecific adsorption of noncomplementary short/long DNA and protein. The selectivity of the assay was further evaluated by one base pair mismatched (1BPM) DNA detection, where a maximum signal ratio of 3.1:1 was achieved between fully complementary and 1BPM samples. This work represents a preliminary but significant step for the development of paper-based UCP-LRET nucleic acid hybridization assays, which offer potential for lowering the limit of detection of luminescent hybridization assays due to the negligible background signal associated with optical excitation by near-infrared (NIR) light.

  4. Use of a multi-thermal washer for DNA microarrays simplifies probe design and gives robust genotyping assays

    DEFF Research Database (Denmark)

    Petersen, J.; Poulsen, Lena; Petronis, S.

    2008-01-01

    is called a multi-thermal array washer (MTAW), and it has eight individually controlled heating zones, each of which corresponds to the location of a subarray on a slide. Allele-specific oligonucleotide probes for nine mutations in the beta-globin gene were spotted in eight identical subarrays at positions......DNA microarrays are generally operated at a single condition, which severely limits the freedom of designing probes for allele-specific hybridization assays. Here, we demonstrate a fluidic device for multi-stringency posthybridization washing of microarrays on microscope slides. This device...

  5. Systematic spatial bias in DNA microarray hybridization is caused by probe spot position-dependent variability in lateral diffusion.

    Science.gov (United States)

    Steger, Doris; Berry, David; Haider, Susanne; Horn, Matthias; Wagner, Michael; Stocker, Roman; Loy, Alexander

    2011-01-01

    The hybridization of nucleic acid targets with surface-immobilized probes is a widely used assay for the parallel detection of multiple targets in medical and biological research. Despite its widespread application, DNA microarray technology still suffers from several biases and lack of reproducibility, stemming in part from an incomplete understanding of the processes governing surface hybridization. In particular, non-random spatial variations within individual microarray hybridizations are often observed, but the mechanisms underpinning this positional bias remain incompletely explained. This study identifies and rationalizes a systematic spatial bias in the intensity of surface hybridization, characterized by markedly increased signal intensity of spots located at the boundaries of the spotted areas of the microarray slide. Combining observations from a simplified single-probe block array format with predictions from a mathematical model, the mechanism responsible for this bias is found to be a position-dependent variation in lateral diffusion of target molecules. Numerical simulations reveal a strong influence of microarray well geometry on the spatial bias. Reciprocal adjustment of the size of the microarray hybridization chamber to the area of surface-bound probes is a simple and effective measure to minimize or eliminate the diffusion-based bias, resulting in increased uniformity and accuracy of quantitative DNA microarray hybridization.

  6. Improved detection of genetic markers of antimicrobial resistance by hybridization probe-based melting curve analysis using primers to mask proximal mutations: examples include the influenza H275Y substitution.

    Science.gov (United States)

    Whiley, David M; Jacob, Kevin; Nakos, Jennifer; Bletchly, Cheryl; Nimmo, Graeme R; Nissen, Michael D; Sloots, Theo P

    2012-06-01

    Numerous real-time PCR assays have been described for detection of the influenza A H275Y alteration. However, the performance of these methods can be undermined by sequence variation in the regions flanking the codon of interest. This is a problem encountered more broadly in microbial diagnostics. In this study, we developed a modification of hybridization probe-based melting curve analysis, whereby primers are used to mask proximal mutations in the sequence targets of hybridization probes, so as to limit the potential for sequence variation to interfere with typing. The approach was applied to the H275Y alteration of the influenza A (H1N1) 2009 strain, as well as a Neisseria gonorrhoeae mutation associated with antimicrobial resistance. Assay performances were assessed using influenza A and N. gonorrhoeae strains characterized by DNA sequencing. The modified hybridization probe-based approach proved successful in limiting the effects of proximal mutations, with the results of melting curve analyses being 100% consistent with the results of DNA sequencing for all influenza A and N. gonorrhoeae strains tested. Notably, these included influenza A and N. gonorrhoeae strains exhibiting additional mutations in hybridization probe targets. Of particular interest was that the H275Y assay correctly typed influenza A strains harbouring a T822C nucleotide substitution, previously shown to interfere with H275Y typing methods. Overall our modified hybridization probe-based approach provides a simple means of circumventing problems caused by sequence variation, and offers improved detection of the influenza A H275Y alteration and potentially other resistance mechanisms.

  7. Whole-cell hybridization of Methanosarcina cells with two new oligonucleotide probes

    DEFF Research Database (Denmark)

    Sørensen, A.H.; Torsvik, V.L.; Torsvik, T.

    1997-01-01

    Two new oligonucleotide probes targeting the 16S rRNA of the methanogenic genus Methanosarcina were developed. The probes have the following sequences (Escherichia coli numbering): probe SARCI551, 5'-GAC CCAATAATCACGATCAC-3', and probe SARCI645, 5'-TCCCGGTTCCAAGTCTGGC-3'. In situ hybridization...... with the fluorescently labelled probes required several modifications of standard procedures. Cells of Methanosarcina mazeii S-6 were found to lyse during the hybridization step if fixed in 3% formaldehyde and stored in 50% ethanol. Lysis was, however, not observed with cells fixed and stored in 1.6% formaldehyde-0.......85% NaCl. Extensive autofluorescence of the cells was found upon hybridization in the presence of 5 mM EDTA, but successful hybridization could be obtained without addition of this compound. The mounting agent Citifluor AF1, often used in conjugation with the fluorochrome fluorescein, was found to wash...

  8. Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes.

    Science.gov (United States)

    Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P; Tinnefeld, Philip

    2017-10-11

    Fluorogenic nucleic acid hybridization probes are widely used for detecting and quantifying nucleic acids. The achieved sensitivity strongly depends on the contrast between a quenched closed form and an unquenched opened form with liberated fluorescence. So far, this contrast was improved by improving the quenching efficiency of the closed form. In this study, we modularly combine these probes with optical antennas used for plasmonic fluorescence enhancement and study the effect of the nanophotonic structure on the fluorescence of the quenched and the opened form. As quenched fluorescent dyes are usually enhanced more by fluorescence enhancement, a detrimental reduction of the contrast between closed and opened form was anticipated. In contrast, we could achieve a surprising increase of the contrast with full additivity of quenching of the dark form and fluorescence enhancement of the bright form. Using single-molecule experiments, we demonstrate that the additivity of the two mechanisms depends on the perfect quenching in the quenched form, and we delineate the rules for new nucleic acid probes for enhanced contrast and absolute brightness. Fluorogenic hybridization probes optimized not only for quenching but also for the brightness of the open form might find application in nucleic acid assays with PCR avoiding detection schemes.

  9. Electrokinetically-controlled RNA-DNA hybridization assay for foodborne pathogens

    International Nuclear Information System (INIS)

    Weng, X.; Jiang, H.; Li, D.

    2012-01-01

    We have developed a microfluidic chip for use in an RNA-DNA hybridization assay for foodborne pathogens. Automatic sequential reagent dispensing and washing was realized with a programmable DC voltage sequencer. Signal detection was achieved with a miniaturized optical detection module. Salmonella and Listeria monocytogenes bacteria in different concentrations were quantitatively determined by this RNA-DNA hybridization assay in the microfluidic chip. The detection limit for the Salmonella and Listeria monocytogenes bacteria is 10 3 to 10 4 CFU mL -1 . The method excels by a significant reduction in the consumption of sample and reagent, and a short assay time. This automatic-operating microfluidic RNA-DNA hybridization assay is promising for on-site pathogen detection. (author)

  10. Exciton-controlled fluorescence: application to hybridization-sensitive fluorescent DNA probe.

    Science.gov (United States)

    Okamoto, Akimitsu; Ikeda, Shuji; Kubota, Takeshi; Yuki, Mizue; Yanagisawa, Hiroyuki

    2009-01-01

    A hybridization-sensitive fluorescent probe has been designed for nucleic acid detection, using the concept of fluorescence quenching caused by the intramolecular excitonic interaction of fluorescence dyes. We synthesized a doubly thiazole orange-labeled nucleotide showing high fluorescence intensity for a hybrid with the target nucleic acid and effective quenching for the single-stranded state. This exciton-controlled fluorescent probe was applied to living HeLa cells using microinjection to visualize intracellular mRNA localization. Immediately after injection of the probe into the cell, fluorescence was observed from the probe hybridizing with the target RNA. This fluorescence rapidly decreased upon addition of a competitor DNA. Multicoloring of this probe resulted in the simple simultaneous detection of plural target nucleic acid sequences. This probe realized a large, rapid, reversible change in fluorescence intensity in sensitive response to the amount of target nucleic acid, and facilitated spatiotemporal monitoring of the behavior of intracellular RNA.

  11. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    Science.gov (United States)

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay. © The Author(s) 2016.

  12. A two-hybrid assay to study protein interactions within the secretory pathway.

    Directory of Open Access Journals (Sweden)

    Danielle H Dube

    Full Text Available Interactions of transcriptional activators are difficult to study using transcription-based two-hybrid assays due to potent activation resulting in false positives. Here we report the development of the Golgi two-hybrid (G2H, a method that interrogates protein interactions within the Golgi, where transcriptional activators can be assayed with negligible background. The G2H relies on cell surface glycosylation to report extracellularly on protein-protein interactions occurring within the secretory pathway. In the G2H, protein pairs are fused to modular domains of the reporter glycosyltransferase, Och1p, and proper cell wall formation due to Och1p activity is observed only when a pair of proteins interacts. Cells containing interacting protein pairs are identified by selectable phenotypes associated with Och1p activity and proper cell wall formation: cells that have interacting proteins grow under selective conditions and display weak wheat germ agglutinin (WGA binding by flow cytometry, whereas cells that lack interacting proteins display stunted growth and strong WGA binding. Using this assay, we detected the interaction between transcription factor MyoD and its binding partner Id2. Interfering mutations along the MyoD:Id2 interaction interface ablated signal in the G2H assay. Furthermore, we used the G2H to detect interactions of the activation domain of Gal4p with a variety of binding partners. Finally, selective conditions were used to enrich for cells encoding interacting partners. The G2H detects protein-protein interactions that cannot be identified via traditional two-hybrid methods and should be broadly useful for probing previously inaccessible subsets of the interactome, including transcriptional activators and proteins that traffic through the secretory pathway.

  13. An Aptamer Bio-barCode (ABC) assay using SPR, RNase H, and probes with RNA and gold-nanorods for anti-cancer drug screening.

    Science.gov (United States)

    Loo, Jacky Fong-Chuen; Yang, Chengbin; Tsang, Hing Lun; Lau, Pui Man; Yong, Ken-Tye; Ho, Ho Pui; Kong, Siu Kai

    2017-10-07

    With modifications to an ultra-sensitive bio-barcode (BBC) assay, we have developed a next generation aptamer-based bio-barcode (ABC) assay to detect cytochrome-c (Cyto-c), a cell death marker released from cancer cells, for anti-cancer drug screening. An aptamer is a short single-stranded DNA selected from a synthetic DNA library that is capable of binding to its target with high affinity and specificity based on its unique DNA sequence and 3D structure after folding. Similar to the BBC assay, Cyto-c is captured by a micro-magnetic particle (MMP) coated with capturing antibodies (Ab) and an aptamer specifically against Cyto-c to form sandwich structures ([MMP-Ab]-[Cyto-c]-[Aptamer]). After washing and melting, our aptamers, acting as a DNA bio-barcode, are released from the sandwiches and hybridized with the probes specially designed for RNase H for surface plasmon resonance (SPR) sensing. In an aptamer-probe duplex, RNase H digests the RNA in the probe and releases the intact aptamer for another round of hybridization and digestion. With signal enhancement effects from gold-nanorods (Au-NRs) on probes for SPR sensing, the detection limit was found to be 1 nM for the aptamer and 80 pM for Cyto-c. Without the time-consuming DNA amplification steps by PCR, the detection process of this new ABC assay can be completed within three hours. As a proof-of-concept, phenylarsine oxide was found to be a potent agent to kill liver cancer cells with multi-drug resistance at the nano-molar level. This approach thus provides a fast, sensitive and robust tool for anti-cancer drug screening.

  14. Dramatically improved RNA in situ hybridization signals using LNA-modified probes

    DEFF Research Database (Denmark)

    Thomsen, Rune; Nielsen, Peter Stein; Jensen, Torben Heick

    2005-01-01

    . This increases the thermal stability of hybrids formed with RNA. The LNA-based probes detect specific RNAs in fixed yeast cells with an efficiency far better than conventional DNA oligonucleotide probes of the same sequence. Using this probe design, we were also able to detect poly(A)+ RNA accumulation within......In situ detection of RNA by hybridization with complementary probes is a powerful technique. Probe design is a critical parameter in successful target detection. We have evaluated the efficiency of fluorescent DNA oligonucleotides modified to contain locked nucleic acid (LNA) residues...

  15. The Hybrid II assay: a sensitive and specific real-time hybridization assay for the diagnosis of Theileria parva infection in Cape buffalo (Syncerus caffer) and cattle.

    Science.gov (United States)

    Pienaar, Ronel; Potgieter, Fred T; Latif, Abdalla A; Thekisoe, Oriel M M; Mans, Ben J

    2011-12-01

    Corridor disease is an acute, fatal disease of cattle caused by buffalo-adapted Theileria parva. This is a nationally controlled disease in South Africa and strict control measures apply for the movement of buffalo, which includes mandatory testing for the presence of T. parva and other controlled diseases. Accurate diagnosis of the T. parva carrier state in buffalo using the official real-time hybridization PCR assay (Sibeko et al. 2008), has been shown to be affected by concurrent infection with T. sp. (buffalo)-like parasites. We describe the Hybrid II assay, a real-time hybridization PCR method, which compares well with the official hybridization assay in terms of specificity and sensitivity. It is, however, not influenced by mixed infections of T. sp. (buffalo)-like parasites and is as such a significant improvement on the current hybridization assay.

  16. Highly specific detection of genetic modification events using an enzyme-linked probe hybridization chip.

    Science.gov (United States)

    Zhang, M Z; Zhang, X F; Chen, X M; Chen, X; Wu, S; Xu, L L

    2015-08-10

    The enzyme-linked probe hybridization chip utilizes a method based on ligase-hybridizing probe chip technology, with the principle of using thio-primers for protection against enzyme digestion, and using lambda DNA exonuclease to cut multiple PCR products obtained from the sample being tested into single-strand chains for hybridization. The 5'-end amino-labeled probe was fixed onto the aldehyde chip, and hybridized with the single-stranded PCR product, followed by addition of a fluorescent-modified probe that was then enzymatically linked with the adjacent, substrate-bound probe in order to achieve highly specific, parallel, and high-throughput detection. Specificity and sensitivity testing demonstrated that enzyme-linked probe hybridization technology could be applied to the specific detection of eight genetic modification events at the same time, with a sensitivity reaching 0.1% and the achievement of accurate, efficient, and stable results.

  17. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Tavares, Anthony J; Krull, Ulrich J

    2013-07-25

    A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical sensitivity in the multiplexed assay format as compared to single-color hybridization assays. The selectivity of the multiplexed hybridization assays was demonstrated by discrimination between a fully-complementary sequence and a 3 base pair sequence at a contrast ratio of 8 to 1. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Identification and quantification of Bifidobacterium species isolated from food with genus-specific 16S rRNA-targeted probes by colony hybridization and PCR.

    Science.gov (United States)

    Kaufmann, P; Pfefferkorn, A; Teuber, M; Meile, L

    1997-04-01

    A Bifidobacterium genus-specific target sequence in the V9 variable region of the 16S rRNA has been elaborated and was used to develop a hybridization probe. The specificity of this probe, named lm3 (5'-CGGGTGCTI*CCCACTTTCATG-3'), was used to identify all known type strains and distinguish them from other bacteria. All of the 30 type strains of Bifidobacterium which are available at the German culture collection Deutsche Sammlung von Mikroorganismen und Zellkulturen, 6 commercially available production strains, and 34 closely related relevant strains (as negative controls) were tested. All tested bifidobacteria showed distinct positive signals by colony hybridization, whereas all negative controls showed no distinct dots except Gardnerella vaginalis DSM4944 and Propionibacterium freudenreichii subsp. shermanii DSM4902, which gave slight signals. Furthermore, we established a method for isolation and identification of bifidobacteria from food by using a PCR assay without prior isolation of DNA but breaking the cells with proteinase K. By this method, all Bifidobacterium strains lead to a DNA product of the expected size. We also established a quick assay to quantitatively measure Bifidobacterium counts in food and feces by dilution plating and colony hybridization. We were able to demonstrate that 2.1 x 10(6) to 2.3 x 10(7) colonies/g of sour milk containing bifidobacteria hybridized with the specific nucleotide probe. With these two methods, genus-specific colony hybridization and genus-specific PCR, it is now possible to readily and accurately detect any bifidobacteria in food and fecal samples and to discriminate between them and members of other genera.

  19. Comparison of kDNA PCR-hybridization assay with three PCR methods for canines visceral Leishmaniasis diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Pilatti, Marcia M.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: marciapilatti@yahoo.com.br, e-mail: antero@cdtn.br; Ferreira, Sidney A. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Parasitologia], e-mail: saninoalmeida@gmail.com

    2009-07-01

    The sensitivity of the kDNA PCR-Hybridization assay, which uses radioactive DNA probes (labeled with {sup 32}P), was compared with three conventional PCR methods used for canine visceral leishmaniasis diagnosis. All PCR methods had two steps: a first amplification followed by hybridization or by a new amplification (nested or semi nested). Two methods (kDNA PCR-Hybridization and kDNA snPCR) used primers addressed to kinetoplast minicircles and the other two methods to the coding (LnPCR) and intergenic noncoding regions (ITS-1 nPCR) of the ribosomal rRNA genes. The comparison was accomplished in two groups of 23 infected dogs using samples collected by the conjunctival swab procedure. In the Group 1 the DNA was extracted from cotton swabs by phenol-chloroform and in Group 2 by boiling. The most efficient PCR methods in the Group 1 were those based on kDNA targets. The kDNA PCR-Hybridization was able to detect parasites in 22/23 dogs (95.6%) and in 40/46 samples (86.9%). The kDNA snPCR was positive for 21/23 dogs (91.3%) and for 40/46 samples (86.9%). The positivities of the kDNA based methods were significantly higher than the positivities verified for the methods based on ribosomal rRNA genes (p<0.05). In the Group 2 the kDNA PCR- Hybridization showed a better performance detecting parasites in 18/23 dogs (78.3%) and in 31/46 samples (67.4%), significantly higher than the other three methods (p<0.05). The higher sensitivity of the minicircle kDNA based assays reported by others was confirmed in this study and kDNA PCR-Hybridization showed the best sensitivity among the assays evaluated. (author)

  20. Comparison of kDNA PCR-hybridization assay with three PCR methods for canines visceral Leishmaniasis diagnosis

    International Nuclear Information System (INIS)

    Pilatti, Marcia M.; Andrade, Antero S.R.; Ferreira, Sidney A.

    2009-01-01

    The sensitivity of the kDNA PCR-Hybridization assay, which uses radioactive DNA probes (labeled with 32 P), was compared with three conventional PCR methods used for canine visceral leishmaniasis diagnosis. All PCR methods had two steps: a first amplification followed by hybridization or by a new amplification (nested or semi nested). Two methods (kDNA PCR-Hybridization and kDNA snPCR) used primers addressed to kinetoplast minicircles and the other two methods to the coding (LnPCR) and intergenic noncoding regions (ITS-1 nPCR) of the ribosomal rRNA genes. The comparison was accomplished in two groups of 23 infected dogs using samples collected by the conjunctival swab procedure. In the Group 1 the DNA was extracted from cotton swabs by phenol-chloroform and in Group 2 by boiling. The most efficient PCR methods in the Group 1 were those based on kDNA targets. The kDNA PCR-Hybridization was able to detect parasites in 22/23 dogs (95.6%) and in 40/46 samples (86.9%). The kDNA snPCR was positive for 21/23 dogs (91.3%) and for 40/46 samples (86.9%). The positivities of the kDNA based methods were significantly higher than the positivities verified for the methods based on ribosomal rRNA genes (p<0.05). In the Group 2 the kDNA PCR- Hybridization showed a better performance detecting parasites in 18/23 dogs (78.3%) and in 31/46 samples (67.4%), significantly higher than the other three methods (p<0.05). The higher sensitivity of the minicircle kDNA based assays reported by others was confirmed in this study and kDNA PCR-Hybridization showed the best sensitivity among the assays evaluated. (author)

  1. Electronic Detection of DNA Hybridization by Coupling Organic Field-Effect Transistor-Based Sensors and Hairpin-Shaped Probes

    Directory of Open Access Journals (Sweden)

    Corrado Napoli

    2018-03-01

    Full Text Available In this paper, the electronic transduction of DNA hybridization is presented by coupling organic charge-modulated field-effect transistors (OCMFETs and hairpin-shaped probes. These probes have shown interesting properties in terms of sensitivity and selectivity in other kinds of assays, in the form of molecular beacons (MBs. Their integration with organic-transistor based sensors, never explored before, paves the way to a new class of low-cost, easy-to-use, and portable genetic sensors with enhanced performances. Thanks to the peculiar characteristics of the employed sensor, measurements can be performed at relatively high ionic strengths, thus optimizing the probes’ functionality without affecting the detection ability of the device. A complete electrical characterization of the sensor is reported, including calibration with different target concentrations in the measurement environment and selectivity evaluation. In particular, DNA hybridization detection for target concentration as low as 100 pM is demonstrated.

  2. Evaluation of Myc Gene Amplification in Prostate Cancer Using a Dual Color Chromogenic in-Situ Hybridization (Dual CISH Assay

    Directory of Open Access Journals (Sweden)

    Daniel Lerda

    2013-04-01

    Full Text Available Objetive: The overall purpose of the study was to demonstrate applicability of the Dako dual-color chromogenic in situ hybridization (CISH assay (DAKO Denmark, Glostrup with respect to fluorescence in situ hybridization (FISH probes MYC-C. Methods: MYC gene amplification by FISH and Dako dual-color CISH Results: The study showed that the dual-color CISH assay can convert Texas red and fluorescein isothiocyanate (FITC signals into chromogenic signals. The dual –color CISH assay was performed on 40 cases of prostate cancer. Amplification was identified in 12 of 40 (30% tumors. No amplification was seen in 28 of 40 (70% tumors. FISH data were available in total of 40 tumors. All tumors showed concordant results between dual-color CISH and FISH for classifying a tumor as MYC amplified or not amplified. Conclusions: We conclude that dual-color Dako CISH assay is an accurate method for determining MYC gene amplification with added advantages that make it a more practically useful method. [J Interdiscipl Histopathol 2013; 1(2.000: 81-84

  3. Evaluation of the Gen-Probe DNA probe for the detection of legionellae in culture

    International Nuclear Information System (INIS)

    Edelstein, P.H.

    1986-01-01

    A commercial DNA probe kit designed to detect rRNA from legionellae was evaluated for its ability to correctly discriminate between legionellae and non-legionellae taken from culture plates. The probe kit, made by the Gen-Probe Corp. (San Diego, Calif.), was radiolabeled with 125 I, and probe bacterial RNA hybridization, detected in a simple one-tube system hybridization assay, was quantitated with a gamma counter. A total of 156 Legionella sp. strains were tested, of which 125 were Legionella pneumophila and the remainder were strains from 21 other Legionella spp. A total of 106 gram-negative non-legionellae, isolated from human respiratory tract (81%) and other body site (19%) specimens, were also tested; 14 genera and 28 species were represented. The probe easily distinguished all of the legionellae from the non-legionellae. The average legionellae/non-legionellae hybridization ratio was 42:1, and the lowest ratio was 2:1; a minor modification in the procedure increased the lowest ratio to 5:1. In addition to correctly identifying all Legionella species, the probe was able to separate some of the various species of Legionella. L. pneumophila strains hybridized more completely to the probe than did the other Legionella spp.; L. wadsworthii and L. oakridgensis hybridized only about 25% of the probe relative to L. pneumophila. Some strains of phenotypically identified L. pneumophila had much lower hybridization to the probe than other members of the species and may represent a new Legionella species. The simplicity of the technique and specificity of the probe make it a good candidate for confirming the identity of legionellae in culture

  4. Identification of Cannabis sativa L. using the 1-kbTHCA synthase-fluorescence in situ hybridization probe.

    Science.gov (United States)

    Jeangkhwoa, Pattraporn; Bandhaya, Achirapa; Umpunjun, Puangpaka; Chuenboonngarm, Ngarmnij; Panvisavas, Nathinee

    2017-03-01

    This study reports a successful application of fluorescence in situ hybridization (FISH) technique in the identification of Cannabis sativa L. cells recovered from fresh and dried powdered plant materials. Two biotin-16-dUTP-labeled FISH probes were designed from the Cannabis-specific tetrahydrocannabinolic acid synthase (THCAS) gene and the ITS region of the 45S rRNA gene. Specificity of probe-target hybridization was tested against the target and 4 non-target plant species, i.e., Humulus lupulus, Mitragyna speciosa, Papaver sp., and Nicotiana tabacum. The 1-kb THCA synthase hybridization probe gave Cannabis-specific hybridization signals, unlike the 700-bp Cannabis-ITS hybridization probe. Probe-target hybridization was also confirmed against 20 individual Cannabis plant samples. The 1-kb THCA synthase and 700-bp Cannabis-ITS hybridization probes clearly showed 2 hybridization signals per cell with reproducibility. The 1-kb THCA synthase probe did not give any FISH signal when tested against H. lupulus, its closely related member of the Canabaceae family. It was also showed that 1-kb THCA synthase FISH probe can be applied to identify small amount of dried powdered Cannabis material with an addition of rehydration step prior to the experimental process. This study provided an alternative identification method for Cannabis trace. Copyright © 2016. Published by Elsevier B.V.

  5. Hybridization properties of long nucleic acid probes for detection of variable target sequences, and development of a hybridization prediction algorithm

    Science.gov (United States)

    Öhrmalm, Christina; Jobs, Magnus; Eriksson, Ronnie; Golbob, Sultan; Elfaitouri, Amal; Benachenhou, Farid; Strømme, Maria; Blomberg, Jonas

    2010-01-01

    One of the main problems in nucleic acid-based techniques for detection of infectious agents, such as influenza viruses, is that of nucleic acid sequence variation. DNA probes, 70-nt long, some including the nucleotide analog deoxyribose-Inosine (dInosine), were analyzed for hybridization tolerance to different amounts and distributions of mismatching bases, e.g. synonymous mutations, in target DNA. Microsphere-linked 70-mer probes were hybridized in 3M TMAC buffer to biotinylated single-stranded (ss) DNA for subsequent analysis in a Luminex® system. When mismatches interrupted contiguous matching stretches of 6 nt or longer, it had a strong impact on hybridization. Contiguous matching stretches are more important than the same number of matching nucleotides separated by mismatches into several regions. dInosine, but not 5-nitroindole, substitutions at mismatching positions stabilized hybridization remarkably well, comparable to N (4-fold) wobbles in the same positions. In contrast to shorter probes, 70-nt probes with judiciously placed dInosine substitutions and/or wobble positions were remarkably mismatch tolerant, with preserved specificity. An algorithm, NucZip, was constructed to model the nucleation and zipping phases of hybridization, integrating both local and distant binding contributions. It predicted hybridization more exactly than previous algorithms, and has the potential to guide the design of variation-tolerant yet specific probes. PMID:20864443

  6. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization.

    Science.gov (United States)

    Shahmuradyan, Anna; Krull, Ulrich J

    2016-03-15

    Quantum dots (QDs) have been widely used in chemical and biosensing due to their unique photoelectrical properties and are well suited as donors in fluorescence resonance energy transfer (FRET). Selective hybridization interactions of oligonucleotides on QDs have been determined by FRET. Typically, the QD-FRET constructs have made use of labeled targets or have implemented labeled sandwich format assays to introduce dyes in proximity to the QDs for the FRET process. The intention of this new work is to explore a method to incorporate the acceptor dye into the probe molecule. Thiazole orange (TO) derivatives are fluorescent intercalating dyes that have been used for detection of double-stranded nucleic acids. One such dye system has been reported in which single-stranded oligonucleotide probes were doubly labeled with adjacent thiazole orange derivatives. In the absence of the fully complementary (FC) oligonucleotide target, the dyes form an H-aggregate, which results in quenching of fluorescence emission due to excitonic interactions between the dyes. The hybridization of the FC target to the probe provides for dissociation of the aggregate as the dyes intercalate into the double stranded duplex, resulting in increased fluorescence. This work reports investigation of the dependence of the ratiometric signal on the type of linkage used to conjugate the dyes to the probe, the location of the dye along the length of the probe, and the distance between adjacent dye molecules. The limit of detection for 34mer and 90mer targets was found to be identical and was 10 nM (2 pmol), similar to analogous QD-FRET using labeled oligonucleotide target. The detection system could discriminate a one base pair mismatch (1BPM) target and was functional without substantial compromise of the signal in 75% serum. The 1BPM was found to reduce background signal, indicating that the structure of the mismatch affected the environment of the intercalating dyes.

  7. Detection of hepatitis A virus by hybridization with single-stranded RNA probes

    International Nuclear Information System (INIS)

    Xi, J.; Estes, M.K.; Metcalf, T.G.

    1987-01-01

    An improved method of dot-blot hybridization to detect hepatitis A virus (HAV) was developed with single-stranded RNA (ssRNA) probes. Radioactive and nonradioactive ssRNA probes were generated by in vitro transcription of HAV templates inserted into the plasmid pGEM-1. 32 P-labeled ssRNA probes were at least eightfold more sensitive than the 32 P-labeled double-stranded cDNA counterparts, whereas biotin-labeled ssRNA probes showed a sensitivity comparable with that of the 32 P-labeled double-stranded cDNA counterparts. Hybridization of HAV with the ssRNA probes at high stringency revealed specific reactions with a high signal-to-noise ratio. The differential hybridization reactions seen with probes of positive and negative sense (compared with HAV genomic RNA) were used to detect HAV in clinical and field samples. A positive/negative ratio was introduced as an indicator that permitted an semiquantitative expression of a positive HAV reaction. Good agreement of this indicator was observed with normal stool samples and with HAV-seeded samples. By using this system, HAV was detected in estuarine and freshwater samples collected from a sewage-polluted bayou in Houston and a saltwater tributary of Galveston Bay

  8. A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors.

    Science.gov (United States)

    Doughan, Samer; Uddayasankar, Uvaraj; Krull, Ulrich J

    2015-06-09

    Monodisperse aqueous upconverting nanoparticles (UCNPs) were covalently immobilized on aldehyde modified cellulose paper via reduction amination to develop a luminescence resonance energy transfer (LRET)-based nucleic acid hybridization assay. This first account of covalent immobilization of UCNPs on paper for a bioassay reports an optically responsive method that is sensitive, reproducible and robust. The immobilized UCNPs were decorated with oligonucleotide probes to capture HPRT1 housekeeping gene fragments, which in turn brought reporter conjugated quantum dots (QDs) in close proximity to the UCNPs for LRET. This sandwich assay could detect unlabeled oligonucleotide target, and had a limit of detection of 13 fmol and a dynamic range spanning nearly 3 orders of magnitude. The use of QDs, which are excellent LRET acceptors, demonstrated improved sensitivity, limit of detection, dynamic range and selectivity compared to similar assays that have used molecular fluorophores as acceptors. The selectivity of the assay was attributed to the decoration of the QDs with polyethylene glycol to eliminate non-specific adsorption. The kinetics of hybridization were determined to be diffusion limited and full signal development occurred within 3 min. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Sandwich nucleic acid hybridization: a method with a universally usable labeled probe for various specific tests

    International Nuclear Information System (INIS)

    Wolf, H.; Leser, U.; Haus, M.; Gu, S.Y.; Pathmanathan, R.

    1986-01-01

    The use of recombinant m13 phages as hybridization probes offers a considerable advantage over the commonly used recombinant plasmids as the preparation of the DNA probe is very simple and it can easily be labeled directly, e.g. with isotopes with long half-life like 125 I and used for hybridization. However, as the application of nucleic acid hybridization for diagnostic and epidemiological purposes becomes almost unavoidable, the logistic problems of keeping numerous individually labeled hybridization probes increase considerably and may reach prohibitory levels in less well-equipped laboratories. In a new sandwich technique, the first step involves hybridization with an unlabeled recombinant m13 DNA carrying an insert of the desired specificity. In a second step a universally usable labeled probe directed against the m13 part of the recombinant phage DNA is applied. This reduces considerably the problem of preparing and keeping multiple labeled probes in stock. (Auth.)

  10. Development of a dot blot assay using gene probes for the detection of enteroviruses in water

    International Nuclear Information System (INIS)

    Margolin, A.B.

    1986-01-01

    Enteric viruses are viruses which replicate in the intestinal tract of man and animals. One mode of transmission for enteric viruses is the fecal-oral route. Drinking water which has been contaminated with sewage or sewage effluent has been implicated as a means for the spread of enteric viruses. Current methods for the detection of enteric viruses in water requires the use of animal cell culture. This technique has several drawbacks. More rapid techniques, such as fluorescent antibody or radioimmunoassay do not have the needed sensitivity to detect the low levels of virus found in contaminated water. An alternative technique for the detection of viruses in water was sought. Recent advances in recombinant DNA technology now makes it possible to detect viruses without the use of cell culture or antibodies. Gene probes that hybridize to the RNA of poliovirus and hepatitis A virus were tested for their ability to detect different enteric viruses. The probes were labeled with 32 P dCTP and 32 P dATP to a specific activity greater then 1.0 x 10 9 cpm/ug DNA. One infectious unit of poliovirus and hepatitis A virus was detected using labeled cDNA probes. Upon comparison, the dot blot assay was as sensitive as tissue culture for the detection of poliovirus in beef extract, secondary effluent, and tap water. Environmental samples, such as secondary effluent, reclaimed wastewater and unchlorinated drinking water were also assayed for poliovirus and hepatitis A virus with the use of gene probes. The results presented here offer an alternative method for screening water samples for the presence of enteric viruses

  11. Double positive effect of adding hexaethyelene glycol when optimizing the hybridization efficiency of a microring DNA detection assay

    Energy Technology Data Exchange (ETDEWEB)

    Van Eeghem, Anabelle, E-mail: anabelle.vaneeghem@gmail.com [Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University (Belgium); Center for Nano- and Biophotonics, Ghent University (Belgium); Werquin, Sam [Center for Nano- and Biophotonics, Ghent University (Belgium); Photonics Research Group, Department of Information Technology, Ghent University – IMEC (Belgium); Hoste, Jan-Willem, E-mail: janwillem.hoste@ugent.be [Center for Nano- and Biophotonics, Ghent University (Belgium); Photonics Research Group, Department of Information Technology, Ghent University – IMEC (Belgium); Goes, Arne [Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University (Belgium); Agrosavfe NV, Technologiepark 4 (Bio-incubator), Zwijnaarde (Belgium); Vanderleyden, Els [Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University (Belgium); Center for Nano- and Biophotonics, Ghent University (Belgium); Bienstman, Peter [Center for Nano- and Biophotonics, Ghent University (Belgium); Photonics Research Group, Department of Information Technology, Ghent University – IMEC (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University (Belgium); Center for Nano- and Biophotonics, Ghent University (Belgium)

    2017-05-31

    Highlights: • The hybridization efficiency of a DNA assay was investigated based on SOI microring resonators. • A 4-fold increase in efficiency was obtained by using HEG as backfilling agent, as well as improving robustness. • The dual polarization microring technique shows that HEG reorients the DNA in an upright position. • Hybridizing at 35 °C and with a buffer containing 50 v/v% of formamide greatly improves the robustness. - Abstract: In this paper, a method for detection of DNA molecules using silicon-on-insulator (SOI) microring resonators is described. The influence of temperature and the use of formamide on the hybridization efficiency were studied. It was shown that 50 v/v% of formamide in the hybridization buffer can ensure hybridization when working close to physiological temperature. Furthermore, the use of hexaethylene glycol (HEG) as backfilling agent was studied in order to resolve issues of non-specific adsorption to the surface. The results indicated that not only non-specific binding was reduced significantly but also that HEG improves the orientation of the DNA probes on the surface. This led to a 4-fold increase in hybridization efficiency and thus in an equal decrease in the detection limit, compared to hybridization without the use of HEG. An improvement in robustness of the assay was also observed. This DNA reorientation hypothesis was confirmed by studying the thickness and density of the layers by using dual polarization microring sensing. Finally, the different steps in the sensing experiment were characterized in more detail by static contact angle (SCA) and X-ray photoelectron spectroscopy (XPS) analysis. The results showed quantitatively that the surface modifications were successful.

  12. Branched-DNA signal amplification combined with paper chromatography hybridization assay and used in hepatitis B virus DNA detection

    International Nuclear Information System (INIS)

    Fu, F.Z.; Liu, L.X.; Wang, W.Q.; Sun, S. H.; Liu, L.B.

    2002-01-01

    Nucleic acids detection method is vital to the clinical pathogen diagnosis. The established method can be classified into target direct amplification and signal amplification format according to the target DNA or RNA being directly amplified or not. Those methods have advantages and disadvantages respectively in the clinical application. In the United States of American, branched-DNA as a strong signal amplifier is broadly used in the quantification of the nucleic acids. To gain satisfied sensitivity, some expensive label molecular and instruments should be adopted. Personnel should be special trained to perform. Hence, those can't be widely carried out in the Third World. To avoid those disadvantages, we used the branched-DNA amplifier in the paper chromatography hybridization assay. Methods: Branched DNA signal amplifier and series of probes complementary to the nucleic acid sequence of hepatitis B virus (HBV) have been synthesized. HBV-DNA or it's capture probe were immobilized on the high flow nitrocellulose strip. Having loaded at one end of the strip in turn, probes or HBV-DNA in the hybridization solution migrate to the opposite end of the strip by capillary forces and hybridizes to the immobilized DNA. The branched-DNA signal amplifier and probe labeled with biotin or 32P were then loaded. Through streptavidin-alkaline phosphatase (SA-AP) conjugate and NBT/BCIP ( the specific chromogenic substrate of AP) or autoradiography, the result can be visualized by color reaction or image production on the X-ray film. Results: The sensitivity of this HBV-DNA detection method used probe labeled with biotin and 32P are 1ng and 10pg. The method using the probe labeled with biotin is simple and rapid (2h) without depending on special instruments, it also avoids the pollution of EtBr which can lead to tumor. And the method using the probe labeled with 32P is simple and sensitive, with the exception of long time autoradiography and the inconvenient isotopic disposal

  13. Fiber-based hybrid probe for non-invasive cerebral monitoring in neonatology

    Science.gov (United States)

    Rehberger, Matthias; Giovannella, Martina; Pagliazzi, Marco; Weigel, Udo; Durduran, Turgut; Contini, Davide; Spinelli, Lorenzo; Pifferi, Antonio; Torricelli, Alessandro; Schmitt, Robert

    2015-07-01

    Improved cerebral monitoring systems are needed to prevent preterm infants from long-term cognitive and motor restrictions. Combining advanced near-infrared diffuse spectroscopy measurement technologies, time-resolved spectroscopy (TRS) and diffuse correlation spectroscopy (DCS) will introduce novel indicators of cerebral oxygen metabolism and blood flow for neonatology. For non-invasive sensing a fiber-optical probe is used to send and receive light from the infant head. In this study we introduce a new fiber-based hybrid probe that is designed for volume production. The probe supports TRS and DCS measurements in a cross geometry, thus both technologies gain information on the same region inside the tissue. The probe is highly miniaturized to perform cerebral measurements on heads of extreme preterm infants down to head diameters of 6cm. Considerations concerning probe production focus on a reproducible accuracy in shape and precise optical alignment. In this way deviations in measurement data within a series of probes should be minimized. In addition to that, requirements for clinical use like robustness and hygiene are considered. An additional soft-touching sleeve made of FDA compatible silicone allows for a flexible attachment with respect to the individual anatomy of each patient. We present the technical concept of the hybrid probe and corresponding manufacturing methods. A prototype of the probe is shown and tested on tissue phantoms as well as in vivo to verify its operational reliability.

  14. Hybrid photonic-plasmonic near-field probe for efficient light conversion into the nanoscale hot spot.

    Science.gov (United States)

    Koshelev, Alexander; Munechika, Keiko; Cabrini, Stefano

    2017-11-01

    In this Letter, we present a design and simulations of the novel hybrid photonic-plasmonic near-field probe. Near-field optics is a unique imaging tool that provides optical images with resolution down to tens of nanometers. One of the main limitations of this technology is its low light sensitivity. The presented hybrid probe solves this problem by combining a campanile plasmonic probe with the photonic layer, consisting of the diffractive optic element (DOE). The DOE is designed to match the plasmonic field at the broad side of the campanile probe with the fiber mode. This makes it possible to optimize the size of the campanile tip to convert light efficiently into the hot spot. The simulations show that the hybrid probe is ∼540 times more efficient compared with the conventional campanile on average in the 600-900 nm spectral range.

  15. Assay of hybrid ribonuclease using a membrane filter-immobilized synthetic hybrid: application to the human leukemic cell

    International Nuclear Information System (INIS)

    Papaphilis, A.D.; Kamper, E.F.

    1985-01-01

    A method for assaying hybrid ribonuclease has been devised which utilizes as substrate the synthetic hybrid [ 3 H]polyriboadenylic acid [poly(rA)]:polydeoxythymidylic acid [poly(dT)] immobilized on the solid matrix of nitrocellulose filters. The hybridization on filter of [ 3 H]poly(rA) to poly(dT) has been explored in terms of efficacy of the process and the response of the product to RNase H. A pulse of uv irradiation of poly(dT) while in dry state on the filter increased its firm binding to the filter in a concentration-dependent manner, resulting in a concomitant increase of the yield of hybrid formation. The filter-immobilized hybrid was 95% resistant to RNase A but sensitive to RNase H. When stored in toluene in the cold the hybrid maintained its stability for over 6 months, as judged by its resistance to RNase A. The method offers a number of advantages over assays that use solution hybrids as substrates and was readily applicable in the screening of leukemic patients, in the leukocytes of which it has demonstrated increased RNase H levels

  16. A rapid and efficient branched DNA hybridization assay to titer lentiviral vectors.

    Science.gov (United States)

    Nair, Ayyappan; Xie, Jinger; Joshi, Sarasijam; Harden, Paul; Davies, Joan; Hermiston, Terry

    2008-11-01

    A robust assay to titer lentiviral vectors is imperative to qualifying their use in drug discovery, target validation and clinical applications. In this study, a novel branched DNA based hybridization assay was developed to titer lentiviral vectors by quantifying viral RNA genome copy numbers from viral lysates without having to purify viral RNA, and this approach was compared with other non-functional (p24 protein ELISA and viral RT-qPCR) and a functional method (reporter gene expression) used commonly. The RT-qPCR method requires purification of viral RNA and the accuracy of titration therefore depends on the efficiency of purification; this requirement is ameliorated in the hybridization assay as RNA is measured directly in viral lysates. The present study indicates that the hybridization based titration assay performed on viral lysates was more accurate and has additional advantages of being rapid, robust and not dependent on transduction efficiency in different cell types.

  17. PCR associated with hybridization with DNA radioactive probes for diagnosis of asymptomatic infection caused by Leishmania Chagasi; PCR associado a hibridizacao com sondas radioativas de DNA para a identificacao de infeccao subclinica causada por Leishmania Chagasi

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Antero Silva Ribeiro de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Moreno, Elizabeth Castro [Fundacao Nacional de Saude, Belo Horizonte, MG (Brazil). Coordenacao Regional de Minas Gerais; Gomes, Rosangela Fatima; Melo, Maria Norma de; Carneiro, Mariangela [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Parasitologia; Fernandes, Octavio [Fundacao Inst. Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil). Dept. de Medicina Tropical

    2002-07-01

    Detection systems for diagnosis of leishmaniasis based on PCR are very promising due to their sensitivity and specificity. Secondary detection by specific radioactive DNA probes, able to type the PCR amplified products, increase the specificity and raise about tem-fold the sensitivity of the assay. The aim of this work was evaluate PCR and hybridization as a tool to identify Leishmania (Leishmania) chagasi (the specie that cause the visceral leishmaniasis in Brazil) infection in asymptomatic persons living in a endemic area. Material and Methods: A group of 226 asymptomatic individuals, living in General Carneiro (MG), was selected. Blood samples were harvested and the DNA extracted from the mononucleate cells. PCR was performed using primers addressed to the kinetoplast DNA minicircles. This protocol gives a positive reaction for all Leishmania species. The amplified products were further hybridized with cloned L.chagasi minicircles labeled with {sup 32} P. Results: were identified 111 samples PCR positive, 2 of them hybridization negative and 133 samples hybridization positive, 24 of them PCR negative. The occurrence of samples with hybridization positive and PCR negative was expected since hybridization, with DNA probes labeled with {sup 32} P, increase the sensitivity of the assay. The samples that presented positive PCR and negative hybridization were probably due the presence of other Leishmania species, likely L. (V.) braziliensis (that produce tegumentary leishmaniasis in the region), since L. (L.) chagasi cloned minicircles were used as hybridization probe. We conclude that this procedure is a valuable tool to access subclinical L. (L.) chagasi infections in epidemiological studies. (author)

  18. Surface density dependence of PCR amplicon hybridization on PNA/DNA probe layers

    DEFF Research Database (Denmark)

    Yao, Danfeng; Kim, Junyoung; Yu, Fang

    2005-01-01

    at an intermediate sodium concentration (approximately 100 mM). These effects were mainly ascribed to the electrostatic cross talk among the hybridized DNA molecules and the secondary structure of PCR amplicons. For the negatively charged DNA probes, the hybridization reaction was subjected additionally to the DNA....../DNA electrostatic barrier, particularly in lower ionic strength range (e.g., 10 approximately 150 mM Na(+)). The electrostatic cross talk was shown to be largely reduced if the PNA probe layer was sufficiently diluted by following a strategic templated immobilization method. As a consequence, a pseudo...

  19. Rapid Identification of Staphylococcus aureus Directly from Blood Cultures by Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes

    Science.gov (United States)

    Oliveira, Kenneth; Procop, Gary W.; Wilson, Deborah; Coull, James; Stender, Henrik

    2002-01-01

    A new fluorescence in situ hybridization (FISH) method with peptide nucleic acid (PNA) probes for identification of Staphylococcus aureus directly from positive blood culture bottles that contain gram-positive cocci in clusters (GPCC) is described. The test (the S. aureus PNA FISH assay) is based on a fluorescein-labeled PNA probe that targets a species-specific sequence of the 16S rRNA of S. aureus. Evaluations with 17 reference strains and 48 clinical isolates, including methicillin-resistant and methicillin-susceptible S. aureus species, coagulase-negative Staphylococcus species, and other clinically relevant and phylogenetically related bacteria and yeast species, showed that the assay had 100% sensitivity and 96% specificity. Clinical trials with 87 blood cultures positive for GPCC correctly identified 36 of 37 (97%) of the S. aureus-positive cultures identified by standard microbiological methods. The positive and negative predictive values were 100 and 98%, respectively. It is concluded that this rapid method (2.5 h) for identification of S. aureus directly from blood culture bottles that contain GPCC offers important information for optimal antibiotic therapy. PMID:11773123

  20. Appendix: a solution hybridization assay to detect radioactive globin messenger RNA nucleotide sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J

    1976-09-15

    In view of the sensitivity and specificity of the solution hybridization assay for unlabeled globin mRNA a similar technique has been devised to detect radioactive globin mRNA sequences with unlabeled globin cDNA. Several properties of the hybridization reaction are presented since RNA kinetic experiments reported recently depend on the validity of this assay. Data on hybridization analysis of (/sup 3/H)RNA from mouse fetal liver or erythroleukemia cell cytoplasm are presented. These data indicate that the excess cDNA solution assay for radioactive globin mRNA detection is specific for globin mRNA sequences. It can be performed rapidly and is highly reproducible from experiment. It is at least 500-fold less sensitive than the assay for unlabeled globin mRNA, due to the RNAase backgrounds of 0.05 to 0.15 %. However, this limitation has not affected kinetic experiments with non-dividing fetal liver erythroid cells, which synthesize relatively large quantities of globin mRNA.

  1. Final report: Mapping Interactions in Hybrid Systems with Active Scanning Probes

    Energy Technology Data Exchange (ETDEWEB)

    Berezovsky, Jesse [Case Western Reserve Univ., Cleveland, OH (United States)

    2017-09-29

    This project aimed to study and map interactions between components of hybrid nanodevices using a novel scanning probe approach. To enable this work, we initially constructed a flexible experimental apparatus allowing for simultaneous scanning probe and confocal optical microscopy measurements. This setup was first used for all-optical measurements of nanostructures, with the focus then shifting to hybrid devices in which single coherent electron spins are coupled to micron-scale ferromagnetic elements, which may prove useful for addressing single spins, enhanced sensing, or spin-wave-mediated coupling of spins for quantum information applications. A significant breakthrough was the realization that it is not necessary to fabricate a magnetic structure on a scanning probe – instead a ferromagnetic vortex core can act as an integrated, solid state, scanning probe. The core of the vortex produces a very strong, localized fringe field which can be used analogously to an MFM tip. Unlike a traditional MFM tip, however, the vortex core is scanned within an integrated device (eliminating drift), and can be moved on vastly faster timescales. This approach allows the detailed investigation of interactions between single spins and complex driven ferromagnetic dynamics.

  2. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.

    Science.gov (United States)

    Gao, Zhuangqiang; Qiu, Zhenli; Lu, Minghua; Shu, Jian; Tang, Dianping

    2017-03-15

    This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Rapid detection of Cyprinid herpesvirus-3 (CyHV-3) using a gold nanoparticle-based hybridization assay.

    Science.gov (United States)

    Saleh, Mona; El-Matbouli, Mansour

    2015-06-01

    Cyprinid herpesvirus-3 (CyHV-3) is a highly infectious pathogen that causes fatal disease in common and koi carp Cyprinus carpio L. CyHV-3 detection is usually based on virus propagation or amplification of the viral DNA using the PCR or LAMP techniques. However, due to the limited susceptibility of cells used for propagation, it is not always possible to successfully isolate CyHV-3 even from tissue samples that have high virus titres. All previously described detection methods including PCR-based assays are time consuming, laborious and require specialized equipment. To overcome these limitations, gold nanoparticles (AuNPs) have been explored for direct and sensitive detection of DNA. In this study, a label-free colorimetric nanodiagnostic method for direct detection of unamplified CyHV-3 DNA using gold nanoparticles is introduced. Under appropriate conditions, DNA probes hybridize with their complementary target sequences in the sample DNA, which results in aggregation of the gold nanoparticles and a concomitant colour change from red to blue, whereas test samples with non complementary DNA sequences remain red. In this study, gold nanoparticles were used to develop and evaluate a specific and sensitive hybridization assay for direct and rapid detection of the highly infectious pathogen termed Cyprinid herpesvirus-3. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Design and Application of Hybrid Magnetic Field-Eddy Current Probe

    Science.gov (United States)

    Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John

    2013-01-01

    The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 megahertz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.

  5. An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays

    Directory of Open Access Journals (Sweden)

    Laurenzi Ian J

    2009-12-01

    Full Text Available Abstract Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net.

  6. Detection of human papillomavirus type 6/11 DNA in conjunctival papillomas by in situ hybridization with radioactive probes

    International Nuclear Information System (INIS)

    McDonnell, P.J.; McDonnell, J.M.; Kessis, T.; Green, W.R.; Shah, K.V.

    1987-01-01

    Twenty-three conjunctival papillomas and 28 conjunctival dysplasias were examined for human papillomavirus (HPV)-DNA sequences by in situ hybridization with nick-translated 35 S-labeled HPV probes. Adjacent paraffin sections were hybridized with HPV type 2, 6, 16, and 18 probes at Tm - 17 degrees C. Fifteen tissues, all papillomas, displayed positive hybridization with the HPV-6 probe. Infection with HPV-6 (or the closely related HPV-11) appeared to be responsible for most of the conjunctival papillomas of children and young adults. The presence of genital tract HPV-6 in these lesions suggests that some of the infections were acquired during passage through an infected birth canal. The lack of hybridization in adult conjunctival dysplasias indicates either that HPVs are not associated with this condition or that the probes and the technique utilized were not adequate for demonstration of this association

  7. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    Science.gov (United States)

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-01-01

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry. PMID:23435052

  8. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    Directory of Open Access Journals (Sweden)

    Yuji Miyahara

    2013-02-01

    Full Text Available Peptide nucleic acid (PNA has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  9. Detection and quantitative analysis of actin mRNA by in situ hybridization with an oligodeoxynucleotide probe

    International Nuclear Information System (INIS)

    Taneja, K.; Singer, R.

    1987-01-01

    In situ hybridization is a useful method for localizing specific nucleic acid sequences intracellularly and for studying regulation of gene expression. Recently synthetic oligonucleotides have been successfully used as probes in this technique. Since they can be made easily to specific nucleic acid regions, they may be the best approach for analysis of a gene family of highly conserved sequences. They have analyzed these probes for the development of an in situ hybridization method. Oligonucleotides were made to different regions of chick beta-actin mRNA and used for detection of these sequences in a culture of chicken fibroblasts and myoblasts. They found that synthetic DNAs have different efficiencies of hybridization, indicating that not all target sequences are equivalent. They have investigated in detail a particular probe to the actin mRNA coding region and have optimized hybridization parameters. When hybridization was quantitated it was found that an oligonucleotide end labelled with 35 S or 32 P was capable of detecting several thousand messages per cell with a signal-to-noise ratio of 10:1. In situ hybridization confirmed the specificity of the hybridization as well as the background level. Increase in the number of oligonucleotides used should increase the signal-to-noise ratio-proportionately. Under particular circumstances the specificity of oligonucleotides make them an important reagent for in situ hybridization

  10. Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes

    OpenAIRE

    Harrington, Walter N.; Haji, Mwafaq R.; Galanzha, Ekaterina I.; Nedosekin, Dmitry A.; Nima, Zeid A.; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S.; Zharov, Vladimir P.

    2016-01-01

    Photoswitchable fluorescent proteins with controllable light?dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive ...

  11. Application of locked nucleic acid-based probes in fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Carvalho, Daniel R; Guimarães, Nuno

    2016-01-01

    of nucleic acid mimics used as mixmers in LNA-based probes strongly influence the efficiency of detection. LNA probes with 10 to 15 mers showed the highest efficiency. Additionally, the combination of 2′-OMe RNA with LNA allowed an increase on the fluorescence intensities of the probes. Overall......Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2′-O-methyl (2′-OMe) RNA modifications have...

  12. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gyoyeon [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon (Korea, Republic of); Lee, Hansol [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Jiyeon, E-mail: jylee@kist.re.kr [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon (Korea, Republic of)

    2015-11-13

    The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Pt conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH. - Highlights: • We prepared a probe linked between QD and telomeric oligonucleotide with platinum-guanine bonding. • Telomeres were detected by our new telomere probes successfully in three different human metaphase chromosomes. • QDPt-DNA probe has high fluorescence intensity in comparison with organic dye-DNA probe.

  13. LNA probe-based assay for the detection of Tomato black ring virus isolates.

    Science.gov (United States)

    Hasiów-Jaroszewska, Beata; Rymelska, Natalia; Borodynko, Natasza

    2015-02-01

    Tomato black ring virus (TBRV) infects a wide range of economically important plant species worldwide. In the present study we developed a locked nucleic acid (LNA) real-time RT-PCR assay for accurate detection of genetically diverse TBRV isolates collected from different hosts. The assay based on the LNA probe has a wide detection range, high sensitivity, stability and amplification efficiency. The assay amplified all tested TBRV isolates, but no signal was observed for the RNA from other nepoviruses and healthy plant species. Under optimum reaction conditions, the detection limit was estimated around 17 copies of the TBRV target region in total RNA. Real-time RT-PCR with the LNA probe described in this paper will serve as a valuable tool for robust, sensitive and reliable detection of TBRV isolates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. II. Isothermal signal amplification in process of DNA analysis by minisequencing].

    Science.gov (United States)

    Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V

    2010-01-01

    The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.

  15. Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis

    CERN Document Server

    Selim, F A; Harmon, J F; Kwofie, J; Spaulding, R; Erickson, G; Roney, T

    2002-01-01

    Nondestructive assay and defect analysis probes based on bremsstrahlung-induced processes have been developed to identify elements and probe defects in large volume samples. Bremsstrahlung beams from (electron accelerators) with end-point energies both above and below neutron emission threshold have been used. Below neutron emission threshold these beams (from 6 MeV small pulsed linacs), which exhibit high penetration, create positrons via pair production inside the material and produce X-ray fluorescence (XRF) radiation. Chemical assays of heavy elements in thick samples up to 10 g/cm sup 2 thick are provided by energy dispersive XRF measurements. The pair-produced positrons annihilate within the material, thereby emitting 511 keV gamma radiation. Doppler broadening spectroscopy of the 511 keV radiation can be performed to characterize the material and measure defects in samples of any desired thickness. This technique has successfully measured induced strain due to tensile stress in steel samples of 0.64 cm...

  16. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB

    Science.gov (United States)

    Munir, Ahsan; Waseem, Hassan; Williams, Maggie R.; Stedtfeld, Robert D.; Gulari, Erdogan; Tiedje, James M.; Hashsham, Syed A.

    2017-01-01

    Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R2 = 0.8131). PMID:28555058

  17. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB

    Directory of Open Access Journals (Sweden)

    Ahsan Munir

    2017-05-01

    Full Text Available Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs. Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R2 = 0.8131.

  18. Detection of cystic fibrosis transmembrane conductance regulator ΔF508 gene mutation using a paper-based nucleic acid hybridization assay and a smartphone camera.

    Science.gov (United States)

    Malhotra, Karan; Noor, M Omair; Krull, Ulrich J

    2018-05-29

    Diagnostic technology that makes use of paper platforms in conjunction with the ubiquitous availability of digital cameras in cellular telephones and personal assistive devices offers opportunities for development of bioassays that are cost effective and widely distributed. Assays that operate effectively in aqueous solution require further development for implementation in paper substrates, overcoming issues associated with surface interactions on a matrix that offers a large surface-to-volume ratio and constraints on convective mixing. This report presents and compares two related methods for determination of oligonucleotides that serve as indicators of cystic fibrosis, differentiating between the normal wild-type sequence, and a mutant-type sequence that has a 3-base replacement. The transduction strategy operates by selective hybridization of oligonucleotide probes that are conjugated to fluorescent quantum dots, where hybridization of target sequences causes a molecular fluorophore to approach the quantum dot and become emissive through fluorescence resonance energy transfer. Detection can rely on hybridization of a target that is labelled with Cy3 fluorophore, or in the presence of an unlabelled target when a sandwich assay format is implemented with a labelled reporter oligonucleotide. Selectivity to determine the presence of mismatched sequences involves appropriate selection of nucleotide sequences to set melt temperatures, in conjunction with control of stringency conditions using formamide as a chaotrope. It was determined that both direct and sandwich assays on paper substrates are able to distinguish between wild-type and mutant-type samples.

  19. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes

    International Nuclear Information System (INIS)

    Wang Hui; Zhang Chengxiao; Li Yan; Qi Honglan

    2006-01-01

    A novel sensitive electrogenerated chemiluminescence (ECL) method for the detection deoxyribonucleic acid (DNA) hybridization based on gold nanoparticles carrying multiple probes was developed. Ruthenium bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid)-N-hydroxysuccinimide ester (Ru(bpy) 2 (dcbpy)NHS) was used as a ECL label and gold nanoparticle as a carrier. Probe single strand DNA (ss-DNA) was self-assembled at the 3'-terminal with a thiol group to the surface of gold nanoparticle and covalently labeled at the 5'-terminal of a phosphate group with Ru(bpy) 2 (dcbpy)NHS and the resulting conjugate (Ru(bpy) 2 (dcbpy)NHS)-ss-DNA-Au, was taken as a ECL probe. When target analyte ss-DNA was immobilized on a gold electrode by self-assembled monolayer technique and then hybridized with the ECL probe to form a double-stranded DNA (ds-DNA), a strong ECL response was electrochemically generated. The ECL intensity was linearly related to the concentration of the complementary sequence (target ss-DNA) in the range from 1.0 x 10 -11 to 1.0 x 10 -8 mol L -1 , and the linear regression equation was S = 57301 + 4579.6 lg C (unit of C is mol L -1 ). A detection limit of 5.0 x 10 -12 mol L -1 for target ss-DNA was achieved. The ECL signal generated from many reporters of ECL probe prepared is greatly amplified, compared to the convention scheme which is based on one reporter per hybridization event

  20. A novel SERRS sandwich-hybridization assay to detect specific DNA target.

    Directory of Open Access Journals (Sweden)

    Cécile Feuillie

    Full Text Available In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR. In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics.

  1. Detection of adenovirus in nasopharyngeal specimens by radioactive and nonradioactive DNA probes

    International Nuclear Information System (INIS)

    Hyypiae, T.

    1985-01-01

    The presence of adenovirus DNA in clinical specimens was analyzed by nucleic acid hybridization assays by both radioactive and enzymatic detection systems. The sensitivity of the hybridization tests was in the range of 10 to 100 pg of homologous adenovirus DNA. Minimal background was noticed with unrelated viral and nonviral DNA. Twenty-four nasopharyngeal mucus aspirate specimens, collected from children with acute respiratory infection, were assayed in the hybridization tests and also by an enzyme immunoassay for adenovirus hexon antigen which was used as a reference test. Sixteen specimens positive by the enzyme immunoassay also were positive in the two nucleic acid hybridization tests, and the remaining eight specimens were negative in all of the tests. The results indicate that nucleid acid hybridization tests with both radioactive and nonradioactive probes can be used for diagnosis of microbial infections

  2. Synthesis and detection of 3'-OH terminal biotin-labeled DNA probes

    International Nuclear Information System (INIS)

    Brakel, C.L.; Engelhardt, D.L.

    1985-01-01

    Nick translation has been used to prepare biotin-dUTP-containing DNA probes. These stable DNA probes have been identified, following hybridization to target DNA, by fluorescence using antibiotin antibodies or by enzyme reactions in which the enzyme has been linked to avidin or streptavidin. It is probable that this technology will be applicable to certain diagnostic determinations and that, with sufficient sensitivity, this technology might provide a system for obtaining rapid and specific diagnoses in situations presently requiring time-consuming growth assays. The sensitivity of this assay can be increased in two ways: (1) by increasing the amount of biotin contained in the DNA probes, and (2) by increasing the response to individual biotin molecules in the DNA probes. This report demonstrates that terminal deoxynucleotide transferase can be employed to increase the biotin content of DNA probes. We also introduce a new streptavidin-linked enzyme system that produces a greater response to biotinylated DNA probes than does streptavidin-linked horseradish peroxidase

  3. Determination for Enterobacter cloacae based on a europium ternary complex labeled DNA probe

    Science.gov (United States)

    He, Hui; Niu, Cheng-Gang; Zeng, Guang-Ming; Ruan, Min; Qin, Pin-Zhu; Liu, Jing

    2011-11-01

    The fast detection and accurate diagnosis of the prevalent pathogenic bacteria is very important for the treatment of disease. Nowadays, fluorescence techniques are important tools for diagnosis. A two-probe tandem DNA hybridization assay was designed for the detection of Enterobacter cloacae based on time-resolved fluorescence. In this work, the authors synthesized a novel europium ternary complex Eu(TTA) 3(5-NH 2-phen) with intense luminescence, high fluorescence quantum yield and long lifetime before. We developed a method based on this europium complex for the specific detection of original extracted DNA from E. cloacae. In the hybridization assay format, the reporter probe was labeled with Eu(TTA) 3(5-NH 2-phen) on the 5'-terminus, and the capture probe capture probe was covalent immobilized on the surface of the glutaraldehyde treated glass slides. The original extracted DNA of samples was directly used without any DNA purification and amplification. The detection was conducted by monitoring the fluorescence intensity from the glass surface after DNA hybridization. The detection limit of the DNA was 5 × 10 -10 mol L -1. The results of the present work proved that this new approach was easy to operate with high sensitivity and specificity. It could be conducted as a powerful tool for the detection of pathogen microorganisms in the environment.

  4. Effect of secondary structure on the thermodynamics and kinetics of PNA hybridization to DNA hairpins

    DEFF Research Database (Denmark)

    Kushon, S A; Jordan, J P; Seifert, J L

    2001-01-01

    The binding of a series of PNA and DNA probes to a group of unusually stable DNA hairpins of the tetraloop motif has been observed using absorbance hypochromicity (ABS), circular dichroism (CD), and a colorimetric assay for PNA/DNA duplex detection. These results indicate that both stable PNA...... structures in both target and probe molecules are shown to depress the melting temperatures and free energies of the probe-target duplexes. Kinetic analysis of hybridization yields reaction rates that are up to 160-fold slower than hybridization between two unstructured strands. The thermodynamic and kinetic...

  5. Genotyping of Trypanosoma cruzi Sublineage in Human Samples from a North-East Argentina Area by Hybridization with DNA Probes and Specific Polymerase Chain Reaction (PCR)

    Science.gov (United States)

    Diez, Cristina; Lorenz, Virginia; Ortiz, Silvia; Gonzalez, Verónica; Racca, Andrea; Bontempi, Iván; Manattini, Silvia; Solari, Aldo; Marcipar, Iván

    2010-01-01

    We have evaluated blood samples of chronic and congenital Trypanosoma cruzi-infected patients from the city of Reconquista located in the northeast of Argentina where no information was previously obtained about the genotype of infecting parasites. Fourteen samples of congenital and 19 chronical patients were analyzed by hybridization with DNA probes of minicircle hypervariable regions (mHVR). In congenital patients, 50% had single infections with TcIId, 7% single infections with TcIIe, 29% mixed infections with TcIId/e, and 7% had mixed infections with TcIId/b and 7% TcIId/b, respectively. In Chronical patients, 52% had single infections with TcIId, 11% single infections with TcIIe, 26% had mixed infections with TcIId/e, and 11% had non-identified genotypes. With these samples, we evaluated the minicircle lineage-specific polymerase chain reaction assay (MLS-PCR), which involves a nested PCR to HVR minicircle sequences and we found a correlation with hybridization probes of 96.4% for TcIId and 54.8% for TcIIe. PMID:20064998

  6. Evaluation of a reverse-hybridization StripAssay for the detection of genetic polymorphisms leading to acenocoumarol sensitivity.

    Science.gov (United States)

    Gialeraki, Argyri; Markatos, Christos; Grouzi, Elisabeth; Merkouri, Efrosyni; Travlou, Anthi; Politou, Marianna

    2010-04-01

    Acenocoumarol is mainly catabolized by CYP2C9 isoform of cytochrome P450 (CYP) liver complex and exerts its anticoagulant effect through the inhibition of Vitamin K Epoxide Reductase (VKOR). The most important genetic polymorphisms which lead to an impaired enzymatic activity and therefore predispose to acenocoumarol sensitivity, are considered to be CYP2C9*2 (Arg144Cys), CYP2C9*3 (Ile359Leu) and VKORC1-1639G>A, respectively. In this study we compared the results of the PGXThrombo StripAssay kit (ViennaLab Diagnostics,Vienna, Austria) with direct DNA sequencing and in house Restriction Fragment Length Polymorphisms (RFLP) for the detection of the aforementioned Single Nucleotide Polymorphisms (SNPs). The reverse hybridization StripAssay was found to be equally effective with RFLP and direct DNA sequencing for the detection of CYP2C9*2 and CYP2C9*3 polymorphisms, respectively. The comparison of the RFLP reference method with the reverse hybridization StripAssay for the detection of VKORC1-1639 G>A polymorphism showed that the reverse hybridization StripAsssay might misclassify some A/A homozygotes as heterozygotes. Optimization of the hybridization procedures may eliminate the extra low signal band observed in some samples at the reverse hybridization StripAssay and improve its diagnostic value.

  7. A flow cytometric assay technology based on quantum dots-encoded beads

    International Nuclear Information System (INIS)

    Wang Haiqiao; Liu Tiancai; Cao Yuancheng; Huang Zhenli; Wang Jianhao; Li Xiuqing; Zhao Yuandi

    2006-01-01

    A flow cytometric detecting technology based on quantum dots (QDs)-encoded beads has been described. Using this technology, several QDs-encoded beads with different code were identified effectively, and the target molecule (DNA sequence) in solution was also detected accurately by coupling to its complementary sequence probed on QDs-encoded beads through DNA hybridization assay. The resolution of this technology for encoded beads is resulted from two longer wavelength fluorescence identification signals (yellow and red fluorescent signals of QDs), and the third shorter wavelength fluorescence signal (green reporting signal of fluorescein isothiocyanate (FITC)) for the determination of reaction between probe and target. In experiment, because of QDs' unique optical character, only one excitation light source was needed to excite the QDs and probe dye FITC synchronously comparing with other flow cytometric assay technology. The results show that this technology has present excellent repeatability and good accuracy. It will become a promising multiple assay platform in various application fields after further improvement

  8. Human MLPA Probe Design (H-MAPD: a probe design tool for both electrophoresis-based and bead-coupled human multiplex ligation-dependent probe amplification assays

    Directory of Open Access Journals (Sweden)

    Hatchwell Eli

    2008-09-01

    Full Text Available Abstract Background Multiplex ligation-dependent probe amplification (MLPA is an efficient and reliable technique for gene dosage analysis. Currently MLPA can be conducted on two platforms: traditional electrophoresis-based, and FlexMAP bead-coupled. Since its introduction in 2002, MLPA has been rapidly adopted in both clinical and research situations. However, MLPA probe design is a time consuming process requiring many steps that address multiple criteria. There exist only one or two commercial software packages for traditional electrophoresis-based MLPA probe design. To our knowledge, no software is yet available that performs bead-coupled MLPA probe design. Results We have developed H-MAPD, a web-based tool that automates the generation and selection of probes for human genomic MLPA. The software performs physical-chemical property tests using UNAFold software, and uniqueness tests using the UCSC genome browser. H-MAPD supports both traditional electrophoresis-based assays, as well as FlexMAP bead-coupled MLPA. Conclusion H-MAPD greatly reduces the efforts for human genomic MLPA probe design. The software is written in Perl-CGI, hosted on a Linux server, and is freely available to non-commercial users.

  9. An Engineered Kinetic Amplification Mechanism for Single Nucleotide Variant Discrimination by DNA Hybridization Probes.

    Science.gov (United States)

    Chen, Sherry Xi; Seelig, Georg

    2016-04-20

    Even a single-nucleotide difference between the sequences of two otherwise identical biological nucleic acids can have dramatic functional consequences. Here, we use model-guided reaction pathway engineering to quantitatively improve the performance of selective hybridization probes in recognizing single nucleotide variants (SNVs). Specifically, we build a detection system that combines discrimination by competition with DNA strand displacement-based catalytic amplification. We show, both mathematically and experimentally, that the single nucleotide selectivity of such a system in binding to single-stranded DNA and RNA is quadratically better than discrimination due to competitive hybridization alone. As an additional benefit the integrated circuit inherits the property of amplification and provides at least 10-fold better sensitivity than standard hybridization probes. Moreover, we demonstrate how the detection mechanism can be tuned such that the detection reaction is agnostic to the position of the SNV within the target sequence. in contrast, prior strand displacement-based probes designed for kinetic discrimination are highly sensitive to position effects. We apply our system to reliably discriminate between different members of the let-7 microRNA family that differ in only a single base position. Our results demonstrate the power of systematic reaction network design to quantitatively improve biotechnology.

  10. Restriction Cascade Exponential Amplification (RCEA) assay with an attomolar detection limit: a novel, highly specific, isothermal alternative to qPCR.

    Science.gov (United States)

    Ghindilis, Andrey L; Smith, Maria W; Simon, Holly M; Seoudi, Ihab A; Yazvenko, Nina S; Murray, Iain A; Fu, Xiaoqing; Smith, Kenneth; Jen-Jacobson, Linda; Xu, Shuang-Yong

    2015-01-13

    An alternative to qPCR was developed for nucleic acid assays, involving signal rather than target amplification. The new technology, Restriction Cascade Exponential Amplification (RCEA), relies on specific cleavage of probe-target hybrids by restriction endonucleases (REase). Two mutant REases for amplification (Ramp), S17C BamHI and K249C EcoRI, were conjugated to oligonucleotides, and immobilized on a solid surface. The signal generation was based on: (i) hybridization of a target DNA to a Ramp-oligonucleotide probe conjugate, followed by (ii) specific cleavage of the probe-target hybrid using a non-immobilized recognition REase. The amount of Ramp released into solution upon cleavage was proportionate to the DNA target amount. Signal amplification was achieved through catalysis, by the free Ramp, of a restriction cascade containing additional oligonucleotide-conjugated Ramp and horseradish peroxidase (HRP). Colorimetric quantification of free HRP indicated that the RCEA achieved a detection limit of 10 aM (10(-17) M) target concentration, or approximately 200 molecules, comparable to the sensitivity of qPCR-based assays. The RCEA assay had high specificity, it was insensitive to non-specific binding, and detected target sequences in the presence of foreign DNA. RCEA is an inexpensive isothermal assay that allows coupling of the restriction cascade signal amplification with any DNA target of interest.

  11. Detection of TTV-DNA in PBMC using digoxigenin labelled probe by in situ hybridization

    International Nuclear Information System (INIS)

    Liu Yang; Qi Qige

    2002-01-01

    To determine TTV-DNA in PBMC in patients with viral hepatitis, a study of in situ hybridization using digoxigenin labelled probe by PCR method to the TTV ORF1 region was performed on PBMC. Results showed that the detection rate of TTV-DNA using double-stranded probe in TTV-DNA positive group in sera was 58.06 (18/31), and the detection rate of TTV-DNA using double-stranded probe in TTV-DNA negative group in sera was 27.59 (8/29). For TTV-DNA positive group detected by double- stranded probe, then we use negative- stranded probe to detect their replication. The detection rate was 22.2%(4/18). Conclusions: TTV can infect PBMC and replicate in PBMC

  12. Expression of proto-oncogenes in non-Hodgkin's lymphomas by in situ hybridization with biotinylated DNA probes

    International Nuclear Information System (INIS)

    Hamatani, Kiyohiro; Yoshida, Kuniko; Abe, Masumi; Shimaoka, Katsutaro; Shiku, Hiroshi; Akiyama, Mitoshi; Kondo, Hisayoshi.

    1989-11-01

    Expression of six proto-oncogenes (fos, myc, myb, Ki-ras, Ha-ras, and N-ras) in 43 cases of non-Hodgkin's lymphoma was analyzed by means of in situ hybridization. Biotinylated DNA probes of the six oncogenes and those of the immunoglobulin H-chain (IgH) gene and the T cell receptor β-chain (TCRβ) gene were used. The results of in situ hybridization performed under blind conditions by IgH and TCRβ gene probes were compatible with those of typing by cell surface markers. The nuclear protein-related proto-oncogenes, fos myc, and myb, were expressed in about 70 % - 80 % of all cases regardless of phenotypes, histology or histologic grade. On the contrary, genes of the ras family were expressed in fewer cases except for the Ki-ras gene which was more frequently expressed by cases of the T cell immunophenotype with a high malignancy grade. The results of dot hybridization with RNA extracted from some cases were compatible with those of in situ hybridization, further demonstrating the specificity of in situ hybridization. (author)

  13. Fluoroscence in situ hybridization of chicken intestinal samples with bacterial rRNA targeted oligonucleotide probes

    DEFF Research Database (Denmark)

    Olsen, Katja Nyholm; Francesch, M.; Christensen, Henrik

    2006-01-01

    were hybridized for 24-72h, centrifuged, washed with pre-heated hybridization buffer, centrifuged and resuspended in Millipore quality water before filtration onto a 0.22 µm black polycarbonate filter. The probes used in this study were, LGC354A, LGC354B, LGC354C, Strc493, Bacto1080, Sal3, Chis150, EUB...

  14. Chromogenic in situ hybridization is a reliable assay for detection of ALK rearrangements in adenocarcinomas of the lung.

    Science.gov (United States)

    Schildhaus, Hans-Ulrich; Deml, Karl-Friedrich; Schmitz, Katja; Meiboom, Maren; Binot, Elke; Hauke, Sven; Merkelbach-Bruse, Sabine; Büttner, Reinhard

    2013-11-01

    Reliable detection of anaplastic lymphoma kinase (ALK) rearrangements is a prerequisite for personalized treatment of lung cancer patients, as ALK rearrangements represent a predictive biomarker for the therapy with specific tyrosine kinase inhibitors. Currently, fluorescent in situ hybridization (FISH) is considered to be the standard method for assessing formalin-fixed and paraffin-embedded tissue for ALK inversions and translocations. However, FISH requires a specialized equipment, the signals fade rapidly and it is difficult to detect overall morphology and tumor heterogeneity. Chromogenic in situ hybridization (CISH) has been successfully introduced as an alternative test for the detection of several genetic aberrations. This study validates a newly developed ALK CISH assay by comparing FISH and CISH signal patterns in lung cancer samples with and without ALK rearrangements. One hundred adenocarcinomas of the lung were included in this study, among them 17 with known ALK rearrangement. FISH and CISH were carried out and evaluated according to the manufacturers' recommendations. For both assays, tumors were considered positive if ≥15% of tumor cells showed either isolated 3' signals or break-apart patterns or a combination of both. A subset of tumors was exemplarily examined by using a novel EML4 (echinoderm microtubule-associated protein-like 4) CISH probe. Red, green and fusion CISH signals were clearcut and different signal patterns were easily recognized. The percentage of aberrant tumor cells was statistically highly correlated (PCISH. On the basis of 86 samples that were evaluable by ALK CISH, we found a 100% sensitivity and 100% specificity of this assay. Furthermore, EML4 rearrangements could be recognized by CISH. CISH is a highly reliable, sensitive and specific method for the detection of ALK gene rearrangements in pulmonary adenocarcinomas. Our results suggest that CISH might serve as a suitable alternative to FISH, which is the current gold

  15. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2010-01-01

    A multiplexed solid-phase assay for the detection of nucleic acid hybridization was developed on the basis of a single color of immobilized CdSe/ZnS quantum dot (QD) as a donor in fluorescence resonance energy transfer (FRET). This work demonstrated that two channels of detection did not necessitate two different QD donors. Two probe oligonucleotides were coimmobilized on optical fibers modified with QDs, and a sandwich assay was used to associate the acceptor dyes with interfacial hybridization events without target labeling. FRET-sensitized acceptor emission provided an analytical signal that was concentration dependent down to 10 nM. Changes in the ratio of coimmobilized probe oligonucleotides were found to yield linear changes in the relative amounts of acceptor emission. These changes were compared to previous studies that used mixed films of two QD donors for two detection channels. The analysis indicated that probe dilution effects were primarily driven by changes in acceptor number density and that QD dilution effects or changes in mean donor-acceptor distance were secondary. Hybridization kinetics were found to be consistent between different ratios of coimmobilized probes, suggesting that hybridization in this type of system occurred via the accepted model for solid-phase hybridization, where adsorption and then diffusion at the solid interface drove hybridization.

  16. HybProbes-based real-time PCR assay for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei, the potato common scab pathogens.

    Science.gov (United States)

    Xu, R; Falardeau, J; Avis, T J; Tambong, J T

    2016-02-01

    The aim of this study was to develop and validate a HybProbes-based real-time PCR assay targeting the trpB gene for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei. Four primer pairs and a fluorescent probe were designed and evaluated for specificity in identifying S. scabies and Streptomyces europaeiscabiei, the potato common scab pathogens. The specificity of the HybProbes-based real-time PCR assay was evaluated using 46 bacterial strains, 23 Streptomyces strains and 23 non-Streptomyces bacterial species. Specific and strong fluorescence signals were detected from all nine strains of S. scabies and Streptomyces europaeiscabiei. No fluorescence signal was detected from 14 strains of other Streptomyces species and all non-Streptomyces strains. The identification was corroborated by the melting curve analysis that was performed immediately after the amplification step. Eight of the nine S. scabies and S. europaeiscabiei strains exhibited a unique melting peak, at Tm of 69·1°C while one strain, Warba-6, had a melt peak at Tm of 65·4°C. This difference in Tm peaks could be attributed to a guanine to cytosine mutation in strain Warba-6 at the region spanning the donor HybProbe. The reported HybProbes assay provides a more specific tool for accurate identification of S. scabies and S. europaeiscabiei strains. This study reports a novel assay based on HybProbes chemistry for rapid and accurate identification of the potato common scab pathogens. Since the HybProbes chemistry requires two probes for positive identification, the assay is considered to be more specific than conventional PCR or TaqMan real-time PCR. The developed assay would be a useful tool with great potential in early diagnosis and detection of common scab pathogens of potatoes in infected plants or for surveillance of potatoes grown in soil environment. © 2015 Her Majesty the Queen in Right of Canada © 2015 The Society for Applied Microbiology.

  17. Serotype determination of Salmonella by xTAG assay.

    Science.gov (United States)

    Zheng, Zhibei; Zheng, Wei; Wang, Haoqiu; Pan, Jincao; Pu, Xiaoying

    2017-10-01

    Currently, no protocols or commercial kits are available to determine the serotypes of Salmonella by using Luminex MAGPIX®. In this study, an xTAG assay for serotype determination of Salmonella suitable for Luminex MAGPIX® is described and 228 Salmonella isolates were serotype determined by this xTAG assay. The xTAG assay consists of two steps: 1) Multiplex PCR to amplify simultaneously O, H and Vi antigen genes of Salmonella, and 2) Magplex-TAG™ microsphere hybridization to identify accurately the specific PCR products of different antigens. Compared with the serotyping results of traditional serum agglutination test, the sensitivity and specificity of the xTAG assay were 95.1% and 100%, respectively. The agreement rate of these two assays was 95.2%. Compared with Luminex xMAP® Salmonella Serotyping Assay (SSA) kit, the advantages of this xTAG assay are: First, the magnetic beads make it applicable to both the Luminex®100/200™ and MAGPIX® systems. Second, only primers rather than both primers and probes are needed in the xTAG assay, and the process of coupling antigen-specific oligonucleotide probes to beads is circumvented, which make the xTAG assay convenient to be utilized by other laboratories. The xTAG assay may serve as a rapid alternative or complementary method for traditional Salmonella serotyping tests, especially for laboratories that utilize the MAGPIX® systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Isolation of probes specific to human chromosomal region 6p21 from immunoselected irradiation-fusion gene transfer hybrids

    International Nuclear Information System (INIS)

    Ragoussis, J.; Jones, T.A.; Sheer, D.; Shrimpton, A.E.; Goodfellow, P.N.; Trowsdale, J.; Ziegler, A.

    1991-01-01

    A hybrid cell line (R21/B1) containing a truncated human chromosome 6 (6pter-6q21) and a human Y chromosome on a hamster background was irradiated and fused to A23 (TK-) or W3GH (HPRT-) hamster cells. Clones containing expressed HLA class I genes (4/40) were selected using monoclonal antibodies. These clones were recloned and analyzed with a panel of probes from the HLA region. One hybrid (4G6) contained the entire HLA complex. Two other hybrids (4J4 and 4H2) contained only the HLA class I region, while the fourth hybrid (5P9) contained HLA class I and III genes in addition to other genes located in the 6p21 chromosomal region. In situ hybridization showed that the hybrid cells contained more than one fragment of human DNA. Alu and LINE PCR products were derived from these cells and compared to each other as well as to products from two somatic cell hybrids having the 6p21 region in common. The PCR fragments were then screened on conventional Southern blots of the somatic cell hybrids to select a panel of novel probes encompassing the 6p21 region. In addition, the origin of the human DNA fragments in hybrid 4J4 was determined by regional mapping of PCR products

  19. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes.

    Directory of Open Access Journals (Sweden)

    Qiuying Huang

    2011-04-01

    Full Text Available Probe-based fluorescence melting curve analysis (FMCA is a powerful tool for mutation detection based on melting temperature generated by thermal denaturation of the probe-target hybrid. Nevertheless, the color multiplexing, probe design, and cross-platform compatibility remain to be limited by using existing probe chemistries. We hereby explored two dual-labeled, self-quenched probes, TaqMan and shared-stem molecular beacons, in their ability to conduct FMCA. Both probes could be directly used for FMCA and readily integrated with closed-tube amplicon hybridization under asymmetric PCR conditions. Improved flexibility of FMCA by using these probes was illustrated in three representative applications of FMCA: mutation scanning, mutation identification and mutation genotyping, all of which achieved improved color-multiplexing with easy probe design and versatile probe combination and all were validated with a large number of real clinical samples. The universal cross-platform compatibility of these probes-based FMCA was also demonstrated by a 4-color mutation genotyping assay performed on five different real-time PCR instruments. The dual-labeled, self-quenched probes offered unprecedented combined advantage of enhanced multiplexing, improved flexibility in probe design, and expanded cross-platform compatibility, which would substantially improve FMCA in mutation detection of various applications.

  20. Prediction of the optimum hybridization conditions of dot-blot-SNP analysis using estimated melting temperature of oligonucleotide probes.

    Science.gov (United States)

    Shiokai, Sachiko; Kitashiba, Hiroyasu; Nishio, Takeshi

    2010-08-01

    Although the dot-blot-SNP technique is a simple cost-saving technique suitable for genotyping of many plant individuals, optimization of hybridization and washing conditions for each SNP marker requires much time and labor. For prediction of the optimum hybridization conditions for each probe, we compared T (m) values estimated from nucleotide sequences using the DINAMelt web server, measured T (m) values, and hybridization conditions yielding allele-specific signals. The estimated T (m) values were comparable to the measured T (m) values with small differences of less than 3 degrees C for most of the probes. There were differences of approximately 14 degrees C between the specific signal detection conditions and estimated T (m) values. Change of one level of SSC concentrations of 0.1, 0.2, 0.5, and 1.0x SSC corresponded to a difference of approximately 5 degrees C in optimum signal detection temperature. Increasing the sensitivity of signal detection by shortening the exposure time to X-ray film changed the optimum hybridization condition for specific signal detection. Addition of competitive oligonucleotides to the hybridization mixture increased the suitable hybridization conditions by 1.8. Based on these results, optimum hybridization conditions for newly produced dot-blot-SNP markers will become predictable.

  1. Probing intracellular motor protein activity using an inducible cargo trafficking assay.

    Science.gov (United States)

    Kapitein, Lukas C; Schlager, Max A; van der Zwan, Wouter A; Wulf, Phebe S; Keijzer, Nanda; Hoogenraad, Casper C

    2010-10-06

    Although purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living cells, we utilized the FKBP-rapalog-FRB heterodimerization system to develop an in vivo peroxisomal trafficking assay that allows inducible recruitment of exogenous and endogenous kinesin, dynein, and myosin motors to drive specific cargo transport. We demonstrate that cargo rapidly redistributes with distinct dynamics for each respective motor, and that combined (antagonistic) actions of more complex motor combinations can also be probed. Of importance, robust cargo redistribution is readily achieved by one type of motor protein and does not require the presence of opposite-polarity motors. Simultaneous live-cell imaging of microtubules and kinesin or dynein-propelled peroxisomes, combined with high-resolution particle tracking, revealed that peroxisomes frequently pause at microtubule intersections. Titration and washout experiments furthermore revealed that motor recruitment by rapalog-induced heterodimerization is dose-dependent but irreversible. Our assay directly demonstrates that robust cargo motility does not require the presence of opposite-polarity motors, and can therefore be used to characterize the motile properties of specific types of motor proteins. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Leite, Marina; Guimarães, Nuno

    2015-01-01

    acid (LNA)/ 2' O-methyl RNA (2'OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization...... step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH). In conclusion......In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo...

  3. Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors

    International Nuclear Information System (INIS)

    Bertolucci, E.; Maiorino, M.; Mettivier, G.; Montesi, M.C.; Russo, P.

    2002-01-01

    We are investigating the feasibility of an intraoperative imaging probe for lymphoscintigraphy with Tc-99m tracer, for sentinel node radioguided surgery, using the Medipix series of hybrid detectors coupled to a collimator. These detectors are pixelated semiconductor detectors bump-bonded to the Medipix1 photon counting read-out chip (64x64 pixel, 170 μm pitch) or to the Medipix2 chip (256x256 pixel, 55 μm pitch), developed by the European Medipix collaboration. The pixel detector we plan to use in the final version of the probe is a semi-insulating GaAs detector or a 1-2 mm thick CdZnTe detector. For the preliminary tests presented here, we used 300-μm thick silicon detectors, hybridized via bump-bonding to the Medipix1 chip. We used a tungsten parallel-hole collimator (7 mm thick, matrix array of 64x64 100 μm circular holes with 170 μm pitch), and a 22, 60 and 122 keV point-like (1 mm diameter) radioactive sources, placed at various distances from the detector. These tests were conducted in order to investigate the general feasibility of this imaging probe and its resolving power. Measurements show the high resolution but low efficiency performance of the detector-collimator set, which is able to image the 122 keV source with <1 mm FWHM resolution

  4. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    Energy Technology Data Exchange (ETDEWEB)

    Noor, M. Omair; Hrovat, David [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Moazami-Goudarzi, Maryam [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Espie, George S. [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada)

    2015-07-23

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  5. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    International Nuclear Information System (INIS)

    Noor, M. Omair; Hrovat, David; Moazami-Goudarzi, Maryam; Espie, George S.; Krull, Ulrich J.

    2015-01-01

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  6. Application of DNA hybridization techniques in the assessment of diarrheal disease among refugess in Thailand. [Shigella; Escherichia coli; Campylobacter; Cryptosporidium

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.N.; Echeverria, P.; Pitarangsi, C.; Seriwatana, J.; Sethabutr, O.; Bodhidatta, L.; Brown, C.; Herrmann, J.E.; Blacklow, N.R.

    1988-01-01

    The epidemiology and etiology of acute diarrheal disease were determined in a Hmong refugee camp on the Thai-Laotian border from April 11 to May 14, 1985. DNA hybridization techniques were used to detect Shigella species, enteroinvasive Escherichia coli, and enterotoxigenic E. coli. A monoclonal enzyme-linked immunosorbent assay was used to detect rotavirus, and standard microbiology was used to detect other enteropathogens. The age-specific diarrheal disease rates were 47 episodes per month per 1000 children less than five years old and 113 episodes per month per 1000 children less than one year old. Rotavirus, enterotoxigenic E. coli, Campylobacter, and Cryptosporidium were the predominant pathogens in children less than two years old. The DNA probe hybridized with 94% of 31 specimens identified as enterotoxigenic E. coli by the standard assays and with none of the specimens in which the standard assays were negative. The probe for Shigella and enteroinvasive E. coli hybridized in eight of 10 stools that contained Shigella and four of 314 stools from which Shigella and enteroinvasive E. coli were not isolated. The use of DNA probes allows specimens to be collected in remote areas with a minimum amount of equipment and technical expertise so that they can be easily transported to a central laboratory for further processing.

  7. Polymerase chain reaction-hybridization method using urease gene sequences for high-throughput Ureaplasma urealyticum and Ureaplasma parvum detection and differentiation.

    Science.gov (United States)

    Xu, Chen; Zhang, Nan; Huo, Qianyu; Chen, Minghui; Wang, Rengfeng; Liu, Zhili; Li, Xue; Liu, Yunde; Bao, Huijing

    2016-04-15

    In this article, we discuss the polymerase chain reaction (PCR)-hybridization assay that we developed for high-throughput simultaneous detection and differentiation of Ureaplasma urealyticum and Ureaplasma parvum using one set of primers and two specific DNA probes based on urease gene nucleotide sequence differences. First, U. urealyticum and U. parvum DNA samples were specifically amplified using one set of biotin-labeled primers. Furthermore, amine-modified DNA probes, which can specifically react with U. urealyticum or U. parvum DNA, were covalently immobilized to a DNA-BIND plate surface. The plate was then incubated with the PCR products to facilitate sequence-specific DNA binding. Horseradish peroxidase-streptavidin conjugation and a colorimetric assay were used. Based on the results, the PCR-hybridization assay we developed can specifically differentiate U. urealyticum and U. parvum with high sensitivity (95%) compared with cultivation (72.5%). Hence, this study demonstrates a new method for high-throughput simultaneous differentiation and detection of U. urealyticum and U. parvum with high sensitivity. Based on these observations, the PCR-hybridization assay developed in this study is ideal for detecting and discriminating U. urealyticum and U. parvum in clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Development of an in situ hybridization assay for the detection of ostreid herpesvirus type 1 mRNAs in the Pacific oyster, Crassostrea gigas.

    Science.gov (United States)

    Corbeil, Serge; Faury, Nicole; Segarra, Amélie; Renault, Tristan

    2015-01-01

    An in situ hybridization protocol for detecting mRNAs of ostreid herpesvirus type 1 (OsHV-1) which infects Pacific oysters, Crassostrea gigas, was developed. Three RNA probes were synthesized by cloning three partial OsHV-1 genes into plasmids using three specific primer pairs, and performing a transcription in the presence of digoxigenin dUTP. The RNA probes were able to detect the virus mRNAs in paraffin sections of experimentally infected oysters 26 h post-injection. The in situ hybridization showed that the OsHV-1 mRNAs were mainly present in connective tissues in gills, mantle, adductor muscle, digestive gland and gonads. DNA detection by in situ hybridization using a DNA probe and viral DNA quantitation by real-time PCR were also performed and results were compared with those obtained using RNA probes. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization.

    Science.gov (United States)

    Girard, Laurie D; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G

    2015-02-07

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design

  10. Hybridization-Based Detection of Helicobacter pylori at Human Body Temperature Using Advanced Locked Nucleic Acid (LNA) Probes

    Science.gov (United States)

    Fontenete, Sílvia; Guimarães, Nuno; Leite, Marina; Figueiredo, Céu; Wengel, Jesper; Filipe Azevedo, Nuno

    2013-01-01

    The understanding of the human microbiome and its influence upon human life has long been a subject of study. Hence, methods that allow the direct detection and visualization of microorganisms and microbial consortia (e.g. biofilms) within the human body would be invaluable. In here, we assessed the possibility of developing a variant of fluorescence in situ hybridization (FISH), named fluorescence in vivo hybridization (FIVH), for the detection of Helicobacter pylori. Using oligonucleotide variations comprising locked nucleic acids (LNA) and 2’-O-methyl RNAs (2’OMe) with two types of backbone linkages (phosphate or phosphorothioate), we were able to successfully identify two probes that hybridize at 37 °C with high specificity and sensitivity for H. pylori, both in pure cultures and in gastric biopsies. Furthermore, the use of this type of probes implied that toxic compounds typically used in FISH were either found to be unnecessary or could be replaced by a non-toxic substitute. We show here for the first time that the use of advanced LNA probes in FIVH conditions provides an accurate, simple and fast method for H. pylori detection and location, which could be used in the future for potential in vivo applications either for this microorganism or for others. PMID:24278398

  11. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids

    International Nuclear Information System (INIS)

    El-Yazbi, Amira F.; Loppnow, Glen R.

    2013-01-01

    Graphical abstract: -- Highlights: •Simple, inexpensive, mix-and-read assay for positive detection of DNA damage. •Recognition of undamaged DNA via hybridization to a hairpin probe. •Terbium(III) fluorescence reports the amount of damage by binding to ssDNA. •Tb/hairpin is a highly selective and sensitive fluorescent probe for DNA damage. -- Abstract: Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb 3+ ). Single-stranded oligonucleotides greatly enhance the Tb 3+ emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb 3+ /hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb 3+ , producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb 3+ /hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb 3+ /hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36 ± 1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage

  12. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization.

    Science.gov (United States)

    Yilmaz, L Safak; Parnerkar, Shreyas; Noguera, Daniel R

    2011-02-01

    Mathematical models of RNA-targeted fluorescence in situ hybridization (FISH) for perfectly matched and mismatched probe/target pairs are organized and automated in web-based mathFISH (http://mathfish.cee.wisc.edu). Offering the users up-to-date knowledge of hybridization thermodynamics within a theoretical framework, mathFISH is expected to maximize the probability of success during oligonucleotide probe design.

  13. Edge turbulence measurement in Heliotron J using a combination of hybrid probe system and fast cameras

    International Nuclear Information System (INIS)

    Nishino, N.; Zang, L.; Takeuchi, M.; Mizuuchi, T.; Ohshima, S.; Kasajima, K.; Sha, M.; Mukai, K.; Lee, H.Y.; Nagasaki, K.; Okada, H.; Minami, T.; Kobayashi, S.; Yamamoto, S.; Konoshima, S.; Nakamura, Y.; Sano, F.

    2013-01-01

    The hybrid probe system (a combination of Langmuir probes and magnetic probes), fast camera and gas puffing system were installed at the same toroidal section to study edge plasma turbulence/fluctuation in Heliotron J, especially blob (intermittent filament). Fast camera views the location of the probe head, so that the probe system yields the time evolution of the turbulence/fluctuation while the camera images the spatial profile. Gas puff at the same toroidal section was used to control the plasma density and simultaneous gas puff imaging technique. Using this combined system the filamentary structure associated with magnetic fluctuation was found in Heliotron J at the first time. The other kind of fluctuation was also observed at another experiment. This combination measurement enables us to distinguish MHD activity and electro-static activity

  14. A minor groove binder probe real-time PCR assay for discrimination between type 2-based vaccines and field strains of canine parvovirus.

    Science.gov (United States)

    Decaro, Nicola; Elia, Gabriella; Desario, Costantina; Roperto, Sante; Martella, Vito; Campolo, Marco; Lorusso, Alessio; Cavalli, Alessandra; Buonavoglia, Canio

    2006-09-01

    A minor groove binder (MGB) probe assay was developed to discriminate between type 2-based vaccines and field strains of canine parvovirus (CPV). Considering that most of the CPV vaccines contain the old type 2, no longer circulating in canine population, two MGB probes specific for CPV-2 and the antigenic variants (types 2a, 2b and 2c), respectively, were labeled with different fluorophores. The MGB probe assay was able to discriminate correctly between the old type and the variants, with a detection limit of 10(1) DNA copies and a good reproducibility. Quantitation of the viral DNA loads was accurate, as demonstrated by comparing the CPV DNA titres to those calculated by means of the TaqMan assay recognising all CPV types. This assay will ensure resolution of most diagnostic problems in dogs showing CPV disease shortly after CPV vaccination, although it does not discriminate between field strains and type 2b-based vaccines, recently licensed to market in some countries.

  15. The illusion of specific capture: surface and solution studies of suboptimal oligonucleotide hybridization

    Science.gov (United States)

    2013-01-01

    Background Hybridization based assays and capture systems depend on the specificity of hybridization between a probe and its intended target. A common guideline in the construction of DNA microarrays, for instance, is that avoiding complementary stretches of more than 15 nucleic acids in a 50 or 60-mer probe will eliminate sequence specific cross-hybridization reactions. Here we present a study of the behavior of partially matched oligonucleotide pairs with complementary stretches starting well below this threshold complementarity length – in silico, in solution, and at the microarray surface. The modeled behavior of pairs of oligonucleotide probes and their targets suggests that even a complementary stretch of sequence 12 nt in length would give rise to specific cross-hybridization. We designed a set of binding partners to a 50-mer oligonucleotide containing complementary stretches from 6 nt to 21 nt in length. Results Solution melting experiments demonstrate that stable partial duplexes can form when only 12 bp of complementary sequence are present; surface hybridization experiments confirm that a signal close in magnitude to full-strength signal can be obtained from hybridization of a 12 bp duplex within a 50mer oligonucleotide. Conclusions Microarray and other molecular capture strategies that rely on a 15 nt lower complementarity bound for eliminating specific cross-hybridization may not be sufficiently conservative. PMID:23445545

  16. Comparison of a commercial biochemical kit and an oligonucleotide probe for identification of environmental isolates of Vibrio vulnificus

    DEFF Research Database (Denmark)

    Dalsgaard, A.; Dalsgaard, Inger; Høi, L.

    1996-01-01

    Methods for the identification and isolation of environmental isolates of Vibrio vulnificus were evaluated. Alkaline peptone water supplemented with polymyxin B and colistin-polymyxin B- cellobiose agar were employed for the isolation of suspected V. vulnificus from water, sediment and shellfish ...... hybridizing with the probe. The results indicated that, compared with colony hybridization, the API 20E assay was not adequate for the identification of environmental isolates of V. vulnificus....

  17. Competitive Reporter Monitored Amplification (CMA) - Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization

    Science.gov (United States)

    Ullrich, Thomas; Ermantraut, Eugen; Schulz, Torsten; Steinmetzer, Katrin

    2012-01-01

    Background State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a

  18. Competitive reporter monitored amplification (CMA--quantification of molecular targets by real time monitoring of competitive reporter hybridization.

    Directory of Open Access Journals (Sweden)

    Thomas Ullrich

    Full Text Available BACKGROUND: State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. METHODOLOGY AND PRINCIPAL FINDINGS: The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. CONCLUSIONS AND SIGNIFICANCE: The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2, we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls

  19. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2009-01-06

    Fluorescence resonance energy transfer (FRET) using immobilized quantum dots (QDs) as energy donors was explored as a transduction method for the detection of nucleic acid hybridization at an interface. This research was motivated by the success of the QD-FRET-based transduction of nucleic acid hybridization in solution-phase assays. This new work represents a fundamental step toward the assembly of a biosensor, where immobilization of the selective chemistry on a surface is desired. After immobilizing QD-probe oligonucleotide conjugates on optical fibers, a demonstration of the retention of selectivity was achieved by the introduction of acceptor (Cy3)-labeled single-stranded target oligonucleotides. Hybridization generated the proximity required for FRET, and the resulting fluorescence spectra provided an analytical signal proportional to the amount of target. This research provides an important framework for the future development of nucleic acid biosensors based on QDs and FRET. The most important findings of this work are that (1) a QD-FRET solid-phase hybridization assay is viable and (2) a passivating layer of denatured bovine serum albumin alleviates nonspecific adsorption, ultimately resulting in (3) the potential for a reusable assay format and mismatch discrimination. In this, the first incarnation of a solid-phase QD-FRET hybridization assay, the limit of detection was found to be 5 nM, and the dynamic range was almost 2 orders of magnitude. Selective discrimination of the target was shown using a three-base-pairs mismatch from a fully complementary sequence. Despite a gradual loss of signal, reuse of the optical fibers over multiple cycles of hybridization and dehybridization was possible. Directions for further improvement of the analytical performance by optimizing the design of the QD-probe oligonucleotide interface are identified.

  20. Comparison of clinical samples for visceral Leishmaniasis diagnosis in asymptomatic dogs by PCR hybridization

    International Nuclear Information System (INIS)

    Ferreira, Sidney A.; Ituassu, Leonardo T.; Melo, Maria N.

    2009-01-01

    The canine visceral leishmaniasis (CVL) diagnosis still represents a challenge because of complexity of this disease. The aim of present study was to compare different clinical samples for diagnosis of CVL by Polymerase Chain Reaction (PCR) combined with hybridization of 32 P labeled probes. Bone marrow (BM), skin biopsy (SB), peripheral blood (PB) and conjunctival swab (CS) were used in this work. With this purpose 40 asymptomatic dogs, all positive by parasitological test, were obtained. From each animal were collected SB with sterile punches from ear internal surface, 1.0 mL of PB, BM aspirates from sternum and CS from both lower eyelid. Each clinical sample was submitted to suitable DNA purification process and PCR-hybridization assays. The positive results obtained with PCR were 55%, 25%, 30% and 22.5% for CS, BM, SB and PB respectively while the PCR followed by hybridization showed a positivity of 87.5%, 50%, 45% and 27.5% respectively. The hybridization assay was able to increase the PCR positivity in all kinds of clinical samples. The best performance was obtained using CS samples. We concluded that the PCR associated with DNA radioactive probes was a very sensitive tool for diagnosis of CVL in asymptomatic dogs and the CS has an important potential for regular screening of dogs. (author)

  1. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Donald B., E-mail: bloch@helix.mgh.harvard.edu; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-09-10

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: {yields} A two-hybrid assay was developed to study interactions in macromolecular complexes. {yields} The assay was applied to interactions between components of mRNA P-bodies. {yields} The assay effectively and efficiently identified protein interaction domains. {yields} P-body assembly in mammalian cells differs from that in other species.

  2. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    International Nuclear Information System (INIS)

    Bloch, Donald B.; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-01-01

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: → A two-hybrid assay was developed to study interactions in macromolecular complexes. → The assay was applied to interactions between components of mRNA P-bodies. → The assay effectively and efficiently identified protein interaction domains. → P-body assembly in mammalian cells differs from that in other species.

  3. A field based detection method for Rose rosette virus using isothermal probe-based Reverse transcription-recombinase polymerase amplification assay.

    Science.gov (United States)

    Babu, Binoy; Washburn, Brian K; Ertek, Tülin Sarigül; Miller, Steven H; Riddle, Charles B; Knox, Gary W; Ochoa-Corona, Francisco M; Olson, Jennifer; Katırcıoğlu, Yakup Zekai; Paret, Mathews L

    2017-09-01

    Rose rosette disease, caused by Rose rosette virus (RRV; genus Emaravirus) is a major threat to the rose industry in the U.S. The only strategy currently available for disease management is early detection and eradication of the infected plants, thereby limiting its potential spread. Current RT-PCR based diagnostic methods for RRV are time consuming and are inconsistent in detecting the virus from symptomatic plants. Real-time RT-qPCR assay is highly sensitive for detection of RRV, but it is expensive and requires well-equipped laboratories. Both the RT-PCR and RT-qPCR cannot be used in a field-based testing for RRV. Hence a novel probe based, isothermal reverse transcription-recombinase polymerase amplification (RT-exoRPA) assay, using primer/probe designed based on the nucleocapsid gene of the RRV has been developed. The assay is highly specific and did not give a positive reaction to other viruses infecting roses belonging to both inclusive and exclusive genus. Dilution assays using the in vitro transcript showed that the primer/probe set is highly sensitive, with a detection limit of 1 fg/μl. In addition, a rapid technique for the extraction of viral RNA (rose varieties, collected from different states in the U.S. The entire process, including the extraction can be completed in 25min, with less sophisticated equipments. The developed assay can be used with high efficiency in large scale field testing for rapid detection of RRV in commercial nurseries and landscapes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Study on sensitivity of southern blotting hybridization using a 32P-labeled probe of PCR products in detecting human cytomegalovirus

    International Nuclear Information System (INIS)

    Bu Hengfu; Chen Juan; Shen Rongsen; Ma Liren; Xu Yongqiang

    1996-01-01

    Southern blotting hybridization (SBH) using a 32 P-labeled probe is one of the most practical methods for genetic diagnosis of pathogen. On the basis of establishing PCR and nested PCR for detecting human cytomegalovirus (HCMV), a 32 P-labeled probe was prepared with the amplified products of 613 bp PCR outer primers and hybridized with 300 bp inner primer amplified product, resulting in increase in detecting sensitivity from 17 ng (in 1.2% agarose electrophoresis) before SBH to 500 pg (autoradiographed), in other words, increasing the sensitivity of detecting HCMV by 10 2 dilutions after using SBH. The method of PCR and SBH using a 32 P-labeled probe could detect less than 1 gene copy of HCMV, therefore, it is a rapid and reliable diagnosis method for detecting HCMV latent infection

  5. Specific identification of human papillomavirus type in cervical smears and paraffin sections by in situ hybridization with radioactive probes: a preliminary communication

    International Nuclear Information System (INIS)

    Gupta, J.; Gendelman, H.E.; Naghashfar, Z.; Gupta, P.; Rosenshein, N.; Sawada, E.; Woodruff, J.D.; Shah, K.

    1985-01-01

    Cervical Papanicolaou smears and paraffin sections of biopsy specimens obtained from women attending dysplasia clinics were examined for viral DNA sequences by in situ hybridization technique using 35 S-labeled cloned recombinant DNA probes of human papillomavirus (HPV) types 6, 11, and 16. These and one unrelated DNA probe complementary to measles virus RNA were labeled by nick translation using either one or two 35 S-labeled nucleotides. Paraffin sections and cervical smears were collected on pretreated slides, hybridized with the probes under stringent or nonstringent conditions for 50 h, and autoradiographed. Additional cervical specimens from the same women were examined for the presence of genus-specific papillomavirus capsid antigen by the immunoperoxidase technique. Preliminary results may be summarized as follows. The infecting virus could be identified in smears as well as in sections. Viral DNA sequences were detected only when there were condylomatous cells in the specimen and in only a proportion of the condylomatous cells. Even under stringent conditions, some specimens reacted with both HPV-6 and HPV-11. In some instances, the cells did not hybridize with any of the three probes even when duplicate specimens contained frankly condylomatous, capsid antigen-positive cells. In situ hybridization of Papanicolaou smears or of tissue sections is a practical method for diagnosis and follow-up of specific papillomavirus infection using routinely collected material

  6. Multiply osmium-labeled reporter probes for electrochemical DNA hybridization assays: detection of trinucleotide repeats

    Czech Academy of Sciences Publication Activity Database

    Fojta, Miroslav; Havran, Luděk; Kizek, René; Paleček, Emil

    2004-01-01

    Roč. 20, č. 5 (2004), s. 985-994 ISSN 0956-5663 R&D Projects: GA MPO 1H-PK/42; GA AV ČR IAA4004108; GA AV ČR IBS5004355; GA AV ČR KJB4004302; GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z5004920 Keywords : electrochemical sensors * DNA hybridization * DNA labeling Subject RIV: BO - Biophysics Impact factor: 3.251, year: 2004

  7. DNA hybridization sensing for cytogenetic analysis

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dapra, Johannes; Brøgger, Anna Line

    2013-01-01

    are rearrangements between two chromosome arms that results in two derivative chromosomes having a mixed DNA sequence. The current detection method is a Fluorescent In situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the DNA sequences of two chromosomes involved...... in the translocation (Kwasny et al., 2012). We have developed a new double hybridization assay that allows for sorting of the DNA chromosomal fragments into separate compartment, moreover allowing for detection of the translocation. To detect the translocation it is necessary to determine that the two DNA sequences...... forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The first example of the translocation detection was presented on lab-on-a-disc using fluorescently labeled DNA fragments, representing the derivative chromosome (Brøgger et al., 2012). To allow...

  8. Probe colorimeter for quantitating enzyme-linked immunosorbent assays and other colorimetric assays performed with microplates.

    Science.gov (United States)

    Ackerman, S B; Kelley, E A

    1983-03-01

    The performance of a fiberoptic probe colorimeter (model PC800; Brinkmann Instruments, Inc., Westbury, N.Y.) for quantitating enzymatic or colorimetric assays in 96-well microtiter plates was compared with the performances of a spectrophotometer (model 240; Gilford Instrument Laboratories, Inc., Oberlin, Ohio) and a commercially available enzyme immunoassay reader (model MR590; Dynatech Laboratories, Inc., Alexandria, Va.). Alkaline phosphatase-p-nitrophenyl phosphate in 3 M NaOH was used as the chromophore source. Six types of plates were evaluated for use with the probe colorimeter; they generated reproducibility values (100% coefficient of variation) ranging from 91 to 98% when one individual made 24 independent measurements on the same dilution of chromophore on each plate. Eleven individuals each performed 24 measurements with the colorimeter on either a visually light (absorbance of 0.10 at 420 nm) or a dark (absorbance of 0.80 at 420 nm) dilution of chromophore; reproducibilities averaged 87% for the light dilution and 97% for the dark dilution. When one individual measured the same chromophore sample at least 20 times in the colorimeter, in the spectrophotometer or in the enzyme immunoassay reader, reproducibility for each instrument was greater than 99%. Measurements of a dilution series of chromophore in a fixed volume indicated that the optical responses of each instrument were linear in a range of 0.05 to 1.10 absorbance units.

  9. Time-gated luminescence assay using nonmetal probes for determination of protein kinase activity-based disease markers.

    Science.gov (United States)

    Kasari, Marje; Padrik, Peeter; Vaasa, Angela; Saar, Kristi; Leppik, Krista; Soplepmann, Jaan; Uri, Asko

    2012-03-15

    A novel nonmetal optical probe ARC-1063 whose long-lifetime luminescence is induced by association with the target protein kinase is used for the measurement of the concentration of catalytic subunit of protein kinase A (PKAc) in complicated biological solutions. High affinity (K(D) = 10 pM toward PKAc) and unique optical properties of the probe enable its application for the measurement of picomolar concentrations of PKAc in the presence of high concentrations of other proteins. The described assay is applicable in the high-throughput format with the instrument setups designed for lanthanide-based time-gated (time-resolved) luminescence methods. The assay is used for demonstration that extracellular PKAc (ECPKA) is present in plasma samples of all healthy persons and cancer patients but great care must be taken for procedures of treatment of blood samples to avoid disruption, damage, or activation of platelets in the course of plasma (or serum) preparation and conservation. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Rapid colorimetric assay for detection of Listeria monocytogenes in food samples using LAMP formation of DNA concatemers and gold nanoparticle-DNA probe complex

    Science.gov (United States)

    Wachiralurpan, Sirirat; Sriyapai, Thayat; Areekit, Supatra; Sriyapai, Pichapak; Augkarawaritsawong, Suphitcha; Santiwatanakul, Somchai; Chansiri, Kosum

    2018-04-01

    ABSTRACT Listeria monocytogenes is a major foodborne pathogen of global health concern. Herein, the rapid diagnosis of L. monocytogenes has been achieved using loop-mediated isothermal amplification (LAMP) based on the phosphatidylcholine-phospholipase C gene (plcB). Colorimetric detection was then performed through the formation of DNA concatemers and a gold nanoparticle/DNA probe complex (GNP/DNA probe). The overall detection process was accomplished within approximately 1 h with no need for complicated equipment. The limits of detection for L. monocytogenes in the forms of purified genomic DNA and pure culture were 800 fg and 2.82 CFU mL-1, respectively. No cross reactions were observed from closely related bacteria species. The LAMP-GNP/DNA probe assay was applied to the detection of 200 raw chicken meat samples and compared to routine standard methods. The data revealed that the specificity, sensitivity and accuracy were 100%, 90.20% and 97.50%, respectively. The present assay was 100% in conformity with LAMP-agarose gel electrophoresis assay. Five samples that were negative by both assays appeared to have the pathogen at below the level of detection. The assay can be applied as a rapid direct screening method for L. monocytogenes.

  11. Bias in the Cq value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value

    NARCIS (Netherlands)

    Tuomi, Jari Michael; Voorbraak, Frans; Jones, Douglas L.; Ruijter, Jan M.

    2010-01-01

    For real-time monitoring of PCR amplification of DNA, quantitative PCR (qPCR) assays use various fluorescent reporters. DNA binding molecules and hybridization reporters (primers and probes) only fluoresce when bound to DNA and result in the non-cumulative increase in observed fluorescence.

  12. Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy

    International Nuclear Information System (INIS)

    Liu, Hongying; Bei, Xiaoqiong; Xia, Qiuting; Fu, Yan; Zhang, Shi; Liu, Maochuan; Fan, Kai; Zhang, Mingzhen; Yang, Yong

    2016-01-01

    We describe a sensitive enzyme-free bioassay for the determination of microRNA-21. It is based on a combination of target-triggered hybridization chain reaction, tagging with CdTe quantum dots (QDs), and anodic stripping voltammetry. Firstly, a thiolated capture hairpin probe SH-HP1 was immobilized on the surface of a gold electrode. HP1 unfolds in the presence of microRNA-21. If hairpin probe 2 (HP2) is present, a HP1-HP2 complex will be formed which possesses an exposed stem of HP2, and microRNA is released in parallel. The released microRNA-21 triggers a hybridization chain reaction and this leads to form an exposed DNA segment of HP2 and cycle use microRNA-21. With the aid of assistant DNA A1 and A2, the exposed DNA segment of HP2 progressed to a long double strand. The strand is rich in CdTe QDs with the help of QDs-A1. Then, the attached QDs were dissolved with HNO 3 to give dissolved Cd(II) ions. Finally, the corresponding electrochemical current response of Cd(II) is monitored by anodic stripping voltammetry and used to quantify the concentration of microRNA-21. More microRNA-21 participated in this reaction increases the number of CdTe QDs, which results in increased electrochemical current. Thus, an ultrasensitive detection of microRNA-21 is accomplished by anodic stripping voltammetry. This gene assay displays a detection limit as low as 33 aM. It can discriminate between complementary DNA sequence and single-base mismatched DNA, indicating its high specificity. (author)

  13. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    Science.gov (United States)

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Comparison of clinical samples for visceral Leishmaniasis diagnosis in asymptomatic dogs by PCR hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Sidney A.; Ituassu, Leonardo T.; Melo, Maria N. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Parasitologia], e-mail: saninoalmeida@gmail.com, e-mail: Itituassu@yahoo.com.br, e-mail: melo@icb.ufmg.br; Leite, Rodrigo S.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: rleite2005@gmail.com, e-mail: antero@cdtn.br

    2009-07-01

    The canine visceral leishmaniasis (CVL) diagnosis still represents a challenge because of complexity of this disease. The aim of present study was to compare different clinical samples for diagnosis of CVL by Polymerase Chain Reaction (PCR) combined with hybridization of {sup 32}P labeled probes. Bone marrow (BM), skin biopsy (SB), peripheral blood (PB) and conjunctival swab (CS) were used in this work. With this purpose 40 asymptomatic dogs, all positive by parasitological test, were obtained. From each animal were collected SB with sterile punches from ear internal surface, 1.0 mL of PB, BM aspirates from sternum and CS from both lower eyelid. Each clinical sample was submitted to suitable DNA purification process and PCR-hybridization assays. The positive results obtained with PCR were 55%, 25%, 30% and 22.5% for CS, BM, SB and PB respectively while the PCR followed by hybridization showed a positivity of 87.5%, 50%, 45% and 27.5% respectively. The hybridization assay was able to increase the PCR positivity in all kinds of clinical samples. The best performance was obtained using CS samples. We concluded that the PCR associated with DNA radioactive probes was a very sensitive tool for diagnosis of CVL in asymptomatic dogs and the CS has an important potential for regular screening of dogs. (author)

  15. Immunoglobulin heavy-chain fluorescence in situ hybridization-chromogenic in situ hybridization DNA probe split signal in the clonality assessment of lymphoproliferative processes on cytological samples.

    Science.gov (United States)

    Zeppa, Pio; Sosa Fernandez, Laura Virginia; Cozzolino, Immacolata; Ronga, Valentina; Genesio, Rita; Salatiello, Maria; Picardi, Marco; Malapelle, Umberto; Troncone, Giancarlo; Vigliar, Elena

    2012-12-25

    The human immunoglobulin heavy-chain (IGH) locus at chromosome 14q32 is frequently involved in different translocations of non-Hodgkin lymphoma (NHL), and the detection of any breakage involving the IGH locus should identify a B-cell NHL. The split-signal IGH fluorescence in situ hybridization-chromogenic in situ hybridization (FISH-CISH) DNA probe is a mixture of 2 fluorochrome-labeled DNAs: a green one that binds the telomeric segment and a red one that binds the centromeric segment, both on the IGH breakpoint. In the current study, the authors tested the capability of the IGH FISH-CISH DNA probe to detect IGH translocations and diagnose B-cell lymphoproliferative processes on cytological samples. Fifty cytological specimens from cases of lymphoproliferative processes were tested using the split-signal IGH FISH-CISH DNA probe and the results were compared with light-chain assessment by flow cytometry (FC), IGH status was tested by polymerase chain reaction (PCR), and clinicohistological data. The signal score produced comparable results on FISH and CISH analysis and detected 29 positive, 15 negative, and 6 inadequate cases; there were 29 true-positive cases (66%), 9 true-negative cases (20%), 6 false-negative cases (14%), and no false-positive cases (0%). Comparing the sensitivity of the IGH FISH-CISH DNA split probe with FC and PCR, the highest sensitivity was obtained by FC, followed by FISH-CISH and PCR. The split-signal IGH FISH-CISH DNA probe is effective in detecting any translocation involving the IGH locus. This probe can be used on different samples from different B-cell lymphoproliferative processes, although it is not useful for classifying specific entities. Cancer (Cancer Cytopathol) 2012;. © 2012 American Cancer Society. Copyright © 2012 American Cancer Society.

  16. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Chen, Lu; Algar, W Russ; Tavares, Anthony J; Krull, Ulrich J

    2011-01-01

    The optical properties and surface area of quantum dots (QDs) have made them an attractive platform for the development of nucleic acid biosensors based on fluorescence resonance energy transfer (FRET). Solid-phase assays based on FRET using mixtures of immobilized QD-oligonucleotide conjugates (QD biosensors) have been developed. The typical challenges associated with solid-phase detection strategies include non-specific adsorption, slow kinetics of hybridization, and sample manipulation. The new work herein has considered the immobilization of QD biosensors onto the surfaces of microfluidic channels in order to address these challenges. Microfluidic flow can be used to dynamically control stringency by adjustment of the potential in an electrokinetic-based microfluidics environment. The shearing force, Joule heating, and the competition between electroosmotic and electrophoretic mobilities allow the optimization of hybridization conditions, convective delivery of target to the channel surface to speed hybridization, amelioration of adsorption, and regeneration of the sensing surface. Microfluidic flow can also be used to deliver (for immobilization) and remove QD biosensors. QDs that were conjugated with two different oligonucleotide sequences were used to demonstrate feasibility. One oligonucleotide sequence on the QD was available as a linker for immobilization via hybridization with complementary oligonucleotides located on a glass surface within a microfluidic channel. A second oligonucleotide sequence on the QD served as a probe to transduce hybridization with target nucleic acid in a sample solution. A Cy3 label on the target was excited by FRET using green-emitting CdSe/ZnS QD donors and provided an analytical signal to explore this detection strategy. The immobilized QDs could be removed under denaturing conditions by disrupting the duplex that was used as the surface linker and thus allowed a new layer of QD biosensors to be re-coated within the channel

  17. Quantum dots-hyperbranched polyether hybrid nanospheres towards delivery and real-time detection of nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuiping; Gu, Tianxun; Fu, Jiajia [Key Laboratory of Eco-Textiles, Ministry of Education (Jiangnan University), Wuxi 214122 (China); College of Textile and Clothing, Jiangnan University, Wuxi 214122 (China); Li, Xiaoqiang, E-mail: leecaiwei@163.com [Key Laboratory of Eco-Textiles, Ministry of Education (Jiangnan University), Wuxi 214122 (China); College of Textile and Clothing, Jiangnan University, Wuxi 214122 (China); Technical University of Denmark, DTU Food, Søltofts plads, B227, 2800 Kgs. Lyngby (Denmark); Chronakis, Ioannis S. [Technical University of Denmark, DTU Food, Søltofts plads, B227, 2800 Kgs. Lyngby (Denmark); Ge, Mingqiao [Key Laboratory of Eco-Textiles, Ministry of Education (Jiangnan University), Wuxi 214122 (China); College of Textile and Clothing, Jiangnan University, Wuxi 214122 (China)

    2014-12-01

    In this work, novel hybrid nanosphere vehicles were synthesized for nitric oxide (NO) donating and real-time detection. The hybrid nanosphere vehicles consist of cadmium selenide quantum dots (CdSe QDs) as NO fluorescent probes, and the modified hyperbranched polyether (mHP)-based diazeniumdiolates as NO donors, respectively. The nanospheres have spherical outline with dimension of ∼ 127 nm. The data of systematic characterization demonstrated that the mHP-based hybrid nanosphere vehicles (QDs-mHP-NO) can release and real-time detect NO with the low limit of 25 nM, based on fluorescence quenching mechanism. The low cell-toxicity of QDs-mHP-NO nanospheres was verified by means of MTT assay on L929 cells viability. The QDs-mHP-NO nanospheres provide perspectives for designing a new class of biocompatible NO donating and imaging systems. - Highlights: • QDs-mHP-NO fluorescent probe was prepared. • The QDs-mHP-NO probe is capable of releasing NO. • The QDs-mHP-NO probe can quantitatively detecting the release of NO in real time. • The low cell-toxicity of QDs-mHP-NO nanospheres was verified.

  18. Hybridization of Environmental Microbial Community Nucleic Acids by GeoChip.

    Science.gov (United States)

    Van Nostrand, Joy D; Yin, Huaqin; Wu, Liyou; Yuan, Tong; Zhou, Jizhong

    2016-01-01

    Functional gene arrays, like the GeoChip, allow for the study of tens of thousands of genes in a single assay. The GeoChip array (5.0) contains probes for genes involved in geochemical cycling (N, C, S, and P), metal homeostasis, stress response, organic contaminant degradation, antibiotic resistance, secondary metabolism, and virulence factors as well as genes specific for fungi, protists, and viruses. Here, we briefly describe GeoChip design strategies (gene selection and probe design) and discuss minimum quantity and quality requirements for nucleic acids. We then provide detailed protocols for amplification, labeling, and hybridization of samples to the GeoChip.

  19. Study comparing human papillomavirus (HPV) real-time multiplex PCR and Hybrid Capture II INNO-LiPA v2 HPV genotyping PCR assays

    DEFF Research Database (Denmark)

    Iftner, Thomas; Germ, Liesje; Swoyer, Ryan

    2009-01-01

    methods has not been well characterized. Clinically, cytology is used to establish possible HPV infection. We evaluated the sensitivity and specificity of HPV multiplex PCR assays compared to those of the testing scheme of the Hybrid Capture II (HCII) assay followed by an HPV PCR/line hybridization assay...... (HCII-LiPA v2). SurePath residual samples were split into two aliquots. One aliquot was subjected to HCII testing followed by DNA extraction and LiPA v2 genotyping. The second aliquot was shipped to a second laboratory, where DNA was extracted and HPV multiplex PCR testing was performed. Comparisons...... were evaluated for 15 HPV types common in both assays. A slightly higher proportion of samples tested positive by the HPV multiplex PCR than by the HCII-LiPA v2 assay. The sensitivities of the multiplex PCR assay relative to those of the HCII-LiPA v2 assay for HPV types 6, 11, 16, and 18, for example...

  20. Detection of dengue group viruses by fluorescence in situ hybridization

    Directory of Open Access Journals (Sweden)

    Raquin Vincent

    2012-10-01

    Full Text Available Abstract Background Dengue fever (DF and dengue hemorrhagic fever (DHF represent a global challenge in public health. It is estimated that 50 to 100 million infections occur each year causing approximately 20,000 deaths that are usually linked to severe cases like DHF and dengue shock syndrome. The causative agent of DF is dengue virus (genus Flavivirus that comprises four distinct serotypes (DENV-1 to DENV-4. Fluorescence in situ hybridization (FISH has been used successfully to detect pathogenic agents, but has not been implemented in detecting DENV. To improve our understanding of DENV infection and dissemination in host tissues, we designed specific probes to detect DENV in FISH assays. Methods Oligonucleotide probes were designed to hybridize with RNA from the broadest range of DENV isolates belonging to the four serotypes, but not to the closest Flavivirus genomes. Three probes that fit the criteria defined for FISH experiments were selected, targeting both coding and non-coding regions of the DENV genome. These probes were tested in FISH assays against the dengue vector Aedes albopictus (Diptera: Culicidae. The FISH experiments were led in vitro using the C6/36 cell line, and in vivo against dissected salivary glands, with epifluorescence and confocal microscopy. Results The three 60-nt oligonucleotides probes DENV-Probe A, B and C cover a broad range of DENV isolates from the four serotypes. When the three probes were used together, specific fluorescent signals were observed in C6/36 infected with each DENV serotypes. No signal was detected in either cells infected with close Flavivirus members West Nile virus or yellow fever virus. The same protocol was used on salivary glands of Ae. albopictus fed with a DENV-2 infectious blood-meal which showed positive signals in the lateral lobes of infected samples, with no significant signal in uninfected mosquitoes. Conclusion Based on the FISH technique, we propose a way to design and use

  1. A UK NEQAS ISH multicenter ring study using the Ventana HER2 dual-color ISH assay.

    LENUS (Irish Health Repository)

    Bartlett, J M S

    2011-01-01

    We performed a multicenter assessment of a new HER2 dual-color chromogenic in situ hybridization (CISH) test and herein report on concordance of CISH data with fluorescence in situ hybridization (FISH) data and intraobserver and interlaboratory scoring consistency. HER2 results were evaluated using duplicate cores from 30 breast cancers in 5 laboratories using the Ventana HER2 dual-color ISH assay (Ventana Medical Systems, Cambridgeshire, England) and in 1 central laboratory using a standard FISH assay. Overall 93.3% of cases were successfully analyzed by CISH across the 5 participating laboratories. There was excellent concordance (98.0% overall) for diagnosis of HER2 amplification by CISH compared with FISH. Intraobserver variability (7.7%) and intersite variability (9.1%) of absolute HER2\\/chromosome enumeration probe 17 ratios were tightly controlled across all participating laboratories. The Ventana HER2 dual-color ISH assay is robust and reproducible, shows good concordance with a standard FISH assay, and complies with requirements in national and international guidelines for performance of ISH-based diagnostic tests.

  2. Selective activation of SHP2 activity by cisplatin revealed by a novel chemical probe-based assay

    International Nuclear Information System (INIS)

    Kuo, Chun-Chen; Chu, Chi-Yuan; Lin, Jing-Jer; Lo, Lee-Chiang

    2010-01-01

    Src homology-2 (SH2) domain-containing phosphatase 2 (SHP2) is known to participate in several different signaling pathways to mediate cell growth, survival, migration, and differentiation. However, due to the lack of proper analytical tools, it is unclear whether the phosphatase activity of SHP2 is activated in most studies. We have previously developed an activity-based probe LCL2 that formed covalent linkage with catalytically active protein tyrosine phosphatases (PTPs). Here, by combining LCL2 with a SHP2 specific antibody, we established an assay system that enables the direct monitoring of SHP2 activity upon cisplatin treatment of cancer cells. The protocol is advantageous over conventional colorimetric or in-gel PTP assays as it is specific and does not require the use of radioisotope reagents. Using this assay, we found SHP2 activity was selectively activated by cisplatin. Moreover, the activation of SHP2 appeared to be specific for cisplatin as other DNA damage agents failed to activate the activity. Although the role of SHP2 activation by cisplatin treatments is still unclear to us, our results provide the first direct evidence for the activation of SHP2 during cisplatin treatments. More importantly, the concept of using activity-based probe in conjunction with target-specific antibodies could be extended to other enzyme classes.

  3. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Badillo

    2014-04-01

    Full Text Available Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  4. Preclinical detection of porcine circovirus type 2 infection using an ultrasensitive nanoparticle DNA probe-based PCR assay.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available Porcine circovirus type 2 (PCV2 has emerged as one of the most important pathogens affecting swine production globally. Preclinical identification of PCV2 is very important for effective prophylaxis of PCV2-associated diseases. In this study, we developed an ultrasensitive nanoparticle DNA probe-based PCR assay (UNDP-PCR for PCV2 detection. Magnetic microparticles coated with PCV2 specific DNA probes were used to enrich PCV2 DNA from samples, then gold nanoparticles coated with PCV2 specific oligonucleotides were added to form a sandwich nucleic acid-complex. After the complex was formed, the oligonucleotides were released and characterized by PCR. This assay exhibited about 500-fold more sensitive than conventional PCR, with a detection limit of 2 copies of purified PCV2 genomic DNA and 10 viral copies of PCV2 in serum. The assay has a wide detection range for all of PCV2 genotypes with reliable reproducibility. No cross-reactivity was observed from the samples of other related viruses including porcine circovirus type 1, porcine parvovirus, porcine pseudorabies virus, porcine reproductive and respiratory syndrome virus and classical swine fever virus. The positive detection rate of PCV2 specific UNDP-PCR in 40 preclinical field samples was 27.5%, which appeared greater than that by conventional and real-time PCR and appeared application potency in evaluation of the viral loads levels of preclinical infection samples. The UNDP-PCR assay reported here can reliably rule out false negative results from antibody-based assays, provide a nucleic acid extraction free, specific, ultrasensitive, economic and rapid diagnosis method for preclinical PCV2 infection in field, which may help prevent large-scale outbreaks.

  5. Time-Resolved Nucleic Acid Hybridization Beacons Utilizing Unimolecular and Toehold-Mediated Strand Displacement Designs.

    Science.gov (United States)

    Massey, Melissa; Ancona, Mario G; Medintz, Igor L; Algar, W Russ

    2015-12-01

    Nucleic acid hybridization probes are sought after for numerous assay and imaging applications. These probes are often limited by the properties of fluorescent dyes, prompting the development of new probes where dyes are paired with novel or nontraditional luminescent materials. Luminescent terbium complexes are an example of such a material, and these complexes offer several unique spectroscopic advantages. Here, we demonstrate two nonstem-loop designs for light-up nucleic acid hybridization beacons that utilize time-resolved Förster resonance energy transfer (TR-FRET) between a luminescent Lumi4-Tb cryptate (Tb) donor and a fluorescent reporter dye, where time-resolved emission from the dye provides an analytical signal. Both designs are based on probe oligonucleotides that are labeled at their opposite termini with Tb and a fluorescent reporter dye. In one design, a probe is partially blocked with a quencher dye-labeled oligonucleotide, and target hybridization is signaled through toehold-mediated strand displacement and loss of a competitive FRET pathway. In the other design, the intrinsic folding properties of an unblocked probe are utilized in combination with a temporal mechanism for signaling target hybridization. This temporal mechanism is based on a recently elucidated "sweet spot" for TR-FRET measurements and exploits distance control over FRET efficiencies to shift the Tb lifetime within or outside the time-gated detection window for measurements. Both the blocked and unblocked beacons offer nanomolar (femtomole) detection limits, response times on the order of minutes, multiplexing through the use of different reporter dyes, and detection in complex matrices such as serum and blood. The blocked beacons offer better mismatch selectivity, whereas the unblocked beacons are simpler in design. The temporal mechanism of signaling utilized with the unblocked beacons also plays a significant role with the blocked beacons and represents a new and effective

  6. TaqMan probe real-time polymerase chain reaction assay for the quantification of canine DNA in chicken nugget.

    Science.gov (United States)

    Rahman, Md Mahfujur; Hamid, Sharifah Bee Abd; Basirun, Wan Jefrey; Bhassu, Subha; Rashid, Nur Raifana Abdul; Mustafa, Shuhaimi; Mohd Desa, Mohd Nasir; Ali, Md Eaqub

    2016-01-01

    This paper describes a short-amplicon-based TaqMan probe quantitative real-time PCR (qPCR) assay for the quantitative detection of canine meat in chicken nuggets, which are very popular across the world, including Malaysia. The assay targeted a 100-bp fragment of canine cytb gene using a canine-specific primer and TaqMan probe. Specificity against 10 different animals and plants species demonstrated threshold cycles (Ct) of 16.13 ± 0.12 to 16.25 ± 0.23 for canine DNA and negative results for the others in a 40-cycle reaction. The assay was tested for the quantification of up to 0.01% canine meat in deliberately spiked chicken nuggets with 99.7% PCR efficiency and 0.995 correlation coefficient. The analysis of the actual and qPCR predicted values showed a high recovery rate (from 87% ± 28% to 112% ± 19%) with a linear regression close to unity (R(2) = 0.999). Finally, samples of three halal-branded commercial chicken nuggets collected from different Malaysian outlets were screened for canine meat, but no contamination was demonstrated.

  7. Diagnosis of canine visceral leishmaniasis with radiolabelled probes: comparison of the kDNA PCR-hybridization with three molecular methods in different clinical samples

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Aline Leandra C.; Ferreira, Sidney A.; Carregal, Virginia M.; Andrade, Antero Silva R., E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia; Melo, Maria N., E-mail: melo@icb.ufmg.br [Departamento de Parasitologia. Instituto de Ciencias Biologicas. Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2011-07-01

    Leishmania (Leishmania) chagasi is responsible for visceral leishmaniasis (VL) in Brazil and the dog is the main domestic reservoir. Disease control is based on the elimination of infected animals and the use of a sensitive and specific diagnostic test is necessary. The Brazilian VL control program emphasizes serologic surveys, mainly using the enzyme-linked immunosorbent assay (ELISA) and the immunofluorescence antibody test (IFAT), followed by the elimination of the seropositive dogs. However, these techniques present limitations in terms of sensitivity and specificity. The Polymerase Chain Reaction (PCR) associated to hybridization with DNA probes labeled with {sup 32}P has been recognized as a valuable tool for Leishmania identification. In this study, the sensitivity of kDNA PCR hybridization method was compared with three other molecular methods: Internal Transcribed Spacer 1 Nested PCR (ITS-1nPCR), Leishmania nested PCR (LnPCR) and Seminested kDNA PCR (kDNA snPCR). The comparison was performed in different clinical specimens: conjunctival swab, skin, blood and bone marrow. A group of thirty symptomatic dogs, positive in the parasitological and serological tests, was used. When. The techniques targeting kDNA mini-circles (kDNA snPCR and KDNA PCR-hybridization) showed the worst result for blood samples. The KDNA-PCR hybridization showed the best sensitivity for conjunctival swab. By comparing the samples on the basis of positivity obtained by the sum of all methods, the blood showed the worst outcome (71/120).The bone marrow showed the highest positivity (106/120), followed by conjunctival swab (100/120) and skin (89/120). Since the bone marrow samples are unsuitable for routine epidemiological surveys, the conjunctival swab was recommended because it allows high sensitivity, especially when associated with kDNA PCR hybridization method, and is a noninvasive sampling method. (author)

  8. Diagnosis of canine visceral leishmaniasis with radiolabelled probes: comparison of the kDNA PCR-hybridization with three molecular methods in different clinical samples

    International Nuclear Information System (INIS)

    Ferreira, Aline Leandra C.; Ferreira, Sidney A.; Carregal, Virginia M.; Andrade, Antero Silva R.

    2011-01-01

    Leishmania (Leishmania) chagasi is responsible for visceral leishmaniasis (VL) in Brazil and the dog is the main domestic reservoir. Disease control is based on the elimination of infected animals and the use of a sensitive and specific diagnostic test is necessary. The Brazilian VL control program emphasizes serologic surveys, mainly using the enzyme-linked immunosorbent assay (ELISA) and the immunofluorescence antibody test (IFAT), followed by the elimination of the seropositive dogs. However, these techniques present limitations in terms of sensitivity and specificity. The Polymerase Chain Reaction (PCR) associated to hybridization with DNA probes labeled with 32 P has been recognized as a valuable tool for Leishmania identification. In this study, the sensitivity of kDNA PCR hybridization method was compared with three other molecular methods: Internal Transcribed Spacer 1 Nested PCR (ITS-1nPCR), Leishmania nested PCR (LnPCR) and Seminested kDNA PCR (kDNA snPCR). The comparison was performed in different clinical specimens: conjunctival swab, skin, blood and bone marrow. A group of thirty symptomatic dogs, positive in the parasitological and serological tests, was used. When. The techniques targeting kDNA mini-circles (kDNA snPCR and KDNA PCR-hybridization) showed the worst result for blood samples. The KDNA-PCR hybridization showed the best sensitivity for conjunctival swab. By comparing the samples on the basis of positivity obtained by the sum of all methods, the blood showed the worst outcome (71/120).The bone marrow showed the highest positivity (106/120), followed by conjunctival swab (100/120) and skin (89/120). Since the bone marrow samples are unsuitable for routine epidemiological surveys, the conjunctival swab was recommended because it allows high sensitivity, especially when associated with kDNA PCR hybridization method, and is a noninvasive sampling method. (author)

  9. Non-Enzymatic Detection of Bacterial Genomic DNA Using the Bio-Barcode Assay

    Science.gov (United States)

    Hill, Haley D.; Vega, Rafael A.; Mirkin, Chad A.

    2011-01-01

    The detection of bacterial genomic DNA through a non-enzymatic nanomaterials based amplification method, the bio-barcode assay, is reported. The assay utilizes oligonucleotide functionalized magnetic microparticles to capture the target of interest from the sample. A critical step in the new assay involves the use of blocking oligonucleotides during heat denaturation of the double stranded DNA. These blockers bind to specific regions of the target DNA upon cooling, and prevent the duplex DNA from re-hybridizing, which allows the particle probes to bind. Following target isolation using the magnetic particles, oligonucleotide functionalized gold nanoparticles act as target recognition agents. The oligonucleotides on the nanoparticle (barcodes) act as amplification surrogates. The barcodes are then detected using the Scanometric method. The limit of detection for this assay was determined to be 2.5 femtomolar, and this is the first demonstration of a barcode type assay for the detection of double stranded, genomic DNA. PMID:17927207

  10. Line probe assay for differentiation within Mycobacterium tuberculosis complex. Evaluation on clinical specimens and isolates including Mycobacterium pinnipedii

    DEFF Research Database (Denmark)

    Kjeldsen, Marianne Kirstine; Bek, Dorte; Rasmussen, Erik Michael

    2009-01-01

    A line probe assay (GenoType MTBC) was evaluated for species differentiation within the Mycobacterium tuberculosis complex (MTBC). We included 387 MTBC isolates, 43 IS6110 low-copy MTBC isolates, 28 clinical specimens with varying microscopy grade, and 30 isolates of non-tuberculous mycobacteria...

  11. A CO-FISH assay to assess sister chromatid segregation patterns in mitosis of mouse embryonic stem cells.

    Science.gov (United States)

    Sauer, Stephan; Burkett, Sandra S; Lewandoski, Mark; Klar, Amar J S

    2013-05-01

    Sister chromatids contain identical DNA sequence but are chiral with respect to both their helical handedness and their replication history. Emerging evidence from various model organisms suggests that certain stem cells segregate sister chromatids nonrandomly to either maintain genome integrity or to bias cellular differentiation in asymmetric cell divisions. Conventional methods for tracing of old vs. newly synthesized DNA strands generally lack resolution for individual chromosomes and employ halogenated thymidine analogs with profound cytotoxic effects on rapidly dividing cells. Here, we present a modified chromosome orientation fluorescence in situ hybridization (CO-FISH) assay, where identification of individual chromosomes and their replication history is achieved in subsequent hybridization steps with chromosome-specific DNA probes and PNA telomere probes. Importantly, we tackle the issue of BrdU cytotoxicity and show that our method is compatible with normal mouse ES cell biology, unlike a recently published related protocol. Results from our CO-FISH assay show that mitotic segregation of mouse chromosome 7 is random in ES cells, which contrasts previously published results from our laboratory and settles a controversy. Our straightforward protocol represents a useful resource for future studies on chromatid segregation patterns of in vitro-cultured cells from distinct model organisms.

  12. Linking probe thermodynamics to microarray quantification

    International Nuclear Information System (INIS)

    Li, Shuzhao; Pozhitkov, Alexander; Brouwer, Marius

    2010-01-01

    Understanding the difference in probe properties holds the key to absolute quantification of DNA microarrays. So far, Langmuir-like models have failed to link sequence-specific properties to hybridization signals in the presence of a complex hybridization background. Data from washing experiments indicate that the post-hybridization washing has no major effect on the specifically bound targets, which give the final signals. Thus, the amount of specific targets bound to probes is likely determined before washing, by the competition against nonspecific binding. Our competitive hybridization model is a viable alternative to Langmuir-like models. (comment)

  13. High-throughput platform assay technology for the discovery of pre-microrna-selective small molecule probes.

    Science.gov (United States)

    Lorenz, Daniel A; Song, James M; Garner, Amanda L

    2015-01-21

    MicroRNAs (miRNA) play critical roles in human development and disease. As such, the targeting of miRNAs is considered attractive as a novel therapeutic strategy. A major bottleneck toward this goal, however, has been the identification of small molecule probes that are specific for select RNAs and methods that will facilitate such discovery efforts. Using pre-microRNAs as proof-of-concept, herein we report a conceptually new and innovative approach for assaying RNA-small molecule interactions. Through this platform assay technology, which we term catalytic enzyme-linked click chemistry assay or cat-ELCCA, we have designed a method that can be implemented in high throughput, is virtually free of false readouts, and is general for all nucleic acids. Through cat-ELCCA, we envision the discovery of selective small molecule ligands for disease-relevant miRNAs to promote the field of RNA-targeted drug discovery and further our understanding of the role of miRNAs in cellular biology.

  14. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes.

    OpenAIRE

    Burggraf, S; Mayer, T; Amann, R; Schadhauser, S; Woese, C R; Stetter, K O

    1994-01-01

    Two 16S rRNA-targeted oligonucleotide probes were designed for the archaeal kingdoms Euryachaeota and Crenarchaeota. Probe specificities were evaluated by nonradioactive dot blot hybridization against selected reference organisms. The successful application of fluorescent-probe derivatives for whole-cell hybridization required organism-specific optimizations of fixation and hybridization conditions to assure probe penetration and morphological integrity of the cells. The probes allowed prelim...

  15. In situ hybridization; principles and applications: review article

    Directory of Open Access Journals (Sweden)

    Zahra Nozhat

    2015-06-01

    Full Text Available In situ hybridization (ISH is a method that uses labeled complementary single strand DNA or RNA to localize specific DNA or RNA sequences in an intact cell or in a fixed tissue section. The main steps of ISH consist of: probe selection, tissue or sample preparation, pre-hybridization treatment, hybridization and washing, detection and control procedure. Probe selection is one of the important aspects of successful hybridization. ISH sensitivity and specificity can be influenced by: probe construct, efficiency of labeling, percentage of GC, probe length and signal detection systems. Different methods such as nick translation, random priming, end tailing and T4 DNA polymerase replacement are used for probe generation. Both radioactive and non-radioactive labels can be used in order to probe labeling. Nucleic acid maintenance in samples, prevention of morphological changes of samples and probe penetration into tissue section are the main aims of sample preparation step. Then, a small amount of solution containing probe, is added on slides containing tissue sections for hybridization process, then slides are incubated overnight. Next day, washes are carried out to remove the probes which are not bound to target DNA or RNA. Finally, in order to be sure that the observed labeling is specific to the target sequence, using several control procedures is very important. Various techniques based on ISH consist of: Fluorescence in situ hybridization (FISH, chromogenic in situ hybridization (CISH, genomic in situ hybridization (GISH, comparative genomic hybridization (CGH, spectral karyotyping (SKY and multiplex fluorescence in situ hybridization (MFISH. One of the most common techniques of ISH is fluorescence in situ hybridization. FISH can be used to: 1 detect small deletions and duplications that are not visible using microscope analysis, 2 detect how many chromosomes of a certain type are present in each cell and 3 confirm rearrangements that are

  16. Colorimetric detection of Ehrlichia canis via nucleic acid hybridization in gold nano-colloids.

    Science.gov (United States)

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-08-08

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease.

  17. Colorimetric microwell plate reverse-hybridization assay for Mycobacterium tuberculosis detection

    Directory of Open Access Journals (Sweden)

    Candice Tosi Michelon

    2011-03-01

    Full Text Available Direct smear examination using Ziehl-Neelsen staining for pulmonary tuberculosis (PTB diagnosis is inexpensive and easy to use, but has the major limitation of low sensitivity. Rapid molecular methods are becoming more widely available in centralized laboratories, but they depend on timely reporting of results and strict quality assurance obtainable only from costly commercial kits available in high burden nations. This study describes a pre-commercial colorimetric method, Detect-TB, for detecting Mycobacterium tuberculosis DNA in which an oligonucleotide probe is fixed onto wells of microwell plates and hybridized with biotinylated polymerase chain reaction amplification products derived from clinical samples. The probe is capable of hybridising with the IS6110 insertion element and was used to specifically recognise the M. tuberculosis complex. When combined with an improved silica-based DNA extraction method, the sensitivity of the test was 50 colony-forming units of the M. tuberculosis reference strain H37Rv. The results that were in agreement with reference detection methods were observed in 95.2% (453/476 of samples included in the analysis. Sensitivity and specificity for 301 induced sputum samples and 175 spontaneous sputum samples were 85% and 98%, and 94% and 100%, respectively. This colorimetric method showed similar specificity to that described for commercially available kits and may provide an important contribution for PTB diagnosis.

  18. Development and use of fluorescent 16S rRNA-targeted probes for the specific detection of Methylophaga species by in situ hybridization in marine sediments.

    Science.gov (United States)

    Janvier, Monique; Regnault, Béatrice; Grimont, Patrick

    2003-09-01

    Methylotrophic bacteria are widespread in nature. They may play an important role in the cycling of carbon and in the metabolism of dimethylsulfide in a marine environment. Bacteria belonging to the genus Methylophaga are a unique group of aerobic, halophilic, non-methane-utilizing methylotrophs. Two 16S rRNA-targeted oligonucleotide probes were developed for the specific detection of Methylophaga species, marine methylobacteria, by fluorescence in situ hybridization. Probe MPH-730 was highly specific for all members of the genus Methylophaga while probe MPHm-994 targeted exclusively M. marina. The application of these probes were demonstrated by the detection of Methylophaga species in enrichment cultures from various marine sediments. All isolates recovered were visualized by using the genus specific probe MPH-730. The results were confirmed by 16S rDNA sequencing which demonstrated that all selected isolates belong to Methylophaga. Five isolates could be detected by the M. marina-specific probe MPHm-994 and were confirmed by rRNA gene restriction pattern (ribotyping). With the development of these specific probes, fluorescence in situ hybridization shows that the genus Methylophaga is widespread in marine samples.

  19. Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes

    Science.gov (United States)

    Fontenete, Sílvia; Leite, Marina; Guimarães, Nuno; Madureira, Pedro; Ferreira, Rui Manuel; Figueiredo, Céu; Wengel, Jesper; Azevedo, Nuno Filipe

    2015-01-01

    In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo FISH-based method (FIVH) that directly detects and allows the visualization of the bacterium within the human body would significantly reduce the time of analysis, allowing the diagnosis to be performed during endoscopy. In a previous study we designed and synthesized a phosphorothioate locked nucleic acid (LNA)/ 2’ O-methyl RNA (2’OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH). In conclusion, this methodology is a promising approach that might be used in vivo in the future in combination with a confocal laser endomicroscope for H. pylori visualization. PMID:25915865

  20. Towards Fluorescence In Vivo Hybridization (FIVH Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes.

    Directory of Open Access Journals (Sweden)

    Sílvia Fontenete

    Full Text Available In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo FISH-based method (FIVH that directly detects and allows the visualization of the bacterium within the human body would significantly reduce the time of analysis, allowing the diagnosis to be performed during endoscopy. In a previous study we designed and synthesized a phosphorothioate locked nucleic acid (LNA/ 2' O-methyl RNA (2'OMe probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH. In conclusion, this methodology is a promising approach that might be used in vivo in the future in combination with a confocal laser endomicroscope for H. pylori visualization.

  1. Genome reorganization in Nicotiana asymmetric somatic hybrids analysed by in situ hybridization

    International Nuclear Information System (INIS)

    Parokonny, A.S.; Kenton, A.Y.; Gleba, Y.Y.; Bennett, M.D.

    1992-01-01

    In situ hybridization was used to examine genome reorganization in asymmetric somatic hybrids between Nicotiana plumbaginifolia and Nicotiana sylvestris obtained by fusion of gamma-irradiated protoplasts from one of the parents (donor) with non-irradiated protoplasts from the other (recipient). Probing with biotinylated total genomic DNA from either the donor or the recipient species unequivocally identified genetic material from both parents in 31 regenerant plants, each originating from a different nuclear hybrid colony. This method, termed genomic in situ hybridization (GISH), allowed intergenomic translocations containing chromosome segments from both species to be recognized in four regenerants. A probe homologous to the consensus sequence of the Arabidopsis thaliana telomeric repeat (5'-TTTAGGG-3')n, identified telomeres on all chromosomes, including 'mini-chromosomes' originating from the irradiated donor genome. Genomic in situ hybridization to plant chromosomes provides a rapid and reliable means of screening for recombinant genotypes in asymmetric somatic hybrids. Used in combination with other DNA probes, it also contributes to a greater understanding of the events responsible for genomic recovery and restabilization following genetic manipulation in vitro

  2. A probe-based quantitative PCR assay for detecting Tetracapsuloides bryosalmonae in fish tissue and environmental DNA water samples

    Science.gov (United States)

    Hutchins, Patrick; Sepulveda, Adam; Martin, Renee; Hopper, Lacey

    2017-01-01

    A probe-based quantitative real-time PCR assay was developed to detect Tetracapsuloides bryosalmonae, which causes proliferative kidney disease in salmonid fish, in kidney tissue and environmental DNA (eDNA) water samples. The limits of detection and quantification were 7 and 100 DNA copies for calibration standards and T. bryosalmonae was reliably detected down to 100 copies in tissue and eDNA samples. The assay presented here is a highly sensitive and quantitative tool for detecting T. bryosalmonae with potential applications for tissue diagnostics and environmental detection.

  3. Detection of Helicobacter Pylori Genome with an Optical Biosensor Based on Hybridization of Urease Gene with a Gold Nanoparticles-Labeled Probe

    Science.gov (United States)

    Shahrashoob, M.; Mohsenifar, A.; Tabatabaei, M.; Rahmani-Cherati, T.; Mobaraki, M.; Mota, A.; Shojaei, T. R.

    2016-05-01

    A novel optics-based nanobiosensor for sensitive determination of the Helicobacter pylori genome using a gold nanoparticles (AuNPs)-labeled probe is reported. Two specific thiol-modified capture and signal probes were designed based on a single-stranded complementary DNA (cDNA) region of the urease gene. The capture probe was immobilized on AuNPs, which were previously immobilized on an APTES-activated glass, and the signal probe was conjugated to different AuNPs as well. The presence of the cDNA in the reaction mixture led to the hybridization of the AuNPs-labeled capture probe and the signal probe with the cDNA, and consequently the optical density of the reaction mixture (AuNPs) was reduced proportionally to the cDNA concentration. The limit of detection was measured at 0.5 nM.

  4. Sets of RNA repeated tags and hybridization-sensitive fluorescent probes for distinct images of RNA in a living cell.

    Directory of Open Access Journals (Sweden)

    Takeshi Kubota

    Full Text Available BACKGROUND: Imaging the behavior of RNA in a living cell is a powerful means for understanding RNA functions and acquiring spatiotemporal information in a single cell. For more distinct RNA imaging in a living cell, a more effective chemical method to fluorescently label RNA is now required. In addition, development of the technology labeling with different colors for different RNA would make it easier to analyze plural RNA strands expressing in a cell. METHODOLOGY/PRINCIPAL FINDINGS: Tag technology for RNA imaging in a living cell has been developed based on the unique chemical functions of exciton-controlled hybridization-sensitive oligonucleotide (ECHO probes. Repetitions of selected 18-nucleotide RNA tags were incorporated into the mRNA 3'-UTR. Pairs with complementary ECHO probes exhibited hybridization-sensitive fluorescence emission for the mRNA expressed in a living cell. The mRNA in a nucleus was detected clearly as fluorescent puncta, and the images of the expression of two mRNAs were obtained independently and simultaneously with two orthogonal tag-probe pairs. CONCLUSIONS/SIGNIFICANCE: A compact and repeated label has been developed for RNA imaging in a living cell, based on the photochemistry of ECHO probes. The pairs of an 18-nt RNA tag and the complementary ECHO probes are highly thermostable, sequence-specifically emissive, and orthogonal to each other. The nucleotide length necessary for one tag sequence is much shorter compared with conventional tag technologies, resulting in easy preparation of the tag sequences with a larger number of repeats for more distinct RNA imaging.

  5. Detection of KatG Gen Mutation on Mycobacterium Tuberculosis by Means of PCR-Dot Blot Hybridization with 32P Labeled Oligonucleotide Probe Methods

    International Nuclear Information System (INIS)

    Maria Lina R; Budiman Bela; Andi Yasmon

    2009-01-01

    Handling and controlling of tuberculosis, a disease caused by Mycobacterium tuberculosis (MTB), is now complicated since there are many MTBs that are resistant against anti-tuberculosis drugs such as isoniazid. The drug resistance could occurred due to the inadequate and un-regular drug utilization that cause gene mutation of the drug target such as katG gene for isoniazid. The molecular biology techniques such as the PCR- dot blot hybridization with radioisotope ( 32 P) labeled oligonucleotide probe, has been reported as a technique that is more sensitive and rapid for detection of gene mutations related with drug resistances. Hence, the aim of this study was to apply the PCR- dot blot hybridization technique using 32 P labeled oligonucleotide probe for detection of single mutation at codon 315 of katG gene of MTBs that rise the isoniazid resistance. In this study, we used 89 sputum specimens and a standard MTB (MTB H 37 RV) as a control. DNA extractions were performed by the BOOM method and the phenol chloroform for sputum samples and standard MTB, respectively. Primers used for PCR technique were Pt8 and Pt9 and RTB59 and RTB36 for detecting tuberculosis causing Mycobacterium and the existence of katG gene, respectively. Both of the primers are specific for IS6110 region and katG gene, respectively. PCR products were detected by an agarose gel electrophoresis technique. Dot blot hybridization with 32 P-oligonucleotide probe 315mu was performed to detect mutation at codon 315 of tested samples. Results of the PCR using primer Pt8 and Pt9 showed that all sputum specimens had positive results. Mutation detection by PCR- dot blot hybridization with 32 P-oligonucleotide probe 315mu, revealed that 11 of 89 tested samples had a mutation at their codon 315 of katG gene. Based upon these results, it is concluded that PCR-dot blot hybridization with 32 P-oligonucleotide probe is a technique that is rapid and highly specific and sensitive for detection of mutation at codon

  6. Detection of supercoiled hepatitis B virus DNA and related forms by means of molecular hybridization to an oligonucleotide probe

    International Nuclear Information System (INIS)

    Lin, H.J.; Chung, H.T.; Lai, C.L.; Leong, S.; Tam, O.S.

    1989-01-01

    A novel assay for supercoiled and other fully double-stranded forms of hepatitis B virus (HBV) DNA in blood is presented that utilizes molecular hybridisation to a radiophosphorous-labeled oligonucleotide probe. The probe [5'-d(ACGTGCAGAGGTGAAGCGA)] is complementary to the S(+)-strand sequence furthest downstream, at the end of the gap. We examined blood specimens from 137 healthy HBsAg-positive individuals, applying the probe to dots representing 2-3.5 ml serum or plasma. We found that supercoiled HBV is present in many HBV DNA-positive blood specimens albeit in small quantities. Of the 104 specimens that were positive for HBV DNA of any form, 53 annealed to the probe. Serial specimens from the same subject taken over a period of months showed that the proportion of supercoil to other HBV DNA forms was variable. The presence of supercoil HBV DNA was not closely correlated with the level of serum HBV DNA polymerase. The supercoil is an HBV DNA form that can persist in the liver in the presence or absence of other replicative intermediates. This assay may enable further characterization of the status of HBV infection

  7. A homogeneous and “off–on” fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yang-Bao [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Ren, Hong-Xia [Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 10049 (China); Gan, Ning, E-mail: ganning@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Zhou, You [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Cao, Yuting, E-mail: caoyuting@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Li, Tianhua [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Chen, Yinji [Faculty of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210000 (China)

    2016-07-27

    In this work, a novel homogeneous and signal “off–on” aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in “off” state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the “off” signal of SSB/L-QD tracer into “on” state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability. - Highlights: • Homogeneous and “off–on” fluorescence aptamer-based assay was developed to detect chloramphenicol (CAP) residues in food. • This probe was fabricated based on a vesicle QDs signal tracer (SSB/L-QD) combining with Au-Aptamer. • The detection mechanism was based on FRET with high specificity. • The results for CAP detection in the milk samples agreed well with those from ELISA, while

  8. High-performance analysis of single interphase cells with custom DNA probes spanning translocation break points

    Science.gov (United States)

    Weier, Heinz-Ulli G.; Munne, S.; Lersch, Robert A.; Marquez, C.; Wu, J.; Pedersen, Roger A.; Fung, Jingly

    1999-06-01

    The chromatin organization of interphase cell nuclei, albeit an object of intense investigation, is only poorly understood. In the past, this has hampered the cytogenetic analysis of tissues derived from specimens where only few cells were actively proliferating or a significant number of metaphase cells could be obtained by induction of growth. Typical examples of such hard to analyze cell systems are solid tumors, germ cells and, to a certain extent, fetal cells such as amniocytes, blastomeres or cytotrophoblasts. Balanced reciprocal translocations that do not disrupt essential genes and thus do not led to disease symptoms exit in less than one percent of the general population. Since the presence of translocations interferes with homologue pairing in meiosis, many of these individuals experience problems in their reproduction, such as reduced fertility, infertility or a history of spontaneous abortions. The majority of translocation carriers enrolled in our in vitro fertilization (IVF) programs carry simple translocations involving only two autosomes. While most translocations are relatively easy to spot in metaphase cells, the majority of cells biopsied from embryos produced by IVF are in interphase and thus unsuitable for analysis by chromosome banding or FISH-painting. We therefore set out to analyze single interphase cells for presence or absence of specific translocations. Our assay, based on fluorescence in situ hybridization (FISH) of breakpoint-spanning DNA probes, detects translocations in interphase by visual microscopic inspection of hybridization domains. Probes are prepared so that they span a breakpoint and cover several hundred kb of DNA adjacent to the breakpoint. On normal chromosomes, such probes label a contiguous stretch of DNA and produce a single hybridization domain per chromosome in interphase cells. The translocation disrupts the hybridization domain and the resulting two fragments appear as physically separated hybridization domains in

  9. Multiplex ligation-dependent probe amplification (MLPA) assay for blood group genotyping, copy number quantification, and analysis of RH variants

    NARCIS (Netherlands)

    Veldhuisen, Barbera; van der Schoot, C. E.; de Haas, Masja

    2015-01-01

    The blood group multiplex ligation-dependent probe amplification (MLPA) is a comprehensive assay, developed for genotyping the majority of clinically relevant blood group antigens in both patients and donors. The MLPA is an easy method to apply and only requires a thermal cycler and capillary

  10. Development of a real-time RT-PCR assay based on primer-probe energy transfer for the detection of all serotypes of bluetongue virus

    DEFF Research Database (Denmark)

    Leblanc, N; Rasmussen, Thomas Bruun; Fernandez, J

    2010-01-01

    A real-time RT-PCR assay based on the primer–probe energy transfer (PriProET) was developed to detect all 24 serotypes of bluetongue virus (BTV). BTV causes serious disease, primarily in sheep, but in other ruminants as well. A distinguishing characteristic of the assay is its tolerance toward...

  11. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes.

    Science.gov (United States)

    Burggraf, S; Mayer, T; Amann, R; Schadhauser, S; Woese, C R; Stetter, K O

    1994-09-01

    Two 16S rRNA-targeted oligonucleotide probes were designed for the archaeal kingdoms Euryachaeota and Crenarchaeota. Probe specificities were evaluated by nonradioactive dot blot hybridization against selected reference organisms. The successful application of fluorescent-probe derivatives for whole-cell hybridization required organism-specific optimizations of fixation and hybridization conditions to assure probe penetration and morphological integrity of the cells. The probes allowed preliminary grouping of three new hyperthermophilic isolates. Together with other group-specific rRNA-targeted oligonucleotide probes, these probes will facilitate rapid in situ monitoring of the populations present in hydrothermal systems and support cultivation attempts.

  12. Design of 240,000 orthogonal 25mer DNA barcode probes.

    Science.gov (United States)

    Xu, Qikai; Schlabach, Michael R; Hannon, Gregory J; Elledge, Stephen J

    2009-02-17

    DNA barcodes linked to genetic features greatly facilitate screening these features in pooled formats using microarray hybridization, and new tools are needed to design large sets of barcodes to allow construction of large barcoded mammalian libraries such as shRNA libraries. Here we report a framework for designing large sets of orthogonal barcode probes. We demonstrate the utility of this framework by designing 240,000 barcode probes and testing their performance by hybridization. From the test hybridizations, we also discovered new probe design rules that significantly reduce cross-hybridization after their introduction into the framework of the algorithm. These rules should improve the performance of DNA microarray probe designs for many applications.

  13. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.

    Science.gov (United States)

    Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel

    2013-01-30

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  14. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA.

    Science.gov (United States)

    Majid, Farjana; Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log 10 copies/ml and 6.95 ± 1.08 log 10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log 10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35.

  15. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine.

    Science.gov (United States)

    Erickson, A; Fisher, M; Furukawa-Stoffer, T; Ambagala, A; Hodko, D; Pasick, J; King, D P; Nfon, C; Ortega Polo, R; Lung, O

    2018-04-01

    Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional

  16. Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology

    Directory of Open Access Journals (Sweden)

    Hovhannisyan Galina G

    2010-09-01

    Full Text Available Abstract Comet assay and micronucleus (MN test are widely applied in genotoxicity testing and biomonitoring. While comet assay permits to measure direct DNA-strand breaking capacity of a tested agent MN test allows estimating the induced amount of chromosome and/or genome mutations. The potential of these two methods can be enhanced by the combination with fluorescence in situ hybridization (FISH techniques. FISH plus comet assay allows the recognition of targets of DNA damage and repairing directly. FISH combined with MN test is able to characterize the occurrence of different chromosomes in MN and to identify potential chromosomal targets of mutagenic substances. Thus, combination of FISH with the comet assay or MN test proved to be promising techniques for evaluation of the distribution of DNA and chromosome damage in the entire genome of individual cells. FISH technique also permits to study comet and MN formation, necessary for correct application of these methods. This paper reviews the relevant literature on advantages and limitations of Comet-FISH and MN-FISH assays application in genetic toxicology.

  17. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration.

  18. Quantifying Nanoparticle Internalization Using a High Throughput Internalization Assay.

    Science.gov (United States)

    Mann, Sarah K; Czuba, Ewa; Selby, Laura I; Such, Georgina K; Johnston, Angus P R

    2016-10-01

    The internalization of nanoparticles into cells is critical for effective nanoparticle mediated drug delivery. To investigate the kinetics and mechanism of internalization of nanoparticles into cells we have developed a DNA molecular sensor, termed the Specific Hybridization Internalization Probe - SHIP. Self-assembling polymeric 'pHlexi' nanoparticles were functionalized with a Fluorescent Internalization Probe (FIP) and the interactions with two different cell lines (3T3 and CEM cells) were studied. The kinetics of internalization were quantified and chemical inhibitors that inhibited energy dependent endocytosis (sodium azide), dynamin dependent endocytosis (Dyngo-4a) and macropinocytosis (5-(N-ethyl-N-isopropyl) amiloride (EIPA)) were used to study the mechanism of internalization. Nanoparticle internalization kinetics were significantly faster in 3T3 cells than CEM cells. We have shown that ~90% of the nanoparticles associated with 3T3 cells were internalized, compared to only 20% of the nanoparticles associated with CEM cells. Nanoparticle uptake was via a dynamin-dependent pathway, and the nanoparticles were trafficked to lysosomal compartments once internalized. SHIP is able to distinguish between nanoparticles that are associated on the outer cell membrane from nanoparticles that are internalized. This study demonstrates the assay can be used to probe the kinetics of nanoparticle internalization and the mechanisms by which the nanoparticles are taken up by cells. This information is fundamental for engineering more effective nanoparticle delivery systems. The SHIP assay is a simple and a high-throughput technique that could have wide application in therapeutic delivery research.

  19. Development of species-specific rDNA probes for Giardia by multiple fluorescent in situ hybridization combined with immunocytochemical identification of cyst wall antigens.

    Science.gov (United States)

    Erlandsen, Stanley L; Jarroll, Edward; Wallis, Peter; van Keulen, Harry

    2005-08-01

    In this study, we describe the development of fluorescent oligonucleotide probes to variable regions in the small subunit of 16S rRNA in three distinct Giardia species. Sense and antisense probes (17-22 mer) to variable regions 1, 3, and 8 were labeled with digoxygenin or selected fluorochomes (FluorX, Cy3, or Cy5). Optimal results were obtained with fluorochome-labeled oligonucleotides for detection of rRNA in Giardia cysts. Specificity of fluorescent in situ hybridization (FISH) was shown using RNase digestion and high stringency to diminish the hybridization signal, and oligonucleotide probes for rRNA in Giardia lamblia, Giardia muris, and Giardia ardeae were shown to specifically stain rRNA only within cysts or trophozoites of those species. The fluorescent oligonucleotide specific for rRNA in human isolates of Giardia was positive for ten different strains. A method for simultaneous FISH detection of cysts using fluorescent antibody (genotype marker) and two oligonucleotide probes (species marker) permitted visualization of G. lamblia and G. muris cysts in the same preparation. Testing of an environmental water sample revealed the presence of FISH-positive G. lamblia cysts with a specific rDNA probe for rRNA, while negative cysts were presumed to be of animal or bird origin.

  20. Development and characterization of a magnetic bead-quantum dot nanoparticles based assay capable of Escherichia coli O157:H7 quantification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gha-Young [Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Son, Ahjeong, E-mail: ason@auburn.edu [Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States)

    2010-09-10

    The development and characterization of a magnetic bead (MB)-quantum dot (QD) nanoparticles based assay capable of quantifying pathogenic bacteria is presented here. The MB-QD assay operates by having a capturing probe DNA selectively linked to the signaling probe DNA via the target genomic DNA (gDNA) during DNA hybridization. The signaling probe DNA is labeled with fluorescent QD{sub 565} which serves as a reporter. The capturing probe DNA is conjugated simultaneously to a MB and another QD{sub 655}, which serve as a carrier and an internal standard, respectively. Successfully captured target gDNA is separated using a magnetic field and is quantified via a spectrofluorometer. The use of QDs (i.e., QD{sub 565}/QD{sub 655}) as both a fluorescence label and an internal standard increased the sensitivity of the assay. The passivation effect and the molar ratio between QD and DNA were optimized. The MB-QD assay demonstrated a detection limit of 890 zeptomolar (i.e., 10{sup -21} mol L{sup -1}) concentration for the linear single stranded DNA (ssDNA). It also demonstrated a detection limit of 87 gene copies for double stranded DNA (dsDNA) eaeA gene extracted from pure Escherichia coli (E. coli) O157:H7 culture. Its corresponding dynamic range, sensitivity, and selectivity were also presented. Finally, the bacterial gDNA of E. coli O157:H7 was used to highlight the MB-QD assay's ability to detect below the minimum infective dose (i.e., 100 organisms) of E. coli O157:H7 in water environment.

  1. Impact of inter-genotypic recombination and probe cross-reactivity on the performance of the Abbott RealTime HCV Genotype II assay for hepatitis C genotyping.

    Science.gov (United States)

    Sridhar, Siddharth; Yip, Cyril C Y; Chan, Jasper F W; To, Kelvin K W; Cheng, Vincent C C; Yuen, Kwok-Yung

    2018-05-01

    The Abbott RealTime HCV Genotype II assay (Abbott-RT-HCV assay) is a real-time PCR based genotyping method for hepatitis C virus (HCV). This study measured the impact of inter-genotypic recombination and probe cross-reactivity on the performance of the Abbott-RT-HCV assay. 517 samples were genotyped using the Abbott-RT-HCV assay over a one-year period, 34 (6.6%) were identified as HCV genotype 1 without further subtype designation raising the possibility of inaccurate genotyping. These samples were subjected to confirmatory sequencing. 27 of these 34 (79%) samples were genotype 1b while five (15%) were genotype 6. One HCV isolate was an inter-genotypic 1a/4o recombinant. This is a novel natural HCV recombinant that has never been reported. Inter-genotypic recombination and probe cross-reactivity can affect the accuracy of the Abbott-RT-HCV assay, both of which have significant implications on antiviral regimen choice. Confirmatory sequencing of ambiguous results is crucial for accurate genotyping. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Carbon nanotube-polyamidoamine dendrimer hybrid-modified electrodes for highly sensitive electrochemical detection of microRNA24.

    Science.gov (United States)

    Li, Fengye; Peng, Jing; Zheng, Qiong; Guo, Xiang; Tang, Hao; Yao, Shouzhuo

    2015-01-01

    A simple and ultrasensitive microRNA (miRNA) electrochemical biosensor employing multiwalled carbon nanotube (MWCNT)-polyamidoamine (PAMAM) dendrimer and methylene blue (MB) redox indicator is reported in this work. The assay utilizes a glass carbon (GC) electrode modified with MWCNT-PAMAM, on which the oligonucleotide capture probes are immobilized. The electrochemical detection of miRNAs is completed by measuring the reduction signal change of MB before and after the probe hybridization with target miRNA (miRNA24 is used as a model case). The MWCNT-PAMAM/GC electrode shows greatly enhanced signal to MB reduction in contrast to bare GC electrode. The functionalization of MWCNT with PAMAM maintains the electrochemical property of MWCNT to MB reduction but minimizes the undesired adsorption of MB on the MWCNT surface. The effect of experimental variables on the miRNA detection is investigated and optimized. A detection limit of 0.5 fM and a linear peak current density-concentration relationship up to 100 nM are obtained following 60 min hybridization. The proposed assay is successfully used to detect miRNA24 in total RNA sample extracted from HeLa cells.

  3. A label-free, fluorescence based assay for microarray

    Science.gov (United States)

    Niu, Sanjun

    DNA chip technology has drawn tremendous attention since it emerged in the mid 90's as a method that expedites gene sequencing by over 100-fold. DNA chip, also called DNA microarray, is a combinatorial technology in which different single-stranded DNA (ssDNA) molecules of known sequences are immobilized at specific spots. The immobilized ssDNA strands are called probes. In application, the chip is exposed to a solution containing ssDNA of unknown sequence, called targets, which are labeled with fluorescent dyes. Due to specific molecular recognition among the base pairs in the DNA, the binding or hybridization occurs only when the probe and target sequences are complementary. The nucleotide sequence of the target is determined by imaging the fluorescence from the spots. The uncertainty of background in signal detection and statistical error in data analysis, primarily due to the error in the DNA amplification process and statistical distribution of the tags in the target DNA, have become the fundamental barriers in bringing the technology into application for clinical diagnostics. Furthermore, the dye and tagging process are expensive, making the cost of DNA chips inhibitive for clinical testing. These limitations and challenges make it difficult to implement DNA chip methods as a diagnostic tool in a pathology laboratory. The objective of this dissertation research is to provide an alternative approach that will address the above challenges. In this research, a label-free assay is designed and studied. Polystyrene (PS), a commonly used polymeric material, serves as the fluorescence agent. Probe ssDNA is covalently immobilized on polystyrene thin film that is supported by a reflecting substrate. When this chip is exposed to excitation light, fluorescence light intensity from PS is detected as the signal. Since the optical constants and conformations of ssDNA and dsDNA (double stranded DNA) are different, the measured fluorescence from PS changes for the same

  4. Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes for Rapid Identification of Candida albicans Directly from Blood Culture Bottles

    Science.gov (United States)

    Rigby, Susan; Procop, Gary W.; Haase, Gerhard; Wilson, Deborah; Hall, Geraldine; Kurtzman, Cletus; Oliveira, Kenneth; Von Oy, Sabina; Hyldig-Nielsen, Jens J.; Coull, James; Stender, Henrik

    2002-01-01

    A new fluorescence in situ hybridization (FISH) method that uses peptide nucleic acid (PNA) probes for identification of Candida albicans directly from positive-blood-culture bottles in which yeast was observed by Gram staining (herein referred to as yeast-positive blood culture bottles) is described. The test (the C. albicans PNA FISH method) is based on a fluorescein-labeled PNA probe that targets C. albicans 26S rRNA. The PNA probe is added to smears made directly from the contents of the blood culture bottle and hybridized for 90 min at 55°C. Unhybridized PNA probe is removed by washing of the mixture (30 min), and the smears are examined by fluorescence microscopy. The specificity of the method was confirmed with 23 reference strains representing phylogenetically related yeast species and 148 clinical isolates covering the clinically most significant yeast species, including C. albicans (n = 72), C. dubliniensis (n = 58), C. glabrata (n = 5), C. krusei (n = 2), C. parapsilosis (n = 4), and C. tropicalis (n = 3). The performance of the C. albicans PNA FISH method as a diagnostic test was evaluated with 33 routine and 25 simulated yeast-positive blood culture bottles and showed 100% sensitivity and 100% specificity. It is concluded that this 2.5-h method for the definitive identification of C. albicans directly from yeast-positive blood culture bottles provides important information for optimal antifungal therapy and patient management. PMID:12037084

  5. Comprehensive genotyping for 18 blood group systems using a multiplex ligation-dependent probe amplification assay shows a high degree of accuracy

    NARCIS (Netherlands)

    Haer-Wigman, Lonneke; Ji, Yanli; Lodén, Martin; de Haas, Masja; van der Schoot, C. Ellen; Veldhuisen, Barbera

    2013-01-01

    In recent years genotyping methods have been implemented in blood banks as alternative to comprehensive serologic typing. We evaluated a newly developed assay for convenient and comprehensive genotyping of blood group alleles based on multiplex ligation-dependent probe amplification (MLPA)

  6. Cross-reactivity profiles of hybrid capture II, cobas, and APTIMA human papillomavirus assays

    DEFF Research Database (Denmark)

    Preisler, Sarah Nørgaard; Rebolj, Matejka; Ejegod, Ditte Møller

    2016-01-01

    evaluated to what extent these can be explained by cross-reactivity, i.e. positive test results without evidence of high-risk HPV genotypes. The patterns of cross-reactivity have been thoroughly studied for hybrid capture II (HC2) but not yet for newer HPV assays although the manufacturers claimed...... no or limited frequency of cross-reactivity. In this independent study we evaluated the frequency of cross-reactivity for HC2, cobas, and APTIMA assays. Methods Consecutive routine cervical screening samples from 5022 Danish women, including 2859 from women attending primary screening, were tested...... with normal cytology and positive high-risk HPV test results were invited for repeated testing in 18 months. Results Cross-reactivity to low-risk genotypes was detected in 109 (2.2 %) out of 5022 samples on HC2, 62 (1.2 %) on cobas, and 35 (0.7 %) on APTIMA with only 10 of the samples cross-reacting on all 3...

  7. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    Science.gov (United States)

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.

  8. Primary Multidrug Resistant Tuberculosis and Utility of Line Probe Assay for Its Detection in Smear-Positive Sputum Samples in a Tertiary Care Hospital in South India

    Directory of Open Access Journals (Sweden)

    Fahmiya Leena Yacoob

    2016-01-01

    Full Text Available In a high tuberculosis burdened country like India, rapid, cost-effective, and reliable diagnostic tools for tuberculosis are an urgent need of the hour to prevent inappropriate treatment strategies and further spread of resistance. This study aimed to estimate the proportion of new smear-positive tuberculosis cases with primary resistance to rifampicin and/or isoniazid as well as identify the common mutations associated with it. Sputum of 200 newly diagnosed smear-positive cases of 1+ score and above was directly subjected to Line Probe Assay using the GenoType MTBDRplus assay kit. All samples were inoculated onto solid media and 61 samples were inoculated in automated liquid culture also. The Line Probe Assay gave hundred percent interpretable results with 2.5% of the study population showing resistant pattern. Only 1% of the cases were primary multidrug resistant tuberculosis and 1.5% showed isoniazid monoresistance. S531L and C15T were the most common genetic mutations seen for rifampicin and isoniazid resistance, respectively. 40% had absent rpoB wild type 8 band indicating probable silent mutation after clinical correlation. The average turnaround time for Line Probe Assay was far less (3.8 days as compared to solid and liquid cultures (35.6 days and 13.5 days, resp..

  9. Primary Multidrug Resistant Tuberculosis and Utility of Line Probe Assay for Its Detection in Smear-Positive Sputum Samples in a Tertiary Care Hospital in South India.

    Science.gov (United States)

    Yacoob, Fahmiya Leena; Philomina Jose, Beena; Karunakaran Lelitha, Sarada Devi; Sreenivasan, Sreelatha

    2016-01-01

    In a high tuberculosis burdened country like India, rapid, cost-effective, and reliable diagnostic tools for tuberculosis are an urgent need of the hour to prevent inappropriate treatment strategies and further spread of resistance. This study aimed to estimate the proportion of new smear-positive tuberculosis cases with primary resistance to rifampicin and/or isoniazid as well as identify the common mutations associated with it. Sputum of 200 newly diagnosed smear-positive cases of 1+ score and above was directly subjected to Line Probe Assay using the GenoType MTBDRplus assay kit. All samples were inoculated onto solid media and 61 samples were inoculated in automated liquid culture also. The Line Probe Assay gave hundred percent interpretable results with 2.5% of the study population showing resistant pattern. Only 1% of the cases were primary multidrug resistant tuberculosis and 1.5% showed isoniazid monoresistance. S531L and C15T were the most common genetic mutations seen for rifampicin and isoniazid resistance, respectively. 40% had absent rpoB wild type 8 band indicating probable silent mutation after clinical correlation. The average turnaround time for Line Probe Assay was far less (3.8 days) as compared to solid and liquid cultures (35.6 days and 13.5 days, resp.).

  10. Simultaneous Detection of CDC Category "A" DNA and RNA Bioterrorism Agents by Use of Multiplex PCR & RT-PCR Enzyme Hybridization Assays

    Directory of Open Access Journals (Sweden)

    Kelly J. Henrickson

    2009-10-01

    Full Text Available Assays to simultaneously detect multiple potential agents of bioterrorism are limited. Two multiplex PCR and RT-PCR enzyme hybridization assays (mPCR-EHA, mRT-PCR-EHA were developed to simultaneously detect many of the CDC category “A” bioterrorism agents. The “Bio T” DNA assay was developed to detect: Variola major (VM, Bacillus anthracis (BA, Yersinia pestis (YP, Francisella tularensis (FT and Varicella zoster virus (VZV. The “Bio T” RNA assay (mRT-PCR-EHA was developed to detect: Ebola virus (Ebola, Lassa fever virus (Lassa, Rift Valley fever (RVF, Hantavirus Sin Nombre species (HSN and dengue virus (serotypes 1-4. Sensitivity and specificity of the 2 assays were tested by using genomic DNA, recombinant plasmid positive controls, RNA transcripts controls, surrogate (spiked clinical samples and common respiratory pathogens. The analytical sensitivity (limit of detection (LOD of the DNA asssay for genomic DNA was 1×100~1×102 copies/mL for BA, FT and YP. The LOD for VZV whole organism was 1×10-2 TCID50/mL. The LOD for recombinant controls ranged from 1×102~1×103copies/mL for BA, FT, YP and VM. The RNA assay demonstrated LOD for RNA transcript controls of 1×104~1×106 copies/mL without extraction and 1×105~1×106 copies/mL with extraction for Ebola, RVF, Lassa and HSN. The LOD for dengue whole organisms was ~1×10-4 dilution for dengue 1 and 2, 1×104 LD50/mL and 1×102 LD50/mL for dengue 3 and 4. The LOD without extraction for recombinant plasmid DNA controls was ~1×103 copies/mL (1.5 input copies/reaction for Ebola, RVF, Lassa and HSN. No cross-reactivity of primers and probes used in both assays was detected with common respiratory pathogens or between targeted analytes. Clinical sensitivity was estimated using 264 surrogate clinical samples tested with the BioT DNA assay and 549 samples tested with the BioT RNA assay. The clinical specificity is 99.6% and 99.8% for BioT DNA assay and BioT RNA assay, respectively. The

  11. Identification of pathogenic Nocardia species by reverse line blot hybridization targeting the 16S rRNA and 16S-23S rRNA gene spacer regions.

    Science.gov (United States)

    Xiao, Meng; Kong, Fanrong; Sorrell, Tania C; Cao, Yongyan; Lee, Ok Cha; Liu, Ying; Sintchenko, Vitali; Chen, Sharon C A

    2010-02-01

    Although 16S rRNA gene sequence analysis is employed most often for the definitive identification of Nocardia species, alternate molecular methods and polymorphisms in other gene targets have also enabled species determinations. We evaluated a combined Nocardia PCR-based reverse line blot (RLB) hybridization assay based on 16S and 16S-23S rRNA gene spacer region polymorphisms to identify 12 American Type Culture Collection and 123 clinical Nocardia isolates representing 14 species; results were compared with results from 16S rRNA gene sequencing. Thirteen 16S rRNA gene-based (two group-specific and 11 species-specific) and five 16S-23S spacer-targeted (two taxon-specific and three species-specific) probes were utilized. 16S rRNA gene-based probes correctly identified 124 of 135 isolates (sensitivity, 92%) but were unable to identify Nocardia paucivorans strains (n = 10 strains) and a Nocardia asteroides isolate with a novel 16S rRNA gene sequence. Nocardia farcinica and Nocardia cyriacigeorgica strains were identified by the sequential use of an N. farcinica-"negative" probe and a combined N. farcinica/N. cyriacigeorgica probe. The assay specificity was high (99%) except for weak cross-reactivity between the Nocardia brasiliensis probe with the Nocardia thailandica DNA product; however, cross-hybridization with closely related nontarget species may occur. The incorporation of 16S-23S rRNA gene spacer-based probes enabled the identification of all N. paucivorans strains. The overall sensitivity using both probe sets was >99%. Both N. farcinica-specific 16S-23S rRNA gene spacer-directed probes were required to identify all N. farcinica stains by using this probe set. The study demonstrates the utility of a combined PCR/RLB assay for the identification of clinically relevant Nocardia species and its potential for studying subtypes of N. farcinica. Where species assignment is ambiguous or not possible, 16S rRNA gene sequencing is recommended.

  12. DNA probe labeling with digoxigenin-dUTP and its application in gene diagnosis

    International Nuclear Information System (INIS)

    Liu Guoyang

    1992-01-01

    DNA probe labeling by the randomly primed incorporation of digoxigenin-dUTP is reported. The sensitivity of color reaction and hybridization were 32 fg and 200 fg, respectively, and both were specific for the target. Single-copy and multi-copy gene fragments among 2 μg human genomic DNA were detected by β IVS II, Fr 3-42 and 3'HVR labeled with digoxigenin-dUTP. The results were consistent with a radioactive control assay. This method has been successfully used in the gene diagnosis of adult polycystic kidney disease

  13. Development of a 16S rRNA-targeted fluorescence in situ hybridization probe for quantification of the ammonia-oxidizer Nitrosotalea devanaterra and its relatives.

    Science.gov (United States)

    Restrepo-Ortiz, C X; Merbt, S N; Barrero-Canossa, J; Fuchs, B M; Casamayor, E O

    2018-04-28

    The Thaumarchaeota SAGMCG-1 group and, in particular, members of the genus Nitrosotalea have high occurrence in acidic soils, the rhizosphere, groundwater and oligotrophic lakes, and play a potential role in nitrogen cycling. In this study, the specific oligonucleotide fluorescence in situ hybridization probe SAG357 was designed for this Thaumarchaeota group based on the available 16S rRNA gene sequences in databases, and included the ammonia-oxidizing species Nitrosotalea devanaterra. Cell permeabilization for catalyzed reporter deposition fluorescence in situ detection and the hybridization conditions were optimized on enrichment cultures of the target species N. devanaterra, as well as the non-target ammonia-oxidizing archaeon Nitrosopumilus maritimus. Probe specificity was improved with a competitor oligonucleotide, and fluorescence intensity and cell visualization were enhanced by the design and application of two adjacent helpers. Probe performance was tested in soil samples along a pH gradient, and counting results matched the expected in situ distributions. Probe SAG357 and the CARD-FISH protocol developed in the present study will help to improve the current understanding of the ecology and physiology of N. devanaterra and its relatives in natural environments. Copyright © 2018 Elsevier GmbH. All rights reserved.

  14. Epidemiology of Babesia, Anaplasma and Trypanosoma species using a new expanded reverse line blot hybridization assay.

    Science.gov (United States)

    Paoletta, Martina Soledad; López Arias, Ludmila; de la Fournière, Sofía; Guillemi, Eliana Carolina; Luciani, Carlos; Sarmiento, Néstor Fabián; Mosqueda, Juan; Farber, Marisa Diana; Wilkowsky, Silvina Elizabeth

    2018-02-01

    Vector-borne hemoparasitic infections are a major problem that affects livestock industries worldwide, particularly in tropical and subtropical regions. In this work, a reverse line blot (RLB) hybridization assay was developed for the simultaneous detection and identification of Anaplasma, Babesia and bovine trypanosomes, encompassing in this way the most relevant hemoparasites that affect cattle. A total of 186 bovine blood samples collected from two different ecoepidemiological regions of northeast Argentina, with and without tick control, were analyzed with this new RLB. High diversity of parasites, such as Babesia bovis, B. bigemina, Anaplasma marginale and three different Trypanosoma species, was found. High rates of coinfections were also detected, and significant differences were observed not only in the prevalence of parasites but also in the level of coinfections between the two analyzed areas. Regarding the Trypanosoma genus, we provide molecular evidence of the presence of T. vivax and T. theileri for the first time in Argentina. Besides, since the RLB is a prospective tool, it allowed the identification of a yet unknown bovine trypanosome which could not be assigned to any of the bovine species known so far. In the present study we provide new insights on the prevalence of several pathogens that directly impact on livestock production in Argentina. The RLB assay developed here allows to identify simultaneously numerous pathogenic species which can also be easily expanded to detect other blood borne pathogens. These characteristics make the RLB hybridization assay an essential tool for epidemiological survey of all vector-borne pathogens. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Development and Characterization of Probe-Based Real Time Quantitative RT-PCR Assays for Detection and Serotyping of Foot-And-Mouth Disease Viruses Circulating in West Eurasia.

    Science.gov (United States)

    Jamal, Syed M; Belsham, Graham J

    2015-01-01

    Rapid and accurate diagnosis of foot-and-mouth disease (FMD) and virus serotyping are of paramount importance for control of this disease in endemic areas where vaccination is practiced. Ideally this virus characterization should be achieved without the need for virus amplification in cell culture. Due to the heterogeneity of FMD viruses (FMDVs) in different parts of the world, region specific diagnostic tests are required. In this study, hydrolysable probe-based real time reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays were developed for specific detection and serotyping of the FMDVs currently circulating in West Eurasia. These assays were evaluated, in parallel with pan-FMDV diagnostic assays and earlier serotype-specific assays, using field samples originating from Pakistan and Afghanistan containing FMD viruses belonging to different sublineages of O-PanAsia, A-Iran05 and Asia-1 (Group-II and Group-VII (Sindh-08)). In addition, field samples from Iran and Bulgaria, containing FMDVs belonging to the O-PanAsiaANT-10 sublineage were also tested. Each of the three primer/probe sets was designed to be specific for just one of the serotypes O, A and Asia-1 of FMDV and detected the RNA from the target viruses with cycle threshold (CT) values comparable with those obtained with the serotype-independent pan-FMDV diagnostic assays. No cross-reactivity was observed in these assays between the heterotypic viruses circulating in the region. The assays reported here have higher diagnostic sensitivity (100% each for serotypes O and Asia-1, and 92% [95% CI = 81.4-100%] for serotype A positive samples) and specificity (100% each for serotypes O, A and Asia-1 positive samples) for the viruses currently circulating in West Eurasia compared to the serotyping assays reported earlier. Comparisons of the sequences of the primers and probes used in these assays and the corresponding regions of the circulating viruses provided explanations for the poor

  16. Development and Characterization of Probe-Based Real Time Quantitative RT-PCR Assays for Detection and Serotyping of Foot-And-Mouth Disease Viruses Circulating in West Eurasia.

    Directory of Open Access Journals (Sweden)

    Syed M Jamal

    Full Text Available Rapid and accurate diagnosis of foot-and-mouth disease (FMD and virus serotyping are of paramount importance for control of this disease in endemic areas where vaccination is practiced. Ideally this virus characterization should be achieved without the need for virus amplification in cell culture. Due to the heterogeneity of FMD viruses (FMDVs in different parts of the world, region specific diagnostic tests are required. In this study, hydrolysable probe-based real time reverse transcription quantitative polymerase chain reaction (RT-qPCR assays were developed for specific detection and serotyping of the FMDVs currently circulating in West Eurasia. These assays were evaluated, in parallel with pan-FMDV diagnostic assays and earlier serotype-specific assays, using field samples originating from Pakistan and Afghanistan containing FMD viruses belonging to different sublineages of O-PanAsia, A-Iran05 and Asia-1 (Group-II and Group-VII (Sindh-08. In addition, field samples from Iran and Bulgaria, containing FMDVs belonging to the O-PanAsiaANT-10 sublineage were also tested. Each of the three primer/probe sets was designed to be specific for just one of the serotypes O, A and Asia-1 of FMDV and detected the RNA from the target viruses with cycle threshold (CT values comparable with those obtained with the serotype-independent pan-FMDV diagnostic assays. No cross-reactivity was observed in these assays between the heterotypic viruses circulating in the region. The assays reported here have higher diagnostic sensitivity (100% each for serotypes O and Asia-1, and 92% [95% CI = 81.4-100%] for serotype A positive samples and specificity (100% each for serotypes O, A and Asia-1 positive samples for the viruses currently circulating in West Eurasia compared to the serotyping assays reported earlier. Comparisons of the sequences of the primers and probes used in these assays and the corresponding regions of the circulating viruses provided explanations for

  17. Modified beacon probe assisted dual signal amplification for visual detection of microRNA.

    Science.gov (United States)

    Sun, Xiuwei; Ying, Na; Ju, Chuanjing; Li, Zhongyi; Xu, Na; Qu, Guijuan; Liu, Wensen; Wan, Jiayu

    2018-04-21

    In a recent study, we reported a novel assay for the detection of microRNA-21 based on duplex-specific nuclease (DSN)-assisted isothermal cleavage and hybridization chain reaction (HCR) dual signal amplification. The Fam modified double-stranded DNA products were generated after the HCR, another biotin modified probe was digested by DSN and released from the magnetic beads after the addition of the target miRNA. The released sequence was then combined with HCR products to form a double-tagging dsDNA, which can be recognized by the lateral flow strips. In this study, we introduced a 2-OMethyl-RNA modified beacon probe (2-OMe-MB) to make some improvements based on the previous study. Firstly, the substitution of modified probe combined on magnetic beads avoids the fussy washing steps for the separation of un-reacted probes. Furthermore, the modification of 2-OMe on the stem of the probe avoided the unnecessary cleavage by DSN, which greatly reduce the background signal. Compared to the previous work, these improvements save us a lot of steps but possess the comparable sensitivity and selectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. I. Covalent immobilization of oligonucleotide probes onto the nylon].

    Science.gov (United States)

    Dmitrienko, E V; Pyshnaia, I A; Pyshnyĭ, D V

    2010-01-01

    The features of UV-induced immobilization of oligonucleotides on a nylon membranes and the effectiveness of enzymatic labeling of immobilized probes at heterophase detection of nucleic acids are studied. Short terminal oligothymidilate (up to 10 nt) sequences are suggested to attach to the probe via a flexible ethylene glycol based linker. The presence of such fragment enhances the intensity of immobilization and reduces UV-dependent degradation of the targeted (sequence-specific) part of the probe by reducing the dose needed for the immobilization of DNA. The optimum dose of UV-irradiation is determined to be ~0.4 J/cm(2) at the wavelength 254 nm. This dose provides high level of hybridization signal for immobilized probes with various nucleotide composition of the sequence specific moiety. The amide groups of the polyamide are shown to play the key role in the photoinduced immobilization of nucleic acids, whereas the primary amino groups in the structure of PA is not the center responsible for the covalent binding of DNA by UV-irradiation, as previously believed. Various additives in the soaking solution during the membrane of UV-dependent immobilization of probes are shown to influence its effectiveness. The use of alternative to UV-irradiation system of radical generation are shown to provide the immobilization of oligonucleotides onto the nylon membrane.

  19. Automated brightfield dual-color in situ hybridization for detection of mouse double minute 2 gene amplification in sarcomas.

    Science.gov (United States)

    Zhang, Wenjun; McElhinny, Abigail; Nielsen, Alma; Wang, Maria; Miller, Melanie; Singh, Shalini; Rueger, Ruediger; Rubin, Brian P; Wang, Zhen; Tubbs, Raymond R; Nagle, Raymond B; Roche, Pat; Wu, Ping; Pestic-Dragovich, Lidija

    2011-01-01

    The human homolog of the mouse double minute 2 (MDM2) oncogene is amplified in about 20% of sarcomas. The measurement of the MDM2 amplification can aid in classification and may provide a predictive value for recently formulated therapies targeting MDM2. We have developed and validated an automated bright field dual-color in situ hybridization application to detect MDM2 gene amplification. A repeat-depleted MDM2 probe was constructed to target the MDM2 gene region at 12q15. A chromosome 12-specific probe (CHR12) was generated from a pα12H8 plasmid. The in situ hybridization assay was developed by using a dinitrophenyl-labeled MDM2 probe and a digoxigenin-labeled CHR12 probe on the Ventana Medical Systems' automated slide-staining platforms. The specificity of the MDM2 and CHR12 probes was shown on metaphase spreads and further validated against controls, including normal human tonsil and known MDM2-amplified samples. The assay performance was evaluated on a cohort of 100 formalin-fixed, paraffin-embedded specimens by using a conventional bright field microscope. Simultaneous hybridization and signal detection for MDM2 and CHR12 showed that both DNA targets were present in the same cells. One hundred soft tissue specimens were stained for MDM2 and CHR12. Although 26 of 29 lipomas were nonamplified and eusomic, MDM2 amplification was noted in 78% of atypical lipomatous tumors or well-differentiated liposarcomas. Five of 6 dedifferentiated liposarcoma cases were amplified for MDM2. MDM2 amplification was observed in 1 of 8 osteosarcomas; 3 showed CHR12 aneusomy. MDM2 amplification was present in 1 of 4 chondrosarcomas. Nine of 10 synovial sarcomas displayed no evidence of MDM2 amplification in most tumor cells. In pleomorphic sarcoma, not otherwise specified (pleomorphic malignant fibrous histiocytoma), MDM2 was amplified in 38% of cases, whereas 92% were aneusomic for CHR12. One alveolar rhabdomyosarcoma and 2 embryonal rhabdomyosarcomas displayed low-level aneusomy

  20. Nucleic acid probes as a diagnostic method for tick-borne hemoparasites of veterinary importance.

    Science.gov (United States)

    Figueroa, J V; Buening, G M

    1995-03-01

    An increased number of articles on the use of nucleic acid-based hybridization techniques for diagnostic purposes have been recently published. This article reviews nucleic acid-based hybridization as an assay to detect hemoparasite infections of economic relevance in veterinary medicine. By using recombinant DNA techniques, selected clones containing inserts of Anaplasma, Babesia, Cowdria or Theileria genomic DNA sequences have been obtained, and they are now available to be utilized as specific, highly sensitive DNA or RNA probes to detect the presence of the hemoparasite DNA in an infected animal. Either in an isotopic or non-isotopic detection system, probes have allowed scientists to test for--originally in samples collected from experimentally infected animals and later in samples collected in the field--the presence of hemoparasites during the prepatent, patent, convalescent, and chronic periods of the infection in the host. Nucleic acid probes have given researchers the opportunity to carry out genomic analysis of parasite DNA to differentiate hemoparasite species and to identify genetically distinct populations among and within isolates, strains and clonal populations. Prevalence of parasite infection in the tick vector can now be accomplished more specifically with the nucleic acid probes. Lately, with the advent of the polymerase chain reaction technique, small numbers of hemoparasites can be positively identified in the vertebrate host and tick vector. These techniques can be used to assess the veterinary epidemiological situation in a particular geographical region for the planning of control measures.

  1. Graphical representation of ribosomal RNA probe accessibility data using ARB software package

    Directory of Open Access Journals (Sweden)

    Amann Rudolf

    2005-03-01

    Full Text Available Abstract Background Taxon specific hybridization probes in combination with a variety of commonly used hybridization formats nowadays are standard tools in microbial identification. A frequently applied technology, fluorescence in situ hybridization (FISH, besides single cell identification, allows the localization and functional studies of the microbial community composition. Careful in silico design and evaluation of potential oligonucleotide probe targets is therefore crucial for performing successful hybridization experiments. Results The PROBE Design tools of the ARB software package take into consideration several criteria such as number, position and quality of diagnostic sequence differences while designing oligonucleotide probes. Additionally, new visualization tools were developed to enable the user to easily examine further sequence associated criteria such as higher order structure, conservation, G+C content, transition-transversion profiles and in situ target accessibility patterns. The different types of sequence associated information (SAI can be visualized by user defined background colors within the ARB primary and secondary structure editors as well as in the PROBE Match tool. Conclusion Using this tool, in silico probe design and evaluation can be performed with respect to in situ probe accessibility data. The evaluation of proposed probe targets with respect to higher-order rRNA structure is of importance for successful design and performance of in situ hybridization experiments. The entire ARB software package along with the probe accessibility data is available from the ARB home page http://www.arb-home.de.

  2. Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5.1 genetically modified common bean (Phaseolus vulgaris).

    Science.gov (United States)

    Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M

    2014-12-10

    A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.

  3. Accurate detection of male subclinical genital tract infection via cervical culture and DNA hybridization assay of the female partner

    NARCIS (Netherlands)

    Trum, J. W.; Pannekoek, Y.; Spanjaard, L.; Bleker, O. P.; van der Veen, F.

    2000-01-01

    The accuracy of the PACE2 DNA hybridization assay of the cervix and cervical culture in female partners for the diagnosis of male subclinical genital tract infection were assessed in a male infertility population. A total of 184 men were screened for the presence of Chlamydia trachomatis, Ureaplasma

  4. Sensitive electrochemical monitoring of nucleic acids coupling DNA nanostructures with hybridization chain reaction

    International Nuclear Information System (INIS)

    Zhuang, Junyang; Fu, Libing; Xu, Mingdi; Yang, Huanghao; Chen, Guonan; Tang, Dianping

    2013-01-01

    Graphical abstract: -- Highlights: •A new signal-on metallobioassay was developed for detection of nucleic acids. •Target-triggered long-range self-assembled DNA nanostructures are used for amplification of electronic signal. •Hybridization chain reaction is utilized for construction of long-range DNA nanostructures. -- Abstract: Methods based on metal nanotags have been developed for metallobioassay of nucleic acids, but most involve complicated labeling or stripping procedures and are unsuitable for routine use. Herein, we report the proof-of-concept of a novel and label-free metallobioassay for ultrasensitive electronic determination of human immunodeficiency virus (HIV)-related gene fragments at an ultralow concentration based on target-triggered long-range self-assembled DNA nanostructures and DNA-based hybridization chain reaction (HCR). The signal is amplified by silver nanotags on the DNA duplex. The assay mainly consists of capture probe, detection probe, and two different DNA hairpins. In the presence of target DNA, the capture probe immobilized on the sensor sandwiches target DNA with the 3′ end of detection probe. Another exposed part of detection probe at the 5′ end opens two alternating DNA hairpins in turn, and propagates a chain reaction of hybridization events to form a nicked double-helix. Finally, numerous silver nanotags are immobilized onto the long-range DNA nanostructures, each of which produces a strong electronic signal within the applied potentials. Under optimal conditions, the target-triggered long-range DNA nanostructures present good electrochemical behaviors for the detection of HIV DNA at a concentration as low as 0.5 fM. Importantly, the outstanding sensitivity can make this approach a promising scheme for development of next-generation DNA sensors without the need of enzyme labeling or fluorophore labeling

  5. Genotyping of single nucleotide polymorphism by probe-gated silica nanoparticles.

    Science.gov (United States)

    Ercan, Meltem; Ozalp, Veli C; Tuna, Bilge G

    2017-11-15

    The development of simple, reliable, and rapid approaches for molecular detection of common mutations is important for prevention and early diagnosis of genetic diseases, including Thalessemia. Oligonucleotide-gated mesoporous nanoparticles-based analysis is a new platform for mutation detection that has the advantages of sensitivity, rapidity, accuracy, and convenience. A specific mutation in β-thalassemia, one of the most prevalent inherited diseases in several countries, was used as model disease in this study. An assay for detection of IVS110 point mutation (A > G reversion) was developed by designing probe-gated mesoporous silica nanoparticles (MCM-41) loaded with reporter fluorescein molecules. The silica nanoparticles were characterized by AFM, TEM and BET analysis for having 180 nm diameter and 2.83 nm pore size regular hexagonal shape. Amine group functionalized nanoparticles were analysed with FTIR technique. Mutated and normal sequence probe oligonucleotides)about 12.7 nmol per mg nanoparticles) were used to entrap reporter fluorescein molecules inside the pores and hybridization with single stranded DNA targets amplified by PCR gave different fluorescent signals for mutated targets. Samples from IVS110 mutated and normal patients resulted in statistically significant differences when the assay procedure were applied. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Enzyme-linked electrochemical DNA ligation assay using magnetic beads.

    Science.gov (United States)

    Stejskalová, Eva; Horáková, Petra; Vacek, Jan; Bowater, Richard P; Fojta, Miroslav

    2014-07-01

    DNA ligases are essential enzymes in all cells and have been proposed as targets for novel antibiotics. Efficient DNA ligase activity assays are thus required for applications in biomedical research. Here we present an enzyme-linked electrochemical assay based on two terminally tagged probes forming a nicked junction upon hybridization with a template DNA. Nicked DNA bearing a 5' biotin tag is immobilized on the surface of streptavidin-coated magnetic beads, and ligated product is detected via a 3' digoxigenin tag recognized by monoclonal antibody-alkaline phosphatase conjugate. Enzymatic conversion of napht-1-yl phosphate to napht-1-ol enables sensitive detection of the voltammetric signal on a pyrolytic graphite electrode. The technique was tested under optimal conditions and various situations limiting or precluding the ligation reaction (such as DNA substrates lacking 5'-phosphate or containing a base mismatch at the nick junction, or application of incompatible cofactor), and utilized for the analysis of the nick-joining activity of a range of recombinant Escherichia coli DNA ligase constructs. The novel technique provides a fast, versatile, specific, and sensitive electrochemical assay of DNA ligase activity.

  7. Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    DEFF Research Database (Denmark)

    Hansen, K.W.; Ahring, Birgitte Kiær; Raskin, L.

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-beta-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYE, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S, wolfei LYE was closely related...... fatty acid-beta-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria-and methanogens were compared to specific methanogenic activities...

  8. A fluorometric lateral flow assay for visual detection of nucleic acids using a digital camera readout.

    Science.gov (United States)

    Magiati, Maria; Sevastou, Areti; Kalogianni, Despina P

    2018-06-04

    A fluorometric lateral flow assay has been developed for the detection of nucleic acids. The fluorophores phycoerythrin (PE) and fluorescein isothiocyanate (FITC) were used as labels, while a common digital camera and a colored vinyl-sheet, acting as a cut-off optical filter, are used for fluorescence imaging. After DNA amplification by polymerase chain reaction (PCR), the biotinylated PCR product is hybridized to its complementary probe that carries a poly(dA) tail at 3΄ edge and then applied to the lateral flow strip. The hybrids are captured to the test zone of the strip by immobilized poly(dT) sequences and detected by streptavidin-fluorescein and streptavidin-phycoerythrin conjugates, through streptavidin-biotin interaction. The assay is widely applicable, simple, cost-effective, and offers a large multiplexing potential. Its performance is comparable to assays based on the use of streptavidin-gold nanoparticles conjugates. As low as 7.8 fmol of a ssDNA and 12.5 fmol of an amplified dsDNA target were detectable. Graphical abstract Schematic presentation of a fluorometric lateral flow assay based on fluorescein and phycoerythrin fluorescent labels for the detection of single-stranded (ssDNA) and double-stranded DNA (dsDNA) sequences and using a digital camera readout. SA: streptavidin, BSA: Bovine Serum Albumin, B: biotin, FITC: fluorescein isothiocyanate, PE: phycoerythrin, TZ: test zone, CZ: control zone.

  9. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    International Nuclear Information System (INIS)

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z.

    1990-01-01

    We have synthesized 32 P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies

  10. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z. (National Institutes of Health, Bethesda, MD (USA))

    1990-08-01

    We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies.

  11. Detection of DNA fingerprints of cultivated rice by hybridization with a human minisatellite DNA probe

    International Nuclear Information System (INIS)

    Dallas, J.F.

    1988-01-01

    A human minisatellite DNA probe detects several restriction fragment length polymorphisms in cultivars of Asian and African rice. Certain fragments appear to be inherited in a Mendelian fashion and may represent unlinked loci. The hybridization patterns appear to be cultivar-specific and largely unchanged after the regeneration of plants from tissue culture. The results suggest that these regions of the rice genome may be used to generate cultivar-specific DNA fingerprints. The demonstration of similarity between a human minisatellite sequence and polymorphic regions in the rice genome suggests that such regions also occur in the genomes of many other plant species

  12. Detection and quantification of Epstein-Barr virus EBER1 in EBV-infected cells by fluorescent in situ hybridization and flow cytometry

    Science.gov (United States)

    Stowe, R. P.; Cubbage, M. L.; Sams, C. F.; Pierson, D. L.; Barrett, A. D.

    1998-01-01

    A rapid and highly sensitive fluorescent in situ hybridization (FISH) assay was developed to detect Epstein Barr virus (EBV)-infected cells in peripheral blood. Multiple fluorescein-labeled antisense oligonucleotide probes were designed to hybridize to the EBER1 transcript, which is highly expressed in latently infected cells. After a rapid (30 min) hybridization, the cells were analyzed by flow cytometry. EBER1 was detected in several positive control cell lines that have variable numbers of EBV genome copies. No EBER1 was detected in two known EBV-negative cell lines. Northern blot analyses confirmed the presence and quantity of EBER1 transcripts in each cell line. This method was used to quantify the number of EBV-infected cells in peripheral blood from a patient with chronic mononucleosis. These results indicate that EBV-infected cells can be detected at the single cell level, and that this assay can be used to quantify the number of EBV-infected cells in clinical samples.

  13. Use of Ti plasmid DNA probes for determining tumorigenicity of agrobacterium strains

    International Nuclear Information System (INIS)

    Burr, T.J.; Norelli, J.L.; Katz, B.H.; Bishop, A.L.

    1990-01-01

    Probes consisting of T-DNA genes from the Ti plasmid of Agrobacterium tumefaciens were used for determining tumorigenicity of strains. Two 32 P-labeled probes hybridized with 28 of 28 tumorigenic strains of the pathogen but not with 20 of 22 nontumorigenic strains. One probe, pTHE17, consists of all but the far left portion of the T-DNA of strain C58. Probe SmaI7 consists of SmaI fragment 7 of pTiC58, including onc genes 1, 4, and 6a and most of 2. Another probe, pAL4044, consisting of the vir region of strain Ach-5, hybridized with several nontumorigenic as well as tumorigenic strains. Colony hybridizations were done with 28 tumorigenic and 22 nontumorigenic Agrobacterium strains. About 10 6 CFU of the different tumorigenic strains were detectable with this method. Southern analyses confirmed the presence or absence of Ti plasmids in strains for which tumorigenicity was questioned. Colony hybridization with the T-DNA probes provides a rapid and sensitive means for determining the tumorigenic nature of Agrobacterium strains

  14. In situ hybridization at the electron microscope level: hybrid detection by autoradiography and colloidal gold.

    Science.gov (United States)

    Hutchison, N J; Langer-Safer, P R; Ward, D C; Hamkalo, B A

    1982-11-01

    In situ hybridization has become a standard method for localizing DNA or RNA sequences in cytological preparations. We developed two methods to extend this technique to the transmission electron microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope in situ hybridization. Radioactively labeled complementary RNA (cRNA) is hybridized to metaphase chromosomes deposited on electron microscope grids and fixed in 70 percent ethanol vapor; hybridixation site are detected by autoradiography. Specific and intense labeling of chromosomal centromeric regions is observed even after relatively short exposure times. Inerphase nuclei present in some of the metaphase chromosome preparations also show defined paatterms of satellite DNA labeling which suggests that satellite-containing regions are associate with each other during interphase. The sensitivity of this method is estimated to at least as good as that at the light microscope level while the resolution is improved at least threefold. The second method, which circumvents the use of autoradiogrphic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction is improved at least threefold. The second method, which circumvents the use of autoradiographic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction with an antibody against biotin and secondary antibody adsorbed to the surface of over centromeric heterochromatin and along the associated peripheral fibers. Labeling is on average

  15. Gene probes: principles and protocols

    National Research Council Canada - National Science Library

    Aquino de Muro, Marilena; Rapley, Ralph

    2002-01-01

    ... of labeled DNA has allowed genes to be mapped to single chromosomes and in many cases to a single chromosome band, promoting significant advance in human genome mapping. Gene Probes: Principles and Protocols presents the principles for gene probe design, labeling, detection, target format, and hybridization conditions together with detailed protocols, accom...

  16. Enzymatic Amplification of DNA/RNA Hybrid Molecular Beacon Signaling in Nucleic Acid Detection

    OpenAIRE

    Jacroux, Thomas; Rieck, Daniel C.; Cui, Rong; Ouyang, Yexin; Dong, Wen-Ji

    2012-01-01

    A rapid assay operable under isothermal or non-isothermal conditions is described wherein the sensitivity of a typical molecular beacon (MB) system is improved by utilizing thermostable RNase H to enzymatically cleave an MB comprised of a DNA stem and RNA loop (R/D-MB). Upon hybridization of the R/D-MB to target DNA, there was a modest increase in fluorescence intensity (~5.7x above background) due to an opening of the probe and concomitant reduction in the Förster resonance energy transfer e...

  17. Detection of Mycobacterium tuberculosis in clinical samples by two-step polymerase chain reaction and nonisotopic hybridization methods.

    OpenAIRE

    Shawar, R M; el-Zaatari, F A; Nataraj, A; Clarridge, J E

    1993-01-01

    Detection of Mycobacterium tuberculosis in clinical specimens by the polymerase chain reaction (PCR) was compared with detection by culture. A 317-bp segment within the M. tuberculosis-specific insertion sequence IS6110 was amplified. The detection limit of the PCR assay for cultured mycobacteria was 50 cells per reaction by ethidium bromide-stained agarose gel electrophoresis and 5 cells per reaction by hybridization with an oligonucleotide probe conjugated with either digoxigenin or alkalin...

  18. Interfacial micropore defect formation in PEDOT:PSS-Si hybrid solar cells probed by TOF-SIMS 3D chemical imaging.

    Science.gov (United States)

    Thomas, Joseph P; Zhao, Liyan; Abd-Ellah, Marwa; Heinig, Nina F; Leung, K T

    2013-07-16

    Conducting p-type polymer layers on n-type Si have been widely studied for the fabrication of cost-effective hybrid solar cells. In this work, time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to provide three-dimensional chemical imaging of the interface between poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS) and SiOx/Si in a hybrid solar cell. To minimize structural damage to the polymer layer, an Ar cluster sputtering source is used for depth profiling. The present result shows the formation of micropore defects in the interface region of the PEDOT:PSS layer on the SiOx/Si substrate. This interfacial micropore defect formation becomes more prominent with increasing thickness of the native oxide layer, which is a key device parameter that greatly affects the hybrid solar cell performance. Three-dimensional chemical imaging coupled with Ar cluster ion sputtering has therefore been demonstrated as an emerging technique for probing the interface of this and other polymer-inorganic systems.

  19. Visualization of mcr mRNA in a methanogen by fluorescence in situ hybridization with an oligonucleotide probe and two-pass tyramide signal amplification (two-pass TSA-FISH).

    Science.gov (United States)

    Kubota, Kengo; Ohashi, Akiyoshi; Imachi, Hiroyuki; Harada, Hideki

    2006-09-01

    Two-pass tyramide signal amplification-fluorescence in situ hybridization (two-pass TSA-FISH) with a horseradish peroxidase (HRP)-labeled oligonucleotide probe was applied to detect prokaryotic mRNA. In this study, mRNA of a key enzyme for methanogenesis, methyl coenzyme M reductase (mcr), in Methanococcus vannielii was targeted. Applicability of mRNA-targeted probes to in situ hybridization was verified by Clone-FISH. It was observed that sensitivity of two-pass TSA-FISH was significantly higher than that of TSA-FISH, which was further increased by the addition of dextran sulphate in TSA working solution. Signals from two-pass TSA-FISH were more reliable compared to the weak, spotty signals yielded by TSA-FISH.

  20. Quantification of syntrophic fatty acid-{beta}-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.H.; Ahring, B.K.; Raskin, L.

    1999-11-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-{beta}-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S.wolfei LYB was closely related to S.wolfei subsp. solfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-{beta}-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-{beta}-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, or which the majority was accounted for by the genus Syntrophomonas.

  1. Improving comparability between microarray probe signals by thermodynamic intensity correction

    DEFF Research Database (Denmark)

    Bruun, G. M.; Wernersson, Rasmus; Juncker, Agnieszka

    2007-01-01

    different probes. It is therefore of great interest to correct for the variation between probes. Much of this variation is sequence dependent. We demonstrate that a thermodynamic model for hybridization of either DNA or RNA to a DNA microarray, which takes the sequence-dependent probe affinities...... determination of transcription start sites for a subset of yeast genes. In another application, we identify present/absent calls for probes hybridized to the sequenced Escherichia coli strain O157:H7 EDL933. The model improves the correct calls from 85 to 95% relative to raw intensity measures. The model thus...... makes applications which depend on comparisons between probes aimed at different sections of the same target more reliable....

  2. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  3. Mapping of gene transcripts by nuclease protection assays and cDNA primer extension

    International Nuclear Information System (INIS)

    Calzone, F.J.; Britten, R.J.; Davidson, E.J.

    1987-01-01

    An important problem often faced in the molecular characterization of genes is the precise mapping of those genomic sequences transcribed into RNA. This requires identification of the genomic site initiating gene transcription, the location of genomic sequences removed from the primary gene transcript during RNA processing, and knowledge of sequences terminating the processed gene transcript. The objective of the protocols described here is the generation of transcription maps utilizing relatively uncharacterized gene fragments. The basic approach is hybridization of a single-stranded DNA probe with cellular RNA, followed by treatment with a single-strand-specific nuclease that does not attack DNA-RNA hybrids, in order to destroy any unreacted probe sequences. Thus the probe sequences included in the hybrid duplexes are protected from nuclease digestion. The sizes of the protected probe fragments determined by gel electrophoresis correspond to the lengths of the hybridized sequence elements

  4. Establishment of 60Co dose calibration curve using fluorescent in situ hybridization assay technique: Result of preliminary study

    International Nuclear Information System (INIS)

    Rahimah Abdul Rahim; Noriah Jamal; Noraisyah Mohd Yusof; Juliana Mahamad Napiah; Nelly Bo Nai Lee

    2010-01-01

    This study aims at establishing an in-vitro 60 Co dose calibration curve using Fluorescent In-Situ Hybridization assay technique for the Malaysian National Bio dosimetry Laboratory. Blood samples collected from a female healthy donor were irradiated with several doses of 60 Co radiation. Following culturing of lymphocytes, microscopic slides are prepared, denatured and hybridized. The frequencies of translocation are estimated in the metaphases. A calibration curve was then generated using a regression technique. It shows a good fit to a linear-quadratic model. The results of this study might be useful in estimating absorbed dose for the individual exposed to ionizing radiation retrospectively. This information may be useful as a guide for medical treatment for the assessment of possible health consequences. (author)

  5. PRIMEGENSw3: a web-based tool for high-throughput primer and probe design.

    Science.gov (United States)

    Kushwaha, Garima; Srivastava, Gyan Prakash; Xu, Dong

    2015-01-01

    Highly specific and efficient primer and probe design has been a major hurdle in many high-throughput techniques. Successful implementation of any PCR or probe hybridization technique depends on the quality of primers and probes used in terms of their specificity and cross-hybridization. Here we describe PRIMEGENSw3, a set of web-based utilities for high-throughput primer and probe design. These utilities allow users to select genomic regions and to design primer/probe for selected regions in an interactive, user-friendly, and automatic fashion. The system runs the PRIMEGENS algorithm in the back-end on the high-performance server with the stored genomic database or user-provided custom database for cross-hybridization check. Cross-hybridization is checked not only using BLAST but also by checking mismatch positions and energy calculation of potential hybridization hits. The results can be visualized online and also can be downloaded. The average success rate of primer design using PRIMEGENSw3 is ~90 %. The web server also supports primer design for methylated sequences, which is used in epigenetic studies. Stand-alone version of the software is also available for download at the website.

  6. Development of probes for bioanalytic applications of the surface-enhanced Raman scattering; Entwicklung neuer Sonden fuer bioanalytische Anwendungen der oberflaechenverstaerkten Raman-Streuung

    Energy Technology Data Exchange (ETDEWEB)

    Matschulat, Andrea Isabel

    2011-07-01

    of the secondary structure of BSA which is related to the BSA-reporter coupling procedure In in vitro-experiments with BSA-coupled nanoprobes inside 3T3 cells reporter signatures and intrinsic information from the cellular matrix could be delivered BSA enabled the coupling of reporter molecules as well as the targeting of antibodies and served as stabilizer of the gold nanoaggregates The functionality of the coupled antibodies after their integration into the SERS probe was retained This was verified by the results of a direct Enzyme-Linked Immunosorbent Assay (ELISA) Conjugates with implemented reporter molecules could be characterized using SERS The application of the complete probes suggested a use of these novel biocompatible stable and targeted SERS probes that can be excited out-of-resonance also for other bioanalytical applications. On the basis of the constructed SERS hybrid probes comprising a large number of BSA-coupled reporters could eg be implemented for automated high-throughput immuno-assays where they are arranged on a microstructured device for the simultaneous and multilevel SERS-readout in one step. (orig.)

  7. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    Science.gov (United States)

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  8. Microsatellite instability typing in serum and tissue of patients with colorectal cancer: comparing real time PCR with hybridization probe and high-performance liquid chromatography.

    Science.gov (United States)

    Mokarram, P; Rismanchi, M; Alizadeh Naeeni, M; Mirab Samiee, S; Paryan, M; Alipour, A; Honardar, Z; Kavousipour, S; Naghibalhossaini, F; Mostafavi-Pour, Z; Monabati, A; Hosseni, S V; Shamsdin, S A

    2014-05-01

    Allelic variation of BAT-25 (a 25-repeat quasimonomorphic poly T) and BAT-26 (a 26-repeat quasimonomorphic polyA) loci as two mononucleotide microsatellite markers, were analyzed with high-performance liquid chromatography (HPLC) compared with Real-Time PCR using hybridization probes. BAT-26 and BAT-25 markers were used to determine an appropriate screening technique with high sensitivity and specificity to diagnose microsatellite instability (MSI) status in patients with colorectal cancer (CRC). One of the pathways in colorectal tumor genesis is microsatellite instability (MSI+). MSI is detected in about 15% of all CRCs; 3% are of these are associated with Lynch syndrome and the other 12% are caused by sporadic. Colorectal tumors with MSI have distinctive features compared with microsatellite stable tumors. Due to the high percentage of MSI+ CRC in Iran, screening of this type of CRC is imperative. Two markers were analyzed in tissues and sera of 44 normal volunteers and tumor and matched normal mucosal tissues as well as sera of 44 patients with sporadic CRC. The sensitivity and specificity of BAT-26 with real time PCR method (Hybridization probe) were 100% in comparison with sequencing method as the gold standard, while HPLC had a lower sensitivity and specificity. According to HPLC data, BAT-26 was more sensitive than BAT-25 in identifying MSI tumors. Therefore, MSI typing using the BAT-26 hybridization probe method compared to HPLC could be considered as an accurate method for diagnosing MSI in CRC tumors but not in serum circulating DNAs.

  9. Diagnostic performance of automated liquid culture and molecular line probe assay in smear-negative pulmonary tuberculosis.

    Science.gov (United States)

    Kotwal, Aarti; Biswas, Debasis; Raghuvanshi, Shailendra; Sindhwani, Girish; Kakati, Barnali; Sharma, Shweta

    2017-04-01

    The diagnosis of smear-negative pulmonary tuberculosis (PTB) is particularly challenging, and automated liquid culture and molecular line probe assays (LPA) may prove particularly useful. The objective of our study was to evaluate the diagnostic potential of automated liquid culture (ALC) technology and commercial LPA in sputum smear-negative PTB suspects. Spot sputum samples were collected from 145 chest-symptomatic smear-negative patients and subjected to ALC, direct drug susceptibility test (DST) testing and LPA, as per manufacturers' instructions. A diagnostic yield of 26.2% was observed among sputum smear-negative TB suspects with 47.4% of the culture isolates being either INH- and/or rifampicin-resistant. Complete agreement was observed between the results of ALC assay and LPA except for two isolates which demonstrated sensitivity to INH and rifampicin at direct DST but were rifampicin-resistant in LPA. Two novel mutations were also detected among the multidrug isolates by LPA. In view of the diagnostic challenges associated with the diagnosis of TB in sputum smear-negative patients, our study demonstrates the applicability of ALC and LPA in establishing diagnostic evidence of TB.

  10. Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria

    International Nuclear Information System (INIS)

    Tsien, H.C.; Bratina, B.J.; Tsuji, K.; Hanson, R.S.

    1990-01-01

    Oligodeoxynucleotide sequences that uniquely complemented 16S rRNAs of each group of methylotrophs were synthesized and used as hybridization probes for the identification of methylotrophic bacteria possessing the serine and ribulose monophosphate (RuMP) pathways for formaldehyde fixation. The specificity of the probes was determined by hybridizing radiolabeled probes with slot-blotted RNAs of methylotrophs and other eubacteria followed by autoradiography. The washing temperature was determined experimentally to be 50 and 52 degrees C for 9-α (serine pathway) and 10-γ (RuMP pathway) probes, respectively. RNAs isolated from serine pathway methylotrophs bound to probe 9-α, and RNAs from RuMP pathway methylotrophs bound to probe 10-γ. Nonmethylotrophic eubacterial RNAs did not bind to either probe. The probes were also labeled with fluorescent dyes. Cells fixed to microscope slides were hybridized with these probes, washed, and examined in a fluorescence microscope equipped with appropriate filter sets. Cells of methylotrophic bacteria possessing the serine or RuMP pathway specifically bind probes designed for each group. Samples with a mixture of cells of type I and II methanotrophs were detected and differentiated with single probes or mixed probes labeled with different fluorescent dyes, which enabled the detection of both types of cells in the same microscopic field

  11. Detection of mutations related to drug resistance in M. tuberculosis by dot blot hybridization and spoligotyping using specific radiolabelled probes

    International Nuclear Information System (INIS)

    El-Maghraby, T.K.; Abdelazeim, O.

    2002-01-01

    The present work has been conducted to determine the mutations related to drug resistance in M. tuberculosis in 63 Egyptian isolates using dot blot hybridization and spoligotyping. The PCR was done for amplification rpoB and katG genes in isolates. Dot blot hybridization were done to PCR products by using specific radiolabelled probes. Moreover, spoligotyping was done to know about the different strains found in Egypt. The results revealed that 58% from isolates had drug resistance to one or more of antituberculosis drugs. The results of spoligotyping have revealed that some Egyptian isolates are identical with the international code while the rest has not been identified yet. DNA sequencing was done to identify the mutation that not clear in dot blot hybridization. Early diagnosis of geno typing resistance to antituberculosis drugs is important as well as allow appropriate early patients management with few days of TB diagnosis. Using such strategy for early diagnosis of TB drug resistance allow and fast and potent patient's management

  12. Optimized Fast-FISH with a-satellite probes: acceleration by microwave activation

    Directory of Open Access Journals (Sweden)

    Durm M.

    1997-01-01

    Full Text Available It has been shown for several DNA probes that the recently introduced Fast-FISH (fluorescence in situ hybridization technique is well suited for quantitative microscopy. For highly repetitive DNA probes the hybridization (renaturation time and the number of subsequent washing steps were reduced considerably by omitting denaturing chemical agents (e.g., formamide. The appropriate hybridization temperature and time allow a clear discrimination between major and minor binding sites by quantitative fluorescence microscopy. The well-defined physical conditions for hybridization permit automatization of the procedure, e.g., by a programmable thermal cycler. Here, we present optimized conditions for a commercially available X-specific a-satellite probe. Highly fluorescent major binding sites were obtained for 74oC hybridization temperature and 60 min hybridization time. They were clearly discriminated from some low fluorescent minor binding sites on metaphase chromosomes as well as in interphase cell nuclei. On average, a total of 3.43 ± 1.59 binding sites were measured in metaphase spreads, and 2.69 ± 1.00 in interphase nuclei. Microwave activation for denaturation and hybridization was tested to accelerate the procedure. The slides with the target material and the hybridization buffer were placed in a standard microwave oven. After denaturation for 20 s at 900 W, hybridization was performed for 4 min at 90 W. The suitability of a microwave oven for Fast-FISH was confirmed by the application to a chromosome 1-specific a-satellite probe. In this case, denaturation was performed at 630 W for 60 s and hybridization at 90 W for 5 min. In all cases, the results were analyzed quantitatively and compared to the results obtained by Fast-FISH. The major binding sites were clearly discriminated by their brightness

  13. Optimizing the specificity of nucleic acid hybridization.

    Science.gov (United States)

    Zhang, David Yu; Chen, Sherry Xi; Yin, Peng

    2012-01-22

    The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed 'toehold exchange' probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg(2+) to 47 mM Mg(2+), and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination.

  14. Unlabeled probes for the detection and typing of herpes simplex virus.

    Science.gov (United States)

    Dames, Shale; Pattison, David C; Bromley, L Kathryn; Wittwer, Carl T; Voelkerding, Karl V

    2007-10-01

    Unlabeled probe detection with a double-stranded DNA (dsDNA) binding dye is one method to detect and confirm target amplification after PCR. Unlabeled probes and amplicon melting have been used to detect small deletions and single-nucleotide polymorphisms in assays where template is in abundance. Unlabeled probes have not been applied to low-level target detection, however. Herpes simplex virus (HSV) was chosen as a model to compare the unlabeled probe method to an in-house reference assay using dual-labeled, minor groove binding probes. A saturating dsDNA dye (LCGreen Plus) was used for real-time PCR. HSV-1, HSV-2, and an internal control were differentiated by PCR amplicon and unlabeled probe melting analysis after PCR. The unlabeled probe technique displayed 98% concordance with the reference assay for the detection of HSV from a variety of archived clinical samples (n = 182). HSV typing using unlabeled probes was 99% concordant (n = 104) to sequenced clinical samples and allowed for the detection of sequence polymorphisms in the amplicon and under the probe. Unlabeled probes and amplicon melting can be used to detect and genotype as few as 10 copies of target per reaction, restricted only by stochastic limitations. The use of unlabeled probes provides an attractive alternative to conventional fluorescence-labeled, probe-based assays for genotyping and detection of HSV and might be useful for other low-copy targets where typing is informative.

  15. Simplified Real-Time Multiplex Detection of Loop-Mediated Isothermal Amplification Using Novel Mediator Displacement Probes with Universal Reporters.

    Science.gov (United States)

    Becherer, Lisa; Bakheit, Mohammed; Frischmann, Sieghard; Stinco, Silvina; Borst, Nadine; Zengerle, Roland; von Stetten, Felix

    2018-04-03

    A variety of real-time detection techniques for loop-mediated isothermal amplification (LAMP) based on the change in fluorescence intensity during DNA amplification enable simultaneous detection of multiple targets. However, these techniques depend on fluorogenic probes containing target-specific sequences. That complicates the adaption to different targets leading to time-consuming assay optimization. Here, we present the first universal real-time detection technique for multiplex LAMP. The novel approach allows simple assay design and is easy to implement for various targets. The innovation features a mediator displacement probe and a universal reporter. During amplification of target DNA the mediator is displaced from the mediator displacement probe. Then it hybridizes to the reporter generating a fluorescence signal. The novel mediator displacement (MD) detection was validated against state-of-the-art molecular beacon (MB) detection by means of a HIV-1 RT-LAMP: MD surpassed MB detection by accelerated probe design (MD: 10 min, MB: 3-4 h), shorter times to positive (MD 4.1 ± 0.1 min shorter than MB, n = 36), improved signal-to-noise fluorescence ratio (MD: 5.9 ± 0.4, MB: 2.7 ± 0.4; n = 15), and showed equally good or better analytical performance parameters. The usability of one universal mediator-reporter set in different multiplex assays was successfully demonstrated for a biplex RT-LAMP of HIV-1 and HTLV-1 and a biplex LAMP of Haemophilus ducreyi and Treponema pallidum, both showing good correlation between target concentration and time to positive. Due to its simple implementation it is suggested to extend the use of the universal mediator-reporter sets to the detection of various other diagnostic panels.

  16. RHD genotype and zygosity analysis in the Chinese Southern Han D plus , D- and D variant donors using the multiplex ligation-dependent probe amplification assay

    NARCIS (Netherlands)

    Ji, Y. L.; Luo, H.; Wen, J. Z.; Haer-Wigman, L.; Veldhuisen, B.; Wei, L.; Wang, Z.; Ligthart, P.; Lodén-van Straaten, M.; Fu, Y. S.; van der Schoot, C. E.; Luo, G. P.

    2017-01-01

    Background and ObjectivesSeveral comprehensive genotyping platforms for determining red blood cell (RBC) antigens have been established and validated for use in the Caucasian and Black populations, but not for the Chinese. The multiplex ligation-dependent probe amplification (MLPA) assay was

  17. The KRAS Strip Assay for detection of KRAS mutation in Egyptian patients with colorectal cancer (CRC): A pilot study

    International Nuclear Information System (INIS)

    Abd El Kader, Y.; Safwat, E.; Kassem, H.A.; Kassem, N.M.; Emera, G.

    2013-01-01

    Background: Epidermal growth factor receptor (EGFR) and its downstream factors KRAS and BRAF are mutated in several types of cancer, affecting the clinical response to EGFR inhibitors. Mutations in the EGFR kinase domain predict sensitivity to the tyrosine kinase inhibitors gefltinib and erlotinib in lung adenocarcinoma, while activating point mutations in KRAS and BRAF confer resistance to the anti-EGFR monoclonal antibody cetuximab in colorectal cancer. The development of new generation methods for systematic mutation screening of these genes will allow more appropriate therapeutic choices. Purpose: Detection of KRAS mutation in Egyptian colorectal cancer (CRC) patients by the KRAS Strip Assay. Methods: Examination of 20 colorectal cancer (CRC) patients is done to detect KRAS mutations by KRAS Strip Assay. For the Strip Assay, a mutant-enriched PCR was followed by hybridization to KRAS-specific probes bound to a nitrocellulose strip. Results: Among 20 patients, KRAS mutations were identified in 80% of patients by the KRAS Strip Assay. Conclusions: Our preliminary results suggest that KRAS Strip Assay is an alternative to protocols currently in use for KRAS mutation detection

  18. Automated DNA electrophoresis, hybridization and detection

    International Nuclear Information System (INIS)

    Zapolski, E.J.; Gersten, D.M.; Golab, T.J.; Ledley, R.S.

    1986-01-01

    A fully automated, computer controlled system for nucleic acid hybridization analysis has been devised and constructed. In practice, DNA is digested with restriction endonuclease enzyme(s) and loaded into the system by pipette; 32 P-labelled nucleic acid probe(s) is loaded into the nine hybridization chambers. Instructions for all the steps in the automated process are specified by answering questions that appear on the computer screen at the start of the experiment. Subsequent steps are performed automatically. The system performs horizontal electrophoresis in agarose gel, fixed the fragments to a solid phase matrix, denatures, neutralizes, prehybridizes, hybridizes, washes, dries and detects the radioactivity according to the specifications given by the operator. The results, printed out at the end, give the positions on the matrix to which radioactivity remains hybridized following stringent washing

  19. Quenching methods for background reduction in luminescence-based probe-target binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hong [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Keller, Richard A [Los Alamos, NM; Nolan, Rhiannon L [Santa Fe, NM

    2007-04-10

    Background luminescence is reduced from a solution containing unbound luminescent probes, each having a first molecule that attaches to a target molecule and having an attached luminescent moiety, and luminescent probe/target adducts. Quenching capture reagent molecules are formed that are capable of forming an adduct with the unbound luminescent probes and having an attached quencher material effective to quench luminescence of the luminescent moiety. The quencher material of the capture reagent molecules is added to a solution of the luminescent probe/target adducts and binds in a proximity to the luminescent moiety of the unbound luminescent probes to quench luminescence from the luminescent moiety when the luminescent moiety is exposed to exciting illumination. The quencher capture reagent does not bind to probe molecules that are bound to target molecules and the probe/target adduct emission is not quenched.

  20. Performance of PCR-reverse blot hybridization assay for detection of rifampicin-resistant Mycobacterium leprae.

    Science.gov (United States)

    Wang, Hye-young; Kim, Hyunjung; Kim, Yeun; Bang, Hyeeun; Kim, Jong-Pill; Hwang, Joo Hwan; Cho, Sang-Nae; Kim, Tae Ue; Lee, Hyeyoung

    2015-10-01

    Drug resistance in Mycobacterium leprae is a significant problem in countries where leprosy is endemic. A sensitive, specific, and high-throughput reverse blot hybridization assay (REBA) for the detection of genotypic resistance to rifampicin (RIF) was designed and evaluated. It has been shown that resistance to RIF in M. leprae involves mutations in the rpoB gene encoding the -subunit of the RNA polymerase. The PCR-REBA simultaneously detects both 6 wild-type regions and 5 different mutations (507 AGC, 513 GTG, 516 TAT, 531 ATG, and 531 TTC) including the most prevalent mutations at positions 507 and 531. Thirty-one clinical isolates provided by Korea Institute of Hansen-s Disease were analyzed by PCR-REBA with RIF resistance of rpoB gene. As a result, missense mutations at codons 507 AGC and 531 ATG with 2-nucleotide substitutions were found in one sample, and a missense mutation at codon 516 TAT and ΔWT6 (deletion of 530-534) was found in another sample. These cases were confirmed by DNA sequence analysis. This rapid, simple, and highly sensitive assay provides a practical alternative to sequencing for genotypic evaluation of RIF resistance in M. leprae.

  1. Exploring the Hybridization Thermodynamics of Spherical Nucleic Acids to Tailor Probes for Diagnostic and Therapeutic Applications

    Science.gov (United States)

    Randeria, Pratik Shailesh

    Spherical nucleic acids (SNAs), three-dimensional nanoparticle conjugates composed of densely packed and highly oriented oligonucleotides around organic or inorganic nanoparticles, are an emergent class of nanostructures that show promise as single-entity agents for intracellular messenger RNA (mRNA) detection and gene regulation. SNAs exhibit superior biocompatibility and biological properties compared to linear oligonucleotides, enabling them to overcome many of the limitations of linear oligonucleotides for use in biomedical applications. However, the origins of these biologically attractive properties are not well understood. In this dissertation, the chemistry underlying one such property is studied in detail, and the findings are applied towards the rational design of more effective SNAs for diagnostic and therapeutic applications. Chapter 1 introduces the synthesis of SNAs, the unique properties that make them superior to linear nucleic acids for biomedicine, and previously studied applications of these structures. Chapter 2 focuses on quantitatively studying the impact of the chemical structure of the SNA on its ability to hybridize multiple complementary nucleic acids. This chapter lays the groundwork for understanding the factors that govern SNA hybridization thermodynamics and how to tailor SNAs to increase their binding affinity to target mRNA strands. Chapters 3 and 4 capitalize on this knowledge to engineer probes for intracellular mRNA detection and gene regulation applications. Chapter 3 reports the development of an SNA-based probe that can simultaneously report the expression level of two different mRNA transcripts in live cells and differentiate diseased cells from non-diseased cells. Chapter 4 investigates the use of topically-applied SNAs to down-regulate a critical mediator of impaired wound healing in diabetic mice to accelerate wound closure. This study represents the first topical therapeutic application of SNA nanotechnology to treat open

  2. Detection of Different Genotypes of Clostridium perfringens in Feces of Healthy Dairy Cattle from China using Real-Time Duplex PCR Assay

    Directory of Open Access Journals (Sweden)

    Guanghua Wang, Jizhang Zhou, Fuying Zheng, Guozhen Lin, Xiaoan Cao, Xiaowei Gong and Changqing Qiu*

    2011-04-01

    Full Text Available Dual-labeled fluorescence hybridization probe-based multiplex quantitative real-time polymerase chain reaction (qPCR assay was used for the detection of Clostridium perfringens toxin genes alpha (cpa, beta (cpb, iota (ia, epsilon (etx, beta2 (cpb2 and enterotoxin (cpe directly from the feces of cattle. Fecal samples from 261 lactating cattle, belonging to three dairy herds in Ningxia (China, were examined using the developed assays. The duplex qPCR assay revealed that cpa, etx, cpb2 and cpe toxin genes were detected in 176 (100%, 15 (8.5%, 142 (80.7% and 4 (2.3% of 176 PCR positive samples, respectively. The findings of this study revealed that C. perfringens beta2-toxin-producing strains were widely prevalent in lactating cows in Ningxia, possibly playing an important role in C. perfringens-associated diarrheal disease.

  3. Genotypic characterization of Rickettsiae by DNA probes generated from Rickettsia Prowazekii DNA

    International Nuclear Information System (INIS)

    Demkin, V.V.; Rydkina, E.B.; Likhoded, L.Ya.; Ignatovich, V.F.; Genig, V.A.; Balayeva, N.M.

    1994-01-01

    Southern blot analysis of HindIII-cleaved rickettsial DNA was used for genotypic characterization of the typhus group (TG) species (R. prowazekii, R. typhi, R. canada) and a few species were of the spotted fever group (SFG)rickettsiae (R. sibirica, R. conorii, R. akari). Four different DNA probes were employed. PBH11 and PBH13 probes were morphospecific HindIII fragment of R prowazekii DNA. MW218 probe contained the gene for 51 K antigen and MW264 probe contained the citrate synthase gene of R. prowazekii. All the probes hybridized with the tested TG and SFG rickettsial DNAs, forming from 1 to 5 bands, but they did not with R. tsutsudamushi or C. burnetii DNAs. All the probes demonstrated specific hybridization pattern with TG species and R. akari. PBH11. PBH13 and MW264 probes clearly distinguished R. sibirica and R. conorii from the other tested rickettsiae, but not from each other. However, these two species differed slightly with MW218 probe. Several strains of each species were analyzed in this way and except for strains of R. conorii identical intra-species pattern were obtained. These data lead us to consider the obtained hybridization patterns as criteria for genotypic identification. (author)

  4. GeneChip microarrays-signal intensities, RNA concentrations and probe sequences

    International Nuclear Information System (INIS)

    Binder, Hans; Preibisch, Stephan

    2006-01-01

    GeneChip microarrays consist of hundreds of thousands of oligonucleotide probes. The transformation of their signal intensities into RNA transcript concentrations requires the knowledge of the response function of the measuring device. We analysed the 'apparatus' function of perfect match (PM) and mismatched (MM) oligonucleotide probes of GeneChip microarrays after changes of the target concentration using the results of a spiked-in experiment. In agreement with previous studies we found that a competitive two-species Langmuir-adsorption model describes the probe intensities well. Each PM and MM probe is characterized by two hybridization constants which specify the propensity of the probe to bind specific and non-specific transcripts. The affinity for non-specific hybridization is on average equal for PM and MM. The purine-pyrimidine asymmetry of base pair interaction strengths, however, causes a characteristic PM-MM intensity difference, the sign of which depends on the middle base of the probe. The affinity for specific hybridization of the PM exceeds that of the MM on average by nearly one order of magnitude because the central mismatched base only weakly contributes to the stability of the probe/target duplexes. For the first time we differentiate between the free energy parameters related to the 64 possible middle-triples of DNA/RNA oligomer duplexes with a central Watson-Crick pairing and a central mismatched pairing. Both the PM and MM probes respond to the concentration of specific transcripts, which can be estimated from the PM and MM probe intensities using the Langmuir-model. The analysis of the PM-MM intensity difference provides at least no loss of accuracy and precision of the estimated concentration compared with the PM-only estimates which in turn outperform the MM-only estimates. The results show that the processing of the PM-MM intensity difference requires the consideration of a background term due to non-specific hybridization, which is

  5. A TaqMan real-time PCR-based assay for the identification of Fasciola spp.

    Science.gov (United States)

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Jowers, Michael J; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-30

    Real time quantitative PCR (qPCR) is one of the key technologies of the post-genome era, with clear advantages compared to normal end-point PCR. In this paper, we report the first qPCR-based assay for the identification of Fasciola spp. Based on sequences of the second internal transcribed spacers (ITS-2) of the ribosomal rRNA gene, we used a set of genus-specific primers for Fasciola ITS-2 amplification, and we designed species-specific internal TaqMan probes to identify F. hepatica and F. gigantica, as well as the hybrid 'intermediate'Fasciola. These primers and probes were used for the highly specific, sensitive, and simple identification of Fasciola species collected from different animal host from China, Spain, Niger and Egypt. The novel qPCR-based technique for the identification of Fasciola spp. may provide a useful tool for the epidemiological investigation of Fasciola infection, including their intermediate snail hosts. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Identification of listeria species isolated in Tunisia by Microarray based assay : results of a preliminary study

    International Nuclear Information System (INIS)

    Hmaied, Fatma; Helel, Salma; Barkallah, Insaf; Leberre, V.; Francois, J.M.; Kechrid, A.

    2008-01-01

    Microarray-based assay is a new molecular approach for genetic screening and identification of microorganisms. We have developed a rapid microarray-based assay for the reliable detection and discrimination of Listeria spp. in food and clinical isolates from Tunisia. The method used in the present study is based on the PCR amplification of a virulence factor gene (iap gene). the PCR mixture contained cyanine Cy5labeled dCTP. Therefore, The PCR products were fluorescently labeled. The presence of multiple species-specific sequences within the iap gene enabled us to design different oligoprobes per species. The species-specific sequences of the iap gene used in this study were obtained from genBank and then aligned for phylogenetic analysis in order to identify and retrieve the sequences of homologues of the amplified iap gene analysed. 20 probes were used for detection and identification of 22 food isolates and clinical isolates of Listeria spp (L. monocytogenes, L. ivanovi), L. welshimeri, L. seeligeri, and L. grayi). Each bacterial gene was identified by hybridization to oligoprobes specific for each Listeria species and immobilized on a glass surface. The microarray analysis showed that 5 clinical isolates and 2 food isolates were identified listeria monocytogenes. Concerning the remaining 15 food isolates; 13 were identified listeria innocua and 2 isolates could not be identified by microarray based assay. Further phylogenetic and molecular analysis are required to design more species-specific probes for the identification of Listeria spp. Microarray-based assay is a simple and rapid method used for Listeria species discrimination

  7. Nonisotopic DNA probe techniques

    National Research Council Canada - National Science Library

    Kricka, Larry J

    1992-01-01

    The objective of this book is to bring together descriptions of the principal nonisotopic methods for DNA hybridization assays, together with experimental details of the methods, including labelling...

  8. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments

    International Nuclear Information System (INIS)

    Walia, S.; Khan, A.; Rosenthal, N.

    1990-01-01

    Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community

  9. In situ hybridization of somatolactin transcripts in the pituitary glands from acclimatized carp (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    MAURICIO LÓPEZ

    2001-01-01

    Full Text Available We isolated and cloned a carp somatolactin SL DNA fragment, of which 78% of the nucleotides were identical to the corresponding salmon SL sequence. The results obtained upon Northern blot hybridization of carp pituitary RNA allowed the identification of two transcripts as described for other fish. When the content of SL transcripts in pituitary sections from summer- and winter- acclimatized carp was quantified by in situ hybridization assays, we found no significant differences between the two seasons. In salmonids, plasma SL reaches higher levels in summer than in winter in synchrony with the water temperature cycle; in the eurythermal carp, however, the complex adaptive responses imposed by seasonal environmental changes do not seem to include the regulation of the somatolactin detected with the probe used at the transcriptional level in pituitary glands

  10. Whole genomic DNA probe for detection of Porphyromonas endodontalis.

    Science.gov (United States)

    Nissan, R; Makkar, S R; Sela, M N; Stevens, R

    2000-04-01

    The purpose of the present study was to develop a DNA probe for Porphyromonas endodontalis. Pure cultures of P. endodontalis were grown in TYP medium, in an anaerobic chamber. DNA was extracted from the P. endodontalis and labeled using the Genius System by Boehringer Mannheim. The labeled P. endodontalis DNA was used in dot-blot hybridization reactions with homologous (P. endodontalis) and unrelated bacterial samples. To determine specificity, strains of 40 other oral bacterial species (e.g. Porphyromonas gingivalis, Porphyromonas asaccharolytica, and Prevotella intermedia) were spotted and reacted with the P. endodontalis DNA probe. None of the panel of 40 oral bacteria hybridized with the P. endodontalis probe, whereas the blot of the homologous organism showed a strong positive reaction. To determine the sensitivity of the probe, dilutions of a P. endodontalis suspension of known concentration were blotted onto a nylon membrane and reacted with the probe. The results of our investigation indicate that the DNA probe that we have prepared specifically detects only P. endodontalis and can detect at least 3 x 10(4) cells.

  11. On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    Science.gov (United States)

    Tavares, Anthony J; Noor, M Omair; Vannoy, Charles H; Algar, W Russ; Krull, Ulrich J

    2012-01-03

    The glass surface of a glass-polydimethylsiloxane (PDMS) microfluidic channel was modified to develop a solid-phase assay for quantitative determination of nucleic acids. Electroosmotic flow (EOF) within channels was used to deliver and immobilize semiconductor quantum dots (QDs), and electrophoresis was used to decorate the QDs with oligonucleotide probe sequences. These processes took only minutes to complete. The QDs served as energy donors in fluorescence resonance energy transfer (FRET) for transduction of nucleic acid hybridization. Electrokinetic injection of fluorescent dye (Cy3) labeled oligonucleotide target into a microfluidic channel and subsequent hybridization (within minutes) provided the proximity for FRET, with emission from Cy3 being the analytical signal. The quantification of target concentration was achieved by measurement of the spatial length of coverage by target along a channel. Detection of femtomole quantities of target was possible with a dynamic range spanning an order of magnitude. The assay provided excellent resistance to nonspecific interactions of DNA. Further selectivity of the assay was achieved using 20% formamide, which allowed discrimination between a fully complementary target and a 3 base pair mismatch target at a contrast ratio of 4:1. © 2011 American Chemical Society

  12. Microarray multiplex assay for the simultaneous detection and discrimination of hepatitis B, hepatitis C, and human immunodeficiency type-1 viruses in human blood samples

    International Nuclear Information System (INIS)

    Hsia, Chu Chieh; Chizhikov, Vladimir E.; Yang, Amy X.; Selvapandiyan, Angamuthu; Hewlett, Indira; Duncan, Robert; Puri, Raj K.; Nakhasi, Hira L.; Kaplan, Gerardo G.

    2007-01-01

    Hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus type-1 (HIV-1) are transfusion-transmitted human pathogens that have a major impact on blood safety and public health worldwide. We developed a microarray multiplex assay for the simultaneous detection and discrimination of these three viruses. The microarray consists of 16 oligonucleotide probes, immobilized on a silylated glass slide. Amplicons from multiplex PCR were labeled with Cy-5 and hybridized to the microarray. The assay detected 1 International Unit (IU), 10 IU, 20 IU of HBV, HCV, and HIV-1, respectively, in a single multiplex reaction. The assay also detected and discriminated the presence of two or three of these viruses in a single sample. Our data represent a proof-of-concept for the possible use of highly sensitive multiplex microarray assay to screen and confirm the presence of these viruses in blood donors and patients

  13. Rapid and Simple Detection of Hot Spot Point Mutations of Epidermal Growth Factor Receptor, BRAF, and NRAS in Cancers Using the Loop-Hybrid Mobility Shift Assay

    Science.gov (United States)

    Matsukuma, Shoichi; Yoshihara, Mitsuyo; Kasai, Fumio; Kato, Akinori; Yoshida, Akira; Akaike, Makoto; Kobayashi, Osamu; Nakayama, Haruhiko; Sakuma, Yuji; Yoshida, Tsutomu; Kameda, Yoichi; Tsuchiya, Eiju; Miyagi, Yohei

    2006-01-01

    A simple and rapid method to detect the epidermal growth factor receptor hot spot mutation L858R in lung adenocarcinoma was developed based on principles similar to the universal heteroduplex generator technology. A single-stranded oligonucleotide with an internal deletion was used to generate heteroduplexes (loop-hybrids) bearing a loop in the complementary strand derived from the polymerase chain reaction product of the normal or mutant allele. By placing deletion in the oligonucleotide adjacent to the mutational site, difference in electrophoretic mobility between loop-hybrids with normal and mutated DNA was distinguishable in a native polyacrylamide gel. The method was also modified to detect in-frame deletion mutations of epidermal growth factor receptor in lung adenocarcinomas. In addition, the method was adapted to detect hot spot mutations in the B-type Raf kinase (BRAF) at V600 and in a Ras-oncogene (NRAS) at Q61, the mutations commonly found in thyroid carcinomas. Our mutation detection system, designated the loop-hybrid mobility shift assay was sensitive enough to detect mutant DNA comprising 7.5% of the total DNA. As a simple and straightforward mutation detection technique, loop-hybrid mobility shift assay may be useful for the molecular diagnosis of certain types of clinical cancers. Other applications are also discussed. PMID:16931592

  14. ProSeeK: a web server for MLPA probe design.

    Science.gov (United States)

    Pantano, Lorena; Armengol, Lluís; Villatoro, Sergi; Estivill, Xavier

    2008-11-28

    The technological evolution of platforms for detecting genome-wide copy number imbalances has allowed the discovery of an unexpected amount of human sequence that is variable in copy number among individuals. This type of human variation can make an important contribution to human diversity and disease susceptibility. Multiplex Ligation-dependent Probe Amplification (MLPA) is a targeted method to assess copy number differences for up to 40 genomic loci in one single experiment. Although specific MLPA assays can be ordered from MRC-Holland (the proprietary company of the MLPA technology), custom designs are also developed in many laboratories worldwide. After our own experience, an important drawback of custom MLPA assays is the time spent during the design of the specific oligonucleotides that are used as probes. Due to the large number of probes included in a single assay, a number of restrictions need to be met in order to maximize specificity and to increase success likelihood. We have developed a web tool for facilitating and optimising custom probe design for MLPA experiments. The algorithm only requires the target sequence in FASTA format and a set of parameters, that are provided by the user according to each specific MLPA assay, to identify the best probes inside the given region. To our knowledge, this is the first available tool for optimizing custom probe design of MLPA assays. The ease-of-use and speed of the algorithm dramatically reduces the turn around time of probe design. ProSeeK will become a useful tool for all laboratories that are currently using MLPA in their research projects for CNV studies.

  15. ProSeeK: A web server for MLPA probe design

    Directory of Open Access Journals (Sweden)

    Villatoro Sergi

    2008-11-01

    Full Text Available Abstract Background The technological evolution of platforms for detecting genome-wide copy number imbalances has allowed the discovery of an unexpected amount of human sequence that is variable in copy number among individuals. This type of human variation can make an important contribution to human diversity and disease susceptibility. Multiplex Ligation-dependent Probe Amplification (MLPA is a targeted method to assess copy number differences for up to 40 genomic loci in one single experiment. Although specific MLPA assays can be ordered from MRC-Holland (the proprietary company of the MLPA technology, custom designs are also developed in many laboratories worldwide. After our own experience, an important drawback of custom MLPA assays is the time spent during the design of the specific oligonucleotides that are used as probes. Due to the large number of probes included in a single assay, a number of restrictions need to be met in order to maximize specificity and to increase success likelihood. Results We have developed a web tool for facilitating and optimising custom probe design for MLPA experiments. The algorithm only requires the target sequence in FASTA format and a set of parameters, that are provided by the user according to each specific MLPA assay, to identify the best probes inside the given region. Conclusion To our knowledge, this is the first available tool for optimizing custom probe design of MLPA assays. The ease-of-use and speed of the algorithm dramatically reduces the turn around time of probe design. ProSeeK will become a useful tool for all laboratories that are currently using MLPA in their research projects for CNV studies.

  16. Quantitative monitoring of HCMV DNAlactia in human milk by real time PCR assay: Implementation of internal control contributes to standardization and quality control.

    Science.gov (United States)

    Hartleif, Steffen; Göhring, Katharina; Goelz, Rangmar; Jahn, Gerhard; Hamprecht, Klaus

    2016-11-01

    For cytomegalovirus screening of breastfeeding mothers of preterm infants under risk, we present a rapid, quantitative real-time PCR protocol using the hybridization format of the viral gB target region. For quantification, we used an external gB fragment cloned into a vector system. For standardization, we created an internal control-plasmid by site-directed mutagenesis with an exchange of 9 nucleotides. Spiked with internal control, patient wildtype amplicons could be discriminated from internal controls by hybridization probes using two-channel fluorescence detection. Potential bias of formerly reported false nucleotide sequence data of gB-hybridization probes was excluded. Using this approach, we could demonstrate excellent analytical performance and high reproducibility of HCMV detection during lactation. This assay shows very good correlation with a commercial quantitative HCMV DNA PCR and may help to identify rapidly HCMV shedding mothers of very low birth weight preterm infants to prevent HCMV transmission. On the other hand, negative DNA amplification results allow feeding of milk samples of seropositive mothers to their preterm infants under risk (<30 weeks of gestational age, <1000g birth weight) during the onset and late stage of HCMV shedding during lactation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Photoelectronic characterization of IgG antibody molecule-quantum dot hybrid as biosensing probe

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hye-Weon; Kim, Sung-Jo; Kim, In S [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Lee, Jinwook; Kim, Sungyoun, E-mail: iskim@gist.ac.kr [Center for Seawater Desalination Plant, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2010-10-22

    Quantum dot (QD)-based biomolecule hybrids have recently attracted much attention in specifically identifying and labeling target proteins. In this study, QD encapsulated with immunoglobulin antibodies, as a labeling building block in biosensors, was investigated to clarify the most efficient configuration and photoluminescence behavior. Both the biological recognition capacity and photoluminescence emitting signal of the antibody-coupled nanocrystal were validated through a photoelectrical characterization procedure. Derivation of the optimum number of antibody molecules to be packed onto the QD surface yielded the highest binding capacity for the target antigen. During formation of the bioactive layer, the intrinsic photoluminescence response of the QDs significantly decreased due to photoinduced hole transfer according to their rearranged electronic structure. The thorough study of this assembly provides a validation approach for the careful titration of biosensor probes for optimal reaction kinetics. Furthermore, it contributes to the development of an effective tool for the application and interpretation of QD-based labeling techniques.

  18. Photoelectronic characterization of IgG antibody molecule-quantum dot hybrid as biosensing probe

    International Nuclear Information System (INIS)

    Yu, Hye-Weon; Kim, Sung-Jo; Kim, In S; Lee, Jinwook; Kim, Sungyoun

    2010-01-01

    Quantum dot (QD)-based biomolecule hybrids have recently attracted much attention in specifically identifying and labeling target proteins. In this study, QD encapsulated with immunoglobulin antibodies, as a labeling building block in biosensors, was investigated to clarify the most efficient configuration and photoluminescence behavior. Both the biological recognition capacity and photoluminescence emitting signal of the antibody-coupled nanocrystal were validated through a photoelectrical characterization procedure. Derivation of the optimum number of antibody molecules to be packed onto the QD surface yielded the highest binding capacity for the target antigen. During formation of the bioactive layer, the intrinsic photoluminescence response of the QDs significantly decreased due to photoinduced hole transfer according to their rearranged electronic structure. The thorough study of this assembly provides a validation approach for the careful titration of biosensor probes for optimal reaction kinetics. Furthermore, it contributes to the development of an effective tool for the application and interpretation of QD-based labeling techniques.

  19. Low temperature excitonic spectroscopy and dynamics as a probe of quality in hybrid perovskite thin films.

    Science.gov (United States)

    Sarang, Som; Ishihara, Hidetaka; Chen, Yen-Chang; Lin, Oliver; Gopinathan, Ajay; Tung, Vincent C; Ghosh, Sayantani

    2016-10-19

    We have developed a framework for using temperature dependent static and dynamic photoluminescence (PL) of hybrid organic-inorganic perovskites (PVSKs) to characterize lattice defects in thin films, based on the presence of nanodomains at low temperature. Our high-stability PVSK films are fabricated using a novel continuous liquid interface propagation technique, and in the tetragonal phase (T > 120 K), they exhibit bi-exponential recombination from free charge carriers with an average PL lifetime of ∼200 ns. Below 120 K, the emergence of the orthorhombic phase is accompanied by a reduction in lifetimes by an order of magnitude, which we establish to be the result of a crossover from free carrier to exciton-dominated radiative recombination. Analysis of the PL as a function of excitation power at different temperatures provides direct evidence that the exciton binding energy is different in the two phases, and using these results, we present a theoretical approach to estimate this variable binding energy. Our findings explain this anomalous low temperature behavior for the first time, attributing it to an inherent fundamental property of the hybrid PVSKs that can be used as an effective probe of thin film quality.

  20. Use of multiplex polymerase chain reaction-based assay to conduct epidemiological studies on bovine hemoparasites in Mexico.

    Science.gov (United States)

    Figueroa, J V; Alvarez, J A; Ramos, J A; Vega, C A; Buening, G M

    1993-01-01

    A study was conducted to test the applicability of a Polymerase Chain Reaction (PCR)-based approach for the simultaneous detection of the bovine hemoparasites Babesia bigemina, B. bovis and Anaplasma marginale. Bovine blood samples from cattle ranches of a previously determined enzootic zone in the Yucatan Peninsula of Mexico, were collected from peripheral blood and processed for PCR analysis. Blood samples were subjected to DNA amplification by placing an aliquot in a reaction tube containing oligonucleotide primers specific for DNA of each hemoparasite species. The PCR products were detected by Dot-Blot nucleic acid hybridization utilizing nonradioactive, species-specific, digoxigenin PCR-labeled DNA probes. Four hundred twenty one field samples analyzed by the multiplex PCR-DNA probe assay showed 66.7%, 60.1% and 59.6% prevalence rates for B. bigemina, B. bovis and A. marginale, respectively. The multiplex PCR analysis showed that animals with single, double or triple infection could be detected with the parasite specific DNA probes. The procedure is proposed as a valuable tool for the epidemiological analysis in regions where the hemoparasite species are concurrently infecting cattle.

  1. Diagnostic PCR: Comparative sensitivity of four probe chemistries

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Löfström, Charlotta; Sommer, Helle Mølgaard

    2009-01-01

    Three probe chemistries: locked nucleic acid (LNA), minor groove binder (MGB) and Scorpion were compared with a TaqMan probe in a validated real-time PCR assay for detection of food-borne thermotolerant Campylobacter. The LNA probe produced significantly lower Ct-values and a higher proportion of...

  2. Hybrid Capture 2 and cobas human papillomavirus assays perform similarly on SurePath samples from women with abnormalities

    DEFF Research Database (Denmark)

    Fornari, D; Rebolj, M; Bjerregaard, B

    2016-01-01

    OBJECTIVE: In two laboratories (Departments of Pathology, Copenhagen University Hospitals of Herlev and Hvidovre), we compared cobas and Hybrid Capture 2 (HC2) human papillomavirus (HPV) assays using SurePath® samples from women with atypical squamous cells of undetermined significance (ASCUS......) at ≥30 years and women after treatment of cervical intraepithelial neoplasia (CIN). METHODS: Samples from 566 women with ASCUS and 411 women after treatment were routinely tested with HC2 and, thereafter, with cobas. Histological outcomes were retrieved from the Danish Pathology Data Base. We calculated...... the overall agreement between the assays, and compared their sensitivity and specificity for ≥CIN2. RESULTS: In women with ASCUS, HC2 and cobas testing results were similar in the two laboratories. The overall agreement was 91% (95% CI, 88-93). After CIN treatment, the overall agreement was 87% (95% CI, 82...

  3. The Interaction of the Solar Wind with Solar Probe Plus - 3D Hybrid Simulation. Report 1; The Study for the Distance 4.5Rs

    Science.gov (United States)

    Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.

    2010-01-01

    Our report devotes a 3D numerical hybrid model of the interaction of the solar wind with the Solar Probe spacecraft. The Solar Probe Plus (SPP) model includes 3 main parts, namely, a non-conducting heat shield, a support system, and cylindrical section or spacecraft bus that contains the particle analysis devices and antenna. One observes an excitation of the low frequency Alfven and whistler type wave directed by the magnetic field with an amplitude of about (0.06-0.6) V/m. The compression waves and the jumps in an electric field with an amplitude of about (0.15-0.7) V/m were also observed. The wave amplitudes are comparable to or greater than previously estimated max wave amplitudes that SPP is expected to measure. The results of our hybrid simulation will be useful for understanding the plasma environment near the SPP spacecraft at the distance 4.5 Rs. Future simulation will take into account the charging of the spacecraft, the charge separation effects, an outgassing from heat shield, a photoionization and an electron impact ionization effects near the spacecraft.

  4. Novel RNA hybridization method for the in situ detection of ETV1, ETV4, and ETV5 gene fusions in prostate cancer.

    Science.gov (United States)

    Kunju, Lakshmi P; Carskadon, Shannon; Siddiqui, Javed; Tomlins, Scott A; Chinnaiyan, Arul M; Palanisamy, Nallasivam

    2014-09-01

    The genetic basis of 50% to 60% of prostate cancer (PCa) is attributable to rearrangements in E26 transformation-specific (ETS) (ERG, ETV1, ETV4, and ETV5), BRAF, and RAF1 genes and overexpression of SPINK1. The development and validation of reliable detection methods are warranted to classify various molecular subtypes of PCa for diagnostic and prognostic purposes. ETS gene rearrangements are typically detected by fluorescence in situ hybridization and reverse-transcription polymerase chain reaction methods. Recently, monoclonal antibodies against ERG have been developed that detect the truncated ERG protein in immunohistochemical assays where staining levels are strongly correlated with ERG rearrangement status by fluorescence in situ hybridization. However, specific antibodies for ETV1, ETV4, and ETV5 are unavailable, challenging their clinical use. We developed a novel RNA in situ hybridization-based assay for the in situ detection of ETV1, ETV4, and ETV5 in formalin-fixed paraffin-embedded tissues from prostate needle biopsies, prostatectomy, and metastatic PCa specimens using RNA probes. Further, with combined RNA in situ hybridization and immunohistochemistry we identified a rare subset of PCa with dual ETS gene rearrangements in collisions of independent tumor foci. The high specificity and sensitivity of RNA in situ hybridization provides an alternate method enabling bright-field in situ detection of ETS gene aberrations in routine clinically available PCa specimens.

  5. Chemosensitivity and radiosensitivity of small cell lung cancer cell lines studied by a newly developed 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) hybrid assay

    International Nuclear Information System (INIS)

    Hida, T.; Ueda, R.; Takahashi, T.; Watanabe, H.; Kato, T.; Suyama, M.; Sugiura, T.; Ariyoshi, Y.

    1989-01-01

    The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) hybrid assay was developed by technically combining the human tumor clonogenic assay and the MTT assay to make the most of both assays. This assay was able to estimate the in vitro growth of cultured cell lines and of tumor cells in pleural effusion, suggesting the possibility of its use for assessment of chemosensitivity and radiosensitivity of fresh tumor samples. Multiple cell lines [including morphological and/or phenotypical in vitro converters and cisplatin (CDDP)-resistant lines] were established from three patients with small cell lung cancer at different stages of the disease. Chemosensitivity of these cell lines to four commonly used chemotherapeutic drugs was tested by the MTT hybrid assay. SK1 and SK3 lines were established from Patient S. K. before and after chemotherapy and radiotherapy, respectively. SK3/CDDP, a CDDP-resistant line derived from the SK3 line, was 30-fold more resistant to CDDP [50% inhibiting dose (IC50), 21.5 micrograms/ml] than the SK1 line. In Patient M. O., MOA2/CDDP, a CDDP-resistant line derived from MOA2 (an in vitro converter from the MO line), was 41-fold more resistant to CDDP (IC50, 37 micrograms/ml) than the parent MO line. From Patient T. M., TM1 and TM2 lines were established before and after chemotherapy, respectively. The latter showed 6-fold more resistance to CDDP than the former. Chemosensitivity of these lines to three other drugs, 4-hydroperoxycyclophosphamide, Adriamycin, and etoposide, suggested cross-resistance between CDDP and 4-hydroperoxycyclophosphamide. Radiosensitivity study was also carried out with the MTT hybrid assay. The MOA2 line was more resistant [Do, 3.0 Gy; extrapolation number (n), 4.0] than the parental MO line (Do, 1.6 Gy; n, 2.1). There was no clear difference in radiosensitivity between the cell lines established before and after radiation therapy in Patient S. K

  6. Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction.

    Science.gov (United States)

    Liu, Lingzhi; Song, Chao; Zhang, Zhang; Yang, Juan; Zhou, Lili; Zhang, Xing; Xie, Guoming

    2015-08-15

    Measurement of microRNA (miRNA) levels in body fluids is a crucial tool for the early diagnosis and prognosis of cancers. In this study, we developed an electrochemical assay to detect miRNA-21 by fabricating the electrode with layer-by-layer assembly of oxidized single-walled carbon nanotubes and nanodiamonds. Tetrahedron-structured probes with free-standing probe on the top served as receptors to hybridize with target miRNA directly. The probes were immobilized on the deposited gold nanoparticles through a well-established strong Au-S bond. The electrochemical signal was mainly derived from an ultrasensitive pattern by combining hybridization chain reaction with DNA-functionalized AuNPs, which provided DNAzyme to catalyze H2O2 reduction. Differential pulse voltammetry was applied to record the electrochemical signals, which was increased linearly with the target miRNA-21, and the linear detection range was 10 fM to 1.0 nM. The limit of detection reached 1.95 fM (S/N=3), and the proposed biosensor exhibited good reproducibility and stability, as well as high sensitivity. Hence, this biosensor has a promising potential in clinical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Simultaneous use of multiplex ligation-dependent probe amplification assay and flow cytometric DNA ploidy analysis in patients with acute leukemia.

    Science.gov (United States)

    Reyes-Núñez, Virginia; Galo-Hooker, Evelyn; Pérez-Romano, Beatriz; Duque, Ricardo E; Ruiz-Arguelles, Alejandro; Garcés-Eisele, Javier

    2018-01-01

    The aim of this work was to simultaneously use multiplex ligation-dependent probe amplification (MLPA) assay and flow cytometric DNA ploidy analysis (FPA) to detect aneuploidy in patients with newly diagnosed acute leukemia. MLPA assay and propidium iodide FPA were used to test samples from 53 consecutive patients with newly diagnosed acute leukemia referred to our laboratory for immunophenotyping. Results were compared by nonparametric statistics. The combined use of both methods significantly increased the rate of detection of aneuploidy as compared to that obtained by each method alone. The limitations of one method are somehow countervailed by the other and vice versa. MPLA and FPA yield different yet complementary information concerning aneuploidy in acute leukemia. The simultaneous use of both methods might be recommended in the clinical setting. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.

  8. Hybrid mimics and hybrid vigor in Arabidopsis

    Science.gov (United States)

    Wang, Li; Greaves, Ian K.; Groszmann, Michael; Wu, Li Min; Dennis, Elizabeth S.; Peacock, W. James

    2015-01-01

    F1 hybrids can outperform their parents in yield and vegetative biomass, features of hybrid vigor that form the basis of the hybrid seed industry. The yield advantage of the F1 is lost in the F2 and subsequent generations. In Arabidopsis, from F2 plants that have a F1-like phenotype, we have by recurrent selection produced pure breeding F5/F6 lines, hybrid mimics, in which the characteristics of the F1 hybrid are stabilized. These hybrid mimic lines, like the F1 hybrid, have larger leaves than the parent plant, and the leaves have increased photosynthetic cell numbers, and in some lines, increased size of cells, suggesting an increased supply of photosynthate. A comparison of the differentially expressed genes in the F1 hybrid with those of eight hybrid mimic lines identified metabolic pathways altered in both; these pathways include down-regulation of defense response pathways and altered abiotic response pathways. F6 hybrid mimic lines are mostly homozygous at each locus in the genome and yet retain the large F1-like phenotype. Many alleles in the F6 plants, when they are homozygous, have expression levels different to the level in the parent. We consider this altered expression to be a consequence of transregulation of genes from one parent by genes from the other parent. Transregulation could also arise from epigenetic modifications in the F1. The pure breeding hybrid mimics have been valuable in probing the mechanisms of hybrid vigor and may also prove to be useful hybrid vigor equivalents in agriculture. PMID:26283378

  9. FISH with whole chromosome and telomeric probes demonstrates huge karyotypic reorganization with ITS between two species of Oryzomyini (Sigmodontinae, Rodentia): Hylaeamys megacephalus probes on Cerradomys langguthi karyotype.

    Science.gov (United States)

    Nagamachi, Cleusa Yoshiko; Pieczarka, Julio Cesar; O'Brien, Patricia Caroline Mary; Pinto, Jamilly Amaral; Malcher, Stella Miranda; Pereira, Adenilson Leão; Rissino, Jorge das Dores; Mendes-Oliveira, Ana Cristina; Rossi, Rogério Vieira; Ferguson-Smith, Malcolm Andrew

    2013-04-01

    Rodentia comprises 42 % of living mammalian species. The taxonomic identification can be difficult, the number of species currently known probably being underestimated, since many species show only slight morphological variations. Few studies surveyed the biodiversity of species, especially in the Amazon region. Cytogenetic studies show great chromosomal variability in rodents, with diploid numbers ranging from 10 to 102, making it difficult to find chromosomal homologies by comparative G banding. Chromosome painting is useful, but only a few species of rodents have been studied by this technique. In this study, we sorted whole chromosome probes by fluorescence-activated cell sorting from two Hylaeamys megacephalus individuals, an adult female (2n = 54) and a fetus (2n = 50). We made reciprocal chromosome painting between these karyotypes and cross-species hybridization on Cerradomys langguthi (2n = 46). Both species belong to the tribe Oryzomyini (Sigmodontinae), which is restricted to South America and were collected in the Amazon region. Twenty-four chromosome-specific probes from the female and 25 from the fetus were sorted. Reciprocal chromosome painting shows that the karyotype of the fetus does not represent a new cytotype, but an unbalanced karyotype with multiple rearrangements. Cross-species hybridization of H. megacephalus probes on metaphases of C. langguthi shows that 11 chromosomes of H. megacephalus revealed conserved synteny, 10 H. megacephalus probes hybridized to two chromosomal regions and three hybridized to three regions. Associations were observed on chromosomes pairs 1-4 and 11. Fluorescence in situ hybridization with a telomeric probe revealed interstitial regions in three pairs (1, 3, and 4) of C. langguthi chromosomes. We discuss the genomic reorganization of the C. langguthi karyotype.

  10. Design and application of noncontinuously binding probes used for haplotyping and genotyping.

    Science.gov (United States)

    Pont-Kingdon, Genevieve; Margraf, Rebecca L; Sumner, Kelli; Millson, Alison; Lyon, Elaine; Schütz, Ekkehard

    2008-06-01

    Many methods for genotyping use melting temperature (Tm) of sequence-specific probes. Usually the probes hybridize to a continuous stretch of DNA that contains the variant(s). In contrast, hybridization of noncontinuous probes to a template can form bulges. This report generates guidelines for the design of noncontinuous probes. We used software to predict hybridization structures and Tms from 10 noncontinuous probes and 54 different templates. Predicted Tms were compared to existing experimental data. The bulging template's sequences (omitted in the probe) ranged in size from 1 to 73 nucleotides. In 36 cases, we compared observed and predicted DeltaTms between alleles complementary to the probe and mismatched alleles. In addition, using software that predicts effects of bulges, we designed a probe and then tested it experimentally. The mean differences between predicted and observed Tms were 0.65 (2.51) degrees C with the Visual OMP software and 0.28 (1.67) degrees C with the MeltCalc software. DeltaTms were within a mean (SD) of 0.36 (1.23) degrees C (Visual OMP) and -0.01 (1.02) degrees C (MeltCalc) of observed values. An increase in the size of the template bulge resulted in a decrease in Tms. In 2 templates, the presence of a variant in the bulge influenced the experimental Tm of 2 noncontinuous probes, a result that was not predicted by the software programs. The use of software prediction should prove useful for the design of noncontinuous probes that can be used as tools for molecular haplotyping, multiplex genotyping, or masking sequence variants.

  11. Application of synthetic DNA probes to the analysis of DNA sequence variants in man

    International Nuclear Information System (INIS)

    Wallace, R.B.; Petz, L.D.; Yam, P.Y.

    1986-01-01

    Oligonucleotide probes provide a tool to discriminate between any two alleles on the basis of hybridization. Random sampling of the genome with different oligonucleotide probes should reveal polymorphism in a certain percentage of the cases. In the hope of identifying polymorphic regions more efficiently, we chose to take advantage of the proposed hypermutability of repeated DNA sequences and the specificity of oligonucleotide hybridization. Since, under appropriate conditions, oligonucleotide probes require complete base pairing for hybridization to occur, they will only hybridize to a subset of the members of a repeat family when all members of the family are not identical. The results presented here suggest that oligonucleotide hybridization can be used to extend the genomic sequences that can be tested for the presence of RFLPs. This expands the tools available to human genetics. In addition, the results suggest that repeated DNA sequences are indeed more polymorphic than single-copy sequences. 28 references, 2 figures

  12. DNA probe for lactobacillus delbrueckii

    Energy Technology Data Exchange (ETDEWEB)

    Delley, M.; Mollet, B.; Hottinger, H. (Nestle Research Centre, Lausanne (Switzerland))

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  13. DNA probe for lactobacillus delbrueckii

    International Nuclear Information System (INIS)

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α- 32 P-labeled probe

  14. Signal amplification of microRNAs with modified strand displacement-based cycling probe technology.

    Science.gov (United States)

    Jia, Huning; Bu, Ying; Zou, Bingjie; Wang, Jianping; Kumar, Shalen; Pitman, Janet L; Zhou, Guohua; Song, Qinxin

    2016-10-24

    Micro ribose nucleic acids (miRNAs) play an important role in biological processes such as cell differentiation, proliferation and apoptosis. Therefore, miRNAs are potentially a powerful marker for monitoring cancer and diagnosis. Here, we present sensitive signal amplification for miRNAs based on modified cycling probe technology with strand displacement amplification. miRNA was captured by the template coupled with beads, and then the first cycle based on SDA was repeatedly extended to the nicking end, which was produced by the extension reaction of miRNA. The products generated by SDA are captured by a molecular beacon (MB), which is designed to initiate the second amplification cycle, with a similar principle to the cycling probe technology (CPT), which is based on repeated digestion of the DNA-RNA hybrid by the RNase H. After one sample enrichment and two steps of signal amplification, 0.1 pM of let-7a can be detected. The miRNA assay exhibits a great dynamic range of over 100 orders of magnitude and high specificity to clearly discriminate a single base difference in miRNA sequences. This isothermal amplification does not require any special temperature control instrument. The assay is also about signal amplification rather than template amplification, therefore minimising contamination issues. In addition, there is no need for the reverse transcription (RT) process. Thus the amplification is suitable for miRNA detection.

  15. Diagnosis of visceral Leishmaniasis in asymptomatic dogs by the KDNA PCR-hybridization assay using noninvasive samples

    International Nuclear Information System (INIS)

    Leite, Rodrigo Souza; Andrade, Antero Silva Ribeiro de; Ferreira, Sydney de Almeida; Ituassu, Leonardo Trindade; Melo, Maria Norma de

    2009-01-01

    The visceral leishmaniasis (VL) in Brazil is caused by Leishmania (Leishmania) chagasi and the asymptomatic dogs may transmit the parasite to sand flies vectors. The VL epidemiological control in Brazil involves the elimination of seropositive dogs, insecticide treatment and systematic treatment of human cases. Therefore, the accurate diagnosis is important in order to avoid the disease transmission or unnecessary culling of dogs. Serological tests are used for screening of dogs. However, these techniques present limitations. The Polymerase Chain Reaction (PCR) is an attractive alternative to the diagnosis in this context; but non-invasive samplings have great importance because they are simpler, painless and less resisted by dog-owners. This study aimed at evaluating conjunctival swab (CS) for canine VL diagnosis. In this methodology a sterile cotton swab is used to sampling the dog conjunctiva in both eyes. Thirty asymptomatic seropositive dogs were used. The samples were analyzed by the kDNA PCR-hybridization procedure in which the PCR products are hybridized with cloned kDNA mini-circles labeled with 32 P[]dCTP. In addition, blood (B) was collected from each animal. L. chagasi was identified in 90% of CS samples and 13,6% of B samples. The high sensitivity obtained with asymptomatic dogs, in which the diagnosis is more difficult due the low number of parasites in the samples, allow concluding that the conjunctival swab associated to the kDNA PCR-hybridization assay provides a valuable alternative tool for the direct diagnosis of canine leishmaniasis. (author)

  16. An Optimized Set of Fluorescence In Situ Hybridization Probes for Detection of Pancreatobiliary Tract Cancer in Cytology Brush Samples.

    Science.gov (United States)

    Barr Fritcher, Emily G; Voss, Jesse S; Brankley, Shannon M; Campion, Michael B; Jenkins, Sarah M; Keeney, Matthew E; Henry, Michael R; Kerr, Sarah M; Chaiteerakij, Roongruedee; Pestova, Ekaterina V; Clayton, Amy C; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C; Kipp, Benjamin R

    2015-12-01

    Pancreatobiliary cancer is detected by fluorescence in situ hybridization (FISH) of pancreatobiliary brush samples with UroVysion probes, originally designed to detect bladder cancer. We designed a set of new probes to detect pancreatobiliary cancer and compared its performance with that of UroVysion and routine cytology analysis. We tested a set of FISH probes on tumor tissues (cholangiocarcinoma or pancreatic carcinoma) and non-tumor tissues from 29 patients. We identified 4 probes that had high specificity for tumor vs non-tumor tissues; we called this set of probes pancreatobiliary FISH. We performed a retrospective analysis of brush samples from 272 patients who underwent endoscopic retrograde cholangiopancreatography for evaluation of malignancy at the Mayo Clinic; results were available from routine cytology and FISH with UroVysion probes. Archived residual specimens were retrieved and used to evaluate the pancreatobiliary FISH probes. Cutoff values for FISH with the pancreatobiliary probes were determined using 89 samples and validated in the remaining 183 samples. Clinical and pathologic evidence of malignancy in the pancreatobiliary tract within 2 years of brush sample collection was used as the standard; samples from patients without malignancies were used as negative controls. The validation cohort included 85 patients with malignancies (46.4%) and 114 patients with primary sclerosing cholangitis (62.3%). Samples containing cells above the cutoff for polysomy (copy number gain of ≥2 probes) were classified as positive in FISH with the UroVysion and pancreatobiliary probes. Multivariable logistic regression was used to estimate associations between clinical and pathology findings and results from FISH. The combination of FISH probes 1q21, 7p12, 8q24, and 9p21 identified cancer cells with 93% sensitivity and 100% specificity in pancreatobiliary tissue samples and were therefore included in the pancreatobiliary probe set. In the validation cohort of

  17. Fast reciprocating probe system for local scrape-off layer measurements in front of the lower hybrid launcher on JT-60U

    International Nuclear Information System (INIS)

    Asakura, N.; Tsuji-Iio, S.; Ikeda, Y.; Neyatani, Y.; Seki, M.

    1995-01-01

    A fast reciprocating probe system with a long drive shaft was incorporated into a multi-junction lower hybrid (LH) wave launcher on JT-60U in order to investigate an improved coupling mechanism of the radio frequency wave to the core plasma. The system has been operated reliably over a horizontal scan of 25 cm in 1.5 s using a compact pneumatic cylinder drive and springs. A double probe measurement provided the scrape-off layer plasma profile between the last closed flux surface and the first wall with the spatial resolution of 1-2 mm measured with a laser displacement gauge. The profiles of the electron density n e and temperature T e were in good agreement with those obtained with a triple probe method. During the LH wave injection with good coupling to the core plasma, an increase in the local T e was observed in front of the LH launcher mouth. The local n e was (7-10)x10 16 m -3 , consistent values needed for the good coupling. copyright 1995 American Institute of Physics

  18. Microcantilver-based DNA hybridization sensors for Salmonella identification

    Directory of Open Access Journals (Sweden)

    Carlo Ricciardi

    2012-02-01

    Full Text Available The detection of pathogenic microorganisms in foods remains a challenging since the safety of foodstuffs has to be ensured by the food producing companies. Conventional methods for the detection and identification of bacteria mainly rely on specific microbiological and biochemical identification. Biomolecular methods, are commonly used as a support for traditional techniques, thanks to their high sensitivity, specificity and not excessive costs. However, new methods like biosensors for example, can be an exciting alternative to the more traditional tecniques for the detection of pathogens in food. In this study we report Salmonella enterica serotype Enteritidis DNA detection through a novel class of label-free biosensors: microcantilevers (MCs. In general, MCs can operate as a microbalance and is used to detect the mass of the entities anchored to the cantilever surface using the decrease in the resonant frequency. We use DNA hybridization as model reaction system and for this reason, specific single stranded probe DNA of the pathogen and three different DNA targets (single-stranded complementary DNA, PCR product and serial dilutions of DNA extracted from S. Enteritidis strains were applied. Two protocols were reported in order to allow the probe immobilization on cantilever surface: i MC surface was functionalized with 3-aminopropyltriethoxysilane and glutaraldehyde and an amino-modified DNA probe was used; ii gold-coated sensors and thiolated DNA probes were used in order to generate a covalent bonding (Th-Au. For the first one, measures after hybridization with the PCR product showed related frequency shift 10 times higher than hybridization with complementary probe and detectable signals were obtained at the concentrations of 103 and 106 cfu/mL after hybridization with bacterial DNA. There are currently optimizations of the second protocol, where preliminary results have shown to be more uniform and therefore more precise within each of the

  19. DNA Probe for Lactobacillus delbrueckii

    Science.gov (United States)

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  20. Fluorescence in situ hybridization of old G-banded and mounted chromosome preparations

    DEFF Research Database (Denmark)

    Gerdes, A M; Pandis, N; Bomme, L

    1997-01-01

    the coverslips detach spontaneously; any mechanical manipulation will jeopardize the results. The success of chromosome painting is improved by excluding the regular RNase treatment step prior to hybridization. Additional changes compared with standard FISH protocols are that the 2 x SSC step is omitted......An improved method for fluorescence in situ hybridization (FISH) investigation of old, previously G-banded, mounted chromosome preparations with chromosome specific painting probes and centromere-specific probes is described. Before hybridization, the slides are incubated in xylene until......, that the amount of added probe is increased approximately 2.5 times, and that the amplification of signals is performed twice. The applicability of the method, which allows double painting with two differently labeled probes using two differently fluorescing colors, was tested on 11 cases involving different...

  1. Silver ions-mediated conformational switch: facile design of structure-controllable nucleic acid probes.

    Science.gov (United States)

    Wang, Yongxiang; Li, Jishan; Wang, Hao; Jin, Jianyu; Liu, Jinhua; Wang, Kemin; Tan, Weihong; Yang, Ronghua

    2010-08-01

    Conformationally constraint nucleic acid probes were usually designed by forming an intramolecular duplex based on Watson-Crick hydrogen bonds. The disadvantages of these approaches are the inflexibility and instability in complex environment of the Watson-Crick-based duplex. We report that this hydrogen bonding pattern can be replaced by metal-ligation between specific metal ions and the natural bases. To demonstrate the feasibility of this principle, two linear oligonucleotides and silver ions were examined as models for DNA hybridization assay and adenosine triphosphate detection. The both nucleic acids contain target binding sequences in the middle and cytosine (C)-rich sequences at the lateral portions. The strong interaction between Ag(+) ions and cytosines forms stable C-Ag(+)-C structures, which promises the oligonucleotides to form conformationally constraint formations. In the presence of its target, interaction between the loop sequences and the target unfolds the C-Ag(+)-C structures, and the corresponding probes unfolding can be detected by a change in their fluorescence emission. We discuss the thermodynamic and kinetic opportunities that are provided by using Ag(+) ion complexes instead of traditional Watson-Crick-based duplex. In particular, the intrinsic feature of the metal-ligation motif facilitates the design of functional nucleic acids probes by independently varying the concentration of Ag(+) ions in the medium.

  2. Cloth-based hybridization array system for expanded identification of the animal species origin of derived materials in feeds.

    Science.gov (United States)

    Murphy, Johanna; Armour, Jennifer; Blais, Burton W

    2007-12-01

    A cloth-based hybridization array system (CHAS) previously developed for the detection of animal species for which prohibited materials have been specified (cattle, sheep, goat, elk, and deer) has been expanded to include the detection of animal species for which there are no prohibitions (pig and horse) in Canadian and American animal feeds. Animal species were identified by amplification of mitochondrial DNA sequences by PCR and subsequent hybridization of the amplicons with an array of species-specific oligonucleotide capture probes immobilized on a polyester cloth support, followed by an immunoenzymatic assay of the bound PCR products. The CHAS permitted sensitive and specific detection of meat meals from different animal species blended in a grain-based feed and should provide a useful adjunct to microscopic examination for the identification of prohibited materials in animal feeds.

  3. Hybrid nanosensor for colorimetric and ultrasensitive detection of nuclease contaminations

    Science.gov (United States)

    Cecere, Paola; Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Nucleases are ubiquitous enzymes that degrade DNA or RNA, thus they can prejudice the good outcome of molecular biology experiments involving nucleic acids. We propose a colorimetric test for the naked-eye detection of nuclease contaminations. The system uses an hybrid nanosensor, based on gold nanoparticles functionalized with DNA probes. Our assay is rapid, instrument-free, simple and low-cost. Moreover, it reaches sensitivity equal or better than those of commercial kits, and presents a lot of advantageous aspects. Therefore, it is very competitive, with a real market potential. This test will be relevant in routine process monitoring in scientific laboratories, and in quality control in clinical laboratories and industrial processes, allowing the simultaneous detection of nucleases with different substrate specificities and large-scale screening.

  4. Synthesis and characterization of time-resolved fluorescence probes for evaluation of competitive binding to melanocortin receptors.

    Science.gov (United States)

    Alleti, Ramesh; Vagner, Josef; Dehigaspitiya, Dilani Chathurika; Moberg, Valerie E; Elshan, N G R D; Tafreshi, Narges K; Brabez, Nabila; Weber, Craig S; Lynch, Ronald M; Hruby, Victor J; Gillies, Robert J; Morse, David L; Mash, Eugene A

    2013-09-01

    Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these

  5. Detection of proteins using a colorimetric bio-barcode assay.

    Science.gov (United States)

    Nam, Jwa-Min; Jang, Kyung-Jin; Groves, Jay T

    2007-01-01

    The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).

  6. Calibration and LOD/LOQ estimation of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs expressed in E. coli using a four-parameter logistic model.

    Science.gov (United States)

    Lee, K R; Dipaolo, B; Ji, X

    2000-06-01

    Calibration is the process of fitting a model based on reference data points (x, y), then using the model to estimate an unknown x based on a new measured response, y. In DNA assay, x is the concentration, and y is the measured signal volume. A four-parameter logistic model was used frequently for calibration of immunoassay when the response is optical density for enzyme-linked immunosorbent assay (ELISA) or adjusted radioactivity count for radioimmunoassay (RIA). Here, it is shown that the same model or a linearized version of the curve are equally useful for the calibration of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs and calculation of performance measures of the assay.

  7. Diagnosis of visceral Leishmaniasis in asymptomatic dogs by the KDNA PCR-hybridization assay using noninvasive samples

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Rodrigo Souza; Andrade, Antero Silva Ribeiro de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: rleite2005@gmail.com; Ferreira, Sydney de Almeida; Ituassu, Leonardo Trindade; Melo, Maria Norma de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Centro de Ciencias Biologicas. Dept. de Parasitologia], e-mail: saninoalmeida@gmail.com

    2009-07-01

    The visceral leishmaniasis (VL) in Brazil is caused by Leishmania (Leishmania) chagasi and the asymptomatic dogs may transmit the parasite to sand flies vectors. The VL epidemiological control in Brazil involves the elimination of seropositive dogs, insecticide treatment and systematic treatment of human cases. Therefore, the accurate diagnosis is important in order to avoid the disease transmission or unnecessary culling of dogs. Serological tests are used for screening of dogs. However, these techniques present limitations. The Polymerase Chain Reaction (PCR) is an attractive alternative to the diagnosis in this context; but non-invasive samplings have great importance because they are simpler, painless and less resisted by dog-owners. This study aimed at evaluating conjunctival swab (CS) for canine VL diagnosis. In this methodology a sterile cotton swab is used to sampling the dog conjunctiva in both eyes. Thirty asymptomatic seropositive dogs were used. The samples were analyzed by the kDNA PCR-hybridization procedure in which the PCR products are hybridized with cloned kDNA mini-circles labeled with {sup 32}P[]dCTP. In addition, blood (B) was collected from each animal. L. chagasi was identified in 90% of CS samples and 13,6% of B samples. The high sensitivity obtained with asymptomatic dogs, in which the diagnosis is more difficult due the low number of parasites in the samples, allow concluding that the conjunctival swab associated to the kDNA PCR-hybridization assay provides a valuable alternative tool for the direct diagnosis of canine leishmaniasis. (author)

  8. Tracking alien chromosome in sativa background by genomic in situ hybridization

    International Nuclear Information System (INIS)

    Abbasi, F.M.; Iqbal, M.; Salim, M.

    2004-01-01

    Genomic in situ hybridization (GISH) was used to look into the genomic constitution of monosomic alien -addition line derived from O. sativa x O. brachyantha. Biotin label genomic DNA from O. brachyantha was used as probe. The probe hybridized to the brachyantha chromosome. No detectable hybridization signal was observed on sativa chromosomes. This differential painting of chromosome enables us to unequivocally discriminate brachyantha chromosome from those of sativa. Results showed the usefulness of GISH in the identification of a single alien chromosome in the sativa background. (author)

  9. Differentiation between spore-forming and asporogenic bacteria using a PCR and southern hybridization based method

    Energy Technology Data Exchange (ETDEWEB)

    Brill, J.A.; Wiegel, J. [Univ. of Georgia, Athens, GA (United States)

    1997-12-31

    A set of molecular probes was devised to develop a method for screening for the presence of sequences homologous to three representative genes exclusively involved in endosporulation. Based on known gene sequences, degenerate PCR primers were designed against spo0A and ssp. Experimental conditions were devised under which homologs of both genes were consistently detected in endospore-forming bacteria, but not in asporogenic bacteria. The PCR amplification products and dpaA/B from Bacillus subtilis were used as hybridization probes for Southern blots. Identical conditions were used with the genomic DNA from endospore-forming and asporogenic bacteria. We therefore concluded that the probes specifically detect the targeted sporulation genes and we obtained no indication that genes homologous to ssp, spo0A and dpaA/B are present in asporogenic bacteria. Thus, this assay can potentially be used to detect spore-forming bacteria in various kinds of samples and to distinguish between bacteria containing sporulation genes and those who do not regardless of whether sporulation is observed or not. 43 refs., 3 figs., 1 tab.

  10. Quantifying filamentous microorganisms in activated sludge before, during, and after an incident of foaming by oligonucleotide probe hybridizations and antibody staining.

    Science.gov (United States)

    Oerther, D B; de los Reyes, F L; de los Reyes, M F; Raskin, L

    2001-10-01

    Quantitative oligonucleotide probe hybridizations, immunostaining, and a simple foaming potential test were used to follow an incident of seasonal filamentous foaming at the Urbana-Champaign Sanitary District, Northeast Wastewater Treatment Plant. A positive correlation was observed between an increase in foaming potential and the appearance of foam on the surfaces of aeration basins and secondary clarifiers. In addition, during the occurrence of foaming, the mass and activity of Gordonia spp. increased as measured by fluorescence in situ hybridization, antibody staining, and quantitative membrane hybridization of RNA extracts. An increase in Gordonia spp. rRNA levels from 0.25 to 1.4% of total rRNA was observed using quantitative membrane hybridizations, whereas during the same period, the fraction of mixed liquor volatile suspended solids attributed to Gordonia spp. increased from 4% to more than 32% of the total mixed liquor volatile suspended solids. These results indicate that both the activity and biomass level of Gordonia spp. in activated sludge increased relative to the activity aid the biomass level of the complete microbial community during a seasonal occurrence of filamentous foaming. Thus, Gordonia spp. may represent a numerically dominant but metabolically limited fraction of the total biomass, and the role of Gordonia spp. in filamentous foaming may be linked more tightly to the physical presence of filamentous microorganisms than to the metabolic activity of the cells.

  11. Electrokinetic acceleration of DNA hybridization in microsystems.

    Science.gov (United States)

    Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen

    2015-06-01

    In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The use of Taka-diastase in a [3H]poly(A) hybridization assay of oligo(U) sequences in RNA

    International Nuclear Information System (INIS)

    De Herdt, E.; Kondo, M.; Slegers, H.

    1981-01-01

    A reliable assay for uridylate sequences longer than 10 is described. The procedure is based on the hybridization of [ 3 H]poly(A) with poly(U) or oligo(U) sequences in high ionic conditions and a subsequent degradation of single stranded polynucleotides with purified Taka-diastase. A 1:2 complex between poly(A) and poly(U) is formed on which one poly(U) strand is digested by Taka-diastase. The procedure is especially suitable for the detection and quantitation of Usub(n) (n > 10) in RNA preparations. (Auth.)

  13. Tandem Oligonucleotide Probe Annealing and Elongation To Discriminate Viral Sequence

    DEFF Research Database (Denmark)

    Taskova, Maria; Uhd, Jesper; Miotke, Laura

    2017-01-01

    opportunities in transcriptome analysis, virology, and other fields. Herein, we report for the first time a "click" chemistry approach to oligonucleotide probe elongation as a novel approach to specifically detect a viral sequence. We hybridized a library of short, terminally labeled probes to Ebola virus RNA...

  14. Dealing with the problem of non-specific in situ mRNA hybridization signals associated with plant tissues undergoing programmed cell death

    Directory of Open Access Journals (Sweden)

    Jokela Anne

    2010-02-01

    Full Text Available Abstract Background In situ hybridization is a general molecular method typically used for the localization of mRNA transcripts in plants. The method provides a valuable tool to unravel the connection between gene expression and anatomy, especially in species such as pines which show large genome size and shortage of sequence information. Results In the present study, expression of the catalase gene (CAT related to the scavenging of reactive oxygen species (ROS and the polyamine metabolism related genes, diamine oxidase (DAO and arginine decarboxylase (ADC, were localized in developing Scots pine (Pinus sylvestris L. seeds. In addition to specific signals from target mRNAs, the probes continually hybridized non-specifically in the embryo surrounding region (ESR of the megagametophyte tissue, in the remnants of the degenerated suspensors as well as in the cells of the nucellar layers, i.e. tissues exposed to cell death processes and extensive nucleic acid fragmentation during Scots pine seed development. Conclusions In plants, cell death is an integral part of both development and defence, and hence it is a common phenomenon in all stages of the life cycle. Our results suggest that extensive nucleic acid fragmentation during cell death processes can be a considerable source of non-specific signals in traditional in situ mRNA hybridization. Thus, the visualization of potential nucleic acid fragmentation simultaneously with the in situ mRNA hybridization assay may be necessary to ensure the correct interpretation of the signals in the case of non-specific hybridization of probes in plant tissues.

  15. Whole-slide imaging is a robust alternative to traditional fluorescent microscopy for fluorescence in situ hybridization imaging using break-apart DNA probes.

    Science.gov (United States)

    Laurent, Camille; Guérin, Maxime; Frenois, François-Xavier; Thuries, Valérie; Jalabert, Laurence; Brousset, Pierre; Valmary-Degano, Séverine

    2013-08-01

    Fluorescence in situ hybridization is an indispensable technique used in routine pathology and for theranostic purposes. Because fluorescence in situ hybridization techniques require sophisticated microscopic workstations and long procedures of image acquisition with sometimes subjective and poorly reproducible results, we decided to test a whole-slide imaging system as an alternative approach. In this study, we used the latest generation of Pannoramic 250 Flash digital microscopes (P250 Flash digital microscopes; 3DHISTECH, Budapest, Hungary) to digitize fluorescence in situ hybridization slides of diffuse large B cells lymphoma cases for detecting MYC rearrangement. The P250 Flash digital microscope was found to be precise with better definition of split signals in cells containing MYC rearrangement with fewer truncated signals as compared to traditional fluorescence microscopy. This digital technique is easier thanks to the preview function, which allows almost immediate identification of the tumor area, and the panning and zooming functionalities as well as a shorter acquisition time. Moreover, fluorescence in situ hybridization analyses using the digital technique appeared to be more reproducible between pathologists. Finally, the digital technique also allowed prolonged conservation of photos. In conclusion, whole-slide imaging technologies represent rapid, robust, and highly sensitive methods for interpreting fluorescence in situ hybridization slides with break-apart probes. In addition, these techniques offer an easier way to interpret the signals and allow definitive storage of the images for pathology expert networks or e-learning databases. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Application of Pseudomurein Endoisopeptidase to Fluorescence In Situ Hybridization of Methanogens within the Family Methanobacteriaceae▿

    Science.gov (United States)

    Nakamura, Kohei ; Terada, Takeshi; Sekiguchi, Yuji; Shinzato, Naoya; Meng, Xian-Ying; Enoki, Miho; Kamagata, Yoichi

    2006-01-01

    In situ detection of methanogens within the family Methanobacteriaceae is sometimes known to be unsuccessful due to the difficulty in permeability of oligonucleotide probes. Pseudomurein endoisopeptidase (Pei), a lytic enzyme that specifically acts on their cell walls, was applied prior to 16S rRNA-targeting fluorescence in situ hybridization (FISH). For this purpose, pure cultured methanogens within this family, Methanobacterium bryantii, Methanobrevibacter ruminantium, Methanosphaera stadtmanae, and Methanothermobacter thermautotrophicus together with a Methanothermobacter thermautotrophicus-containing syntrophic acetate-oxidizing coculture, endosymbiotic Methanobrevibacter methanogens within an anaerobic ciliate, and an upflow anaerobic sludge blanket (UASB) granule were examined. Even without the Pei treatment, Methanobacterium bryantii and Methanothermobacter thermautotrophicus cells are relatively well hybridized with oligonucleotide probes. However, almost none of the cells of Methanobrevibacter ruminantium, Methanosphaera stadtmanae, cocultured Methanothermobacter thermautotrophicus, and the endosymbiotic methanogens and the cells within UASB granule were hybridized. Pei treatment was able to increase the probe hybridization ratio in every specimen, particularly in the specimen that had shown little hybridization. Interestingly, the hybridizing signal intensity of Methanothermobacter thermautotrophicus cells in coculture with an acetate-oxidizing H2-producing syntroph was significantly improved by Pei pretreatment, whereas the probe was well hybridized with the cells of pure culture of the same strain. We found that the difference is attributed to the differences in cell wall thicknesses between the two culture conditions. These results indicate that Pei treatment is effective for FISH analysis of methanogens that show impermeability to the probe. PMID:16950902

  17. Allele specific hybridization using oligonucleotide probes of very high specific activity: Discrimination of the human β/sup A/ and β/sup S/-globin genes

    International Nuclear Information System (INIS)

    Studencki, A.B.; Wallace, R.B.

    1984-01-01

    The repair activity of E. coli DNA polymerase I (Klenow fragment) was used to prepare nonadecanucleotide hybridization probes which were complementary either to the normal human β-globin (β/sup A/) or to the sickle cell human β-globin (β/sup S/) gene. Template directed polymerization of highly radiolabeled α-/sup 32/P-deoxyribonucleoside triphosphates (3200, 5000 and/or 7800 Ci/mmol) onto nonamer and decamer primers produced probes with specific activities ranging from 1.0 - 2.0 x 10/sup 10/ dpm/μg. The extremely high specific activities of these probes made it possible to detect the β/sup A/ and β/sup S/ single copy gene sequences in as little as 1 μg of total human genomic DNA as well as to discriminate between the homozygous and heterozygous states. This means that it was possible to detect 0.5 - 1.0 x 10/sup -18/ moles of a given single copy sequence

  18. Identification of waves by RF magnetic probes during lower hybrid wave injection experiments on the TST-2 spherical tokamak

    International Nuclear Information System (INIS)

    Shinya, Takahiro; Ejiri, Akira; Takase, Yuichi

    2014-01-01

    RF magnetic probes can be used to measure not only the wavevector, but also the polarization of waves in plasmas. A 5-channel RF magnetic probe (5ch-RFMP) was installed in the TST-2 spherical tokamak and the waves were studied in detail during lower hybrid wave injection experiments. From the polarization measurements, the poloidal RF magnetic field is found to be dominant. In addition to polarization, components of k perpendicular to the major radial direction were obtained from phase differences among the five channels. The radial wavenumber was obtained by scanning the radial position of the 5ch-RFMP on a shot by shot basis. The measured wavevector and polarization in the plasma edge region were consistent with those calculated from the wave equation for the slow wave branch. While the waves with small and large k ∥ were excited by the antenna, only the small k ∥ component was measured by the 5ch-RFMP; this suggests that the waves with larger k ∥ were absorbed by the plasma. (author)

  19. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions

    International Nuclear Information System (INIS)

    Hua, Mengjuan; Wang, Chengquan; Qian, Jing; Wang, Kan; Yang, Zhenting; Liu, Qian; Mao, Hanping; Wang, Kun

    2015-01-01

    We herein proposed a simple and effective strategy for preparing graphene quantum dots (GQDs)-based core-satellite hybrid spheres and further explored the feasibility of using such spheres as the ratiometric fluorescence probe for the visual determination of Hg 2+ . The red-emitting CdTe QDs were firstly entrapped in the silica nanosphere to reduce their toxicity and improve their photo and chemical stabilities, thus providing a built-in correction for environmental effects, while the GQDs possessing good biocompatibility and low toxicity were electrostatic self-assembly on the silica surface acting as reaction sites. Upon exposure to the increasing contents of Hg 2+ , the blue fluorescence of GQDs can be gradually quenched presumably due to facilitating nonradiative electron/hole recombination annihilation. With the embedded CdTe QDs as the internal standard, the variations of the tested solution display continuous fluorescence color changes from blue to red, which can be easily observed by the naked eye without any sophisticated instrumentations and specially equipped laboratories. This sensor exhibits high sensitivity and selectivity toward Hg 2+ in a broad linear range of 10 nM–22 μM with a low detection limit of 3.3 nM (S/N = 3), much lower than the allowable Hg 2+ contents in drinking water set by U.S. Environmental Protection Agency. This prototype ratiometric probe is of good simplicity, low toxicity, excellent stabilities, and thus potentially attractive for Hg 2+ quantification related biological systems. - Highlights: • A facile strategy for preparing GQDs based core-satellite hybrid spheres was reported. • Such spheres can be used as the ratiometric fluorescence probe for Hg 2+ detection. • The Hg 2+ content can be easily distinguished by the naked eye. • The sensor shows high sensitivity and selectivity toward Hg 2+ detection. • The ratiometric probe is of good simplicity, low toxicity, and excellent stability

  20. Leishmania diagnostic and identification py using 32P labelled DNA probes

    International Nuclear Information System (INIS)

    Andrade, Antero Silva Ribeiro de; Melo, Maria Norma de

    1999-10-01

    P 32 labelled DNA probes are valious instruments for the parasitic diseases by using hybridization reaction. In this paper we describe the methodology and present the foundations for the radioactive probes production, based on the kinetoplast DNA (kDNA), for the Leishmania diagnostic an identification. We also describe the kDNA purification protocol from Leishmania reference cepa, the process of P 32 labelling of the kDNA by using the nick translation method, gathering, sample preparation and treatment, the optimum conditions for the hybridization reaction and the procedures for the autoradiography

  1. Microbead agglutination based assays

    KAUST Repository

    Kodzius, Rimantas

    2013-01-21

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microbeads in the presence of a specific analyte thus enabling the macroscopic observation. Such tests are most often used to explore antibody-antigen reactions. Agglutination has been used for protein assays using a biotin/streptavidin system as well as a hybridization based assay. The agglutination systems are prone to selftermination of the linking analyte, prone to active site saturation and loss of agglomeration at high analyte concentrations. We investigated the molecular target/ligand interaction, explaining the common agglutination problems related to analyte self-termination, linkage of the analyte to the same bead instead of different microbeads. We classified the agglutination process into three kinds of assays: a two- component assay, a three-component assay and a stepped three- component assay. Although we compared these three kinds of assays for recognizing DNA and protein molecules, the assay can be used for virtually any molecule, including ions and metabolites. In total, the optimized assay permits detecting analytes with high sensitivity in a short time, 5 min, at room temperature. Such a system is appropriate for POC testing.

  2. A novel fluorescent in situ hybridization technique for detection of Rickettsia spp. in archival samples

    DEFF Research Database (Denmark)

    Svendsen, Claus Bo; Boye, Mette; Struve, Carsten

    2009-01-01

    A novel, sensitive and specific method for detecting Rickettsia spp. in archival samples is described. The method involves the use of fluorescently marked oligonucleotide probes for in situ hybridization. Specific hybridization of Ricekttsia was found without problems of cross-reactions with bact......A novel, sensitive and specific method for detecting Rickettsia spp. in archival samples is described. The method involves the use of fluorescently marked oligonucleotide probes for in situ hybridization. Specific hybridization of Ricekttsia was found without problems of cross...

  3. PCR-free quantitative detection of genetically modified organism from raw materials – A novel electrochemiluminescence-based bio-barcode method

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R.

    2018-01-01

    Bio-barcode assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio-barcode assay requires lengthy experimental procedures including the preparation and release of barcode DNA probes from the target-nanoparticle complex, and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio-barcode assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2’2’-bipyridyl) ruthenium (TBR)-labele barcode DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products. PMID:18386909

  4. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  5. Melt analysis of mismatch amplification mutation assays (Melt-MAMA: a functional study of a cost-effective SNP genotyping assay in bacterial models.

    Directory of Open Access Journals (Sweden)

    Dawn N Birdsell

    Full Text Available Single nucleotide polymorphisms (SNPs are abundant in genomes of all species and biologically informative markers extensively used across broad scientific disciplines. Newly identified SNP markers are publicly available at an ever-increasing rate due to advancements in sequencing technologies. Efficient, cost-effective SNP genotyping methods to screen sample populations are in great demand in well-equipped laboratories, but also in developing world situations. Dual Probe TaqMan assays are robust but can be cost-prohibitive and require specialized equipment. The Mismatch Amplification Mutation Assay, coupled with melt analysis (Melt-MAMA, is flexible, efficient and cost-effective. However, Melt-MAMA traditionally suffers from high rates of assay design failures and knowledge gaps on assay robustness and sensitivity. In this study, we identified strategies that improved the success of Melt-MAMA. We examined the performance of 185 Melt-MAMAs across eight different pathogens using various optimization parameters. We evaluated the effects of genome size and %GC content on assay development. When used collectively, specific strategies markedly improved the rate of successful assays at the first design attempt from ~50% to ~80%. We observed that Melt-MAMA accurately genotypes across a broad DNA range (~100 ng to ~0.1 pg. Genomic size and %GC content influence the rate of successful assay design in an independent manner. Finally, we demonstrated the versatility of these assays by the creation of a duplex Melt-MAMA real-time PCR (two SNPs and conversion to a size-based genotyping system, which uses agarose gel electrophoresis. Melt-MAMA is comparable to Dual Probe TaqMan assays in terms of design success rate and accuracy. Although sensitivity is less robust than Dual Probe TaqMan assays, Melt-MAMA is superior in terms of cost-effectiveness, speed of development and versatility. We detail the parameters most important for the successful application of

  6. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization

    Science.gov (United States)

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-06-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  7. A multiplex PCR assay for the detection and quantification of Sclerotinia sclerotiorum and Botrytis cinerea.

    Science.gov (United States)

    Reich, J D; Alexander, T W; Chatterton, S

    2016-05-01

    Traditional culture methods for identifying the plant fungal pathogens Sclerotinia sclerotiorum (Lib.) de Bary and Botrytis cinerea Pers.:Fr. are slow and laborious. The goal of this study was to develop a multiplex real-time PCR (qPCR) assay to detect and quantify DNA from S. sclerotiorum and B. cinerea. A primer set (SsIGS_5) for S. sclerotiorum was designed that targeted the intergenic spacer (IGS) regions of the ribosomal DNA. Addition of a probe to the assay increased its specificity: when the primer/probe set was tested against 21 fungal species (35 strains), amplification was detected from all S. sclerotiorum strains and no other species. For qPCR, the SsIGS_5 primer and probe set exhibited a linear range from 7·0 ng to 0·07 pg target DNA (R(2)  = 0·99). SsIGS_5 was then multiplexed with a previously published primer/probe set for B. cinerea to develop a high-throughput method for the detection and quantification of DNA from both pathogens. When multiplexed, the sensitivity and specificity of both assays were not different from individual qPCR reactions. The multiplex assay is currently being used to detect and quantify S. sclerotiorum and B. cinerea DNA from aerosol samples collected in commercial seed alfalfa fields. A primer and probe set for the quantification of Sclerotinia sclerotiorum DNA in a PCR assay was developed. The probe-based nature of this assay signifies an improvement over previous assays for this species by allowing multiplex reactions while maintaining high sensitivity. The primer/probe set was used in a multiplex real-time PCR assay for the quantification of S. sclerotiorum and Botrytis cinerea DNA, enabling rapid analysis of environmental samples. In crops susceptible to both pathogens, this multiplex assay can be used to quickly quantify the presence of each pathogen. © 2016 Her Majesty the Queen in Right of Canada © 2016 The Society for Applied Microbiology. Reproduced with the permission of the Office of the

  8. Double-staining chromogenic in situ hybridization as a useful alternative to split-signal fluorescence in situ hybridization in lymphoma diagnostics

    DEFF Research Database (Denmark)

    van Rijk, A.; Svenstroup-Poulsen, T.; Jones, M.

    2010-01-01

    within the reach of every pathology laboratory. Design and Methods Our study was initiated to determine the consistency between chromogenic in situ hybridization and fluorescence in situ hybridization, both using split-signal probes developed for the detection of chromosomal breaks. Five hundred...... and actual signal were compared to the original fluorescence hybridization results. In addition, hematoxylin background staining intensity and signal intensity of the double-staining chromogenic in situ hybridization procedure were analyzed. Results With respect to the presence or absence of chromosomal...

  9. Bovine viral diarrhea virus: molecular cloning of genomic RNA and its diagnostic application

    International Nuclear Information System (INIS)

    Brock, K.V.

    1987-01-01

    Molecular cloning of a field isolate of bovine viral diarrhea virus (BVDV) strain 72 RNA was done in this study. The sensitivity and specificity of cloned cDNA sequences in hybridization assays with various BVDV strains were determined. cDNA was synthesized from polyadenylated BVDV RNA templates with oligo-dT primers, reverse transcriptase, and DNA polymerase I. The newly synthesized double-stranded BVDV cDNA was C-tailed with terminal deoxytransferase and annealed into G-tailed, Pst-1-cut pUC9 plasmid. Escherichia coli was transformed with the recombinant plasmids and a library of approximately 200 BVDV specific cDNA clones varying in length from 0.5 to 2.6 kilobases were isolated. The sensitivity and specificity of hybridization between the labelled cDNA and BVDV target sequences were determined. Cloned BVDV sequences were isolated from pUC9 plasmid DNA and labelled with 32 P by nick translation. The detection limit by dot blot hybridization assay was 20 pg of purified genomic BVDV RNA. cDNA hybridization probes were specific for all strains of BVDV tested, regardless of whether they were noncytopathic and cytopathic, but did not hybridize with heterologous bovine viruses tested. Probes did not hybridize with uninfected cell culture or cellular RNA. Hybridization probes were at least as sensitive as infectivity assays in detecting homologous virus

  10. Development of a quantitative PCR assay for measurement of trichechid herpesvirus 1 load in the Florida manatee ( Trichechus manatus latirostris).

    Science.gov (United States)

    Ferrante, Jason A; Cortés-Hinojosa, Galaxia; Archer, Linda L; Wellehan, James F X

    2017-07-01

    Trichechid herpesvirus 1 (TrHV-1) is currently the only known herpesvirus in any sirenian. We hypothesized that stress may lead to recrudescence of TrHV-1 in manatees, thus making TrHV-1 a potential biomarker of stress. We optimized and validated a TrHV-1 real-time quantitative probe hybridization PCR (qPCR) assay that was used to quantify TrHV-1 in manatee peripheral blood mononuclear cells (PBMCs). Average baseline TrHV-1 loads in a clinically healthy wild Florida manatee ( Trichechus manatus latirostris) population ( n = 42) were 40.9 ± SD 21.2 copies/100 ng DNA; 19 of 42 manatees were positive. TrHV-1 loads were significantly different between the 2 field seasons ( p < 0.025). This optimized and validated qPCR assay may be used as a tool for further research into TrHV-1 in Florida manatees.

  11. Quantitative Tetraplex Real-Time Polymerase Chain Reaction Assay with TaqMan Probes Discriminates Cattle, Buffalo, and Porcine Materials in Food Chain.

    Science.gov (United States)

    Hossain, M A Motalib; Ali, Md Eaqub; Sultana, Sharmin; Asing; Bonny, Sharmin Quazi; Kader, Md Abdul; Rahman, M Aminur

    2017-05-17

    Cattle, buffalo, and porcine materials are widely adulterated, and their quantification might safeguard health, religious, economic, and social sanctity. Recently, conventional polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) assays have been documented but they are just suitable for identification, cannot quantify adulterations. We described here a quantitative tetraplex real-time PCR assay with TaqMan Probes to quantify contributions from cattle, buffalo, and porcine materials simultaneously. Amplicon-sizes were very short (106-, 90-, and 146-bp for cattle, buffalo, and porcine) because longer targets could be broken down, bringing serious ambiguity in molecular diagnostics. False negative detection was eliminated through an endogenous control (141-bp site of eukaryotic 18S rRNA). Analysis of 27 frankfurters and 27 meatballs reflected 84-115% target recovery at 0.1-10% adulterations. Finally, a test of 36 commercial products revealed 71% beef frankfurters, 100% meatballs, and 85% burgers contained buffalo adulteration, but no porcine was found in beef products.

  12. Chromosome-specific DNA Repeat Probes

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  13. Modulation of tyrosine hydroxylase gene expression in the central nervous system visualized by in situ hybridization

    International Nuclear Information System (INIS)

    Berod, A.; Biguet, N.F.; Dumas, S.; Bloch, B.; Mallet, J.

    1987-01-01

    cDNA probe was used for in situ hybridization studies on histological sections through the locus coeruleus, substantia nigra, and the ventral tegmental area of the rat brain. Experimental conditions were established that yielded no background and no signal when pBR322 was used as control probe. Using the tyrosine hydroxylase probe, the authors ascertained the specificity of the labeling over catecholaminergic cells by denervation experiments and comparison of the hybridization pattern with that of immunoreactivity. The use of 35 S-labeled probe enabled the hybridization signal to be resolved at the cellular level. A single injection of reserpine into the rat led to an increase of the intensity of the autoradiographic signal over the locus coeruleus area, confirming an RNA gel blot analysis. The potential of in situ hybridization to analyze patterns of modulation of gene activity as a result of nervous activity is discussed

  14. Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology.

    Science.gov (United States)

    Liu, Liqin; Luo, Qiaoling; Teng, Wan; Li, Bin; Li, Hongwei; Li, Yiwen; Li, Zhensheng; Zheng, Qi

    2018-05-01

    Based on SLAF-seq, 67 Thinopyrum ponticum-specific markers and eight Th. ponticum-specific FISH probes were developed, and these markers and probes could be used for detection of alien chromatin in a wheat background. Decaploid Thinopyrum ponticum (2n = 10x = 70) is a valuable gene reservoir for wheat improvement. Identification of Th. ponticum introgression would facilitate its transfer into diverse wheat genetic backgrounds and its practical utilization in wheat improvement. Based on specific-locus-amplified fragment sequencing (SLAF-seq) technology, 67 new Th. ponticum-specific molecular markers and eight Th. ponticum-specific fluorescence in situ hybridization (FISH) probes have been developed from a tiny wheat-Th. ponticum translocation line. These newly developed molecular markers allowed the detection of Th. ponticum DNA in a variety of materials specifically and steadily at high throughput. According to the hybridization signal pattern, the eight Th. ponticum-specific probes could be divided into two groups. The first group including five dispersed repetitive sequence probes could identify Th. ponticum chromatin more sensitively and accurately than genomic in situ hybridization (GISH). Whereas the second group having three tandem repetitive sequence probes enabled the discrimination of Th. ponticum chromosomes together with another clone pAs1 in wheat-Th. ponticum partial amphiploid Xiaoyan 68.

  15. A Low Density Microarray Method for the Identification of Human Papillomavirus Type 18 Variants

    Science.gov (United States)

    Meza-Menchaca, Thuluz; Williams, John; Rodríguez-Estrada, Rocío B.; García-Bravo, Aracely; Ramos-Ligonio, Ángel; López-Monteon, Aracely; Zepeda, Rossana C.

    2013-01-01

    We describe a novel microarray based-method for the screening of oncogenic human papillomavirus 18 (HPV-18) molecular variants. Due to the fact that sequencing methodology may underestimate samples containing more than one variant we designed a specific and sensitive stacking DNA hybridization assay. This technology can be used to discriminate between three possible phylogenetic branches of HPV-18. Probes were attached covalently on glass slides and hybridized with single-stranded DNA targets. Prior to hybridization with the probes, the target strands were pre-annealed with the three auxiliary contiguous oligonucleotides flanking the target sequences. Screening HPV-18 positive cell lines and cervical samples were used to evaluate the performance of this HPV DNA microarray. Our results demonstrate that the HPV-18's variants hybridized specifically to probes, with no detection of unspecific signals. Specific probes successfully reveal detectable point mutations in these variants. The present DNA oligoarray system can be used as a reliable, sensitive and specific method for HPV-18 variant screening. Furthermore, this simple assay allows the use of inexpensive equipment, making it accessible in resource-poor settings. PMID:24077317

  16. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.

    Science.gov (United States)

    Matero, Pirjo; Pasanen, Tanja; Laukkanen, Riikka; Tissari, Päivi; Tarkka, Eveliina; Vaara, Martti; Skurnik, Mikael

    2009-01-01

    A multiplex real-time polymerase chain reaction (PCR) assay was developed for the detection of Yersinia pestis and Yersinia pseudotuberculosis. The assay includes four primer pairs, two of which are specific for Y. pestis, one for Y. pestis and Y. pseudotuberculosis and one for bacteriophage lambda; the latter was used as an internal amplification control. The Y. pestis-specific target genes in the assay were ypo2088, a gene coding for a putative methyltransferase, and the pla gene coding for the plasminogen activator. In addition, the wzz gene was used as a target to specifically identify both Y. pestis and the closely related Y. pseudotuberculosis group. The primer and probe sets described for the different genes can be used either in single or in multiplex PCR assays because the individual probes were designed with different fluorochromes. The assays were found to be both sensitive and specific; the lower limit of the detection was 10-100 fg of extracted Y. pestis or Y. pseudotuberculosis total DNA. The sensitivity of the tetraplex assay was determined to be 1 cfu for the ypo2088 and pla probe labelled with FAM and JOE fluorescent dyes, respectively.

  17. Detection of NASBA amplified bacterial tmRNA molecules on SLICSel designed microarray probes

    Directory of Open Access Journals (Sweden)

    Toome Kadri

    2011-02-01

    Full Text Available Abstract Background We present a comprehensive technological solution for bacterial diagnostics using tmRNA as a marker molecule. A robust probe design algorithm for microbial detection microarray is implemented. The probes were evaluated for specificity and, combined with NASBA (Nucleic Acid Sequence Based Amplification amplification, for sensitivity. Results We developed a new web-based program SLICSel for the design of hybridization probes, based on nearest-neighbor thermodynamic modeling. A SLICSel minimum binding energy difference criterion of 4 kcal/mol was sufficient to design of Streptococcus pneumoniae tmRNA specific microarray probes. With lower binding energy difference criteria, additional hybridization specificity tests on the microarray were needed to eliminate non-specific probes. Using SLICSel designed microarray probes and NASBA we were able to detect S. pneumoniae tmRNA from a series of total RNA dilutions equivalent to the RNA content of 0.1-10 CFU. Conclusions The described technological solution and both its separate components SLICSel and NASBA-microarray technology independently are applicative for many different areas of microbial diagnostics.

  18. Detection of NASBA amplified bacterial tmRNA molecules on SLICSel designed microarray probes

    LENUS (Irish Health Repository)

    Scheler, Ott

    2011-02-28

    Abstract Background We present a comprehensive technological solution for bacterial diagnostics using tmRNA as a marker molecule. A robust probe design algorithm for microbial detection microarray is implemented. The probes were evaluated for specificity and, combined with NASBA (Nucleic Acid Sequence Based Amplification) amplification, for sensitivity. Results We developed a new web-based program SLICSel for the design of hybridization probes, based on nearest-neighbor thermodynamic modeling. A SLICSel minimum binding energy difference criterion of 4 kcal\\/mol was sufficient to design of Streptococcus pneumoniae tmRNA specific microarray probes. With lower binding energy difference criteria, additional hybridization specificity tests on the microarray were needed to eliminate non-specific probes. Using SLICSel designed microarray probes and NASBA we were able to detect S. pneumoniae tmRNA from a series of total RNA dilutions equivalent to the RNA content of 0.1-10 CFU. Conclusions The described technological solution and both its separate components SLICSel and NASBA-microarray technology independently are applicative for many different areas of microbial diagnostics.

  19. Fluorescent in situ hybridization of pre-incubated blood culture material for the rapid diagnosis of histoplasmosis.

    Science.gov (United States)

    da Silva, Roberto Moreira; da Silva Neto, João Ricardo; Santos, Carla Silvana; Cruz, Kátia Santana; Frickmann, Hagen; Poppert, Sven; Koshikene, Daniela; de Souza, João Vicente Braga

    2015-02-01

    Fluorescence in situ hybridization (FISH) has been shown to be useful for the detection of Candida and Cryptococcus species in blood culture materials. FISH procedures for the detection of Histoplasma capsulatum var. capsulatum have not been reported so far. This study describes the development and evaluation of fluorescently labeled rRNA-targeting FISH probes to detect and identify H. capsulatum in blood cultures. All three analyzed H. capsulatum reference strains and clinical isolates showed positive signals with the newly designed specific oligonucleotide probes for H. capsulatum, whereas negative reactions were observed for all three nontarget yeast species and the two nontarget bacteria. The assay was also successfully applied for detections of H. capsulatum cells in pre-incubated blood culture samples of patients with clinical suspicion of histoplasmosis (n = 33). The described FISH-based assay was shown to be easy to apply, sensitive, and specific (compared to polymerase chain reaction) for the detection and identification of H. capsulatum in this proof-of-principle analysis. Larger multicentric assessments are recommended for a thorough diagnostic evaluation of the procedure. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. [Optimization and assessment of a reverse hybridization system for the detection of HBV drug-resistant mutations].

    Science.gov (United States)

    Liu, Yan-chen; Huang, Ai-long; Hu, Yuan; Hu, Jie-li; Lai, Guo-qi; Zhang, Wen-lu

    2011-12-01

    To establish a detection method for HBV drug-resistant mutations related to lamivudine, adefovir and entecavir by optimization and assessment of reverse hybridization system. 26 degenerated probes covering 10 drug-resistant hotspots of 3 drugs were synthesized and immobilized on the same positively charged nylon membrane. PCR products labeled with digoxigenin were hybridized with corresponding probes. To improve the sensitivity and specificity, 4 reaction steps of reverse hybridization were optimized including the number of labeled digoxigenin, the energy intensity of UV cross-linking, hybridization and stringency wash conditions. To prove the feasibility, the specificity, sensitivity and accuracy of this system were assessed respectively. Sensitive and specific results are obtained by the optimization of the following 4 reaction steps: the primers labeled with 3 digoxigenin, energy intensity of UV cross-linking for 1500 x 0.1 mJ/cm², hybridization at 42 degrees C and stringency wash with 0.5 x SSC and 0.1% SDS solution at 44 degrees C for 30 min. In the assessment of system, the majority of probes have high specificity. The quantity of PCR product with a concentration of 10 ng/μl or above can be detected by this method. The concordant rate between reverse hybridization and direct sequencing is 93.9% in the clinical sample test. Though the specificity of several probes needs to be improved further, it is a simple, rapid and sensitive method which can detect HBV resistant mutations related to lamivudine, adefovir and entecavir simultaneously. Due to the short distance between 180 and 181, likewise 202 and 204, the sequence of the same probe covers two codon positions, and hybridization will be interfered by each other. To avoid such interference, the possible solution is that probes are designed by arranging and combining various forms of two near codons.

  1. Recombinant phage probes for Listeria monocytogenes

    Science.gov (United States)

    Carnazza, S.; Gioffrè, G.; Felici, F.; Guglielmino, S.

    2007-10-01

    Monitoring of food and environmental samples for biological threats, such as Listeria monocytogenes, requires probes that specifically bind biological agents and ensure their immediate and efficient detection. There is a need for robust and inexpensive affinity probes as an alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we selected from two phage peptide libraries phage clones displaying peptides capable of specific and strong binding to the L. monocytogenes cell surface. The ability of isolated phage clones to interact specifically with L. monocytogenes was demonstrated using enzyme-linked immunosorbent assay (ELISA) and confirmed by co-precipitation assay. We also assessed the sensitivity of phage-bacteria binding by PCR on phage-captured Listeria cells, which could be detected at a concentration of 104 cells ml-1. In addition, as proof-of-concept, we tested the possibility of immobilizing the affinity-selected phages to a putative biosensor surface. The quality of phage deposition was monitored by ELISA and fluorescent microscopy. Phage-bacterial binding was confirmed by high power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including in food products.

  2. A novel, multiplexed, probe-based quantitative PCR assay for the soybean root- and stem-rot pathogen, Phytophthora sojae, utilizes its transposable element.

    Science.gov (United States)

    Haudenshield, James S; Song, Jeong Y; Hartman, Glen L

    2017-01-01

    Phytophthora root rot of soybean [Glycine max (L.) Merr.] is caused by the oomycete Phytophthora sojae (Kaufm. & Gerd.). P. sojae has a narrow host range, consisting primarily of soybean, and it is a serious pathogen worldwide. It exists in root and stem tissues as mycelium, wherein it can form oospores which subsequently germinate to release motile, infectious zoospores. Molecular assays detecting DNA of P. sojae are useful in disease diagnostics, and for determining the presence of the organism in host tissues, soils, and runoff or ponded water from potentially infested fields. Such assays as published have utilized ITS sequences from the nuclear ribosomal RNA genes in conventional PCR or dye-binding quantitative PCR (Q-PCR) but are not amenable to multiplexing, and some of these assays did not utilize control strategies for type I or type II errors. In this study, we describe primers and a bifunctional probe with specificity to a gypsy-like retroelement in the P. sojae genome to create a fluorogenic 5'-exonuclease linear hydrolysis assay, with a multiplexed internal control reaction detecting an exogenous target to validate negative calls, and with uracil-deglycosylase-mediated protection against carryover contamination. The assay specifically detected 13 different P. sojae isolates, and excluded 17 other Phytophthora species along with 20 non-Phytophthora fungal and oomycete species pathogenic on soybean. A diagnostic limit of detection of 34 fg total P. sojae DNA was observed in serial dilutions, equivalent to 0.3 genome, and a practical detection sensitivity of four zoospores per sample was achieved, despite losses during DNA extraction.

  3. G-stack modulated probe intensities on expression arrays - sequence corrections and signal calibration

    Directory of Open Access Journals (Sweden)

    Fasold Mario

    2010-04-01

    Full Text Available Abstract Background The brightness of the probe spots on expression microarrays intends to measure the abundance of specific mRNA targets. Probes with runs of at least three guanines (G in their sequence show abnormal high intensities which reflect rather probe effects than target concentrations. This G-bias requires correction prior to downstream expression analysis. Results Longer runs of three or more consecutive G along the probe sequence and in particular triple degenerated G at its solution end ((GGG1-effect are associated with exceptionally large probe intensities on GeneChip expression arrays. This intensity bias is related to non-specific hybridization and affects both perfect match and mismatch probes. The (GGG1-effect tends to increase gradually for microarrays of later GeneChip generations. It was found for DNA/RNA as well as for DNA/DNA probe/target-hybridization chemistries. Amplification of sample RNA using T7-primers is associated with strong positive amplitudes of the G-bias whereas alternative amplification protocols using random primers give rise to much smaller and partly even negative amplitudes. We applied positional dependent sensitivity models to analyze the specifics of probe intensities in the context of all possible short sequence motifs of one to four adjacent nucleotides along the 25meric probe sequence. Most of the longer motifs are adequately described using a nearest-neighbor (NN model. In contrast, runs of degenerated guanines require explicit consideration of next nearest neighbors (GGG terms. Preprocessing methods such as vsn, RMA, dChip, MAS5 and gcRMA only insufficiently remove the G-bias from data. Conclusions Positional and motif dependent sensitivity models accounts for sequence effects of oligonucleotide probe intensities. We propose a positional dependent NN+GGG hybrid model to correct the intensity bias associated with probes containing poly-G motifs. It is implemented as a single-chip based calibration

  4. Development and Characterization of Probe-Based Real Time Quantitative RT-PCR Assays for Detection and Serotyping of Foot-And-Mouth Disease Viruses Circulating in West Eurasia

    DEFF Research Database (Denmark)

    Jamal, Syed M.; Belsham, Graham

    2015-01-01

    Asia,A-Iran05 and Asia-1 (Group-II and Group-VII (Sindh-08)). In addition, field samples from Iran and Bulgaria, containing FMDVs belonging to the O-PanAsiaANT-10 subline-agewere also tested. Each of the three primer/probe sets was designed to be specific for just one of the serotypes O, A and Asia-1 of FMDV....... Due to the heterogeneity of FMD viruses (FMDVs) in different parts of the world, region specific diagnostic tests are required. In this study, hydrolysableprobe-based real time reverse transcription quantitative polymerase chain reaction (RTqPCR) assays were developed for specific detection...... and serotyping of the FMDVs currently circulating in West Eurasia. These assays were evaluated, in parallel with pan-FMDV diagnosticassays and earlier serotype-specific assays, using field samples originating from Pakistan and Afghanistan containing FMD viruses belonging to different sublineages of OPan...

  5. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    Science.gov (United States)

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors. Copyright © 2016. Published by Elsevier B.V.

  6. A Pan-GTPase Inhibitor as a Molecular Probe.

    Directory of Open Access Journals (Sweden)

    Lin Hong

    Full Text Available Overactive GTPases have often been linked to human diseases. The available inhibitors are limited and have not progressed far in clinical trials. We report here a first-in-class small molecule pan-GTPase inhibitor discovered from a high throughput screening campaign. The compound CID1067700 inhibits multiple GTPases in biochemical, cellular protein and protein interaction, as well as cellular functional assays. In the biochemical and protein interaction assays, representative GTPases from Rho, Ras, and Rab, the three most generic subfamilies of the GTPases, were probed, while in the functional assays, physiological processes regulated by each of the three subfamilies of the GTPases were examined. The chemical functionalities essential for the activity of the compound were identified through structural derivatization. The compound is validated as a useful molecular probe upon which GTPase-targeting inhibitors with drug potentials might be developed.

  7. Probe Microscopic Studies of DNA Molecules on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Kazuo Umemura

    2016-10-01

    Full Text Available Hybrids of DNA and carbon nanotubes (CNTs are promising nanobioconjugates for nanobiosensors, carriers for drug delivery, and other biological applications. In this review, nanoscopic characterization of DNA-CNT hybrids, in particular, characterization by scanning probe microscopy (SPM, is summarized. In many studies, topographical imaging by atomic force microscopy has been performed. However, some researchers have demonstrated advanced SPM operations in order to maximize its unique and valuable functions. Such sophisticated approaches are attractive and will have a significant impact on future studies of DNA-CNT hybrids.

  8. Sequence diversity within the HA-1 gene as detected by melting temperature assay without oligonucleotide probes

    Directory of Open Access Journals (Sweden)

    Mattiuz Pier

    2005-10-01

    Full Text Available Abstract Background The minor histocompatibility antigens (mHags are self-peptides derived from common cellular proteins and presented by MHC class I and II molecules. Disparities in mHags are a potential risk for the development of graft-versus-host disease (GvHD in the recipients of bone marrow from HLA-identical donors. Two alleles have been identified in the mHag HA-1. The correlation between mismatches of the mHag HA-1 and GvHD has been suggested and methods to facilitate large-scale testing were afterwards developed. Methods We used sequence specific primer (SSP PCR and direct sequencing to detect HA-1 gene polymorphisms in a sample of 131 unrelated Italian subjects. We then set up a novel melting temperature (Tm assay that may help identification of HA-1 alleles without oligonucleotide probes. Results We report the frequencies of HA-1 alleles in the Italian population and the presence of an intronic 5 base-pair deletion associated with the immunogeneic allele HA-1H. We also detected novel variable sites with respect to the consensus sequence of HA-1 locus. Even though recombination/gene conversion events are documented, there is considerable linkage disequilibrium in the data. The gametic associations between HA-1R/H alleles and the intronic 5-bp ins/del polymorphism prompted us to try the Tm analysis with SYBR® Green I. We show that the addition of dimethylsulfoxide (DMSO during the assay yields distinct patterns when amplicons from HA-1H homozygotes, HA-1R homozygotes, and heterozygotes are analysed. Conclusion The possibility to use SYBR® Green I to detect Tm differences between allelic variants is attractive but requires great caution. We succeeded in allele discrimination of the HA-1 locus using a relatively short (101 bp amplicon, only in the presence of DMSO. We believe that, at least in certain assets, Tm assays may benefit by the addition of DMSO or other agents affecting DNA strand conformation and stability.

  9. Gene probes : principles and protocols [Methods in molecular biology, v. 179

    National Research Council Canada - National Science Library

    Rapley, Ralph; Aquino de Muro, Marilena

    2002-01-01

    ... of labeled DNA has allowed genes to be mapped to single chromosomes and in many cases to a single chromosome band, promoting significant advance in human genome mapping. Gene Probes: Principles and Protocols presents the principles for gene probe design, labeling, detection, target format, and hybridization conditions together with detailed protocols, accom...

  10. A Crowdsourcing Evaluation of the NIH Chemical Probes

    OpenAIRE

    Oprea, Tudor I.; Bologa, Cristian G.; Boyer, Scott; Curpan, Ramona F.; Glen, Robert C.; Hopkins, Andrew L.; Lipinski, Christopher A.; Marshall, Garland R.; Martin, Yvonne C.; Ostopovici-Halip, Liliana; Rishton, Gilbert; Ursu, Oleg; Vaz, Roy J.; Waller, Chris; Waldmann, Herbert

    2009-01-01

    Between 2004 and 2008, the NIH molecular libraries and imaging initiative (MLI) pilot phase funded ten high-throughput Screening Centers, resulting in the deposition of 691 assays into PubChem and the nomination of 64 chemical probes. We crowdsourced the MLI output to 11 experts, who expressed medium or high levels of confidence in 48 of these 64 probes.

  11. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Mengjuan [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Chengquan [School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013 (China); Qian, Jing, E-mail: qianj@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kan; Yang, Zhenting; Liu, Qian; Mao, Hanping [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kun, E-mail: wangkun@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-08-12

    We herein proposed a simple and effective strategy for preparing graphene quantum dots (GQDs)-based core-satellite hybrid spheres and further explored the feasibility of using such spheres as the ratiometric fluorescence probe for the visual determination of Hg{sup 2+}. The red-emitting CdTe QDs were firstly entrapped in the silica nanosphere to reduce their toxicity and improve their photo and chemical stabilities, thus providing a built-in correction for environmental effects, while the GQDs possessing good biocompatibility and low toxicity were electrostatic self-assembly on the silica surface acting as reaction sites. Upon exposure to the increasing contents of Hg{sup 2+}, the blue fluorescence of GQDs can be gradually quenched presumably due to facilitating nonradiative electron/hole recombination annihilation. With the embedded CdTe QDs as the internal standard, the variations of the tested solution display continuous fluorescence color changes from blue to red, which can be easily observed by the naked eye without any sophisticated instrumentations and specially equipped laboratories. This sensor exhibits high sensitivity and selectivity toward Hg{sup 2+} in a broad linear range of 10 nM–22 μM with a low detection limit of 3.3 nM (S/N = 3), much lower than the allowable Hg{sup 2+} contents in drinking water set by U.S. Environmental Protection Agency. This prototype ratiometric probe is of good simplicity, low toxicity, excellent stabilities, and thus potentially attractive for Hg{sup 2+} quantification related biological systems. - Highlights: • A facile strategy for preparing GQDs based core-satellite hybrid spheres was reported. • Such spheres can be used as the ratiometric fluorescence probe for Hg{sup 2+} detection. • The Hg{sup 2+} content can be easily distinguished by the naked eye. • The sensor shows high sensitivity and selectivity toward Hg{sup 2+} detection. • The ratiometric probe is of good simplicity, low toxicity, and

  12. A Highly Sensitive Telomerase Activity Assay that Eliminates False-Negative Results Caused by PCR Inhibitors

    Directory of Open Access Journals (Sweden)

    Hidenobu Yaku

    2013-09-01

    Full Text Available An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR on magnetic beads (MBs and subsequent application of cycling probe technology (CPT is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGGn-3' of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity.

  13. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe.

    Science.gov (United States)

    Braun, Burga; Richert, Inga; Szewzyk, Ulrich

    2009-10-01

    Iron-depositing bacteria play an important role in technical water systems (water wells, distribution systems) due to their intense deposition of iron oxides and resulting clogging effects. Pedomicrobium is known as iron- and manganese-oxidizing and accumulating bacterium. The ability to detect and quantify members of this species in biofilm communities is therefore desirable. In this study the fluorescence in situ hybridization (FISH) method was used to detect Pedomicrobium in iron and manganese incrusted biofilms. Based on comparative sequence analysis, we designed and evaluated a specific oligonucleotide probe (Pedo 1250) complementary to the hypervariable region 8 of the 16S rRNA gene for Pedomicrobium. Probe specificities were tested against 3 different strains of Pedomicrobium and Sphingobium yanoikuyae as non-target organism. Using optimized conditions the probe hybridized with all tested strains of Pedomicrobium with an efficiency of 80%. The non-target organism showed no hybridization signals. The new FISH probe was applied successfully for the in situ detection of Pedomicrobium in different native, iron-depositing biofilms. The hybridization results of native bioflims using probe Pedo_1250 agreed with the results of the morphological structure of Pedomicrobium bioflims based on scanning electron microscopy.

  14. Comparison of multiplex RT-PCR and real-time HybProbe assay for serotyping of dengue virus using reference strains and clinical samples from India

    Directory of Open Access Journals (Sweden)

    Anita Chakravarti

    2016-01-01

    Full Text Available Background: Dengue virus serotyping is crucial from clinical management and epidemiological point of view. Aims: To compare efficacy of two molecular detection and typing methods, namely, multiplex reverse transcription polymerase chain reaction (RT-PCR and real-time Hybprobe assay using a panel of known dilution of four reference Dengue virus strains and a panel of sera collected from clinically suspected dengue patients. Settings: This study was conducted at a tertiary-care teaching hospital in Delhi, India. Materials and Methods: Dengue serotype specific virus strains were used as prototypes for serotyping assays. Viral load was quantified by quantitative real time reverse transcription polymerase chain reaction (qRT-PCR. Acute phase serum samples were collected from 79 patients with clinically suspected Dengue fever on their first day of presentation during September-October 2012. Viral RNA from serum and cell culture supernatant was extracted. Reverse transcription was carried out. Quantitative detection of DENV RNA from reference strain culture supernatants and each of the 79 patient samples by real-time PCR was performed using light cycler Taqman master mix kit. Serotyping was done by multiplex RT-PCR assay and Hybprobe assay. Results: The multiplex RT-PCR assay, though found to be 100% specific, couldn't serotype either patient or reference strains with viral load less than 1000 RNA copies/ml. The Hybprobe assay was found to have 100% specificity and had a lower limit of serotype detection of merely 3.54 RNA copies/ml. Conclusions: HybProbe assay has an important role especially in situations where serotyping is to be performed in clinical samples with low viral load.

  15. Far Western: probing membranes.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONThe far-Western technique described in this protocol is fundamentally similar to Western blotting. In Western blots, an antibody is used to detect a query protein on a membrane. In contrast, in a far-Western blot (also known as an overlay assay) the antibody is replaced by a recombinant GST fusion protein (produced and purified from bacteria), and the assay detects the interaction of this protein with target proteins on a membrane. The membranes are washed and blocked, incubated with probe protein, washed again, and subjected to autoradiography. The GST fusion (probe) proteins are often labeled with (32)P; alternatively, the membrane can be probed with unlabeled GST fusion protein, followed by detection using commercially available GST antibodies. The nonradioactive approach is substantially more expensive (due to the purchase of antibody and detection reagents) than using radioactively labeled proteins. In addition, care must be taken to control for nonspecific interactions with GST alone and a signal resulting from antibody cross-reactivity. In some instances, proteins on the membrane are not able to interact after transfer. This may be due to improper folding, particularly in the case of proteins expressed from a phage expression library. This protocol describes a way to overcome this by washing the membrane in denaturation buffer, which is then serially diluted to permit slow renaturation of the proteins.

  16. Introduction of a hydrolysis probe PCR assay for high-throughput screening of methicillin-resistant Staphylococcus aureus with the ability to include or exclude detection of Staphylococcus argenteus.

    Science.gov (United States)

    Bogestam, Katja; Vondracek, Martin; Karlsson, Mattias; Fang, Hong; Giske, Christian G

    2018-01-01

    Many countries using sensitive screening methods for detection of carriage of methicillin-resistant Staphylococcus aureus (MRSA) have a sustained low incidence of MRSA infections. For diagnostic laboratories with high sample volumes, MRSA screening requires stability, low maintenance and high performance at a low cost. Herein we designed oligonucleotides for a new nuc targeted hydrolysis probe PCR to replace the standard in-house nuc SybrGreen PCR assay. This new, more time-efficient, PCR assay resulted in a 40% increase in daily sample capacity, with maintained high specificity and sensitivity. The assay was also able to detect Staphylococcus aureus clonal cluster 75 (CC75) lineage strains, recently re-classified as Staphylococcus argenteus, with a sensitivity considerably increased compared to our previous assay. While awaiting consensus if the CC75 lineage of S. aureus should be considered as S. argenteus, and whether methicillin-resistant S. argenteus should be included in the MRSA definition, many diagnostic laboratories need to update their MRSA assay sensitivity/specificity towards this lineage/species. The MRSA screening assay presented in this manuscript is comprised of nuc oligonucleotides separately targeting S. aureus and CC75 lineage strains/S. argenteus, thus providing high user flexibility for the detection of CC75 lineage strains/S. argenteus.

  17. Five Performance Enhancements for Hybrid Hash Join

    National Research Council Canada - National Science Library

    Graefe, Goetz

    1992-01-01

    .... We discuss five performance enhancements for hybrid hash join algorithms, namely data compression, large cluster sizes and multi-level recursion, role reversal of build and probe inputs, histogram...

  18. Contribution of fluorescence in situ hybridization to biological dosimetry

    International Nuclear Information System (INIS)

    Sorokine-Durm, I.; Roy, L.; Durand, V.; Voisin, P.

    1995-01-01

    Fluorescence in situ hybridization with composite whole chromosome specific DNA probes for human chromosomes 2, 4 and 12 an α-satellite centromeric DNA probe labelled with biotin were used to measure symmetrical and terminal translocations (dose rate 0.5 Gy/min) and dicentrics (0.1 Gy/min) induced in vitro by 60 Co γ-irradiation (0-5 Gy). The suitability of fluorescence in situ hybridization (F.I.S.H.) technique for dicentrics detection is compared with the conventional technique. Dose-response curves for γ-rays ( 60 Co) for two dose rates are shown (dicentrics and translocations). (authors). 10 refs., 2 figs

  19. The fluorometric microculture cytotoxicity assay.

    Science.gov (United States)

    Lindhagen, Elin; Nygren, Peter; Larsson, Rolf

    2008-01-01

    The fluorometric microculture cytotoxicity assay (FMCA) is a nonclonogenic microplate-based cell viability assay used for measurement of the cytotoxic and/or cytostatic effect of different compounds in vitro. The assay is based on hydrolysis of the probe, fluorescein diacetate (FDA) by esterases in cells with intact plasma membranes. The assay is available as both a semiautomated 96-well plate setup and a 384-well plate version fully adaptable to robotics. Experimental plates are prepared with a small amount of drug solution and can be stored frozen. Cells are seeded on the plates and cell viability is evaluated after 72 h. The protocol described here is applicable both for cell lines and freshly prepared tumor cells from patients and is suitable both for screening in drug development and as a basis for a predictive test for individualization of anticancer drug therapy.

  20. Protocols for 16S rDNA Array Analyses of Microbial Communities by Sequence-Specific Labeling of DNA Probes

    Directory of Open Access Journals (Sweden)

    Knut Rudi

    2003-01-01

    Full Text Available Analyses of complex microbial communities are becoming increasingly important. Bottlenecks in these analyses, however, are the tools to actually describe the biodiversity. Novel protocols for DNA array-based analyses of microbial communities are presented. In these protocols, the specificity obtained by sequence-specific labeling of DNA probes is combined with the possibility of detecting several different probes simultaneously by DNA array hybridization. The gene encoding 16S ribosomal RNA was chosen as the target in these analyses. This gene contains both universally conserved regions and regions with relatively high variability. The universally conserved regions are used for PCR amplification primers, while the variable regions are used for the specific probes. Protocols are presented for DNA purification, probe construction, probe labeling, and DNA array hybridizations.

  1. Blot hybridization analysis of TCR genes of T cells for five people exposed in a radiation accident

    International Nuclear Information System (INIS)

    Min Rui; Liu Benti; Cheng Tianmin; Yang Rujun; Meng Xiangshun; Xiao Jinsong

    1996-01-01

    Human lymphocyte total DNA was prepared in agarose plug by mixing cells with low melting agarose, and two restriction endonucleases were used for digestion of the total DNA with human α and β TCR cDNA probes. The total digested DNA from five people who were whole body exposed to 2.0-2.5 Gy ionizing radiation in an accident 4.5 years ago was hybridized by Southern blot method. The results showed that no obvious difference in hybridization bands was found between controls and the five victims when hybridizations were fulfilled in the total DNA which was digested by Hind III restriction endonuclease with both α and β probes. However, when the total DNA was digested with restriction endonuclease EcoR I and was hybridized with TCR α probe, four of the five exposed people showed a different hybridizing band pattern compared with the controls. The results are also discussed

  2. Simultaneous detection of Acidovorax avenae subsp. citrulli and Didymella bryoniae in cucurbit seedlots using magnetic capture hybridization and real-time polymerase chain reaction.

    Science.gov (United States)

    Ha, Y; Fessehaie, A; Ling, K S; Wechter, W P; Keinath, A P; Walcott, R R

    2009-06-01

    To improve the simultaneous detection of two pathogens in cucurbit seed, a combination of magnetic capture hybridization (MCH) and multiplex real-time polymerase chain reaction (PCR) was developed. Single-stranded DNA hybridization capture probes targeting DNA of Acidovorax avenae subsp. citrulli, causal agent of bacterial fruit blotch, and Didymella bryoniae, causal agent of gummy stem blight, were covalently attached to magnetic particles and used to selectively concentrate template DNA from cucurbit seed samples. Sequestered template DNAs were subsequently amplified by multiplex real-time PCR using pathogen-specific TaqMan PCR assays. The MCH multiplex real-time PCR assay displayed a detection threshold of A. avenae subsp. citrulli at 10 CFU/ml and D. bryoniae at 10(5) conidia/ml in mixtures of pure cultures of the two pathogens, which was 10-fold more sensitive than the direct real-time PCR assays for the two pathogens separately. Although the direct real-time PCR assay displayed a detection threshold for A. avenae subsp. citrulli DNA of 100 fg/microl in 25% (1/4 samples) of the samples assayed, MCH real-time PCR demonstrated 100% detection frequency (4/4 samples) at the same DNA concentration. MCH did not improve detection sensitivity for D. bryoniae relative to direct real-time PCR using conidial suspensions or seed washes from D. bryoniae-infested cucurbit seed. However, MCH real-time PCR facilitated detection of both target pathogens in watermelon and melon seed samples (n = 5,000 seeds/sample) in which 0.02% of the seed were infested with A. avenae subsp. citrulli and 0.02% were infested with D. bryoniae.

  3. Comparative mapping of DNA probes derived from the V{sub k} immunoglobulin gene regions on human and great ape chromosomes by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, N.; Wienberg, J.; Ermert, K. [Universitaet Muenchen (Germany)] [and others

    1995-03-01

    Fluorescence in situ hybridization (FISH) of cosmid clones of human V{sub K} gene regions to human and primate chromosomes contributed to the dating of chromosome reorganizations in evolution. A clone from the K locus at 2p11-p12 (cos 106) hybridized to the assumed homologous chromosome bands in the chimpanzees Pan troglodytes (PTR) and P. paniscus (PPA), the Gorilla gorilla (GGO), and the orangutan Pongo Pygmaeus (PPY). Human and both chimpanzees differed from gorilla and orangutan by the mapping of cos 170, a clone derived from chromosome 2cen-q11.2; the transposition of this orphon to the other side of the centromere can, therefore, be dated after the human/chimpanzee and gorilla divergence. Hybridization to homologous bands was also found with a cosmid clone containing a V{sub K}I orphon located on chromosome 1 (cos 115, main signal at 1q31-q32), although the probe is not fully unique. Also, a clone derived from the orphon V{sub K} region on chromosome 22q11 (cos 121) hybridized to the homologous bands in the great apes. This indicates that the orphons on human chromosomes 1 and 22 had been translocated early in primate evolution. 18 refs., 2 figs.

  4. Development of an RT-qPCR assay for the specific detection of a distinct genetic lineage of the infectious bursal disease virus.

    Science.gov (United States)

    Tomás, Gonzalo; Hernández, Martín; Marandino, Ana; Techera, Claudia; Grecco, Sofia; Hernández, Diego; Banda, Alejandro; Panzera, Yanina; Pérez, Ruben

    2017-04-01

    The infectious bursal disease virus (IBDV) is a major health threat to the world's poultry industry despite intensive controls including proper biosafety practices and vaccination. IBDV (Avibirnavirus, Birnaviridae) is a non-enveloped virus with a bisegmented double-stranded RNA genome. The virus is traditionally classified into classic, variant and very virulent strains, each with different epidemiological relevance and clinical implications. Recently, a novel worldwide spread genetic lineage was described and denoted as distinct (d) IBDV. Here, we report the development and validation of a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay for the specific detection of dIBDVs in the global poultry industry. The assay employs a TaqMan-MGB probe that hybridizes with a unique molecular signature of dIBDV. The assay successfully detected all the assessed strains belonging to the dIBDV genetic lineage, showing high specificity and absence of cross-reactivity with non-dIBDVs, IBDV-negative samples and other common avian viruses. Using serial dilutions of in vitro-transcribed RNA we obtained acceptable PCR efficiencies and determination coefficients, and relatively small intra- and inter-assay variability. The assay demonstrated a wide dynamic range between 10 3 and 10 8 RNA copies/reaction. This rapid, specific and quantitative assay is expected to improve IBDV surveillance and control worldwide and to increase our understanding of the molecular epidemiology of this economically detrimental poultry pathogen.

  5. Evaluation of 5 ' nuclease assay for detection of Actinobacillus pleuropneumoniae

    DEFF Research Database (Denmark)

    Angen, Øystein; Jensen, J.; Lavritsen, D. T.

    2001-01-01

    Sequence detection by the 5' nuclease TaqMan assay uses online detection of internal fluorogenic probes in closed PCR tubes. Primers and probe were chosen from a part of the omlA gene common to all serotypes of Actinobacillus pleuropneumoniae, which gave an amplicon of 92 bp, The test was evaluat...

  6. Recombinant phage probes for Listeria monocytogenes

    Energy Technology Data Exchange (ETDEWEB)

    Carnazza, S; Gioffre, G; Felici, F; Guglielmino, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy)

    2007-10-03

    Monitoring of food and environmental samples for biological threats, such as Listeria monocytogenes, requires probes that specifically bind biological agents and ensure their immediate and efficient detection. There is a need for robust and inexpensive affinity probes as an alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we selected from two phage peptide libraries phage clones displaying peptides capable of specific and strong binding to the L. monocytogenes cell surface. The ability of isolated phage clones to interact specifically with L. monocytogenes was demonstrated using enzyme-linked immunosorbent assay (ELISA) and confirmed by co-precipitation assay. We also assessed the sensitivity of phage-bacteria binding by PCR on phage-captured Listeria cells, which could be detected at a concentration of 10{sup 4} cells ml{sup -1}. In addition, as proof-of-concept, we tested the possibility of immobilizing the affinity-selected phages to a putative biosensor surface. The quality of phage deposition was monitored by ELISA and fluorescent microscopy. Phage-bacterial binding was confirmed by high power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including in food products.

  7. A Crowdsourcing Evaluation of the NIH Chemical Probes

    Science.gov (United States)

    Oprea, Tudor I.; Bologa, Cristian G.; Boyer, Scott; Curpan, Ramona F.; Glen, Robert C.; Hopkins, Andrew L.; Lipinski, Christopher A.; Marshall, Garland R.; Martin, Yvonne C.; Ostopovici-Halip, Liliana; Rishton, Gilbert; Ursu, Oleg; Vaz, Roy J.; Waller, Chris; Waldmann, Herbert; Sklar, Larry A.

    2013-01-01

    Between 2004 and 2008, the NIH molecular libraries and imaging initiative (MLI) pilot phase funded ten high-throughput Screening Centers, resulting in the deposition of 691 assays into PubChem and the nomination of 64 chemical probes. We crowdsourced the MLI output to 11 experts, who expressed medium or high levels of confidence in 48 of these 64 probes. PMID:19536101

  8. Probe Selection for DNA Microarrays using OligoWiz

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Juncker, Agnieszka; Nielsen, Henrik Bjørn

    2007-01-01

    Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client-server appl......Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client......-server application that offers a detailed graphical interface and real-time user interaction on the client side, and massive computer power and a large collection of species databases (400, summer 2007) on the server side. Probes are selected according to five weighted scores: cross-hybridization, deltaT(m), folding...... computer skills and can be executed from any Internet-connected computer. The probe selection procedure for a standard microarray design targeting all yeast transcripts can be completed in 1 h....

  9. Hybrid male sterility is caused by mitochondrial DNA deletion.

    Science.gov (United States)

    Hayashida, Kenji; Kohno, Shigeru

    2009-07-01

    Although it is known that the hybrid male mouse is sterile just like any other animal's heterogametic sex, the reason why only the male germ cells are impaired has yet to be discovered. TdT-mediated dUTP nick end labeling assay using a confocal fluorescence microscope and DNA fragmentation assay of hybrid testis indicated destruction of the mitochondrial DNA (mtDNA) rather than the nuclear DNA. Previously we reported that maternal mtDNA inheritance is through selective sperm mtDNA elimination based on the sperm factor and two egg factors, and expression of these three factors was recognized in the hybrid testis. It was thereby assumed that mtDNA destruction caused by the expression of maternal mtDNA inheritance system in male germ cells is implicated in the hybrid male sterility of mice.

  10. Effect of sample storage time on detection of hybridization signals in Checkerboard DNA-DNA hybridization.

    Science.gov (United States)

    do Nascimento, Cássio; Muller, Katia; Sato, Sandra; Albuquerque Junior, Rubens Ferreira

    2012-04-01

    Long-term sample storage can affect the intensity of the hybridization signals provided by molecular diagnostic methods that use chemiluminescent detection. The aim of this study was to evaluate the effect of different storage times on the hybridization signals of 13 bacterial species detected by the Checkerboard DNA-DNA hybridization method using whole-genomic DNA probes. Ninety-six subgingival biofilm samples were collected from 36 healthy subjects, and the intensity of hybridization signals was evaluated at 4 different time periods: (1) immediately after collecting (n = 24) and (2) after storage at -20 °C for 6 months (n = 24), (3) for 12 months (n = 24), and (4) for 24 months (n = 24). The intensity of hybridization signals obtained from groups 1 and 2 were significantly higher than in the other groups (p  0.05). The Checkerboard DNA-DNA hybridization method was suitable to detect hybridization signals from all groups evaluated, and the intensity of signals decreased significantly after long periods of sample storage.

  11. Analysis of genomic instability in primary spermatocytes of interspecific hybrids of the red fox (Vulpes vulpes) and the Arctic fox (Alopex lagopus).

    Science.gov (United States)

    Bugno-Poniewierska, Monika; Pawlina, Klaudia; Jakubczak, Andrzej; Jeżewska-Witkowska, Grażyna

    2014-01-01

    The aim of this study was to analyse meiotic cells of male interspecific hybrids of the red fox (Vulpes vulpes) and the arctic fox (Alopex lagopus). To this end we determined stages of meiotic cells as well as carried out FISH analyses with probes specific to heterosomes and a TUNEL assay on synaptonemal complex preparations. The meiotic cell analysis revealed only the presence of stages of the first meiotic division from leptotene to pachytene. Moreover, we observed an increased level of early dissociation of the X-Y bivalent as well as a high percentage of apoptotic cells. These results indicate the disruption of meiotic division in male hybrids manifested through meiotic arrest of the cells. Faulty pairing of the heterosomes can be considered as one of the causes leading to the initiation of the apoptotic process.

  12. Short Wavelength Electromagnetic Perturbations Excited Near the Solar Probe Plus Spacecraft in the Inner Heliosphere: 2.5D Hybrid Modeling

    Science.gov (United States)

    Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.

    2011-01-01

    A 2.5D numerical plasma model of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC) is presented. These results should be interpreted as a basic plasma model derived from the SW-interaction with the spacecraft (SC), which could have consequences for both plasma wave and electron plasma measurements on board the SC in the inner heliosphere. Compression waves and electric field jumps with amplitudes of about 1.5 V/m and (12-18) V/m were also observed. A strong polarization electric field was also observed in the wing of the plasma wake. However, 2.5D hybrid modeling did not show excitation of whistler/Alfven waves in the upstream connected with the bidirectional current closure that was observed in short-time 3D modeling SPPSC and near a tether in the ionosphere. The observed strong electromagnetic perturbations may be a crucial point in the electromagnetic measurements planned for the future Solar Probe Plus (SPP) mission. The results of modeling electromagnetic field perturbations in the SW due to shot noise in absence of SPPSC are also discussed.

  13. Label-free DNA hybridization detection and single base-mismatch discrimination using CE-ICP-MS assay.

    Science.gov (United States)

    Li, Yan; Sun, Shao-kai; Yang, Jia-lin; Jiang, Yan

    2011-12-07

    Detecting a specific DNA sequence and discriminating single base-mismatch is critical to clinical diagnosis, paternity testing, forensic sciences, food and drug industry, pathology, genetics, environmental monitoring, and anti-bioterrorism. To this end, capillary electrophoresis (CE) coupled with the inductively coupled plasma mass spectrometry (ICP-MS) method is developed using the displacing interaction between the target ssDNA and the competitor Hg(2+) for the first time. The thymine-rich capture ssDNA 1 is interacted with the competitor Hg(2+), forming an assembled complex in a hairpin-structure between the thymine bases arrangement at both sides of the capture ssDNA 1. In the presence of a target ssDNA with stronger affinity than that of the competitor Hg(2+), the energetically favorable hybridization between capture ssDNA 1 and the target ssDNA destroys the hairpin-structure and releases the competitor as free Hg(2+), which was then read out and accurately quantified by CE-ICP-MS assay. Under the optimal CE separation conditions, free Hg(2+) ions and its capture ssDNA 1 adduct were baseline separated and detected on-line by ICP-MS; the increased peak intensity of free Hg(2+) against the concentration of perfectly complementary target ssDNA was linear over the concentration range of 30-600 nmol L(-1) with a limit of detection of 8 nmol L(-1) (3s, n = 11) in the pre-incubated mixture containing 1 μmol L(-1) Hg(2+) and 0.2 μmol L(-1) capture ssDNA 1. This new assay method is simple in design since any target ssDNA binding can in principle result in free Hg(2+) release by 6-fold Hg(2+) signal amplification, avoiding oligonucleotide labeling or assistance by excess signal transducer and signal reporter to read out the target. Due to element-specific detection of ICP-MS in our assay procedure, the interference from the autofluorescence of substrata was eliminated.

  14. Implementation and verification of a four-probe motion error measurement system for a large-scale roll lathe used in hybrid manufacturing

    International Nuclear Information System (INIS)

    Chen, Yuan-Liu; Niu, Zengyuan; Matsuura, Daiki; Lee, Jung Chul; Shimizu, Yuki; Gao, Wei; Oh, Jeong Seok; Park, Chun Hong

    2017-01-01

    In this paper, a four-probe measurement system is implemented and verified for the carriage slide motion error measurement of a large-scale roll lathe used in hybrid manufacturing where a laser machining probe and a diamond cutting tool are placed on two sides of a roll workpiece for manufacturing. The motion error of the carriage slide of the roll lathe is composed of two straightness motion error components and two parallelism motion error components in the vertical and horizontal planes. Four displacement measurement probes, which are mounted on the carriage slide with respect to four opposing sides of the roll workpiece, are employed for the measurement. Firstly, based on the reversal technique, the four probes are moved by the carriage slide to scan the roll workpiece before and after a 180-degree rotation of the roll workpiece. Taking into consideration the fact that the machining accuracy of the lathe is influenced by not only the carriage slide motion error but also the gravity deformation of the large-scale roll workpiece due to its heavy weight, the vertical motion error is thus characterized relating to the deformed axis of the roll workpiece. The horizontal straightness motion error can also be synchronously obtained based on the reversal technique. In addition, based on an error separation algorithm, the vertical and horizontal parallelism motion error components are identified by scanning the rotating roll workpiece at the start and the end positions of the carriage slide, respectively. The feasibility and reliability of the proposed motion error measurement system are demonstrated by the experimental results and the measurement uncertainty analysis. (paper)

  15. Implementation and verification of a four-probe motion error measurement system for a large-scale roll lathe used in hybrid manufacturing

    Science.gov (United States)

    Chen, Yuan-Liu; Niu, Zengyuan; Matsuura, Daiki; Lee, Jung Chul; Shimizu, Yuki; Gao, Wei; Oh, Jeong Seok; Park, Chun Hong

    2017-10-01

    In this paper, a four-probe measurement system is implemented and verified for the carriage slide motion error measurement of a large-scale roll lathe used in hybrid manufacturing where a laser machining probe and a diamond cutting tool are placed on two sides of a roll workpiece for manufacturing. The motion error of the carriage slide of the roll lathe is composed of two straightness motion error components and two parallelism motion error components in the vertical and horizontal planes. Four displacement measurement probes, which are mounted on the carriage slide with respect to four opposing sides of the roll workpiece, are employed for the measurement. Firstly, based on the reversal technique, the four probes are moved by the carriage slide to scan the roll workpiece before and after a 180-degree rotation of the roll workpiece. Taking into consideration the fact that the machining accuracy of the lathe is influenced by not only the carriage slide motion error but also the gravity deformation of the large-scale roll workpiece due to its heavy weight, the vertical motion error is thus characterized relating to the deformed axis of the roll workpiece. The horizontal straightness motion error can also be synchronously obtained based on the reversal technique. In addition, based on an error separation algorithm, the vertical and horizontal parallelism motion error components are identified by scanning the rotating roll workpiece at the start and the end positions of the carriage slide, respectively. The feasibility and reliability of the proposed motion error measurement system are demonstrated by the experimental results and the measurement uncertainty analysis.

  16. Proximity hybridization-mediated isothermal exponential amplification for ultrasensitive electrochemical protein detection

    Directory of Open Access Journals (Sweden)

    Yu Y

    2017-08-01

    Full Text Available Yanyan Yu, Gaoxing Su, Hongyan Zhu, Qing Zhu, Yong Chen, Bohui Xu, Yuqin Li, Wei Zhang School of Pharmacy, Nantong University, Nantong, People’s Republic of China Abstract: In this study, we fabricated a novel electrochemical biosensing platform on the basis of target-triggered proximity hybridization-mediated isothermal exponential amplification reaction (EXPAR for ultrasensitive protein analysis. Through rational design, the aptamers for protein recognition were integrated within two DNA probes. Via proximity hybridization principle, the affinity protein-binding event was converted into DNA assembly process. The recognition of protein by aptamers can trigger the strand displacement through the increase of the local concentrations of the involved probes. As a consequence, the output DNA was displaced, which can hybridize with the duplex probes immobilized on the electrode surface subsequently, leading to the initiation of the EXPAR as well as the cleavage of duplex probes. Each cleavage will release the gold nanoparticles (AuNPs binding sequence. With the modification of G-quadruplex sequence, electrochemical signals were yielded by the AuNPs through oxidizing 3,3',5,5'-tetramethylbenzidine in the presence of H2O2. The study we proposed exhibited high sensitivity toward platelet-derived growth factor BB (PDGF-BB with the detection limit of 52 fM. And, this method also showed great selectivity among the PDGF isoforms and performed well in spiked human serum samples. Keywords: electrochemical biosensor, proximity hybridization, PDGF-BB, isothermal exponential amplification, G-quadruplex 

  17. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification.

    Science.gov (United States)

    Xie, Xiaoji; Xu, Wei; Liu, Xiaogang

    2012-09-18

    The discovery of the DNA-mediated assembly of gold nanoparticles was a great moment in the history of science; this understanding and chemical control enabled the rational design of functional nanomaterials as novel probes in biodetection. In contrast with conventional probes such as organic dyes, gold nanoparticles exhibit high photostability and unique size-dependent optical properties. Because of their high extinction coefficients and strong distance dependent optical properties, these nanoparticles have emerged over the past decade as a promising platform for rapid, highly sensitive colorimetric assays that allow for the visual detection of low concentrations of metal ions, small molecules, and biomacromolecules. These discoveries have deepened our knowledge of biological phenomena and facilitated the development of many new diagnostic and therapeutic tools. Despite these many advances and continued research efforts, current nanoparticle-based colorimetric detection systems still suffer from several drawbacks, such as limited sensitivity and selectivity. This Account describes the recent development of colorimetric assays based on protein enzyme-assisted gold nanoparticle amplification. The benefits of such detection systems include significantly improved detection sensitivity and selectivity. First, we discuss the general design of enzyme-modified nanoparticle systems in colorimetric assays. We show that a quantitative understanding of the unique properties of different enzymes is paramount for effective biological assays. We then examine the assays for nucleic acid detection based on different types of enzymes, including endonucleases, ligases, and polymerases. For each of these assays, we identify the underlying principles that contribute to the enhanced detection capability of nanoparticle systems and illustrate them with selected examples. Furthermore, we demonstrate that the combination of gold nanoparticles and specific enzymes can probe enzyme dynamics

  18. Sixty-five radiation hybrids for the short arm of human chromosome 6: their value as a mapping panel and as a source for rapid isolation of new probes using repeat element-mediated PCR

    International Nuclear Information System (INIS)

    Zoghbi, H.Y.; McCall, A.E.; LeBorgne-Demarquoy, F.

    1991-01-01

    We have used an irradiation and fusion procedure to generate somatic cell hybrids that retain fragments of the short arm of human chromosome 6 (6p). To identify hybrids retaining human material, we performed repeat element-mediated PCR on crude lysates of cells from individual clones. Sixty-five hybrids were shown to contain human material and fifty of those contained one or more 6p-specific probes. Detailed characterization of these hybrids identified a subset that divides 6p into ten mapping intervals. Using repeat element-mediated PCR, we were able to isolate and map 61 new DNA fragments from specific regions of 6p. Fifteen of these fragments were used to screen for restriction fragment length polymorphisms (RFLPs), and nine identified RFLPs with one or more enzymes. The radiation hybrids described in this study provide a valuable resource for high-resolution mapping of 6p and for the rapid isolation of region-specific markers

  19. Hybridization-based biosensor containing hairpin probes and use thereof

    Science.gov (United States)

    Miller, Benjamin L.; Strohsahl, Christopher M.

    2010-10-12

    A sensor chip that includes: a fluorescence quenching surface; a nucleic acid probe that contains first and second ends with the first end bound to the fluorescence quenching surface, and is characterized by being able to self-anneal into a hairpin conformation; and a first fluorophore bound to the second end of the first nucleic acid molecule. When the first nucleic acid molecule is in the hairpin conformation, the fluorescence quenching surface substantially quenches fluorescent emissions by the first fluorophore; and when the first nucleic acid molecule is in a non-hairpin conformation, fluorescent emissions by the fluorophore are substantially free of quenching by the fluorescence quenching surface. Various nucleic acid probes, methods of making the sensor chip, biological sensor devices that contain the sensor chip, and their methods of use are also disclosed.

  20. Evaluation of DNA Recombinant Methodologies for the Diagnosis of Plasmodium falciparum and their Comparison with the Microscopy Assay

    Directory of Open Access Journals (Sweden)

    L Urdaneta

    1998-09-01

    Full Text Available Since 1984, DNA tests based on the highly repeated subtelomeric sequences of Plasmodium falciparum (rep 20 have been frequently used in malaria diagnosis. Rep 20 is very specific for this parasite, and is made of 21 bp units, organized in repeated blocks with direct and inverted orientation. Based in this particular organization, we selected a unique consensus oligonucleotide (pf-21 to drive a PCR reaction coupled to hybridization to non-radioactive labeled probes. The pf-21 unique oligo PCR (pf-21-I assay produced DNA amplification fingerprints when was applied on purified P. falciparum DNA samples (Brazil and Colombia, as well as in patient's blood samples from a large area of Venezuela. The performance of the Pf-21-I assay was compared against Giemsa stained thick blood smears from samples collected at a malaria endemic area of the Bolívar State, Venezuela, at the field station of Malariología in Tumeremo. Coupled to non-radioactive hybridization the pf-21-I performed better than the traditional microscopic method with a r=1.7:1. In the case of mixed infections the r value of P. falciparum detection increased to 2.5:1. The increased diagnostic sensitivity of the test produced with this homologous oligonucleotide could provide an alternative to the epidemiological diagnosis of P. falciparum being currently used in Venezuela endemic areas, where low parasitemia levels and asymptomatic malaria are frequent. In addition, the DNA fingerprint could be tested in molecular population studies

  1. Label-Free, LC-MS-Based Assays to Quantitate Small-Molecule Antagonist Binding to the Mammalian BLT1 Receptor.

    Science.gov (United States)

    Chen, Xun; Stout, Steven; Mueller, Uwe; Boykow, George; Visconti, Richard; Siliphaivanh, Phieng; Spencer, Kerrie; Presland, Jeremy; Kavana, Michael; Basso, Andrea D; McLaren, David G; Myers, Robert W

    2017-08-01

    We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.

  2. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors.

    Science.gov (United States)

    Noor, M Omair; Krull, Ulrich J

    2014-10-21

    Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an

  3. Hybrid strategies in nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Hector M; Mullen, Thomas J; Zhang Pengpeng; Dewey, Daniel C; Claridge, Shelley A; Weiss, Paul S [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States)], E-mail: psw@cnsi.ucla.edu

    2010-03-15

    Hybrid nanoscale patterning strategies combine the registration and addressability of conventional lithographic techniques with the chemical and physical functionality enabled by intermolecular, electrostatic and/or biological interactions. This review aims to highlight and to provide a comprehensive description of recent developments in hybrid nanoscale patterning strategies that enhance existing lithographic techniques or can be used to fabricate functional chemical patterns that interact with their environment. These functional structures create new capabilities, such as the fabrication of physicochemical surfaces that can recognize and capture analytes from complex liquid or gaseous mixtures. The nanolithographic techniques we describe can be classified into three general areas: traditional lithography, soft lithography and scanning-probe lithography. The strengths and limitations of each hybrid patterning technique will be discussed, along with the current and potential applications of the resulting patterned, functional surfaces.

  4. Tail-labelling of DNA probes using modified deoxynucleotide triphosphates and terminal deoxynucleotidyl tranferase. Application in electrochemical DNA hybridization and protein-DNA binding assays

    Czech Academy of Sciences Publication Activity Database

    Horáková Brázdilová, Petra; Macíčková-Cahová, Hana; Pivoňková, Hana; Špaček, Jan; Havran, Luděk; Hocek, Michal; Fojta, Miroslav

    2011-01-01

    Roč. 9, č. 5 (2011), s. 1366-1371 ISSN 1477-0520 R&D Projects: GA MŠk(CZ) LC06035; GA MŠk(CZ) LC512; GA AV ČR(CZ) IAA400040901 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z40550506 Keywords : DNA tail- labelling * protein-DNA binding * DNA hybridization Subject RIV: BO - Biophysics Impact factor: 3.696, year: 2011

  5. Detection of Tritrichomonas foetus and Pentatrichomonas hominis in intestinal tissue specimens of cats by chromogenic in situ hybridization.

    Science.gov (United States)

    Mostegl, Meike M; Wetscher, Andreas; Richter, Barbara; Nedorost, Nora; Dinhopl, Nora; Weissenböck, Herbert

    2012-02-10

    In this retrospective study 102 cats were analyzed for the presence of trichomonads in intestinal tissue sections using chromogenic in situ hybridization (CISH). Two intestinal trichomonad species are described in cats: Pentatrichomonas hominis and Tritrichomonas foetus. While P. hominis is considered a mere commensal, T. foetus has been found to be the causative agent of feline large-bowel diarrhea. For the detection of both agents within intestinal tissue CISH assays using three different probes were performed. In the first CISH run a probe specific for all relevant members of the order Trichomonadida (OT probe) was used. In a second CISH run all positive samples were further examined on three consecutive tissue sections using the OT probe, a probe specific for the family of Tritrichomonadidae (Tritri probe) and a newly designed probe specifically detecting P. hominis (Penta hom probe). In total, four of the 102 cats were found to be positive with the OT probe. Thereof, one cat gave a positive reaction with the P. hominis probe and three cats were positive with the T. foetus probe. All Trichomonas-positive cats were pure-bred and between 8 and 32 weeks of age. In one cat positive for T. foetus large amounts of parasites were found in the gut lumen and invading the intestinal mucosa. The species of the detected trichomonads were confirmed by polymerase chain reaction and nucleotide sequencing of a part of the 18S ribosomal RNA gene. In this study, the usefulness of CISH to detect intestinal trichomonads within feline tissue samples was shown. Additionally, the specific detection of P. hominis using CISH was established. Generally, it was shown that CISH is well suited for detection and differentiation of trichomonosis in retrospective studies using tissue samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Formation of diploid and triploid hybrid groupers (hybridization of Epinephelus coioides ♀ × Epinephelus lanceolatus ♂) and their 5S gene analysis.

    Science.gov (United States)

    Huang, Wen; Qin, Qinbo; Yang, Huirong; Li, Shuisheng; Hu, Chaoqun; Wang, Yude; Zhang, Yong; Liu, Shaojun; Lin, Haoran

    2016-10-07

    Interspecies hybridization is widely used to achieve heterosis or hybrid vigor, which has been observed and harnessed by breeders for centuries. Natural allopolyploid hybrids generally exhibit more superior heterosis than both the diploid progenies and their parental species. However, polyploid formation processes have been long ignored, the genetic basis of heterosis in polyploids remains elusive. In the present study, triploid hybrids had been demonstrated to contain two sets of chromosomes from mother species and one set from father species. Cellular polyploidization process in the embryos had been traced. The triploid hybrids might be formed by failure formation of the second polarized genome during the second meiosis stage. Four spindle centers were observed in anaphase stage of the first cell division. Three spindle centers were observed in side of cell plate after the first cell division. The 5S rDNA genes of four types of groupers were cloned and analyzed. The diploid and triploid hybrids had been proved to contain the tandem chimera structures which were recombined by maternal and paternal monomer units. The results indicated that genome re-fusion had occurred in the hybrid progenies. To further elucidate the genetic patterns of diploid and triploid hybrids, fluorescence chromosome location had been carried out, maternal 5S gene (M-386) were used as the probe. The triploid hybrids contained fewer fluorescence loci numbers than the maternal species. The results indicated that participation of paternal 5S gene in the triploid hybrid genome had degraded the match rates of M-386 probe. Our study is the first to investigate the cellular formation processes of natural allopolyploids in hybrid fish, the cellular polyploidization process may be caused by failure formation of the second polarized genome during the meiosis, and our results will provide the molecular basis of hybrid vigor in interspecies hybridization.

  7. Ultrasensitive electrochemical detection of DNA based on Zn²⁺ assistant DNA recycling followed with hybridization chain reaction dual amplification.

    Science.gov (United States)

    Qian, Yong; Wang, Chunyan; Gao, Fenglei

    2015-01-15

    A new strategy to combine Zn(2+) assistant DNA recycling followed with hybridization chain reaction dual amplification was designed for highly sensitive electrochemical detection of target DNA. A gold electrode was used to immobilize molecular beacon (MB) as the recognition probe and perform the amplification procedure. In the presence of the target DNA, the hairpin probe 1 was opened, and the DNAzyme was liberated from the caged structure. The activated DNAzyme hybridized with the MB and catalyzed its cleavage in the presence of Zn(2+) cofactor and resulting in a free DNAzyme strand. Finally, each target-induced activated DNAzyme underwent many cycles triggering the cleavage of MB, thus forming numerous MB fragments. The MB fragments triggered the HCR and formed a long double-helix DNA structure. Because both H1 and H2 were labeled by biotin, a lot of SA-ALP was captured on the electrode surface, thus catalyzing a silver deposition process for electrochemical stripping analysis. This novel cascade signal amplification strategy can detect target DNA down to the attomolar level with a dynamic range spanning 6 orders of magnitude. This highly sensitive and specific assay has a great potential to become a promising DNA quantification method in biomedical research and clinical diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Detection of human papillomavirus in pterygium and conjunctival papilloma by hybrid capture II and PCR assays.

    Science.gov (United States)

    Takamura, Y; Kubo, E; Tsuzuki, S; Akagi, Y

    2008-11-01

    To elucidate the putative role of human papillomavirus (HPV) infection in pterygium and conjunctival papilloma. Hybrid capture II (HC-II) and polymerase chain reaction (PCR) assays were performed to detect HPV in pterygium (42 samples obtained from 40 patients) and conjunctival papilloma (8 samples from 6 patients). The amount of HPV DNA was evaluated by measurement of relative light units (RLUs) on a luminometer. All papilloma samples were positive for HPV DNA by PCR and HC-II. The RLU values for specimens of recurrent and re-recurrent papilloma were markedly higher than those for specimens of primary lesions. HPV was detected by PCR in 2 of 42 (4.8%) beta-globin-positive pterygium specimens, whereas HC-II showed that HPV was negative in all pterygium samples. Our results support the hypothesis that HPV DNA is associated with the pathogenesis of conjunctival papilloma, but not pterygium. RLU measurement by HC-II may serve as a marker for evaluating the activity of HPV in conjunctival tumours.

  9. FRET two-hybrid assay by linearly fitting FRET efficiency to concentration ratio between acceptor and donor

    Science.gov (United States)

    Du, Mengyan; Yang, Fangfang; Mai, Zihao; Qu, Wenfeng; Lin, Fangrui; Wei, Lichun; Chen, Tongsheng

    2018-04-01

    We here introduce a fluorescence resonance energy transfer (FRET) two-hybrid assay method to measure the maximal donor(D)- and acceptor(A)-centric FRET efficiency (ED,max and EA,max) of the D-A complex and its stoichiometry by linearly fitting the donor-centric FRET efficiency (ED) to the acceptor-to-donor concentration ratio (RC) and acceptor-centric FRET efficiency (EA) to 1/RC, respectively. We performed this method on a wide-field fluorescence microscope for living HepG2 cells co-expressing FRET tandem constructs and free donor/acceptor and obtained correct ED, EA, and stoichiometry values of those tandem constructs. Evaluation on the binding of Bad with Bcl-XL in Hela cells showed that Bad interacted strongly with Bcl-XL to form a Bad-Bcl-XL complex on mitochondria, and one Bad interacted mainly with one Bcl-XL molecule in healthy cells, while with multiple (maybe 2) Bcl-XL molecules in apoptotic cells.

  10. Validation of Performance of the Gen-Probe Human Immunodeficiency Virus Type 1 Viral Load Assay with Genital Swabs and Breast Milk Samples

    Science.gov (United States)

    DeVange Panteleeff, Dana; Emery, Sandra; Richardson, Barbra A.; Rousseau, Christine; Benki, Sarah; Bodrug, Sharon; Kreiss, Joan K.; Overbaugh, Julie

    2002-01-01

    Human immunodeficiency type 1 (HIV-1) continues to spread at an alarming rate. The virus may be transmitted through blood, genital secretions, and breast milk, and higher levels of systemic virus in the index case, as measured by plasma RNA viral load, have been shown to correlate with increased risk of transmitting HIV-1 both vertically and sexually. Less is known about the correlation between transmission and HIV-1 levels in breast milk or genital secretions, in part because reliable quantitative assays to detect HIV-1 in these fluids are not available. Here we show that the Gen-Probe HIV-1 viral load assay can be used to accurately quantify viral load in expressed breast milk and in cervical and vaginal samples collected on swabs. Virus could be quantified from breast milk and swab samples spiked with known amounts of virus, including HIV-1 subtypes A, C, and D. As few as 10 copies of HIV-1 RNA could be detected above background threshold levels in ≥77% of assays performed with spiked breast milk supernatants and mock swabs. In genital swab samples from HIV-1-infected women, similar levels of HIV-1 RNA were consistently detected in duplicate swabs taken from the same woman on the same clinic visit, suggesting that the RNA values from a single swab sample can be used to measure genital viral load. PMID:12409354

  11. 11th GCC Closed Forum: cumulative stability; matrix stability; immunogenicity assays; laboratory manuals; biosimilars; chiral methods; hybrid LBA/LCMS assays; fit-for-purpose validation; China Food and Drug Administration bioanalytical method validation.

    Science.gov (United States)

    Islam, Rafiq; Briscoe, Chad; Bower, Joseph; Cape, Stephanie; Arnold, Mark; Hayes, Roger; Warren, Mark; Karnik, Shane; Stouffer, Bruce; Xiao, Yi Qun; van der Strate, Barry; Sikkema, Daniel; Fang, Xinping; Tudoroniu, Ariana; Tayyem, Rabab; Brant, Ashley; Spriggs, Franklin; Barry, Colin; Khan, Masood; Keyhani, Anahita; Zimmer, Jennifer; Caturla, Maria Cruz; Couerbe, Philippe; Khadang, Ardeshir; Bourdage, James; Datin, Jim; Zemo, Jennifer; Hughes, Nicola; Fatmi, Saadya; Sheldon, Curtis; Fountain, Scott; Satterwhite, Christina; Colletti, Kelly; Vija, Jenifer; Yu, Mathilde; Stamatopoulos, John; Lin, Jenny; Wilfahrt, Jim; Dinan, Andrew; Ohorodnik, Susan; Hulse, James; Patel, Vimal; Garofolo, Wei; Savoie, Natasha; Brown, Michael; Papac, Damon; Buonarati, Mike; Hristopoulos, George; Beaver, Chris; Boudreau, Nadine; Williard, Clark; Liu, Yansheng; Ray, Gene; Warrino, Dominic; Xu, Allan; Green, Rachel; Hayward-Sewell, Joanne; Marcelletti, John; Sanchez, Christina; Kennedy, Michael; Charles, Jessica St; Bouhajib, Mohammed; Nehls, Corey; Tabler, Edward; Tu, Jing; Joyce, Philip; Iordachescu, Adriana; DuBey, Ira; Lindsay, John; Yamashita, Jim; Wells, Edward

    2018-04-01

    The 11th Global CRO Council Closed Forum was held in Universal City, CA, USA on 3 April 2017. Representatives from international CRO members offering bioanalytical services were in attendance in order to discuss scientific and regulatory issues specific to bioanalysis. The second CRO-Pharma Scientific Interchange Meeting was held on 7 April 2017, which included Pharma representatives' sharing perspectives on the topics discussed earlier in the week with the CRO members. The issues discussed at the meetings included cumulative stability evaluations, matrix stability evaluations, the 2016 US FDA Immunogenicity Guidance and recent and unexpected FDA Form 483s on immunogenicity assays, the bioanalytical laboratory's role in writing PK sample collection instructions, biosimilars, CRO perspectives on the use of chiral versus achiral methods, hybrid LBA/LCMS assays, applications of fit-for-purpose validation and, at the Global CRO Council Closed Forum only, the status and trend of current regulated bioanalytical practice in China under CFDA's new BMV policy. Conclusions from discussions of these topics at both meetings are included in this report.

  12. A novel probe density controllable electrochemiluminescence biosensor for ultra-sensitive detection of Hg2+ based on DNA hybridization optimization with gold nanoparticles array patterned self-assembly platform.

    Science.gov (United States)

    Gao, Wenhua; Zhang, An; Chen, Yunsheng; Chen, Zixuan; Chen, Yaowen; Lu, Fushen; Chen, Zhanguang

    2013-11-15

    Biosensor based on DNA hybridization holds great potential to get higher sensitivity as the optimal DNA hybridization efficiency can be achieved by controlling the distribution and orientation of probe strands on the transducer surface. In this work, an innovative strategy is reported to tap the sensitivity potential of current electrochemiluminescence (ECL) biosensing system by dispersedly anchoring the DNA beacons on the gold nanoparticles (GNPs) array which was electrodeposited on the glassy carbon electrode surface, rather than simply sprawling the coil-like strands onto planar gold surface. The strategy was developed by designing a "signal-on" ECL biosensing switch fabricated on the GNPs nanopatterned electrode surface for enhanced ultra-sensitivity detection of Hg(2+). A 57-mer hairpin-DNA labeled with ferrocene as ECL quencher and a 13-mer DNA labeled with Ru(bpy)3(2+) as reporter were hybridized to construct the signal generator in off-state. A 31-mer thymine (T)-rich capture-DNA was introduced to form T-T mismatches with the loop sequence of the hairpin-DNA in the presence of Hg(2+) and induce the stem-loop open, meanwhile the ECL "signal-on" was triggered. The peak sensitivity with the lowest detection limit of 0.1 nM was achieved with the optimal GNPs number density while exorbitant GNPs deposition resulted in sensitivity deterioration for the biosensor. We expect the present strategy could lead the renovation of the existing probe-immobilized ECL genosensor design to get an even higher sensitivity in ultralow level of target detection such as the identification of genetic diseases and disorders in basic research and clinical application. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Diagnosis of Lower Hybrid on MST

    International Nuclear Information System (INIS)

    Burke, D. R.; Goetz, J. A.; Kaufman, M. C.; Almagri, A. F.; Anderson, J. K.; Forest, C. B.; Prager, S. C.

    2007-01-01

    RF driven current has never been demonstrated in a Reversed Field Pinch. Recently the lower hybrid system on the Madison Symmetric Torus reached a new operating regime. This upgrade allows RF powers of up to 5% of the Ohmic input power to be injected. It is therefore anticipated that the lower hybrid system is on the threshold of producing meaningful changes to the RFP equilibrium. A diagnostic set is under development to facilitate the study of such changes and lay the foundation for near megawatt operations. Many measurements are being studied for viability. These include electron cyclotron emission, examinations of bulk ion and electron heating, surface perturbation pickup coils, magnetic probe measurements, and Langmuir probe measurements. In addition, several x-ray diagnostics are in operation: pulse height analysis is performed on detector arrays to determine the 5-200 keV spectrum. An insertable target probe is available to create x-rays from fast electrons. Tomographic inversion of 2-D Soft x-ray detectors yields equilibrium information through island structure. Results from experiments with source power up to 225 kW will be presented. Preliminary results from CQL3D Fokker-Planck simulations will also be presented

  14. Fluorescence detection of natural RNA using rationally designed "clickable" oligonucleotide probes

    DEFF Research Database (Denmark)

    Okholm, Anders; Kjems, Jørgen; Astakhova, Kira

    2014-01-01

    Herein a reliable approach to the design of effective fluorescent probes for RNA detection is described. The fluorescence signalling of hybridization by internally positioned polyaromatic hydrocarbons and rhodamine dyes was achieved with a low fluorescence background signal, high fluorescence qua...... quantum yields at ambient and elevated temperature, high selectivity and signal specificity of the probes when binding to miR-7 and circRNA targets....

  15. A luminescence-based probe for sensitive detection of hydrogen peroxide in seconds

    International Nuclear Information System (INIS)

    Zscharnack, Kristin; Kreisig, Thomas; Prasse, Agneta A.; Zuchner, Thole

    2014-01-01

    Highlights: • We describe a novel probe for the sensitive detection of H 2 O 2 . • H 2 O 2 quenches the luminescence of a complex consisting of phthalic acid and terbium ions. • A stable fluorescence signal is generated immediately after mixing probe and sample. • The PATb probe detects H 2 O 2 over four orders of magnitude. - Abstract: Here, we present a fast and simple hydrogen peroxide assay that is based on time-resolved fluorescence. The emission intensity of a complex consisting of terbium ions (Tb 3+ ) and phthalic acid (PA) in HEPES buffer is quenched in the presence of H 2 O 2 and this quenching is concentration-dependent. The novel PATb assay detects hydrogen peroxide at a pH range from 7.5 to 8.5 and with a detection limit of 150 nmol L −1 at pH 8.5. The total assay time is less than 1 min. The linear range of the assay can be adapted by a pH adjustment of the aqueous buffer and covers a concentration range from 310 nmol L −1 to 2.56 mmol L −1 in total which encompasses four orders of magnitude. The assay is compatible with high concentrations of all 47 tested inorganic and organic compounds. The PATb assay was applied to quantify H 2 O 2 in polluted river water samples. In conclusion, this fast and easy-to-use assay detects H 2 O 2 with high sensitivity and precision

  16. Comparative gene expression profiles between heterotic and non-heterotic hybrids of tetraploid Medicago sativa

    Directory of Open Access Journals (Sweden)

    Nettleton Dan

    2009-08-01

    Full Text Available Abstract Background Heterosis, the superior performance of hybrids relative to parents, has clear agricultural value, but its genetic control is unknown. Our objective was to test the hypotheses that hybrids expressing heterosis for biomass yield would show more gene expression levels that were different from midparental values and outside the range of parental values than hybrids that do not exhibit heterosis. Results We tested these hypotheses in three Medicago sativa (alfalfa genotypes and their three hybrids, two of which expressed heterosis for biomass yield and a third that did not, using Affymetrix M. truncatula GeneChip arrays. Alfalfa hybridized to approximately 47% of the M. truncatula probe sets. Probe set signal intensities were analyzed using MicroArray Suite v.5.0 (MAS and robust multi-array average (RMA algorithms. Based on MAS analysis, the two heterotic hybrids performed similarly, with about 27% of genes showing differential expression among the parents and their hybrid compared to 12.5% for the non-heterotic hybrid. At a false discovery rate of 0.15, 4.7% of differentially expressed genes in hybrids (~300 genes showed nonadditive expression compared to only 0.5% (16 genes in the non-heterotic hybrid. Of the nonadditively expressed genes, approximately 50% showed expression levels that fell outside the parental range in heterotic hybrids, but only one of 16 showed a similar profile in the non-heterotic hybrid. Genes whose expression differed in the parents were three times more likely to show nonadditive expression than genes whose parental transcript levels were equal. Conclusion The higher proportions of probe sets with expression level that differed from the parental midparent value and that were more extreme than either parental value in the heterotic hybrids compared to a non-heterotic hybrid were also found using RMA. We conclude that nonadditive expression of transcript levels may contribute to heterosis for biomass

  17. A novel duplex real-time reverse transcriptase-polymerase chain reaction assay for the detection of hepatitis C viral RNA with armored RNA as internal control

    Directory of Open Access Journals (Sweden)

    Meng Shuang

    2010-06-01

    Full Text Available Abstract Background The hepatitis C virus (HCV genome is extremely heterogeneous. Several HCV infections can not be detected using currently available commercial assays, probably because of mismatches between the template and primers/probes. By aligning the HCV sequences, we developed a duplex real-time reverse transcriptase-polymerase chain reaction (RT-PCR assay using 2 sets of primers/probes and a specific armored RNA as internal control. The 2 detection probes were labelled with the same fluorophore, namely, 6-carboxyfluorescein (FAM, at the 5' end; these probes could mutually combine, improving the power of the test. Results The limit of detection of the duplex primer/probe assay was 38.99 IU/ml. The sensitivity of the assay improved significantly, while the specificity was not affected. All HCV genotypes in the HCV RNA Genotype Panel for Nucleic Acid Amplification Techniques could be detected. In the testing of 109 serum samples, the performance of the duplex real-time RT-PCR assay was identical to that of the COBAS AmpliPrep (CAP/COBAS TaqMan (CTM assay and superior to 2 commercial HCV assay kits. Conclusions The duplex real-time RT-PCR assay is an efficient and effective viral assay. It is comparable with the CAP/CTM assay with regard to the power of the test and is appropriate for blood-donor screening and laboratory diagnosis of HCV infection.

  18. In situ hybridization of phytoplankton using fluorescently labeled rRNA probes

    OpenAIRE

    Groben, R.; Medlin, Linda

    2005-01-01

    Fluorescently-labelled molecular probes were used to identify and characterise phytoplankton species using in situ hybridisation coupled with fluorescence microscopy and flow cytometry. The application of this technique is sometimes problematic, because of the many different species with which this method is to be used. Problems that may occur are: probe penetration versus maintanance of cell stability, strong autofluorescence and/or cell lost during the sample processing. Here we present a m...

  19. Biobarcode assay for the oral anticoagulant acenocoumarol.

    Science.gov (United States)

    Broto, Marta; Salvador, J Pablo; Galve, Roger; Marco, M Pilar

    2018-02-01

    A novel approach for therapeutic drug monitoring of oral anticoagulants (OA) in clinical samples is reported, based on a NP-based biobarcode assay. The proposed strategy uses specific antibodies for acenocumarol (ACL) covalently bound to magnetic particles (pAb236-MP) and a bioconjugate competitor (hACL-BSA) linked to encoded polystyrene probes (hACL-BSA-ePSP) on a classical competitive immunochemical format. By using this scheme ACL can be detected in low nM range (LOD, 0.96 ± 0.26, N = 3, in buffer) even in complex samples such as serum or plasma (LOD 4 ± 1). The assay shows a high reproducibility (%CV 1.1 day-to-day) and is robust, as it is demonstrated by the fact that ACL can be quantified in complex biological samples with a very good accuracy (slope = 0.97 and R 2 = 0.91, of the linear regression obtained when analyzing spiked vs measured values). Moreover, we have demonstrated that the biobarcode approach has the potential to overcome one of the main challenges of the multiplexed diagnostic, which is the possibility to measure in a single run biomarker targets present at different concentration ranges. Thus, it has been proven that the signal and the detectability can be modulated by just modifying the oligonucleotide load of the encoded probes. This fact opens the door for combining in the same assay encoded probes with the necessary oligonucleotide load to achieve the detectability required for each biomarker target. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Moth sex chromatin probed by comparative genomic hybridization (CGH)

    Czech Academy of Sciences Publication Activity Database

    Sahara, K.; Marec, František; Eickhoff, U.; Traut, W.

    2003-01-01

    Roč. 46, - (2003), s. 339-342 ISSN 0831-2796 R&D Projects: GA AV ČR IAA6007307 Institutional research plan: CEZ:AV0Z5007907 Keywords : Lepidoptera * comparative genomic hybridization Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.861, year: 2003

  1. Development of DNA probes for Candida albicans

    International Nuclear Information System (INIS)

    Cheung, L.L.; Hudson, J.B.

    1988-01-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both 32 P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis

  2. Development of DNA probes for Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.

  3. Magnetoresistive sensors for measurements of DNA hybridization kinetics - effect of TINA modifications

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Dufva, Martin; Hansen, Mikkel Fougt

    2017-01-01

    We present the use of magnetoresistive sensors integrated in a microfluidic system for real-time studies of the hybridization kinetics of DNA labeled with magnetic nanoparticles to an array of surface-tethered probes. The nanoparticles were magnetized by the magnetic field from the sensor current....... A local negative reference ensured that only the specific binding signal was measured. Analysis of the real-time hybridization using a two-compartment model yielded both the association and dissociation constants kon, and koff. The effect of probe modifications with ortho-Twisted Intercalating Nucleic...

  4. Localization of insulin receptor mRNA in rat brain by in situ hybridization

    International Nuclear Information System (INIS)

    Marks, J.L.; Porte, D. Jr.; Stahl, W.L.; Baskin, D.G.

    1990-01-01

    Insulin receptor mRNA was demonstrated in rat brain slices by in situ hybridization with three 35 S-oligonucleotide probes and contact film autoradiography. Specificity was confirmed by showing that (a) excess unlabeled probe abolished the signal, (b) an oligonucleotide probe for rat neuropeptide Y mRNA showed a different distribution of hybridization signal, and (c) the distribution of insulin receptor binding was consistent with the distribution of insulin receptor mRNA. Insulin receptor mRNA was most abundant in the granule cell layers of the olfactory bulb, cerebellum and dentate gyrus, in the pyramidal cell body layers of the pyriform cortex and hippocampus, in the choroid plexus and in the arcuate nucleus of the hypothalamus

  5. Phenylethynylpyrene excimer forming hybridization probes for fluorescence SNP detection

    DEFF Research Database (Denmark)

    Prokhorenko, Igor A.; Astakhova, Irina V.; Momynaliev, Kuvat T.

    2009-01-01

    Excimer formation is a unique feature of some fluorescent dyes (e.g., pyrene) which can be used for probing the proximity of biomolecules. Pyrene excimer fluorescence has previously been used for homogeneous detection of single nucleotide polymorphism (SNP) on DNA. 1-Phenylethynylpyrene (1-1-PEPy...

  6. Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes.

    Science.gov (United States)

    Schwiertz, A; Le Blay, G; Blaut, M

    2000-01-01

    Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none of the probes showed cross-hybridization under stringent conditions. The species-specific probes were applied to fecal samples obtained from 12 healthy volunteers. E. biforme, E. cylindroides, E. hadrum, E. lentum, and E. ventriosum could be determined. All other Eubacterium species for which probes had been designed were under the detection limit of 10(7) cells g (dry weight) of feces(-1). The cell counts obtained are essentially in accordance with the literature data, which are based on colony counts. This shows that whole-cell in situ hybridization with species-specific probes is a valuable tool for the enumeration of Eubacterium species in feces.

  7. Improving probe set selection for microbial community analysis by leveraging taxonomic information of training sequences

    Directory of Open Access Journals (Sweden)

    Jiang Tao

    2011-10-01

    Full Text Available Abstract Background Population levels of microbial phylotypes can be examined using a hybridization-based method that utilizes a small set of computationally-designed DNA probes targeted to a gene common to all. Our previous algorithm attempts to select a set of probes such that each training sequence manifests a unique theoretical hybridization pattern (a binary fingerprint to a probe set. It does so without taking into account similarity between training gene sequences or their putative taxonomic classifications, however. We present an improved algorithm for probe set selection that utilizes the available taxonomic information of training gene sequences and attempts to choose probes such that the resultant binary fingerprints cluster into real taxonomic groups. Results Gene sequences manifesting identical fingerprints with probes chosen by the new algorithm are more likely to be from the same taxonomic group than probes chosen by the previous algorithm. In cases where they are from different taxonomic groups, underlying DNA sequences of identical fingerprints are more similar to each other in probe sets made with the new versus the previous algorithm. Complete removal of large taxonomic groups from training data does not greatly decrease the ability of probe sets to distinguish those groups. Conclusions Probe sets made from the new algorithm create fingerprints that more reliably cluster into biologically meaningful groups. The method can readily distinguish microbial phylotypes that were excluded from the training sequences, suggesting novel microbes can also be detected.

  8. Improving probe set selection for microbial community analysis by leveraging taxonomic information of training sequences.

    Science.gov (United States)

    Ruegger, Paul M; Della Vedova, Gianluca; Jiang, Tao; Borneman, James

    2011-10-10

    Population levels of microbial phylotypes can be examined using a hybridization-based method that utilizes a small set of computationally-designed DNA probes targeted to a gene common to all. Our previous algorithm attempts to select a set of probes such that each training sequence manifests a unique theoretical hybridization pattern (a binary fingerprint) to a probe set. It does so without taking into account similarity between training gene sequences or their putative taxonomic classifications, however. We present an improved algorithm for probe set selection that utilizes the available taxonomic information of training gene sequences and attempts to choose probes such that the resultant binary fingerprints cluster into real taxonomic groups. Gene sequences manifesting identical fingerprints with probes chosen by the new algorithm are more likely to be from the same taxonomic group than probes chosen by the previous algorithm. In cases where they are from different taxonomic groups, underlying DNA sequences of identical fingerprints are more similar to each other in probe sets made with the new versus the previous algorithm. Complete removal of large taxonomic groups from training data does not greatly decrease the ability of probe sets to distinguish those groups. Probe sets made from the new algorithm create fingerprints that more reliably cluster into biologically meaningful groups. The method can readily distinguish microbial phylotypes that were excluded from the training sequences, suggesting novel microbes can also be detected.

  9. Simultaneous detection of Legionella species and L. anisa, L. bozemanii, L. longbeachae and L. micdadei using conserved primers and multiple probes in a multiplex real-time PCR assay.

    Science.gov (United States)

    Cross, Kristen E; Mercante, Jeffrey W; Benitez, Alvaro J; Brown, Ellen W; Diaz, Maureen H; Winchell, Jonas M

    2016-07-01

    Legionnaires' disease is a severe respiratory disease that is estimated to cause between 8,000 and 18,000 hospitalizations each year, though the exact burden is unknown due to under-utilization of diagnostic testing. Although Legionella pneumophila is the most common species detected in clinical cases (80-90%), other species have also been reported to cause disease. However, little is known about Legionnaires' disease caused by these non-pneumophila species. We designed a multiplex real-time PCR assay for detection of all Legionella spp. and simultaneous specific identification of four clinically-relevant Legionella species, L. anisa, L. bozemanii, L. longbeachae, and L. micdadei, using 5'-hydrolysis probe real-time PCR. The analytical sensitivity for detection of nucleic acid from each target species was ≤50fg per reaction. We demonstrated the utility of this assay in spiked human sputum specimens. This assay could serve as a tool for understanding the scope and impact of non-pneumophila Legionella species in human disease. Published by Elsevier Inc.

  10. Probing intracellular motor protein activity using an inducible cargo trafficking assay

    NARCIS (Netherlands)

    L.C. Kapitein (Lukas); M.A. Schlager (Max); W.A. van der Zwan (Wouter); P. Wulf (Phebe); N. Keijzer (Nanda); C.C. Hoogenraad (Casper)

    2010-01-01

    textabstractAlthough purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living

  11. Comparison of Abbott RealTime High-Risk HPV and Hybrid Capture 2 Assays for Detection of HPV Infection.

    Science.gov (United States)

    Ko, Kiwoong; Yu, Shinae; Lee, Eun Hee; Park, Hyosoon; Woo, Hee-Yeon; Kwon, Min-Jung

    2016-09-01

    Various assays for detecting high-risk human papillomavirus (HR HPV) have been introduced recently, including the Abbott RealTime High-Risk HPV assay. We sought to compare the performance of Abbott PCR to Hybrid Capture 2 for the detection of HR HPV. A total of 941 cervical swab specimens were obtained. We submitted all specimens for HR HPV detection with HC2 and Abbott PCR, and then additionally analyzed discordant and concordant positive results using restriction fragment mass polymorphism (RFMP) genotyping analysis. HC2 detected one of 13 HR HPV types in 12.3% (116/941) of cases, while Abbott PCR detected one of 14 detectable HR HPV types in 12.9% (121/941) of cases. The overall agreement rate was 97.3% with a kappa coefficient of 0.879. Discordant results between these two assays were observed in 25 cases. HC2 showed a sensitivity of 90.0% and specificity of 95.9%, while Abbott PCR showed a sensitivity of 98.0% and specificity of 96.8% when using RFMP results as the gold standard. For HPV 16/18 detection, Abbott PCR showed 95.8%/88.9% sensitivity and 99.2%/99.8% specificity, respectively. The overall coinfection rate between HPV 16, 18 and non-16/18 was 9.9% (12/121) in Abbott PCR analysis. Considering its high agreement rate with HC2, higher sensitivity/specificity compared to HC2, and ability to differentiate HPV 16/18 from other HPV types, Abbott PCR could be a reliable laboratory testing method for the screening of HPV infections. © 2016 by the Association of Clinical Scientists, Inc.

  12. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris.

    Science.gov (United States)

    Dedysh, S N; Derakshani, M; Liesack, W

    2001-10-01

    Two 16S rRNA-targeted oligonucleotide probes, Mcell-1026 and Mcell-181, were developed for specific detection of the acidophilic methanotroph Methylocella palustris using fluorescence in situ hybridization (FISH). The fluorescence signal of probe Mcell-181 was enhanced by its combined application with the oligonucleotide helper probe H158. Mcell-1026 and Mcell-181, as well as 16S rRNA oligonucleotide probes with reported group specificity for either type I methanotrophs (probes M-84 and M-705) or the Methylosinus/Methylocystis group of type II methanotrophs (probes MA-221 and M-450), were used in FISH to determine the abundance of distinct methanotroph groups in a Sphagnum peat sample of pH 4.2. M. palustris was enumerated at greater than 10(6) cells per g of peat (wet weight), while the detectable population size of type I methanotrophs was three orders of magnitude below the population level of M. palustris. The cell counts with probe MA-221 suggested that only 10(4) type II methanotrophs per g of peat (wet weight) were present, while the use of probe M-450 revealed more than 10(6) type II methanotroph cells per g of the same samples. This discrepancy was due to the fact that probe M-450 targets almost all currently known strains of Methylosinus and Methylocystis, whereas probe MA-221, originally described as group specific, does not detect a large proportion of Methylocystis strains. The total number of methanotrophic bacteria detected by FISH was 3.0 (+/-0.2) x 10(6) cells per g (wet weight) of peat. This was about 0.8% of the total bacterial cell number. Thus, our study clearly suggests that M. palustris and a defined population of Methylocystis spp. were the predominant methanotrophs detectable by FISH in an acidic Sphagnum peat bog.

  13. The development and application of the two real-time RT-PCR assays to detect the pathogen of HFMD.

    Directory of Open Access Journals (Sweden)

    Aili Cui

    Full Text Available Large-scale Hand, Foot, and Mouth Disease (HFMD outbreaks have frequently occurred in China since 2008, affecting more than one million children and causing several hundred children deaths every year. The pathogens of HFMD are mainly human enteroviruses (HEVs. Among them, human enterovirus 71 (HEV71 and coxsackievirus A16 (CVA16 are the most common pathogens of HFMD. However, other HEVs could also cause HFMD. To rapidly detect HEV71 and CVA16, and ensure detection of all HEVs causing HFMD, two real-time hybridization probe-based RT-PCR assays were developed in this study. One is a multiplex real-time RT-PCR assay, which was developed to detect and differentiate HEV71 specifically from CVA16 directly from clinical specimens within 1-2 h, and the other is a broad-spectrum real-time RT-PCR assay, which targeted almost all HEVs. The experiments confirmed that the two assays have high sensitivity and specificity, and the sensitivity was up to 0.1 TCID50/ml for detection of HEVs, HEV71, and CVA16, respectively. A total of 213 clinical specimens were simultaneously detected by three kinds of assays, including the two real-time RT-PCR assays, direct conventional RT-PCR assay, and virus isolation assay on human rhabdomyosarcoma cells (RD cells. The total positive rate of both HEV71 and CVA16 was 69.48% with real-time RT-PCR assay, 47.42% with RT-PCR assay, and 34.58% with virus isolation assay. One HFMD clinical specimen was positive for HEV, but negative for HEV71 or CVA16, which was identified as Echovirus 11 (Echo11 by virus isolation, RT-PCR, and sequencing for the VP1 gene. The two real-time RT-PCR assays had been applied in 31 provincial HFMD labs to detect the pathogens of HFMD, which has contributed to the rapid identification of the pathogens in the early stages of HFMD outbreaks, and helped to clarify the etiologic agents of HFMD in China.

  14. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples

    International Nuclear Information System (INIS)

    Voordouw, G.; Voordouw, J.K.; Karkhoff-Schweizer, R.R.; Fedorak, P.M.; Westlake, D.W.S.

    1991-01-01

    A novel method for identification of bacteria in environmental samples by DNA hybridization is presented. It is based on the fact that, even within a genus, the genomes of different bacteria may have little overall sequence homology. This allows the use of the labeled genomic DNA of a given bacterium (referred to as a standard) to probe for its presence and that of bacteria with highly homologous genomes in total DNA obtained from an environmental sample. Alternatively, total DNA extracted from the sample can be labeled and used to probe filters on which denatured chromosomal DNA from relevant bacterial standards has been spotted. The latter technique is referred to as reverse sample genome probing, since it is the reverse of the usual practice of deriving probes from reference bacteria for analyzing a DNA sample. Reverse sample genome probing allows identification of bacteria in a sample in a single step once a master filter with suitable standards has been developed. Application of reverse sample genome probing to the identification of sulfate-reducing bacteria in 31 samples obtained primarily from oil fields in the province of Alberta has indicated that there are at least 20 genotypically different sulfate-reducing bacteria in these samples

  15. Comparison of the analytical and clinical performances of Abbott RealTime High Risk HPV, Hybrid Capture 2, and DNA Chip assays in gynecology patients.

    Science.gov (United States)

    Park, Seungman; Kang, Youjin; Kim, Dong Geun; Kim, Eui-Chong; Park, Sung Sup; Seong, Moon-Woo

    2013-08-01

    The detection of high-risk (HR) HPV in cervical cancer screening is important for early diagnosis of cervical cancer or pre-cancerous lesions. We evaluated the analytical and clinical performances of 3 HR HPV assays in Gynecology patients. A total of 991 specimens were included in this study: 787 specimens for use with a Hybrid Capture 2 (HC2) and 204 specimens for a HPV DNA microarray (DNA Chip). All specimens were tested using an Abbott RealTime High Risk HPV assay (Real-time HR), PGMY PCR, and sequence analysis. Clinical sensitivities for severe abnormal cytology (severe than high-grade squamous intraepithelial lesion) were 81.8% for Real-time HR, 77.3% for HC2, and 66.7% for DNA Chip, and clinical sensitivities for severe abnormal histology (cervical intraepithelial neoplasia grade 2+) were 91.7% for HC2, 87.5% for Real-time HR, and 73.3% for DNA Chip. As compared to results of the sequence analysis, HC2, Real-time HR, and DNA Chip showed concordance rates of 94.3% (115/122), 90.0% (117/130), and 61.5% (16/26), respectively. The HC2 assay and Real-time HR assay showed comparable results to each other in both clinical and analytical performances, while the DNA Chip assay showed poor clinical and analytical performances. The Real-time HR assay can be a good alternative option for HR HPV testing with advantages of allowing full automation and simultaneous genotyping of HR types 16 and 18. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Hybrid epidemics--a case study on computer worm conficker.

    Directory of Open Access Journals (Sweden)

    Changwang Zhang

    Full Text Available Conficker is a computer worm that erupted on the Internet in 2008. It is unique in combining three different spreading strategies: local probing, neighbourhood probing, and global probing. We propose a mathematical model that combines three modes of spreading: local, neighbourhood, and global, to capture the worm's spreading behaviour. The parameters of the model are inferred directly from network data obtained during the first day of the Conficker epidemic. The model is then used to explore the tradeoff between spreading modes in determining the worm's effectiveness. Our results show that the Conficker epidemic is an example of a critically hybrid epidemic, in which the different modes of spreading in isolation do not lead to successful epidemics. Such hybrid spreading strategies may be used beneficially to provide the most effective strategies for promulgating information across a large population. When used maliciously, however, they can present a dangerous challenge to current internet security protocols.

  17. Hybrid epidemics--a case study on computer worm conficker.

    Science.gov (United States)

    Zhang, Changwang; Zhou, Shi; Chain, Benjamin M

    2015-01-01

    Conficker is a computer worm that erupted on the Internet in 2008. It is unique in combining three different spreading strategies: local probing, neighbourhood probing, and global probing. We propose a mathematical model that combines three modes of spreading: local, neighbourhood, and global, to capture the worm's spreading behaviour. The parameters of the model are inferred directly from network data obtained during the first day of the Conficker epidemic. The model is then used to explore the tradeoff between spreading modes in determining the worm's effectiveness. Our results show that the Conficker epidemic is an example of a critically hybrid epidemic, in which the different modes of spreading in isolation do not lead to successful epidemics. Such hybrid spreading strategies may be used beneficially to provide the most effective strategies for promulgating information across a large population. When used maliciously, however, they can present a dangerous challenge to current internet security protocols.

  18. Hybrid Epidemics—A Case Study on Computer Worm Conficker

    Science.gov (United States)

    Zhang, Changwang; Zhou, Shi; Chain, Benjamin M.

    2015-01-01

    Conficker is a computer worm that erupted on the Internet in 2008. It is unique in combining three different spreading strategies: local probing, neighbourhood probing, and global probing. We propose a mathematical model that combines three modes of spreading: local, neighbourhood, and global, to capture the worm’s spreading behaviour. The parameters of the model are inferred directly from network data obtained during the first day of the Conficker epidemic. The model is then used to explore the tradeoff between spreading modes in determining the worm’s effectiveness. Our results show that the Conficker epidemic is an example of a critically hybrid epidemic, in which the different modes of spreading in isolation do not lead to successful epidemics. Such hybrid spreading strategies may be used beneficially to provide the most effective strategies for promulgating information across a large population. When used maliciously, however, they can present a dangerous challenge to current internet security protocols. PMID:25978309

  19. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    Science.gov (United States)

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  20. In situ hybridization studies of hepatitis A viral RNA in patients with acute hepatitis A

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M; Goldin, R D; Ladva, S [Department of Histopathology, St. Mary' s Hospital Medical School, Imperial College of Science, Technology and Medicine, London (United Kingdom); Scheuer, P J [Department of Histopathology, Royal Free Hospital and School of Medicine, London (United Kingdom); Thomas, H C [Department of Medicine, St. Mary' s Hospital Medical School, Imperial College of Science, Technology and Medicine, London (United Kingdom)

    1994-01-01

    In situ hybridization with oligonucleotide probes has been used to localise hepatitis A virus RNA genomic sequences in formalin-fixed and routinely processed human liver biopsies from three patients. Using radiolabelled Sulphur-35 antisense probes, viral genomic sequences were found in all three cases, but signal intensity was greatest in cases 1 and 2 with fulminant hepatitis, and was minimal in the third case of resolving hepatitis biopsied 2 months after acute illness. Localisation showed the viral RNA to be present in hepatocytes, sinusoidal cells and inflammatory cells in and around the portal tracts. Both cases showed signal in similar cell types, but the distribution of staining was predominantly periportal in case 1, whereas lobular staining was more apparent in case 2. Hybridization with sense polarity probes failed to detect any evidence of replicative intermediates of antigenomic viral RNA. The presence of hepatitis A RNA in phagocytic cells was confirmed using immunohistochemistryfor a macrophage marker, CD68, combined with in situ hybridization. In all cases the signal was predominantly cytoplasmic, and this was confirmed with the use of tritiated probes. (au).

  1. In situ hybridization studies of hepatitis A viral RNA in patients with acute hepatitis A

    International Nuclear Information System (INIS)

    Taylor, M.; Goldin, R.D.; Ladva, S.; Scheuer, P.J.; Thomas, H.C.

    1994-01-01

    In situ hybridization with oligonucleotide probes has been used to localise hepatitis A virus RNA genomic sequences in formalin-fixed and routinely processed human liver biopsies from three patients. Using radiolabelled Sulphur-35 antisense probes, viral genomic sequences were found in all three cases, but signal intensity was greatest in cases 1 and 2 with fulminant hepatitis, and was minimal in the third case of resolving hepatitis biopsied 2 months after acute illness. Localisation showed the viral RNA to be present in hepatocytes, sinusoidal cells and inflammatory cells in and around the portal tracts. Both cases showed signal in similar cell types, but the distribution of staining was predominantly periportal in case 1, whereas lobular staining was more apparent in case 2. Hybridization with sense polarity probes failed to detect any evidence of replicative intermediates of antigenomic viral RNA. The presence of hepatitis A RNA in phagocytic cells was confirmed using immunohistochemistryfor a macrophage marker, CD68, combined with in situ hybridization. In all cases the signal was predominantly cytoplasmic, and this was confirmed with the use of tritiated probes. (au)

  2. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Greulich-Bode, Karin; Wang, Mei; Rhein, Andreas; Weier, Jingly; Weier, Heinz-Ulli

    2008-12-16

    Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100kb, careful probe selection and characterization are of paramount importance. We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific {approx}6kb plasmid onto an unusually small, {approx}55kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-?B2 locus. The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements.

  3. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Greulich-Bode, Karin M.; Wang, Mei; Rhein, Andreas P.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-12-04

    Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100kb, careful probe selection and characterization are of paramount importance. We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific {approx}6kb plasmid onto an unusually small, {approx}55kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-{kappa}B2 locus. The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements.

  4. Probing the transition state for nucleic acid hybridization using phi-value analysis.

    Science.gov (United States)

    Kim, Jandi; Shin, Jong-Shik

    2010-04-27

    Genetic regulation by noncoding RNA elements such as microRNA and small interfering RNA (siRNA) involves hybridization of a short single-stranded RNA with a complementary segment in a target mRNA. The physical basis of the hybridization process between the structured nucleic acids is not well understood primarily because of the lack of information about the transition-state structure. Here we use transition-state theory, inspired by phi-value analysis in protein folding studies, to provide quantitative analysis of the relationship between changes in the secondary structure stability and the activation free energy. Time course monitoring of the hybridization reaction was performed under pseudo-steady-state conditions using a single fluorophore. The phi-value analysis indicates that the native secondary structure remains intact in the transition state. The nativelike transition state was confirmed via examination of the salt dependence of the hybridization kinetics, indicating that the number of sodium ions associated with the transition state was not substantially affected by changes in the native secondary structure. These results propose that hybridization between structured nucleic acids undergoes a transition state leading to formation of a nucleation complex and then is followed by sequential displacement of preexisting base pairings involving successive small energy barriers. The proposed mechanism might provide new insight into physical processes during small RNA-mediated gene silencing, which is essential to selection of a target mRNA segment for siRNA design.

  5. 16S rRNA-targeted probes for specific detection of Thermoanaerobacterium spp., Thermoanaerobacterium thermosaccharolyticum, and Caldicellulosiruptor spp. by fluorescent in situ hybridization in biohydrogen producing systems

    Energy Technology Data Exchange (ETDEWEB)

    O-Thong, Sompong [Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bg 115, DK-2800, Kgs Lyngby (Denmark); Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand); Prasertsan, Poonsuk [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla 90112 (Thailand); Karakashev, Dimitar; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bg 115, DK-2800, Kgs Lyngby (Denmark)

    2008-11-15

    16S rRNA gene targeted oligonucleotide probes for specific detection of genera Thermoanaerobacterium (Tbm1282), Caldicellulosiruptor (Ccs432), and specie Thermoanaerobacterium thermosaccharolyticum (Tbmthsacc184) were designed and used to monitor the spatial distribution of hydrogen producing bacteria in sludge and granules from anaerobic reactors. The designed probes were checked for their specificity and then validated using fluorescence in situ hybridization with target microorganisms and non-target microorganisms. Thermoanaerobacterium spp., T. thermosaccharolyticum and Caldicellulosiruptor spp. were detected with the probes designed with coverage of 75%, 100% and 93%, respectively. Thermophilic (60 C) hydrogen producing reactors, one fed with sucrose and another, fed with palm oil mill effluent comprised of following major groups of hydrogen producers: Thermoanaerobacterium spp. (49% and 36%), T. thermosaccharolyticum (16% and 10%), phylum Firmicutes (low G+C) gram positive bacteria (15% and 27%). Extreme-thermophilic (70 C) hydrogen producing reactors, one fed with xylose and another, fed with lignocellulosic hydrolysate comprised of following major groups of hydrogen producers: Caldicellulosiruptor spp. (40.5% and 20.5%), phylum Firmicutes (low G+C) gram positive bacteria (17% and 20%), Archaea (7% and 8.5%), and Thermoanaerobacterium spp. (0% and 5%). Results obtained, showed good applicability of the probes Tbm1282, Tbmthsacc184 and Ccs432 for specific detection and quantification of thermophilic and extreme-thermophilic hydrogen producers in complex environments. (author)

  6. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    Science.gov (United States)

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fetal sex determination in the first trimester of pregnancy using a Y chromosome-specific DNA probe

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Y.; Huang, S.; Chen, M.; Huang, Y.; Zhang, M.; Dong, J.; Ku, A.; Xu, S.

    1987-05-01

    Prenatal determination of fetal sex is important for the prevention of X-linked disorders such as hemophilia, Lesch-Nyhan syndrome and Duchenne muscular dystrophy. The complex procedures of prenatal diagnosis for X-linked disorders are unnecessary if the fetus is female, because usually no clinical symptoms ever appear in female. pY 3.4 probe used in this work for sex determination is a 3.4 kilobase human repeat sequence. The probe is specific for the Y chromosome of males and can be used for sex determination. The other prove pBLUR used in this paper as control is a widely dispersed, highly repeated human Alu family DNA sequence, represented equally in male and female DNA. On the basis of the relative densities of the autoradiographic spots produced by hybridization of fetal DNA with pY3.4 and pBLUR, the sex of fetus can be clearly identified. Further the authors can determine the radioactive intensity (cpm) of the hybridized DNA spots and the ratio of hybridization with Y3.4 to pBLUR (Y3.4/pBLUR x 10). Results show that the hybridization ratio of DNA from chorionic villi of male (1.03 +/- 0.24) is significantly higher than that of female (0.16 +/- 0.09). Therefore, sex determination of the fetus can be made, based on the ratio of pY3.4/pBLUR x 10. If necessary they can also use Southern hybridization with pY 3.4 probe of DNA isolated from chorionic villi to confirm the result of dot hybridization.

  8. An Experimental Concept for Probing Nonlinear Physics in Radiation Belts

    Science.gov (United States)

    Crabtree, C. E.; Ganguli, G.; Tejero, E. M.; Amatucci, B.; Siefring, C. L.

    2017-12-01

    A sounding rocket experiment, Space Measurement of Rocket-Released Turbulence (SMART), can be used to probe the nonlinear response to a known stimulus injected into the radiation belt. Release of high-speed neutral barium atoms (8- 10 km/s) generated by a shaped charge explosion in the ionosphere can be used as the source of free energy to seed weak turbulence in the ionosphere. The Ba atoms are photo-ionized forming a ring velocity distribution of heavy Ba+ that is known to generate lower hybrid waves. Induced nonlinear scattering will convert the lower hybrid waves into EM whistler/magnetosonic waves. The escape of the whistlers from the ionospheric region into the radiation belts has been studied and their observable signatures quantified. The novelty of the SMART experiment is to make coordinated measurement of the cause and effect of the turbulence in space plasmas and from that to deduce the role of nonlinear scattering in the radiation belts. Sounding rocket will carry a Ba release module and an instrumented daughter section that includes vector wave magnetic and electric field sensors, Langmuir probes and energetic particle detectors. The goal of these measurements is to determine the whistler and lower hybrid wave amplitudes and spectrum in the ionospheric source region and look for precipitated particles. The Ba release may occur at 600-700 km near apogee. Ground based cameras and radio diagnostics can be used to characterize the Ba and Ba+ release. The Van Allen Probes can be used to detect the propagation of the scattering-generated whistler waves and their effects in the radiation belts. By detecting whistlers and measuring their energy density in the radiation belts the SMART mission will confirm the nonlinear generation of whistlers through scattering of lower hybrid along with other nonlinear responses of the radiation belts and their connection to weak turbulence.

  9. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    Energy Technology Data Exchange (ETDEWEB)

    Hindson, B J; Reid, S M; Baker, B R; Ebert, K; Ferris, N P; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; King, D P

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  10. Hybrid simulation using mixed reality for interventional ultrasound imaging training.

    Science.gov (United States)

    Freschi, C; Parrini, S; Dinelli, N; Ferrari, M; Ferrari, V

    2015-07-01

    Ultrasound (US) imaging offers advantages over other imaging modalities and has become the most widespread modality for many diagnostic and interventional procedures. However, traditional 2D US requires a long training period, especially to learn how to manipulate the probe. A hybrid interactive system based on mixed reality was designed, implemented and tested for hand-eye coordination training in diagnostic and interventional US. A hybrid simulator was developed integrating a physical US phantom and a software application with a 3D virtual scene. In this scene, a 3D model of the probe with its relative scan plane is coherently displayed with a 3D representation of the phantom internal structures. An evaluation study of the diagnostic module was performed by recruiting thirty-six novices and four experts. The performances of the hybrid (HG) versus physical (PG) simulator were compared. After the training session, each novice was required to visualize a particular target structure. The four experts completed a 5-point Likert scale questionnaire. Seventy-eight percentage of the HG novices successfully visualized the target structure, whereas only 45% of the PG reached this goal. The mean scores from the questionnaires were 5.00 for usefulness, 4.25 for ease of use, 4.75 for 3D perception, and 3.25 for phantom realism. The hybrid US training simulator provides ease of use and is effective as a hand-eye coordination teaching tool. Mixed reality can improve US probe manipulation training.

  11. Use of Molecular Assays in Diagnosis and Monitoring of Cytomegalovirus Disease following Renal Transplantation

    OpenAIRE

    Aitken, Celia; Barrett-Muir, Winsome; Millar, Colin; Templeton, Kate; Thomas, Janice; Sheridan, Fran; Jeffries, Donald; Yaqoob, Magdi; Breuer, Judith

    1999-01-01

    We compared two commercial molecular assays (the Murex Hybrid Capture CMV DNA assay [HCA], version 2, and the Roche Amplicor plasma PCR assay) with a standard shell vial assay in detecting and predicting cytomegalovirus (CMV) disease in a group of renal transplant patients and assessed the role of viral load measurements (using the HCA) in their management. The sensitivity of the HCA and Amplicor assay in terms of disease detection was 100%, compared to 71% for the shell vial assay. Both the ...

  12. Subcellular localization of low-abundance human immunodeficiency virus nucleic acid sequences visualized by fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Lawrence, J.B.; Marselle, L.M.; Byron, K.S.; Johnson, C.V.; Sullivan, J.L.; Singer, R.H.

    1990-01-01

    Detection and subcellular localization of human immunodeficiency virus (HIV) were investigated using sensitive high-resolution in situ hybridization methodology. Lymphocytes infected with HIV in vitro or in vivo were detected by fluorescence after hybridization with either biotin or digoxigenin-labeled probes. At 12 hr after infection in vitro, a single intense signal appeared in the nuclei of individual cells. Later in infection, when cytoplasmic fluorescence became intense, multiple nuclear foci frequently appeared. The nuclear focus consisted of newly synthesized HIV RNA as shown by hybridization in the absence of denaturation and by susceptibility to RNase and actinomycin D. Virus was detected in patient lymphocytes and it was shown that a singular nuclear focus also characterizes cells infected in vivo. The cell line 8E5/LAV containing one defective integrated provirus revealed a similar focus of nuclear RNA, and the single integrated HIV genome was unequivocally visualized on a D-group chromosome. This demonstrates an extremely sensitive single-cell assay for the presence of a single site of HIV transcription in vitro and in vivo and suggests that it derives from one (or very few) viral genomes per cell. In contrast, productive Epstein-Barr virus infection exhibited many foci of nuclear RNA per cell

  13. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction

    Energy Technology Data Exchange (ETDEWEB)

    Algar, W. Russ; Tavares, Anthony J. [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6 (Canada)

    2010-07-12

    A comprehensive review of the development of assays, bioprobes, and biosensors using quantum dots (QDs) as integrated components is presented. In contrast to a QD that is selectively introduced as a label, an integrated QD is one that is present in a system throughout a bioanalysis, and simultaneously has a role in transduction and as a scaffold for biorecognition. Through a diverse array of coatings and bioconjugation strategies, it is possible to use QDs as a scaffold for biorecognition events. The modulation of QD luminescence provides the opportunity for the transduction of these events via fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), charge transfer quenching, and electrochemiluminescence (ECL). An overview of the basic concepts and principles underlying the use of QDs with each of these transduction methods is provided, along with many examples of their application in biological sensing. The latter include: the detection of small molecules using enzyme-linked methods, or using aptamers as affinity probes; the detection of proteins via immunoassays or aptamers; nucleic acid hybridization assays; and assays for protease or nuclease activity. Strategies for multiplexed detection are highlighted among these examples. Although the majority of developments to date have been in vitro, QD-based methods for ex vivo biological sensing are emerging. Some special attention is given to the development of solid-phase assays, which offer certain advantages over their solution-phase counterparts.

  14. Evaluation of a duplex reverse-transcription real-time PCR assay for the detection of encephalomyocarditis virus.

    Science.gov (United States)

    Qin, Shaomin; Underwood, Darren; Driver, Luke; Kistler, Carol; Diallo, Ibrahim; Kirkland, Peter D

    2018-06-01

    We evaluated a fluorogenic probe-based assay for the detection of encephalomyocarditis virus (EMCV) by comparing a set of published primers and probe to a new set of primers and probe. The published reagents failed to amplify a range of Australian isolates and an Italian reference strain of EMCV. In contrast, an assay based on 2 new sets of primers and probes that were run in a duplex reverse-transcription real-time PCR (RT-rtPCR) worked well, with high amplification efficiency. The analytical sensitivity was ~100-fold higher than virus isolation in cell culture. The intra-assay variation was 0.21-4.90%. No cross-reactivity was observed with a range of other porcine viruses. One hundred and twenty-two clinical specimens were tested simultaneously by RT-rtPCR and virus isolation in cell culture; 72 specimens gave positive results by RT-rtPCR, and 63 of these were also positive by virus isolation. Of 245 archived cell culture isolates of EMCV that were tested in the RT-rtPCR, 242 samples were positive. The new duplex RT-rtPCR assay is a reliable tool for the detection of EMCV in clinical specimens and for use in epidemiologic investigations.

  15. Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy.

    Science.gov (United States)

    Dutta, Samrat; Armitage, Bruce A; Lyubchenko, Yuri L

    2016-03-15

    Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplexes. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. J. Org. Chem. 2011, 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γ(MP)PNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that the γ(MP)PNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ≈ 0.030 ± 0.01 s⁻¹ for γ(MP)PNA-DNA hybrid duplex vs 0.375 ± 0.18 s⁻¹ for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γ(MP)PNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γ(MP)PNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes.

  16. Fluorescent Probes for Analysis and Imaging of Monoamine Oxidase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dokyoung; Jun, Yong Woong; Ahn, Kyo Han [POSTECH, Pohang (Korea, Republic of)

    2014-05-15

    Monoamine oxidases catalyze the oxidative deamination of dietary amines and amine neurotransmitters, and assist in maintaining the homeostasis of the amine neurotransmitters in the brain. Dysfunctions of these enzymes can cause neurological and behavioral disorders including Parkinson's and Alzheimer's diseases. To understand their physiological roles, efficient assay methods for monoamine oxidases are essential. Reviewed in this Perspective are the recent progress in the development of fluorescent probes for monoamine oxidases and their applications to enzyme assays in cells and tissues. It is evident that still there is strong need for a fluorescent probe with desirable substrate selectivity and photophysical properties to challenge the much unsolved issues associated with the enzymes and the diseases.

  17. Fluorescence in situ hybridization on formalin-fixed and paraffin-embedded tissue

    DEFF Research Database (Denmark)

    Laub Petersen, Bodil; Zeuthen, Mette Christa; Pedersen, Sanni

    2004-01-01

    Fluorescence in situ hybridization (FISH) is widely used to study numerical and structural genetic abnormalities in both metaphase and interphase cells. The technique is based on the hybridization of labeled probes to complementary sequences in the DNA or RNA of the cells. Interphase FISH is most...... in time lapse between removal of tissue and fixation, duration of fixation, enzymatic pretreatment, hybridization conditions, and posthybridization washing conditions are important factors in the hybridization. In this study, we have listed the results of a systematic approach to improve FISH on isolated...

  18. Exploring the origin of the D genome of oat by fluorescence in situ hybridization.

    Science.gov (United States)

    Luo, Xiaomei; Zhang, Haiqin; Kang, Houyang; Fan, Xing; Wang, Yi; Sha, Lina; Zhou, Yonghong

    2014-09-01

    Further understanding of the origin of cultivated oat would accelerate its genetic improvement. In particular, it would be useful to clarify which diploid progenitor contributed the D genome of this allohexaploid species. In this study, we demonstrate that the landmarks produced by fluorescence in situ hybridization (FISH) of species of Avena using probes derived from Avena sativa can be used to explore the origin of the D genome. Selected sets of probes were hybridized in several sequential experiments performed on exactly the same chromosome spreads, with multiple probes of cytological preparations. Probes pITS and A3-19 showed there might be a similar distribution of pITS between the Ac and D genomes. These results indicated that the Ac genome is closely related to the D genome, and that Avena canariensis (AcAc) could be the D-genome donor of cultivated oat.

  19. Simultaneous Expression of GUS and Actin Genes by Using the Multiplex RT-PCR and Multiplex Gold Nanoparticle Probes.

    Science.gov (United States)

    Ghazi, Yaser; Vaseghi, Akbar; Ahmadi, Sepideh; Haddadi, Fatemeh

    2018-04-23

    Gene expression analysis is considered to be extremely important in many different biological researches. DNA-based diagnostic test, which contributes to DNA identification, has higher specificity, cost, and speed than some biochemical and molecular methods. In this study, we try to use the novel nano technology approach with Multiplex RT-PCR and Gold nano particular probes (GNPs-probes) in order to get gene expression in Curcumas melons. We used Agrobacterium tumefactions for gene transfer and GUS reporter gene as a reporter. After cDNA synthesis, Multiplex PCR and Multiplex RT-PCR techniques were used. Finally, probes were designed for RNA of GUS and Actin genes, and then the analysis of the gene expression using the probes attached to GNPs was carried out and the color changes in the GNPs were applied. In the following, probes hybridization was checked with DNA between 400 to 700 nm wavelengths and the highest rate was observed in the 550 to 650 nm. The results show that the simultaneous use of GNP-attached detectors and Multiplex RT-PCRcan reduce time and costmore considerably than somelaboratory methods for gene expiration investigation. Additionally, it can be seen thatthere is an increase in sensitivity and specificity of our investigation. Based on our findings, this can bea novel study doneusingMultiplex RT-PCRand unmodified AuNPs for gene transfer and expression detection to plants. We can claim that this assay has a remarkable advantage including rapid, cost-effectiveness, specificity and accuracy to detect transfer and expression genes in plants. Also,we can use this technique from other gene expressionsin many different biology samples.

  20. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    Science.gov (United States)

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  1. DNA Probe for Lactobacillus delbrueckii

    OpenAIRE

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-l...

  2. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    Science.gov (United States)

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  3. Interspecific somatic hybrid plants between eggplant (Solanum melongena) and Solanum torvum.

    Science.gov (United States)

    Guri, A; Sink, K C

    1988-10-01

    Mesophyll protoplasts of eggplant (cv Black Beauty) and of Solanum torvum (both 2n=2x=24) were fused using a modification of the Menczel and Wolfe PEG/DMSO procedure. Protoplasts post-fusion were plated at 1 × 10(5)/ml in modified KM medium, which inhibited division of S. torvum protoplasts. One week prior to shoot regeneration, ten individual calluses had a unique light-green background and were verified as cell hybrids by the presence of the dimer isozyme patterns for phosphoglucoisomerase (PGI) and glutamate oxaloacetate transaminase (GOT). Hybridity was also confirmed at the plant stage by DNA-DNA hybridization to a pea 45S ribosomal RNA gene probe. The ten somatic hybrid plants were established in the greenhouse and exhibited intermediate morphological characteristics such as leaf size and shape, flower size, shape, color and plant stature. Their chromosome number ranged from 46-48 (expected 2n=4x=48) and pollen viability was 5%-70%. In vitro shoots taken from the ten hybrid plants exhibited resistance to a verticillium wilt extract. Total DNA from the ten hybrids was restricted and hybridized with a 5.9 kb Oenothera chloroplast cytochrome f gene probe, a 2.4 kb EcoRI clone encoding mitochondrial cytochrome oxidase subunit II from maize and a 22.1 kb Sal I mitochondrial clone from Nicotiana sylvestris. Southern blot hybridization patterns showed that eight of ten somatic hybrids contained the eggplant cpDNA, while two plants contained the cpDNA hybridization patterns of both parents. The mtDNA analysis revealed the presence of novel bands, loss of some specific parental bands and mixture of specific bands from both parents in the restriction hybridization profiles of the hybrids.

  4. Hybrid chemical and nondestructive-analysis technique

    International Nuclear Information System (INIS)

    Hsue, S.T.; Marsh, S.F.; Marks, T.

    1982-01-01

    A hybrid chemical/NDA technique has been applied at the Los Alamos National Laboratory to the assay of plutonium in ion-exchange effluents. Typical effluent solutions contain low concentrations of plutonium and high concentrations of americium. A simple trioctylphosphine oxide (TOPO) separation can remove 99.9% of the americium. The organic phase that contains the separated plutonium can be accurately assayed by monitoring the uranium L x-ray intensities

  5. Probe-based real-time PCR method for multilocus melt typing of Xylella fastidiosa strains.

    Science.gov (United States)

    Brady, Jeff A; Faske, Jennifer B; Ator, Rebecca A; Castañeda-Gill, Jessica M; Mitchell, Forrest L

    2012-04-01

    Epidemiological studies of Pierce's disease (PD) can be confounded by a lack of taxonomic detail on the bacterial causative agent, Xylella fastidiosa (Xf). PD in grape is caused by strains of Xylella fastidiosa subsp. fastidiosa, but is not caused by other subspecies of Xf that typically colonize plants other than grape. Detection assays using ELISA and qPCR are effective at detecting and quantifying Xf presence or absence, but offer no information on Xf subspecies or strain identity. Surveying insects or host plants for Xf by current ELISA or qPCR methods provides only presence/absence and quantity information for any and all Xf subspecies, potentially leading to false assessments of disease threat. This study uses a series of adjacent-hybridizing DNA melt analysis probes that are capable of efficiently discriminating Xf subspecies and strain relationships in rapid real-time PCR reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A Locked Nucleic Acid Probe Based on Selective Salt-Induced Effect Detects Single Nucleotide Polymorphisms

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-01-01

    Full Text Available Detection of single based genetic mutation by using oligonucleotide probes is one of the common methods of detecting single nucleotide polymorphisms at known loci. In this paper, we demonstrated a hybridization system which included a buffer solution that produced selective salt-induced effect and a locked nucleic acid modified 12 nt oligonucleotide probe. The hybridization system is suitable for hybridization under room temperature. By using magnetic nanoparticles as carriers for PCR products, the SNPs (MDR1 C3435T/A from 45 volunteers were analyzed, and the results were consistent with the results from pyrophosphoric acid sequencing. The method presented in this paper differs from the traditional method of using molecular beacons to detect SNPs in that it is suitable for research institutions lacking real-time quantitative PCR detecting systems, to detect PCR products at room temperature.

  7. Detection of the Light Organ Symbiont, Vibrio fischeri, in Hawaiian Seawater by Using lux Gene Probes.

    Science.gov (United States)

    Lee, K H; Ruby, E G

    1992-03-01

    Symbiotic bacteria that inhabit the light-emitting organ of the Hawaiian squid Euprymna scolopes are distinctive from typical Vibrio fischeri organisms in that they are not visibly luminous when grown in laboratory culture. Therefore, the abundance of these bacteria in seawater samples cannot be estimated simply by identifying them among luminous colonies that arise on nutrient agar plates. Instead, we have used luxR and polymerase chain reaction generated luxA gene probes to identify both luminous and non-visibly luminous V. fischeri colonies by DNA-DNA hybridization. The probes were specific, hybridizing at least 50 to 100 times more strongly to immobilized DNAs from V. fischeri strains than to those of pure cultures of other related species. Thus, even non-visibly luminous V. fischeri colonies could be identified among colonies obtained from natural seawater samples by their probe-positive reaction. Bacteria in seawater samples, obtained either within or distant from squid habitats, were collected on membrane filters and incubated until colonies appeared. The filters were then observed for visibly luminous V. fischeri colonies and hybridized with the lux gene probes to determine the number of total V. fischeri colonies (both luminous and non-visibly luminous). We detected no significant differences in the abundance of luminous V. fischeri CFU in any of the water samples observed (probe-positive colonies of V. fischeri (up to 900 CFU/100 ml) were found only in seawater collected from within the natural habitats of the squids. A number of criteria were used to confirm that these probe-positive strains were indistinguishable from symbiotic V. fischeri. Therefore, the luxA and luxR gene probes were species specific and gave a reliable estimate of the number of culturable V. fischeri colonies in natural water samples.

  8. Nanoparticle sensor for label free detection of swine DNA in mixed biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M E; Hashim, U [Institute of Nano Electronic Engineering (INNE), Universiti Malaysia Perlis, Lot 104-108, Tingkat 1, Block A, Taman Pertiwi Indah, Jalan Kangar-Alor Star, Seriab, 01000 Kangar, Perlis (Malaysia); Mustafa, S; Che Man, Y B; Yusop, M H M [Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Bari, M F [School of Materials Engineering, University Malaysia Perlis, Seriab 01000, Kangar, Perlis (Malaysia); Islam, Kh N [Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hasan, M F, E-mail: uda@unimap.edu.my [Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2011-05-13

    We used 40 {+-} 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 {sup 0}C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 {mu}g ml{sup -1} swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.

  9. Nanoparticle sensor for label free detection of swine DNA in mixed biological samples

    International Nuclear Information System (INIS)

    Ali, M E; Hashim, U; Mustafa, S; Che Man, Y B; Yusop, M H M; Bari, M F; Islam, Kh N; Hasan, M F

    2011-01-01

    We used 40 ± 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 0 C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 μg ml -1 swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.

  10. Probing the electronic structure of M-graphene oxide (M = Ni, Co, NiCo) catalysts for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Binhua; Liu, Jinyin; Zhou, Litao [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Material (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123 (China); Long, Dan, E-mail: legend_long@aliyun.com [Department of Radiology, Zhejiang Cancer Hospital, Hangzhou 310022 (China); Feng, Kun; Sun, Xuhui [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Material (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123 (China); Zhong, Jun, E-mail: jzhong@suda.edu.cn [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Material (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123 (China)

    2016-01-30

    Graphical abstract: An interaction between metal and graphene oxide was probed to enhance the hydrolysis efficiency of ammonia borane. - Highlights: • Various metal elements (M = Ni, Co, NiCo) were dispersed on graphene oxide (GO) for the hydrolysis of ammonia borane (AB). • The electronic structure of the hybrids has been probed by scanning transmission X-ray microscopy (STXM). • An interfacial interaction between metal and GO was observed which could be related to the hydrolysis performance. • The results provide new insight into the enhanced performance of the M-GO hybrids. - Abstract: Various metal elements (M = Ni, Co, NiCo) were dispersed on graphene oxide (GO) to form the M-GO hybrids by a facile way. The hybrids showed good catalytic activities in the hydrolytic dehydrogenation of ammonia borane (AB, NH{sub 3}BH{sub 3}), which were significantly enhanced when compared to the metal nanoparticles or GO alone. The electronic structure of the hybrids has been probed by scanning transmission X-ray microscopy (STXM). The distribution of metal elements was clearly imaged with identical electronic structure. Moreover, an interfacial interaction between metal and GO was observed with the peak intensity proportional to the catalytic performance in the hydrolysis of AB. The results provide new insight into the enhanced performance of the M-GO hybrids and may help for the design of advanced catalysts.

  11. Staphylococcus aureus DNA ligase: characterization of its kinetics of catalysis and development of a high-throughput screening compatible chemiluminescent hybridization protection assay.

    Science.gov (United States)

    Gul, Sheraz; Brown, Richard; May, Earl; Mazzulla, Marie; Smyth, Martin G; Berry, Colin; Morby, Andrew; Powell, David J

    2004-11-01

    DNA ligases are key enzymes involved in the repair and replication of DNA. Prokaryotic DNA ligases uniquely use NAD+ as the adenylate donor during catalysis, whereas eukaryotic enzymes use ATP. This difference in substrate specificity makes the bacterial enzymes potential targets for therapeutic intervention. We have developed a homogeneous chemiluminescence-based hybridization protection assay for Staphylococcus aureus DNA ligase that uses novel acridinium ester technology and demonstrate that it is an alternative to the commonly used radiometric assays for ligases. The assay has been used to determine a number of kinetic constants for S. aureus DNA ligase catalysis. These included the K(m) values for NAD+ (2.75+/-0.1 microM) and the acridinium-ester-labelled DNA substrate (2.5+/-0.2 nM). A study of the pH-dependencies of kcat, K(m) and kcat/K(m) has revealed values of kinetically influential ionizations within the enzyme-substrate complexes (kcat) and free enzyme (kcat/K(m)). In each case, the curves were shown to be composed of one kinetically influential ionization, for k(cat), pK(a)=6.6+/-0.1 and kcat/K(m), pK(a)=7.1+/-0.1. Inhibition characteristics of the enzyme against two Escherichia coli DNA ligase inhibitors have also been determined with IC50 values for these being 3.30+/-0.86 microM for doxorubicin and 1.40+/-0.07 microM for chloroquine diphosphate. The assay has also been successfully miniaturized to a sufficiently low volume to allow it to be utilized in a high-throughput screen (384-well format; 20 microl reaction volume), enabling the assay to be used in screening campaigns against libraries of compounds to discover leads for further drug development.

  12. Neutron-neutron probe for uranium exploration

    International Nuclear Information System (INIS)

    Smith, R.C.

    1979-01-01

    A neutron activation probe for assaying the amount of fissionable isotopes in an ore body is described which comprises a casing which is movable through a borehole in the ore body, a neutron source and a number of delayed neutron detectors arranged colinearly in the casing below the neutron source for detecting delayed neutrons

  13. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique.

    Science.gov (United States)

    Xiong, L Z; Xu, C G; Saghai Maroof, M A; Zhang, Q

    1999-04-01

    DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. In this study, we assessed the extent and pattern of cytosine methylation in the rice genome, using the technique of methylation-sensitive amplified polymorphism (MSAP), which is a modification of the amplified fragment length polymorphism (AFLP) method that makes use of the differential sensitivity of a pair of isoschizomers to cytosine methylation. The tissues assayed included seedlings and flag leaves of an elite rice hybrid, Shanyou 63, and the parental lines Zhenshan 97 and Minghui 63. In all, 1076 fragments, each representing a recognition site cleaved by either or both of the isoschizomers, were amplified using 16 pairs of selective primers. A total of 195 sites were found to be methylated at cytosines in one or both parents, and the two parents showed approximately the same overall degree of methylation (16.3%), as revealed by the incidence of differential digestion by the isoschizomers. Four classes of patterns were identified in a comparative assay of cytosine methylation in the parents and hybrid; increased methylation was detected in the hybrid compared to the parents at some of the recognition sites, while decreased methylation in the hybrid was detected at other sites. A small proportion of the sites was found to be differentially methylated in seedlings and flag leaves; DNA from young seedlings was methylated to a greater extent than that from flag leaves. Almost all of the methylation patterns detected by MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrate that the MSAP technique is highly efficient for large-scale detection of cytosine methylation in the rice genome. We believe that the technique can be adapted for use in other plant species.

  14. Development of a free-solution SERS-based assay for point-of-care oral cancer biomarker detection using DNA-conjugated gold nanoparticles

    Science.gov (United States)

    Han, Sungyub; Locke, Andrea K.; Oaks, Luke A.; Cheng, Yi-Shing Lisa; Coté, Gerard L.

    2018-02-01

    It is estimated that the number of new cases of oral cancers worldwide is 529,000 and more than 300,000 deaths each year. The five-year survival rate remains about 50%, and the low survival rate is believed to be due to delayed detection. The primary detection method is through a comprehensive clinical examination by a dentist followed by a biopsy of suspicious lesions. Systematic review and meta-analysis have revealed that clinical examination alone may not be sufficient to cause the clinician to perform a biopsy or refer for biopsy for early detection of OSCC. Therefore, a non-invasive, point-of-Care (POC) detection with high sensitivity and specificity for early detection would be urgently needed, and using salivary biomarkers would be an ideal technology for it. S100 calcium binding protein P (S100P) mRNA presenting in saliva is a potential biomarker for detection of oral cancer. Further, surface enhanced Raman spectroscopy (SERS) has been shown to be a promising POC diagnostic technique. In this research, a SERS-based assay using oligonucleotide strains was developed for the sensitive and rapid detection of S100P. Gold nanoparticles (AuNPs) as a SERS substrate were used for the conjugation with one of two unique 24 base pair oligonucleotides, referred to as left and right DNA probes. A Raman reporter molecule, malachite green isothiocyanate (MGITC), was bound to left-probe-conjugated AuNPs. UV-vis spectroscopy was employed to monitor the conjugation of DNA probes to AuNPs. The hybridization of S100P target to DNA-conjugated AuNPs in sandwich-assay format was confirmed by Raman spectroscopy and shown to yield and R2 of 0.917 across the range of 0-200 nM and a limit of detection of 3 nM.

  15. Real-time PCR assays for hepatitis B virus DNA quantification may require two different targets.

    Science.gov (United States)

    Liu, Chao; Chang, Le; Jia, Tingting; Guo, Fei; Zhang, Lu; Ji, Huimin; Zhao, Junpeng; Wang, Lunan

    2017-05-12

    Quantification Hepatitis B virus (HBV) DNA plays a critical role in the management of chronic HBV infections. However, HBV is a DNA virus with high levels of genetic variation, and drug-resistant mutations have emerged with the use of antiviral drugs. If a mutation caused a sequence mismatched in the primer or probe of a commercial DNA quantification kit, this would lead to an underestimation of the viral load of the sample. The aim of this study was to determine whether commercial kits, which use only one pair of primers and a single probe, accurately quantify the HBV DNA levels and to develop an improved duplex real-time PCR assay. We developed a new duplex real-time PCR assay that used two pairs of primers and two probes based on the conserved S and C regions of the HBV genome. We performed HBV DNA quantitative detection of HBV samples and compared the results of our duplex real-time PCR assays with the COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. The target region of the discordant sample was amplified, sequenced, and validated using plasmid. The results of the duplex real-time PCR were in good accordance with the commercial COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. We showed that two samples from Chinese HBV infections underestimated viral loads when quantified by the Roche kit because of a mismatch between the viral sequence and the reverse primer of the Roche kit. The HBV DNA levels of six samples were undervalued by duplex real-time PCR assays of the C region because of mutations in the primer of C region. We developed a new duplex real-time PCR assay, and the results of this assay were similar to the results of commercial kits. The HBV DNA level could be undervalued when using the COBAS TaqMan HBV Test version 2 for Chinese HBV infections owing to a mismatch with the primer/probe. A duplex real-time PCR assay based on the S and C regions could solve this problem to some extent.

  16. A Single Electrochemical Probe Used for Analysis of Multiple Nucleic Acid Sequences

    Science.gov (United States)

    Mills, Dawn M.; Calvo-Marzal, Percy; Pinzon, Jeffer M.; Armas, Stephanie; Kolpashchikov, Dmitry M.; Chumbimuni-Torres, Karin Y.

    2017-01-01

    Electrochemical hybridization sensors have been explored extensively for analysis of specific nucleic acids. However, commercialization of the platform is hindered by the need for attachment of separate oligonucleotide probes complementary to a RNA or DNA target to an electrode’s surface. Here we demonstrate that a single probe can be used to analyze several nucleic acid targets with high selectivity and low cost. The universal electrochemical four-way junction (4J)-forming (UE4J) sensor consists of a universal DNA stem-loop (USL) probe attached to the electrode’s surface and two adaptor strands (m and f) which hybridize to the USL probe and the analyte to form a 4J associate. The m adaptor strand was conjugated with a methylene blue redox marker for signal ON sensing and monitored using square wave voltammetry. We demonstrated that a single sensor can be used for detection of several different DNA/RNA sequences and can be regenerated in 30 seconds by a simple water rinse. The UE4J sensor enables a high selectivity by recognition of a single base substitution, even at room temperature. The UE4J sensor opens a venue for a re-useable universal platform that can be adopted at low cost for the analysis of DNA or RNA targets. PMID:29371782

  17. Optimization of the BLASTN substitution matrix for prediction of non-specific DNA microarray hybridization

    DEFF Research Database (Denmark)

    Eklund, Aron Charles; Friis, Pia; Wernersson, Rasmus

    2010-01-01

    BLASTN accuracy by modifying the substitution matrix and gap penalties. We generated gene expression microarray data for samples in which 1 or 10% of the target mass was an exogenous spike of known sequence. We found that the 10% spike induced 2-fold intensity changes in 3% of the probes, two......-third of which were decreases in intensity likely caused by bulk-hybridization. These changes were correlated with similarity between the spike and probe sequences. Interestingly, even very weak similarities tended to induce a change in probe intensity with the 10% spike. Using this data, we optimized the BLASTN...... substitution matrix to more accurately identify probes susceptible to non-specific hybridization with the spike. Relative to the default substitution matrix, the optimized matrix features a decreased score for A–T base pairs relative to G–C base pairs, resulting in a 5–15% increase in area under the ROC curve...

  18. mathFISH, a Web Tool That Uses Thermodynamics-Based Mathematical Models for In Silico Evaluation of Oligonucleotide Probes for Fluorescence In Situ Hybridization▿ †

    OpenAIRE

    Yilmaz, L. Safak; Parnerkar, Shreyas; Noguera, Daniel R.

    2010-01-01

    Mathematical models of RNA-targeted fluorescence in situ hybridization (FISH) for perfectly matched and mismatched probe/target pairs are organized and automated in web-based mathFISH (http://mathfish.cee.wisc.edu). Offering the users up-to-date knowledge of hybridization thermodynamics within a theoretical framework, mathFISH is expected to maximize the probability of success during oligonucleotide probe design.

  19. Nucleic acid detection based on the use of microbeads: a review

    International Nuclear Information System (INIS)

    Rödiger, Stefan; Liebsch, Claudia; Schmidt, Carsten; Schierack, Peter; Lehmann, Werner; Resch-Genger, Ute; Schedler, Uwe

    2014-01-01

    Microbead-based technologies represent elegant and versatile approaches for highly parallelized quantitative multiparameter assays. They also form the basis of various techniques for detection and quantification of nucleic acids and proteins. Nucleic acid-based methods include hybridization assays, solid-phase PCR, sequencing, and trapping assays. Microbead assays have been improved in the past decades and are now important tools in routine and point-of-care diagnostics as well as in life science. Its advances include low costs, low workload, high speed and high-throughput automation. The potential of microbead-based assays therefore is apparent, and commercial applications can be found in the detection and discrimination of single nucleotide polymorphism, of pathogens, and in trapping assays. This review provides an overview on microbead-based platforms for biosensing with a main focus on nucleic acid detection (including amplification strategies and on selected probe systems using fluorescent labeling). Specific sections cover chemical properties of microbeads, the coupling of targets onto solid surfaces, microbead probe systems (mainly oligonucleotide probes), microbead detection schemes (with subsections on suspension arrays, microfluidic devices, and immobilized microbeads), quantification of nucleic acids, PCR in solution and the detection of amplicons, and methods for solid-phase amplification. We discuss selected trends such as microbead-coupled amplification, heterogeneous and homogenous DNA hybridization assays, real-time assays, melting curve analysis, and digital microbead assays. We finally discuss the relevance and trends of the methods in terms of high-level multiplexed analysis and their potential in diagnosis and personalized medicine. (author)

  20. Referral population studies underestimate differences between human papillomavirus assays in primary cervical screening

    DEFF Research Database (Denmark)

    Rebolj, M.; Njor, S.; Lynge, E.

    2017-01-01

    with SurePath® cytology, and Hybrid Capture 2 (HC2), cobas, CLART and APTIMA HPV assays. Women with positive test results were offered a follow-up. For all detected HPV infections and HPV-positive high-grade cervical intraepithelial neoplasia (≥CIN2), we studied the distributions of assay-specific signal...

  1. Lack of specific hybridization between the lep genes of Salmonella typhimurium and Bacillus licheniformis

    NARCIS (Netherlands)

    van Dijl, J M; Jong, de Anne; Smith, H; Bron, Sierd; Venema, G

    1991-01-01

    This paper describes an attempt to clone the Bacillus licheniformis lep gene, encoding signal peptidase, using the Salmonella typhimurium lep gene as a hybridization probe. Although a hybridizing fragment was obtained, DNA sequence analysis indicated that it did not contain the lep gene. Instead,

  2. Determination of gene expression patterns using high-throughput RNA in situ hybridizaion to whole-mount Drosophila embryos

    Energy Technology Data Exchange (ETDEWEB)

    Weiszmann, R.; Hammonds, A.S.; Celniker, S.E.

    2009-04-09

    We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4oC for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.

  3. Dual-probe near-field fiber head with gap servo control for data storage applications.

    Science.gov (United States)

    Fang, Jen-Yu; Tien, Chung-Hao; Shieh, Han-Ping D

    2007-10-29

    We present a novel fiber-based near-field optical head consisting of a straw-shaped writing probe and a flat gap sensing probe. The straw-shaped probe with a C-aperture on the end face exhibits enhanced transmission by a factor of 3 orders of magnitude over a conventional fiber probe due to a hybrid effect that excites both propagation modes and surface plasmon waves. In the gap sensing probe, the spacing between the probe and the disk surface functions as an external cavity. The high sensitivity of the output power to the change in the gap width is used as a feedback control signal. We characterize and design the straw-shaped writing probe and the flat gap sensing probe. The dual-probe system is installed on a conventional biaxial actuator to demonstrate the capability of flying over a disk surface with nanometer position precision.

  4. Evolving BioAssay Ontology (BAO): modularization, integration and applications.

    Science.gov (United States)

    Abeyruwan, Saminda; Vempati, Uma D; Küçük-McGinty, Hande; Visser, Ubbo; Koleti, Amar; Mir, Ahsan; Sakurai, Kunie; Chung, Caty; Bittker, Joshua A; Clemons, Paul A; Brudz, Steve; Siripala, Anosha; Morales, Arturo J; Romacker, Martin; Twomey, David; Bureeva, Svetlana; Lemmon, Vance; Schürer, Stephan C

    2014-01-01

    The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and

  5. Rapid Identification of Seven Waterborne Exophiala Species by RCA DNA Padlock Probes.

    Science.gov (United States)

    Najafzadeh, M J; Vicente, V A; Feng, Peiying; Naseri, A; Sun, Jiufeng; Rezaei-Matehkolaei, A; de Hoog, G S

    2018-03-05

    The black yeast genus Exophiala includes numerous potential opportunistic species that potentially cause systematic and disseminated infections in immunocompetent individuals. Species causing systemic disease have ability to grow at 37-40 °C, while others consistently lack thermotolerance and are involved in diseases of cold-blooded, waterborne vertebrates and occasionally invertebrates. We explain a fast and sensitive assay for recognition and identification of waterborne Exophiala species without sequencing. The ITS rDNA region of seven Exophiala species (E. equina, E. salmonis, E. opportunistica, E. pisciphila, E. aquamarina, E. angulospora and E. castellanii) along with the close relative Veronaea botryosa was sequenced and aligned for the design of specific padlock probes for the detection of characteristic single-nucleotide polymorphisms. The assay demonstrated to successfully amplify DNA of target fungi, allowing detection at the species level. Amplification products were visualized on 1% agarose gels to confirm specificity of probe-template binding. Amounts of reagents were reduced to prevent the generation of false positive results. The simplicity, tenderness, robustness and low expenses provide padlock probe assay (RCA) a definite place as a very practical method among isothermal approaches for DNA diagnostics.

  6. Ultrasensitive Faraday cage-type electrochemiluminescence assay for femtomolar miRNA-141 via graphene oxide and hybridization chain reaction-assisted cascade amplification.

    Science.gov (United States)

    Lu, Jing; Wu, Lin; Hu, Yufang; Wang, Sui; Guo, Zhiyong

    2018-06-30

    In this study, a novel electrochemiluminescence (ECL) biosensor for sensitive detection of femtomolar miRNA-141 was constructed on the basis of Faraday cage-type strategy via graphene oxide (GO) and hybridization chain reaction (HCR)-assisted cascade amplification. A capture probe (CP) was immobilized on Fe 3 O 4 @SiO 2 @Au nanoparticles as capture unit, which could catch the miRNA-141, and the immobilization of the signal unit (Ru(phen) 3 2+ -HCR/GO) was allowed via nucleic acid hybridization. The prepared biosensor exhibited two advantages for signal amplification: firstly, GO could lap on the electrode surface directly, extending Outer Helmholtz Plane (OHP) of the sensor due to the large surface area and good electronic transport property; secondly, HCR-assisted cascade amplification was designed by anchoring all HCR products on the GO surface, then embedding Ru(phen) 3 2+ as a signal readout pathway. All these signal molecules could take part in electrochemical reactions, thus further enhancing the ECL signal drastically. Therefore, the proposed sensor constructed by integrating HCR with Faraday cage-type strategy displayed an ultrasensitive detection platform for the miRNA-141 with a low detection limit of 0.03 fM. In addition, this proposed biosensor provides a universal platform for analysis of other microRNAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Detection of the Light Organ Symbiont, Vibrio fischeri, in Hawaiian Seawater by Using lux Gene Probes

    Science.gov (United States)

    Lee, Kyu-Ho; Ruby, Edward G.

    1992-01-01

    Symbiotic bacteria that inhabit the light-emitting organ of the Hawaiian squid Euprymna scolopes are distinctive from typical Vibrio fischeri organisms in that they are not visibly luminous when grown in laboratory culture. Therefore, the abundance of these bacteria in seawater samples cannot be estimated simply by identifying them among luminous colonies that arise on nutrient agar plates. Instead, we have used luxR and polymerase chain reaction generated luxA gene probes to identify both luminous and non-visibly luminous V. fischeri colonies by DNA-DNA hybridization. The probes were specific, hybridizing at least 50 to 100 times more strongly to immobilized DNAs from V. fischeri strains than to those of pure cultures of other related species. Thus, even non-visibly luminous V. fischeri colonies could be identified among colonies obtained from natural seawater samples by their probe-positive reaction. Bacteria in seawater samples, obtained either within or distant from squid habitats, were collected on membrane filters and incubated until colonies appeared. The filters were then observed for visibly luminous V. fischeri colonies and hybridized with the lux gene probes to determine the number of total V. fischeri colonies (both luminous and non-visibly luminous). We detected no significant differences in the abundance of luminous V. fischeri CFU in any of the water samples observed (≤1 to 3 CFU/100 ml). However, probe-positive colonies of V. fischeri (up to 900 CFU/100 ml) were found only in seawater collected from within the natural habitats of the squids. A number of criteria were used to confirm that these probe-positive strains were indistinguishable from symbiotic V. fischeri. Therefore, the luxA and luxR gene probes were species specific and gave a reliable estimate of the number of culturable V. fischeri colonies in natural water samples. Images PMID:16348678

  8. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy.

    Science.gov (United States)

    Zhang, Linqun; Liu, Yuanjian; Li, Ying; Zhao, Yuewu; Wei, Wei; Liu, Songqin

    2016-08-24

    A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6](3+), RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL(-1) to 10 U mL(-1), with a detection limit down to 0.03 U mL(-1). Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Application of a Novel and Automated Branched DNA in Situ Hybridization Method for the Rapid and Sensitive Localization of mRNA Molecules in Plant Tissues

    Directory of Open Access Journals (Sweden)

    Andrew J. Bowling

    2014-04-01

    Full Text Available Premise of the study: A novel branched DNA detection technology, RNAscope in situ hybridization (ISH, originally developed for use on human clinical and animal tissues, was adapted for use in plant tissue in an attempt to overcome some of the limitations associated with traditional ISH assays. Methods and Results: Zea mays leaf tissue was formaldehyde fixed and paraffin embedded (FFPE and then probed with the RNAscope ISH assay for two endogenous genes, phosphoenolpyruvate carboxylase (PEPC and phosphoenolpyruvate carboxykinase (PEPCK. Results from both manual and automated methods showed tissue- and cell-specific mRNA localization patterns expected from these well-studied genes. Conclusions: RNAscope ISH is a sensitive method that generates high-quality, easily interpretable results from FFPE plant tissues. Automation of the RNAscope method on the Ventana Discovery Ultra platform allows significant advantages for repeatability, reduction in variability, and flexibility of workflow processes.

  10. Identification of squid species by melting temperature shifts on fluorescence melting curve analysis (FMCA) using single dual-labeled probe

    Science.gov (United States)

    Koh, Eunjung; Song, Ha Jeong; Kwon, Na Young; Kim, Gi Won; Lee, Kwang Ho; Jo, Soyeon; Park, Sujin; Park, Jihyun; Park, Eun Kyeong; Hwang, Seung Yong

    2017-06-01

    Real time PCR is a standard method for identification of species. One of limitations of the qPCR is that there would be false-positive result due to mismatched hybridization between target sequence and probe depending on the annealing temperature in the PCR condition. As an alternative, fluorescence melting curve analysis (FMCA) could be applied for species identification. FMCA is based on a dual-labeled probe. Even with subtle difference of target sequence, there are visible melting temperature (Tm) shift. One of FMCA applications is distinguishing organisms distributed and consumed globally as popular food ingredients. Their prices are set by species or country of origin. However, counterfeiting or distributing them without any verification procedure are becoming social problems and threatening food safety. Besides distinguishing them in naked eye is very difficult and almost impossible in any processed form. Therefore, it is necessary to identify species in molecular level. In this research three species of squids which have 1-2 base pair differences each are selected as samples since they have the same issue. We designed a probe which perfectly matches with one species and the others mismatches 2 and 1 base pair respectively and labeled with fluorophore and quencher. In an experiment with a single probe, we successfully distinguished them by Tm shift depending on the difference of base pair. By combining FMCA and qPCR chip, smaller-scale assay with higher sensitivity and resolution could be possible, andc furthermore, enabling results analysis with smart phone would realize point-of-care testing (POCT).

  11. Non-destructive assay system for uranium and plutonium in reprocessing input solutions. Hybrid K-edge/XRF Densitometer. JASPAS JC-11 final report

    International Nuclear Information System (INIS)

    Surugaya, N.; Abe, K.; Kurosawa, A.; Ikeda, H.; Kuno, Y.

    1997-05-01

    As a part of JASPAS programme, a non-radioactive assay system for the accountability of uranium and plutonium in input dissolver solutions of a spent fuel reprocessing plant, called Hybrid K-edge/XRF Densitometer, has been developed at the Tokai Reprocessing plant (TRP) since 1991. The instrument is the one of the hybrid type combined K-edge densitometry (KED) and X-ray fluorescence (XRF) analysis. The KED is used to determine the uranium concentration and the XRF is used to determine the U/Pu ratio. These results give the plutonium concentration in consequence. It is considered that the instrument has the capability of timely on-site verification for input accountancy. The instrument had been installed in the analytical hot cell at the TRP and the experiments comparing with Isotope Dilution Mass Spectrometry (IDMS) method have been carried out. As the results of measurements for the actual input solutions in the acceptance and performance tests, it was typically confirmed that the precision for determining uranium concentration by the KED was within 0.2%, whereas the XRF for plutonium performed within 0.7%. This final report summarizes the design information and performance data so as to end the JASPAS programme. (author)

  12. Single-Labeled Oligonucleotides Showing Fluorescence Changes upon Hybridization with Target Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Gil Tae Hwang

    2018-01-01

    Full Text Available Sequence-specific detection of nucleic acids has been intensively studied in the field of molecular diagnostics. In particular, the detection and analysis of single-nucleotide polymorphisms (SNPs is crucial for the identification of disease-causing genes and diagnosis of diseases. Sequence-specific hybridization probes, such as molecular beacons bearing the fluorophore and quencher at both ends of the stem, have been developed to enable DNA mutation detection. Interestingly, DNA mutations can be detected using fluorescently labeled oligonucleotide probes with only one fluorophore. This review summarizes recent research on single-labeled oligonucleotide probes that exhibit fluorescence changes after encountering target nucleic acids, such as guanine-quenching probes, cyanine-containing probes, probes containing a fluorophore-labeled base, and microenvironment-sensitive probes.

  13. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.

    Science.gov (United States)

    Huang, S F; Xiao, S; Renshaw, A A; Loughlin, K R; Hudson, T J; Fletcher, J A

    1996-11-01

    Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and

  14. Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants

    Directory of Open Access Journals (Sweden)

    Andrea Gaedigk

    2010-10-01

    Full Text Available Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five kb long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79, intron 2 (CYP2D6*80 and intron 5 (CYP2D6*67. A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5’-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B. Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]. Quantitative copy number determination, sequence analyses and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc, but may also cause results that may interfere with the genotype determination. Detection of hybrid events, ‘single’ and tandem, will contribute to more accurate phenotype prediction from genotype data.

  15. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The results of FISH were in conformity with the results of cytogenetic analysis in all the normal and aneuploid cases except in one case of structural chromosomal abnormality. The hybridization efficiency of the 5 probes used for the detection of aneuploidies was 100%. Using these probes FISH assay yielded discrete ...

  16. Fluorescent porous silicon biological probes with high quantum efficiency and stability.

    Science.gov (United States)

    Tu, Chang-Ching; Chou, Ying-Nien; Hung, Hsiang-Chieh; Wu, Jingda; Jiang, Shaoyi; Lin, Lih Y

    2014-12-01

    We demonstrate porous silicon biological probes as a stable and non-toxic alternative to organic dyes or cadmium-containing quantum dots for imaging and sensing applications. The fluorescent silicon quantum dots which are embedded on the porous silicon surface are passivated with carboxyl-terminated ligands through stable Si-C covalent bonds. The porous silicon bio-probes have shown photoluminescence quantum yield around 50% under near-UV excitation, with high photochemical and thermal stability. The bio-probes can be efficiently conjugated with antibodies, which is confirmed by a standard enzyme-linked immunosorbent assay (ELISA) method.

  17. A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina.

    Science.gov (United States)

    Bidard, Frédérique; Imbeaud, Sandrine; Reymond, Nancie; Lespinet, Olivier; Silar, Philippe; Clavé, Corinne; Delacroix, Hervé; Berteaux-Lecellier, Véronique; Debuchy, Robert

    2010-06-18

    The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating. We present a novel in silico procedure which addresses these issues and includes experimental screening, as an empirical approach is the best strategy to identify optimal probes in the in silico outcome. We used four criteria for in silico probe selection: cross-hybridization, hairpin stability, probe location relative to coding sequence end and intron position. This latter criterion is critical when exon-intron gene structure predictions for intron-rich genes are inaccurate. For each coding sequence (CDS), we selected a sub-set of four probes. These probes were included in a test microarray, which was used to evaluate the hybridization behavior of each probe. The best probe for each CDS was selected according to three experimental criteria: signal-to-noise ratio, signal reproducibility, and representative signal intensities. This procedure was applied for the development of a gene expression Agilent platform for the filamentous fungus Podospora anserina and the selection of a single 60-mer probe for each of the 10,556 P. anserina CDS. A reliable gene expression microarray version based on the Agilent 44K platform was developed with four spot replicates of each probe to increase statistical significance of analysis.

  18. A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina

    Directory of Open Access Journals (Sweden)

    Bidard Frédérique

    2010-06-01

    Full Text Available Abstract Background The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating. We present a novel in silico procedure which addresses these issues and includes experimental screening, as an empirical approach is the best strategy to identify optimal probes in the in silico outcome. Findings We used four criteria for in silico probe selection: cross-hybridization, hairpin stability, probe location relative to coding sequence end and intron position. This latter criterion is critical when exon-intron gene structure predictions for intron-rich genes are inaccurate. For each coding sequence (CDS, we selected a sub-set of four probes. These probes were included in a test microarray, which was used to evaluate the hybridization behavior of each probe. The best probe for each CDS was selected according to three experimental criteria: signal-to-noise ratio, signal reproducibility, and representative signal intensities. This procedure was applied for the development of a gene expression Agilent platform for the filamentous fungus Podospora anserina and the selection of a single 60-mer probe for each of the 10,556 P. anserina CDS. Conclusions A reliable gene expression microarray version based on the Agilent 44K platform was developed with four spot replicates of each probe to increase statistical significance of analysis.

  19. A micromachined membrane-based active probe for biomolecular mechanics measurement

    Science.gov (United States)

    Torun, H.; Sutanto, J.; Sarangapani, K. K.; Joseph, P.; Degertekin, F. L.; Zhu, C.

    2007-04-01

    A novel micromachined, membrane-based probe has been developed and fabricated as assays to enable parallel measurements. Each probe in the array can be individually actuated, and the membrane displacement can be measured with high resolution using an integrated diffraction-based optical interferometer. To illustrate its application in single-molecule mechanics experiments, this membrane probe was used to measure unbinding forces between L-selectin reconstituted in a polymer-cushioned lipid bilayer on the probe membrane and an antibody adsorbed on an atomic force microscope cantilever. Piconewton range forces between single pairs of interacting molecules were measured from the cantilever bending while using the membrane probe as an actuator. The integrated diffraction-based optical interferometer of the probe was demonstrated to have floor for frequencies as low as 3 Hz with a differential readout scheme. With soft probe membranes, this low noise level would be suitable for direct force measurements without the need for a cantilever. Furthermore, the probe membranes were shown to have 0.5 µm actuation range with a flat response up to 100 kHz, enabling measurements at fast speeds.

  20. Development of Prevotella intermedia-specific PCR primers based on the nucleotide sequences of a DNA probe Pig27.

    Science.gov (United States)

    Kim, Min Jung; Hwang, Kyung Hwan; Lee, Young-Seok; Park, Jae-Yoon; Kook, Joong-Ki

    2011-03-01

    The aim of this study was to develop Prevotella intermedia-specific PCR primers based on the P. intermedia-specific DNA probe. The P. intermedia-specific DNA probe was screened by inverted dot blot hybridization and confirmed by Southern blot hybridization. The nucleotide sequences of the species-specific DNA probes were determined using a chain termination method. Southern blot analysis showed that the DNA probe, Pig27, detected only the genomic DNA of P. intermedia strains. PCR showed that the PCR primers, Pin-F1/Pin-R1, had species-specificity for P. intermedia. The detection limits of the PCR primer sets were 0.4pg of the purified genomic DNA of P. intermedia ATCC 49046. These results suggest that the PCR primers, Pin-F1/Pin-R1, could be useful in the detection of P. intermedia as well as in the development of a PCR kit in epidemiological studies related to periodontal diseases. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  1. Dendrimer-based biosensor for chemiluminescent detection of DNA hybridization

    International Nuclear Information System (INIS)

    Liu, P.; Hun, X.; Qing, H.

    2011-01-01

    We report on a highly sensitive chemiluminescent (CL) biosensor for the sequence-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticles that were covered with a dendrimer. The modified probe is composed of gold nanoparticles, a dendrimer, the CL reagent, and the DNA. The capture probe DNA was immobilized on magnetic beads covered with gold. It first hybridizes with the target DNA and then with one terminal end of the signal DNA on the barcoded DNA probe. CL was generated by adding H 2 O 2 and Co(II) ions as the catalyst. The immobilization of dendrimer onto the gold nanoparticles can significantly enhance sensitivity and gives a detection limit of 6 fmol L -1 of target DNA. (author)

  2. Colorimetric detection of Cucumber green mottle mosaic virus using unmodified gold nanoparticles as colorimetric probes.

    Science.gov (United States)

    Wang, Lin; Liu, Zhanmin; Xia, Xueying; Yang, Cuiyun; Huang, Junyi; Wan, Sibao

    2017-05-01

    Cucumber green mottle mosaic virus (CGMMV)causes a severe mosaic symptom of watermelon and cucumber, and can be transmitted via infected cucumber seeds, leaves and soil. It remains a challenge to detect this virus to prevent its introduction and infection and spread in fields. For this purpose, a simple and sensitive label-free colorimetric detection method for CGMMV has been developed with unmodified gold nanoparticles (AuNPs) as colorimetric probes. The method is based on the finding that the presence of RT-PCR target products of CGMMV and species-specific probes results in color change of AuNPs from red to blue after NaCl induction. Normally, species-specific probes attach to the surface of AuNPs and thereby increasing their resistance to NaCl-induced aggregation. The concentration of sodium, probes in the reaction system and evaluation of specificity and sensitivity of a novel assay, visual detection of Cucumber green mottle mosaic virus using unmodified AuNPs has been carried out with simple preparation of samples in our study. Through this assay, as low as 30pg/μL of CGMMV RNA was thus detected visually, by the naked eye, without the need for any sophisticated, expensive instrumentation and biochemical reagents. The specificity was 100% and exhibited good reproducibility in our assays. The results note that this assay is highly species-specific, simple, low-cost, and visual for easy detection of CGMMV in plant tissues. Therefore, visual assay is a potentially useful tool for middle or small-scales corporations and entry-exit inspection and quarantine bureau to detect CGMMV in cucumber seeds or plant tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Design of a dual-function peptide probe as a binder of angiotensin II and an inducer of silver nanoparticle aggregation for use in label-free colorimetric assays.

    Science.gov (United States)

    Okochi, Mina; Kuboyama, Masashi; Tanaka, Masayoshi; Honda, Hiroyuki

    2015-09-01

    Label-free colorimetric assays using metallic nanoparticles have received much recent attention, for their application in simple and sensitive methods for detection of biomolecules. Short peptide probes that can bind to analyte biomolecules are attractive ligands in molecular nanotechnology; however, identification of biological recognition motifs is usually based on trial-and-error experiments. Herein, a peptide probe was screened for colorimetric detection of angiotensin II (Ang II) using a mechanism for non-crosslinking aggregation of silver nanoparticles (AgNPs). The dual-function peptides, which bind to the analyte and induce AgNP aggregation, were identified using a two-step strategy: (1) screening of an Ang II-binding peptide from an Ang II receptor sequence library, using SPOT technology, which enable peptides synthesis on cellulose membranes via an Fmoc method and (2) selection of peptide probes that effectively induce aggregation of AgNPs using a photolinker modified peptide array. Using the identified peptide probe, KGKNKRRR, aggregation of AgNPs was detected by observation of a pink color in the absence of Ang II, whereas AgNPs remained dispersed in the presence of Ang II (yellow). The color changes were not observed in the presence of other hormone molecules. Ang II could be detected within 15 min, with a detection limit of 10 µM, by measuring the ratio of absorbance at 400 nm and 568 nm; the signal could also be observed with the naked eye. These data suggest that the peptide identified here could be used as a probe for simple and rapid colorimetric detection of Ang II. This strategy for the identification of functional peptides shows promise for the development of colorimetric detection of various diagnostically important biomolecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A hybrid peptide PTS that facilitates transmembrane delivery and its application for the rapid in vivo imaging via near-infrared fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Xuejiao eYan

    2016-03-01

    Full Text Available Background and purpose: Intravital imaging provides invaluable readouts for clinical diagnoses and therapies and shows great potential in the design of individualized drug dosage regimes. Ts is a mammalian free cell membrane-penetrating peptide. This study aimed to introduce a novel approach to the design of a cancer-selective peptide on the basis of a membrane-penetrating peptide and to explore its potential as a carrier of medical substances. Experimental approach: Ts was linked with a αvβ3-binding peptide P1c to create a hybrid referred to as PTS. The hybrid was labeled with an FITC or Cy5.5 as an imaging indicator to evaluate its in vitro and in vivo bioactivity. Key results: Hemolysis tests proved that in comparison with Ts, PTS caused similar or even less leakage of human erythrocytes at concentrations of up to 1 mmol/L. Flow cytometry assay and confocal microscopy demonstrated the following. 1 P1c alone could target and mostly halt at the cancer cell membrane. 2 Ts alone could not bind to the membrane sufficiently. 3 P1c greatly enhanced the binding affinity of PTS with MDA-MB-231 breast cancer cells that upregulated αvβ3. 4 Ts conferred PTS with the ability to traverse a cell membrane and thus facilitate the transmembrane delivery of imaging probes. In vivo near-infrared fluorescence (NIRF imaging demonstrated that the imaging probes were rapidly concentrated in a MDA-MB-231 tumor tissue within 1 h after intravenous injection. Conclusions and implications: PTS exhibited the capability of targeting specific tumors and greatly facilitating the transmembrane delivery of imaging probes.

  5. Radiation hybrids from human chromosome 3: A basis for the construction of region and specific sublibraries

    International Nuclear Information System (INIS)

    Atchison, L.; Cosmis, R.L.; Atchison, M.L.

    1990-01-01

    The authors are interested in identifying genes on human chromosome involved in disease processes. To date at least 20 different loci on this chromosome are implicated with various disease states. DNA libraries containing clones derived from a small chromosomal subregion implicated in a particular disease would greatly assist these studies. They have utilized the radiation hybrid (RH) technique to generate a series of somatic cell hybrids that contain small segments of human chromosome 3 as the only human genetic material. A Chinese hamster-human cell hybrid (Q314-2) containing only human chromosome 3 was used to prepare radiation hybrids. Cells were lethally X-irradiated with 6,000 rads and fused to Urd(??) Chinese hamster cells by PEG 1000 treatment. The majority of hybrids (>72%) analyzed retained portions of chromosome 3. The amount of chromosome 3 in each hybrid ranged from nearly all of the chromosome to very little. Currently these hybrids are being further characterized with single copy probes of known map location in order to isolate regions of chromosome 3 that contain specific disease locus. These reduced hybrids can then be used for the construction of region specific libraries and for the generation of new DNA probes from the specific region of interest

  6. Femtomolar detection of single mismatches by discriminant analysis of DNA hybridization events using gold nanoparticles.

    Science.gov (United States)

    Ma, Xingyi; Sim, Sang Jun

    2013-03-21

    Even though DNA-based nanosensors have been demonstrated for quantitative detection of analytes and diseases, hybridization events have never been numerically investigated for further understanding of DNA mediated interactions. Here, we developed a nanoscale platform with well-designed capture and detection gold nanoprobes to precisely evaluate the hybridization events. The capture gold nanoprobes were mono-laid on glass and the detection probes were fabricated via a novel competitive conjugation method. The two kinds of probes combined in a suitable orientation following the hybridization with the target. We found that hybridization efficiency was markedly dependent on electrostatic interactions between DNA strands, which can be tailored by adjusting the salt concentration of the incubation solution. Due to the much lower stability of the double helix formed by mismatches, the hybridization efficiencies of single mismatched (MMT) and perfectly matched DNA (PMT) were different. Therefore, we obtained an optimized salt concentration that allowed for discrimination of MMT from PMT without stringent control of temperature or pH. The results indicated this to be an ultrasensitive and precise nanosensor for the diagnosis of genetic diseases.

  7. Applications of in situ hybridization to plant-improvement

    International Nuclear Information System (INIS)

    Abbasi, F.M.

    2004-01-01

    In situ hybridization is a powerful method for characteristic alien addition and substitution lines. RFLP analysis can identify the presence of a particular individual chromosome, but whether they are as a pair or as a single chromosome cannot be determined. In situ hybridization has become established as an essential method in cell and molecular biology. It is able to link DNA sequences with their organization and physical position. The rate of technology-development in the field of in situ hybridization has been rapid: radioactive probes are now rarely used, while labeling methods, fluorochromes, chromosomes and tissue-preparation methods, microscope and imaging technology have all useful in functional genomics and localization of transgenes on the chromosomes. (author)

  8. The effect of the shape of single, sub-ms voltage pulses on the rates of surface immobilization and hybridization of DNA

    International Nuclear Information System (INIS)

    Cabeca, R; Rodrigues, M; Chu, V; Conde, J P; Prazeres, D M F

    2009-01-01

    Electric fields generated by single square and sinusoidal voltage pulses with amplitudes below 2 V were used to assist the covalent immobilization of single-stranded, thiolated DNA probes, onto a chemically functionalized SiO 2 surface and to assist the specific hybridization of single-stranded DNA targets with immobilized complementary probes. The single-stranded immobilized DNA probes were either covalently immobilized (chemisorption) or electrostatically adsorbed (physisorption) to a chemically functionalized surface. Comparing the speed of electric field assisted immobilization and hybridization with the corresponding control reactions (without electric field), an increase of several orders of magnitude is observed, with the reaction timescaled down from 1 to 2 h to a range between 100 ns and 1 ms. The influence of the shape of the voltage pulse (square versus sinusoidal) and its duration were studied for both immobilization and hybridization reactions. The results show that pulsed electric fields are a useful tool to achieve temporal and spatial control of surface immobilization and hybridization reactions of DNA.

  9. Voltage Profile Enhancement and Reduction of Real Power loss by Hybrid Biogeography Based Artificial Bee Colony algorithm

    Directory of Open Access Journals (Sweden)

    K. Lenin

    2014-04-01

    Full Text Available This paper presents Hybrid Biogeography algorithm for solving the multi-objective reactive power dispatch problem in a power system. Real Power Loss minimization and maximization of voltage stability margin are taken as the objectives. Artificial bee colony optimization (ABC is quick and forceful algorithm for global optimization. Biogeography-Based Optimization (BBO is a new-fangled biogeography inspired algorithm. It mainly utilizes the biogeography-based relocation operator to share the information among solutions. In this work, a hybrid algorithm with BBO and ABC is projected, and named as HBBABC (Hybrid Biogeography based Artificial Bee Colony Optimization, for the universal numerical optimization problem. HBBABC merge the searching behavior of ABC with that of BBO. Both the algorithms have different solution probing tendency like ABC have good exploration probing tendency while BBO have good exploitation probing tendency.  HBBABC used to solve the reactive power dispatch problem and the proposed technique has been tested in standard IEEE30 bus test system.

  10. DNA Probes Show Genetic Variation in Cyanobacterial Symbionts of the Azolla Fern and a Closer Relationship to Free-Living Nostoc Strains than to Free-Living Anabaena Strains

    Science.gov (United States)

    Plazinski, Jacek; Zheng, Qi; Taylor, Rona; Croft, Lynn; Rolfe, Barry G.; Gunning, Brian E. S.

    1990-01-01

    Twenty-two isolates of Anabaena azollae derived from seven Azolla species from various geographic and ecological sources were characterized by DNA-DNA hybridization. Cloned DNA fragments derived from the genomic sequences of three different A. azollae isolates were used to detect restriction fragment length polymorphism among all symbiotic anabaenas. DNA clones were radiolabeled and hybridized against southern blot transfers of genomic DNAs of different isolates of A. azollae digested with restriction endonucleases. Eight DNA probes were selected to identify the Anabaena strains tested. Two were strain specific and hybridized only to A. azollae strains isolated from Azolla microphylla or Azolla caroliniana. One DNA probe was section specific (hybridized only to anabaenas isolated from Azolla ferns representing the section Euazolla), and five other probes gave finer discrimination among anabaenas representing various ecotypes of Azolla species. These cloned genomic DNA probes identified 11 different genotypes of A. azollae isolates. These included three endosymbiotic genotypes within Azolla filiculoides species and two genotypes within both A. caroliniana and Azolla pinnata endosymbionts. Although we were not able to discriminate among anabaenas extracted from different ecotypes of Azolla nilotica, Azolla mexicina, Azolla rubra and Azolla microphylla species, each of the endosymbionts was easily identified as a unique genotype. When total DNA isolated from free-living Anabaena sp. strain PCC7120 was screened, none of the genomic DNA probes gave detectable positive hybridization. Total DNA of Nostoc cycas PCC7422 hybridized with six of eight genomic DNA fragments. These data imply that the dominant symbiotic organism in association with Azolla spp. is more closely related to Nostoc spp. than to free-living Anabaena spp. Images PMID:16348182

  11. Ultraspecific probes for high throughput HLA typing

    Directory of Open Access Journals (Sweden)

    Eggers Rick

    2009-02-01

    Full Text Available Abstract Background The variations within an individual's HLA (Human Leukocyte Antigen genes have been linked to many immunological events, e.g. susceptibility to disease, response to vaccines, and the success of blood, tissue, and organ transplants. Although the microarray format has the potential to achieve high-resolution typing, this has yet to be attained due to inefficiencies of current probe design strategies. Results We present a novel three-step approach for the design of high-throughput microarray assays for HLA typing. This approach first selects sequences containing the SNPs present in all alleles of the locus of interest and next calculates the number of base changes necessary to convert a candidate probe sequences to the closest subsequence within the set of sequences that are likely to be present in the sample including the remainder of the human genome in order to identify those candidate probes which are "ultraspecific" for the allele of interest. Due to the high specificity of these sequences, it is possible that preliminary steps such as PCR amplification are no longer necessary. Lastly, the minimum number of these ultraspecific probes is selected such that the highest resolution typing can be achieved for the minimal cost of production. As an example, an array was designed and in silico results were obtained for typing of the HLA-B locus. Conclusion The assay presented here provides a higher resolution than has previously been developed and includes more alleles than previously considered. Based upon the in silico and preliminary experimental results, we believe that the proposed approach can be readily applied to any highly polymorphic gene system.

  12. Quantitative bioanalysis of antibody-conjugated payload in monkey plasma using a hybrid immuno-capture LC-MS/MS approach: Assay development, validation, and a case study.

    Science.gov (United States)

    Liu, Ang; Kozhich, Alexander; Passmore, David; Gu, Huidong; Wong, Richard; Zambito, Frank; Rangan, Vangipuram S; Myler, Heather; Aubry, Anne-Françoise; Arnold, Mark E; Wang, Jian

    2015-10-01

    Antibody drug conjugates (ADCs) are complex molecules composed of two pharmacologically distinct components, the cytotoxic payload and the antibody. The measurement of the payload molecules that are attached to the antibody in vivo is important for the evaluation of the safety and efficacy of ADCs, and can also provide distinct information compared to the antibody-related analytes. However, analyzing the antibody-conjugated payload is challenging and in some cases may not be feasible. The in vivo change in drug antibody ratio (DAR), due to deconjugation, biotransformation or other clearance phenomena, generates unique and additional challenges for ADC analysis in biological samples. Here, we report a novel hybrid approach with immuno-capture of the ADC, payload cleavage by specific enzyme, and LC-MS/MS of the cleaved payload to quantitatively measure the concentration of payload molecules still attached to the antibody via linker in plasma. The ADC reference material used for the calibration curve is not likely to be identical to the ADC measured in study samples due to the change in DAR distribution over the PK time course. The assay clearly demonstrated that there was no bias in the measurement of antibody-conjugated payload for ADC with varying DAR, which thus allowed accurate quantification even when the DAR distribution dynamically changes in vivo. This hybrid assay was fully validated based on a combination of requirements for both chromatographic and ligand binding methods, and was successfully applied to support a GLP safety study in monkeys. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Analysis of experimental mink enteritis virus infection in mink: in situ hybridization, serology, and histopathology

    DEFF Research Database (Denmark)

    Uttenthal, Åse; Larsen, S; Lund, E

    1990-01-01

    Strand-specific hybridization probes were used in in situ hybridization studies to localize cells containing mink enteritis virus (MEV) virion DNA or MEV replicative-form DNA and mRNA. Following the experimental MEV infection of 3-month-old unvaccinated mink, a significant increase in serum antib...

  14. Detecting the effects of toxic agents on spermatogenesis using DNA probes

    International Nuclear Information System (INIS)

    Hecht, N.B.

    1987-01-01

    Advances in the molecular biology of spermatogenesis suggest that DNA probes can be used to monitor the effects of toxic agents in male germ cells of mammals. Molecular hybridization analyses with DNA probes can provide a reproducible methodology capable of detecting changes ranging from massive deletions to single base pair substitutions in the genome of exposed individuals. A constantly increasing number of DNA probes that can be used to detect such alterations in human sperm DNA exist for both ubiquitously expressed proteins and for genes solely expressed in the testis. In this chapter, the currently available testicular stage-specific and/or cell type-specific DNA probes and the techniques by which they can be utilized in reproductive toxicology studies are discussed. The advantages, limitations, and future technological advances of this novel biological marker system for the human male reproductive system are also considered

  15. Development and accuracy of quantitative real-time polymerase chain reaction assays for detection and quantification of enterotoxigenic Escherichia coli (ETEC) heat labile and heat stable toxin genes in travelers' diarrhea samples.

    Science.gov (United States)

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC), the leading bacterial pathogen of travelers' diarrhea, is routinely detected by an established DNA hybridization protocol that is neither sensitive nor quantitative. Quantitative real-time polymerase chain reaction (qPCR) assays that detect the ETEC toxin genes eltA, sta1, and sta2 in clinical stool samples were developed and tested using donor stool inoculated with known quantities of ETEC bacteria. The sensitivity of the qPCR assays is 89%, compared with 22% for the DNA hybridization assay, and the limits of detection are 10,000-fold lower than the DNA hybridization assays performed in parallel. Ninety-three clinical stool samples, previously characterized by DNA hybridization, were tested using the new ETEC qPCR assays. Discordant toxin profiles were observed for 22 samples, notably, four samples originally typed as ETEC negative were ETEC positive. The qPCR assays are unique in their sensitivity and ability to quantify the three toxin genes in clinical stool samples.

  16. Distribution and evolution of repeated sequences in genomes of Triatominae (Hemiptera-Reduviidae inferred from genomic in situ hybridization.

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    Full Text Available The subfamily Triatominae, vectors of Chagas disease, comprises 140 species characterized by a highly homogeneous chromosome number. We analyzed the chromosomal distribution and evolution of repeated sequences in Triatominae genomes by Genomic in situ Hybridization using Triatoma delpontei and Triatoma infestans genomic DNAs as probes. Hybridizations were performed on their own chromosomes and on nine species included in six genera from the two main tribes: Triatomini and Rhodniini. Genomic probes clearly generate two different hybridization patterns, dispersed or accumulated in specific regions or chromosomes. The three used probes generate the same hybridization pattern in each species. However, these patterns are species-specific. In closely related species, the probes strongly hybridized in the autosomal heterochromatic regions, resembling C-banding and DAPI patterns. However, in more distant species these co-localizations are not observed. The heterochromatic Y chromosome is constituted by highly repeated sequences, which is conserved among 10 species of Triatomini tribe suggesting be an ancestral character for this group. However, the Y chromosome in Rhodniini tribe is markedly different, supporting the early evolutionary dichotomy between both tribes. In some species, sex chromosomes and autosomes shared repeated sequences, suggesting meiotic chromatin exchanges among these heterologous chromosomes. Our GISH analyses enabled us to acquire not only reliable information about autosomal repeated sequences distribution but also an insight into sex chromosome evolution in Triatominae. Furthermore, the differentiation obtained by GISH might be a valuable marker to establish phylogenetic relationships and to test the controversial origin of the Triatominae subfamily.

  17. Specificity of B-type natriuretic peptide assays

    DEFF Research Database (Denmark)

    Saenger, Amy K.; Rodriguez-Fraga, Olaia; Ler, Ranka

    2017-01-01

    BACKGROUND: B-type natriuretic peptides (BNPs) are used clinically to diagnose and monitor heart failure and are present in the circulation as multiple proBNP-derived fragments. We investigated the specificity of BNP immunoassays with glycosylated and nonglycosylated BNP, N-terminal proBNP (NT......-proBNP), and proBNP peptides to probe the cross-reactivity of each assay. METHODS: Nine B-type natriuretic peptides were studied, including synthetic and recombinant BNP (Shionogi, Scios, Mayo), human and synthetic glycosylated and nonglycosylated NT-proBNP (HyTest, Roche Diagnostics), and human glycosylated......-Rad, Goetze] were evaluated. Specificity was assessed by calculating the recovery between baseline and peptide-spiked human plasma pools at target concentrations of 100 ng/L BNP, 300 ng/L proBNP, or 450 ng/L NT-proBNP. All assays were performed in duplicate. RESULTS: BNP and NT-proBNP assays demonstrated...

  18. Nanogel-quantum dot hybrid nanoparticles for live cell imaging

    International Nuclear Information System (INIS)

    Hasegawa, Urara; Nomura, Shin-ichiro M.; Kaul, Sunil C.; Hirano, Takashi; Akiyoshi, Kazunari

    2005-01-01

    We report here a novel carrier of quantum dots (QDs) for intracellular labeling. Monodisperse hybrid nanoparticles (38 nm in diameter) of QDs were prepared by simple mixing with nanogels of cholesterol-bearing pullulan (CHP) modified with amino groups (CHPNH 2 ). The CHPNH 2 -QD nanoparticles were effectively internalized into the various human cells examined. The efficiency of cellular uptake was much higher than that of a conventional carrier, cationic liposome. These hybrid nanoparticles could be a promising fluorescent probe for bioimaging

  19. Specificity tests of an oligonucleotide probe against food-outbreak salmonella for biosensor detection

    Science.gov (United States)

    Chen, I.-H.; Horikawa, S.; Xi, J.; Wikle, H. C.; Barbaree, J. M.; Chin, B. A.

    2017-05-01

    Phage based magneto-elastic (ME) biosensors have been shown to be able to rapidly detect Salmonella in various food systems to serve food pathogen monitoring purposes. In this ME biosensor platform, the free-standing strip-shaped magneto-elastic sensor is the transducer and the phage probe that recognizes Salmonella in food serves as the bio-recognition element. According to Sorokulova et al. at 2005, a developed oligonucleotide probe E2 was reported to have high specificity to Salmonella enterica Typhimurium. In the report, the specificity tests were focused in most of Enterobacterace groups outside of Salmonella family. Here, to understand the specificity of phage E2 to different Salmonella enterica serotypes within Salmonella Family, we further tested the specificity of the phage probe to thirty-two Salmonella serotypes that were present in the major foodborne outbreaks during the past ten years (according to Centers for Disease Control and Prevention). The tests were conducted through an Enzyme linked Immunosorbent Assay (ELISA) format. This assay can mimic probe immobilized conditions on the magnetoelastic biosensor platform and also enable to study the binding specificity of oligonucleotide probes toward different Salmonella while avoiding phage/ sensor lot variations. Test results confirmed that this oligonucleotide probe E2 was high specific to Salmonella Typhimurium cells but showed cross reactivity to Salmonella Tennessee and four other serotypes among the thirty-two tested Salmonella serotypes.

  20. 0.4-1.2 GHz hybrid Al-CFRP open-boundary quad-ridge horn

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    We present a 0.4-1.2 GHz open-boundary quad-ridge horn to be used as a wide-band probe at the DTU-ESA Spherical Near-Field Antenna Test Facility at the Technical University of Denmark (DTU). Due to adopted hybrid Al-CFRP fabrication technology, the weight of the probe is reduced by a factor of 2...

  1. Influence of DNA treatments on Southern blot hybridization analysis ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... DNA samples obtained by a non-phenol/chloroform isolation method, from three races of Fusarium oxysporum f. sp. lycopersici ... Key words: Fusarium oxysporum, DIG-IGS Probe, Southern hybridization. INTRODUCTION .... Detection of Fusarium spp in plants with monoclonal antibody. Ann. Phytopathol.

  2. Improved multiplex ligation-dependent probe amplification analysis identifies a deleterious PMS2 allele generated by recombination with crossover between PMS2 and PMS2CL.

    Science.gov (United States)

    Wernstedt, Annekatrin; Valtorta, Emanuele; Armelao, Franco; Togni, Roberto; Girlando, Salvatore; Baudis, Michael; Heinimann, Karl; Messiaen, Ludwine; Staehli, Noemie; Zschocke, Johannes; Marra, Giancarlo; Wimmer, Katharina

    2012-09-01

    Heterozygous PMS2 germline mutations are associated with Lynch syndrome. Up to one third of these mutations are genomic deletions. Their detection is complicated by a pseudogene (PMS2CL), which--owing to extensive interparalog sequence exchange--closely resembles PMS2 downstream of exon 12. A recently redesigned multiplex ligation-dependent probe amplification (MLPA) assay identifies PMS2 copy number alterations with improved reliability when used with reference DNAs containing equal numbers of PMS2- and PMS2CL-specific sequences. We selected eight such reference samples--all publicly available--and used them with this assay to study 13 patients with PMS2-defective colorectal tumors. Three presented deleterious alterations: an Alu-mediated exon deletion; a 125-kb deletion encompassing PMS2 and four additional genes (two with tumor-suppressing functions); and a novel deleterious hybrid PMS2 allele produced by recombination with crossover between PMS2 and PMS2CL, with the breakpoint in intron 10 (the most 5' breakpoint of its kind reported thus far). We discuss mechanisms that might generate this allele in different chromosomal configurations (and their diagnostic implications) and describe an allele-specific PCR assay that facilitates its detection. Our data indicate that the redesigned PMS2 MLPA assay is a valid first-line option. In our series, it identified roughly a quarter of all PMS2 mutations. Copyright © 2012 Wiley Periodicals, Inc.

  3. A substrate-optimized electrophoretic mobility shift assay for ADAM12

    DEFF Research Database (Denmark)

    Kotzsch, Alexander; Skovgaard, Tine; Buus, Uwe

    2014-01-01

    long been investigated as pharmaceutical drug targets; however, due to lack of potency and in vivo side effects, none of the small-molecule inhibitors discovered so far has made it beyond clinical testing. Ongoing research on novel selective inhibitors of ADAMs requires reliable biochemical assays...... to validate molecular probes from large-scale screening efforts. Here we describe an electrophoretic mobility shift assay for ADAM12 based on the identification of an optimized peptide substrate that is characterized by excellent performance and reproducibility....

  4. Grafted Cross-Linked Polyolefin Substrates for Peptide Synthesis and Assays

    DEFF Research Database (Denmark)

    1999-01-01

    suited for use in solid-phase biosystems, notably bioassays, such as immunoassays, DNA hybridization assays or PCR amplification. The grafted chains may bear substituents which are such that the polymer-grafted cross-linked polyolefin substrate is swellable by water or aqueous media, in other words...

  5. Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations

    Directory of Open Access Journals (Sweden)

    Miller Crispin J

    2006-06-01

    Full Text Available Abstract Background Microarrays measure the binding of nucleotide sequences to a set of sequence specific probes. This information is combined with annotation specifying the relationship between probes and targets and used to make inferences about transcript- and, ultimately, gene expression. In some situations, a probe is capable of hybridizing to more than one transcript, in others, multiple probes can target a single sequence. These 'multiply targeted' probes can result in non-independence between measured expression levels. Results An analysis of these relationships for Affymetrix arrays considered both the extent and influence of exact matches between probe and transcript sequences. For the popular HGU133A array, approximately half of the probesets were found to interact in this way. Both real and simulated expression datasets were used to examine how these effects influenced the expression signal. It was found not only to lead to increased signal strength for the affected probesets, but the major effect is to significantly increase their correlation, even in situations when only a single probe from a probeset was involved. By building a network of probe-probeset-transcript relationships, it is possible to identify families of interacting probesets. More than 10% of the families contain members annotated to different genes or even different Unigene clusters. Within a family, a mixture of genuine biological and artefactual correlations can occur. Conclusion Multiple targeting is not only prevalent, but also significant. The ability of probesets to hybridize to more than one gene product can lead to false positives when analysing gene expression. Comprehensive annotation describing multiple targeting is required when interpreting array data.

  6. Probing photoinduced electron-transfer in graphene-dye hybrid materials for DSSC

    NARCIS (Netherlands)

    Guarracino, Paola; Gatti, Teresa; Canever, Nicolo; Abdu-Aguye, Mustapha; Loi, Maria Antonietta; Menna, Enzo; Franco, Lorenzo

    2017-01-01

    We investigated the photophysical properties of a newly synthesized hybrid material composed of a triphenylamine dye covalently bound to reduced graphene oxide, potentially relevant as a stable photosensitizer in dye-sensitized solar cells. The photophysical characterization has been carried out by

  7. Towards the development of a hybrid-integrated chip interferometer for online surface profile measurements

    International Nuclear Information System (INIS)

    Kumar, P.; Martin, H.; Jiang, X.

    2016-01-01

    Non-destructive testing and online measurement of surface features are pressing demands in manufacturing. Thus optical techniques are gaining importance for characterization of complex engineering surfaces. Harnessing integrated optics for miniaturization of interferometry systems onto a silicon wafer and incorporating a compact optical probe would enable the development of a handheld sensor for embedded metrology applications. In this work, we present the progress in the development of a hybrid photonics based metrology sensor device for online surface profile measurements. The measurement principle along with test and measurement results of individual components has been presented. For non-contact measurement, a spectrally encoded lateral scanning probe based on the laser scanning microscopy has been developed to provide fast measurement with lateral resolution limited to the diffraction limit. The probe demonstrates a lateral resolution of ∼3.6 μm while high axial resolution (sub-nanometre) is inherently achieved by interferometry. Further the performance of the hybrid tuneable laser and the scanning probe was evaluated by measuring a standard step height sample of 100 nm.

  8. Towards the development of a hybrid-integrated chip interferometer for online surface profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.; Martin, H.; Jiang, X. [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom)

    2016-06-15

    Non-destructive testing and online measurement of surface features are pressing demands in manufacturing. Thus optical techniques are gaining importance for characterization of complex engineering surfaces. Harnessing integrated optics for miniaturization of interferometry systems onto a silicon wafer and incorporating a compact optical probe would enable the development of a handheld sensor for embedded metrology applications. In this work, we present the progress in the development of a hybrid photonics based metrology sensor device for online surface profile measurements. The measurement principle along with test and measurement results of individual components has been presented. For non-contact measurement, a spectrally encoded lateral scanning probe based on the laser scanning microscopy has been developed to provide fast measurement with lateral resolution limited to the diffraction limit. The probe demonstrates a lateral resolution of ∼3.6 μm while high axial resolution (sub-nanometre) is inherently achieved by interferometry. Further the performance of the hybrid tuneable laser and the scanning probe was evaluated by measuring a standard step height sample of 100 nm.

  9. Genetic variance of Trichomonas vaginalis isolates by Southern hybridization

    OpenAIRE

    Ryu, Jae-Sook; Min, Duk-Young; Shin, Myeong-Heon; Cho, Youl-Hee

    1998-01-01

    In the present study, genomic DNAs were purified from Korean isolates (KT8, KT6, KT-Kim and KT-Lee) and foreign strains (CDC85, IR78 and NYH 286) of Trichomonas vaginalis, and hybridized with a probe based on the repetitive sequence cloned from T. vaginalis to observe the genetic differences. By Southern hybridization, all isolates of T. vaginalis except the NYH286 strain had 11 bands. Therefore all isolates examined were distinguishable into 3 groups according to their banding patterns; i) K...

  10. Northern blots: capillary transfer of RNA from agarose gels and filter hybridization using standard stringency conditions.

    Science.gov (United States)

    Rio, Donald C

    2015-03-02

    In this protocol, an RNA sample, fractionated by gel electrophoresis, is transferred from the gel onto a membrane by capillary transfer. Short-wave UV light is used to fix the transferred RNA to the membrane. The membrane is then pretreated to block nonspecific probe-binding sites, and hybridization of the immobilized RNA to a (32)P-labeled DNA or RNA probe specific for the mRNA of interest is performed. Finally, the membrane is washed and subjected to autoradiography or phosphorimaging. Because exposure to UV cross-links the RNA to the membrane, the membrane can be stripped and hybridized with other probes. The procedure is suitable for detecting poly(A)(+)-selected mRNA or mRNA in total cellular RNA if the target transcript is relatively abundant. Using DNA or RNA probes labeled to 1 × 10(8)-10 × 10(8) cpm/µg, it should be possible to detect ∼5 pg of a specific RNA. © 2015 Cold Spring Harbor Laboratory Press.

  11. Sequencing of megabase plus DNA by hybridization: Method development ENT. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Drmanac, R.

    1991-01-31

    Sequencing by hybridization (SBH) is the only sequencing method based on the experimental determination of the content of oligonucleotide sequences. The data acquisition relies on the natural process of base pairing. It is possible to determine the content of complementary oligosequences in the target DNA by the process of hybridization with oligonucleotide probes of known sequences.

  12. Chromosome specific DNA hybridization in suspension for flow cytometric detection of chimerism in bone marrow transplantation and leukemia

    NARCIS (Netherlands)

    G.J.A. Arkesteijn (Ger); C.A.J. Erpelinck (Claudia); A.C.M. Martens (Anton); A. Hagenbeek (Anton)

    1995-01-01

    textabstractFlow cytometry was used to measure the fluorescence intensity of nuclei that were subjected to fluorescent in situ hybridization in suspension with chromosome specific DNA probes. Paraformaldehyde-fixed nuclei were protein digested with trypsin and hybridized simultaneously with a

  13. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses.

    Science.gov (United States)

    Wadhwa, Ashutosh; Wilkins, Kimberly; Gao, Jinxin; Condori Condori, Rene Edgar; Gigante, Crystal M; Zhao, Hui; Ma, Xiaoyue; Ellison, James A; Greenberg, Lauren; Velasco-Villa, Andres; Orciari, Lillian; Li, Yu

    2017-01-01

    Rabies, resulting from infection by Rabies virus (RABV) and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA) test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR) based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N) coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses, its high

  14. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses.

    Directory of Open Access Journals (Sweden)

    Ashutosh Wadhwa

    2017-01-01

    Full Text Available Rabies, resulting from infection by Rabies virus (RABV and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses

  15. DNA hybridization sensor based on pentacene thin film transistor.

    Science.gov (United States)

    Kim, Jung-Min; Jha, Sandeep Kumar; Chand, Rohit; Lee, Dong-Hoon; Kim, Yong-Sang

    2011-01-15

    A DNA hybridization sensor using pentacene thin film transistors (TFTs) is an excellent candidate for disposable sensor applications due to their low-cost fabrication process and fast detection. We fabricated pentacene TFTs on glass substrate for the sensing of DNA hybridization. The ss-DNA (polyA/polyT) or ds-DNA (polyA/polyT hybrid) were immobilized directly on the surface of the pentacene, producing a dramatic change in the electrical properties of the devices. The electrical characteristics of devices were studied as a function of DNA immobilization, single-stranded vs. double-stranded DNA, DNA length and concentration. The TFT device was further tested for detection of λ-phage genomic DNA using probe hybridization. Based on these results, we propose that a "label-free" detection technique for DNA hybridization is possible through direct measurement of electrical properties of DNA-immobilized pentacene TFTs. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Four-channel asymmetric Real-Time PCR hybridization probe assay: a rapid pre-screening method for critical BCR-ABL kinase domain mutations.

    Science.gov (United States)

    Martinez-Serra, Jordi; Gutiérrez, Antonio; Marcús, Toni F; Soverini, Simona; Amat, Juan Carlos; Navarro-Palou, María; Ros, Teresa; Bex, Teresa; Ballester, Carmen; Bauça, Josep Miquel; SanFelix, Sara; Novo, Andrés; Vidal, Carmen; Santos, Carmen; Besalduch, Joan

    2012-03-01

    Within the laboratory protocols, used for the study of BCR-ABL resistance mutations in chronic myeloid leukemia patients treated with Imatinib, direct sequencing remains the reference method. Since the incidence of patients with a mutation-related loss of response is not very high, it is very useful in the routine laboratory to perform a fast pre-screening method. With this in mind, we have designed a new technique, based on a single Real-Time FRET-based PCR, followed by a study of melting peaks. This new tool, developed in a LightCycler 2.0, combines four different fluorescence channels for the simultaneous detection, in a single close tube, of critical mutations within the ABL kinase domain. Assay evaluation performed on 33 samples, previously genotyped by sequentiation, resulted in full concordance of results. This new methodology detects in a few steps the presence of critical mutations associated to Imatinib resistance. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Development of an ultrasensitive PCR assay for polycyclic musk determination in fish.

    Science.gov (United States)

    Zhang, Xiaohan; Zhuang, Huisheng

    2018-05-01

    Polycyclic musks (PCMs) in the aquatic environment and organisms have become an emerging environmental issue because of their potential risk. The most used method for polycyclic musk determination is gas chromatography-mass spectrometry (GC-MS) with different sample extractions, which are somewhat expensive to operate, complex and laborious. In this study, a novel and ultrasensitive real-time polymerase chain reaction (PCR) assay with multiple signal amplification of carboxylic-DNA by gold nanoparticle-polyamidoamine conjugation (Au-PAMAM) was developed for determining polycyclic musks in fish. Hapten and immunogen were specially prepared. Polyclonal antibodies were produced based on the optimal immunisation, and the antibodies were characterised. Due to PAMAM's unique nanostructure of numerous functional amino groups, polyclonal antibody and carboxylic-DNA were immobilised by Au-PAMAM conjugation to develop the antibody-Au-PAMAM-DNA probes, which were used as a signal DNA amplifier in the PCR system. Compared with real-time immuno-PCR, this biological probe-amplified immuno-PCR (BPAI-PCR) assay had higher sensitivity due to the probes' higher ratio of signal DNA. Finally, the BPAI-PCR assay was applied to analyse AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene,Tonalide) concentrations in fish samples in the range from 1 pg/L to 10 ng/L, giving an of LOD 0.61 pg/L. In general, due to the specificity of the antibody and novel nanoprobe design, this BPAI-PCR assay provided a potential way for trace analysis of AHTN in the aquatic organisms. The high concentrations of AHTN found in cultivated fish should encourage further toxicological studies.

  18. Diagnosis, prognosis and disease management using in situ hybridization

    International Nuclear Information System (INIS)

    Kucheria, K.; Talwar, R.

    2002-01-01

    The year 2001 saw unveiling of anatomy of the human genome with sequencing of 90% of the euchromatic region. But the ultimate goal of the Human Genome Project to delineate the positions of all genes is yet to be achieved. In Situ Hybridization (ISH) is one of the methods that help in localizing genes on chromosomes. The present study aimed to use radioactive- and fluorescent-labeled probes for screening various congenital anomalies (sex chromosomal and autosomal), for prenatal diagnosis and cancer genetics. Standard techniques were used for hybridization with radioactively and fluorescent labeled probes. Sex chromosome aneuploidies (XXY, XO, XXX, XYY etc.) were analyzed using centromeric probes for chromosomes X and Y. The cases with ambiguous genitalia were further analyzed using probe specific for the sex-determining region (SRY) on the Y chromosome. Suspected cases of Down syndrome were analyzed using probe specific for centromeric region of chromosome 21 to confirm trisomy 21. Prenatal diagnosis included screening aneuploidies of chromosomes 13, 18, 21, X and Y on uncultured cells and metaphases obtained from amniotic fluid and chorionic villi samplings. Gene alterations were also studied in Retinoblastoma patients, Chronic Myeloid Leukemia (CML) and Acute Promyelocytic Leukemia (APML) using probes specific for Rb1, bcr/abl and PML/RARα genes respectively. Response to therapy was assessed by evaluating minimal residual disease (MRD) in leukemia patients. Attempts were also made to analyze cells obtained from buccal mucosa and bladder epithelium that could facilitate rapid screening of sex chromosome anomalies and bladder cancer without painful invasive techniques. Prenatal diagnosis using ISH on uncultured cells could provide an accurate and rapid result. These results of prenatal diagnosis were in conformation with results of conventional cytogenetics obtained after long-term cultures. Molecular rearrangements that could not be detected with conventional

  19. TaqMan MGB probe fluorescence real-time quantitative PCR for rapid detection of Chinese Sacbrood virus.

    Directory of Open Access Journals (Sweden)

    Ma Mingxiao

    Full Text Available Sacbrood virus (SBV is a picorna-like virus that affects honey bees (Apis mellifera and results in the death of the larvae. Several procedures are available to detect Chinese SBV (CSBV in clinical samples, but not to estimate the level of CSBV infection. The aim of this study was develop an assay for rapid detection and quantification of this virus. Primers and probes were designed that were specific for CSBV structural protein genes. A TaqMan minor groove binder (MGB probe-based, fluorescence real-time quantitative PCR was established. The specificity, sensitivity and stability of the assay were assessed; specificity was high and there were no cross-reactivity with healthy larvae or other bee viruses. The assay was applied to detect CSBV in 37 clinical samples and its efficiency was compared with clinical diagnosis, electron microscopy observation, and conventional RT-PCR. The TaqMan MGB-based probe fluorescence real-time quantitative PCR for CSBV was more sensitive than other methods tested. This assay was a reliable, fast, and sensitive method that was used successfully to detect CSBV in clinical samples. The technology can provide a useful tool for rapid detection of CSBV. This study has established a useful protocol for CSBV testing, epidemiological investigation, and development of animal models.

  20. Polyetheretherketone Hybrid Composites with Bioactive Nanohydroxyapatite and Multiwalled Carbon Nanotube Fillers

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2016-12-01

    Full Text Available Polyetheretherketone (PEEK hybrid composites reinforced with inorganic nanohydroxyapatite (nHA and multiwalled carbon nanotube (MWNT were prepared by melt-compounding and injection molding processes. The additions of nHA and MWNT to PEEK were aimed to increase its elastic modulus, tensile strength, and biocompatibility, rendering the hybrids suitable for load-bearing implant applications. The structural behavior, mechanical property, wettability, osteoblastic cell adhesion, proliferation, differentiation, and mineralization of the PEEK/nHA-MWNT hybrids were studied. X-ray diffraction and SEM observation showed that both nHA and MWNT fillers are incorporated into the polymer matrix of PEEK-based hybrids. Tensile tests indicated that the elastic modulus of PEEK can be increased from 3.87 to 7.13 GPa by adding 15 vol % nHA and 1.88 vol % MWNT fillers. The tensile strength and elongation at break of the PEEK/(15% nHA-(1.88% MWNT hybrid were 64.48 MPa and 1.74%, respectively. Thus the tensile properties of this hybrid were superior to those of human cortical bones. Water contact angle measurements revealed that the PEEK/(15% nHA-(1.88% MWNT hybrid is hydrophilic due to the presence of nHA. Accordingly, hydrophilic PEEK/(15% nHA-(1.88% MWNT hybrid promoted the adhesion, proliferation, differentiation, and mineralization of murine MC3T3-E1 osteoblasts on its surface effectively on the basis of cell culture, fluorescence microscopy, MTT assay, WST-1 assay, alkaline phosphatase activity, and Alizarin red staining tests. Thus the PEEK/(15% nHA-(1.88% MWNT hybrid has the potential to be used for fabricating load-bearing bone implants.