WorldWideScience

Sample records for hybridization assay based

  1. Quantitative rRNA-targeted solution-based hybridization assay using peptide nucleic acid molecular beacons.

    Science.gov (United States)

    Li, Xu; Morgenroth, Eberhard; Raskin, Lutgarde

    2008-12-01

    The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.

  2. Fluorescence Hybridization Assay Based On Chitosan-Linked Softarrays

    Science.gov (United States)

    2003-07-01

    was incubated in the wells to reduce the Schiff base resulting from the reaction of aldehyde and amine groups. After this reaction, the yellowish...color representative of a Schiff base disappeared and the background fluorescence signal dropped to the initial ~8 to 12 fluorescence intensity (FI

  3. Quantitative data analysis methods for bead-based DNA hybridization assays using generic flow cytometry platforms.

    Science.gov (United States)

    Corrie, S R; Lawrie, G A; Battersby, B J; Ford, K; Rühmann, A; Koehler, K; Sabath, D E; Trau, M

    2008-05-01

    Bead-based assays are in demand for rapid genomic and proteomic assays for both research and clinical purposes. Standard quantitative procedures addressing raw data quality and analysis are required to ensure the data are consistent and reproducible across laboratories independent of flow platform. Quantitative procedures have been introduced spanning raw histogram analysis through to absolute target quantitation. These included models developed to estimate the absolute number of sample molecules bound per bead (Langmuir isotherm), relative quantitative comparisons (two-sided t-tests), and statistical analyses investigating the quality of raw fluorescence data. The absolute target quantitation method revealed a concentration range (below probe saturation) of Cy5-labeled synthetic cytokeratin 19 (K19) RNA of c.a. 1 x 10(4) to 500 x 10(4) molecules/bead, with a binding constant of c.a. 1.6 nM. Raw hybridization frequency histograms were observed to be highly reproducible across 10 triplex assay replicates and only three assay replicates were required to distinguish overlapping peaks representing small sequence mismatches. This study provides a quantitative scheme for determining the absolute target concentration in nucleic acid hybridization reactions and the equilibrium binding constants for individual probe/target pairs. It is envisaged that such studies will form the basis of standard analytical procedures for bead-based cytometry assays to ensure reproducibility in inter- and intra-platform comparisons of data between laboratories. (c) 2008 International Society for Advancement of Cytometry.

  4. Investigation of parameters that affect the success rate of microarray-based allele-specific hybridization assays.

    Directory of Open Access Journals (Sweden)

    Lena Poulsen

    Full Text Available BACKGROUND: The development of microarray-based genetic tests for diseases that are caused by known mutations is becoming increasingly important. The key obstacle to developing functional genotyping assays is that such mutations need to be genotyped regardless of their location in genomic regions. These regions include large variations in G+C content, and structural features like hairpins. METHODS/FINDINGS: We describe a rational, stable method for screening and combining assay conditions for the genetic analysis of 42 Phenylketonuria-associated mutations in the phenylalanine hydroxylase gene. The mutations are located in regions with large variations in G+C content (20-75%. Custom-made microarrays with different lengths of complementary probe sequences and spacers were hybridized with pooled PCR products of 12 exons from each of 38 individual patient DNA samples. The arrays were washed with eight buffers with different stringencies in a custom-made microfluidic system. The data were used to assess which parameters play significant roles in assay development. CONCLUSIONS: Several assay development methods found suitable probes and assay conditions for a functional test for all investigated mutation sites. Probe length, probe spacer length, and assay stringency sufficed as variable parameters in the search for a functional multiplex assay. We discuss the optimal assay development methods for several different scenarios.

  5. Microbead agglutination based assays

    KAUST Repository

    Kodzius, Rimantas

    2013-01-21

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microbeads in the presence of a specific analyte thus enabling the macroscopic observation. Such tests are most often used to explore antibody-antigen reactions. Agglutination has been used for protein assays using a biotin/streptavidin system as well as a hybridization based assay. The agglutination systems are prone to selftermination of the linking analyte, prone to active site saturation and loss of agglomeration at high analyte concentrations. We investigated the molecular target/ligand interaction, explaining the common agglutination problems related to analyte self-termination, linkage of the analyte to the same bead instead of different microbeads. We classified the agglutination process into three kinds of assays: a two- component assay, a three-component assay and a stepped three- component assay. Although we compared these three kinds of assays for recognizing DNA and protein molecules, the assay can be used for virtually any molecule, including ions and metabolites. In total, the optimized assay permits detecting analytes with high sensitivity in a short time, 5 min, at room temperature. Such a system is appropriate for POC testing.

  6. A pre-breeding screening program for transgenic boars based on fluorescence in situ hybridization assay.

    Science.gov (United States)

    Bou, Gerelchimeg; Sun, Mingju; Lv, Ming; Zhu, Jiang; Li, Hui; Wang, Juan; Li, Lu; Liu, Zhongfeng; Zheng, Zhong; He, Wenteng; Kong, Qingran; Liu, Zhonghua

    2014-08-01

    For efficient transgenic herd expansion, only the transgenic animals that possess the ability to transmit transgene into next generation are considered for breeding. However, for transgenic pig, practically lacking a pre-breeding screening program, time, labor and money is always wasted to maintain non-transgenic pigs, low or null transgenic transmission pigs and the related fruitless gestations. Developing a pre-breeding screening program would make the transgenic herd expansion more economical and efficient. In this technical report, we proposed a three-step pre-breeding screening program for transgenic boars simply through combining the fluorescence in situ hybridization (FISH) assay with the common pre-breeding screening workflow. In the first step of screening, combined with general transgenic phenotype analysis, FISH is used to identify transgenic boars. In the second step of screening, combined with conventional semen test, FISH is used to detect transgenic sperm, thus to identify the individuals producing high quality semen and transgenic sperm. In the third step of screening, FISH is used to assess the in vitro fertilization embryos, thus finally to identify the individuals with the ability to produce transgenic embryos. By this three-step screening, the non-transgenic boars and boars with no ability to produce transgenic sperm or transgenic embryos would be eliminated; therefore only those boars could produce transgenic offspring are maintained and used for breeding and herd expansion. It is the first time a systematic pre-breeding screening program is proposed for transgenic pigs. This program might also be applied in other transgenic large animals, and provide an economical and efficient strategy for herd expansion.

  7. Resonance Energy Transfer-Based Nucleic Acid Hybridization Assays on Paper-Based Platforms Using Emissive Nanoparticles as Donors.

    Science.gov (United States)

    Doughan, Samer; Noor, M Omair; Han, Yi; Krull, Ulrich J

    2017-01-01

    Quantum dots (QDs) and upconverting nanoparticles (UCNPs) are luminescent nanoparticles (NPs) commonly used in bioassays and biosensors as resonance energy transfer (RET) donors. The narrow and tunable emissions of both QDs and UCNPs make them versatile RET donors that can be paired with a wide range of acceptors. Ratiometric signal processing that compares donor and acceptor emission in RET-based transduction offers improved precision, as it accounts for fluctuations in the absolute photoluminescence (PL) intensities of the donor and acceptor that can result from experimental and instrumental variations. Immobilizing NPs on a solid support avoids problems such as those that can arise with their aggregation in solution, and allows for facile layer-by-layer assembly of the interfacial chemistry. Paper is an attractive solid support for the development of point-of-care diagnostic assays given its ubiquity, low-cost, and intrinsic fluid transport by capillary action. Integration of nanomaterials with paper-based analytical devices (PADs) provides avenues to augment the analytical performance of PADs, given the unique optoelectronic properties of nanomaterials. Herein, we describe methodology for the development of PADs using QDs and UCNPs as RET donors for optical transduction of nucleic acid hybridization. Immobilization of green-emitting QDs (gQDs) on imidazole functionalized cellulose paper is described for use as RET donors with Cy3 molecular dye as acceptors for the detection of SMN1 gene fragment. We also describe the covalent immobilization of blue-emitting UCNPs on aldehyde modified cellulose paper for use as RET donors with orange-emitting QDs (oQDs) as acceptors for the detection of HPRT1 gene fragment. The data described herein is acquired using an epifluorescence microscope, and can also be collected using technology such as a typical electronic camera.

  8. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Shahmuradyan, Anna; Krull, Ulrich J

    2013-02-05

    A paper-based solid-phase assay is presented for transduction of nucleic acid hybridization using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) were FRET-paired with Cy3 acceptor. Hybridization of Cy3-labeled oligonucleotide targets provided the proximity required for FRET-sensitized emission from Cy3, which served as an analytical signal. The assay exhibited rapid transduction of nucleic acid hybridization within minutes. Without any amplification steps, the limit of detection of the assay was found to be 300 fmol with the upper limit of the dynamic range at 5 pmol. The implementation of glutathione-coated QDs for the development of nucleic acid hybridization assay integrated on a paper-based platform exhibited excellent resistance to nonspecific adsorption of oligonucleotides and showed no reduction in the performance of the assay in the presence of large quantities of noncomplementary DNA. The selectivity of nucleic acid hybridization was demonstrated by single-nucleotide polymorphism (SNP) detection at a contrast ratio of 19 to 1. The reuse of paper over multiple cycles of hybridization and dehybridization was possible, with less than 20% reduction in the performance of the assay in five cycles. This work provides an important framework for the development of paper-based solid-phase QD-FRET nucleic acid hybridization assays that make use of a ratiometric approach for detection and analysis.

  9. An integrated closed-tube 2-plex PCR amplification and hybridization assay with switchable lanthanide luminescence based spatial detection.

    Science.gov (United States)

    Lahdenperä, Susanne; Spangar, Anni; Lempainen, Anna-Maija; Joki, Laura; Soukka, Tero

    2015-06-21

    Switchable lanthanide luminescence is a binary probe technology that inherently enables a high signal modulation in separation-free detection of DNA targets. A luminescent lanthanide complex is formed only when the two probes hybridize adjacently to their target DNA. We have now further adapted this technology for the first time in the integration of a 2-plex polymerase chain reaction (PCR) amplification and hybridization-based solid-phase detection of the amplification products of the Staphylococcus aureus gyrB gene and an internal amplification control (IAC). The assay was performed in a sealed polypropylene PCR chip containing a flat-bottom reaction chamber with two immobilized capture probe spots. The surface of the reaction chamber was functionalized with NHS-PEG-azide and alkyne-modified capture probes for each amplicon, labeled with a light harvesting antenna ligand, and covalently attached as spots to the azide-modified reaction chamber using a copper(i)-catalyzed azide-alkyne cycloaddition. Asymmetric duplex-PCR was then performed with no template, one template or both templates present and with a europium ion carrier chelate labeled probe for each amplicon in the reaction. After amplification europium fluorescence was measured by scanning the reaction chamber as a 10 × 10 raster with 0.6 mm resolution in time-resolved mode. With this assay we were able to co-amplify and detect the amplification products of the gyrB target from 100, 1000 and 10,000 copies of isolated S. aureus DNA together with the amplification products from the initial 5000 copies of the synthetic IAC template in the same sealed reaction chamber. The addition of 10,000 copies of isolated non-target Escherichia coli DNA in the same reaction with 5000 copies of the synthetic IAC template did not interfere with the amplification or detection of the IAC. The dynamic range of the assay for the synthetic S. aureus gyrB target was three orders of magnitude and the limit of detection of 8 p

  10. Discrimination of clostridium species using a magnetic bead based hybridization assay

    Science.gov (United States)

    Pahlow, Susanne; Seise, Barbara; Pollok, Sibyll; Seyboldt, Christian; Weber, Karina; Popp, Jürgen

    2014-05-01

    Clostridium chauvoei is the causative agent of blackleg, which is an endogenous bacterial infection. Mainly cattle and other ruminants are affected. The symptoms of blackleg are very similar to those of malignant edema, an infection caused by Clostridium septicum. [1, 2] Therefore a reliable differentiation of Clostridium chauvoei from other Clostridium species is required. Traditional microbiological detection methods are time consuming and laborious. Additionally, the unique identification is hindered by the overgrowing tendency of swarming Clostridium septicum colonies when both species are present. [1, 3, 4] Thus, there is a crucial need to improve and simplify the specific detection of Clostridium chauvoei and Clostridium septicum. Here we present an easy and fast Clostridium species discrimination method combining magnetic beads and fluorescence spectroscopy. Functionalized magnetic particles exhibit plentiful advantages, like their simple manipulation in combination with a large binding capacity of biomolecules. A specific region of the pathogenic DNA is amplified and labelled with biotin by polymerase chain reaction (PCR). These PCR products were then immobilized on magnetic beads exploiting the strong biotin-streptavidin interaction. The specific detection of different Clostridium species is achieved by using fluorescence dye labeled probe DNA for the hybridization with the immobilized PCR products. Finally, the samples were investigated by fluorescence spectroscopy. [5

  11. A Paper-Based Sandwich Format Hybridization Assay for Unlabeled Nucleic Acid Detection Using Upconversion Nanoparticles as Energy Donors in Luminescence Resonance Energy Transfer

    Directory of Open Access Journals (Sweden)

    Feng Zhou

    2015-09-01

    Full Text Available Bioassays based on cellulose paper substrates are gaining increasing popularity for the development of field portable and low-cost diagnostic applications. Herein, we report a paper-based nucleic acid hybridization assay using immobilized upconversion nanoparticles (UCNPs as donors in luminescence resonance energy transfer (LRET. UCNPs with intense green emission served as donors with Cy3 dye as the acceptor. The avidin functionalized UCNPs were immobilized on cellulose paper and subsequently bioconjugated to biotinylated oligonucleotide probes. Introduction of unlabeled oligonucleotide targets resulted in a formation of probe-target duplexes. A subsequent hybridization of Cy3 labeled reporter with the remaining single stranded portion of target brought the Cy3 dye in close proximity to the UCNPs to trigger a LRET-sensitized emission from the acceptor dye. The hybridization assays provided a limit of detection (LOD of 146.0 fmol and exhibited selectivity for one base pair mismatch discrimination. The assay was functional even in undiluted serum samples. This work embodies important progress in developing DNA hybridization assays on paper. Detection of unlabeled targets is achieved using UCNPs as LRET donors, with minimization of background signal from paper substrates owing to the implementation of low energy near-infrared (NIR excitation.

  12. Investigation of Parameters that Affect the Success Rate of Microarray-Based Allele-Specific Hybridization Assays

    DEFF Research Database (Denmark)

    Poulsen, Lena; Søe, Martin Jensen; Moller, Lisbeth Birk

    2011-01-01

    Background: The development of microarray-based genetic tests for diseases that are caused by known mutations is becoming increasingly important. The key obstacle to developing functional genotyping assays is that such mutations need to be genotyped regardless of their location in genomic regions...... buffers with different stringencies in a custom-made microfluidic system. The data were used to assess which parameters play significant roles in assay development. Conclusions: Several assay development methods found suitable probes and assay conditions for a functional test for all investigated mutation...... sites. Probe length, probe spacer length, and assay stringency sufficed as variable parameters in the search for a functional multiplex assay. We discuss the optimal assay development methods for several different scenarios....

  13. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Krull, Ulrich J

    2013-08-06

    A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.

  14. Sensitive electrochemical determination of miRNAs based on a sandwich assay onto magnetic microcarriers and hybridization chain reaction amplification.

    Science.gov (United States)

    Torrente-Rodríguez, R M; Campuzano, S; Montiel, V Ruiz-Valdepeñas; Montoya, J J; Pingarrón, J M

    2016-12-15

    A novel electrochemical approach for determination of miRNAs involving a sandwich hybridization assay onto streptavidin-magnetic beads (Strep-MBs), hybridization chain reaction (HCR) amplification and amperometric detection at disposable screen-printed carbon electrodes is reported. Using miRNA-21 as the target analyte, a dynamic linear range from 0.2 to 5.0nM with a 60pM (1.5fmol in 25μL) detection limit was obtained. The achieved sensitivity is 24-fold higher than a non-HCR amplification approach involving conventional sandwich type assay onto MBs. Moreover, the whole assay time lasted 1h 45min which is remarkably shorter than other reported methodologies. The methodology exhibited full selectivity against other non-complementary miRNAs as well as an acceptable discrimination between homologous miRNA family members. The applicability of this novel approach was demonstrated by determining mature miRNA-21 in total RNA (RNAt) extracted from tumor cells and human tissues.

  15. Heterogeneous oligonucleotide-hybridization assay based on hot electron-induced electrochemiluminescence of a rhodamine label at oxide-coated aluminum and silicon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Spehar-Deleze, Anna-Maria [Laboratory of Sensors, Actuators and Microsystems, Institute of Microtechnology, University of Neuchatel, Rue Jaquet-Droz 1, CH-2007 Neuchatel (Switzerland) and Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland)]. E-mail: anna-maria.spehar@unine.ch; Suomi, Johanna [Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland); Jiang Qinghong [Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland); Rooij, Nico de [Laboratory of Sensors, Actuators and Microsystems, Institute of Microtechnology, University of Neuchatel, Rue Jaquet-Droz 1, CH-2007 Neuchatel (Switzerland); Koudelka-Hep, Milena [Laboratory of Sensors, Actuators and Microsystems, Institute of Microtechnology, University of Neuchatel, Rue Jaquet-Droz 1, CH-2007 Neuchatel (Switzerland); Kulmala, Sakari [Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland)

    2006-07-28

    This paper describes a heterogeneous oligonucleotide-hybridization assay based on hot electron-induced electrochemiluminescence (HECL) of a rhodamine label. Thin oxide-film coated aluminum and silicon electrodes were modified with an aminosilane layer and derivatized with short, 15-mer oligonucleotides via diisothiocyanate coupling. Target oligonucleotides were conjugated with tetramethylrhodamine (TAMRA) dye at their amino modified 5' end and hybridization was detected using HECL of TAMRA. Preliminary results indicate sensitivity down to picomolar level and low nonspecific adsorption. The sensitivity was better on oxide-coated silicon compared to oxide-coated aluminum electrodes and two-base pair mismatched hybrids were successfully discriminated. The experimental results presented here might be useful for the design of disposable electrochemiluminescent DNA biosensors.

  16. A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Doughan, Samer; Uddayasankar, Uvaraj; Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca

    2015-06-09

    Highlights: • Covalent immobilization of upconversion nanoparticles on paper. • LRET-based label free DNA detection using quantum dots as acceptors. • Use of polyethylene glycol to eliminate non-specific adsorption of quantum dots. • Improved analytical performance compared to analogous assays. - Abstract: Monodisperse aqueous upconverting nanoparticles (UCNPs) were covalently immobilized on aldehyde modified cellulose paper via reduction amination to develop a luminescence resonance energy transfer (LRET)-based nucleic acid hybridization assay. This first account of covalent immobilization of UCNPs on paper for a bioassay reports an optically responsive method that is sensitive, reproducible and robust. The immobilized UCNPs were decorated with oligonucleotide probes to capture HPRT1 housekeeping gene fragments, which in turn brought reporter conjugated quantum dots (QDs) in close proximity to the UCNPs for LRET. This sandwich assay could detect unlabeled oligonucleotide target, and had a limit of detection of 13 fmol and a dynamic range spanning nearly 3 orders of magnitude. The use of QDs, which are excellent LRET acceptors, demonstrated improved sensitivity, limit of detection, dynamic range and selectivity compared to similar assays that have used molecular fluorophores as acceptors. The selectivity of the assay was attributed to the decoration of the QDs with polyethylene glycol to eliminate non-specific adsorption. The kinetics of hybridization were determined to be diffusion limited and full signal development occurred within 3 min.

  17. A sandwich-hybridization assay for simultaneous determination of HIV and tuberculosis DNA targets based on signal amplification by quantum dots-PowerVision™ polymer coding nanotracers.

    Science.gov (United States)

    Yan, Zhongdan; Gan, Ning; Zhang, Huairong; Wang, De; Qiao, Li; Cao, Yuting; Li, Tianhua; Hu, Futao

    2015-09-15

    A novel sandwich-hybridization assay for simultaneous electrochemical detection of multiple DNA targets related to human immune deficiency virus (HIV) and tuberculosis (TB) was developed based on the different quantum dots-PowerVision(TM) polymer nanotracers. The polymer nanotracers were respectively fabricated by immobilizing SH-labeled oligonucleotides (s-HIV or s-TB), which can partially hybrid with virus DNA (HIV or TB), on gold nanoparticles (Au NPs) and then modified with PowerVision(TM) (PV) polymer-encapsulated quantum dots (CdS or PbS) as signal tags. PV is a dendrimer enzyme linked polymer, which can immobilize abundant QDs to amplify the stripping voltammetry signals from the metal ions (Pb or Cd). The capture probes were prepared through the immobilization of SH-labeled oligonucleotides, which can complementary with HIV and TB DNA, on the magnetic Fe3O4@Au (GMPs) beads. After sandwich-hybridization, the polymer nanotracers together with HIV and TB DNA targets were simultaneously introduced onto the surface of GMPs. Then the two encoding metal ions (Cd(2+) and Pb(2+)) were used to differentiate two viruses DNA due to the different subsequent anodic stripping voltammetric peaks at -0.84 V (Cd) and -0.61 V (Pb). Because of the excellent signal amplification of the polymer nanotracers and the great specificity of DNA targets, this assay could detect targets DNA as low as 0.2 femtomolar and exhibited excellent selectivity with the dynamitic range from 0.5 fM to 500 pM. Those results demonstrated that this electrochemical coding assay has great potential in applications for screening more viruses DNA while changing the probes.

  18. Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system.

    Science.gov (United States)

    Wang, Dong; Chen, Chuan; Ke, Xuebin; Kang, Ning; Shen, Yuqing; Liu, Yongliang; Zhou, Xi; Wang, Hongjun; Chen, Changqing; Ren, Lei

    2015-02-11

    A novel core-shell structure based on upconversion fluorescent nanoparticles (UCNPs) and dopamine-melanin has been developed for evaluation of the antioxidant capacity of biological fluids. In this approach, dopamine-melanin nanoshells facilely formed on the surface of UCNPs act as ultraefficient quenchers for upconversion fluorescence, contributing to a photoinduced electron-transfer mechanism. This spontaneous oxidative polymerization of the dopamine-induced quenching effect could be effectively prevented by the presence of various antioxidants (typically biothiols, ascorbic acid (Vitamin C), and Trolox). The chemical response of the UCNPs@dopamine-melanin hybrid system exhibited great selectivity and sensitivity toward antioxidants relative to other compounds at 100-fold higher concentration. A satisfactory correlation was established between the ratio of the "anti-quenching" fluorescence intensity and the concentration of antioxidants. Besides the response of the upconversion fluorescence signal, a specific evaluation process for antioxidants could be visualized by the color change from colorless to dark gray accompanied by the spontaneous oxidation of dopamine. The near-infrared (NIR)-excited UCNP-based antioxidant capacity assay platform was further used to evaluate the antioxidant capacity of cell extracts and human plasma, and satisfactory sensitivity, repeatability, and recovery rate were obtained. This approach features easy preparation, fluorescence/visual dual mode detection, high specificity to antioxidants, and enhanced sensitivity with NIR excitation, showing great potential for screening and quantitative evaluation of antioxidants in biological systems.

  19. Label-Free and Enzyme-Free Homogeneous Electrochemical Biosensing Strategy Based on Hybridization Chain Reaction: A Facile, Sensitive, and Highly Specific MicroRNA Assay.

    Science.gov (United States)

    Hou, Ting; Li, Wei; Liu, Xiaojuan; Li, Feng

    2015-11-17

    Homogenous electrochemical biosensing strategies have attracted substantial attention, because of their advantages of being immobilization-free and having rapid response and improved recognition efficiency, compared to heterogeneous biosensors; however, the high cost of labeling and the strict reaction conditions of tool enzymes associated with current homogeneous electrochemical methods limit their potential applications. To address these issues, herein we reported, for the first time, a simple label-free and enzyme-free homogeneous electrochemical strategy based on hybridization chain reaction (HCR) for sensitive and highly specific detection of microRNA (miRNA). The target miRNA triggers the HCR of two species of metastable DNA hairpin probes, resulting in the formation of multiple G-quadruplex-incorporated long duplex DNA chains. Thus, with the electrochemical indicator Methylene Blue (MB) selectively intercalated into the duplex DNA chain and the multiple G-quadruplexes, a significant electrochemical signal drop is observed, which is dependent on the concentration of the target miRNA. Thus, using this "signal-off" mode, a simple, label-free and enzyme-free homogeneous electrochemical strategy for sensitive miRNA assay is readily realized. This strategy also exhibits excellent selectivity to distinguish even single-base mismatched miRNA. Furthermore, this method also exhibits additional advantages of simplicity and low cost, since both expensive labeling and sophisticated probe immobilization processes are avoided. Therefore, the as-proposed label-free and enzyme-free homogeneous electrochemical strategy may become an alternative method for simple, sensitive, and selective miRNA detection, and it has great potential to be applied in miRNA-related clinical diagnostics and biochemical research.

  20. Comparison of peptide nucleic acid fluorescence in situ hybridization assays with culture-based matrix-assisted laser desorption/ionization-time of flight mass spectrometry for the identification of bacteria and yeasts from blood cultures and cerebrospinal fluid cultures.

    Science.gov (United States)

    Calderaro, A; Martinelli, M; Motta, F; Larini, S; Arcangeletti, M C; Medici, M C; Chezzi, C; De Conto, F

    2014-08-01

    Peptide nucleic acid fluorescence in situ hybridization (PNA FISH) is a molecular diagnostic tool for the rapid detection of pathogens directly from liquid media. The aim of this study was to prospectively evaluate PNA FISH assays in comparison with culture-based matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) identification, as a reference method, for both blood and cerebrospinal fluid (CSF) cultures, during a 1-year investigation. On the basis of the Gram stain microscopy results, four different PNA FISH commercially available assays were used ('Staphylococcus aureus/CNS', 'Enterococcus faecalis/OE', 'GNR Traffic Light' and 'Yeasts Traffic Light' PNA FISH assays, AdvanDx). The four PNA FISH assays were applied to 956 positive blood cultures (921 for bacteria and 35 for yeasts) and 11 CSF cultures. Among the 921 blood samples positive for bacteria, PNA FISH gave concordant results with MALDI-TOF MS in 908/921 (98.64%) samples, showing an agreement of 99.4% in the case of monomicrobial infections. As regards yeasts, the PNA FISH assay showed a 100% agreement with the result obtained by MALDI-TOF MS. When PNA FISH assays were tested on the 11 CSF cultures, the results agreed with the reference method in all cases (100%). PNA FISH assays provided species identification at least one work-day before the MALDI-TOF MS culture-based identification. PNA FISH assays showed an excellent efficacy in the prompt identification of main pathogens, yielding a significant reduction in reporting time and leading to more appropriate patient management and therapy in cases of sepsis and severe infections.

  1. Diagnosis of anaplastic lymphoma kinase rearrangement in cytological samples through a fluorescence in situ hybridization-based assay: Cytological smears versus cell blocks.

    Science.gov (United States)

    Zito Marino, Federica; Rossi, Giulio; Brunelli, Matteo; Malzone, Maria Gabriella; Liguori, Giuseppina; Bogina, Giuseppe; Morabito, Alessandro; Rocco, Gaetano; Franco, Renato; Botti, Gerardo

    2017-05-01

    Anaplastic lymphoma kinase (ALK) status analysis of lung cytological specimens should be successfully encouraged in routine practice because biopsy specimens are not always available. To date, the US Food and Drug Administration has approved both fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) as diagnostic tests for identifying ALK-positive patients eligible for treatment with crizotinib. Although ALK IHC is an optimal diagnostic tool, FISH becomes mandatory in equivocal cases. ALK FISH of paraffin-embedded tissue material is still the gold standard, whereas the cytological specimen assay has not yet been completely standardized. Many controversial data have been reported on the adequacy of cytology cell blocks (CBs) versus conventional smears for FISH testing. This review discusses some critical issues related to ALK FISH of cytological samples, including the triaging of collected specimens to optimize the material, the use of CBs versus conventional smears, and alternative methods for an ALK rearrangement diagnosis. Conventional smears have the advantages of an immediate evaluation, no probe tissue-related artifactual loss, no fixation-related alterations, and usually sufficient material for an analytic preparation. On the other hand, CBs have several advantages, including the appropriate conservation of the tissue architecture, an absence of problems related to cell overlapping, and the ability to evaluate neoplastic cells in a dark field. Cancer Cytopathol 2017;125:303-312. © 2017 American Cancer Society. © 2017 American Cancer Society.

  2. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, R P; Langlois, R G; Nasarabadi, S; Benett, W J; Colston, B W; Johnson, D C; Brown, S B; Stratton, P L; Milanovich, F P

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flow cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.

  3. Fabrication of uniform DNA-conjugated hydrogel microparticles via replica molding for facile nucleic acid hybridization assays.

    Science.gov (United States)

    Lewis, Christina L; Choi, Chang-Hyung; Lin, Yan; Lee, Chang-Soo; Yi, Hyunmin

    2010-07-01

    We identify and investigate several critical parameters in the fabrication of single-stranded DNA conjugated poly(ethylene glycol) (PEG) microparticles based on replica molding (RM) for highly uniform and robust nucleic acid hybridization assays. The effects of PEG-diacrylate, probe DNA, and photoinitiator concentrations on the overall fluorescence and target DNA penetration depth upon hybridization are examined. Fluorescence and confocal microscopy results illustrate high conjugation capacity of the probe and target DNA, femtomole sensitivity, and sequence specificity. Combined, these findings demonstrate a significant step toward simple, robust, and scalable procedures to manufacture highly uniform and high-capacity hybridization assay particles in a well-controlled manner by exploiting many advantages that the batch processing-based RM technique offers. We envision that the results presented here may be readily applied to rapid and high-throughput hybridization assays for a wide variety of applications in bioprocess monitoring, food safety, and biological threat detection.

  4. Detection of human papillomavirus DNA by the hybrid capture assay

    Directory of Open Access Journals (Sweden)

    Carvalho Maria Odete O.

    2003-01-01

    Full Text Available Human Papillomavirus (HPV infection is the main cause of cervical cancers and cervical intraepithelial neoplasias (CIN worldwide. Consequently, it would be useful to evaluate HPV testing to screen for cervical cancer. Recently developed, the second-generation Hybrid Capture (HCA II test is a non-radioactive, relatively rapid, liquid hybridization assay designed to detect 18 HPV types, divided into high and low-risk groups. We evaluated 1055 women for HPV infection with the HCA II test. Five hundred and ten (48.3% of these women had HPV infection; 60 (11.8% had low cancer-risk HPV DNA; 269 (52.7% had high-risk HPV types and 181 (35.5% had both groups. Hence, 450 women (88.2% in this HPV-infected group had at least one high risk HPV type, and were therefore considered to be at high risk for cancer. Among the group with Papanicolaou (Pap test results, the overall prevalence of HPV DNA was 58.4%. Significant differences in HPV infection of the cervix were detected between Pap I (normal smears and Pap IV (carcinomas (p<0.0001. Values of HPV viral load obtained for Pap I and SILs were significantly different, with an upward trend (p<0.0001, suggesting a positive correlation between high viral load values and risk of SIL. Because of the high costs of the HCA II test, its use for routine cervical mass screening cannot be recommended in poor countries. Nevertheless, it is a useful tool when combined with cytology, diagnosing high-risk infections in apparently normal tissues. Use of this technique could help reduce the risk of cancer.

  5. PCR-Reverse Blot Hybridization Assay for Screening and Identification of Pathogens in Sepsis

    OpenAIRE

    Choi, Yeonim; Wang, Hye-young; Lee, Gyusang; Park, Soon-Deok; Jeon, Bo-Young; Uh, Young; Kim, Jong Bae; Lee, Hyeyoung

    2013-01-01

    Rapid and accurate identification of the pathogens involved in bloodstream infections is crucial for the prompt initiation of appropriate therapy, as this can decrease morbidity and mortality rates. A PCR-reverse blot hybridization assay for sepsis, the reverse blot hybridization assay (REBA) Sepsis-ID test, was developed; it uses pan-probes to distinguish Gram-positive and -negative bacteria and fungi. In addition, the assay was designed to identify bacteria and fungi using six genus-specifi...

  6. A direct assay of carboxyl-containing small molecules by SALDI-MS on a AgNP/rGO-based nanoporous hybrid film.

    Science.gov (United States)

    Hong, Min; Xu, Lidan; Wang, Fangli; Geng, Zhirong; Li, Haibo; Wang, Huaisheng; Li, Chen-Zhong

    2016-04-25

    Silver nanoparticles (AgNPs) and reduced graphene oxide (rGO) hybrid nanoporous structures fabricated by the layer-by-layer (LBL) electrostatic self-assembly have been applied as a simple platform for the rapid analysis of carboxyl-containing small molecules by surface-assisted laser desorption/ionization (D/I) mass spectrometry (SALDI-MS). By the simple one-step deposition of analytes onto the (AgNP/rGO)9 multilayer film, the MS measurements of various carboxyl-containing small molecules (including amino acids, fatty acids and organic dicarboxylic acids) can be done. In contrast to other energy transfer materials relative to AgNPs, the signal interferences of a Ag cluster (Agn(+) or Agn(-)) and a C cluster (Cn(+) or Cn(-)) have been effectively reduced or eliminated. The effects of various factors, such as the pore structure and composition of the substrates, on the efficiency of D/I have been investigated by comparing with the (AgNP)9 LBL nanoporous structure, (AgNP/rGO)9/(SiO2NP)6 LBL multilayer film and AgNP/prGO nanocomposites.

  7. Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes.

    Science.gov (United States)

    Marras, Salvatore A E; Tyagi, Sanjay; Kramer, Fred Russell

    2006-01-01

    A number of formats for nucleic acid hybridization have been developed to identify DNA and RNA sequences that are involved in cellular processes and that aid in the diagnosis of genetic and infectious diseases. The introduction of hybridization probes with interactive fluorophore pairs has enabled the development of homogeneous hybridization assays for the direct identification of nucleic acids. A change in the fluorescence of these probes indicates the presence of a target nucleic acid, and there is no need to separate unbound probes from hybridized probes. The advantages of homogeneous hybridization assays are their speed and simplicity. In addition, homogeneous assays can be combined with nucleic acid amplification, enabling the detection of rare target nucleic acids. These assays can be followed in real time, providing quantitative determination of target nucleic acids over a broad range of concentrations.

  8. A hybrid base isolation system

    Energy Technology Data Exchange (ETDEWEB)

    Hart, G.C. [Univ. of California, Los Angeles, CA (United States); Lobo, R.F.; Srinivasan, M. [Hart Consultant Group, Santa Monica, CA (United States); Asher, J.W. [kpff Engineers, Santa Monica, CA (United States)

    1995-12-01

    This paper proposes a new analysis procedure for hybrid base isolation buildings when considering the displacement response of a base isolated building to wind loads. The system is considered hybrid because of the presence of viscous dampers in the building above the isolator level. The proposed analysis approach incorporates a detailed site specific wind study combined with a dynamic nonlinear analysis of the building response.

  9. A novel asymmetric-loop molecular beacon-based two-phase hybridization assay for accurate and high-throughput detection of multiple drug resistance-conferring point mutations in Mycobacterium tuberculosis.

    Science.gov (United States)

    Chen, Qinghai; Wu, Nan; Xie, Meng; Zhang, Bo; Chen, Ming; Li, Jianjun; Zhuo, Lisha; Kuang, Hong; Fu, Weiling

    2012-04-01

    The accurate and high-throughput detection of drug resistance-related multiple point mutations remains a challenge. Although the combination of molecular beacons with bio-immobilization technology, such as microarray, is promising, its application is difficult due to the ineffective immobilization of molecular beacons on the chip surface. Here, we propose a novel asymmetric-loop molecular beacon in which the loop consists of 2 parts. One is complementary to a target, while the other is complementary to an oligonucleotide probe immobilized on the chip surface. With this novel probe, a two-phase hybridization assay can be used for simultaneously detecting multiple point mutations. This assay will have advantages, such as easy probe availability, multiplex detection, low background, and high-efficiency hybridization, and may provide a new avenue for the immobilization of molecular beacons and high-throughput detection of point mutations.

  10. Photoelectrochemical competitive DNA hybridization assay using semiconductor quantum dot conjugated oligonucleotides.

    Science.gov (United States)

    Baş, Deniz; Boyaci, Ismail Hakki

    2011-05-01

    A competitive DNA hybridization assay based on the photoelectrochemistry of the semiconductor quantum dot-single stranded DNA conjugates (QD-ssDNA) was developed. Hybridization of QD-ssDNA with the capture probe DNA immobilized on the indium-tin oxide electrodes enables photocurrent generation when the electrochemical cell was illuminated with a light source. Upon the competition between QD-ssDNA and single-stranded target DNA, the photocurrent response decreased with the increase in the target DNA concentration. A linear relationship between the photocurrent and the target DNA concentration was obtained (R(2) = 0.991). The selectivity of system towards the target DNA was also demonstrated using non-complementary sample.

  11. DNA-based hybrid catalysis.

    Science.gov (United States)

    Rioz-Martínez, Ana; Roelfes, Gerard

    2015-04-01

    In the past decade, DNA-based hybrid catalysis has merged as a promising novel approach to homogeneous (asymmetric) catalysis. A DNA hybrid catalysts comprises a transition metal complex that is covalently or supramolecularly bound to DNA. The chiral microenvironment and the second coordination sphere interactions provided by the DNA are key to achieve high enantioselectivities and, often, additional rate accelerations in catalysis. Nowadays, current efforts are focused on improved designs, understanding the origin of the enantioselectivity and DNA-induced rate accelerations, expanding the catalytic scope of the concept and further increasing the practicality of the method for applications in synthesis. Herein, the recent developments will be reviewed and the perspectives for the emerging field of DNA-based hybrid catalysis will be discussed.

  12. Hybrid Enrichment Assay Methods for a UF6 Cylinder Verification Station: FY10 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leon E.; Jordan, David V.; Orton, Christopher R.; Misner, Alex C.; Mace, Emily K.

    2010-08-01

    Pacific Northwest National Laboratory (PNNL) is developing the concept of an automated UF6 cylinder verification station that would be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until the arrival of International Atomic Energy Agency (IAEA) inspectors. At the center of this unattended system is a hybrid enrichment assay technique that combines the traditional enrichment-meter method (based on the 186 keV peak from 235U) with non-traditional neutron-induced high-energy gamma-ray signatures (spawned primarily by 234U alpha emissions and 19F(alpha, neutron) reactions). Previous work by PNNL provided proof-of-principle for the non-traditional signatures to support accurate, full-volume interrogation of the cylinder enrichment, thereby reducing the systematic uncertainties in enrichment assay due to UF6 heterogeneity and providing greater sensitivity to material substitution scenarios. The work described here builds on that preliminary evaluation of the non-traditional signatures, but focuses on a prototype field system utilizing NaI(Tl) and LaBr3(Ce) spectrometers, and enrichment analysis algorithms that integrate the traditional and non-traditional signatures. Results for the assay of Type-30B cylinders ranging from 0.2 to 4.95 wt% 235U, at an AREVA fuel fabrication plant in Richland, WA, are described for the following enrichment analysis methods: 1) traditional enrichment meter signature (186 keV peak) as calculated using a square-wave convolute (SWC) algorithm; 2) non-traditional high-energy gamma-ray signature that provides neutron detection without neutron detectors and 3) hybrid algorithm that merges the traditional and non-traditional signatures. Uncertainties for each method, relative to the declared enrichment for each cylinder, are calculated and compared to the uncertainties from an attended

  13. Mitochondrial base excision repair assays

    DEFF Research Database (Denmark)

    Maynard, Scott; de Souza-Pinto, Nadja C; Scheibye-Knudsen, Morten

    2010-01-01

    The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur...

  14. Comparison of kDNA PCR-hybridization assay with three PCR methods for canines visceral Leishmaniasis diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Pilatti, Marcia M.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: marciapilatti@yahoo.com.br, e-mail: antero@cdtn.br; Ferreira, Sidney A. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Parasitologia], e-mail: saninoalmeida@gmail.com

    2009-07-01

    The sensitivity of the kDNA PCR-Hybridization assay, which uses radioactive DNA probes (labeled with {sup 32}P), was compared with three conventional PCR methods used for canine visceral leishmaniasis diagnosis. All PCR methods had two steps: a first amplification followed by hybridization or by a new amplification (nested or semi nested). Two methods (kDNA PCR-Hybridization and kDNA snPCR) used primers addressed to kinetoplast minicircles and the other two methods to the coding (LnPCR) and intergenic noncoding regions (ITS-1 nPCR) of the ribosomal rRNA genes. The comparison was accomplished in two groups of 23 infected dogs using samples collected by the conjunctival swab procedure. In the Group 1 the DNA was extracted from cotton swabs by phenol-chloroform and in Group 2 by boiling. The most efficient PCR methods in the Group 1 were those based on kDNA targets. The kDNA PCR-Hybridization was able to detect parasites in 22/23 dogs (95.6%) and in 40/46 samples (86.9%). The kDNA snPCR was positive for 21/23 dogs (91.3%) and for 40/46 samples (86.9%). The positivities of the kDNA based methods were significantly higher than the positivities verified for the methods based on ribosomal rRNA genes (p<0.05). In the Group 2 the kDNA PCR- Hybridization showed a better performance detecting parasites in 18/23 dogs (78.3%) and in 31/46 samples (67.4%), significantly higher than the other three methods (p<0.05). The higher sensitivity of the minicircle kDNA based assays reported by others was confirmed in this study and kDNA PCR-Hybridization showed the best sensitivity among the assays evaluated. (author)

  15. Microinjection and Fluorescence In Situ Hybridization Assay for Studying mRNA Export in Mammalian Cells.

    Science.gov (United States)

    Wang, Ke; Shi, Min; Cheng, Hong

    2017-01-01

    Microinjection and Fluorescence in situ Hybridization (FISH) assay is a useful method for mRNA export studies, which can overcome the problems of traditional transfection in cells. Here, we describe the method of microinjection and FISH assay applied in investigation of mRNA export. By this method we can estimate the mRNA export kinetics, examining mRNA export in cells with low transfection efficiencies, and observing nuclear export of aberrant RNAs.

  16. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

    Science.gov (United States)

    Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei

    2015-09-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.

  17. Cell based assay for hypoglycemic drugs screening

    Institute of Scientific and Technical Information of China (English)

    LiZHANG; Juan-juanHU; Guan-huaDU

    2004-01-01

    OBJECTIVE: To establish a cell based assay for hypoglyc emicdrugs. METHODS: The five cell lines, BALB/c3T3, HepG2, NIH3T3, Be17402, and L929 were incubated with insulin (0-125n mol/L) for 48 h. Their sensitivities to insulin were studied by detecting glucose consumption. The dose-response and time-response relationship between the sensitive cell line (BALB/c 3T3)

  18. Evaluation of a fluorescent DNA hybridization assay for the detection of Neisseria gonorrhoeae.

    Science.gov (United States)

    Cano, R J; Palomares, J C; Torres, M J; Klem, R E

    1992-07-01

    This study evaluates a four-hour fluorescent DNA hybridization assay using both known bacterial isolates and clinical specimens. A biotinylated oligonucleotide probe from a sequence of the plasmid-encoded gene cppB was used. Hybrids were detected by addition of a streptavidin-alkaline phosphatase conjugate, followed by incubation for 30 min in a fluorescent substrate for alkaline phosphatase. The level of detection of the fluorescent assay was 0.1 pg of cryptic plasmid DNA or 200 cfu of the plasmid-containing strain NG 34/85 of Neisseria gonorrhoeae. A total of 119 reference strains of Neisseria gonorrhoeae and other related bacteria were tested for reactivity with the probe. All Neisseria gonorrhoeae strains, including eight plasmid-free strains, hybridized with the probe. Fluorescence ratios were 2.67 for plasmid-free strains and 3.85 for plasmid-containing strains. Of the heterologous microorganisms tested, only one of six strains of Neisseria cinerea gave a fluorescence ratio above the 2.0 cut-off value for positivity with the probe at a cell density of 1 x 10(4) cfu. The probe was also evaluated using clinical specimens from 100 patients attending a clinic for sexually transmitted diseases. The sensitivity of the assay was 100% while the specificity was 97.5%. Positive and negative predictive values were 91.2% and 100%, respectively. The fluorescent DNA hybridization assay for the detection of Neisseria gonorrhoeae described here thus appears to be a highly specific and sensitive assay.

  19. Cluster Tree Based Hybrid Document Similarity Measure

    Directory of Open Access Journals (Sweden)

    M. Varshana Devi

    2015-10-01

    Full Text Available based hybrid similarity measure is established to measure the hybrid similarity. In cluster tree, the hybrid similarity measure can be calculated for the random data even it may not be the co-occurred and generate different views. Different views of tree can be combined and choose the one which is significant in cost. A method is proposed to combine the multiple views. Multiple views are represented by different distance measures into a single cluster. Comparing the cluster tree based hybrid similarity with the traditional statistical methods it gives the better feasibility for intelligent based search. It helps in improving the dimensionality reduction and semantic analysis.

  20. Detection of Phaeocystis globosa using sandwich hybridization integrated with nuclease protection assay (NPA-SH)

    Institute of Scientific and Technical Information of China (English)

    ZHEN Yu; MI Tiezhu; YU Zhigang

    2008-01-01

    Phaeocystis globosa Scherffel is one of the common harmful algae species in coastal waters of the southeastern China. In this study, sandwich hybridization integrated with nuclease protection assay (NPA-SH) was used to qualitatively and quantitatively detect P. globosa. Results showed that this method had good applicability and validity in analyzing the samples from laboratory cultures and from fields. The linear regression equation for P. globosa was obtained, and the lowest detection number of cells was 1.8×104 cells. Statistics showed that there was no distinct difference between the results of detecting the microalgae by NPA-SH and traditional microscopy. This technique has good reliability, accuracy, and can give a remarkably high sample processing rate. Sandwich hybridization integrated with nuclease protection assay will provide an efficient alternative to microscopic method for monitoring and investigating the bloom of P. globosa.

  1. Detection of oligonucleotide hybridization on a single microparticle by time-resolved fluorometry: hybridization assays on polymer particles obtained by direct solid phase assembly of the oligonucleotide probes.

    Science.gov (United States)

    Hakala, H; Heinonen, P; Iitiä, A; Lönnberg, H

    1997-01-01

    Oligodeoxyribonucleotides were assembled by conventional phosphoramidite chemistry on uniformly sized (50 microns) porous glycidyl methacrylate/ethylene dimethacrylate (SINTEF) and compact polystyrene (Dynosphere) particles, the aminoalkyl side chains of which were further derivatized with DMTrO-acetyl groups. The linker was completely resistant toward ammonolytic deprotection of the base moieties. The quality of oligonucleotides was assessed by repeating the synthesis on the same particles derivatized with a cleavable ester linker. The ability of the oligonucleotide-coated particles to bind complementary sequences via hybridization was examined by following the attachment of oligonucleotides bearing a photoluminescent europium(III) chelate to the particles. The fluorescence emission was measured directly on a single particle. The effects of the following factors on the kinetics and efficiency of hybridization were studied: number of particles in a given volume of the assay solution, loading of oligonucleotide on the particle, concentration of the target oligonucleotide in solution, length of the hybridizing sequence, presence of noncomplementary sequences, and ionic strength. The fluorescence signal measured on a single particle after hybridization was observed to be proportional to the concentration of the target oligonucleotide in solution over a concentration range of 5 orders of magnitude.

  2. Nucleic Acid Sandwich Hybridization Assay with Quantum Dot-Induced Fluorescence Resonance Energy Transfer for Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Cheng-Chung Chou

    2012-12-01

    Full Text Available This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD-induced fluorescence resonance energy transfer (FRET reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor in a molar ratio of 10:1 (probe-to-QD, and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED, optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection.

  3. Mass-based readout for agglutination assays

    Science.gov (United States)

    Chunara, Rumi; Godin, Michel; Knudsen, Scott M.; Manalis, Scott R.

    2007-11-01

    We present a mass-based readout for agglutination assays. The suspended microchannel resonator (SMR) is used to classify monomers and dimers that are formed during early stage aggregation, and to relate the total count to the analyte concentration. Using a model system of streptavidin functionalized microspheres and biotinylated antibody as the analyte, we obtain a dose-response curve over a concentration range of 0.63-630nM and show that the results are comparable to what has been previously achieved by image analysis and conventional flow cytometry.

  4. A novel SERRS sandwich-hybridization assay to detect specific DNA target.

    Directory of Open Access Journals (Sweden)

    Cécile Feuillie

    Full Text Available In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR. In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics.

  5. Hybrid lipid-based nanostructures

    Science.gov (United States)

    Dayani, Yasaman

    Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and

  6. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Noor, M. Omair; Tavares, Anthony J.; Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca

    2013-07-25

    Graphical abstract: -- Highlights: •Solid-phase multiplexed QD-FRET nucleic acid assay in electrokinetic fluidic chip. •Concurrent detection of two oligonucleotides based on channel length coverage. •Selection of “turn-on” and “turn-off” signals from two acceptor dyes and two colors of immobilized QDs, respectively. •No loss in assay sensitivity when implementing multiplexed assay format. -- Abstract: A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical

  7. Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology

    Directory of Open Access Journals (Sweden)

    Hovhannisyan Galina G

    2010-09-01

    Full Text Available Abstract Comet assay and micronucleus (MN test are widely applied in genotoxicity testing and biomonitoring. While comet assay permits to measure direct DNA-strand breaking capacity of a tested agent MN test allows estimating the induced amount of chromosome and/or genome mutations. The potential of these two methods can be enhanced by the combination with fluorescence in situ hybridization (FISH techniques. FISH plus comet assay allows the recognition of targets of DNA damage and repairing directly. FISH combined with MN test is able to characterize the occurrence of different chromosomes in MN and to identify potential chromosomal targets of mutagenic substances. Thus, combination of FISH with the comet assay or MN test proved to be promising techniques for evaluation of the distribution of DNA and chromosome damage in the entire genome of individual cells. FISH technique also permits to study comet and MN formation, necessary for correct application of these methods. This paper reviews the relevant literature on advantages and limitations of Comet-FISH and MN-FISH assays application in genetic toxicology.

  8. Flow cytometry-based DNA hybridization and polymorphism analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, H.; Kommander, K.; White, P.S.; Nolan, J.P.

    1998-07-01

    Functional analysis of the humane genome, including the quantification of differential gene expression and the identification of polymorphic sites and disease genes, is an important element of the Human Genome Project. Current methods of analysis are mainly gel-based assays that are not well-suited to rapid genome-scale analyses. To analyze DNA sequence on a large scale, robust and high throughput assays are needed. The authors are developing a suite of microsphere-based approaches employing fluorescence detection to screen and analyze genomic sequence. The approaches include competitive DNA hybridization to measure DNA or RNA targets in unknown samples, and oligo ligation or extension assays to analyze single-nucleotide polymorphisms. Apart from the advances of sensitivity, simplicity, and low sample consumption, these flow cytometric approaches have the potential for high throughput multiplexed analysis using multicolored microspheres and automated sample handling.

  9. Evaluation of a novel PCR-based assay for detection and identification of Chlamydia trachomatis serovars in cervical specimens.

    NARCIS (Netherlands)

    Quint, K.D.; Porras, C.; Safaeian, M.; Gonzalez, P.; Hildesheim, A.; Quint, W.G.V.; Doorn, L.J. van; Silva, S.; Melchers, W.J.G.; Schiffman, M.; Rodriguez, A.C.; Wacholder, S.; Freer, E.; Cortes, B.; Herrero, R.

    2007-01-01

    The aims of this study were to compare a novel PCR-based Chlamydia trachomatis detection and genotyping (Ct-DT) assay with the FDA-approved, commercially available C. trachomatis detection Hybrid Capture 2 (HC2) assay and to investigate the C. trachomatis serovar distribution among young women in a

  10. Simultaneous Detection of Three Arboviruses Using a Triplex RT-PCR Enzyme Hybridization Assay

    Institute of Scientific and Technical Information of China (English)

    Dan Dong; Shi-hong Fu; Li-hua Wang; Zhi Lv; Tai-yuan Li; Guo-dong Liang

    2012-01-01

    Arboviruses represent a serious problem to public health and agriculture worldwide.Fast,accurate identification of the viral agents of arbovirus-associated disease is essential for epidemiological surveillance and laboratory investigation.We developed a cost-effective,rapid,and highly sensitive one-step "triplex RT-PCR enzyme hybridization"assay for simultaneous detections of Japanese Encephallitis virus (JEV,Flaviviridae)Getah virus (GETV,Togaviridae),and Tahyna virus (TAHV,Bunyaviridae) using three pairs of primers to amplify three target sequences in one RT-PCR reaction.The analytical sensitivity of this assay was 1 PFU/mL for JEV,10PFU/mL for GETV,and 10 PFU/mL for TAHV.This assay is significantly more rapid and less expensive than the traditional serological detection and single RT-PCR reaction methods.When “triplex RT-PCR enzyme hybridization” was applied to 29 cerebrospinal fluid(CSF)samples that were JEV-positive by normal RT-PCR assay,all samples were strongly positive for JEV,but negative for GETV and TAHV,demonstrating a good sensitivity,specificity,and performance at CSF specimen detection.

  11. Simultaneous detection of several oligonucleotides by time-resolved fluorometry: the use of a mixture of categorized microparticles in a sandwich type mixed-phase hybridization assay.

    Science.gov (United States)

    Hakala, H; Virta, P; Salo, H; Lönnberg, H

    1998-12-15

    Porous, uniformly sized (50 micrometer) glycidyl methacrylate/ethylene dimethacrylate particles (SINTEF) were used as a solid phase to construct a sandwich type hybridization assay that allowed simultaneous detection of up to six oligonucleotides from a single sample. The assay was based on categorization of the particles by two organic prompt fluorophores, viz. fluorescein and dansyl, and quantification of the oligonucleotide hybridization by time-resolved fluorometry. Accordingly, allele-specific oligodeoxyribonucleotide probes were assembled on the particles by conventional phosphoramidite strategy using a non-cleavable linker, and the category defining fluorescein and/or dansyl tagged building blocks were inserted in the 3'-terminal sequence. An oligonucleotide bearing a photoluminescent europium(III) chelate was hybridized to the complementary 3'-terminal sequence of the target oligonucleotide, and the resulting duplex was further hybridized to the particle-bound allele-specific probes via the 5'-terminal sequence of the target. After hybridization each individual particle was subjected to three different fluorescence intensity measurements. The intensity of the prompt fluorescence signals of fluorescein and dansyl defined the particle category, while the europium(III) chelate emission quantified the hybridization. The length of the complementary region between the target oligonucleotide and the particle-bound probe was optimized to achieve maximal selectivity. Furthermore, the kinetics of hybridization and the effect of the concentration of the target oligomer on the efficiency of hybridization were evaluated. By this approach the possible presence of a three base deletion (DeltaF508), point mutation (G542X) and point deletion (1078delT) related to cystic fibrosis could unequivocally be detected from a single sample.

  12. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Donald B., E-mail: bloch@helix.mgh.harvard.edu; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-09-10

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: {yields} A two-hybrid assay was developed to study interactions in macromolecular complexes. {yields} The assay was applied to interactions between components of mRNA P-bodies. {yields} The assay effectively and efficiently identified protein interaction domains. {yields} P-body assembly in mammalian cells differs from that in other species.

  13. Cross-reactivity profiles of hybrid capture II, cobas, and APTIMA human papillomavirus assays

    DEFF Research Database (Denmark)

    Preisler, Sarah Nørgaard; Rebolj, Matejka; Ejegod, Ditte Møller

    2016-01-01

    evaluated to what extent these can be explained by cross-reactivity, i.e. positive test results without evidence of high-risk HPV genotypes. The patterns of cross-reactivity have been thoroughly studied for hybrid capture II (HC2) but not yet for newer HPV assays although the manufacturers claimed...... no or limited frequency of cross-reactivity. In this independent study we evaluated the frequency of cross-reactivity for HC2, cobas, and APTIMA assays.METHODS:Consecutive routine cervical screening samples from 5022 Danish women, including 2859 from women attending primary screening, were tested with the three...... cytology and positive high-risk HPV test results were invited for repeated testing in 18 months.RESULTS:Cross-reactivity to low-risk genotypes was detected in 109 (2.2 %) out of 5022 samples on HC2, 62 (1.2 %) on cobas, and 35 (0.7 %) on APTIMA with only 10 of the samples cross-reacting on all 3 assays...

  14. Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms.

    Science.gov (United States)

    Dou, Maowei; Sanjay, Sharma Timilsina; Benhabib, Merwan; Xu, Feng; Li, XiuJun

    2015-12-01

    Low-cost assays have broad applications ranging from human health diagnostics and food safety inspection to environmental analysis. Hence, low-cost assays are especially attractive for rural areas and developing countries, where financial resources are limited. Recently, paper-based microfluidic devices have emerged as a low-cost platform which greatly accelerates the point of care (POC) analysis in low-resource settings. This paper reviews recent advances of low-cost bioanalysis on paper-based microfluidic platforms, including fully paper-based and paper hybrid microfluidic platforms. In this review paper, we first summarized the fabrication techniques of fully paper-based microfluidic platforms, followed with their applications in human health diagnostics and food safety analysis. Then we highlighted paper hybrid microfluidic platforms and their applications, because hybrid platforms could draw benefits from multiple device substrates. Finally, we discussed the current limitations and perspective trends of paper-based microfluidic platforms for low-cost assays.

  15. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration.

  16. Evaluation of a reverse-hybridization StripAssay for the detection of genetic polymorphisms leading to acenocoumarol sensitivity.

    Science.gov (United States)

    Gialeraki, Argyri; Markatos, Christos; Grouzi, Elisabeth; Merkouri, Efrosyni; Travlou, Anthi; Politou, Marianna

    2010-04-01

    Acenocoumarol is mainly catabolized by CYP2C9 isoform of cytochrome P450 (CYP) liver complex and exerts its anticoagulant effect through the inhibition of Vitamin K Epoxide Reductase (VKOR). The most important genetic polymorphisms which lead to an impaired enzymatic activity and therefore predispose to acenocoumarol sensitivity, are considered to be CYP2C9*2 (Arg144Cys), CYP2C9*3 (Ile359Leu) and VKORC1-1639G>A, respectively. In this study we compared the results of the PGXThrombo StripAssay kit (ViennaLab Diagnostics,Vienna, Austria) with direct DNA sequencing and in house Restriction Fragment Length Polymorphisms (RFLP) for the detection of the aforementioned Single Nucleotide Polymorphisms (SNPs). The reverse hybridization StripAssay was found to be equally effective with RFLP and direct DNA sequencing for the detection of CYP2C9*2 and CYP2C9*3 polymorphisms, respectively. The comparison of the RFLP reference method with the reverse hybridization StripAssay for the detection of VKORC1-1639 G>A polymorphism showed that the reverse hybridization StripAsssay might misclassify some A/A homozygotes as heterozygotes. Optimization of the hybridization procedures may eliminate the extra low signal band observed in some samples at the reverse hybridization StripAssay and improve its diagnostic value.

  17. A label-free, fluorescence based assay for microarray

    Science.gov (United States)

    Niu, Sanjun

    DNA chip technology has drawn tremendous attention since it emerged in the mid 90's as a method that expedites gene sequencing by over 100-fold. DNA chip, also called DNA microarray, is a combinatorial technology in which different single-stranded DNA (ssDNA) molecules of known sequences are immobilized at specific spots. The immobilized ssDNA strands are called probes. In application, the chip is exposed to a solution containing ssDNA of unknown sequence, called targets, which are labeled with fluorescent dyes. Due to specific molecular recognition among the base pairs in the DNA, the binding or hybridization occurs only when the probe and target sequences are complementary. The nucleotide sequence of the target is determined by imaging the fluorescence from the spots. The uncertainty of background in signal detection and statistical error in data analysis, primarily due to the error in the DNA amplification process and statistical distribution of the tags in the target DNA, have become the fundamental barriers in bringing the technology into application for clinical diagnostics. Furthermore, the dye and tagging process are expensive, making the cost of DNA chips inhibitive for clinical testing. These limitations and challenges make it difficult to implement DNA chip methods as a diagnostic tool in a pathology laboratory. The objective of this dissertation research is to provide an alternative approach that will address the above challenges. In this research, a label-free assay is designed and studied. Polystyrene (PS), a commonly used polymeric material, serves as the fluorescence agent. Probe ssDNA is covalently immobilized on polystyrene thin film that is supported by a reflecting substrate. When this chip is exposed to excitation light, fluorescence light intensity from PS is detected as the signal. Since the optical constants and conformations of ssDNA and dsDNA (double stranded DNA) are different, the measured fluorescence from PS changes for the same

  18. Interfacial Chemistry and the Design of Solid-Phase Nucleic Acid Hybridization Assays Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer

    OpenAIRE

    Krull, Ulrich J.; W. Russ Algar

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling th...

  19. SCAN-based hybrid and double-hybrid density functionals from models without fitted parameters

    OpenAIRE

    Hui, Kerwin; Chai, Jeng-Da

    2015-01-01

    By incorporating the nonempirical SCAN semilocal density functional [Sun, Ruzsinszky, and Perdew, Phys. Rev. Lett. 115, 036402 (2015)] in the underlying expression of four existing hybrid and double-hybrid models, we propose one hybrid (SCAN0) and three double-hybrid (SCAN0-DH, SCAN-QIDH, and SCAN0-2) density functionals, which are free from any fitted parameters. The SCAN-based double-hybrid functionals consistently outperform their parent SCAN semilocal functional for self-interaction probl...

  20. Detection of Prorocentrum donghaiense using sandwich hybridization integrated with nuclease protection assay

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; ZHEN Yu; MI Tiezhu; YU Zhigang

    2009-01-01

    Prorocentrum donghaiense is an important harmful algae bloom (HAB) causing creature in China's seas, and the conventional visual detection can not cope with long-term monitoring and highthroughput sampling projects. An assay for P. donghaiense with sandwich hybridization integrated with nuclease protection assay (NPA-SH) was established. Tests with mixed samples and spiked field ones confirmed its good specificity and sensitivity. The cell number of P. donghaiense correlated well with the optical density, and the regression equation is y=4×10-6x+ 0.694 9, in which x is the cell number, and y is the optical density, with r2=0.953 5. These results show that the NPA-SH method has good feasibility in the detection of P. donghaiense. Results of NPA-SH and microscopy are excellent for each sample. The NPA-SH method was a simple way in quantitative detection of P. donghaiense, and the whole process could be finished in about six hours, which provided a new approach in high-throughput sampling and long-term monitoring of P. donghaiense.

  1. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    OpenAIRE

    Alvaro Díaz-Badillo; María de Lourdes Muñoz; Gerardo Perez-Ramirez; Victor Altuzar; Juan Burgueño; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Alejandro Cisneros; Joel Navarrete-Espinosa; Feliciano Sanchez-Sinencio

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybrid...

  2. Determination of estrogen receptor {beta}-mediated estrogenic potencies of hydroxylated PCBS by a yeast two-hybrid assay

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, H.; Kumate, M.; Nakaoka, H.; Yonekura, S. [Daiichi Coll. of Pharmaceutical Sciences, Fukuoka (Japan); Nishikawa, J.; Nishihara, T. [Osaka Univ., Osaka (Japan)

    2004-09-15

    Several environmental phenolic chemicals such as Nonylphenol and Bisphenol A (BPA) have been previously shown to possess estrogenic properties. In the previous paper, we have investigated the estrogenic activity of a series of hydroxylated PCBs (OH-PCBs) by a yeast two-hybrid assay (estrogen receptor{alpha} (ER{alpha}) -TIF2), in which the expression of estrogenic activity is based on the interaction of chemicals with ER{alpha}, and demonstrated that 4'-OH-CB30 and 4'-OH-CB61 are more estrogenic than BPA, one of the environmental estrogens. We have showed that one chlorine substitution adjacent to 4-OH at 3- or 5-position significantly reduces the ER{alpha}-mediated estrogenic activity of 4-OH-PCBs. Thus, 4'-OH-CB25 and 4-OH-CB56 showed a very weak estrogenicity. We have also showed that 4-OH-PCBs with two chlorine substitutions adjacent to 4-OH at 3- and 5-position such as 4'-OH-CB79 (hydroxylated metabolite of CB77) and persistent 4-OH-PCBs retained in human blood (4-OH-CB107, 4-OH-CB146 and 4-OH-CB187) have no ER{alpha}-mediated estrogenic activity. ER is known to have two subtypes, namely ER{alpha} and ER{beta} and it is reported that ligand, some agonist and antagonist have a different binding affinity for ER{alpha} and ER{beta}. However, there is limited information on ER{beta}-mediated endocrine disrupting potency. In this study, we examined the ER{beta}-mediated estrogenic activity of a series of OH-PCBs, including environmentally relevant 4-OH-PCBs by a yeast two-hybrid assay (ER{beta}-TIF2).

  3. A LightCycler real-time PCR hybridization probe assay for detecting food-borne thermophilic Campylobacter

    DEFF Research Database (Denmark)

    Perelle, S.; Josefsen, Mathilde Hartmann; Hoorfar, Jeffrey

    2004-01-01

    Cycler real-time PCR assay (LC-PCR), which used fluorescent hybridization probes was developed. The test incorporated an internal amplification control co-amplified with the 16S rRNA gene of Campylobacter to monitor potential PCR inhibitors and ensure successful amplifications. The specificity study involving...

  4. Hybrid Capture 2 and cobas human papillomavirus assays perform similarly on SurePath samples from women with abnormalities

    DEFF Research Database (Denmark)

    Fornari, D; Rebolj, M; Bjerregaard, B

    2016-01-01

    OBJECTIVE: In two laboratories (Departments of Pathology, Copenhagen University Hospitals of Herlev and Hvidovre), we compared cobas and Hybrid Capture 2 (HC2) human papillomavirus (HPV) assays using SurePath® samples from women with atypical squamous cells of undetermined significance (ASCUS) at...

  5. Automated UF6 Cylinder Enrichment Assay: Status of the Hybrid Enrichment Verification Array (HEVA) Project: POTAS Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Orton, Christopher R.; Mace, Emily K.; McDonald, Benjamin S.; Kulisek, Jonathan A.; Smith, Leon E.

    2012-06-01

    Pacific Northwest National Laboratory (PNNL) intends to automate the UF6 cylinder nondestructive assay (NDA) verification currently performed by the International Atomic Energy Agency (IAEA) at enrichment plants. PNNL is proposing the installation of a portal monitor at a key measurement point to positively identify each cylinder, measure its mass and enrichment, store the data along with operator inputs in a secure database, and maintain continuity of knowledge on measured cylinders until inspector arrival. This report summarizes the status of the research and development of an enrichment assay methodology supporting the cylinder verification concept. The enrichment assay approach exploits a hybrid of two passively-detected ionizing-radiation signatures: the traditional enrichment meter signature (186-keV photon peak area) and a non-traditional signature, manifested in the high-energy (3 to 8 MeV) gamma-ray continuum, generated by neutron emission from UF6. PNNL has designed, fabricated, and field-tested several prototype assay sensor packages in an effort to demonstrate proof-of-principle for the hybrid assay approach, quantify the expected assay precision for various categories of cylinder contents, and assess the potential for unsupervised deployment of the technology in a portal-monitor form factor. We refer to recent sensor-package prototypes as the Hybrid Enrichment Verification Array (HEVA). The report provides an overview of the assay signatures and summarizes the results of several HEVA field measurement campaigns on populations of Type 30B UF6 cylinders containing low-enriched uranium (LEU), natural uranium (NU), and depleted uranium (DU). Approaches to performance optimization of the assay technique via radiation transport modeling are briefly described, as are spectroscopic and data-analysis algorithms.

  6. The next-generation Hybrid Capture High-Risk HPV DNA assay on a fully automated platform.

    Science.gov (United States)

    Eder, Paul S; Lou, Jianrong; Huff, John; Macioszek, Jerzy

    2009-07-01

    A next-generation diagnostic system has been developed at QIAGEN. The QIAensemble system consists of an analytical subsystem (JE2000) that utilizes a re-engineered Hybrid Capture chemistry (NextGen) to maintain the high level of clinical sensitivity established by the digene High-Risk HPV DNA Test (HC2), while creating improved analytical specificity as shown both in plasmid-based analyses and in processing of clinical specimens. Limit-of-detection and cross-reactivity experiments were performed using plasmid DNA constructs containing multiple high-risk (HR) and low-risk (LR) HPV types. Cervical specimens collected into a novel specimen collection medium, DCM, were used to measure stability of specimens, as well as analytical specificity. Signal carryover, instrument precision, and specimen reproducibility were measured on the prototype JE2000 system using the automated NextGen assay. The Limit of Detection (LOD) is HPV 16 plasmid in the automated assay. No cross-reactivity (signal above cutoff) was detected on the automated system from any of 13 LR types tested at 10(7) copies per assay. Within-plate, plate-to-plate, and day-to-day performance in the prototype system yielded a CV of 20%. No indication of target carryover was found when samples containing up to 10(9) copies/ml of HPV DNA type 16 were processed on the JE2000 instrument. In an agreement study with HC2, 1038 donor cervical specimens were tested in both the manual NextGen assay and HC2 to evaluate agreement between the two tests. After eliminating discrepant specimens that were adjudicated by HR-HPV genotyping, the adjudicated positive agreement was 98.5% (95% CI: 94.6, 99.6). The JE2000 prototype system automates NextGen assay processing, yielding accurate, reproducible, and highly specific results with both plasmid analytical model tests and cervical specimens collected in DCM. The final system will process more than 2000 specimens in an 8-hour shift, with fully continuous loading.

  7. Polyester based hybrid organic coatings

    Science.gov (United States)

    Wang, Xiaojiang

    Polyesters are a class of polymers widely used in organic coatings applications. In this work, four types of organic coatings based on polyester polyols were prepared: UV-curable polyester/poly(meth)acrylate coatings, thermal curable polyester polyurethane-urea coatings, thermal curable non-isocyanate polyurethane coatings, and UV-curable non-isocyanate polyurethane coatings. Polyester/poly(meth)acrylate block copolymers are synthesized using a combination of polycondensation and Atom-Transfer Radical Polymerization (ATRP). All block copolymers are characterized by means of Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC). In the case of unsaturated-polyester-based block copolymers the main chain double bond in the polyester backbone remains almost unaffected during ATRP. The unsaturated block copolymers are crosslinkable and can form networks upon photo-irradiation in the presence of a suitable photoinitiator. These copolymers might be interesting candidates for coatings with better overall properties than those based on neat polyesters. Thermal curable polyester polyol based Polyurethane-Urea (PUU) coatings were formulated using Partially Blocked HDI isocyanurate (PBH), Isophorone Diamine (IPDA), and polyester polyol. As a comparison, the polyurethane coatings (PU) without adding IPDA were also prepared. The mechanical and viscoelastic properties of the PUU and PU coating were investigated by using tensile test and Dynamic Mechanical Thermal Analyzer (DMTA). It was found that PUU coating exhibited higher crosslink density, Tg, tensile modulus and strength than the corresponding PU coating. Thermal curable non-isocyanate polyurethane coatings were prepared by using polyamine and cyclic carbonate terminated polyester. Cyclic carbonate terminated polyester was synthesized from the reaction of the carbon dioxide and epoxidized polyester which was prepared from the polyester polyol. The properties of the epoxidized and cyclic carbonate

  8. Detection of human papillomavirus in pterygium and conjunctival papilloma by hybrid capture II and PCR assays.

    Science.gov (United States)

    Takamura, Y; Kubo, E; Tsuzuki, S; Akagi, Y

    2008-11-01

    To elucidate the putative role of human papillomavirus (HPV) infection in pterygium and conjunctival papilloma. Hybrid capture II (HC-II) and polymerase chain reaction (PCR) assays were performed to detect HPV in pterygium (42 samples obtained from 40 patients) and conjunctival papilloma (8 samples from 6 patients). The amount of HPV DNA was evaluated by measurement of relative light units (RLUs) on a luminometer. All papilloma samples were positive for HPV DNA by PCR and HC-II. The RLU values for specimens of recurrent and re-recurrent papilloma were markedly higher than those for specimens of primary lesions. HPV was detected by PCR in 2 of 42 (4.8%) beta-globin-positive pterygium specimens, whereas HC-II showed that HPV was negative in all pterygium samples. Our results support the hypothesis that HPV DNA is associated with the pathogenesis of conjunctival papilloma, but not pterygium. RLU measurement by HC-II may serve as a marker for evaluating the activity of HPV in conjunctival tumours.

  9. A hybrid neural network structure for application to nondestructive TRU waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The determination of transuranic (TRU) and associated radioactive material quantities entrained in waste forms is a necessary component. of waste characterization. Measurement performance requirements are specified in the National TRU Waste Characterization Program quality assurance plan for which compliance must be demonstrated prior to the transportation and disposition of wastes. With respect to this criterion, the existing TRU nondestructive waste assay (NDA) capability is inadequate for a significant fraction of the US Department of Energy (DOE) complex waste inventory. This is a result of the general application of safeguard-type measurement and calibration schemes to waste form configurations. Incompatibilities between such measurement methods and actual waste form configurations complicate regulation compliance demonstration processes and illustrate the need for an alternate measurement interpretation paradigm. Hence, it appears necessary to supplement or perhaps restructure the perceived solution and approach to the waste NDA problem. The first step is to understand the magnitude of the waste matrix/source attribute space associated with those waste form configurations in inventory and how this creates complexities and unknowns with respect to existing NDA methods. Once defined and/or bounded, a conceptual method must be developed that specifies the necessary tools and the framework in which the tools are used. A promising framework is a hybridized neural network structure. Discussed are some typical complications associated with conventional waste NDA techniques and how improvements can be obtained through the application of neural networks.

  10. Indicator-based and indicator-free magnetic assays connected with disposable electrochemical nucleic acid sensor system.

    Science.gov (United States)

    Karadeniz, Hakan; Erdem, Arzum; Kuralay, Filiz; Jelen, Frantisek

    2009-04-15

    An indicator-based and indicator-free magnetic assays connected with a disposable pencil graphite electrode (PGE) were successfully developed, and also compared for the electrochemical detection of DNA hybridization. The oxidation signals of echinomycin (ECHI) and electroactive DNA bases, guanine and adenine, respectively were monitored in the presence of DNA hybridization by using differential pulse voltammetry (DPV) technique. The biotinylated probe was immobilized onto the magnetic beads (magnetic particles, microspheres) and hybridization with its complementary target at the surface of particles within the medium was exhibited successfully using electrochemical sensor system. For the selectivity studies, the results represent that both indicator-based and indicator-free magnetic assays provide a better discrimination for DNA hybridization compared to duplex with one-base or more mismatches. The detection limits (S/N=3) of the magnetic assays based on indicator or indicator-free were found in nM concentration level of target using disposable sensor technology with good reproducibility. The characterization and advantages of both proposed magnetic assays connected with a disposable electrochemical sensor are also discussed and compared with those methods previously reported in the literature.

  11. Detection of oligonucleotide hybridization on a single microparticle by time-resolved fluorometry: quantitation and optimization of a sandwich type assay.

    Science.gov (United States)

    Hakala, H; Mäki, E; Lönnberg, H

    1998-01-01

    Uniformly sized (50 micro m) porous glycidyl methacrylate/ethylene dimethacrylate particles (SINTEF) were used as the solid phase in a sandwich type mixed-phase hybridization assay based on time-resolved fluorescence detection on a single particle. These particles were coated with oligodeoxyribonucleotide probes by conventional phosphoramidite chain assembly. An oligodeoxyribonucleotide bearing a photoluminescent europium(III) chelate, ¿2,2',2",2"'-¿¿4'-¿4"'-[(4, 6-dichloro-1,3,5-triazin-2-yl)amino]phenyl¿-2,2':6',2"-terpyrid ine-6, 6"-diyl¿bis(methylenenitrilo)¿tetrakis(acetato)¿eur opi um(III), was hybridized to a complementary sequence of the target oligonucleotide, and the resulting duplex was further hybridized to the particle-bound probes. The latter binding was quantified by time-resolved measurement of the emission signal of a single particle. Kinetics of hybridization and the effect of the concentration of the target oligomer and the fluorescently tagged probe on the efficiency of hybridization were studied. The intensity of the emission signal was linearly related to the concentration of the target oligomer over a range of 5 orders of magnitude. The length of the complementary region between the target oligomer and the particle-bound probe was varied, and the effect of point mutations and deletions on the hybridization efficiency was determined in each case. The maximal selectivity was observed with 10-16-base pair complementary sequences, the optimal length depending on the oligonucleotide loading on the particle. Discrimination between the complete matches and point mismatches was unequivocal, a single point mutation and/or deletion decreasing the efficiency of hybridization by more than 2 orders of magnitude.

  12. SCAN-based hybrid and double-hybrid density functionals from parameter-free models

    CERN Document Server

    Hui, Kerwin

    2015-01-01

    By incorporating the nonempirical SCAN semilocal density functional [Sun, Ruzsinszky, and Perdew, Phys. Rev. Lett. 115, 036402 (2015)] in the underlying expression, we propose one hybrid (SCAN0) and three double-hybrid (SCAN0-DH, SCAN-QIDH, and SCAN0-2) density functionals, which are free of any empirical parameter. The SCAN-based hybrid and double-hybrid functionals consistently outperform their parent SCAN semilocal functional for a wide range of applications. The SCAN-based semilocal, hybrid, and double-hybrid functionals generally perform better than the corresponding PBE-based functionals. In addition, the SCAN0-2 and SCAN-QIDH double-hybrid functionals significantly reduce the qualitative failures of the SCAN semilocal functional, such as the self-interaction error and noncovalent interaction error, extending the applicability of the SCAN-based functionals to a very diverse range of systems.

  13. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process.

    Science.gov (United States)

    Rashti, Ali; Yahyaei, Hossein; Firoozi, Saman; Ramezani, Sara; Rahiminejad, Ali; Karimi, Roya; Farzaneh, Khadijeh; Mohseni, Mohsen; Ghanbari, Hossein

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants.

  14. Cell-based Assays to Identify Inhibitors of Viral Disease

    Science.gov (United States)

    Green, Neil; Ott, Robert D.; Isaacs, Richard J.; Fang, Hong

    2009-01-01

    Background Antagonizing the production of infectious virus inside cells requires drugs that can cross the cell membrane without harming host cells. Objective It is therefore advantageous to establish intracellular potency of anti-viral drug candidates early in the drug-discovery pipeline. Methods To this end, cell-based assays are being developed and employed in high-throughput drug screening, ranging from assays that monitor replication of intact viruses to those that monitor activity of specific viral proteins. While numerous cell-based assays have been developed and investigated, rapid counter screens are also needed to define the specific viral targets of identified inhibitors and to eliminate nonspecific screening hits. Results/Conclusions Here, we describe the types of cell-based assays being used in antiviral drug screens and evaluate the equally important counter screens that are being employed to reach the full potential of cell-based high-throughput screening. PMID:19750206

  15. New, hybrid pectin-based biosorbents

    Science.gov (United States)

    Jakóbik-Kolon, Agata; Milewski, Andrzej K.; Karoń, Krzysztof; Bok-Badura, Joanna

    2016-01-01

    ABSTRACT In this work hybrid pectin-based biosorbents with secondary polysaccharide additives (gellan, carob and xanthan gum, ratio to pectin 1:1, 1:1 and 1:3, respectively) were obtained at two temperatures. The presence of these additives in prepared beads was confirmed by Raman spectra. The SEM micrographs show better homogeneity of blends and grater differences between structures of beads with various additives obtained at higher temperature. The sorption capacity of our hybrid biosorbents as well as sole pectin sorbent is rather the same, and equals 0.85 and 0.70 mmol/g for lead and cadmium, respectively, in pH 4–6. PMID:27812233

  16. Hybrid Communication System Based on OFDM

    Directory of Open Access Journals (Sweden)

    2013-11-01

    Full Text Available A Hybrid architecture between terrestrial and satellite networks based on Orthogonal Frequency Division Multiplexing (OFDM is employed here. In hybrid architecture, the users will be able to avail the services through the terrestrial networks as well as the satellite networks. The users located in urban areas will be served by the existing terrestrial mobile networks and similarly the one located in rural areas will be provided services through the satellite networks. The technique which is used to achieve this objective is called Pre-FFT adaptive beamforming also called time domain beamforming. When the data is received at the satellite end, the Pre-FFT adaptive beamforming extracts the desired user data from the interferer user by applying the complex weights to the received symbol. The weight for the next symbol is then updated by Least Mean Square (LMS algorithm and then is applied to it. This process is carried out till all the desired user data is extracted.

  17. Prevalence of human papillomavirus infection in the genital tract determined by hybrid capture assay

    Directory of Open Access Journals (Sweden)

    Fernanda N. Carestiato

    Full Text Available Human Papillomavirus (HPV infection is the most prevalent sexually-transmitted virus worldwide. It is known to be the etiological agent of cervical cancer and cervical intraepithelial neoplasia (CIN. Consequently, there is strong motivation to evaluate HPV testing in cervical cancer screening. Recently developed, the second generation of the hybrid capture test (HCA II is a non-radioactive, relatively rapid, hybridization assay, designed to detect 18 HPV types divided into high and low-risk groups. We evaluated 7,314 patients (5,833 women and 1,481 men for HPV infection by HCA II. Among them, 3,008 (41.1% presented HPV infection: 430 (14.2% had HPV DNA of low risk for cancer, 1,631 (54.2% had high risk HPV types and 947 (31.5% had both types. The prevalence in females was 44.9%. The prevalence of HPV DNA in the group for which cytological results were available was slightly higher: 55.3% (1007/1824. Significant differences were detected in the frequency of HPV infection of the cervix between normal cases and those with high-grade squamous-intraepithelial lesions (HSIL(P<0.0001. Among males, the prevalence was 26.2%, composed of 9.1% in Group A, 9.7% in Group B and 7.4% with multiple infections. We observed that male prevalence was lower and that low-risk types were more frequent than in females. HPV viral load was significantly greater in SILs than in normal or inflammatory cases (P<0.0001, suggesting an association between high viral load values and risk of SIL. Because of high costs, the HCA II test cannot be recommended for routine mass screening for cervical infection in poor countries. Nevertheless, it was found to be a useful tool, when combined with cytology, discovering high-risk infections in apparently normal tissues and revealing silent infections that may be responsible for the maintenance of HPV in the general population. These findings point to the need for close and careful management of patients, thereby reducing overtreatment

  18. The use of nanocrystal quantum dot as fluorophore reporters in molecular beacon-based assays

    Science.gov (United States)

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-12-01

    The utilization of molecular beacon (MB) biosensor probes to detect nucleic acid targets has received enormous interest within the scientific community. This interest has been stimulated by the operational qualities of MB-based probes with respect to their unique sensitivity and specificity. The design of MB biosensors entails not only optimizing the sequence of the loop to hybridize with the nucleic acid target or optimization of the length of the stem to tune the sensitivity but also the selection of the appropriate fluorophore reporter to generate the signal transduction read-out upon hybridization of the probe with the target sequence. Traditional organic fluorescent dyes are mostly used for signal reporting in MB assays but their optical properties in comparison to semiconductor fluorescent quantum dot (Qdot) nanocrystals are at a disadvantage. This review highlights the progress made in exploiting Qdot as fluorophore reporters in MB-based assays with the aim of instigating further development in the field of Qdot-MB technology. The development reported to date indicates that unparalleled fluorescence signal reporting in MB-based assays can be achieved using well-constructed Qdot fluorophores.

  19. A Cell-Based Assay to Assess Hemichannel Function

    Science.gov (United States)

    Krishnan, Srinivasan; Fiori, Mariana C.; Cuello, Luis G.; Altenberg, Guillermo A.

    2017-01-01

    Activation of connexin hemichannels is involved in the pathophysiology of disorders that include deafness, stroke, and cardiac infarct. This aspect makes hemichannels an attractive therapeutic target. Unfortunately, most available inhibitors are not selective or isoform specific, which hampers their translational application. The absence of a battery of useful inhibitors is due in part to the absence of simple screening assays for the discovery of hemichannel-active drugs. Here, we present an assay that we have recently developed to assess hemichannel function. The assay is based on the expression of functional human connexins in a genetically modified bacterial strain deficient in K+ uptake. These modified cells do not grow in low-K+ medium, but functional expression of connexin hemichannels allows K+ uptake and growth. This cell-growth-based assay is simple, robust, and easily scalable to high-throughput multi-well platforms.

  20. Estrogenic/Antiestrogenic Activities of Polycyclic Aromatic Hydrocarbons and Their Monohydroxylated Derivatives by Yeast Two-Hybrid Assay

    OpenAIRE

    Hayakawa, Kazuichi; Onoda, Yu; Tachikawa, Chihiro; Hosoi, Shinzo; Yoshita, Morio; Chung, Sang Woon; Kizu, Ryoichi; Toriba, Akira; Kameda, Takayuki; Tang, Ning

    2007-01-01

    Estrogenic/antiestrogenic activities of 14 polycyclic aromatic hydrocarbons (PAHs) and 63 monohydroxylated PAHs (OHPAHs) having 2 to 6 rings were evaluated by yeast two-hybrid assay expressing human estrogen receptor α. Relative effective potencies of estrogenic and antiestrogenic activities were calculated as the inverse values of the relative concentration of the test compound that gave the same activities of E2 and 4-hydroxytamoxifen, respectively. PAHs did not show any estrogenic/antiestr...

  1. Hybrid-Based Dense Stereo Matching

    Science.gov (United States)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  2. Traditional and Model Based Assay of Irregular Geometry Items

    Energy Technology Data Exchange (ETDEWEB)

    MOORE, FRANK S.; SALAYMEH, SALEEM

    2005-06-15

    The Analytical Development Section (ADS) of SRNL was requested to perform a waste disposal assay of two heater boxes which had been used in the HB Line dissolvers. They had been sent to SRNL for study to make recommendations on how to prevent future failure of the units when they were replaced. The study having been completed, the units needed to be characterized prior to sending to Solid Waste for disposal. An assay station consisting of a turntable, HPGe detector, CANBERRA Inspector, transmission source and a portable computer was set up to do the required assays. The assays indicate the presence of U-235, Pu-239 and Cs-137. No measurable amounts of U-235 or Pu-239 were found. Therefore the Minimum Detectable Activities for U-235 and Pu-239 were calculated. For Heater Box 1, 0.23 grams of U-235 and 0.24 grams of Pu-239. For Heater Box 2, the results were 0.21 grams of U-235 and 0.21 grams of Pu-239. This paper describes and documents the assays employed to determine the amount of U, Pu and Cs contents of the heater boxes. The paper provides results of SNM assays using traditional calibration of the system and on one based on modeling. It also provides the scientific community with data that will assist the user in determining the method of choice for assaying items with irregular geometries.

  3. Performance of the Aptima High-Risk Human Papillomavirus mRNA Assay in a Referral Population in Comparison with Hybrid Capture 2 and Cytology▿

    Science.gov (United States)

    Clad, Andreas; Reuschenbach, Miriam; Weinschenk, Johanna; Grote, Ruth; Rahmsdorf, Janina; Freudenberg, Nikolaus

    2011-01-01

    This study compared the Aptima human papillomavirus (HPV) (AHPV; Gen-Probe Incorporated) assay, which detects E6/E7 mRNA from 14 high-risk types, the Hybrid Capture 2 HPV DNA (HC2; Qiagen Incorporated) test, and repeat cytology for their ability to detect high-grade cervical lesions (cervical intraepithelial neoplasia grade 2+ [CIN2+]) in women referred to colposcopy due to an abnormal Papanicolaou (Pap) smear. A total of 424 clinical specimens, stored in liquid-based cytology (LBC) vials at room temperature for up to 3 years, were tested by repeat cytology, the AHPV assay, and the HC2 test. Assay results were compared to each other and to histology results. The overall agreement between the AHPV assay and the HC2 test was 88.4%. The sensitivity (specificity) of cytology, the HC2 test, and the AHPV assay for the detection of CIN2+ was 84.9% (66.3%), 91.3% (61.0%), and 91.7% (75.0%) and for the detection of CIN3+ was 93.9% (54.4%), 95.7% (46.0%), and 98.2% (56.3%), respectively. Of the disease-positive specimens containing high-risk HPV (HR HPV) DNA as determined by Linear Array (Roche Diagnostics), the AHPV assay missed 3 CIN2 and 1 microfocal CIN3 specimen, while the HC2 test missed 6 CIN2, 4 CIN3, and 1 cervical carcinoma specimen. The AHPV assay had a sensitivity similar to but a specificity significantly higher (P < 0.0001) than the HC2 test for the detection of CIN2+. The AHPV assay was significantly more sensitive (P = 0.0041) and significantly more specific (P = 0.0163) than cytology for the detection of disease (CIN2+). PMID:21191046

  4. Performance of the Aptima high-risk human papillomavirus mRNA assay in a referral population in comparison with Hybrid Capture 2 and cytology.

    Science.gov (United States)

    Clad, Andreas; Reuschenbach, Miriam; Weinschenk, Johanna; Grote, Ruth; Rahmsdorf, Janina; Freudenberg, Nikolaus

    2011-03-01

    This study compared the Aptima human papillomavirus (HPV) (AHPV; Gen-Probe Incorporated) assay, which detects E6/E7 mRNA from 14 high-risk types, the Hybrid Capture 2 HPV DNA (HC2; Qiagen Incorporated) test, and repeat cytology for their ability to detect high-grade cervical lesions (cervical intraepithelial neoplasia grade 2+ [CIN2+]) in women referred to colposcopy due to an abnormal Papanicolaou (Pap) smear. A total of 424 clinical specimens, stored in liquid-based cytology (LBC) vials at room temperature for up to 3 years, were tested by repeat cytology, the AHPV assay, and the HC2 test. Assay results were compared to each other and to histology results. The overall agreement between the AHPV assay and the HC2 test was 88.4%. The sensitivity (specificity) of cytology, the HC2 test, and the AHPV assay for the detection of CIN2+ was 84.9% (66.3%), 91.3% (61.0%), and 91.7% (75.0%) and for the detection of CIN3+ was 93.9% (54.4%), 95.7% (46.0%), and 98.2% (56.3%), respectively. Of the disease-positive specimens containing high-risk HPV (HR HPV) DNA as determined by Linear Array (Roche Diagnostics), the AHPV assay missed 3 CIN2 and 1 microfocal CIN3 specimen, while the HC2 test missed 6 CIN2, 4 CIN3, and 1 cervical carcinoma specimen. The AHPV assay had a sensitivity similar to but a specificity significantly higher (P < 0.0001) than the HC2 test for the detection of CIN2+. The AHPV assay was significantly more sensitive (P = 0.0041) and significantly more specific (P = 0.0163) than cytology for the detection of disease (CIN2+).

  5. Towards a high throughput droplet-based agglutination assay

    KAUST Repository

    Kodzius, Rimantas

    2013-10-22

    This work demonstrates the detection method for a high throughput droplet based agglutination assay system. Using simple hydrodynamic forces to mix and aggregate functionalized microbeads we avoid the need to use magnetic assistance or mixing structures. The concentration of our target molecules was estimated by agglutination strength, obtained through optical image analysis. Agglutination in droplets was performed with flow rates of 150 µl/min and occurred in under a minute, with potential to perform high-throughput measurements. The lowest target concentration detected in droplet microfluidics was 0.17 nM, which is three orders of magnitude more sensitive than a conventional card based agglutination assay.

  6. A highly scalable peptide-based assay system for proteomics.

    Directory of Open Access Journals (Sweden)

    Igor A Kozlov

    Full Text Available We report a scalable and cost-effective technology for generating and screening high-complexity customizable peptide sets. The peptides are made as peptide-cDNA fusions by in vitro transcription/translation from pools of DNA templates generated by microarray-based synthesis. This approach enables large custom sets of peptides to be designed in silico, manufactured cost-effectively in parallel, and assayed efficiently in a multiplexed fashion. The utility of our peptide-cDNA fusion pools was demonstrated in two activity-based assays designed to discover protease and kinase substrates. In the protease assay, cleaved peptide substrates were separated from uncleaved and identified by digital sequencing of their cognate cDNAs. We screened the 3,011 amino acid HCV proteome for susceptibility to cleavage by the HCV NS3/4A protease and identified all 3 known trans cleavage sites with high specificity. In the kinase assay, peptide substrates phosphorylated by tyrosine kinases were captured and identified by sequencing of their cDNAs. We screened a pool of 3,243 peptides against Abl kinase and showed that phosphorylation events detected were specific and consistent with the known substrate preferences of Abl kinase. Our approach is scalable and adaptable to other protein-based assays.

  7. Multicast Routing Based on Hybrid Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    CAO Yuan-da; CAI Gui

    2005-01-01

    A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability.

  8. Development of a VHH-Based Erythropoietin Quantification Assay

    DEFF Research Database (Denmark)

    Kol, Stefan; Beuchert Kallehauge, Thomas; Adema, Simon

    2015-01-01

    human EPO was evaluated as a capturing antibody in a label-free biolayer interferometry-based quantification assay. Human recombinant EPO can be specifically detected in Chinese hamster ovary cell supernatants in a sensitive and pH-dependent manner. This method enables rapid and robust quantification...

  9. A versatile polyacrylamide gel electrophoresis based sulfotransferase assay

    Directory of Open Access Journals (Sweden)

    Prather Brittany

    2010-02-01

    Full Text Available Abstract Background Sulfotransferases are a large group of enzymes that regulate the biological activity or availability of a wide spectrum of substrates through sulfation with the sulfur donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS. These enzymes are known to be difficult to assay. A convenient assay is needed in order to better understand these enzymes. Results A universal sulfotransferase assay method based on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE is described. This assay has been successfully applied to substrates as small as α-naphthol and as big as proteoglycans. As examples, we present the assays for recombinant human CHST4, TPST1, CHST3 and HS6ST1. In order to assess whether a small molecule can be applicable to this type of assay, a method to estimate the relative mobility of a molecule to PAPS is also presented. The estimated relative mobilities of various sulfated small molecules generated by SULT1A1, SULT1E1, SULT2A1 and CHST4 are in the range of ± 0.2 of the actual relative mobilities. Conclusion The versatility of the current method comes from the ability that SDS-PAGE can separate proteins and small molecules according to different parameters. While mobilities of proteins during SDS-PAGE are inversely related to their sizes, mobilities of small molecules are positively related to their charge/mass ratios. The predicted relative mobility of a product to PAPS is a good indicator of whether a sulfotransferase can be assayed with SDS-PAGE. Because phosphorylation is most similar to sulfation in chemistry, the method is likely to be applicable to kinases as well.

  10. Multiplexed Nucleic Acid Hybridization Assays Using Single-FRET-Pair Distance-Tuning.

    Science.gov (United States)

    Qiu, Xue; Guo, Jiajia; Jin, Zongwen; Petreto, Alexandra; Medintz, Igor L; Hildebrandt, Niko

    2017-07-01

    Multiplexed photoluminescence (PL) detection plays an important role in chemical and biological sensing. Here, it is shown that time-gated (TG) detection of a single terbium-donor-based Förster resonance energy transfer (FRET) pair can be used to selectively quantify low nanomolar concentrations of multiple DNAs or microRNAs in a single sample. This study demonstrates the applicability of single-TG-FRET-pair multiplexing for molecular (Tb-to-dye) and nanoparticle (Tb-to-quantum-dot) biosensing. Both systems use acceptor-sensitization and donor-quenching for quantifying biomolecular recognition and modification of the donor-acceptor distance for tuning the PL decays. TG intensity detection provides extremely low background noise and a quick and simple one-step assay format. Single-TG-FRET-pair multiplexing can be combined with spectral and spatial resolution, paving the way for biosensing with unprecedented high-order multiplexing capabilities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparative study of ProEx C immunocytochemistry and UroVysion fluorescent in-situ hybridization assays on urine cytology specimens

    Directory of Open Access Journals (Sweden)

    Sue Chang

    2015-01-01

    Full Text Available Background: Detection of urothelial carcinoma (UC by urine cytology can be challenging. Recently, ProEx C has been studied as a marker to improve detection of UC. ProEx C is an assay targeting expression of topoisomerase IIa and minichromosome maintenance protein-2 and is currently utilized to assist in diagnoses of the gynecological specimens. In this study, we compared the utility of ProEx C and UroVysion in urine specimens. Materials and Methods: Twenty-seven urine specimens with UroVysion assay analysis and surgical biopsy follow-up were selected. The smears were stained with ProEx C. ProEx C and UroVysion assay results were separated into two categories based on surgical biopsy follow-up (benign or neoplastic. Surgical biopsy diagnoses were used as the gold standard for comparative evaluation of the two assays. The surgical follow-up was 9 benign, 2 low grade, and 16 high grade UCs. Results: The sensitivity was 88.9% for ProEx C and 55.6% for UroVysion, while the specificity was 77.8% for ProEx C and 44.4% for UroVysion. Positive predictive value was 88.9% for ProEx C and 66.7% for UroVysion. Negative predictive value was 77.8% and 33.3% for ProEx C and UroVysion, respectively. Using the two-tailed paired t-test, P value of 0.033 was obtained when ProEx C stain was compared with the UroVysion assay. Conclusion: ProEx C immunocytochemistry has a more favorable performance than fluorescent in-situ hybridization with a significant difference between the two assays using paired two-tail t-test (P = 0.0033.

  12. A high-throughput pipeline for designing microarray-based pathogen diagnostic assays

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2008-04-01

    Full Text Available Abstract Background We present a methodology for high-throughput design of oligonucleotide fingerprints for microarray-based pathogen diagnostic assays. The oligonucleotide fingerprints, or DNA microarray probes, are designed for identifying target organisms in environmental or clinical samples. The design process is implemented in a high-performance computing software pipeline that incorporates major algorithmic improvements over a previous version to both reduce computation time and improve specificity assessment. Results The algorithmic improvements result in significant reduction in runtimes, with the updated pipeline being nearly up to five-times faster than the previous version. The improvements in specificity assessment, based on multiple specificity criteria, result in robust and consistent evaluation of cross-hybridization with nontarget sequences. In addition, the multiple criteria provide finer control on the number of resulting fingerprints, which helps in obtaining a larger number of fingerprints with high specificity. Simulation tests for Francisella tularensis and Yersinia pestis, using a well-established hybridization model to estimate cross-hybridization with nontarget sequences, show that the improved specificity criteria yield a larger number of fingerprints as compared to using a single specificity criterion. Conclusion The faster runtimes, achieved as the result of algorithmic improvements, are critical for extending the pipeline to process multiple target genomes. The larger numbers of identified fingerprints, obtained by considering broader specificity criteria, are essential for designing probes for hard-to-distinguish target sequences.

  13. Assessing the applicability of FISH-based prematurely condensed dicentric chromosome assay in triage biodosimetry.

    Science.gov (United States)

    Suto, Yumiko; Gotoh, Takaya; Noda, Takashi; Akiyama, Miho; Owaki, Makiko; Darroudi, Firouz; Hirai, Momoki

    2015-03-01

    The dicentric chromosome assay (DCA) has been regarded as the gold standard of radiation biodosimetry. The assay, however, requires a 2-d peripheral blood lymphocyte culture before starting metaphase chromosome analyses to estimate biological doses. Other biological assays also have drawbacks with respect to the time needed to obtain dose estimates for rapid decision on the correct line of medical treatment. Therefore, alternative technologies that suit requirements for triage biodosimetry are needed. Radiation-induced DNA double strand breaks in G0 lymphocytes can be detected as interphase chromosome aberrations by the cell fusion-mediated premature chromosome condensation (PCC) method. The method, in combination with fluorescence in situ hybridization (FISH) techniques, has been proposed in early studies as a powerful tool for obtaining biological dose estimates without 2-d lymphocyte culture procedures. The present work assesses the applicability of FISH-based PCC techniques using pan-centromeric and telomeric peptide nucleic acid (PNA) probes in triage mode biodosimetry and demonstrates that an improved rapid procedure of the prematurely condensed dicentric chromosome (PCDC) assay has the potential for evaluating exposed radiation doses in as short as 6 h after the collection of peripheral blood specimens.

  14. Quantitative bioanalysis of antibody-conjugated payload in monkey plasma using a hybrid immuno-capture LC-MS/MS approach: Assay development, validation, and a case study.

    Science.gov (United States)

    Liu, Ang; Kozhich, Alexander; Passmore, David; Gu, Huidong; Wong, Richard; Zambito, Frank; Rangan, Vangipuram S; Myler, Heather; Aubry, Anne-Françoise; Arnold, Mark E; Wang, Jian

    2015-10-01

    Antibody drug conjugates (ADCs) are complex molecules composed of two pharmacologically distinct components, the cytotoxic payload and the antibody. The measurement of the payload molecules that are attached to the antibody in vivo is important for the evaluation of the safety and efficacy of ADCs, and can also provide distinct information compared to the antibody-related analytes. However, analyzing the antibody-conjugated payload is challenging and in some cases may not be feasible. The in vivo change in drug antibody ratio (DAR), due to deconjugation, biotransformation or other clearance phenomena, generates unique and additional challenges for ADC analysis in biological samples. Here, we report a novel hybrid approach with immuno-capture of the ADC, payload cleavage by specific enzyme, and LC-MS/MS of the cleaved payload to quantitatively measure the concentration of payload molecules still attached to the antibody via linker in plasma. The ADC reference material used for the calibration curve is not likely to be identical to the ADC measured in study samples due to the change in DAR distribution over the PK time course. The assay clearly demonstrated that there was no bias in the measurement of antibody-conjugated payload for ADC with varying DAR, which thus allowed accurate quantification even when the DAR distribution dynamically changes in vivo. This hybrid assay was fully validated based on a combination of requirements for both chromatographic and ligand binding methods, and was successfully applied to support a GLP safety study in monkeys.

  15. Enzyme-free and isothermal detection of microRNA based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction signal amplification.

    Science.gov (United States)

    Oishi, Motoi

    2015-05-01

    An enzyme-free and isothermal microRNA (miRNA) detection method has been developed based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction (HCR) on magnetic beads (MBs). The click-chemical ligation between an azide-modified probe DNA and a dibenzocyclooctyne-modified probe DNA occurred through the hybridization of target miRNA (miR-141). HCR on MBs was performed by the addition of DNA hairpin monomers (H1 and H2). After magnetic separation and denaturation/rehybridization of HCR products ([H1/H2] n ), the resulting HCR products were analyzed by the fluorescence emitted from an intercalative dye, allowing amplification of the fluorescent signal. The proposed assay had a limit of detection of 0.55 fmol, which was 230-fold more sensitive than that of the HCR on the MBs coupled with a conventional sandwich hybridization assay (without click-chemical ligation) (limit of detection 127 fmol). Additionally, the proposed assay could discriminate between miR-141 and other miR-200 family members. In contrast to quantitative reverse transcription polymerase chain reaction techniques using enzymes and thermal cycling, this is an enzyme-free assay that can be conducted under isothermal conditions and can specifically detect miR-141 in fetal bovine serum.

  16. Keratinocyte-based cell assays: their potential pitfalls.

    Science.gov (United States)

    Zupancic, Tina; Ozir, Mateja; Törmä, Hans; Komel, Radovan; Liovic, Mirjana

    2012-11-01

    As an in vitro model system, patient-derived epidermolysis bullosa simplex keratinocytes have had an immense impact on what we know today about keratin filament function and their role in disease development. In the absence of gene therapy, screening compound libraries for new or better drugs is another approach to improve existing treatments for genodermatoses. However in this study, we report of the potential pitfalls when using this type of cell lines as a "reporter" system. When cell lines with different genetic backgrounds are being used in cell-based assays, the greatest obstacle is to determine the most appropriate culture conditions (i.e., the composition of medium, number of cells plated and number of days in culture). We demonstrate how culture conditions can greatly interfere with the cellular response in cell-based assays (cell proliferation, metabolic activity and migration), potentially also giving rise to misleading data.

  17. Bacterial Bioburden Decrease in Orthokeratology Lens Storage Cases After Forewarning: Assessment by the DNA Dot Hybridization Assay.

    Science.gov (United States)

    Fang, Po-Chiung; Lo, Jung; Chang, Tsung C; Chien, Chun-Chih; Hsiao, Chang-Chun; Tseng, Shin-Ling; Lai, Yu-Hsuan; Kuo, Ming-Tse

    2017-05-01

    The aim of this study was to measure the changes in the bacterial bioburden in orthokeratology (OK) lens storage cases using the DNA dot hybridization assay (DHA) after forewarning patients about their bacterial contamination severity. Thirty-one OK lens wearers were prospectively enrolled in this study. Dot hybridization assay was used for serial measurements of bacterial bioburden in OK storage cases after lenses had been soaked for approximately 6 hr. After the first assessment, the lens wearers were informed of the extent of case contamination and the possible risk of microbial keratitis (MK), and best practices for lens care and lens case hygiene were reviewed and reinforced. A second assessment by the same DHA method was performed after approximately 6 months. Two universal bacterial probes confirmed a significant decrease in bacterial bioburden at the second assessment (P<0.01 and P<0.001). Genus-specific probes showed significant reductions in Acinetobacter and Klebsiella (P=0.02 and P=0.01), but not in Pseudomonas (P=0.42). Making OK lens wearers aware of the bacterial bioburden in their lens cases resulted in improved quality of case care and reduced bioburden. Our results suggest that a strategy of bioburden assessment with forewarning could be a useful method to decrease the incidence of OK-related MK.

  18. ApoHRP-based Assay to Measure Intracellular Regulatory Heme

    Science.gov (United States)

    Atamna, Hani; Brahmbhatt, Marmik; Atamna, Wafa; Shanower, Gregory A.; Dhahbi, Joseph M.

    2015-01-01

    The majority of the heme-binding proteins possess a “heme-pocket” that stably binds with heme. Usually known as housekeeping heme-proteins, they participate in a variety of metabolic reactions (e.g., catalase). Heme also binds with lower affinity to the “Heme-Regulatory Motifs” (HRM) in specific regulatory proteins. This type of heme binding is known as exchangeable or regulatory heme (RH). Heme binding to HRM proteins regulates their function (e.g., Bach1). Although there are well-established methods for assaying total cellular heme (e.g., heme-proteins plus RH), currently there is no method available for measuring RH independently from the total heme (TH). The current study describes and validates a new method to measure intracellular RH. The method is based on the reconstitution of apo-horseradish peroxidase (apoHRP) with heme to form holoHRP. The resulting holoHRP activity is then measured with a colorimetric substrate. The results show that apoHRP specifically binds RH but not with heme from housekeeping heme-proteins. The RH assay detects intracellular RH. Furthermore, using conditions that create positive (hemin) or negative (N-methyl protoporphyrin IX) controls for heme in normal human fibroblasts (IMR90), the RH assay shows that RH is dynamic and independent from TH. We also demonstrated that short-term exposure to subcytotoxic concentrations of lead (Pb), mercury (Hg), or amyloid-β(Aβ) significantly alters intracellular RH with little effect on TH. In conclusion the RH assay is an effective assay to investigate intracellular RH concentration and demonstrates that RH represents ~6% of total heme in IMR90 cells. PMID:25525887

  19. Research of IDSS Architecture Based on Hybrid Systems

    Institute of Scientific and Technical Information of China (English)

    MA Biao; YANG Bao-an

    2005-01-01

    This paper discusses the necessity of building IDSS on hybrid systems, and adopts XML technology to manage isomeric knowledge in hybrid systems. The paper proposes a new architecture of hybrid systems based IDSS whose core system is isomeric knowledge system. The architecture is composed of knowledge component, problems processing system, data component and intelligent user interface. This new architecture aims to enhance the capability of integrating hybrid systems, to improve the supporting effectiveness of decision-making and the intelligent level of IDSS, and tries a new way to elevate the system's ability of handling and learning knowledge.

  20. Miniaturized Aptamer-Based Assays for Protein Detection

    Directory of Open Access Journals (Sweden)

    Alessandro Bosco

    2016-09-01

    Full Text Available The availability of devices for cancer biomarker detection at early stages of the disease is one of the most critical issues in biomedicine. Towards this goal, to increase the assay sensitivity, device miniaturization strategies empowered by the employment of high affinity protein binders constitute a valuable approach. In this work we propose two different surface-based miniaturized platforms for biomarker detection in body fluids: the first platform is an atomic force microscopy (AFM-based nanoarray, where AFM is used to generate functional nanoscale areas and to detect biorecognition through careful topographic measurements; the second platform consists of a miniaturized electrochemical cell to detect biomarkers through electrochemical impedance spectroscopy (EIS analysis. Both devices rely on robust and highly-specific protein binders as aptamers, and were tested for thrombin detection. An active layer of DNA-aptamer conjugates was immobilized via DNA directed immobilization on complementary single-stranded DNA self-assembled monolayers confined on a nano/micro area of a gold surface. Results obtained with these devices were compared with the output of surface plasmon resonance (SPR assays used as reference. We succeeded in capturing antigens in concentrations as low as a few nM. We put forward ideas to push the sensitivity further to the pM range, assuring low biosample volume (μL range assay conditions.

  1. Carbon nanotube based hybrid nanocarbon foam

    Science.gov (United States)

    Shahrizan Jamal, M.; Zhang, Mei

    2017-03-01

    Carbon nanotube (CNT) based nanocarbon foams (NFs) and the hybrid nanocarbon foams (HNFs) are fabricated in this work. The NFs are formed by using poly(methyl methacrylate) microspheres as a template to create micro-scaled pores. The cell walls are made of CNT networks with nano-scaled pores. The interconnections among CNTs are secured using graphene and nanographite generated via carbonization of polyacrylonitrile. The resulting NFs are ultra-lightweight, highly elastic, electrically and thermally conductive, and robust in structure. The HNFs are made by infiltrating thermoplastic polymer into the NFs in a controllable procedure. Compared to NFs, the HNFs have much higher strength, same electrical conductivity, and limited increase in density. The compressive strength of the HNF increased more than 50 times while the density was changed less than 10 times due to the polymer infiltration. It is found that the deformed HNFs can recover in both structure and property when they are heated over the glass transition temperature of the infiltrated polymer. Such remarkable healing capability could broaden the applications of the HNFs.

  2. Design, analysis and modeling of a novel hybrid powertrain system based on hybridized automated manual transmission

    Science.gov (United States)

    Wu, Guang; Dong, Zuomin

    2017-09-01

    Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.

  3. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed

    2014-11-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  4. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-02-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  5. Luminescent hybrid materials based on laponite clay.

    Science.gov (United States)

    Li, Huanrong; Li, Man; Wang, Yu; Zhang, Wenjun

    2014-08-11

    The spectroscopic behavior of ionic Eu(3+) or Tb(3+) complexes of an aromatic carboxyl-functionalized organic salt as well as those of the hybrid materials derived from adsorption of the ionic complexes on Laponite clay are reported. X-ray diffraction (XRD) patterns suggest that the complexes are mainly adsorbed on the outer surfaces of the Laponite disks rather than intercalated within the interlayer spaces. Photophysical data showed that the energy-transfer efficiency from the ligand to Eu(3+) ions in the hybrid material is increased remarkably with respect to the corresponding ionic complex. The hybrid material containing the Eu(3+) complex shows bright red emission from the prominent (5) D0 →(7) F2 transition of Eu(3+) ions, and that containing the Tb(3+) complex exhibits bright green emission due to the dominant (5) D4 →(7) F5 transition of Tb(3+) ions.

  6. Hybrid Power Management-Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be

  7. Identifying Gene Regulatory Networks in Arabidopsis by In Silico Prediction, Yeast-1-Hybrid, and Inducible Gene Profiling Assays.

    Science.gov (United States)

    Sparks, Erin E; Benfey, Philip N

    2016-01-01

    A system-wide understanding of gene regulation will provide deep insights into plant development and physiology. In this chapter we describe a threefold approach to identify the gene regulatory networks in Arabidopsis thaliana that function in a specific tissue or biological process. Since no single method is sufficient to establish comprehensive and high-confidence gene regulatory networks, we focus on the integration of three approaches. First, we describe an in silico prediction method of transcription factor-DNA binding, then an in vivo assay of transcription factor-DNA binding by yeast-1-hybrid and lastly the identification of co-expression clusters by transcription factor induction in planta. Each of these methods provides a unique tool to advance our understanding of gene regulation, and together provide a robust model for the generation of gene regulatory networks.

  8. A colorimetric sandwich-type assay for sensitive thrombin detection based on enzyme-linked aptamer assay.

    Science.gov (United States)

    Park, Jun Hee; Cho, Yea Seul; Kang, Sungmuk; Lee, Eun Jeong; Lee, Gwan-Ho; Hah, Sang Soo

    2014-10-01

    A colorimetric sandwich-type assay based on enzyme-linked aptamer assay has been developed for the fast and sensitive detection of as low as 25 fM of thrombin with high linearity. Aptamer-immobilized glass was used to capture the target analyte, whereas a second aptamer, functionalized with horseradish peroxidase (HRP), was employed for the conventional 3,5,3',5'-tetramethylbenzidine (TMB)-based colorimetric detection. Without the troublesome antibody requirement of the conventional enzyme-linked immunosorbent assay (ELISA), as low as 25 fM of thrombin could be rapidly and reproducibly detected. This assay has superior, or at least equal, recovery and accuracy to that of conventional antibody-based ELISA.

  9. Splitting and Updating Hybrid Knowledge Bases (Extended Version)

    CERN Document Server

    Slota, Martin; Swift, Terrance

    2011-01-01

    Over the years, nonmonotonic rules have proven to be a very expressive and useful knowledge representation paradigm. They have recently been used to complement the expressive power of Description Logics (DLs), leading to the study of integrative formal frameworks, generally referred to as hybrid knowledge bases, where both DL axioms and rules can be used to represent knowledge. The need to use these hybrid knowledge bases in dynamic domains has called for the development of update operators, which, given the substantially different way Description Logics and rules are usually updated, has turned out to be an extremely difficult task. In [SL10], a first step towards addressing this problem was taken, and an update operator for hybrid knowledge bases was proposed. Despite its significance -- not only for being the first update operator for hybrid knowledge bases in the literature, but also because it has some applications - this operator was defined for a restricted class of problems where only the ABox was all...

  10. Cell based assays for anti-Plasmodium activity evaluation.

    Science.gov (United States)

    Mokgethi-Morule, Thabang; N'Da, David D

    2016-03-10

    Malaria remains one of the most common and deadly infectious diseases worldwide. The severity of this global public health challenge is reflected by the approximately 198 million people, who were reportedly infected in 2013 and by the more than 584,000 related deaths in that same year. The rising emergence of drug resistance towards the once effective artemisinin combination therapies (ACTs) has become a serious concern and warrants more robust drug development strategies, with the objective of eradicating malaria infections. The intricate biology and life cycle of Plasmodium parasites complicate the understanding of the disease in such a way that would enhance the development of more effective chemotherapies that would achieve radical clinical cure and that would prevent disease relapse. Phenotypic cell based assays have for long been a valuable approach and involve the screening and analysis of diverse compounds with regards to their activities towards whole Plasmodium parasites in vitro. To achieve the Millennium Development Goal (MDG) of malaria eradication by 2020, new generation drugs that are active against all parasite stages (erythrocytic (blood), exo-erythrocytic (liver stages and gametocytes)) are needed. Significant advances are being made in assay development to overcome some of the practical challenges of assessing drug efficacy, particularly in the liver and transmission stage Plasmodium models. This review discusses primary screening models and the fundamental progress being made in whole cell based efficacy screens of anti-malarial activity. Ongoing challenges and some opportunities for improvements in assay development that would assist in the discovery of effective, safe and affordable drugs for malaria treatments are also discussed.

  11. Fluorometric polyethyleneglycol-peptide hybrid substrates for quantitative assay of protein disulfide isomerase

    DEFF Research Database (Denmark)

    Christiansen, Camilla; St Hilaire, Phaedria M; Winther, Jakob R.

    2004-01-01

    In eukaryotic cells the enzyme protein disulfide isomerase (PDI) is responsible for the formation and reshuffling of disulfide bonds in secretory proteins. The reaction carried out by PDI involves interaction with a highly complex mixture of polypeptide molecules that are in the process of folding....... This means that PDI activity is typically measured in the context of a globular protein folding pathway. The absence of small, well-defined substrates for the quantitation of both oxidation and reduction reactions constitutes an inherent problem in the analysis of PDI activity. We describe a new type...... of substrate for PDI where two cysteine-containing oligopeptides are connected by an onameric ethylene glycol linker. We term such hybrid compounds PEGtides. The oligopeptides are each marked with a fluorescent aminobenzoic acid and a quenching nitrotyrosine group, respectively. The reversible formation...

  12. Titanium dioxide-cellulose hybrid nanocomposite based conductometric glucose biosensor

    Science.gov (United States)

    Maniruzzaman, Mohammad; Mahadeva, Suresha K.; Khondoker, Abu Hasan; Kim, Jaehwan

    2012-04-01

    This paper investigates the feasibility of conductometric glucose biosensor based on glucose oxidase (GOx) immobilized TiO2-cellulose hybrid nanocomposite. TiO2 nanoparticles were blended with cellulose solution prepared by dissolving cotton pulp with lithium chloride/N, N-dimethylacetamide solvent to fabricate TiO2-cellulose hybrid nanocomposite. The enzyme (GOx) was immobilized into this hybrid material by physical adsorption method. The successful immobilization of GOx into TiO2-cellulose hybrid nanocomposite via covalent bonding between TiO2 and GOx was confirmed by X-ray photoelectron analysis. The linear response of our propose glucose biosensor is obtained in the range of 1-10mM with correlation coefficient of 0.93. Our study demonstrates TiO2-cellulose hybrid material as a potential candidate for an inexpensive, flexible and disposable glucose biosensor.

  13. Time Series Prediction based on Hybrid Neural Networks

    Directory of Open Access Journals (Sweden)

    S. A. Yarushev

    2016-01-01

    Full Text Available In this paper, we suggest to use hybrid approach to time series forecasting problem. In first part of paper, we create a literature review of time series forecasting methods based on hybrid neural networks and neuro-fuzzy approaches. Hybrid neural networks especially effective for specific types of applications such as forecasting or classification problem, in contrast to traditional monolithic neural networks. These classes of problems include problems with different characteristics in different modules. The main part of paper create a detailed overview of hybrid networks benefits, its architectures and performance under traditional neural networks. Hybrid neural networks models for time series forecasting are discussed in the paper. Experiments with modular neural networks are given.

  14. Diagnosis of visceral Leishmaniasis in asymptomatic dogs by the KDNA PCR-hybridization assay using noninvasive samples

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Rodrigo Souza; Andrade, Antero Silva Ribeiro de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: rleite2005@gmail.com; Ferreira, Sydney de Almeida; Ituassu, Leonardo Trindade; Melo, Maria Norma de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Centro de Ciencias Biologicas. Dept. de Parasitologia], e-mail: saninoalmeida@gmail.com

    2009-07-01

    The visceral leishmaniasis (VL) in Brazil is caused by Leishmania (Leishmania) chagasi and the asymptomatic dogs may transmit the parasite to sand flies vectors. The VL epidemiological control in Brazil involves the elimination of seropositive dogs, insecticide treatment and systematic treatment of human cases. Therefore, the accurate diagnosis is important in order to avoid the disease transmission or unnecessary culling of dogs. Serological tests are used for screening of dogs. However, these techniques present limitations. The Polymerase Chain Reaction (PCR) is an attractive alternative to the diagnosis in this context; but non-invasive samplings have great importance because they are simpler, painless and less resisted by dog-owners. This study aimed at evaluating conjunctival swab (CS) for canine VL diagnosis. In this methodology a sterile cotton swab is used to sampling the dog conjunctiva in both eyes. Thirty asymptomatic seropositive dogs were used. The samples were analyzed by the kDNA PCR-hybridization procedure in which the PCR products are hybridized with cloned kDNA mini-circles labeled with {sup 32}P[]dCTP. In addition, blood (B) was collected from each animal. L. chagasi was identified in 90% of CS samples and 13,6% of B samples. The high sensitivity obtained with asymptomatic dogs, in which the diagnosis is more difficult due the low number of parasites in the samples, allow concluding that the conjunctival swab associated to the kDNA PCR-hybridization assay provides a valuable alternative tool for the direct diagnosis of canine leishmaniasis. (author)

  15. Cross-reactivity profiles of hybrid capture II, cobas, and APTIMA human papillomavirus assays

    DEFF Research Database (Denmark)

    Preisler, Sarah Nørgaard; Rebolj, Matejka; Ejegod, Ditte Møller

    2016-01-01

    Background High-risk Human Papillomavirus (HPV) testing is replacing cytology in cervical cancer screening as it is more sensitive for preinvasive cervical lesions. However, the bottleneck of HPV testing is the many false positive test results (positive tests without cervical lesions). Here, we...... assays. None of the 35 genotypes was detected in 49 (1.0 %), 162 (3.2 %), and 56 (1.1 %) samples, respectively. In primary screening at age 30 to 65 years (n = 2859), samples of 72 (25 %) out of 289 with high-risk infections on HC2 and 

  16. ABAP: antibody-based assay for peptidylarginine deiminase activity.

    Science.gov (United States)

    Zendman, Albert J W; Raijmakers, Reinout; Nijenhuis, Suzanne; Vossenaar, Erik R; Tillaart, Marloes van den; Chirivi, Renato G S; Raats, Jos M H; van Venrooij, Walther J; Drijfhout, Jan W; Pruijn, Ger J M

    2007-10-15

    Members of the family of peptidylarginine deiminases (PADs, EC 3.5.3.15) catalyze the posttranslational modification of peptidylarginine into peptidylcitrulline. Citrulline-containing epitopes have been shown to be major and specific targets of autoantibodies produced by rheumatoid arthritis patients. Recently, the citrullination of histone proteins by PAD enzyme was reported to influence gene expression levels. These findings greatly increase the interest in the PAD enzymes and their activities. A few procedures to monitor PAD activity in biological samples have been described previously. However, these assays either have low sensitivity or are rather laborious. Here we describe a reliable and reproducible method for the determination of PAD activity in both purified and crude samples. The method is based on the quantification of PAD-dependent citrullination of peptides, immobilized in microtiter plates, using antibodies that are exclusively reactive with the reaction product(s). Our results demonstrate that this antibody-based assay for PAD activity, called ABAP, is very sensitive and can be applied to monitor PAD activity in biological samples.

  17. PCR-反向点杂交基因分型与实时荧光定量PCR检测人乳头瘤病毒的研究%Use of a PCR-based reverse blot hybridization assay for subtyping and real-time quantitative PCR to detect human papilloma virus

    Institute of Scientific and Technical Information of China (English)

    向华国; 曾锦婷; 何婉意; 黎国

    2012-01-01

    Objective To evaluate the significance of a PCR-based reverse blot hybridization (PCR-RDB) assay and realtime quantitative PCR for detecting human papilloma virus in female outpatients. Methods A total of 121 female outpatients were checked for 23 HFV DNA types by PCR-RDB and 13 high-risk HPV genotypes by real-time quantitative PCR. Results According to PCR-RDB, 28.10% of the women(34/121) tested positive while 16. 53%(20/121) tested positive according to real-time quantitative PCR. HPV was detected more often with PCR-RDB than with real-time quantitative PCR (P<0.05). The concordance rate for the two techniques was 93. 39%(113/121). Conclusion PCR-RDB can be used to screen for HPV infection while real-time quantitative PCR facilitates evaluation of the effectiveness of treatment and the prognosis for cervical carcinoma. Combining the two should increase the specificity and sensitivity of HPV detection.%目的 评价PCR-反向点杂交基因分型与实时荧光定量PCR在检测人乳头瘤病毒(HPV)的意义.方法 同时采用PCR-反向点杂交基因分型和实时荧光定量PCR对121例女性官颈脱离细胞标本进行HPV检测.其中PCR-反向点杂交基因分型能检测23种HPV亚型,实时荧光定量PCR定量检测常见的13种高危HPV亚型.结果 PCR-反向点杂交基因分型检测HPV的阳性率为28.10%(34/121),实时荧光定量PCR检测HPV的阳性率为16.53%(20/121),差异有统计学意义(P<0.05);二者检测的符合率为93.39%(113/121).结论 PCR-反向杂交基因分型适用于HPV感染的筛查,而实时荧光定量PCR适用于HPV感染相关疾病的疗效与预后的判断.PCR-反向杂交基因分型与实时荧光定量PCR联合检测可提高HPV检测的特异性和敏感度,对于生殖道HPV感染以及子宫颈癌的早期发现、预防和治疗具有重要意义.

  18. Paper-based fluorescence resonance energy transfer assay for directly detecting nucleic acids and proteins.

    Science.gov (United States)

    Li, Hua; Fang, Xueen; Cao, Hongmei; Kong, Jilie

    2016-06-15

    Paper-based fluorescence resonance energy transfer assay (FRET) is gaining great interest in detecting macro-biological molecule. It is difficult to achieve conveniently and fast detection for macro-biological molecule. Herein, a graphene oxide (GO)-based paper chip (glass fiber) integrated with fluorescence labeled single-stranded DNA (ssDNA) for fast, inexpensive and direct detection of biological macromolecules (proteins and nucleic acids) has been developed. In this paper, we employed the Cy3/FAM-labeled ssDNA as the reporter and the GO as quencher and the original glass fiber paper as data acquisition substrates. The chip which was designed and fabricated by a cutting machine is a miniature biosensor that monitors fluorescence recovery from resonance energy transfer. The hybridization assays and fluorescence detection were all simplified, and the surface of the chip did not require immobilization or washing. A Nikon Eclipse was employed as excited resource and a commercial digital camera was employed for capturing digital images. This paper-based microfluidics chip has been applied in the detection of proteins and nucleic acids. The biosensing capability meets many potential requirements for disease diagnosis and biological analysis.

  19. Fast and automated DNA assays on a compact disc (CD)-based microfluidic platform

    Science.gov (United States)

    Jia, Guangyao

    Nucleic acid-based molecular diagnostics offers enormous potential for the rapid and accurate diagnosis of infectious diseases. However, most of the existing commercial tests are time-consuming and technically complicated, and are thus incompatible with the need for rapid identification of infectious agents. We have successfully developed a CD-based microfluidic platform for fast and automated DNA array hybridization and a low cost, disposable plastic microfluidic platform for polymerase chain reaction (PCR). These platforms have proved to be a promising approach to meet the requirements in terms of detection speed and operational convenience in diagnosis of infectious diseases. In the CD-based microfluidic platform for DNA hybridization, convection is introduced to the system to enhance mass transport so as to accelerate the hybridization rate since DNA hybridization is a diffusion limited reaction. Centrifugal force is utilized for sample propulsion and surface force is used for liquid gating. Standard microscope glass slides are used as the substrates for capture probes owing to their compatibility with commercially available instrumentation (e.g. laser scanners) for detection. Microfabricated polydimethylsiloxane (PDMS) structures are used to accomplish the fluidic functions required by the protocols for DNA hybridization. The assembly of the PDMS structure and the glass slide forms a flow-through hybridization unit that can be accommodated onto the CD platform for reagent manipulation. The above scheme has been validated with oligonucleotides as the targets using commercially available enzyme-labeled fluorescence (ELF 97) for detection of the hybridization events, and tested with amplicons of genomic staphylococcus DNA labeled with Cy dye. In both experiments, significantly higher fluorescence intensities were observed in the flow-through hybridization unit compared to the passive assays. The CD fluidic scheme was also adapted to the immobilization of

  20. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Badillo

    2014-04-01

    Full Text Available Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  1. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Science.gov (United States)

    Díaz-Badillo, Alvaro; de Lourdes Muñoz, María; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. PMID:24776933

  2. Implementation of a multiregion hybridization assay to characterize HIV-1 strains detected among injecting drug users in Manipur, India.

    Science.gov (United States)

    Sarkar, Roni; Sengupta, Satarupa; Mullick, Ranajoy; Singh, N Brajachand; Sarkar, Kamalesh; Chakrabarti, Sekhar

    2009-01-01

    We have implemented the latest technology of a multiregion hybridization assay (MHAbce, version 2) for the molecular characterization of HIV-1 among injecting drug users (IDUs) of Manipur, India. This study provides a more detailed analysis on the basis of probes designed from eight different genomic regions of HIV-1, to achieve a clear picture of HIV-1 genomic diversity in Manipur. Out of 30 samples, 15 were found to be of subtype C, 1 of subtype B, 5 with dual-probe reactivity, 8 with multigenomic recombination pattern and 1 sample showed both dual-probe reactivity and multigenomic variations. In contrast, the heteroduplex mobility assay (HMA) with respect to gag and env genes revealed 21 samples to be of subtype C (gag C/env C), 3 samples of subtype B (gag B/env B) and 6 samples of B/C recombinants (gag C/env B). MHAbce illustrates the occurrence of inter- and intragenomic variants and dual infection in an IDU population from India. It also indicates the possibility of the presence of new circulating recombinant forms of HIV-1 strains, which might have been difficult to trace by HMA alone.

  3. Enzymatic assay for calmodulins based on plant NAD kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.

    1984-01-01

    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  4. Performance analysis of switching based hybrid FSO/RF transmission

    KAUST Repository

    Usman, Muneer

    2014-09-01

    Hybrid free space optical (FSO)/ radio frequency (RF) systems have emerged as a promising solution for high data rate wireless back haul.We present and analyze a switching based transmission scheme for hybrid FSO/RF system. Specifically, either FSO or RF link will be active at a certain time instance, with FSO link enjoying a higher priority. Analytical expressions have been obtained for the outage probability, average bit error rate and ergodic capacity for the resulting system. Numerical examples are presented to compare the performance of the hybrid scheme with FSO only scenario.

  5. A functional assay-based strategy for nanomaterial risk forecasting.

    Science.gov (United States)

    Hendren, Christine Ogilvie; Lowry, Gregory V; Unrine, Jason M; Wiesner, Mark R

    2015-12-01

    The study of nanomaterial impacts on environment, health and safety (nanoEHS) has been largely predicated on the assumption that exposure and hazard can be predicted from physical-chemical properties of nanomaterials. This approach is rooted in the view that nanoöbjects essentially resemble chemicals with additional particle-based attributes that must be included among their intrinsic physical-chemical descriptors. With the exception of the trivial case of nanomaterials made from toxic or highly reactive materials, this approach has yielded few actionable guidelines for predicting nanomaterial risk. This article addresses inherent problems in structuring a nanoEHS research strategy based on the goal of predicting outcomes directly from nanomaterial properties, and proposes a framework for organizing data and designing integrated experiments based on functional assays (FAs). FAs are intermediary, semi-empirical measures of processes or functions within a specified system that bridge the gap between nanomaterial properties and potential outcomes in complex systems. The three components of a functional assay are standardized protocols for parameter determination and reporting, a theoretical context for parameter application and reference systems. We propose the identification and adoption of reference systems where FAs may be applied to provide parameter estimates for environmental fate and effects models, as well as benchmarks for comparing the results of FAs and experiments conducted in more complex and varied systems. Surface affinity and dissolution rate are identified as two critical FAs for characterizing nanomaterial behavior in a variety of important systems. The use of these FAs to predict bioaccumulation and toxicity for initial and aged nanomaterials is illustrated for the case of silver nanoparticles and Caenorhabditis elegans. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Automated microfluidic screening assay platform based on DropLab.

    Science.gov (United States)

    Du, Wen-Bin; Sun, Meng; Gu, Shu-Qing; Zhu, Ying; Fang, Qun

    2010-12-01

    This paper describes DropLab, an automated microfluidic platform for programming droplet-based reactions and screening in the nanoliter range. DropLab can meter liquids with picoliter-scale precision, mix multiple components sequentially to assemble composite droplets, and perform screening reactions and assays in linear or two-dimensional droplet array with extremely low sample and reagent consumptions. A novel droplet generation approach based on the droplet assembling strategy was developed to produce multicomponent droplets in the nanoliter to picoliter range with high controllability on the size and composition of each droplet. The DropLab system was built using a short capillary with a tapered tip, a syringe pump with picoliter precision, and an automated liquid presenting system. The tapered capillary was used for precise liquid metering and mixing, droplet assembling, and droplet array storage. Two different liquid presenting systems were developed based on the slotted-vial array design and multiwell plate design to automatically present various samples, reagents, and oil to the capillary. Using the tapered-tip capillary and the picoliter-scale precision syringe pump, the minimum unit of the droplet volume in the present system reached ~20 pL. Without the need of complex microchannel networks, various droplets with different size (20 pL-25 nL), composition, and sequence were automatically assembled, aiming to multiple screening targets by simply adjusting the types, volumes, and mixing ratios of aspirated liquids on demand. The utility of DropLab was demonstrated in enzyme inhibition assays, protein crystallization screening, and identification of trace reducible carbohydrates.

  7. A functional assay-based strategy for nanomaterial risk forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Hendren, Christine Ogilvie, E-mail: christine.hendren@duke.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Lowry, Gregory V., E-mail: glowry@andrew.cmu.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Plant and Soil Sciences, University of Kentucky, Agricultural Science Center, Lexington, KY 40546 (United States); Wiesner, Mark R., E-mail: wiesner@duke.edu [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall PO Box 90287, Durham, NC 27708 (United States)

    2015-12-01

    The study of nanomaterial impacts on environment, health and safety (nanoEHS) has been largely predicated on the assumption that exposure and hazard can be predicted from physical–chemical properties of nanomaterials. This approach is rooted in the view that nanoöbjects essentially resemble chemicals with additional particle-based attributes that must be included among their intrinsic physical–chemical descriptors. With the exception of the trivial case of nanomaterials made from toxic or highly reactive materials, this approach has yielded few actionable guidelines for predicting nanomaterial risk. This article addresses inherent problems in structuring a nanoEHS research strategy based on the goal of predicting outcomes directly from nanomaterial properties, and proposes a framework for organizing data and designing integrated experiments based on functional assays (FAs). FAs are intermediary, semi-empirical measures of processes or functions within a specified system that bridge the gap between nanomaterial properties and potential outcomes in complex systems. The three components of a functional assay are standardized protocols for parameter determination and reporting, a theoretical context for parameter application and reference systems. We propose the identification and adoption of reference systems where FAs may be applied to provide parameter estimates for environmental fate and effects models, as well as benchmarks for comparing the results of FAs and experiments conducted in more complex and varied systems. Surface affinity and dissolution rate are identified as two critical FAs for characterizing nanomaterial behavior in a variety of important systems. The use of these FAs to predict bioaccumulation and toxicity for initial and aged nanomaterials is illustrated for the case of silver nanoparticles and Caenorhabditis elegans. - Highlights: • Approaches to predict risk directly from nanomaterial (NM) properties are problematic. • We propose

  8. Novel biosensor-based microarray assay for detecting rs8099917 and rs12979860 genotypes

    Institute of Scientific and Technical Information of China (English)

    Pei-Yuan Li; Xiao-Jun Zhou; Lan Yao; Xin-Hua Fang; Jiang-Nan Ren; Jia-Wu Song

    2012-01-01

    AIM:To evaluate a novel biosensor-based microarray (BBM) assay for detecting rs12979860 and rs8099917genotypes.METHODS:Four probes specific for rs8099917C/T or rs12979860G/T detection and three sets of quality control probes were designed,constructed and arrayed on an optical biosensor to develop a microarray assay.Two sets of primers were used in a one tube polymerase chain reaction (PCR) system to amplify two target fragments simultaneously.The biosensor microarray contained probes that had been sequenced to confirm that they included the rsS099917C/T or rs12979860G/T alleles of interest and could serve as the specific assay standards.In addition to rehybridization of four probes of known sequence,a total of 40 clinical samples collected from hepatitis C seropositive patients were also tested.The target fragments of all 40 samples were amplified in a 50 μL PCR system.Ten μL of each amplicon was tested by BBM assay,and another 40 μL was used for sequencing.The agreement of the results obtained by the two methods was tested statistically using the kappa coefficient.The sensitivity of the BBM assay was evaluated using serial dilutions of ten clinical blood samples containing 103-104 white cells/lμL.RESULTS:As shown by polyacrylamide gel electrophoresis,two target segments of the interleukin 28B-associated polymorphisms (SNPs) were successfully amplified in the one-tube PCR system.The lengths of the two amplified fragments were consistent with the known length of the target sequences,137 and 159bps.After hybridization of the PCR amplicons with the probes located on the BBM array,the signals of each allele of both the rs8099917 SNPs and rs12979860 SNPs were observed simultaneously and were clearly visible by the unaided eye.The signals were distinct from each other,could be interpreted visually,and accurately recorded using an ordinary digital camera.To evaluate the specificity of the assay,both the plasmids and clinical samples were applied to the microarray

  9. A Cell-based High-throughput Screening Assay for Farnesoid X Recepter Agonist

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To develop a high-throughput screening assay for Farnesoid X receptor (FXR) agonists based on mammalian one-hybrid system (a chimera receptor gene system) for the purpose of identifying new lead compounds for dyslipidaemia drug from the chemical library. Methods cDNA encoding the human FXR ligand binding domain (LBD) was amplified by RT-PCR from a human liver total mRNA and fused to the DNA binding domain (DBD) of yeast GAL4 of pBIND to construct a GAL4-FXR (LBD) chimera expression plasmid. Five copies of the GAL4 DNA binding site were synthesized and inserted into upstream of the SV40 promoter of pGL3-promoter vector to construct a reporter plasmid pG5-SV40 Luc. The assay was developed by transient co-transfection with pG5-SV40 Luc reporter plasmid and pBIND-FXR-LBD (189-472) chimera expression plasmid. Results After optimization, CDCA, a FXR natural agonist, could induce expression of the luciferase gene in a dose-dependent manner, and had a signal/noise ratio of 10 and Z'factor value of 0.65. Conclusion A stable and sensitive cell-based high-throughput screening model can be used in high-throughput screening for FXR agonists from the synthetic and natural compound library.

  10. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  11. Sizing of a hybrid locomotive based on accumulators and ultracapacitors

    OpenAIRE

    Jaafar, Amine; Sareni, Bruno; Roboam, Xavier; Thiounn-Guermeur, Marina

    2010-01-01

    In this paper, hybridization of a BB460000 locomotive is proposed integrating a reduced power diesel generator, batteries and ultracapacitors as storage elements. The power mission of the BB460000 locomotive is studied in order to analyze its ability to be hybridized and to identify the most critical mission. An energy management strategy based on a frequency sharing is proposed. It allows strongly decreasing the nominal power of the diesel generator. Then, through a power flow sizing model, ...

  12. Automated cell-based assay for screening of aquaporin inhibitors.

    Science.gov (United States)

    Mola, Maria Grazia; Nicchia, Grazia Paola; Svelto, Maria; Spray, David C; Frigeri, Antonio

    2009-10-01

    Aquaporins form water channels that play major roles in a variety of physiological processes so that altered expression or function may underlie pathological conditions. In order to identify compounds that modulate aquaporin function, we have implemented a functional assay based on rapid measurement of osmotically induced cell volume changes to screen several libraries of diverse drugs. The time course of fluorescence changes in calcein-loaded cells was analyzed during an osmotic challenge using a 96-multiwell fluorescence plate reader. This system was validated using astrocyte primary cultures and fibroblasts that strongly express endogenous AQP4 and AQP1 proteins, respectively, as well as AQP4-transfected cells. We screened 3575 compounds, including 418 FDA-approved and commercially available drugs, for their effect on AQP-mediated water transport. Primary screening yielded 10 compounds that affected water transport activity in both astrocytes and AQP4-transfected cells and 42 compounds that altered cell volume regulation in astrocytes. Selected drugs were then analyzed on AQP1-expressing erythrocytes and AQP4-expressing membrane vesicles by stopped-flow light scattering. Four molecules of the National Cancer Institute's chemical library (NSC164914, NSC670229, NSC168597, NSC301460) were identified that differentially affected both AQP4 and AQP1 mediated water transport, with EC50 values between 20 and 50 microM. This fluorescence microplate reader-based assay may, thus, provide a platform for high-throughput screening which, when coupled to a secondary evaluation to confirm target specificity, should allow discovery of AQP-specific compounds for novel therapeutic strategies in the treatment of water balance disorders.

  13. Development of a Drosophila cell-based error correction assay

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Salemi

    2013-07-01

    Full Text Available Accurate transmission of the genome through cell division requires microtubules from opposing spindle poles to interact with protein super-structures called kinetochores that assemble on each sister chromatid. Most kinetochores establish erroneous attachments that are destabilized through a process called error correction. Failure to correct improper kinetochore-microtubule (kt-MT interactions before anaphase onset results in chromosomal instability (CIN, which has been implicated in tumorigenesis and tumor adaptation. Thus, it is important to characterize the molecular basis of error correction to better comprehend how CIN occurs and how it can be modulated. An error correction assay has been previously developed in cultured mammalian cells in which incorrect kt-MT attachments are created through the induction of monopolar spindle assembly via chemical inhibition of kinesin-5. Error correction is then monitored following inhibitor wash out. Implementing the error correction assay in Drosophila melanogaster S2 cells would be valuable because kt-MT attachments are easily visualized and the cells are highly amenable to RNAi and high-throughput screening. However, Drosophila kinesin-5 (Klp61F is unaffected by available small molecule inhibitors. To overcome this limitation, we have rendered S2 cells susceptible to kinesin-5 inhibitors by functionally replacing Klp61F with human kinesin-5 (Eg5. Eg5 expression rescued the assembly of monopolar spindles typically caused by Klp61F depletion. Eg5-mediated bipoles collapsed into monopoles due to the activity of kinesin-14 (Ncd when treated with the kinesin-5 inhibitor S-trityl-L-cysteine (STLC. Furthermore, bipolar spindles reassembled and error correction was observed after STLC wash out. Importantly, error correction in Eg5-expressing S2 cells was dependent on the well-established error correction kinase Aurora B. This system provides a powerful new cell-based platform for studying error correction and

  14. Development of a Drosophila cell-based error correction assay.

    Science.gov (United States)

    Salemi, Jeffrey D; McGilvray, Philip T; Maresca, Thomas J

    2013-01-01

    Accurate transmission of the genome through cell division requires microtubules from opposing spindle poles to interact with protein super-structures called kinetochores that assemble on each sister chromatid. Most kinetochores establish erroneous attachments that are destabilized through a process called error correction. Failure to correct improper kinetochore-microtubule (kt-MT) interactions before anaphase onset results in chromosomal instability (CIN), which has been implicated in tumorigenesis and tumor adaptation. Thus, it is important to characterize the molecular basis of error correction to better comprehend how CIN occurs and how it can be modulated. An error correction assay has been previously developed in cultured mammalian cells in which incorrect kt-MT attachments are created through the induction of monopolar spindle assembly via chemical inhibition of kinesin-5. Error correction is then monitored following inhibitor wash out. Implementing the error correction assay in Drosophila melanogaster S2 cells would be valuable because kt-MT attachments are easily visualized and the cells are highly amenable to RNAi and high-throughput screening. However, Drosophila kinesin-5 (Klp61F) is unaffected by available small molecule inhibitors. To overcome this limitation, we have rendered S2 cells susceptible to kinesin-5 inhibitors by functionally replacing Klp61F with human kinesin-5 (Eg5). Eg5 expression rescued the assembly of monopolar spindles typically caused by Klp61F depletion. Eg5-mediated bipoles collapsed into monopoles due, in part, to kinesin-14 (Ncd) activity when treated with the kinesin-5 inhibitor S-trityl-L-cysteine (STLC). Furthermore, bipolar spindles reassembled and error correction was observed after STLC wash out. Importantly, error correction in Eg5-expressing S2 cells was dependent on the well-established error correction kinase Aurora B. This system provides a powerful new cell-based platform for studying error correction and CIN.

  15. High content cell-based assay for the inflammatory pathway

    Science.gov (United States)

    Mukherjee, Abhishek; Song, Joon Myong

    2015-07-01

    Cellular inflammation is a non-specific immune response to tissue injury that takes place via cytokine network orchestration to maintain normal tissue homeostasis. However chronic inflammation that lasts for a longer period, plays the key role in human diseases like neurodegenerative disorders and cancer development. Understanding the cellular and molecular mechanisms underlying the inflammatory pathways may be effective in targeting and modulating their outcome. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that effectively combines the pro-inflammatory features with the pro-apoptotic potential. Increased levels of TNF-α observed during acute and chronic inflammatory conditions are believed to induce adverse phenotypes like glucose intolerance and abnormal lipid profile. Natural products e. g., amygdalin, cinnamic acid, jasmonic acid and aspirin have proven efficacy in minimizing the TNF-α induced inflammation in vitro and in vivo. Cell lysis-free quantum dot (QDot) imaging is an emerging technique to identify the cellular mediators of a signaling cascade with a single assay in one run. In comparison to organic fluorophores, the inorganic QDots are bright, resistant to photobleaching and possess tunable optical properties that make them suitable for long term and multicolor imaging of various components in a cellular crosstalk. Hence we tested some components of the mitogen activated protein kinase (MAPK) pathway during TNF-α induced inflammation and the effects of aspirin in HepG2 cells by QDot multicolor imaging technique. Results demonstrated that aspirin showed significant protective effects against TNF-α induced cellular inflammation. The developed cell based assay paves the platform for the analysis of cellular components in a smooth and reliable way.

  16. Study comparing human papillomavirus (HPV) real-time multiplex PCR and Hybrid Capture II INNO-LiPA v2 HPV genotyping PCR assays

    DEFF Research Database (Denmark)

    Iftner, Thomas; Germ, Liesje; Swoyer, Ryan

    2009-01-01

    Human papillomavirus (HPV) DNA genotyping is an essential test to establish efficacy in HPV vaccine clinical trials and HPV prevalence in natural history studies. A number of HPV DNA genotyping methods have been cited in the literature, but the comparability of the outcomes from the different...... methods has not been well characterized. Clinically, cytology is used to establish possible HPV infection. We evaluated the sensitivity and specificity of HPV multiplex PCR assays compared to those of the testing scheme of the Hybrid Capture II (HCII) assay followed by an HPV PCR/line hybridization assay...... (HCII-LiPA v2). SurePath residual samples were split into two aliquots. One aliquot was subjected to HCII testing followed by DNA extraction and LiPA v2 genotyping. The second aliquot was shipped to a second laboratory, where DNA was extracted and HPV multiplex PCR testing was performed. Comparisons...

  17. Potent Human Telomerase Inhibitors: Molecular Dynamic Simulations, Multiple Pharmacophore-Based Virtual Screening, and Biochemical Assays.

    Science.gov (United States)

    Shirgahi Talari, Faezeh; Bagherzadeh, Kowsar; Golestanian, Sahand; Jarstfer, Michael; Amanlou, Massoud

    2015-12-28

    Telomere maintenance is a universal cancer hallmark, and small molecules that disrupt telomere maintenance generally have anticancer properties. Since the vast majority of cancer cells utilize telomerase activity for telomere maintenance, the enzyme has been considered as an anticancer drug target. Recently, rational design of telomerase inhibitors was made possible by the determination of high resolution structures of the catalytic telomerase subunit from a beetle and subsequent molecular modeling of the human telomerase complex. A hybrid strategy including docking, pharmacophore-based virtual screening, and molecular dynamics simulations (MDS) were used to identify new human telomerase inhibitors. Docking methodology was applied to investigate the ssDNA telomeric sequence and two well-known human telomerase inhibitors' (BIBR1532 and MST-312) modes of interactions with hTERT TEN domain. Subsequently molecular dynamic simulations were performed to monitor and compare hTERT TEN domain, TEN-ssDNA, TEN-BIBR1532, TEN-MST-312, and TEN-ssDNA-BIBR1532 behavior in a dynamic environment. Pharmacophore models were generated considering the inhibitors manner in the TEN domain anchor site. These exploratory studies identified several new potent inhibitors whose IC50 values were generated experimentally in a low micromolar range with the aid of biochemical assays, including both the direct telomerase and the telomeric repeat amplification protocol (TRAP) assays. The results suggest that the current models of human telomerase are useful templates for rational inhibitor design.

  18. Multiple detection of single nucleotide polymorphism by microarray-based resonance light scattering assay with enlarged gold nanoparticle probes.

    Science.gov (United States)

    Gao, Jiaxue; Ma, Lan; Lei, Zhen; Wang, Zhenxin

    2016-03-01

    The mapping of specific single nucleotide polymorphisms (SNPs) in patients' genome is a critical process for the development of personalized therapy. In this work, a DNA microarray-based resonance light scattering (RLS) assay has been developed for multiplexed detection of breast cancer related SNPs with high sensitivity and selectivity. After hybridization of the desired target single-stranded DNAs (ssDNAs) with the ssDNA probes on a microarray, the polyvalent ssDNA modified 13 nm gold nanoparticles (GNPs) are employed to label the hybridization reaction through the formation of a three-stranded DNA system. The H2O2-mediated enlargement of GNPs is then used to enhance the RLS signal. The microarray-based RLS assay provides a detection limit of 10 pM (S/N = 3) for the target ssDNA and determines an allele frequency as low as 1.0% in the target ssDNA cocktail. Combined with an asymmetric PCR technique, the proposed assay shows good accuracy and sensitivity in profiling 4 SNPs related to breast cancer of three selected cell lines.

  19. Exposure-based validation list for developmental toxicity screening assays

    NARCIS (Netherlands)

    Daston, George P.; Beyer, Bruce K.; Carney, Edward W.; Chapin, Robert E.; Friedman, Jan M.; Piersma, Aldert H.; Rogers, John M.; Scialli, Anthony R.

    2014-01-01

    Validation of alternative assays requires comparison of the responses to toxicants in the alternative assay with in vivo responses. Chemicals have been classified as "positive" or "negative" in vivo, despite the fact that developmental toxicity is conditional on magnitude of exposure. We developed a

  20. Extending a Hybrid Tag-Based Recommender System with Personalization

    DEFF Research Database (Denmark)

    Durao, Frederico; Dolog, Peter

    2010-01-01

    extension for a hybrid tag-based recommender system, which suggests similar Web pages based on the similarity of their tags. The semantic extension aims at discovering tag relations which are not considered in basic syntax similarity. With the goal of generating more semantically grounded recommendations...

  1. USE OF FLUORESCENCE IN SITU HYBRIDIZATION ASSAY ON URINE SEDIMENT CELLS TO DIAGNOSE URINARY BLADDER CANCER AND ITS RECURRENCESY

    Directory of Open Access Journals (Sweden)

    I. E. Vorobtsova

    2014-07-01

    Full Text Available Fluorescence in situ hybridization (FISH assay was used to detect tumor cells in the urine sediment of patients diagnosed as having urinary bladder cancer (UBC. For this, the investigators applied a fluorescence DNA probe kit (UroVysion that could reveal the cytogenetic abnormalities characteristic for UBC, such as hyperploidy for chromosomes 3, 7, and 17 and deletion of the 9p21 locus, in the cast-off cells. Twenty-eight patients with the primary diagnosis of UBC, 12 with its suspected recurrence, 3 subjects without UBC were examined. The findings were compared with cystoscopic data after urine samples were taken. The sensitivity of the UroVysion test totaled 78.5 ± 9.7 % for all stages of primary cancer (pT1-pT4, 87.5 ± 11.6 % for its early stage (рТ1, and 100 % for UBC recurrences. Hyperploidy was a predominant type of cytogenetic abnormalities in the cast-off tumor cells. Among the abnormal cells, the types of hyperploidy (tri-, tetrasomy were most common for chromosome 3 and less for chromosome 7. Thus, the UroVysion test is a noninvasive highly sensitive tool that may be used in clinical practice to improve the diagnosis of UBC, to detect recurrences, and to monitor the efficiency of treatment.

  2. USE OF FLUORESCENCE IN SITU HYBRIDIZATION ASSAY ON URINE SEDIMENT CELLS TO DIAGNOSE URINARY BLADDER CANCER AND ITS RECURRENCESY

    Directory of Open Access Journals (Sweden)

    I. E. Vorobtsova

    2011-01-01

    Full Text Available Fluorescence in situ hybridization (FISH assay was used to detect tumor cells in the urine sediment of patients diagnosed as having urinary bladder cancer (UBC. For this, the investigators applied a fluorescence DNA probe kit (UroVysion that could reveal the cytogenetic abnormalities characteristic for UBC, such as hyperploidy for chromosomes 3, 7, and 17 and deletion of the 9p21 locus, in the cast-off cells. Twenty-eight patients with the primary diagnosis of UBC, 12 with its suspected recurrence, 3 subjects without UBC were examined. The findings were compared with cystoscopic data after urine samples were taken. The sensitivity of the UroVysion test totaled 78.5 ± 9.7 % for all stages of primary cancer (pT1-pT4, 87.5 ± 11.6 % for its early stage (рТ1, and 100 % for UBC recurrences. Hyperploidy was a predominant type of cytogenetic abnormalities in the cast-off tumor cells. Among the abnormal cells, the types of hyperploidy (tri-, tetrasomy were most common for chromosome 3 and less for chromosome 7. Thus, the UroVysion test is a noninvasive highly sensitive tool that may be used in clinical practice to improve the diagnosis of UBC, to detect recurrences, and to monitor the efficiency of treatment.

  3. A hybrid stochastic-deterministic computational model accurately describes spatial dynamics and virus diffusion in HIV-1 growth competition assay.

    Science.gov (United States)

    Immonen, Taina; Gibson, Richard; Leitner, Thomas; Miller, Melanie A; Arts, Eric J; Somersalo, Erkki; Calvetti, Daniela

    2012-11-01

    We present a new hybrid stochastic-deterministic, spatially distributed computational model to simulate growth competition assays on a relatively immobile monolayer of peripheral blood mononuclear cells (PBMCs), commonly used for determining ex vivo fitness of human immunodeficiency virus type-1 (HIV-1). The novel features of our approach include incorporation of viral diffusion through a deterministic diffusion model while simulating cellular dynamics via a stochastic Markov chain model. The model accounts for multiple infections of target cells, CD4-downregulation, and the delay between the infection of a cell and the production of new virus particles. The minimum threshold level of infection induced by a virus inoculum is determined via a series of dilution experiments, and is used to determine the probability of infection of a susceptible cell as a function of local virus density. We illustrate how this model can be used for estimating the distribution of cells infected by either a single virus type or two competing viruses. Our model captures experimentally observed variation in the fitness difference between two virus strains, and suggests a way to minimize variation and dual infection in experiments.

  4. A CORBA server for the Radiation Hybrid DataBase.

    Science.gov (United States)

    Rodriguez-Tomé, P; Helgesen, C; Lijnzaad, P; Jungfer, K

    1997-01-01

    Modern biology depends on a wide range of software interacting with a large number of data sources, varying both in size, complexity and structure. The range of important databases in molecular biology and genetics makes it crucial to overcome the problems which this multiplicity presents. At EMBL-EBI we have started to use CORBA technology to support interoperability between a variety of databases, as well as to facilitate the integration of tools that access these databases. Within the Radiation Hybrid DataBase project we are confronted daily with the interoperation and linking issues. In this paper we present a CORBA infrastructure implemented to access the Radiation Hybrid DataBase.

  5. Nano and hybrid aluminum based metal matrix composites: an overview

    Directory of Open Access Journals (Sweden)

    Muley Aniruddha V.

    2015-01-01

    Full Text Available Aluminium matrix composites (AMCs are potential light weight engineering materials with excellent properties. AMCs find application in many areas including automobile, mining, aerospace and defence, etc. Due to technological advancements, it is possible to use nano sized reinforcement in Al matrix. Nano sized reinforcements enhance the properties of Al matrix compared to micro sized reinforcements. Hybrid reinforcement imbibe superior properties to aluminium matrix composites as compared with Al composites having single reinforcement. This paper is focused on overview of development in the field of Al based metal matrix with nano and hybrid aluminium based composites.

  6. Nanobeads-based assays. The case of gluten detection

    Science.gov (United States)

    Venditti, Iole; Fratoddi, Ilaria; Vittoria Russo, Maria; Bellucci, Stefano; Crescenzo, Roberta; Iozzino, Luisa; Staiano, Maria; Aurilia, Vincenzo; Varriale, Antonio; Rossi, Mosè; D'Auria, Sabato

    2008-11-01

    In order to verify if the use of nanobeads of poly[phenylacetylene-(co-acrylic acid)] (PPA/AA) in the ELISA test would affect the immune-activity of the antibodies (Ab) and/or the activity of the enzymes used to label the Ab anti-rabbit IGg, in this work we immobilized the horse liver peroxidase labelled Ab anti-rabbit IGg onto PPA/AA nanobeads. The gluten test was chosen as the model to demonstrate the usefulness of these nanobeads in immunoassays. The synthesis of PPA/AA nanobeads was performed by a modified emulsion polymerization. Self-assembly of nanospheres with mean diameter equal to 200 nm was achieved by casting aqueous suspensions. The materials were characterized by traditional spectroscopic techniques, while the size and dispersion of the particles were analysed by scanning electron microscopy (SEM) measurements. The obtained results show that the immobilization process of the Abs onto PPA/AA did not affect either the immune-response of the Abs or the functional activity of the peroxidase suggesting the usefulness of PPA/AA for the design of advanced nanobeads-based assays for the simultaneous screening of several analytes in complex media.

  7. Colloidal gold probe based rapid immunochromatographic strip assay for cortisol

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Seema, E-mail: seemanara@mnnit.ac.in [Department of Applied Mechanics (Biotechnology), Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India); Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Tripathi, Vinay [Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India); Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Singh, Harpal [Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Shrivastav, Tulsidas G. [Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India)

    2010-12-03

    A rapid and semi-quantitative immunochromatographic strip (ICS) test for cortisol analysis in serum was developed. The test strip was based on a competitive assay format. Colloidal gold nanoparticles were synthesized and coupled with cortisol-3-carboxymethyloxime-adipic acid dihydrazide-bovine serum albumin (F-3-CMO-ADH-BSA) antigen to directly compete with cortisol in human serum samples. F-3-CMO-ADH-BSA-gold label and uncoupled colloidal gold nanoparticles were appropriately characterized using UV-vis spectroscopy, transmission electron microscopy and atomic force microscopy. Anticortisol antibody raised against F-3-CMO-BSA immunogen in New Zealand white rabbits was coated on the NC membrane as test line. Anti-BSA antibody was used as control line. The lower detection limit of the ICS test was 30 ng mL{sup -1} with visual detection and was completed in 10 min. About 30 human serum samples were also analyzed by the developed strip test and their range of cortisol concentration was established. The developed ICS test is rapid, economic and user friendly.

  8. Antibody-Based Assays for Phenotyping of Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Lotte Hatting Pugholm

    2015-01-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of membrane-enclosed vesicles. EVs are recognized as important players in cell-to-cell communication and are described to be involved in numerous biological and pathological processes. The fact that EVs are involved in the development and progression of several diseases has formed the basis for the use of EV analysis in a clinical setting. As the interest in EVs has increased immensely, multiple techniques have been developed aiming at characterizing these vesicles. These techniques characterize different features of EVs, like the size distribution, enumeration, protein composition, and the intravesicular cargo (e.g., RNA. This review focuses on techniques that exploit the specificity and sensitivity associated with antibody-based assays to characterize the protein phenotype of EVs. The protein phenotype of EVs can provide information on the functionality of the vesicles and may be used for identification of disease-related biomarkers. Thus, protein profiling of EVs holds great diagnostic and prognostic potential.

  9. GTP-specific fab fragment-based GTPase activity assay.

    Science.gov (United States)

    Kopra, Kari; Rozwandowicz-Jansen, Anita; Syrjänpää, Markku; Blaževitš, Olga; Ligabue, Alessio; Veltel, Stefan; Lamminmäki, Urpo; Abankwa, Daniel; Härmä, Harri

    2015-03-17

    GTPases are central cellular signaling proteins, which cycle between a GDP-bound inactive and a GTP-bound active conformation in a controlled manner. Ras GTPases are frequently mutated in cancer and so far only few experimental inhibitors exist. The most common methods for monitoring GTP hydrolysis rely on luminescent GDP- or GTP-analogs. In this study, the first GTP-specific Fab fragment and its application are described. We selected Fab fragments using the phage display technology. Six Fab fragments were found against 2'/3'-GTP-biotin and 8-GTP-biotin. Selected antibody fragments allowed specific detection of endogenous, free GTP. The most potent Fab fragment (2A4(GTP)) showed over 100-fold GTP-specificity over GDP, ATP, or CTP and was used to develop a heterogeneous time-resolved luminescence based assay for the monitoring of GTP concentration. The method allows studying the GEF dependent H-Ras activation (GTP binding) and GAP-catalyzed H-Ras deactivation (GTP hydrolysis) at nanomolar protein concentrations.

  10. Conceptual design of distillation-based hybrid separation processes.

    Science.gov (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  11. Synthesis and application of virus-based hybrid nanomaterials.

    Science.gov (United States)

    Lee, Sang-Yup; Lim, Jung-Sun; Harris, Michael T

    2012-01-01

    A virus is a nanoscaled biomolecular substance composed of genes, protecting capsid proteins, and envelopes. The nanoscale dimensions and surface functionalities of virions have been exploited to attract and assemble inorganic and organic materials to produce functional nanomaterials with large surface areas. Genetic modifications of virus capsid proteins lead to the selective deposition and controlled growth of inorganic substances producing organized virus-based hybrid materials. Due to these properties, viruses hold promise for development as platforms for the creation of hybrid materials with multiple functionalities. This article reviews the characteristics of commonly used viruses and their fabrication into virus-based hybrid materials that have been applied in engineering applications such as nanowires and catalysts. Copyright © 2011 Wiley Periodicals, Inc.

  12. Vehicle Sideslip Angle Estimation Based on Hybrid Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jing Li

    2016-01-01

    Full Text Available Vehicle sideslip angle is essential for active safety control systems. This paper presents a new hybrid Kalman filter to estimate vehicle sideslip angle based on the 3-DoF nonlinear vehicle dynamic model combined with Magic Formula tire model. The hybrid Kalman filter is realized by combining square-root cubature Kalman filter (SCKF, which has quick convergence and numerical stability, with square-root cubature based receding horizon Kalman FIR filter (SCRHKF, which has robustness against model uncertainty and temporary noise. Moreover, SCKF and SCRHKF work in parallel, and the estimation outputs of two filters are merged by interacting multiple model (IMM approach. Experimental results show the accuracy and robustness of the hybrid Kalman filter.

  13. Novel hybrid materials based on the vanadium oxide nanobelts

    Science.gov (United States)

    Zabrodina, G. S.; Makarov, S. G.; Kremlev, K. V.; Yunin, P. A.; Gusev, S. A.; Kaverin, B. S.; Kaverina, L. B.; Ketkov, S. Yu.

    2016-04-01

    Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V2O5·nH2O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB - cetyltrimethylammonium bromide, TBAB - tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA)0.33V2O5 flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA)0.33V2O5, (TBA)0.16V2O5 nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  14. Evaluation of a Novel PCR-Based Assay for Detection and Identification of Chlamydia trachomatis Serovars in Cervical Specimens▿

    Science.gov (United States)

    Quint, Koen; Porras, Carolina; Safaeian, Mahboobeh; González, Paula; Hildesheim, Allan; Quint, Wim; van Doorn, Leen-Jan; Silva, Sandra; Melchers, Willem; Schiffman, Mark; Rodríguez, Ana Cecilia; Wacholder, Sholom; Freer, Enrique; Cortes, Bernal; Herrero, Rolando

    2007-01-01

    The aims of this study were to compare a novel PCR-based Chlamydia trachomatis detection and genotyping (Ct-DT) assay with the FDA-approved, commercially available C. trachomatis detection Hybrid Capture 2 (HC2) assay and to investigate the C. trachomatis serovar distribution among young women in a rural Costa Rican study population. A total of 5,828 sexually active women participating in a community-based trial in Costa Rica were tested for C. trachomatis by HC2. A sample of 1,229 specimens consisting of 100% HC2 C. trachomatis-positive specimens (n = 827) and a random sample of 8% HC2 C. trachomatis-negative specimens (n = 402) were tested with the Ct-DT assay. Agreement between the two assays was determined by the unweighted kappa statistic. Discrepant specimens were tested with a second commercially available test (COBAS TaqMan). The Ct-DT-positive specimens were further analyzed with the Ct-DT genotyping step to investigate the distribution of 14 different C. trachomatis serovars (A, B/Ba, C, D/Da, E, F, G/Ga, H, I/Ia, J, K, L1, L2/L2a, and L3). After accounting for the sampling fraction selected for Ct-DT testing, crude agreement with the HC2 assay was 98% and the kappa was 0.92 (95% confidence interval [CI], 0.89 to 0.97). The 33 discordant samples that were further analyzed with the COBAS TaqMan test showed better agreement with the Ct-DT assay (31/33, P < 0.001). Among the 806 Ct-DT-positive samples, serovar E was the most common serovar (31%), followed by serovars F and D (both 21%) and serovar I (15%). In conclusion, the novel Ct-DT assay permits reliable detection and identification of C. trachomatis serovars. PMID:17959760

  15. Accurate non-invasive image-based cytotoxicity assays for cultured cells

    Directory of Open Access Journals (Sweden)

    Brouwer Jaap

    2010-06-01

    Full Text Available Abstract Background The CloneSelect™ Imager system is an image-based visualisation system for cell growth assessment. Traditionally cell proliferation is measured with the colorimetric MTT assay. Results Here we show that both the CloneSelect Imager and the MTT approach result in comparable EC50 values when assaying the cytotoxicity of cisplatin and oxaliplatin on various cell lines. However, the image-based technique was found non-invasive, considerably quicker and more accurate than the MTT assay. Conclusions This new image-based technique has the potential to replace the cumbersome MTT assay when fast, unbiased and high-throughput cytotoxicity assays are requested.

  16. An aptamer based competition assay for protein detection using CNT activated gold-interdigitated capacitor arrays.

    Science.gov (United States)

    Qureshi, Anjum; Roci, Irena; Gurbuz, Yasar; Niazi, Javed H

    2012-04-15

    An aptamer can specifically bind to its target molecule, or hybridize with its complementary strand. A target bound aptamer complex has difficulty to hybridize with its complementary strand. It is possible to determine the concentration of target based on affinity separation system for the protein detection. Here, we exploited this property using C-reactive protein (CRP) specific RNA aptamers as probes that were immobilized by physical adsorption on carbon nanotubes (CNTs) activated gold interdigitated electrodes of capacitors. The selective binding ability of RNA aptamer with its target molecule was determined by change in capacitance after allowing competitive binding with CRP and complementary RNA (cRNA) strands in pure form and co-mixtures (CRP:cRNA=0:1, 1:0, 1:1, 1:2 and 2:1). The sensor showed significant capacitance change with pure forms of CRP/cRNA while responses reduced considerably in presence of CRP:cRNA in co-mixtures (1:1 and 1:2) because of the binding competition. At a critical CRP:cRNA ratio of 2:1, the capacitance response was dramatically lost because of the dissociation of adsorbed aptamers from the sensor surface to bind when excess CRP. Binding assays showed that the immobilized aptamers had strong affinity for cRNA (K(d)=1.98 μM) and CRP molecules (K(d)=2.4 μM) in pure forms, but low affinity for CRP:cRNA ratio of 2:1 (K(d)=8.58 μM). The dynamic detection range for CRP was determined to be 1-8 μM (0.58-4.6 μg/capacitor). The approach described in this study is a sensitive label-free method to detect proteins based on affinity separation of target molecules that can potentially be used for probing molecular interactions.

  17. Evaluation of the Punch-it™ NA-Sample kit for detecting microbial DNA in blood culture bottles using PCR-reverse blot hybridization assay.

    Science.gov (United States)

    Kim, Jungho; Wang, Hye-Young; Kim, Seoyong; Park, Soon Deok; Yu, Kwangmin; Kim, Hyo Youl; Uh, Young; Lee, Hyeyoung

    2016-09-01

    DNA extraction efficiency affects the success of PCR-based method applications. The Punch-it™ NA-Sample kit for extracting DNA by using paper chromatography is technically easy to use and requires just two reagents and only 10min to complete. The Punch-it™ NA-Sample kit could be offered as a rapid, accurate, and convenient method for extracting bacterial and fungal DNA from blood culture bottles. We compared the efficiencies of the commercial kit (Punch-it™ NA-Sample kit) and an in-house conventional boiling method with Chelex-100 resin for DNA extraction from blood culture bottles. The efficiency of the two DNA extraction methods was assessed by PCR-reverse blot hybridization assay (PCR-REBA, REBA Sepsis-ID) for detecting Gram positive (GP) bacteria, Gram negative (GN) bacteria, and Candida species with 196 positive and 200 negative blood culture bottles. The detection limits of the two DNA extraction methods were 10(3)CFU/mL for GP bacteria, 10(3)CFU/mL for GN bacteria, and 10(4)CFU/mL for Candida. The sensitivity and specificity of the Punch-it™ NA-Sample kit by REBA Sepsis-ID were 95.4% (187/196) and 100% (200/200), respectively. The overall agreement of the two DNA extraction methods was 98.9% (392/396). Three of four samples showing discrepant results between the two extraction methods were more accurately matched up with the Punch-it™ NA-Sample kit based on conventional culture methods. The results indicated that the Punch-it™ NA-Sample kit extracted bacterial and fungal DNA in blood culture bottles and allowed extracted DNA to be used in molecular assay. Copyright © 2016. Published by Elsevier B.V.

  18. A Hybrid Architecture for Web-based Expert Systems

    OpenAIRE

    Neil Dunstan

    2012-01-01

    A recent technique is to represent the knowledge base of an expert system in XML format. XML parsers are then used to convert XML data into expert system language code. The code is executed or interpreted when providing responses to user queries. Web-based expert system (WBES) architectures may be characterized according to where the application knowledge base resides. Applications of both client and server-sided WBES architectures appear in the literature. A hybrid architecture is proposed w...

  19. Route-Based Control of Hybrid Electric Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  20. Self-assembled gold nanochains hybrid based on insulin fibrils

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longgai; Gao Faming, E-mail: fmgao@ysu.edu.cn [Yanshan University, Department of Applied Chemistry (China)

    2012-05-15

    We reported a facile method for preparing self-assembly gold nanochains by using insulin fibrils as biotemplate in aqueous environment. The gold nanochains hybrid nanostructures, which are insulin fibrils coated by gold nanoparticles, can be fabricated by simply reducing the salt precursors using DMAB. By increasing the molar ratio between salt precursors and insulin, denser hybrid nanochains can be obtained, meanwhile the mean diameter of gold nanoparticles is changing from 8 to 10 nm and then to 12 nm. The fabricated gold nanochains hybrid had helix structure, which was confirmed by circular dichroism spectra. The hybrid nanostructures were also investigated by transmission electron microscope, atomic force microscope, Fourier transform infrared spectra, and UV-Visible spectroscopy. As the wire-like structure become denser, the suspensions show color-changing, corresponding to the surface plasmon resonance red shift, which is attributed to the increasing mean size of nanoparticles. Based on the characterizations, a hypothetic mechanism was suggested to describe the formation processing of hybrid gold nanochains.

  1. Detection of Streptococcus suis by in situ hybridization, indirect immunofluorescence, and peroxidase-antiperoxidase assays in formalin-fixed, paraffin-embedded tissue sections from pigs

    DEFF Research Database (Denmark)

    Boye, Mette; Feenstra, Anne Avlund; Tegtmeier, Conny

    2000-01-01

    methods, an indirect immunofluorescence assay and a peroxidase-antiperoxidase method, using polyclonal antibodies also were developed. The specificity of the oligonucleotide probe was examined by whole-cell and dot-blot hybridization against reference strains of the 35 serotypes of S. suis and other...... closely related streptococci and other bacteria commonly isolated from pigs. The probe was specific for S, suis serotypes 1-31. The specificity of the polyclonal antibodies, which has previously been evaluated for use in diagnostic bacteriology for typing of serotype 2, was further evaluated...... in experimentally infected murine tissue with pure culture of different serotypes of S. suis, related streptococci, and other bacteria commonly found in pigs. The polyclonal antibodies against S. suis serotype 2 cross-reacted with serotypes 1 and 1/2 in these assays. The in situ hybridization...

  2. Evaluation of a gp63-PCR based assay as a molecular diagnosis tool in canine leishmaniasis in Tunisia.

    Directory of Open Access Journals (Sweden)

    Souheila Guerbouj

    Full Text Available A gp63PCR method was evaluated for the detection and characterization of Leishmania (Leishmania (L. parasites in canine lymph node aspirates. This tool was tested and compared to other PCRs based on the amplification of 18S ribosomal genes, a L. infantum specific repetitive sequence and kinetoplastic DNA minicircles, and to classical parasitological (smear examination and/or culture or serological (IFAT techniques on a sample of 40 dogs, originating from different L. infantum endemic regions in Tunisia. Sensitivity and specificity of all the PCR assays were evaluated on parasitologically confirmed dogs within this sample (N = 18 and control dogs (N = 45 originating from non-endemic countries in northern Europe and Australia. The gp63 PCR had 83.5% sensitivity and 100% specificity, a performance comparable to the kinetoplast PCR assay and better than the other assays. These assays had comparable results when the gels were southern transferred and hybridized with a radioactive probe. As different infection rates were found according to the technique, concordance of the results was estimated by (κ test. Best concordance values were between the gp63PCR and parasitological methods (74.6%, 95% confidence intervals CI: 58.8-95.4% or serology IFAT technique (47.4%, 95% CI: 23.5-71.3%. However, taken together Gp63 and Rib assays covered most of the samples found positive making of them a good alternative for determination of infection rates. Potential of the gp63PCR-RFLP assay for analysis of parasite genetic diversity within samples was also evaluated using 5 restriction enzymes. RFLP analysis confirmed assignment of the parasites infecting the dogs to L. infantum species and illustrated occurrence of multiple variants in the different endemic foci. Gp63 PCR assay thus constitutes a useful tool in molecular diagnosis of L. infantum infections in dogs in Tunisia.

  3. Evaluation of a gp63–PCR Based Assay as a Molecular Diagnosis Tool in Canine Leishmaniasis in Tunisia

    Science.gov (United States)

    Guerbouj, Souheila; Djilani, Fattouma; Bettaieb, Jihene; Lambson, Bronwen; Diouani, Mohamed Fethi; Ben Salah, Afif; Ben Ismail, Riadh; Guizani, Ikram

    2014-01-01

    A gp63PCR method was evaluated for the detection and characterization of Leishmania (Leishmania) (L.) parasites in canine lymph node aspirates. This tool was tested and compared to other PCRs based on the amplification of 18S ribosomal genes, a L. infantum specific repetitive sequence and kinetoplastic DNA minicircles, and to classical parasitological (smear examination and/or culture) or serological (IFAT) techniques on a sample of 40 dogs, originating from different L. infantum endemic regions in Tunisia. Sensitivity and specificity of all the PCR assays were evaluated on parasitologically confirmed dogs within this sample (N = 18) and control dogs (N = 45) originating from non–endemic countries in northern Europe and Australia. The gp63 PCR had 83.5% sensitivity and 100% specificity, a performance comparable to the kinetoplast PCR assay and better than the other assays. These assays had comparable results when the gels were southern transferred and hybridized with a radioactive probe. As different infection rates were found according to the technique, concordance of the results was estimated by (κ) test. Best concordance values were between the gp63PCR and parasitological methods (74.6%, 95% confidence intervals CI: 58.8–95.4%) or serology IFAT technique (47.4%, 95% CI: 23.5–71.3%). However, taken together Gp63 and Rib assays covered most of the samples found positive making of them a good alternative for determination of infection rates. Potential of the gp63PCR-RFLP assay for analysis of parasite genetic diversity within samples was also evaluated using 5 restriction enzymes. RFLP analysis confirmed assignment of the parasites infecting the dogs to L. infantum species and illustrated occurrence of multiple variants in the different endemic foci. Gp63 PCR assay thus constitutes a useful tool in molecular diagnosis of L. infantum infections in dogs in Tunisia. PMID:25153833

  4. Graphene based nanocomposite hybrid electrodes for supercapacitors

    Science.gov (United States)

    Aphale, Ashish N.

    There is an unmet need to develop high performance energy storage systems (ESS), capable of storing energy from both renewable and non-renewable sources to meet the current energy crisis and depletion of non-renewable sources. Amongst many available ESS, supercapacitors (ECs) are the most promising because they exhibit a high charge/discharge rate and power density, along with a long cycle life. The possibility of exploring the use of atomically thin carbon allotropes like graphene, carbon nanotubes (CNTs) and electrically conducting polymers (ECPs) such as polypyrrole (PPy) has been studied as a high performance conducting electrodes in supercapacitor application. A novel templated sustainable nanocomposite electrode has been fabricated using cellulose extracted from Cladophora c. aegagropila algae as component of the assembled supercapacitor device which later has been transitioned to a unique template-less freestanding nanocomposite supercapacitor electrode. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 F g -1 at the scan rate 50 m Vs-1 in the presence of 1M NaCl electrolyte. The open circuit voltage of the device with polypyrrole -graphene-cellulose electrode was found to be around 225 m V and that of the polypyrrole -cellulose device is only 53 m V without the presence of graphene in the nanocomposite electrode. Understanding the fundamentals by fabricating template nanocomposite electrode, it led to fabricate a unique nanocomposite template-less freestanding film which comprises of polypyrrole-graphene-CNT hybrid. Various experiments have been performed using different electrolytes such ascorbic acid, sodium sulfate and sulfuric acid in different scan rates. The specific capacitance of polypyrrole-graphene-CNT nanocomposite with 0.1 wt% of graphene-CNT, as calculated from cyclic voltammetry curve is 450 F g-1 at the scan rate 5 m V s-1. For the first time a nanofibrous membrane has

  5. Highly selective and sensitive DNA assay based on electrocatalytic oxidation of ferrocene bearing zinc(II)-cyclen complexes with diethylamine.

    Science.gov (United States)

    Shiddiky, Muhammad J A; Torriero, Angel A J; Zeng, Zhanghua; Spiccia, Leone; Bond, Alan M

    2010-07-28

    A highly selective and sensitive electrochemical biosensor has been developed that detects DNA hybridization by employing the electrocatalytic activity of ferrocene (Fc) bearing cyclen complexes (cyclen = 1,4,7,10-tetraazacyclododecane, Fc[Zn(cyclen)H(2)O](2)(ClO(4))(4) (R1), Fc(cyclen)(2) (R2), Fc[Zn(cyclen)H(2)O](ClO(4))(2) (R3), and Fc(cyclen) (R4)). A sandwich-type approach, which involves hybridization of a target probe hybridized with the preimmobilized thiolated capture probe attached to a gold electrode, is employed to fabricate a DNA duplex layer. Electrochemical signals are generated by voltammetric interrogation of a Fc bearing Zn-cyclen complexes that selectively and quantitatively binds to the duplex layers through strong chelation between the cyclen complexes and particular nucleobases within the DNA sequence. Chelate formation between R1 or R3 and thymine bases leads to the perturbation of base-pair (A-T) stacking in the duplex structure, which greatly diminishes the yield of DNA-mediated charge transport and displays a marked selectivity to the presence of the target DNA sequence. Coupling the redox chemistry of the surface-bound Fc bearing Zn-cyclen complex and dimethylamine provides an electrocatalytic pathway that increases sensitivity of the assay and allows the 100 fM target DNA sequence to be detected. Excellent selectivity against even single-base sequence mismatches is achieved, and the DNA sensor is stable and reusable.

  6. Structure-based design, synthesis and biological testing of etoposide analog epipodophyllotoxin-N-mustard hybrid compounds designed to covalently bind to topoisomerase II and DNA.

    Science.gov (United States)

    Yadav, Arun A; Wu, Xing; Patel, Daywin; Yalowich, Jack C; Hasinoff, Brian B

    2014-11-01

    Drugs that target DNA topoisomerase II isoforms and alkylate DNA represent two mechanistically distinct and clinically important classes of anticancer drugs. Guided by molecular modeling and docking a series of etoposide analog epipodophyllotoxin-N-mustard hybrid compounds were designed, synthesized and biologically characterized. These hybrids were designed to alkylate nucleophilic protein residues on topoisomerase II and thus produce inactive covalent adducts and to also alkylate DNA. The most potent hybrid had a mean GI(50) in the NCI-60 cell screen 17-fold lower than etoposide. Using a variety of in vitro and cell-based assays all of the hybrids tested were shown to target topoisomerase II. A COMPARE analysis indicated that the hybrids had NCI 60-cell growth inhibition profiles matching both etoposide and the N-mustard compounds from which they were derived. These results supported the conclusion that the hybrids displayed characteristics that were consistent with having targeted both topoisomerase II and DNA.

  7. Event-triggered hybrid control based on multi-Agent systems for Microgrids

    DEFF Research Database (Denmark)

    Dou, Chun-xia; Liu, Bin; Guerrero, Josep M.

    2014-01-01

    of distributed energy resources, thus it is typical hybrid dynamic network. Considering the complex hybrid behaviors, a hierarchical decentralized coordinated control scheme is firstly constructed based on multi-agent sys-tem, then, the hybrid model of the microgrid is built by using differential hybrid Petri...

  8. Expanding the available assays: adapting and validating In-Cell Westerns in microfluidic devices for cell-based assays.

    Science.gov (United States)

    Paguirigan, Amy L; Puccinelli, John P; Su, Xiaojing; Beebe, David J

    2010-10-01

    Microfluidic methods for cellular studies can significantly reduce costs due to reduced reagent and biological specimen requirements compared with many traditional culture techniques. However, current types of readouts are limited and this lack of suitable readouts for microfluidic cultures has significantly hindered the application of microfluidics for cell-based assays. The In-Cell Western (ICW) technique uses quantitative immunocytochemistry and a laser scanner to provide an in situ measure of protein quantities in cells grown in microfluidic channels of arbitrary geometries. The use of ICWs in microfluidic channels was validated by a detailed comparison with current macroscale methods and shown to have excellent correlation. Transforming growth factor-β-induced epithelial-to-mesenchymal transition of an epithelial cell line was used as an example for further validation of the technique as a readout for soluble-factor-based assays performed in high-throughput microfluidic channels. The use of passive pumping for sample delivery and laser scanning for analysis opens the door to high-throughput quantitative microfluidic cell-based assays that integrate seamlessly with existing high-throughput infrastructure.

  9. Study comparing human papillomavirus (HPV) real-time multiplex PCR and Hybrid Capture II INNO-LiPA v2 HPV genotyping PCR assays.

    Science.gov (United States)

    Iftner, Thomas; Germ, Liesje; Swoyer, Ryan; Kjaer, Susanne Kruger; Breugelmans, J Gabrielle; Munk, Christian; Stubenrauch, Frank; Antonello, Joseph; Bryan, Janine T; Taddeo, Frank J

    2009-07-01

    Human papillomavirus (HPV) DNA genotyping is an essential test to establish efficacy in HPV vaccine clinical trials and HPV prevalence in natural history studies. A number of HPV DNA genotyping methods have been cited in the literature, but the comparability of the outcomes from the different methods has not been well characterized. Clinically, cytology is used to establish possible HPV infection. We evaluated the sensitivity and specificity of HPV multiplex PCR assays compared to those of the testing scheme of the Hybrid Capture II (HCII) assay followed by an HPV PCR/line hybridization assay (HCII-LiPA v2). SurePath residual samples were split into two aliquots. One aliquot was subjected to HCII testing followed by DNA extraction and LiPA v2 genotyping. The second aliquot was shipped to a second laboratory, where DNA was extracted and HPV multiplex PCR testing was performed. Comparisons were evaluated for 15 HPV types common in both assays. A slightly higher proportion of samples tested positive by the HPV multiplex PCR than by the HCII-LiPA v2 assay. The sensitivities of the multiplex PCR assay relative to those of the HCII-LiPA v2 assay for HPV types 6, 11, 16, and 18, for example, were 0.806, 0.646, 0.920, and 0.860, respectively; the specificities were 0.986, 0.998, 0.960, and 0.986, respectively. The overall comparability of detection of the 15 HPV types was quite high. Analyses of DNA genotype testing compared to cytology results demonstrated a significant discordance between cytology-negative (normal) and HPV DNA-positive results. This demonstrates the challenges of cytological diagnosis and the possibility that a significant number of HPV-infected cells may appear cytologically normal.

  10. Robust hybridization-based genotyping probes for HPV 6, 11, 16 and 18 obtained via in vitro selection

    Directory of Open Access Journals (Sweden)

    Ivan B. Brukner

    2010-04-01

    Full Text Available This paper describes the technical and analytical performance of a novel set of hybridization probes for the four GARDASIL® vaccine-relevant HPV types (6, 11, 16 and 18. These probes are obtained through in vitro selection from a pool of random oligonucleotides, rather than the traditional “rational design” approach typically used as the initial step in assay development. The type-specific segment of the HPV genome was amplified using a GP5+/6+ PCR protocol and 39 synthetic oligonucleotide templates derived from each of the HPV types, as PCR targets. The robust performance of the 4 selected hybridization probes was demonstrated by monitoring the preservation of the specificity and sensitivity of the typing assay over all 39 HPV types, using a different spectrum of HPV (genome equivalent: 103-109 and human DNA concentrations (10-100 ng as well as temperature and buffer composition variations. To the Authors’ knowledge, this is a unique hybridization-based multiplex typing assay. It performs at ambient temperatures, does not require the strict temperature control of hybridization conditions, and is functional with a number of different non-denaturing buffers, thereby offering downstream compatibility with a variety of detection methods. Studies aimed at demonstrating clinical performance are needed to validate the applicability of this strategy.

  11. Hybrid Recommender System Based on Personal Behavior Mining

    OpenAIRE

    Fang, Zhiyuan; Zhang, Lingqi; Chen, Kun

    2016-01-01

    Recommender systems are mostly well known for their applications in e-commerce sites and are mostly static models. Classical personalized recommender algorithm includes item-based collaborative filtering method applied in Amazon, matrix factorization based collaborative filtering algorithm from Netflix, etc. In this article, we hope to combine traditional model with behavior pattern extraction method. We use desensitized mobile transaction record provided by T-mall, Alibaba to build a hybrid ...

  12. Effect of unlabeled helper probes on detection of an RNA target by bead-based sandwich hybridization

    DEFF Research Database (Denmark)

    Barken, K.B.; Cabig-Ciminska, M.; Holmgren, A.;

    2004-01-01

    Unlabeled helper oligonucleotides assisting a bead-based sandwich hybridization assay were tested for the optimal placement of the capture and detection probes. The target used was a full-length in vitro synthesized mRNA molecule. Helper probes complementary to regions adjacent to the binding sit....... Using an electrical chip linked to the detection probe for the detection of p-ominophenol, which is produced by alkaline phosphatase, a detection limit of 2 x 10(-13) M mRNA molecules was reached without the use of a nucleic acid amplification step.......Unlabeled helper oligonucleotides assisting a bead-based sandwich hybridization assay were tested for the optimal placement of the capture and detection probes. The target used was a full-length in vitro synthesized mRNA molecule. Helper probes complementary to regions adjacent to the binding site...

  13. Detection of high-risk subtypes of human papillomavirus in cervical swabs: routine use of the Digene Hybrid Capture assay and polymerase chain reaction analysis.

    LENUS (Irish Health Repository)

    Brennan, M M

    2012-02-03

    Human papillomaviruses (HPVs) are major causative agents in the pathogenesis of cervical cancer, and more than twenty types are associated with its development. With the introduction of liquid-based preparation systems, it is envisaged that large-scale HPV testing will be established in the near future. Preliminary studies demonstrate the accessibility of these samples for DNA testing using both the Digene Hybrid Capture assay (DHCA) and polymerase chain reaction (PCR) techniques. This study aims to assess the validity and sensitivity of the DHCA system to detect high-risk HPV DNA, using two sets of HPV consensus primers (Gp5+\\/Gp6+ and MY09\\/MY11) in tandem with routine assessment of cervical smear and biopsy samples. Results indicate that the combination of DHCA and PCR detects more high-grade lesions than does the DHCA alone. DHCA-negative cases were categorised by subsequent PCR amplification into low-grade HPV-negative (12\\/16) cervical lesions and high-grade HPV-positive (7\\/9) cervical lesions. Gp5+\\/Gp6+ primers were less sensitive in detecting HPV-positive samples than was the MY09\\/MY11 primer set. These results support the use of high-risk HPV testing by DHCA, with subsequent analysis of DHCA-negative samples by PCR using the MY09\\/MY11 primers.

  14. Novel hybrid materials based on the vanadium oxide nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Zabrodina, G.S., E-mail: kudgs@mail.ru [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Makarov, S.G.; Kremlev, K.V. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Yunin, P.A.; Gusev, S.A. [Institute for Physics of Microstructures Russian Academy of Sciences, Nizhny Novgorod 603087 (Russian Federation); Kaverin, B.S.; Kaverina, L.B. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Ketkov, S.Yu. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation)

    2016-04-15

    Graphical abstract: - Highlights: • Flat and curved vanadium oxide nanobelts have been synthesized. • Hybrid material was prepared via decoration of flexible nanobelts with zinc phthalocyanine. • Investigations of the thermal stability, morphologies and structures were carried out. - Abstract: Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V{sub 2}O{sub 5}·nH{sub 2}O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB – cetyltrimethylammonium bromide, TBAB – tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA){sub 0.33}V{sub 2}O{sub 5} flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA){sub 0.33}V{sub 2}O{sub 5}, (TBA){sub 0.16}V{sub 2}O{sub 5} nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  15. Profiling of multiple signal pathway activities by multiplexing antibody and GFP-based translocation assays.

    Science.gov (United States)

    Henriksen, Ulla; Fog, Jacob; Loechel, Frosty; Praestegaard, Morten

    2008-08-01

    Multiplexing of GFP based and immunofluorescence translocation assays enables easy acquisition of multiple readouts from the same cell in a single assay run. Immunofluorescence assays monitor translocation, phosphorylation, and up/down regulation of endogenous proteins. GFP-based assays monitor translocation of stably expressed GFP-fusion proteins. Such assays may be multiplexed along (vertical), across (horizontal), and between (branch) signal pathways. Examples of these strategies are presented: 1) The MK2-GFP assay monitors translocation of MK2-GFP from the nucleus to the cytoplasm in response to stimulation of the p38 pathway. By applying different immunofluorescent assays to the MK2 assay, a multiplexed HCA system is created for deconvolution of p38 pathway activation including assay readouts for MK2, p38, NFkappaB, and c-Jun. 2) A method for evaluating GPCR activation and internalization in a single assay run has been established by multiplexing GFP-based internalization assays with immunofluorescence assays for downstream transducers of GPCR activity: pCREB (cAMP sensor), NFATc1 (Ca(2+) sensor), and ERK (G-protein activation). Activation of the AT1 receptor is given as an example. 3) Cell toxicity readouts can be linked to primary readouts of interest via acquisition of secondary parameters describing cellular morphology. This approach is used to flag cytotoxic compounds and deselect false positives. The ATF6 Redistribution assay is provided as an example. These multiplex strategies provide a unique opportunity to enhance HCA data quality and save time during drug discovery. From a single assay run, several assay readouts are obtained that help the user to deconvolute the mode of action of test compounds.

  16. Validation of a Flow Cytometry Based Binding Assay for Evaluation of Monoclonal Antibody Recognizing EGF Receptor

    Science.gov (United States)

    Cedeño-Arias, Mercedes; Sánchez-Ramírez, Javier; Blanco-Santana, Rancés; Rengifo-Calzado, Enrique

    2011-01-01

    An ideal test used to characterize a product must be appropriate for the measurement of product quality, manufacturing consistency, product stability, and comparability studies. Flow cytometry has been successfully applied to the examination of antibodies and receptors on membrane surfaces; however, to date, the analytical validation of cytometry based assays is limited. Here we report on the validation of a flow cytometry-based assay used in the evaluation of nimotuzumab binding to cells over-expressing EGFR on cell surface. The assay was validated by examining, assay robustness, specificity, repeatability and intermediate precision. The assay was highly specific, robust for all studied factors except for cell fixation with 1% paraformaldehyde and met criteria for precision with RSD < 2%. In addition the assay has stability-indicating properties evidenced by the ability to detect changes in mAb degraded samples. Most importantly, the assay demonstrated to be useful for its intended use. PMID:21886904

  17. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  18. Intelligent Hybrid Cluster Based Classification Algorithm for Social Network Analysis

    Directory of Open Access Journals (Sweden)

    S. Muthurajkumar

    2014-05-01

    Full Text Available In this paper, we propose an hybrid clustering based classification algorithm based on mean approach to effectively classify to mine the ordered sequences (paths from weblog data in order to perform social network analysis. In the system proposed in this work for social pattern analysis, the sequences of human activities are typically analyzed by switching behaviors, which are likely to produce overlapping clusters. In this proposed system, a robust Modified Boosting algorithm is proposed to hybrid clustering based classification for clustering the data. This work is useful to provide connection between the aggregated features from the network data and traditional indices used in social network analysis. Experimental results show that the proposed algorithm improves the decision results from data clustering when combined with the proposed classification algorithm and hence it is proved that of provides better classification accuracy when tested with Weblog dataset. In addition, this algorithm improves the predictive performance especially for multiclass datasets which can increases the accuracy.

  19. A Color-Reaction-Based Biochip Detection Assay for RIF and INH Resistance of Clinical Mycobacterial Specimens.

    Science.gov (United States)

    Xue, Wenfei; Peng, Jingfu; Yu, Xiaoli; Zhang, Shulin; Zhou, Boping; Jiang, Danqing; Chen, Jianbo; Ding, Bingbing; Zhu, Bin; Li, Yao

    2016-01-01

    The widespread occurrence of drug-resistant Mycobacterium tuberculosis places importance on the detection of TB (tuberculosis) drug susceptibility. Conventional drug susceptibility testing (DST) is a lengthy process. We developed a rapid enzymatic color-reaction-based biochip assay. The process included asymmetric multiplex PCR/templex PCR, biochip hybridization, and an enzymatic color reaction, with specific software for data operating. Templex PCR (tem- PCR) was applied to avoid interference between different primers in conventional multiplex- PCR. We applied this assay to 276 clinical specimens (including 27 sputum, 4 alveolar lavage fluid, 2 pleural effusion, and 243 culture isolate specimens; 40 of the 276 were non-tuberculosis mycobacteria specimens and 236 were M. tuberculosis specimens). The testing process took 4.5 h. A sensitivity of 50 copies per PCR was achieved, while the sensitivity was 500 copies per PCR when tem-PCR was used. Allele sequences could be detected in mixed samples at a proportion of 10%. Detection results showed a concordance rate of 97.46% (230/236) in rifampicin resistance detection (sensitivity 95.40%, specificity 98.66%) and 96.19% (227/236) in isoniazid (sensitivity 93.59%, specificity 97.47%) detection with those of DST assay. Concordance rates of testing results for sputum, alveolar lavage fluid, and pleural effusion specimens were 100%. The assay provides a potential choice for TB diagnosis and treatment.

  20. Hybrid Recommender System based on Autoencoders

    OpenAIRE

    Strub, Florian; Gaudel, Romaric; Mary, Jérémie

    2016-01-01

    International audience; A standard model for Recommender Systems is the Matrix Completion setting: given partially known matrix of ratings given by users (rows) to items (columns), infer the unknown ratings. In the last decades, few attempts where done to handle that objective with Neural Networks, but recently an architecture based on Autoencoders proved to be a promising approach. In current paper, we enhanced that architecture (i) by using a loss function adapted to input data with missing...

  1. A Hybrid Architecture for Vision-Based Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Mehmet Serdar Güzel

    2013-01-01

    Full Text Available This paper proposes a new obstacle avoidance method using a single monocular vision camera as the only sensor which is called as Hybrid Architecture. This architecture integrates a high performance appearance-based obstacle detection method into an optical flow-based navigation system. The hybrid architecture was designed and implemented to run both methods simultaneously and is able to combine the results of each method using a novel arbitration mechanism. The proposed strategy successfully fused two different vision-based obstacle avoidance methods using this arbitration mechanism in order to permit a safer obstacle avoidance system. Accordingly, to establish the adequacy of the design of the obstacle avoidance system, a series of experiments were conducted. The results demonstrate the characteristics of the proposed architecture, and the results prove that its performance is somewhat better than the conventional optical flow-based architecture. Especially, the robot employing Hybrid Architecture avoids lateral obstacles in a more smooth and robust manner than when using the conventional optical flow-based technique.

  2. Pseudotype-based neutralization assays for influenza: a systematic analysis

    Directory of Open Access Journals (Sweden)

    George William Carnell

    2015-04-01

    Full Text Available The use of vaccination against the influenza virus remains the most effective method of mitigating the significant morbidity and mortality caused by this virus. Antibodies elicited by currently licensed influenza vaccines are predominantly hemagglutination-inhibition (HI-competent antibodies that target the globular head of HA thus inhibiting influenza virus entry into target cells. These antibodies predominantly confer homosubtypic/strain specific protection and only rarely confer heterosubtypic protection. However, recent academia or pharma-led R&D towards the production of a universal vaccine has centered on the elicitation of antibodies directed against the stalk of the influenza HA that has been shown to confer broad protection across a range of different subtypes (H1 to H16. The accurate and sensitive measurement of antibody responses elicited by these next-generation influenza vaccines is however hampered by the lack of sensitivity of the traditional influenza serological assays hemagglutinin inhibition (HI, single radial hemolysis (SRH and microneutralization (MN. Assays utilizing pseudotypes, chimeric viruses bearing influenza glycoproteins, have been shown to be highly efficient for the measurement of homosubtypic and heterosubtypic broadly-neutralizing antibodies, making them ideal serological tools for the study of cross-protective responses against multiple influenza subtypes with pandemic potential. In this review, we will analyze and compare literature involving the production of influenza pseudotypes with particular emphasis on their use in serum antibody neutralization assays. This will enable us to establish the parameters required for optimization and propose a consensus protocol to be employed for the further deployment of these assays in influenza vaccine immunogenicity studies.

  3. "Molecular beacon"-based fluorescent assay for selective detection of glutathione and cysteine.

    Science.gov (United States)

    Xu, Hui; Hepel, Maria

    2011-02-01

    We report on the development of a fluorescence turn-on "molecular beacon" probe for the detection of glutathione (GSH) and cysteine (Cys). The method is based on a competitive ligation of Hg(2+) ions by GSH/Cys and thymine-thymine (T-T) mismatches in a DNA strand of the self-hybridizing beacon strand. The assay relies on the distance-dependent optical properties of the fluorophore/quencher pair attached to the ends of the molecular beacon DNA strand. In a very selective coordination of Hg(2+) to GSH/Cys, the fluorophore/quencher distance increases concomitantly with the dehybridization and dissociation of the beacon stem T-Hg(2+)-T due to the extraction of Hg(2+) ions. This process results in switching the molecular beacon to the "on" state. The concentration range of the probe is 4-200 nM with the limit of detection (LOD) of 4.1 nM for GSH and 4.2 nM Cys. The probe tested satisfactorily against interference for a range of amino acids including sulfur-containing methionine.

  4. Multiplexed, rapid detection of H5N1 using a PCR-free nanoparticle-based genomic microarray assay

    Directory of Open Access Journals (Sweden)

    Ragupathy Viswanath

    2010-10-01

    Full Text Available Abstract Background For more than a decade there has been increasing interest in the use of nanotechnology and microarray platforms for diagnostic applications. In this report, we describe a rapid and simple gold nanoparticle (NP-based genomic microarray assay for specific identification of avian influenza virus H5N1 and its discrimination from other major influenza A virus strains (H1N1, H3N2. Results Capture and intermediate oligonucleotides were designed based on the consensus sequences of the matrix (M gene of H1N1, H3N2 and H5N1 viruses, and sequences specific for the hemaglutinin (HA and neuraminidase (NA genes of the H5N1 virus. Viral RNA was detected within 2.5 hours using capture-target-intermediate oligonucleotide hybridization and gold NP-mediated silver staining in the absence of RNA fragmentation, target amplification, and enzymatic reactions. The lower limit of detection (LOD of the assay was less than 100 fM for purified PCR fragments and 103 TCID50 units for H5N1 viral RNA. Conclusions The NP-based microarray assay was able to detect and distinguish H5N1 sequences from those of major influenza A viruses (H1N1, H3N2. The new method described here may be useful for simultaneous detection and subtyping of major influenza A viruses.

  5. Research on Modulation Strategies Based on Multilevel Inverter Universal Hybrid Topology

    Institute of Scientific and Technical Information of China (English)

    Zhou Jinghua; Su Yanmin; Shen Chuanwen; Zhang Lin

    2005-01-01

    Based on multi-module-cascaded inverter topology, this study presented a universal multilevel inverter hybrid topology and unified the researches on multilevel inverter topology. According to the freedom of this universal topology, several new hybrid topologies were constructed. Also, based on conventional modulation strategies- multi-carrier SPWM (Sinusoidal Pulse Width Modulation), hybrid modulation strategies were introduced corresponding to hybrid topologies, and a multilevel SVPWM (Space Vector Pulse Width Modulation) technique based on phase-shifted theory was naturally produced. Simulation and experiment results prove that hybrid topologies and corresponding modulation strategies are valid, which lay a foundation for practical application of hybrid multilevel inverter topologies.

  6. Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing

    Directory of Open Access Journals (Sweden)

    Hao Zhu

    2017-04-01

    Full Text Available Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters. This paper presents a hybrid uncertainty-based design optimization (UDO method developed from probability theory and interval theory. Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory, while the others are defined as interval variables with interval theory. Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncertainty propagation from the design parameters to system responses. Three design optimization strategies, including deterministic design optimization (DDO, probabilistic UDO and hybrid UDO, are applied to the conceptual design of a hybrid rocket motor (HRM used as the ascent propulsion system in Apollo lunar module. By comparison, the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.

  7. A Hybrid Brain-Computer Interface-Based Mail Client

    Directory of Open Access Journals (Sweden)

    Tianyou Yu

    2013-01-01

    Full Text Available Brain-computer interface-based communication plays an important role in brain-computer interface (BCI applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG. With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI. An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.

  8. A High-Throughput Assay for Rho Guanine Nucleotide Exchange Factors Based on the Transcreener GDP Assay.

    Science.gov (United States)

    Reichman, Melvin; Schabdach, Amanda; Kumar, Meera; Zielinski, Tom; Donover, Preston S; Laury-Kleintop, Lisa D; Lowery, Robert G

    2015-12-01

    Ras homologous (Rho) family GTPases act as molecular switches controlling cell growth, movement, and gene expression by cycling between inactive guanosine diphosphate (GDP)- and active guanosine triphosphate (GTP)-bound conformations. Guanine nucleotide exchange factors (GEFs) positively regulate Rho GTPases by accelerating GDP dissociation to allow formation of the active, GTP-bound complex. Rho proteins are directly involved in cancer pathways, especially cell migration and invasion, and inhibiting GEFs holds potential as a therapeutic strategy to diminish Rho-dependent oncogenesis. Methods for measuring GEF activity suitable for high-throughput screening (HTS) are limited. We developed a simple, generic biochemical assay method for measuring GEF activity based on the fact that GDP dissociation is generally the rate-limiting step in the Rho GTPase catalytic cycle, and thus addition of a GEF causes an increase in steady-state GTPase activity. We used the Transcreener GDP Assay, which relies on selective immunodetection of GDP, to measure the GEF-dependent stimulation of steady-state GTP hydrolysis by small GTPases using Dbs (Dbl's big sister) as a GEF for Cdc42, RhoA, and RhoB. The assay is well suited for HTS, with a homogenous format and far red fluorescence polarization (FP) readout, and it should be broadly applicable to diverse Rho GEF/GTPase pairs. © 2015 Society for Laboratory Automation and Screening.

  9. Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model

    Directory of Open Access Journals (Sweden)

    Bogdan Gliwa

    2011-01-01

    Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.

  10. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    OpenAIRE

    Changyong Cao; Qing-Hua Qin

    2015-01-01

    An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM) and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field) are employed. The formulations for...

  11. Hybrid silicon plasmonic organic directional coupler-based modulator

    Science.gov (United States)

    Abdelatty, M. Y.; Zaki, A. O.; Swillam, M. A.

    2017-01-01

    An optical directional coupler (ODC)-based hybrid plasmonic waveguide is designed and demonstrated with a power splitting mechanism that can be tuned by applying an external electric field. The tuning mechanism takes the advantage of electro-optic properties of the embedded polymer layer. The ODC operates under 1550 nm telecommunication wavelength. A finite element method with a perfect matching layer, absorbing boundary condition, is taken up to simulate and analyze the ODC.

  12. Wavelet-Based DFT calculations on Massively Parallel Hybrid Architectures

    Science.gov (United States)

    Genovese, Luigi

    2011-03-01

    In this contribution, we present an implementation of a full DFT code that can run on massively parallel hybrid CPU-GPU clusters. Our implementation is based on modern GPU architectures which support double-precision floating-point numbers. This DFT code, named BigDFT, is delivered within the GNU-GPL license either in a stand-alone version or integrated in the ABINIT software package. Hybrid BigDFT routines were initially ported with NVidia's CUDA language, and recently more functionalities have been added with new routines writeen within Kronos' OpenCL standard. The formalism of this code is based on Daubechies wavelets, which is a systematic real-space based basis set. As we will see in the presentation, the properties of this basis set are well suited for an extension on a GPU-accelerated environment. In addition to focusing on the implementation of the operators of the BigDFT code, this presentation also relies of the usage of the GPU resources in a complex code with different kinds of operations. A discussion on the interest of present and expected performances of Hybrid architectures computation in the framework of electronic structure calculations is also adressed.

  13. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  14. Development of a Rapid Reverse Blot Hybridization Assay for Detection of Clinically Relevant Antibiotic Resistance Genes in Blood Cultures Testing Positive for Gram-Negative Bacteria.

    Science.gov (United States)

    Wang, Hye-Young; Yoo, Gilsung; Kim, Juwon; Uh, Young; Song, Wonkeun; Kim, Jong Bae; Lee, Hyeyoung

    2017-01-01

    Rapid and accurate identification of the causative pathogens of bloodstream infections is crucial for the prompt initiation of appropriate antimicrobial therapy to decrease the related morbidity and mortality rates. The aim of this study was to evaluate the performance of a newly developed PCR-reverse blot hybridization assay (REBA) for the rapid detection of Gram-negative bacteria (GNB) and their extended-spectrum β-lactamase (ESBL), AmpC β-lactamase, and carbapenemase resistance genes directly from the blood culture bottles. The REBA-EAC (ESBL, AmpC β-lactamase, carbapenemase) assay was performed on 327 isolates that were confirmed to have an ESBL producer phenotype, 200 positive blood culture (PBCs) specimens, and 200 negative blood culture specimens. The concordance rate between the results of REBA-EAC assay and ESBL phenotypic test was 94.2%. The sensitivity, specificity, positive predictive value, and negative predictive value of the REBA-EAC assay for GNB identification in blood culture specimens were 100% (95% CI 0.938-1.000, P < 0.001), 100% (95% CI 0.986-1.000, P < 0.001), 100% (95% CI 0.938-1.000, P < 0.001), and 100% (95% CI 0.986-1.000, P < 0.001), respectively. All 17 EAC-producing GNB isolates from the 73 PBCs were detected by the REBA-EAC assay. The REBA-EAC assay allowed easy differentiation between EAC and non-EAC genes in all isolates. Moreover, the REBA-EAC assay was a rapid and reliable method for identifying GNB and their β-lactamase resistance genes in PBCs. Thus, this assay may provide essential information for accelerating therapeutic decisions to achieve earlier appropriate antibiotic treatment during the acute phase of bloodstream infection.

  15. Development of a Rapid Reverse Blot Hybridization Assay for Detection of Clinically Relevant Antibiotic Resistance Genes in Blood Cultures Testing Positive for Gram-Negative Bacteria

    Science.gov (United States)

    Wang, Hye-young; Yoo, Gilsung; Kim, Juwon; Uh, Young; Song, Wonkeun; Kim, Jong Bae; Lee, Hyeyoung

    2017-01-01

    Rapid and accurate identification of the causative pathogens of bloodstream infections is crucial for the prompt initiation of appropriate antimicrobial therapy to decrease the related morbidity and mortality rates. The aim of this study was to evaluate the performance of a newly developed PCR-reverse blot hybridization assay (REBA) for the rapid detection of Gram-negative bacteria (GNB) and their extended-spectrum β-lactamase (ESBL), AmpC β-lactamase, and carbapenemase resistance genes directly from the blood culture bottles. The REBA-EAC (ESBL, AmpC β-lactamase, carbapenemase) assay was performed on 327 isolates that were confirmed to have an ESBL producer phenotype, 200 positive blood culture (PBCs) specimens, and 200 negative blood culture specimens. The concordance rate between the results of REBA-EAC assay and ESBL phenotypic test was 94.2%. The sensitivity, specificity, positive predictive value, and negative predictive value of the REBA-EAC assay for GNB identification in blood culture specimens were 100% (95% CI 0.938–1.000, P < 0.001), 100% (95% CI 0.986–1.000, P < 0.001), 100% (95% CI 0.938–1.000, P < 0.001), and 100% (95% CI 0.986–1.000, P < 0.001), respectively. All 17 EAC-producing GNB isolates from the 73 PBCs were detected by the REBA-EAC assay. The REBA-EAC assay allowed easy differentiation between EAC and non-EAC genes in all isolates. Moreover, the REBA-EAC assay was a rapid and reliable method for identifying GNB and their β-lactamase resistance genes in PBCs. Thus, this assay may provide essential information for accelerating therapeutic decisions to achieve earlier appropriate antibiotic treatment during the acute phase of bloodstream infection. PMID:28232823

  16. Cell- and biomarker-based assays for predicting nephrotoxicity.

    Science.gov (United States)

    Huang, Johnny X; Blaskovich, Mark A; Cooper, Matthew A

    2014-12-01

    Drug-induced nephrotoxicity contributes to the failure rate of investigational drugs during clinical trials. We are still not able to accurately predict drug-induced nephrotoxicity during early drug discovery and development. There is an urgent need for a robust screening system that can identify nephrotoxic compounds before they reach the clinic. This review discusses traditional and emerging kidney injury biomarkers that are used for the determination of nephrotoxicity and for evaluation and diagnosis of other kidney diseases. The potential for in vivo biomarkers to predict renal toxicity in high-throughput in vitro screening assays is discussed. We also compare cell types and highlight novel three-dimensional (3D) culture technologies with potential for in vitro prediction of nephrotoxicity. Traditional cell culture methods and cytotoxicity assays are well established as in vitro tests for nephrotoxicity but the correlation with in vivo results is extremely poor. Recently validated renal biomarkers show promise for early in vivo detection of nephrotoxicity, but have yet to be successfully applied for in vitro prediction of drug-induced nephrotoxicity. Advanced culture technologies 'kidney-on-a-chip' and 3D culture can produce biomarker signatures from relevant kidney cell types that show promise as better predictive systems.

  17. A fluorescence based non-radioactive electrophoretic mobility shift assay.

    Science.gov (United States)

    Ruscher, K; Reuter, M; Kupper, D; Trendelenburg, G; Dirnagl, U; Meisel, A

    2000-03-10

    Electrophoretic mobility shift assay (EMSA) or gel shift assay is one of the most powerful methods for studying protein-DNA interactions. Typically, 32P-labeled DNA probes containing the sequence bound by the protein of interest are used in EMSA (rEMSA). Although rEMSA is sensitive and practicable, it relies on the handling of hazardous radioisotopes, and does not easily allow quantification. We developed a non-radioactive procedure using fluorescence (Cyano dye Cy5) labeled oligodeoxynucleotide duplexes as specific probes (fEMSA) and an automatic DNA sequencer for analysis. Testing different DNA-binding proteins (restriction endonuclease EcoRII, transcription factor NFkappaB and it's subunit p50) the results in fEMSA and rEMSA are similar in regard to quality, reproducibility, and sensitivity. fEMSA allows a semiquantitative screening of large amounts of samples for specific DNA binding activities and is, therefore, a high throughput technology for semiquantitative analysis of DNA-protein interaction.

  18. Aptamer-based Sandwich Assay and its Clinical Outlooks for Detecting Lipocalin-2 in Hepatocellular Carcinoma (HCC)

    Science.gov (United States)

    Lee, Kyeong-Ah; Ahn, Ji-Young; Lee, Sang-Hee; Singh Sekhon, Simranjeet; Kim, Dae-Ghon; Min, Jiho; Kim, Yang-Hoon

    2015-01-01

    We validated a single-stranded, DNA aptamer-based, diagnostic method capable of detecting Lipocalin-2 (LCN2), a biomarker from clinically relevant hepatocellular carcinoma (HCC) patient serum, in the sandwich assay format. Nine aptamers (LCN2_apta1 to LCN2_apta9) for LCN2 were screened with SELEX processes, and a sandwich pair (LCN2_apta2 and LCN2_apta4) was finally chosen using surface plasmon resonance (SPR) and dot blotting analysis. The result of the proposed aptamer sandwich construction shows that LCN2 was sensitively detected in the concentration range of 2.5–500 ng mL−1 with a limit of detection of 0.6 ng mL−1. Quantitative measurement tests in HCC patients were run on straight serum and were compared with the performance of the conventional antibody-based ELISA kit. The aptamer sandwich assay demonstrated an excellent dynamic range for LCN2 at clinically relevant serum levels, covering sub-nanogram per mL concentrations. The new approach offers a simple and robust method for detecting serum biomarkers that have low and moderate abundance. It consists of functionalization, hybridization and signal read-out, and no dilution is required. The results of the study demonstrate the capability of the aptamer sandwich assay platform for diagnosing HCC and its potential applicability to the point-of-care testing (POCT) system. PMID:26039737

  19. Receptor-based screening assays for the detection of antibiotics residues - A review.

    Science.gov (United States)

    Ahmed, Saeed; Ning, Jianan; Cheng, Guyue; Ahmad, Ijaz; Li, Jun; Mingyue, Liu; Qu, Wei; Iqbal, Mujahid; Shabbir, M A B; Yuan, Zonghui

    2017-05-01

    Consumer and regulatory agencies have a high concern to antibiotic residues in food producing animals, so appropriate screening assays of fast, sensitive, low cost, and easy sample preparation for the identification of these residues are essential for the food-safety insurance. Great efforts in the development of a high-throughput antibiotic screening assay have been made in recent years. Concerning the screening of antibiotic residue, this review elaborate an overview on the availability, advancement and applicability of antibiotic receptor based screening assays for the safety assessment of antibiotics usage (i.e. radio receptor assay, enzyme labeling assays, colloidal gold receptor assay, enzyme colorimetry assay and biosensor assay). This manuscript also tries to shed a light on the selection, preparation and future perspective of receptor protein for antibiotic residue detection. These assays have been introduced for the screening of numerous food samples. Receptor based screening technology for antibiotic detection has high accuracy. It has been concluded that at the same time, it can detect a class of drugs for certain receptor, and realize the multi-residue detection. These assays offer fast, easy and precise detection of antibiotics.

  20. A Novel Software Simulator Model Based on Active Hybrid Architecture

    Directory of Open Access Journals (Sweden)

    Amr AbdElHamid

    2015-01-01

    Full Text Available The simulated training is an important issue for any type of missions such as aerial, ground, sea, or even space missions. In this paper, a new flexible aerial simulator based on active hybrid architecture is introduced. The simulator infrastructure is applicable to any type of training missions and research activities. This software-based simulator is tested on aerial missions to prove its applicability within time critical systems. The proposed active hybrid architecture is introduced via using the VB.NET and MATLAB in the same simulation loop. It exploits the remarkable computational power of MATLAB as a backbone aircraft model, and such mathematical model provides realistic dynamics to the trainee. Meanwhile, the Human-Machine Interface (HMI, the mission planning, the hardware interfacing, data logging, and MATLAB interfacing are developed using VB.NET. The proposed simulator is flexible enough to perform navigation and obstacle avoidance training missions. The active hybrid architecture is used during the simulated training, and also through postmission activities (like the generation of signals playback reports for evaluation purposes. The results show the ability of the proposed architecture to fulfill the aerial simulator demands and to provide a flexible infrastructure for different simulated mission requirements. Finally, a comparison with some existing simulators is introduced.

  1. Nanodevices based on Membrane-Carbon Nanotube Hybrid Structures

    Science.gov (United States)

    Jin, Hye Jun; Kim, Tae Hyun; Namgung, Seon; Hong, Seunghun; Lee, Sang Hun; Park, Tai Hyun

    2010-03-01

    Proteins in cell membrane have been drawing attention due to their versatile functionalities such as ion transfer for neuronal activity and selective binding for sensory systems. However, it is still very difficult to manipulate and study those proteins because they easily lose their functionalities without lipid membranes. We developed a method to coat lipid membranes containing various functional membrane proteins on single-walled carbon nanotube (swCNT)-based field effect transistors (FETs). In this hybrid structure, the activity of membrane proteins can be monitored by underlying swCNT-FETs, allowing us to easily study the functionalities of membrane proteins. Furthermore, we built advanced devices based on these hybrid structures. For an example, we coated lipid membrane containing `olfactory receptors' on swCNT-FETs, resulting in `bioelectric nose' systems. The bioelectric nose system had high sensitivity and human nose-like selectivity to odorant molecules. This talk will also discuss about the future prospect of these membrane-CNT hybrid structures.

  2. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  3. Whispered speaker identification based on feature and model hybrid compensation

    Institute of Scientific and Technical Information of China (English)

    GU Xiaojiang; ZHAO Heming; Lu Gang

    2012-01-01

    In order to increase short time whispered speaker recognition rate in variable chan- nel conditions, the hybrid compensation in model and feature domains was proposed. This method is based on joint factor analysis in training model stage. It extracts speaker factor and eliminates channel factor by estimating training speech speaker and channel spaces. Then in the test stage, the test speech channel factor is projected into feature space to engage in feature compensation, so it can remove channel information both in model and feature domains in order to improve recognition rate. The experiment result shows that the hybrid compensation can obtain the similar recognition rate in the three different training channel conditions and this method is more effective than joint factor analysis in the test of short whispered speech.

  4. A particle-based hybrid code for planet formation

    CERN Document Server

    Morishima, Ryuji

    2015-01-01

    We introduce a new particle-based hybrid code for planetary accretion. The code uses an $N$-body routine for interactions with planetary embryos while it can handle a large number of planetesimals using a super-particle approximation, in which a large number of small planetesimals are represented by a small number of tracers. Tracer-tracer interactions are handled by a statistical routine which uses the phase-averaged stirring and collision rates. We compare hybrid simulations with analytic predictions and pure $N$-body simulations for various problems in detail and find good agreements for all cases. The computational load on the portion of the statistical routine is comparable to or less than that for the $N$-body routine. The present code includes an option of hit-and-run bouncing but not fragmentation, which remains for future work.

  5. Hybrid Scenario Based Performance Analysis of DSDV and DSSR

    CERN Document Server

    Majumder, Koushik; 10.5121/ijcsit.2010.2305

    2010-01-01

    The area of mobile ad hoc networking has received considerable attention of the research community in recent years. These networks have gained immense popularity primarily due to their infrastructure-less mode of operation which makes them a suitable candidate for deployment in emergency scenarios like relief operation, battlefield etc., where either the pre-existing infrastructure is totally damaged or it is not possible to establish a new infrastructure quickly. However, MANETs are constrained due to the limited transmission range of the mobile nodes which reduces the total coverage area. Sometimes the infrastructure-less ad hoc network may be combined with a fixed network to form a hybrid network which can cover a wider area with the advantage of having less fixed infrastructure. In such a combined network, for transferring data, we need base stations which act as gateways between the wired and wireless domains. Due to the hybrid nature of these networks, routing is considered a challenging task. Several r...

  6. Hybrid Heuristic-Based Artificial Immune System for Task Scheduling

    CERN Document Server

    sanei, Masoomeh

    2011-01-01

    Task scheduling problem in heterogeneous systems is the process of allocating tasks of an application to heterogeneous processors interconnected by high-speed networks, so that minimizing the finishing time of application as much as possible. Tasks are processing units of application and have precedenceconstrained, communication and also, are presented by Directed Acyclic Graphs (DAGs). Evolutionary algorithms are well suited for solving task scheduling problem in heterogeneous environment. In this paper, we propose a hybrid heuristic-based Artificial Immune System (AIS) algorithm for solving the scheduling problem. In this regard, AIS with some heuristics and Single Neighbourhood Search (SNS) technique are hybridized. Clonning and immune-remove operators of AIS provide diversity, while heuristics and SNS provide convergence of algorithm into good solutions, that is balancing between exploration and exploitation. We have compared our method with some state-of-the art algorithms. The results of the experiments...

  7. Cell-based assays in GPCR drug discovery.

    Science.gov (United States)

    Siehler, Sandra

    2008-04-01

    G protein-coupled receptors (GPCRs) transmit extracellular signals into the intracellular space, and play key roles in the physiological regulation of virtually every cell and tissue. Characteristic for the GPCR superfamily of cell surface receptors are their seven transmembrane-spanning alpha-helices, an extracellular N terminus and intracellular C-terminal tail. Besides transmission of extracellular signals, their activity is modulated by cellular signals in an auto- or transregulatory fashion. The molecular complexity of GPCRs and their regulated signaling networks triggered the interest in academic research groups to explore them further, and their drugability and role in pathophysiology triggers pharmaceutical research towards small molecular weight ligands and therapeutic antibodies. About 30% of marketed drugs target GPCRs, which underlines the importance of this target class. This review describes current and emerging cellular assays for the ligand discovery of GPCRs.

  8. Mutagenicity test system based on a reporter gene assay for short-term detection of mutagens (MutaGen assay).

    Science.gov (United States)

    Schmid, Claudia; Arndt, Christian; Reifferscheid, Georg

    2003-02-05

    The construction of a bacterial mutation assay system detecting reversions of base substitutions and frameshifts in tetracycline (tet) and ampicillin resistance genes located on low copy plasmids is described. Frameshift mutations were introduced into repetitive GC-sequences and G-repeats known to be mutagenic hot-spots. Base pair substitutions were inserted in or around the active site of the ampicillinase gene thus generating reversibility of the ampicilline sensitivity. The plasmids carry genes to enable sensitive, fast and specific detection of mutagens in bacteria. MucAB was cloned into the test plasmid to enhance error-prone DNA-repair. The conventional reversion principle has been combined with the luminometric measurement of an inducible reporter gene. The revertants are detected after induction of the beta-galactosidase-producing lacZ-gene either controlled by its natural lac-promotor or by the more stringently repressed (anhydrotetracyclin inducible) tetA promotor. The tester strains containing the tetA/lacZ reporter gene construct can grow in full medium over the complete assay. This test procedure enables screening for mutations within one working day. Incubation for 16 h reveals high sensitivity.

  9. Development of a lipase-based optical assay for detection of DNA

    DEFF Research Database (Denmark)

    Pinijsuwan, Suttiporn; Shipovskov, Stepan; Surareungchai, Werasak

    2011-01-01

    A lipase-based assay for detection of specific DNA sequences has been developed. Lipase from Candida antarctica was conjugated to DNA and captured on magnetic beads in a sandwich assay, in which the binding was dependent on the presence of a specific target DNA. For amplification and to generate...

  10. Scalable DNA-Based Magnetic Nanoparticle Agglutination Assay for Bacterial Detection in Patient Samples

    DEFF Research Database (Denmark)

    Mezger, Anja; Fock, Jeppe; Antunes, Paula Soares Martins

    2015-01-01

    We demonstrate a nanoparticle-based assay for the detection of bacteria causing urinary tract infections in patient samples with a total assay time of 4 h. This time is significantly shorter than the current gold standard, plate culture, which can take several days depending on the pathogen...

  11. Effects of solvents and dosing procedure on chemical toxicity in cell-based in vitro assays.

    NARCIS (Netherlands)

    Tanneberger, K.; Rico Rico, A.; Kramer, N.I.; Busser, F.J.M.; Hermens, J.L.M.; Schirmer, K.

    2010-01-01

    Due to the implementation of new legislation, such as REACh, a dramatic increase of animal use for toxicity testing is expected and the search for alternatives is timely. Cell-based in vitro assays are promising alternatives. However, the behavior of chemicals in these assays is still poorly underst

  12. Polarized light source based on graphene-nanoribbon hybrid structure

    Science.gov (United States)

    Xu, Pengfei; Zhang, Han; Qian, Haoliang; Chen, Bigeng; Jiang, Xiaoshun; Wu, Yuanpeng; Liu, Xiaowei; Liu, Xu; Yang, Qing

    2017-07-01

    Nanoscale light source is the key element for on-chip integrated optical communication system. As an important property of light source, polarization can be exploited to improve the information capacity of optical communication and the sensitivity of optical sensing. We demonstrate a novel TE-polarized light source based on graphene-nanoribbon (G-NR) hybrid structure. Thanks to the polarizing dependent absorption along graphene layer, the random polarized emission of nanoribbon (NR) can be transferred into the same TE polarization. In addition, lasing action in G-NR hybrid structure is also investigated. We attribute the polarization control to the differential attenuation of electromagnetic modes in graphene. Our simulation revealed electromagnetic field distribution and far field polar images of TE and TM modes in nanoribbon, which is consistent with experimental results. The compact G-NR hybrid structure light source offers a new way to realize the polarization controllable nanoscale light source and facilitate the practical applications of nanowire or nanoribbon light source.

  13. Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon.

    Science.gov (United States)

    Sun, Baoquan; Findikoglu, Alp T; Sykora, Milan; Werder, Donald J; Klimov, Victor I

    2009-03-01

    Semiconductor nanocrystals (NCs) are promising materials for applications in photovoltaic (PV) structures that could benefit from size-controlled tunability of absorption spectra, the ease of realization of various tandem architectures, and, perhaps, increased conversion efficiency in the ultraviolet region through carrier multiplication. The first practical step toward utilization of the unique properties of NCs in PV technologies could be through their integration into traditional silicon-based solar cells. Here, we demonstrate an example of such hybrid PV structures that combine colloidal NCs with amorphous silicon. In these structures, NCs and silicon are electronically coupled, and the regime of this coupling can be tuned by altering the alignment of NC energy states with regard to silicon band edges. For example, using wide-gap CdSe NCs we demonstrate a photoresponse which is exclusively due to the NCs. On the other hand, in devices comprising narrow-gap PbS NCs, both the NCs and silicon contribute to photocurrent, which results in PV response extending from the visible to the near-infrared region. The hybrid silicon/PbS NC solar cells show external quantum efficiencies of approximately 7% at infrared energies and 50% in the visible and a power conversion efficiency of up to 0.9%. This work demonstrates the feasibility of hybrid PV devices that combine advantages of mature silicon fabrication technologies with the unique electronic properties of semiconductor NCs.

  14. Hybrid Thin Films Based Upon Polyoxometalates-Polymer Assembly

    Science.gov (United States)

    Qi, Na; Jing, Benxin; Zhu, Yingxi

    2014-03-01

    Block copolymers (BCPs) and polyoxometalates (POMs) have been used individually as building blocks for design and synthesis of novel functional materials. POM nanoclusters, the assemblies of transition metal oxides with well-defined atomic coordination structure, have been recently explored as novel nanomaterials... for catalysis, semiconductors, and even anti-cancer treatment due to their unique chemical, optical and electrical characteristics. We have explored the blending of inorganic POM nanocluster with BCPs into hierarchaically structured inorganic-organic hybrid nanocomposites. Using polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films as the template, we have observed that the spatial organization of BCP thin films is modified by molybdenum based POM nanocluster to form 2D in-plane hexagonal ordered or 3D ordered network of POM-BCP assemblies, depending on the concentration ratio of POM to PS-b-PEO. The dielectric properties of such hybrid thin films can be enhanced by embedded POMs but show a strong dependence on the supramolecular structures of POM-polymer complexes. The assembly of nanoclusters in BCP-templated thin films could pave a new path to design new hybrid nanocomposites with uniquely combined functionality and material properties.

  15. Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength.

    Directory of Open Access Journals (Sweden)

    Taylor R Paskin

    Full Text Available Planarians are free-living aquatic flatworms that possess a well-documented photophobic response to light. With a true central nervous system and simple cerebral eyes (ocelli, planarians are an emerging model for regenerative eye research. However, comparatively little is known about the physiology of their photoreception or how their behavior is affected by various wavelengths. Most phototactic studies have examined planarian behavior using white light. Here, we describe a novel planarian behavioral assay to test responses to small ranges of visible wavelengths (red, blue, green, as well as ultraviolet (UV and infrared (IR which have not previously been examined. Our data show that planarians display behavioral responses across a range of wavelengths. These responses occur in a hierarchy, with the shortest wavelengths (UV causing the most intense photophobic responses while longer wavelengths produce no effect (red or an apparent attraction (IR. In addition, our data reveals that planarian photophobia is comprised of both a general photophobic response (that drives planarians to escape the light source regardless of wavelength and wavelength-specific responses that encompass specific behavioral reactions to individual wavelengths. Our results serve to improve the understanding of planarian phototaxis and suggest that behavioral studies performed with white light mask a complex behavioral interaction with the environment.

  16. Polymer waveguide based hybrid opto-electric integration technology

    Science.gov (United States)

    Mao, Jinbin; Deng, Lingling; Jiang, Xiyan; Ren, Rong; Zhai, Yumeng; Wang, Jin

    2014-10-01

    While monolithic integration especially based on InP appears to be quite an expensive solution for optical devices, hybrid integration solutions using cheaper material platforms are considered powerful competitors because of the high freedom of design, yield optimization and relative cost-efficiency. Among them, the polymer planar-lightwave circuit (PLC) technology is regarded attractive as polymer offers the potential of fairly simple and low-cost fabrication, and of low-cost packaging. In our work, polymer PLC was fabricated by using the standard reactive ion etching (RIE) technique, while other active and passive devices can be integrated on the polymer PLC platform. Exemplary polymer waveguide devices was a 13-channel arrayed waveguide grating (AWG) chip, where the central channel cross-talk was below -30dB and the polarization dependent frequency shift was mitigated by inserting a half wave plate. An optical 900 hybrid was also realized with one 2×4 multi-mode interferometer (MMI). The excess insertion losses are below 4dB for the C-band, while the transmission imbalance is below 1.2dB. When such an optical hybrid was integrated vertically with mesa-type photodiodes, the responsivity of the individual PD was around 0.06 A/W, while the 3 dB bandwidth reaches 24 ~ 27 GHz, which is sufficient for 100Gbit/s receivers. Another example of the hybrid integration was to couple the polymer waveguides to fiber by applying fiber grooves, whose typical loss value was 0.2 dB per-facet over a broad spectral range from 1200-1600 nm.

  17. Fatigue reliability based on residual strength model with hybrid uncertain parameters

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Zhi-Ping Qiu

    2012-01-01

    The aim of this paper is to evaluate the fatigue reliability with hybrid uncertain parameters based on a residual strength model.By solving the non-probabilistic setbased reliability problem and analyzing the reliability with randomness,the fatigue reliability with hybrid parameters can be obtained.The presented hybrid model can adequately consider all uncertainties affecting the fatigue reliability with hybrid uncertain parameters.A comparison among the presented hybrid model,non-probabilistic set-theoretic model and the conventional random model is made through two typical numerical examples.The results show that the presented hybrid model,which can ensure structural security,is effective and practical.

  18. Personalized Service System Based on Hybrid Filtering for Digital Library

    Institute of Scientific and Technical Information of China (English)

    GAO Fengrong; XING Chunxiao; DU Xiaoyong; WANG Shan

    2007-01-01

    Personalized service systems are an effective way to help users obtain recommendations for unseen items, within the enormous volume of information available based on their preferences. The most commonly used personalized service system methods are collaborative filtering, content-based filtering, and hybrid filtering. Unfortunately,each method has its drawbacks. This paper proposes a new method which unified partition-based collaborative filtering and meta-information filtering.In partition-based collaborative filtering the user-item rating matrix can be partitioned into low-dimensional dense materces using a matrixclustering algorithm. Recommendations are generated based on these low-dimensional matrices.Additionally,the very low ratings problem can be solved using meta-information filtering. The unified method is applied to a digital resource management system. The experimental results show the high efficiency and good performance of the new approach.

  19. Development of hybrid artificial intelligent based handover decision algorithm

    Directory of Open Access Journals (Sweden)

    A.M. Aibinu

    2017-04-01

    Full Text Available The possibility of seamless handover remains a mirage despite the plethora of existing handover algorithms. The underlying factor responsible for this has been traced to the Handover decision module in the Handover process. Hence, in this paper, the development of novel hybrid artificial intelligent handover decision algorithm has been developed. The developed model is made up of hybrid of Artificial Neural Network (ANN based prediction model and Fuzzy Logic. On accessing the network, the Received Signal Strength (RSS was acquired over a period of time to form a time series data. The data was then fed to the newly proposed k-step ahead ANN-based RSS prediction system for estimation of prediction model coefficients. The synaptic weights and adaptive coefficients of the trained ANN was then used to compute the k-step ahead ANN based RSS prediction model coefficients. The predicted RSS value was later codified as Fuzzy sets and in conjunction with other measured network parameters were fed into the Fuzzy logic controller in order to finalize handover decision process. The performance of the newly developed k-step ahead ANN based RSS prediction algorithm was evaluated using simulated and real data acquired from available mobile communication networks. Results obtained in both cases shows that the proposed algorithm is capable of predicting ahead the RSS value to about ±0.0002 dB. Also, the cascaded effect of the complete handover decision module was also evaluated. Results obtained show that the newly proposed hybrid approach was able to reduce ping-pong effect associated with other handover techniques.

  20. Filter-based assay for Escherichia coli in aqueous samples using bacteriophage-based amplification.

    Science.gov (United States)

    Derda, Ratmir; Lockett, Matthew R; Tang, Sindy K Y; Fuller, Renee C; Maxwell, E Jane; Breiten, Benjamin; Cuddemi, Christine A; Ozdogan, Aysegul; Whitesides, George M

    2013-08-01

    This paper describes a method to detect the presence of bacteria in aqueous samples, based on the capture of bacteria on a syringe filter, and the infection of targeted bacterial species with a bacteriophage (phage). The use of phage as a reagent provides two opportunities for signal amplification: (i) the replication of phage inside a live bacterial host and (ii) the delivery and expression of the complementing gene that turns on enzymatic activity and produces a colored or fluorescent product. Here we demonstrate a phage-based amplification scheme with an M13KE phage that delivers a small peptide motif to an F(+), α-complementing strain of Escherichia coli K12, which expresses the ω-domain of β-galactosidase (β-gal). The result of this complementation-an active form of β-gal-was detected colorimetrically, and the high level of expression of the ω-domain of β-gal in the model K12 strains allowed us to detect, on average, five colony-forming units (CFUs) of this strain in 1 L of water with an overnight culture-based assay. We also detected 50 CFUs of the model K12 strain in 1 L of water (or 10 mL of orange juice, or 10 mL of skim milk) in less than 4 h with a solution-based assay with visual readout. The solution-based assay does not require specialized equipment or access to a laboratory, and is more rapid than existing tests that are suitable for use at the point of access. This method could potentially be extended to detect many different bacteria with bacteriophages that deliver genes encoding a full-length enzyme that is not natively expressed in the target bacteria.

  1. Robot Positioning and Navigation Based on Hybrid Wireless Sensor Network

    Institute of Scientific and Technical Information of China (English)

    Shun-cai YAO; Jin-dong TAN; Hong-xia PAN

    2010-01-01

    Traditional sensor network and robot navigation are based an the map of detecting the fields available in advance.The optimal algorithms are developed to solve the energy saving,the shortest path problems,etc.However,in the practical encironment,there are many fields,whose map is difficult to get,and needs to be detected.In this paper a kind of ad-hoc navigation algorithm is explored,which is based on the hybrid sensor network without the prior map in advance.The navigation system is composed of static nodes and dynamic nodes.The static nodes monitor the occurrances of the events and broadcast them.In the system,a kind of algorithm is to locate the robot,which is based on cluster broadcasting.The dynamic nodes detect the adversary or dangerous fields and broadcast warning messages.The robot gets the message and follows ad-hoc routine to arrive where the events occur.In the whole process,energy saving has been taken into account.The algorithms,which are based on the hybrid sensor network,are given in this paper.The simulation and practical results are also available.

  2. A Hybrid Metaheuristic-Based Approach for the Aerodynamic Optimization of Small Hybrid Wind Turbine Rotors

    Directory of Open Access Journals (Sweden)

    José F. Herbert-Acero

    2014-01-01

    Full Text Available This work presents a novel framework for the aerodynamic design and optimization of blades for small horizontal axis wind turbines (WT. The framework is based on a state-of-the-art blade element momentum model, which is complemented with the XFOIL 6.96 software in order to provide an estimate of the sectional blade aerodynamics. The framework considers an innovative nested-hybrid solution procedure based on two metaheuristics, the virtual gene genetic algorithm and the simulated annealing algorithm, to provide a near-optimal solution to the problem. The objective of the study is to maximize the aerodynamic efficiency of small WT (SWT rotors for a wide range of operational conditions. The design variables are (1 the airfoil shape at the different blade span positions and the radial variation of the geometrical variables of (2 chord length, (3 twist angle, and (4 thickness along the blade span. A wind tunnel validation study of optimized rotors based on the NACA 4-digit airfoil series is presented. Based on the experimental data, improvements in terms of the aerodynamic efficiency, the cut-in wind speed, and the amount of material used during the manufacturing process were achieved. Recommendations for the aerodynamic design of SWT rotors are provided based on field experience.

  3. Comparison of cell-based and PCR-based assays as methods for measuring infectivity of Tulane virus.

    Science.gov (United States)

    Shan, Lei; Yang, David; Wang, Dapeng; Tian, Peng

    2016-05-01

    In this study, we used Tulane virus (TV) as a surrogate for HuNoV to evaluate for correlation between two cell-based assays and three PCR-based assays. Specifically, the cell-based plaque and TCID50 assays measure for infectious virus particles, while the PCR-based RNase exposure, porcine gastric mucin in-situ-capture qRT-PCR (PGM-ISC-qRT-PCR), and antibody in-situ-capture qRT-PCR (Ab-ISC-qRT-PCR) assays measure for an amplicon within encapsidated viral genome. Ten batches of viral stocks ranging from 3.41 × 10(5) to 6.67 × 10(6) plaque forming units (PFUs) were used for side by side comparison with PFU as a reference. The results indicate that one PFU was equivalent to 6.69 ± 2.34 TCID50 units, 9.75 ± 10.87 RNase-untreated genomic copies (GCs), 2.87 ± 3.05 RNase-treated GCs, 0.07 ± 0.07 PGM-ISC-qRT-PCR GCs, and 0.52 ± 0.39 Ab-ISC-qRT-PCR GCs. We observed that while the cell-based assays were consistent with each other, the TCID50 assay was more sensitive than the plaque assay. In contrast, the PCR-based assays were not always consistent with the cell-based assays. The very high variations in GCs as measured by both ISC-RT-qPCR assays made them difficult to correlate against the relatively small variations (<20-fold) in the PFUs or TCID50 units as measured by the cell-based assays.

  4. A Matlab—Based Simulation for Hybrid Electric Motorcycle

    Institute of Scientific and Technical Information of China (English)

    邵定国; 李永斌; 汪信尧; 江建中

    2003-01-01

    This paper presents a simulation and modeling package based on Matlab for a parallel hybrid electric motorcycle (HEM).The package consists of several main detailed models: internal combustion engine (ICE), motor, continuously variable transmission(CVT), battery, energy management system (EMS) etc. Each component is built as a library, and can be connected together accord-ing to the parallel HEM's topology. Simulation results, such as ICE power demand, motor power demand, battery instantaneous state-of-charge (SOC), pollution emissions etc. Are given and discussed. Lastly experimental data verify our simulation results.

  5. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  6. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    Energy Technology Data Exchange (ETDEWEB)

    Noor, M. Omair; Hrovat, David [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Moazami-Goudarzi, Maryam [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Espie, George S. [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada)

    2015-07-23

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  7. Simultaneous Detection of CDC Category "A" DNA and RNA Bioterrorism Agents by Use of Multiplex PCR & RT-PCR Enzyme Hybridization Assays

    Directory of Open Access Journals (Sweden)

    Kelly J. Henrickson

    2009-10-01

    Full Text Available Assays to simultaneously detect multiple potential agents of bioterrorism are limited. Two multiplex PCR and RT-PCR enzyme hybridization assays (mPCR-EHA, mRT-PCR-EHA were developed to simultaneously detect many of the CDC category “A” bioterrorism agents. The “Bio T” DNA assay was developed to detect: Variola major (VM, Bacillus anthracis (BA, Yersinia pestis (YP, Francisella tularensis (FT and Varicella zoster virus (VZV. The “Bio T” RNA assay (mRT-PCR-EHA was developed to detect: Ebola virus (Ebola, Lassa fever virus (Lassa, Rift Valley fever (RVF, Hantavirus Sin Nombre species (HSN and dengue virus (serotypes 1-4. Sensitivity and specificity of the 2 assays were tested by using genomic DNA, recombinant plasmid positive controls, RNA transcripts controls, surrogate (spiked clinical samples and common respiratory pathogens. The analytical sensitivity (limit of detection (LOD of the DNA asssay for genomic DNA was 1×100~1×102 copies/mL for BA, FT and YP. The LOD for VZV whole organism was 1×10-2 TCID50/mL. The LOD for recombinant controls ranged from 1×102~1×103copies/mL for BA, FT, YP and VM. The RNA assay demonstrated LOD for RNA transcript controls of 1×104~1×106 copies/mL without extraction and 1×105~1×106 copies/mL with extraction for Ebola, RVF, Lassa and HSN. The LOD for dengue whole organisms was ~1×10-4 dilution for dengue 1 and 2, 1×104 LD50/mL and 1×102 LD50/mL for dengue 3 and 4. The LOD without extraction for recombinant plasmid DNA controls was ~1×103 copies/mL (1.5 input copies/reaction for Ebola, RVF, Lassa and HSN. No cross-reactivity of primers and probes used in both assays was detected with common respiratory pathogens or between targeted analytes. Clinical sensitivity was estimated using 264 surrogate clinical samples tested with the BioT DNA assay and 549 samples tested with the BioT RNA assay. The clinical specificity is 99.6% and 99.8% for BioT DNA assay and BioT RNA assay, respectively. The

  8. An online hybrid BCI system based on SSVEP and EMG

    Science.gov (United States)

    Lin, Ke; Cinetto, Andrea; Wang, Yijun; Chen, Xiaogang; Gao, Shangkai; Gao, Xiaorong

    2016-04-01

    Objective. A hybrid brain-computer interface (BCI) is a device combined with at least one other communication system that takes advantage of both parts to build a link between humans and machines. To increase the number of targets and the information transfer rate (ITR), electromyogram (EMG) and steady-state visual evoked potential (SSVEP) were combined to implement a hybrid BCI. A multi-choice selection method based on EMG was developed to enhance the system performance. Approach. A 60-target hybrid BCI speller was built in this study. A single trial was divided into two stages: a stimulation stage and an output selection stage. In the stimulation stage, SSVEP and EMG were used together. Every stimulus flickered at its given frequency to elicit SSVEP. All of the stimuli were divided equally into four sections with the same frequency set. The frequency of each stimulus in a section was different. SSVEPs were used to discriminate targets in the same section. Different sections were classified using EMG signals from the forearm. Subjects were asked to make different number of fists according to the target section. Canonical Correlation Analysis (CCA) and mean filtering was used to classify SSVEP and EMG separately. In the output selection stage, the top two optimal choices were given. The first choice with the highest probability of an accurate classification was the default output of the system. Subjects were required to make a fist to select the second choice only if the second choice was correct. Main results. The online results obtained from ten subjects showed that the mean accurate classification rate and ITR were 81.0% and 83.6 bits min-1 respectively only using the first choice selection. The ITR of the hybrid system was significantly higher than the ITR of any of the two single modalities (EMG: 30.7 bits min-1, SSVEP: 60.2 bits min-1). After the addition of the second choice selection and the correction task, the accurate classification rate and ITR was

  9. Paper-Based Digital Microfluidic Chip for Multiple Electrochemical Assay Operated by a Wireless Portable Control System

    DEFF Research Database (Denmark)

    Ruecha, Nipapan; Lee, Jumi; Chae, Heedo

    2017-01-01

    The printing and modular fabrication of a paper-based active microfluidic lab on a chip implemented with electrochemical sensors (ECSs) is developed and integrated on a portable electrical control system. The electrodes of a chip plate for active electrowetting actuation of digital drops and an ECS...... for multiple analysis assays are fabricated by affordable printing techniques. For enhanced sensitivity of the sensor, the working electrode is modified through the electrochemical method, namely by reducing graphene with voltammetry and coating gold nanoparticles by amperometry. Detachable sensor and absorber...... modules are assembled modularly on an open chip plate, forming various novel hybridized open–closed chip formats. By varying the coupled or decoupled sensor modules, excellent detection of three diagnostic biological molecules is demonstrated (glucose, dopamine, and uric acid in human serum). With a newly...

  10. A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays.

    Science.gov (United States)

    Wang, Yuzhen; Zhu, Guixian; Qi, Wenjin; Li, Ying; Song, Yujun

    2016-11-15

    Platinum nanoparticles incorporated volumetric bar-chart chip (PtNPs-V-Chip) is able to be used for point-of-care tests by providing quantitative and visualized readout without any assistance from instruments, data processing, or graphic plotting. To improve the sensitivity of PtNPs-V-Chip, hybridization chain reaction was employed in this quantitation platform for highly sensitive assays that can detect as low as 16 pM Ebola Virus DNA, 0.01ng/mL carcinoembryonic antigen (CEA), and the 10 HER2-expressing cancer cells. Based on this amplified strategy, a 100-fold decrease of detection limit was achieved for DNA by improving the number of platinum nanoparticle catalyst for the captured analyte. This quantitation platform can also distinguish single base mismatch of DNA hybridization and observe the concentration threshold of CEA. The new strategy lays the foundation for this quantitation platform to be applied in forensic analysis, biothreat detection, clinical diagnostics and drug screening.

  11. Design of time interval generator based on hybrid counting method

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yuan [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Zhaoqi [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lu, Houbing [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei Electronic Engineering Institute, Hefei 230037 (China); Chen, Lian [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jin, Ge, E-mail: goldjin@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-10-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some “off-the-shelf” TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  12. A Probability-Based Hybrid User Model for Recommendation System

    Directory of Open Access Journals (Sweden)

    Jia Hao

    2016-01-01

    Full Text Available With the rapid development of information communication technology, the available information or knowledge is exponentially increased, and this causes the well-known information overload phenomenon. This problem is more serious in product design corporations because over half of the valuable design time is consumed in knowledge acquisition, which highly extends the design cycle and weakens the competitiveness. Therefore, the recommender systems become very important in the domain of product domain. This research presents a probability-based hybrid user model, which is a combination of collaborative filtering and content-based filtering. This hybrid model utilizes user ratings and item topics or classes, which are available in the domain of product design, to predict the knowledge requirement. The comprehensive analysis of the experimental results shows that the proposed method gains better performance in most of the parameter settings. This work contributes a probability-based method to the community for implement recommender system when only user ratings and item topics are available.

  13. Piezoelectric-based hybrid reserve power sources for munitions

    Science.gov (United States)

    Rastegar, J.; Kwok, P.

    2017-04-01

    Reserve power sources are used extensively in munitions and other devices, such as emergency devices or remote sensors that need to be powered only once and for a relatively short duration. Current chemical reserve power sources, including thermal batteries and liquid reserve batteries sometimes require more than 100 msec to become fully activated. In many applications, however, electrical energy is required in a few msec following the launch event. In such applications, other power sources are needed to provide power until the reserve battery is fully activated. The amount of electrical energy that is required by most munitions before chemical reserve batteries are fully activated is generally small and can be provided by properly designed piezoelectric-based energy harvesting devices. In this paper, the development of a hybrid reserve power source that is constructed by integration of a piezoelectric-based energy harvesting device with a reserve battery to provide power almost instantaneously upon munitions firing or other similar events is being reported. A review of the state of the art in piezoelectric-based electrical energy harvesting methods and devices and their charge collection electronics for use in the developed hybrid power sources is provided together with the results of testing of the piezoelectric component of the power source and its electronic safety and charge collection electronics.

  14. Alginate-based hybrid aerogel microparticles for mucosal drug delivery.

    Science.gov (United States)

    Gonçalves, V S S; Gurikov, P; Poejo, J; Matias, A A; Heinrich, S; Duarte, C M M; Smirnova, I

    2016-10-01

    The application of biopolymer aerogels as drug delivery systems (DDS) has gained increased interest during the last decade since these structures have large surface area and accessible pores allowing for high drug loadings. Being biocompatible, biodegradable and presenting low toxicity, polysaccharide-based aerogels are an attractive carrier to be applied in pharmaceutical industry. Moreover, some polysaccharides (e.g. alginate and chitosan) present mucoadhesive properties, an important feature for mucosal drug delivery. This feature allows to extend the contact of DDS with biological membranes, thereby increasing the absorption of drugs through the mucosa. Alginate-based hybrid aerogels in the form of microparticles (alginate and further dried with supercritical CO2 (sc-CO2). Spherical mesoporous aerogel microparticles were obtained for alginate, hybrid alginate/pectin and alginate/κ-carrageenan aerogels, presenting high specific surface area (370-548m(2)g(-1)) and mucoadhesive properties. The microparticles were loaded with ketoprofen via adsorption from its solution in sc-CO2, and with quercetin via supercritical anti-solvent precipitation. Loading of ketoprofen was in the range between 17 and 22wt% whereas quercetin demonstrated loadings of 3.1-5.4wt%. Both the drugs were present in amorphous state. Loading procedure allowed the preservation of antioxidant activity of quercetin. Release of both drugs from alginate/κ-carrageenan aerogel was slightly faster compared to alginate/pectin. The results indicate that alginate-based aerogel microparticles can be viewed as promising matrices for mucosal drug delivery applications.

  15. Piezoelectric-based hybrid reserve power sources for munitions

    Science.gov (United States)

    Rastegar, Jahangir; Pereira, Carlos M.; Feng, Dake

    2016-05-01

    Reserve power sources are used extensively in munitions and other devices such as emergency devices or remote sensors that have to be powered only once and for a relatively short duration. Current chemical reserve power sources, including thermal batteries and liquid reserve batteries require sometimes in excess of 100 msec to become fully activated. In many applications, however, electrical energy is required in a few msec following the launch event. In such applications, other power sources have to be provided to provide power until the reserve battery is fully activated. The amount of electrical energy that is required by most munitions before chemical reserve batteries are fully activated is generally small and can be provided by properly designed piezoelectric-based energy harvesting devices. In this paper the development of a hybrid reserve power source obtained by the integration of a piezoelectric-based energy harvesting device with a reserve battery that can provide power almost instantaneously upon munitions firing or other similar events is being reported. A review of the state of the art in piezoelectric-based electrical energy harvesting methods and devices and their charge collection electronics for use in the developed hybrid power sources is also provided together with the results of testing of the piezoelectric component of the power source and its electronic safety and charge collection electronics.

  16. Design of time interval generator based on hybrid counting method

    Science.gov (United States)

    Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge

    2016-10-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some "off-the-shelf" TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  17. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    Science.gov (United States)

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  18. Microchip-based ultrafast serodiagnostic assay for tuberculosis

    Science.gov (United States)

    Mani, Vigneshwaran; Paleja, Bhairav; Larbi, Karima; Kumar, Pavanish; Tay, Jo Ann; Siew, Jie Yee; Inci, Fatih; Wang, ShuQi; Chee, Cynthia; Wang, Yee Tang; Demirci, Utkan; De Libero, Gennaro; Singhal, Amit

    2016-01-01

    Access to point-of-care (POC), rapid, inexpensive, sensitive, and instrument-free tests for the diagnosis of tuberculosis (TB) remains a major challenge. Here, we report a simple and low-cost microchip-based TB ELISA (MTBE) platform for the detection of anti-mycobacterial IgG in plasma samples in less than 15 minutes. The MTBE employs a flow-less, magnet-actuated, bead-based ELISA for simultaneous detection of IgG responses against multiple mycobacterial antigens. Anti-trehalose 6,6′-dimycolate (TDM) IgG responses were the strongest predictor for differentiating active tuberculosis (ATB) from healthy controls (HC) and latent tuberculosis infections (LTBI). The TDM-based MTBE demonstrated superior sensitivity compared to sputum microscopy (72% vs. 56%) with 80% and 63% positivity among smear-positive and smear-negative confirmed ATB samples, respectively. Receiver operating characteristic analysis indicated good accuracy for differentiating ATB from HC (AUC = 0.77). Thus, TDM-based MTBE can be potentially used as a screening device for rapid diagnosis of active TB at the POC. PMID:27775039

  19. A cost effective base-matching assay with low backgrounds.

    OpenAIRE

    SU, X.; Mushinsky, G; Comeau, A.M.

    1996-01-01

    Base-matching or so-called mini-sequencing is a powerful technique for genotyping and mutation identification. However, its application is often hampered by high background and high cost. We have decreased the background by approximately 5-fold by incorporating an end-blocking step and using only 1/10 of the usual nucleotide concentrations.

  20. MAPLE-based method to obtain biodegradable hybrid polymeric thin films with embedded antitumoral agents.

    Science.gov (United States)

    Dinca, Valentina; Florian, Paula E; Sima, Livia E; Rusen, Laurentiu; Constantinescu, Catalin; Evans, Robert W; Dinescu, Maria; Roseanu, Anca

    2014-02-01

    In this work, antitumor compounds, lactoferrin [recombinant iron-free (Apo-rLf)], cisplatin (Cis) or their combination were embedded within a biodegradable polycaprolactone (PCL) polymer thin film, by a modified approach of a laser-based technique, matrix-assisted pulsed laser evaporation (MAPLE). The structural and morphological properties of the deposited hybrid films were analyzed by Fourier-transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The in vitro effect on the cells' morphology and proliferation of murine melanoma B16-F10 cells was investigated and correlated with the films' surface chemistry and topography. Biological assays revealed decreased viability and proliferation, lower adherence, and morphological modifications in the case of melanoma cells cultured on both Apo-rLf and Cis thin films. The antitumor effect was enhanced by deposition of Apo-rLf with Cis within the same film. The unique capability of the new approach, based on MAPLE, to embed antitumor active factors within a biodegradable matrix for obtaining novel biodegradable hybrid platform with increased antitumor efficiency has been demonstrated.

  1. A fast Resazurin-based live viability assay is equivalent to the MTT-test in the KeratinoSens assay.

    Science.gov (United States)

    Emter, Roger; Natsch, Andreas

    2015-06-01

    The KeratinoSens™ assay was the first cell-based in vitro test in the skin sensitisation adverse outcome pathway to be endorsed by an ECVAM statement. It includes a cell viability assessment, which serves two purposes: It forms part of the prediction model to exclude false-positive irritants and cytotoxicity provides some information on sensitizer potency of chemicals, which can feed into a multivariate potency model. In the KeratinoSens™ protocol, Nrf2-dependent luciferase induction and the MTT-viability assay are performed in parallel plates. Resazurin-based viability assays do not require cell lysis and are compatible with luciferase measurements in the same cells. Here, we performed detailed comparison of the tetrazolium-based MTT assay and the PrestoBlue® assay on 35 reference chemicals tested in the full KeratinoSens™ protocol. Log-transformed IC50 and IC30 values measured with both methods correlate with an R(2) of 0.97 and 0.95. A single chemical showed divergent results and analysis by four different viability assays indicated the PrestoBlue® read-out to be correct. The new more rapid and resource efficient approach has clear advantages: Dose-response curves show lower variability and the two endpoints are measured on the same cells. This approach is a valid addition to or replacement of the MTT-readout in the KeratinoSens™ assay and it is recommended as a general tool for luciferase-based reporter assays.

  2. Improved Offline Connected Script Recognition Based on Hybrid Strategy

    Directory of Open Access Journals (Sweden)

    Tanzila Saba

    2010-06-01

    Full Text Available In domain of analytic cursive word recognition, there are two main approaches: explicit segmentation based and implicit segmentation based. However, both approaches have their own shortcomings. To overcome individual weaknesses, this paper presents a hybrid strategy for recognition of strings of characters (words or numerals. In a two stage dynamic programming based, lexicon driven approach, first an explicit segmentation is applied to segment either cursive andwritten words or numeric strings. However, at this stage, segmentation points are not finalized. In the second verification stage, statistical features are extracted from each segmented area to recognize characters using a trained neural network. To enhance segmentation and recognition accuracy, lexicon is consulted using existing dynamic programming matching techniques. Accordingly, segmentation points are altered to decide true character boundaries byusing lexicon feedback. A rigorous experimental protocol shows high performance of the proposed method for cursive handwritten words and numeral strings.

  3. Extraction, amplification and detection of DNA in microfluidic chip-based assays

    KAUST Repository

    Wu, Jinbo

    2013-12-20

    This review covers three aspects of PCR-based microfluidic chip assays: sample preparation, target amplification, and product detection. We also discuss the challenges related to the miniaturization and integration of each assay and make a comparison between conventional and microfluidic schemes. In order to accomplish these essential assays without human intervention between individual steps, the micro-components for fluid manipulation become critical. We therefore summarize and discuss components such as microvalves (for fluid regulation), pumps (for fluid driving) and mixers (for blending fluids). By combining the above assays and microcomponents, DNA testing of multi-step bio-reactions in microfluidic chips may be achieved with minimal external control. The combination of assay schemes with the use of micro-components also leads to rapid methods for DNA testing via multi-step bioreactions. Contains 259 references.

  4. Hybrid perturbation methods based on statistical time series models

    Science.gov (United States)

    San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario

    2016-04-01

    In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.

  5. Hybrid Support Vector Machines-Based Multi-fault Classification

    Institute of Scientific and Technical Information of China (English)

    GAO Guo-hua; ZHANG Yong-zhong; ZHU Yu; DUAN Guang-huang

    2007-01-01

    Support Vector Machines (SVM) is a new general machine-learning tool based on structural risk minimization principle. This characteristic is very signific ant for the fault diagnostics when the number of fault samples is limited. Considering that SVM theory is originally designed for a two-class classification, a hybrid SVM scheme is proposed for multi-fault classification of rotating machinery in our paper. Two SVM strategies, 1-v-1 (one versus one) and 1-v-r (one versus rest), are respectively adopted at different classification levels. At the parallel classification level, using 1-v-1 strategy, the fault features extracted by various signal analysis methods are transferred into the multiple parallel SVM and the local classification results are obtained. At the serial classification level, these local results values are fused by one serial SVM based on 1-v-r strategy. The hybrid SVM scheme introduced in our paper not only generalizes the performance of signal binary SVMs but improves the precision and reliability of the fault classification results. The actually testing results show the availability suitability of this new method.

  6. Dynamic Garment Simulation based on Hybrid Bounding Volume Hierarchy

    Directory of Open Access Journals (Sweden)

    Zhu Dongyong

    2016-12-01

    Full Text Available In order to solve the computing speed and efficiency problem of existing dynamic clothing simulation, this paper presents a dynamic garment simulation based on a hybrid bounding volume hierarchy. It firstly uses MCASG graph theory to do the primary segmentation for a given three-dimensional human body model. And then it applies K-means cluster to do the secondary segmentation to collect the human body’s upper arms, lower arms, upper legs, lower legs, trunk, hip and woman’s chest as the elementary units of dynamic clothing simulation. According to different shapes of these elementary units, it chooses the closest and most efficient hybrid bounding box to specify these units, such as cylinder bounding box and elliptic cylinder bounding box. During the process of constructing these bounding boxes, it uses the least squares method and slices of the human body to get the related parameters. This approach makes it possible to use the least amount of bounding boxes to create close collision detection regions for the appearance of the human body. A spring-mass model based on a triangular mesh of the clothing model is finally constructed for dynamic simulation. The simulation result shows the feasibility and superiority of the method described.

  7. Hybrid Weighted-based Clustering Routing Protocol for Railway Communications

    Directory of Open Access Journals (Sweden)

    Jianli Xie

    2013-12-01

    Full Text Available In the paper, a hybrid clustering routing strategy is proposed for railway emergency ad hoc network, when GSM-R base stations are destroyed or some terminals (or nodes are far from the signal coverage. In this case, the cluster-head (CH election procedure is invoked on-demand, which takes into consideration the degree difference from the ideal degree, relative clustering stability, the sum of distance between the node and it’s one-hop neighbors, consumed power, node type and node mobility. For the clustering forming, the weights for the CH election parameters are allocated rationally by rough set theory. The hybrid weighted-based clustering routing (HWBCR strategy is designed for railway emergency communication scene, which aims to get a good trade-off between the computation costs and performances. The simulation platform is constructed to evaluate the performance of our strategy in terms of the average end-to-end delay, packet loss ratio, routing overhead and average throughput. The results, by comparing with the railway communication QoS index, reveal that our strategy is suitable for transmitting dispatching voice and data between train and ground, when the train speed is less than 220km/h

  8. Plant hybrid zones affect biodiversity: Tools for a genetic-based understanding of community structure

    Energy Technology Data Exchange (ETDEWEB)

    Whitham, T.G.; Martinsen, G.D.; Keim, P. [Northern Arizona Univ., Flagstaff, AZ (United States); Floate, K.D. [Agriculture and Agri-Food Canada, Lethbridge, Alberta (Canada); Dungey, H.S. [Univ. of Tasmania, Hobart, Tasmania (Australia)]|[Queensland Forest Research Inst., Gympie, Queensland (Australia); Potts, B.M. [Univ. of Tasmania, Hobart, Tasmania (Australia)

    1999-03-01

    Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supports the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.

  9. Digital magnetic tagging for multiplexed suspension-based biochemical assays

    Science.gov (United States)

    Mitrelias, T.; Trypiniotis, T.; Palfreyman, J. J.; Hong, B.; Vyas, K.; Hayward, T. J.; Llandro, J.; Kopper, K. P.; Bland, J. A. C.; Robertson, P. A.; Barnes, C. H. W.

    2009-04-01

    Microarrays and suspension (or bead)-based technologies have attracted significant interest for their broad applications in high throughput molecular biology. However, the throughput of microarrays will always be limited by the array density and the slow diffusion of molecules to their binding sites. Suspension-based technologies, in which all the reactions take place directly on the surface of microcarriers functionalized with molecular probes, could offer true multiplexing due to the possibility of extending their detection capability by a straightforward expansion of the size of the chemical library of probes. To fully exploit their potential, the microcarriers must be tagged, but the number of distinct codes available from spectrometric/graphical/physical encoding methods is currently fairly limited. A digital magnetic tagging method based on magnetic microtags, which have been anisotropy engineered to provide stable magnetization directions which correspond to digital codes, is reported. The tags can be suspended in solution and functionalized with a variety of biological molecular probes. Magnetic tagging offers several benefits compared to the traditional optical encoding techniques currently employed. It offers minimal background signals, potential for a large number of distinct codes, miniaturization of devices, and the ability to write a code in situ. Experimental data showing the reading of individual magnetic microbars from samples comprising 50×20 μm2 Ni elements, as well as micromagnetic simulations that show the feasibility of stray field detection, are presented. The stray fields of the magnetic microbars spanning a range of 60 mOe were detected by a microfabricated fluxgate sensor scanned in a raster fashion over the sample that was placed about 70 μm away. Free floating tags have also been fabricated for use in microfluidic systems. A magnetic lab-on-a-chip device could be used for tagging biomolecular probes for applications in genome

  10. Medically Relevant Assays with a Simple Smartphone and Tablet Based Fluorescence Detection System

    Directory of Open Access Journals (Sweden)

    Piotr Wargocki

    2015-05-01

    Full Text Available Cell phones and smart phones can be reconfigured as biomedical sensor devices but this requires specialized add-ons. In this paper we present a simple cell phone-based portable bioassay platform, which can be used with fluorescent assays in solution. The system consists of a tablet, a polarizer, a smart phone (camera and a box that provides dark readout conditions. The assay in a well plate is placed on the tablet screen acting as an excitation source. A polarizer on top of the well plate separates excitation light from assay fluorescence emission enabling assay readout with a smartphone camera. The assay result is obtained by analysing the intensity of image pixels in an appropriate colour channel. With this device we carried out two assays, for collagenase and trypsin using fluorescein as the detected fluorophore. The results of collagenase assay with the lowest measured concentration of 3.75 µg/mL and 0.938 µg in total in the sample were comparable to those obtained by a microplate reader. The lowest measured amount of trypsin was 930 pg, which is comparable to the low detection limit of 400 pg for this assay obtained in a microplate reader. The device is sensitive enough to be used in point-of-care medical diagnostics of clinically relevant conditions, including arthritis, cystic fibrosis and acute pancreatitis.

  11. Using Exclusion-Based Sample Preparation (ESP to Reduce Viral Load Assay Cost.

    Directory of Open Access Journals (Sweden)

    Scott M Berry

    Full Text Available Viral load (VL measurements are critical to the proper management of HIV in developing countries. However, access to VL assays is limited by the high cost and complexity of existing assays. While there is a need for low cost VL assays, performance must not be compromised. Thus, new assays must be validated on metrics of limit of detection (LOD, accuracy, and dynamic range. Patient plasma samples from the Joint Clinical Research Centre in Uganda were de-identified and measured using both an existing VL assay (Abbott RealTime HIV-1 and our assay, which combines low cost reagents with a simplified method of RNA isolation termed Exclusion-Based Sample Preparation (ESP.71 patient samples with VLs ranging from 3,000,000 copies/mL were used to compare the two methods. We demonstrated equivalent LOD (~50 copies/mL and high accuracy (average difference between methods of 0.08 log, R2 = 0.97. Using expenditures from this trial, we estimate that the cost of the reagents and consumables for this assay to be approximately $5 USD. As cost is a significant barrier to implementation of VL testing, we anticipate that our assay will enhance access to this critical monitoring test in developing countries.

  12. Development of a heavy metals enzymatic-based assay using papain

    Energy Technology Data Exchange (ETDEWEB)

    Shukor, Yunus [Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia)]. E-mail: yunus@biotech.upm.edu.my; Baharom, Nor Azlan [Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Rahman, Fadhil Abd. [Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Abdullah, Mohd. Puad [Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Shamaan, Nor Aripin [Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Syed, Mohd. Arif [Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2006-05-04

    A heavy metals enzymatic-based assay using papain was developed. Papain was assayed using the Casein-coomassie-dye-binding assay. The assay is sensitive to several heavy metals. The IC{sub 50} (concentration of toxicant giving 50% inhibition) of Hg{sup 2+}, Ag{sup 2+}, Pb{sup 2}, Zn{sup 2+} is 0.39, 0.40, 2.16, 2.11 mg l{sup -1}, respectively. For Cu{sup 2+} and Cd{sup 2+} the LOQ (limits of quantitation) is 0.004 and 0.1 mg l{sup -1}, respectively. The IC{sub 50} and LOQ values were found to be generally comparable to several other enzymatic and bioassays tests such as: immobilized urease, 15-min Microtox{sup TM}, 48 h Daphnia magna, and 96 h Rainbow trout. The papain assay is xenobiotics tolerant, has a wide pH for optimum activity, is temperature stable, and has a relatively quick assay time. The papain assay was used to identify polluted water samples from industrial sources in Penang, Malaysia. We found one site where the assay gave a positive toxic response. The toxicity of the site was confirmed using Atomic Emission Spectrometry analysis.

  13. Using Exclusion-Based Sample Preparation (ESP) to Reduce Viral Load Assay Cost.

    Science.gov (United States)

    Berry, Scott M; Pezzi, Hannah M; Williams, Eram D; Loeb, Jennifer M; Guckenberger, David J; Lavanway, Alex J; Puchalski, Alice A; Kityo, Cissy M; Mugyenyi, Peter N; Graziano, Franklin M; Beebe, David J

    2015-01-01

    Viral load (VL) measurements are critical to the proper management of HIV in developing countries. However, access to VL assays is limited by the high cost and complexity of existing assays. While there is a need for low cost VL assays, performance must not be compromised. Thus, new assays must be validated on metrics of limit of detection (LOD), accuracy, and dynamic range. Patient plasma samples from the Joint Clinical Research Centre in Uganda were de-identified and measured using both an existing VL assay (Abbott RealTime HIV-1) and our assay, which combines low cost reagents with a simplified method of RNA isolation termed Exclusion-Based Sample Preparation (ESP).71 patient samples with VLs ranging from 3,000,000 copies/mL were used to compare the two methods. We demonstrated equivalent LOD (~50 copies/mL) and high accuracy (average difference between methods of 0.08 log, R2 = 0.97). Using expenditures from this trial, we estimate that the cost of the reagents and consumables for this assay to be approximately $5 USD. As cost is a significant barrier to implementation of VL testing, we anticipate that our assay will enhance access to this critical monitoring test in developing countries.

  14. Smartphone based visual and quantitative assays on upconversional paper sensor.

    Science.gov (United States)

    Mei, Qingsong; Jing, Huarong; Li, You; Yisibashaer, Wuerzha; Chen, Jian; Nan Li, Bing; Zhang, Yong

    2016-01-15

    The integration of smartphone with paper sensors recently has been gain increasing attentions because of the achievement of quantitative and rapid analysis. However, smartphone based upconversional paper sensors have been restricted by the lack of effective methods to acquire luminescence signals on test paper. Herein, by the virtue of 3D printing technology, we exploited an auxiliary reusable device, which orderly assembled a 980nm mini-laser, optical filter and mini-cavity together, for digitally imaging the luminescence variations on test paper and quantitative analyzing pesticide thiram by smartphone. In detail, copper ions decorated NaYF4:Yb/Tm upconversion nanoparticles were fixed onto filter paper to form test paper, and the blue luminescence on it would be quenched after additions of thiram through luminescence resonance energy transfer mechanism. These variations could be monitored by the smartphone camera, and then the blue channel intensities of obtained colored images were calculated to quantify amounts of thiram through a self-written Android program installed on the smartphone, offering a reliable and accurate detection limit of 0.1μM for the system. This work provides an initial demonstration of integrating upconversion nanosensors with smartphone digital imaging for point-of-care analysis on a paper-based platform.

  15. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.

    Science.gov (United States)

    Alapan, Yunus; Hasan, Muhammad Noman; Shen, Richang; Gurkan, Umut A

    2015-05-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.

  16. Spectrophotometric total reducing sugars assay based on cupric reduction.

    Science.gov (United States)

    Başkan, Kevser Sözgen; Tütem, Esma; Akyüz, Esin; Özen, Seda; Apak, Reşat

    2016-01-15

    As the concentration of reducing sugars (RS) is controlled by European legislation for certain specific food and beverages, a simple and sensitive spectrophotometric method for the determination of RS in various food products is proposed. The method is based on the reduction of Cu(II) to Cu(I) with reducing sugars in alkaline medium in the presence of 2,9-dimethyl-1,10-phenanthroline (neocuproine: Nc), followed by the formation of a colored Cu(I)-Nc charge-transfer complex. All simple sugars tested had the linear regression equations with almost equal slope values. The proposed method was successfully applied to fresh apple juice, commercial fruit juices, milk, honey and onion juice. Interference effect of phenolic compounds in plant samples was eliminated by a solid phase extraction (SPE) clean-up process. The method was proven to have higher sensitivity and precision than the widely used dinitrosalicylic acid (DNS) colorimetric method.

  17. Hybrid Perturbation methods based on Statistical Time Series models

    CERN Document Server

    San-Juan, Juan Félix; Pérez, Iván; López, Rosario

    2016-01-01

    In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of a...

  18. Genetic Algorithm Based Hybrid Fuzzy System for Assessing Morningness

    Directory of Open Access Journals (Sweden)

    Animesh Biswas

    2014-01-01

    Full Text Available This paper describes a real life case example on the assessment process of morningness of individuals using genetic algorithm based hybrid fuzzy system. It is observed that physical and mental performance of human beings in different time slots of a day are majorly influenced by morningness orientation of those individuals. To measure the morningness of people various self-reported questionnaires were developed by different researchers in the past. Among them reduced version of Morningness-Eveningness Questionnaire is mostly accepted. Almost all of the linguistic terms used in questionnaires are fuzzily defined. So, assessing them in crisp environments with their responses does not seem to be justifiable. Fuzzy approach based research works for assessing morningness of people are very few in the literature. In this paper, genetic algorithm is used to tune the parameters of a Mamdani fuzzy inference model to minimize error with their predicted outputs for assessing morningness of people.

  19. Hybrid and adaptive meta-model-based global optimization

    Science.gov (United States)

    Gu, J.; Li, G. Y.; Dong, Z.

    2012-01-01

    As an efficient and robust technique for global optimization, meta-model-based search methods have been increasingly used in solving complex and computation intensive design optimization problems. In this work, a hybrid and adaptive meta-model-based global optimization method that can automatically select appropriate meta-modelling techniques during the search process to improve search efficiency is introduced. The search initially applies three representative meta-models concurrently. Progress towards a better performing model is then introduced by selecting sample data points adaptively according to the calculated values of the three meta-models to improve modelling accuracy and search efficiency. To demonstrate the superior performance of the new algorithm over existing search methods, the new method is tested using various benchmark global optimization problems and applied to a real industrial design optimization example involving vehicle crash simulation. The method is particularly suitable for design problems involving computation intensive, black-box analyses and simulations.

  20. Atlas-Based Prostate Segmentation Using an Hybrid Registration

    CERN Document Server

    Martin, Sébastien; Troccaz, Jocelyne

    2008-01-01

    Purpose: This paper presents the preliminary results of a semi-automatic method for prostate segmentation of Magnetic Resonance Images (MRI) which aims to be incorporated in a navigation system for prostate brachytherapy. Methods: The method is based on the registration of an anatomical atlas computed from a population of 18 MRI exams onto a patient image. An hybrid registration framework which couples an intensity-based registration with a robust point-matching algorithm is used for both atlas building and atlas registration. Results: The method has been validated on the same dataset that the one used to construct the atlas using the "leave-one-out method". Results gives a mean error of 3.39 mm and a standard deviation of 1.95 mm with respect to expert segmentations. Conclusions: We think that this segmentation tool may be a very valuable help to the clinician for routine quantitative image exploitation.

  1. Comparison of analytical and clinical performance of CLART HPV2 genotyping assay to Linear Array and Hybrid Capture 2

    DEFF Research Database (Denmark)

    Ejegod, Ditte Møller; Rebolj, Matejka; Bonde, Jesper

    2015-01-01

    prone to inter-observer variability. The reading of test results on the CLART HPV2 genotyping assay is, on the other hand, automated. The aim of our study was to directly compare the detection of HPV genotypes and high-grade cervical intraepithelial neoplasia (CIN) by CLART, Linear Array (LA...

  2. Design of Multi-attribute Knowledge Base Based on Hybrid Knowledge Representation

    Institute of Scientific and Technical Information of China (English)

    TANG Zhi-jie; YANG Bao-an; ZHANG Ke-jing

    2006-01-01

    Based on the knowledge representation and knowledge reasoning, this paper addresses the creation of the multiattribute knowledge base on the basis of hybrid knowledge representation, with the help of object-oriented programming language and relational database. Compared with general knowledge base, multi-attribute knowledge base can enhance the ability of knowledge processing and application;integrate the heterogeneous knowledge, such as model,symbol, case-based sample knowledge; and support the whole decision process by integrated reasoning.

  3. Image based quantitative reader for Lateral flow immunofluorescence assay.

    Science.gov (United States)

    Chowdhury, Kaushik Basak; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2015-08-01

    Fluorescence Lateral flow immunoassays (LFIA) have wide range of applications in point-of-care testing (POCT). An integrated, motion-free, accurate, reliable reader that performs automated quantitative analysis of LFIA is essential for POCT diagnosis. We demonstrate an image based quantitative method to read the lateral flow immunofluorescence test strips. The developed reader uses line laser diode module to illuminate the LFIA test strip having fluorescent dye. Fluorescence light coming from the region of interest (ROI) of the LFIA test strip was filtered using an emission filter and imaged using a camera following which images were processed in computer. A dedicated control program was developed that automated the entire process including illumination of the test strip using laser diode, capturing the ROI of the test strip, processing and analyzing the images and displaying of results. Reproducibility of the reader has been evaluated using few reference cartridges and HbA1c (Glycated haemoglobin) test cartridges. The proposed system can be upgraded to a compact reader for widespread testing of LFIA test strips.

  4. Nanoparticle-based assays in automated flow systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Marieta L.C. [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Pinto, Paula C.A.G., E-mail: ppinto@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Santos, João L.M., E-mail: joaolms@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Saraiva, M. Lúcia M.F.S., E-mail: lsaraiva@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Araujo, André R.T.S. [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Av. Dr. Francisco de Sá Carneiro, n° 50, 6300-559 Guarda (Portugal)

    2015-08-19

    Nanoparticles (NPs) exhibit a number of distinctive and entrancing properties that explain their ever increasing application in analytical chemistry, mainly as chemosensors, signaling tags, catalysts, analytical signal enhancers, reactive species generators, analyte recognition and scavenging/separation entities. The prospect of associating NPs with automated flow-based analytical is undoubtedly a challenging perspective as it would permit confined, cost-effective and reliable analysis, within a shorter timeframe, while exploiting the features of NPs. This article aims at examining state-of-the-art on continuous flow analysis and microfluidic approaches involving NPs such as noble metals (gold and silver), magnetic materials, carbon, silica or quantum dots. Emphasis is devoted to NP format, main practical achievements and fields of application. In this context, the functionalization of NPs with distinct chemical species and ligands is debated in what concerns the motivations and strengths of developed approaches. The utilization of NPs to improve detector's performance in electrochemical application is out of the scope of this review. The works discussed in this review were published in the period of time comprised between the years 2000 and 2013. - Highlights: • The state of the art of flowing stream systems comprising NPs was reviewed. • The use of different types of nanoparticles in each flow technique is discussed. • The most expressive and profitable applications are summarized. • The main conclusions and future perspectives were compiled in the final section.

  5. Quantitative comparison between microfluidic and microtiter plate formats for cell-based assays.

    Science.gov (United States)

    Yin, Huabing; Pattrick, Nicola; Zhang, Xunli; Klauke, Norbert; Cordingley, Hayley C; Haswell, Steven J; Cooper, Jonathan M

    2008-01-01

    In this paper, we compare a quantitative cell-based assay measuring the intracellular Ca2+ response to the agonist uridine 5'-triphosphate in Chinese hamster ovary cells, in both microfluidic and microtiter formats. The study demonstrates that, under appropriate hydrodynamic conditions, there is an excellent agreement between traditional well-plate assays and those obtained on-chip for both suspended immobilized cells and cultured adherent cells. We also demonstrate that the on-chip assay, using adherent cells, provides the possibility of faster screening protocols with the potential for resolving subcellular information about local Ca2+ flux.

  6. Fluorescence in situ hybridization assay detects upper urinary tract transitional cell carcinoma in patients with asymptomatic hematuria and negative urine cytology.

    Science.gov (United States)

    Huang, W T; Li, L Y; Pang, J; Ruan, X X; Sun, Q P; Yang, W J; Gao, X

    2012-01-01

    We evaluated the performance of a multiprobe FISH (fluorescence in situ hybridization) assay for noninvasive detection of upper urinary tract transitional cell carcinoma (UUT-TCC) in patients with asymptomatic hematuria and negative urine cytology. Voided urine samples from 285 patients with asymptomatic hematuria and negative urine cytology were prospectively analyzed by FISH technique. FISH assays were performed to detect chromosomal changes frequently associated with TCC, including aneuploidy of chromosomes 3, 7 and 17, and loss of the 9p21 locus. Eleven (3.9%) had a positive FISH result. Of the 11 patients, nine (81.8%) were found to have a TCC of the upper urinary tract, while no patients with negative FISH findings were found to have UUT-TCC. In this selected cohort, the sensitivity and specificity of FISH for the detection of UUT-TCC was 100% and 99.3%, respectively. Our preliminary data suggest that the clinical utility of FISH assay of chromosomes 3, 7, 9, and 17 as a noninvasive ancillary test for the diagnosis of UUT-TCC in a selected patient population with asymptomatic hematuria and negative urine cytology and by significant high sensitivity and specificity may be a reliable diagnostic approach for early detection of UUT-TCC patients. Further larger prospective and multicenter trials are needed to confirm our results.

  7. Kinetics of hybridization on surface oligonucleotide microchips: theory, experiment, and comparison with hybridization on gel-based microchips.

    Science.gov (United States)

    Sorokin, N V; Chechetkin, V R; Pan'kov, S V; Somova, O G; Livshits, M A; Donnikov, M Y; Turygin, A Y; Barsky, V E; Zasedatelev, A S

    2006-08-01

    The optimal design of oligonucleotide microchips and efficient discrimination between perfect and mismatch duplexes strongly depend on the external transport of target DNA to the cells with immobilized probes as well as on respective association and dissociation rates at the duplex formation. In this paper we present the relevant theory for hybridization of DNA fragments with oligonucleotide probes immobilized in the cells on flat substrate. With minor modifications, our theory also is applicable to reaction-diffusion hybridization kinetics for the probes immobilized on the surface of microbeads immersed in hybridization solution. The main theoretical predictions are verified with control experiments. Besides that, we compared the characteristics of the surface and gel-based oligonucleotide microchips. The comparison was performed for the chips printed with the same pin robot, for the signals measured with the same devices and processed by the same technique, and for the same hybridization conditions. The sets of probe oligonucleotides and the concentrations of probes in respective solutions used for immobilization on each platform were identical as well. We found that, despite the slower hybridization kinetics, the fluorescence signals and mutation discrimination efficiency appeared to be higher for the gel-based microchips with respect to their surface counterparts even for the relatively short hybridization time about 0.5-1 hour. Both the divergence between signals for perfects and the difference in mutation discrimination efficiency for the counterpart platforms rapidly grow with incubation time. In particular, for hybridization during 3 h the signals for gel-based microchips surpassed their surface counterparts in 5-20 times, while the ratios of signals for perfect-mismatch pairs for gel microchips exceeded the corresponding ratios for surface microchips in 2-4 times. These effects may be attributed to the better immobilization efficiency and to the higher

  8. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    Science.gov (United States)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  9. Cellulose based hybrid hydroxylated adducts for polyurethane foams

    Science.gov (United States)

    De Pisapia, Laura; Verdolotti, Letizia; Di Mauro, Eduardo; Di Maio, Ernesto; Lavorgna, Marino; Iannace, Salvatore

    2012-07-01

    Hybrid flexible polyurethane foams (HPU) were synthesized by using a hybrid hydroxilated adduct (HHA) based on renewable resources. In particular the HHA was obtained by dispersing cellulose wastes in colloidal silica at room temperature, pressure and humidity. The colloidal silica was selected for its ability of modifying the cellulose structure, by inducing a certain "destructurization" of the crystalline phase, in order to allow cellulose to react with di-isocyanate for the final synthesis of the polyurethane foam. In fact, cellulose-polysilicate complexes are engaged in the reaction with the isocyanate groups. This study provides evidence of the effects of the colloidal silica on the cellulose structure, namely, a reduction of the microfiber cellulose diameter and the formation of hydrogen bonds between the polysilicate functional groups and the hydroxyl groups of the cellulose, as assessed by IR spectroscopy and solid state NMR. The HHA was added to a conventional polyol in different percentages (between 5 and 20%) to synthesize HPU in presence of catalysts, silicone surfactant and diphenylmethane diisocyanate (MDI). The mixture was expanded in a mold and cured for two hours at room temperature. Thermal analysis, optical microscopy and mechanical tests were performed on the foams. The results highlighted an improvement of thermal stability and a decrease of the cell size with respect neat polyurethane foam. Mechanical tests showed an improvement of the elastic modulus and of the damping properties with increasing HHA amount.

  10. A Hybrid Steganography System based on LSB Matching and Replacement

    Directory of Open Access Journals (Sweden)

    Hazem Hiary

    2016-09-01

    Full Text Available This paper proposes a hybrid steganographic ap-proach using the least significant bit (LSB technique for grayscale images. The proposed approach uses both LSB match-ing (LSB-M and LSB replacement to hide the secret data in images. Using hybrid LSB techniques increase the level of security. Thus, attackers cannot easily, if not impossible, extract the secret data. The proposed approach stores two bits in a pixel. The embedding rate can reach up to 1.6 bit per pixel. The proposed approach is evaluated and subjected to various kinds of image processing attacks. The performance of the proposed algorithm is compared with two other relevant techniques; pixel-value differencing (PVD and Complexity Based LSB-M (CBL. Experimental results indicate that the proposed algorithm out-performs PVD in terms of imperceptibility. Also, it significantly outperforms CBL in two main features; higher embedding rate (ER, and more robust to most common image processing attacks such as median filtering, histogram equalization, and rotation.

  11. Hybrid fundamental-solution-based FEM for piezoelectric materials

    Science.gov (United States)

    Cao, Changyong; Qin, Qing-Hua; Yu, Aibing

    2012-10-01

    In this paper, a new type of hybrid finite element method (FEM), hybrid fundamental-solution-based FEM (HFS-FEM), is developed for analyzing plane piezoelectric problems by employing fundamental solutions (Green's functions) as internal interpolation functions. A modified variational functional used in the proposed model is first constructed, and then the assumed intra-element displacement fields satisfying a priori the governing equations of the problem are constructed by using a linear combination of fundamental solutions at a number of source points located outside the element domain. To ensure continuity of fields over inter-element boundaries, conventional shape functions are employed to construct the independent element frame displacement fields defined over the element boundary. The proposed methodology is assessed by several examples with different boundary conditions and is also used to investigate the phenomenon of stress concentration in infinite piezoelectric medium containing a hole under remote loading. The numerical results show that the proposed algorithm has good performance in numerical accuracy and mesh distortion insensitivity compared with analytical solutions and those from ABAQUS. In addition, some new insights on the stress concentration have been clarified and presented in the paper.

  12. Comparison of 2 Luminex-based Multiplexed Protein Assays for Quantifying Microglia Activation and Inflammatory Proteins

    Science.gov (United States)

    2016-04-01

    streptavidin-phycoerythrin (PE) similar to sandwich enzyme-linked immunosorbent assays (ELISAs). The 3 fluorescent markers (2 beads plus PE) allow for...least expensive platform. It uses a magnetic plate to create a monolayer of beads that can be imaged with a light-emitting-diode-based imager capable... Magnetic Luminex Screening Assay Rat Premixed Multi-Analyte Kit, a kit was purchased that included all of the 17 analytes included in company’s catalog

  13. Electrochemical detection of protein based on hybridization chain reaction-assisted formation of copper nanoparticles.

    Science.gov (United States)

    Zhao, Jing; Hu, Suisui; Cao, Ya; Zhang, Bin; Li, Genxi

    2015-04-15

    In this paper, we report an electrochemical method for highly sensitive and specific detection of protein based on hybridization chain reaction (HCR)-assisted formation of copper nanoparticles by using small molecule such as folate-linked DNA as probe. In the presence of target protein, taking folate receptor (FR) as the model protein in this study, its binding with folate can protect the probe DNA from exonuclease I-catalyzed degradation, thus the probe DNA can be immobilized onto the electrode surface through the hybridization with capture DNA, triggering HCR on the electrode surface. Subsequently, copper nanoparticles can be formed on the electrode surface by using long duplex DNA oligomers from HCR as templates. Furthermore, copper ions released from acid-dissolution of copper nanoparticles can catalyze the oxidation of ο-phenylenediamine by dissolved oxygen, leading to significant electrochemical responses. As a result, our method can sensitively detect FR in the linear range from 0.01ng/mL to 100ng/mL with a detection limit of 3pg/mL. It can also specifically distinguish the target protein in both buffer and complex serum samples. Since many other proteins can be assayed by changing the corresponding small molecule, this method may be promising for the development of the technique for protein detections. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. An in situ hybridization-based screen for heterogeneously expressed genes in mouse ES cells.

    Science.gov (United States)

    Carter, Mark G; Stagg, Carole A; Falco, Geppino; Yoshikawa, Toshiyuki; Bassey, Uwem C; Aiba, Kazuhiro; Sharova, Lioudmila V; Shaik, Nabeebi; Ko, Minoru S H

    2008-02-01

    We previously reported that Zscan4 showed heterogeneous expression patterns in mouse embryonic stem (ES) cells. To identify genes that show similar expression patterns, we carried out high-throughput in situ hybridization assays on ES cell cultures for 244 genes. Most of the genes are involved in transcriptional regulation, and were selected using microarray-based comparisons of gene expression profiles in ES and embryonal carcinoma (EC) cells versus differentiated cell types. Pou5f1 (Oct4, Oct3/4) and Krt8 (EndoA) were used as controls. Hybridization signals were detected on ES cell colonies for 147 genes (60%). The majority (136 genes) of them showed relatively homogeneous expression in ES cell colonies. However, we found that two genes unequivocally showed Zscan4-like spotted expression pattern (spot-in-colony pattern; Whsc2 and Rhox9). We also found that nine genes showed relatively heterogeneous expression pattern (mosaic-in-colony pattern: Zfp42/Rex1, Rest, Atf4, Pa2g4, E2f2, Nanog, Dppa3/Pgc7/Stella, Esrrb, and Fscn1). Among these genes, Zfp42/Rex1 showed unequivocally heterogeneous expression in individual ES cells prepared by the CytoSpin. These results show the presence of different types or states of cells within ES cell cultures otherwise thought to be undifferentiated and homogeneous, suggesting a previously unappreciated complexity in ES cell cultures.

  15. CLSI-based transference of CALIPER pediatric reference intervals to Beckman Coulter AU biochemical assays.

    Science.gov (United States)

    Abou El Hassan, Mohamed; Stoianov, Alexandra; Araújo, Petra A T; Sadeghieh, Tara; Chan, Man Khun; Chen, Yunqi; Randell, Edward; Nieuwesteeg, Michelle; Adeli, Khosrow

    2015-11-01

    The CALIPER program has established a comprehensive database of pediatric reference intervals using largely the Abbott ARCHITECT biochemical assays. To expand clinical application of CALIPER reference standards, the present study is aimed at transferring CALIPER reference intervals from the Abbott ARCHITECT to Beckman Coulter AU assays. Transference of CALIPER reference intervals was performed based on the CLSI guidelines C28-A3 and EP9-A2. The new reference intervals were directly verified using up to 100 reference samples from the healthy CALIPER cohort. We found a strong correlation between Abbott ARCHITECT and Beckman Coulter AU biochemical assays, allowing the transference of the vast majority (94%; 30 out of 32 assays) of CALIPER reference intervals previously established using Abbott assays. Transferred reference intervals were, in general, similar to previously published CALIPER reference intervals, with some exceptions. Most of the transferred reference intervals were sex-specific and were verified using healthy reference samples from the CALIPER biobank based on CLSI criteria. It is important to note that the comparisons performed between the Abbott and Beckman Coulter assays make no assumptions as to assay accuracy or which system is more correct/accurate. The majority of CALIPER reference intervals were transferrable to Beckman Coulter AU assays, allowing the establishment of a new database of pediatric reference intervals. This further expands the utility of the CALIPER database to clinical laboratories using the AU assays; however, each laboratory should validate these intervals for their analytical platform and local population as recommended by the CLSI. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. A novel pyrogallol red-based assay to assess catalase activity: Optimization by response surface methodology.

    Science.gov (United States)

    Abderrahim, Mohamed; Arribas, Silvia M; Condezo-Hoyos, Luis

    2017-05-01

    Pyrogallol red (PGR) was identified as a novel optical probe for the detection of hydrogen peroxide (H2O2) based on horseradish peroxidase (HRP)-catalyzed oxidation. Response surface methodology (RSM) was applied as a tool to optimize the concentrations of PGR (100µmolL(-1)), HRP (1UmL(-1)) and H2O2 (250µmolL(-1)) and used to develop a sensitive PGR-based catalase (CAT) activity assay (PGR-CAT assay). N-ethylmaleimide -NEM- (102mmolL(-1)) was used to avoid interference produced by thiol groups while protecting CAT activity. Incubation time (30min) for samples or CAT used as standard and H2O2 as well as signal stability (stable between 5 and 60min) were also evaluated. PGR-CAT assay was linear within the range of 0-4UmL(-1) (R(2)=0.993) and very sensitive with limits of detection (LOD) of 0.005UmL(-1) and quantitation (LOQ) of 0.01UmL(-1). PGR-CAT assay showed an adequate intra-day RSD=0.6-9.5% and inter-day RSD=2.4-8.9%. Bland-Altman analysis and Passing-Bablok and Pearson correlation analysis showed good agreement between CAT activity as measured by the PRG-CAT assay and the Amplex Red assay. The PGR-CAT assay is more sensitive than all the other colorimetric assays reported, particularly the Amplex Red assay, and the cost of PGR is a small fraction (about 1/1000) of that of an Amplex Red probe, so it can be expected to find wide use among scientists studying CAT activity in biological samples.

  17. Analysis and design of permanent magnet biased magnetic bearing based on hybrid factor

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2016-03-01

    Full Text Available In this article, hybrid factor is proposed for hybrid magnetic bearing. The hybrid factor is defined as the ratio of the force produced by the permanent magnet and the forces produced by the permanent magnet and current in hybrid magnetic bearing. It is deduced from a certain radial hybrid magnetic bearing using its important parameters such as the current stiffness and displacement stiffness at first and then the dynamic model of magnetically suspended rotor system is established. The relationship between structural parameters and control system parameters is analyzed based on the hybrid factor. Some influencing factors of hybrid factor in hybrid magnetic bearing, such as the size of the permanent magnet, length of air gap, and area of the stator poles, are analyzed in this article. It can be concluded that larger hybrid factor can be caused by the smaller power loss according to the definition of hybrid factor mentioned above. Meanwhile, the hybrid factor has a maximum value, which is related to control system parameters such as proportional factor expect for structural parameters. Finally, the design steps of parameters of hybrid magnetic bearing can be concluded.

  18. Time-stretch microscopy on a DVD for high-throughput imaging cell-based assay.

    Science.gov (United States)

    Tang, Anson H L; Yeung, P; Chan, Godfrey C F; Chan, Barbara P; Wong, Kenneth K Y; Tsia, Kevin K

    2017-02-01

    Cell-based assay based on time-stretch imaging is recognized to be well-suited for high-throughput phenotypic screening. However, this ultrafast imaging technique has primarily been limited to suspension-cell assay, leaving a wide range of solid-substrate assay formats uncharted. Moreover, time-stretch imaging is generally restricted to intrinsic biophysical phenotyping, but lacks the biomolecular signatures of the cells. To address these challenges, we develop a spinning time-stretch imaging assay platform based on the functionalized digital versatile disc (DVD). We demonstrate that adherent cell culture and biochemically-specific cell-capture can now be assayed with time-stretch microscopy, thanks to the high-speed DVD spinning motion that naturally enables on-the-fly cellular imaging at an ultrafast line-scan rate of >10MHz. As scanning the whole DVD at such a high speed enables ultra-large field-of-view imaging, it could be favorable for scaling both the assay throughput and content as demanded in many applications, e.g. drug discovery, and rare cancer cell screening.

  19. High-throughput fluorescent-based NKCC functional assay in adherent epithelial cells.

    Science.gov (United States)

    Carmosino, Monica; Rizzo, Federica; Torretta, Silvia; Procino, Giuseppe; Svelto, Maria

    2013-03-18

    The kidney-specific NKCC cotransporter isoform NKCC2 is involved in the Na(+) reabsorption in the Thich Ascending Limb (TAL) cells and in the regulation of body fluid volume. In contrast, the isoform NKCC1 represents the major pathway for Cl- entry in endothelial cells, playing a crucial role in cell volume regulation and vascular tone. Importantly, both NKCC isoforms are involved in the regulation of blood pressure and represent important potential drug targets for the treatment of hypertension. Taking advantage of an existing Thallium (Tl(+))-based kit, we set up a Tl(+) influx-based fluorescent assay, that can accurately and rapidly measure NKCC transporter activity in adherent epithelial cells using the high-throughput Flex station device. We assessed the feasibility of this assay in the renal epithelial LLC-PK1 cells stably transfected with a previously characterized chimeric NKCC2 construct (c-NKCC2). We demonstrated that the assay is highly reproducible, offers high temporal resolution of NKCC-mediated ion flux profiles and, importantly, being a continuous assay, it offers improved sensitivity over previous endpoint NKCC functional assays. So far the screening of NKCC transporters activity has been done by (86)Rb(+) influx assays. Indeed, a fluorescence-based high-throughput screening method for testing NKCC inhibitors would be extremely useful in the development and characterization of new anti-hypertensive drugs.

  20. Adapting Cell-Based Assays to the High Throughput Screening Platform: Problems Encountered and Lessons Learned.

    Science.gov (United States)

    Maddox, Clinton B; Rasmussen, Lynn; White, E Lucile

    2008-06-01

    In recent years, cell-based phenotypic assays have emerged as an effective and robust addition to the array of assay technologies available for drug discovery in the high throughput screening arena. Previously, biochemical target-based assays have been the technology of choice. With the emergence of stem cells as a basis for a new screening technology, it is important to keep in mind the lessons that have been learned from the adaptation of existing stable cell lines onto the high throughput screening drug discovery platform, with special consideration being given to assay miniaturization, liquid handling complications and instrument-introduced artifacts. We present an overview of the problems encountered with the implementation of multiple cell-based assays at the High Throughput Screening Center at Southern Research Institute as well as empirically defined effective solutions to these problems. These include examples of artifacts induced by temperature differences throughout the screening campaign, cell plating conditions including the effect of room temperature incubation on assay consistency, DMSO carry-over, and incubator induced artifacts.

  1. A versatile microparticle-based immunoaggregation assay for macromolecular biomarker detection and quantification.

    Directory of Open Access Journals (Sweden)

    Haiyan Wu

    Full Text Available The rapid, sensitive and low-cost detection of macromolecular biomarkers is critical in clinical diagnostics, environmental monitoring, research, etc. Conventional assay methods usually require bulky, expensive and designated instruments and relative long assay time. For hospitals and laboratories that lack immediate access to analytical instruments, fast and low-cost assay methods for the detection of macromolecular biomarkers are urgently needed. In this work, we developed a versatile microparticle (MP-based immunoaggregation method for the detection and quantification of macromolecular biomarkers. Antibodies (Abs were firstly conjugated to MP through streptavidin-biotin interaction; the addition of macromolecular biomarkers caused the aggregation of Ab-MPs, which were subsequently detected by an optical microscope or optical particle sizer. The invisible nanometer-scale macromolecular biomarkers caused detectable change of micrometer-scale particle size distributions. Goat anti-rabbit immunoglobulin and human ferritin were used as model biomarkers to demonstrate MP-based immunoaggregation assay in PBS and 10% FBS to mimic real biomarker assay in the complex medium. It was found that both the number ratio and the volume ratio of Ab-MP aggregates caused by biomarker to all particles were directly correlated to the biomarker concentration. In addition, we found that the detection range could be tuned by adjusting the Ab-MP concentration. We envision that this novel MP-based immunoaggregation assay can be combined with multiple detection methods to detect and quantify macromolecular biomarkers at the nanogram per milliliter level.

  2. Locating and classifying defects using an hybrid data base

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Aviles, A; Diaz Pineda, A [Tecnologico de Estudios Superiores de Coacalco. Av. 16 de Septiembre 54, Col. Cabecera Municipal. C.P. 55700 (Mexico); Hernandez-Gomez, L H; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G [Instituto Politecnico Nacional. ESIME-SEPI. Unidad Profesional ' Adolfo Lopez Mateos' Edificio 5, 30 Piso, Colonia Lindavista. Gustavo A. Madero. 07738 Mexico D.F. (Mexico); Durodola, J F [School of Technology, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford OX3 0BP (United Kingdom); Beltran Fernandez, J A, E-mail: alelunaav@hotmail.com, E-mail: luishector56@hotmail.com, E-mail: jdurodola@brookes.ac.uk

    2011-07-19

    A computational inverse technique was used in the localization and classification of defects. Postulated voids of two different sizes (2 mm and 4 mm diameter) were introduced in PMMA bars with and without a notch. The bar dimensions are 200x20x5 mm. One half of them were plain and the other half has a notch (3 mm x 4 mm) which is close to the defect area (19 mm x 16 mm).This analysis was done with an Artificial Neural Network (ANN) and its optimization was done with an Adaptive Neuro Fuzzy Procedure (ANFIS). A hybrid data base was developed with numerical and experimental results. Synthetic data was generated with the finite element method using SOLID95 element of ANSYS code. A parametric analysis was carried out. Only one defect in such bars was taken into account and the first five natural frequencies were calculated. 460 cases were evaluated. Half of them were plain and the other half has a notch. All the input data was classified in two groups. Each one has 230 cases and corresponds to one of the two sort of voids mentioned above. On the other hand, experimental analysis was carried on with PMMA specimens of the same size. The first two natural frequencies of 40 cases were obtained with one void. The other three frequencies were obtained numerically. 20 of these bars were plain and the others have a notch. These experimental results were introduced in the synthetic data base. 400 cases were taken randomly and, with this information, the ANN was trained with the backpropagation algorithm. The accuracy of the results was tested with the 100 cases that were left. In the next stage of this work, the ANN output was optimized with ANFIS. Previous papers showed that localization and classification of defects was reduced as notches were introduced in such bars. In the case of this paper, improved results were obtained when a hybrid data base was used.

  3. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  4. Gold-nanorod-based colorimetric and fluorescent approach for sensitive and specific assay of disease-related gene and mutation.

    Science.gov (United States)

    Wang, Wenhong; Zhao, Yina; Jin, Yan

    2013-11-27

    Sensitive and specific detection of disease-related gene and single nucleotide polymorphism (SNP) is of great importance in cancer diagnosis. Here, a colorimetric and fluorescent approach is described for detection of the p53 gene and SNP in homogeneous solution by using gold nanorods (GNRs) as both colorimetric probe and fluorescence quencher. Hairpin oligonucleotide was utilized as DNA probe to ensure highly sequence-specific detection of target DNA. In the presence of target DNA, the formation of DNA duplex greatly changed the electrostatic interaction between GNR and DNAs, leading to an obvious change in fluorescence and colorimetric response. The detection limit of fluorescent and colorimetric assay is 0.26 pM and 0.3 nM, respectively. Both fluorescence and colorimetric strategies were able to effectively discriminate complementary DNA from single-base mismatched DNA, which is meaningful for cancer diagnosis. More important, target DNA can be detected as low as 10 nM by the naked eye. Furthermore, transmission electron microscopy and fluorescence anisotropy measurements demonstrated that the color change as well as fluorescence quenching is ascribed to the DNA hybridization-induced aggregation of GNRs. Therefore, the assay provided a fast, sensitive, cost-effective, and specific sensing platform for detecting disease-related gene and SNP.

  5. A sensitive colorimetric assay system for nucleic acid detection based on isothermal signal amplification technology.

    Science.gov (United States)

    Hu, Bo; Guo, Jing; Xu, Ying; Wei, Hua; Zhao, Guojie; Guan, Yifu

    2017-08-01

    Rapid and accurate detection of microRNAs in biological systems is of great importance. Here, we report the development of a visual colorimetric assay which possesses the high amplification capabilities and high selectivity of the rolling circle amplification (RCA) method and the simplicity and convenience of gold nanoparticles used as a signal indicator. The designed padlock probe recognizes the target miRNA and is circularized, and then acts as the template to extend the target miRNA into a long single-stranded nucleotide chain of many tandem repeats of nucleotide sequences. Next, the RCA product is hybridized with oligonucleotides tagged onto gold nanoparticles. This interaction leads to the aggregation of gold nanoparticles, and the color of the system changes from wine red to dark blue according to the abundance of miRNA. A linear correlation between fluorescence and target oligonucleotide content was obtained in the range 0.3-300 pM, along with a detection limit of 0.13 pM (n = 7) and a RSD of 3.9% (30 pM, n = 9). The present approach provides a simple, rapid, and accurate visual colorimetric assay that allows sensitive biodetection and bioanalysis of DNA and RNA nucleotides of interest in biologically important samples. Graphical abstract The colorimetric assay system for analyzing target oligonucleotides.

  6. Hairpin DNA Switch for Ultrasensitive Spectrophotometric Detection of DNA Hybridization Based on Gold Nanoparticles and Enzyme Signal Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun; Wu, Hong; Maham, Aihui; Lin, Yuehe

    2010-08-01

    A novel DNA detection platform based on a hairpin-DNA switch, nanoparticles, and enzyme signal amplification for ultrasensitive detection of DNA hybridization has been developed in this work. In this DNA assay, a “stem-loop” DNA probe dually labeled with a thiol at its 5’ end and a biotin at its 3’ end, respectively, was used. This probe was immobilized on the gold nanoparticles (AuNPs) anchored by a protein, globulin, on a 96-well microplate. In the absence of target DNA, the immobilized probe with the stem-loop structure shields the biotin from being approached by a bulky horseradish peroxidase linked-avidin (avidin-HRP) conjugate due to the steric hindrance. However, in the presence of target DNA, the hybridization between the hairpin DNA probe and the target DNA causes significant conformational change of the probe, which forces biotin away from the surface of AuNPs. As a result, the biotin becomes accessible by the avidin-HRP, and the target hybridization event can be sensitively detected via the HRP catalyzed substrate 3, 3', 5, 5'-tetramethylbenzidine using spectrophometric method. Some experimental parameters governing the performance of the assay have been optimized. At optimal conditions, this DNA assay can detect DNA at the concentration of femtomolar level by means of a signal amplification strategy based on the combination of enzymes and nanoparticles. This approach also has shown excellent specificity to distinguish single-base mismatches of DNA targets because of the intrinsic high selectivity of the hairpin DNA probe.

  7. Seropositivity rates of water channel protein 4 antibodies compared between a cell-based immunofluorescence assay and an enzyme-linked immunosorbent assay in neuromyelitis optica patients

    Institute of Scientific and Technical Information of China (English)

    Xiaoli Wu; Zhangyuan Liao; Jing Ye; Huiqing Dong; Chaodong Wang; Piu Chan

    2011-01-01

    A total of 66 samples (from 27 cases with neuromyelitis optica, 26 cases with multiple sclerosis, and 13 cases with optic neuritis) were tested for aquaporin-4 antibody by a cell-based immunofluorescence assay and an enzyme-linked immunosorbent assay.The sensitivities and specificities of the two assays were similar.We further analyzed an additional 68 patients and 93 healthy controls using the enzyme-linked immunosorbent assay.A Kappa test showed good consistency between the two methods in terms of detection of anti-aquaporin-4 antibody in the sera of neuromyelitis optica patients.No significant correlations were identified with onset age or disease duration, suggesting that aquaporin-4 antibody is a good marker for neuromyelitis optica.The enzyme-linked immunosorbent assay can be used for quantifying aquaporin-4 antibody concentrations and may be useful to dynamically monitor changes in the levels of aquaporin-4 antibody during disease duration.

  8. High content screening for G protein-coupled receptors using cell-based protein translocation assays

    DEFF Research Database (Denmark)

    Grånäs, Charlotta; Lundholt, Betina Kerstin; Heydorn, Arne

    2005-01-01

    G protein-coupled receptors (GPCRs) have been one of the most productive classes of drug targets for several decades, and new technologies for GPCR-based discovery promise to keep this field active for years to come. While molecular screens for GPCR receptor agonist- and antagonist-based drugs...... as valuable discovery tools for several years. The application of high content cell-based screening to GPCR discovery has opened up additional possibilities, such as direct tracking of GPCRs, G proteins and other signaling pathway components using intracellular translocation assays. These assays provide...... the capability to probe GPCR function at the cellular level with better resolution than has previously been possible, and offer practical strategies for more definitive selectivity evaluation and counter-screening in the early stages of drug discovery. The potential of cell-based translocation assays for GPCR...

  9. Assessment of biological and colony hybridization assays for detection of the aerobactin system in Escherichia coli from urinary tract infections.

    Science.gov (United States)

    Orskov, I; Williams, P H; Svanborg Edén, C; Orskov, F

    1989-01-01

    A total of 466 E. coli strains from urinary tract infections (UTI) were screened for the presence and expression of the aerobactin system by a colony hybridization test and a bioassay. A probe carrying part of the genes for aerobactin synthesis was used. A total of 43.1% (201) of the strains were positive in the probe test and undoubtedly positive in the bioassay. When doubtfully positive bioassays were included, this figure rose to 49.8% (232). An additional 4.9% (23) of the strains were positive in the colony hybridization test only while 44% (205) of the strains were negative in both tests. Doubtfully positive bioassays were probably due either to a false positive reaction or to a weak expression of the aerobactin system. 01:K1:H- strains were characteristically probe positive and doubtfully positive in the bioassay. The incidence of isolates positive by both methods or by only one of them was significantly higher among isolates from cases of pyelonephritis (Py) than among those from asymptomatic bacteriuria (ABU) and normal feces (FN) (P less than 0.01).

  10. HIV-1 Reverse Transcriptase based assay to determine cellular dNTP concentrations

    Science.gov (United States)

    Hollenbaugh, Joseph A.; Kim, Baek

    2016-01-01

    Summary Deoxynucleoside triphosphates (dNTPs) are the building blocks of DNA and their biosynthesis are tightly regulated in the cell. HPLC-MS and enzyme-based methods are currently employed to determine dNTP concentrations from cellular extracts. Here, we describe a highly efficient, HIV-1 reverse transcriptase (RT)-based assay to quantitate dNTP concentrations. The assay is based on the ability of HIV-1 RT to function at very low dNTP concentrations, thus providing for the high sensitivity of detection. PMID:26714705

  11. Lumiproxy: A Hybrid Representation of Image-Based Models

    Institute of Scientific and Technical Information of China (English)

    Bin Sheng; Jian Zhu; En-Hua; Yan-Ci Zhang

    2009-01-01

    In this paper, we present a hybrid representation of image-based models combining the textured planes and the hierarchical points. Taking a set of depth images as input, our method starts from classifying input pixels into two categories, indicating the planar and non-planar surfaces respectively. For the planar surfaces, the geometric coefficients are reconstructed to form the uniformly sampled textures. For nearly planar surfaces, some textured planes, called lumiproxies,are constructed to represent the equivalent visual appearance. The Hough transform is used to find the positions of these textured planes, and optic flow measures are used to determine their textures. For remaining pixels corresponding to the non-planar geometries, the point primitive is applied, reorganized as the OBB-tree structure. Then, texture mapping and point splatting are employed together to render the novel views, with the hardware acceleration.

  12. A symmetric terahertz graphene-based hybrid plasmonic waveguide

    Science.gov (United States)

    Chen, Ming; Sheng, Pengchi; Sun, Wei; Cai, Jianjin

    2016-10-01

    A graphene-based hybrid plasmonic waveguide (GHPW) structure, which works on the terahertz frequency and includes two identical cylinder robs symmetrically put on each side of graphene sheet with gaps g, has been proposed and investigated. The present waveguide not only significantly improves the propagation length but also maintains a compact mode area, which is due to the coupling between the dielectric waveguide mode and plasmonic mode. The graphene plasmons particularly differ from plasmons in noble metals of which propagation loss can be tuned by adjusting the Fermi energy level or carrier mobility. With a very good Fermi energy level and carrier mobility, a typical propagation length of 26.7 mm, and mode area of optical field of approximately 4 μm2 at 10 THz are achieved. This waveguide structure shows great promise for designing kinds of functional elements in actively tunable integrated optical devices.

  13. Automatic Facial Expression Recognition Based on Hybrid Approach

    Directory of Open Access Journals (Sweden)

    Ali K. K. Bermani

    2012-12-01

    Full Text Available The topic of automatic recognition of facial expressions deduce a lot of researchers in the late last century and has increased a great interest in the past few years. Several techniques have emerged in order to improve the efficiency of the recognition by addressing problems in face detection and extraction features in recognizing expressions. This paper has proposed automatic system for facial expression recognition which consists of hybrid approach in feature extraction phase which represent a combination between holistic and analytic approaches by extract 307 facial expression features (19 features by geometric, 288 feature by appearance. Expressions recognition is performed by using radial basis function (RBF based on artificial neural network to recognize the six basic emotions (anger, fear, disgust, happiness, surprise, sadness in addition to the natural.The system achieved recognition rate 97.08% when applying on person-dependent database and 93.98% when applying on person-independent.

  14. A hybrid joint based controller for an upper extremity exoskeleton

    Science.gov (United States)

    Mohd Khairuddin, Ismail; Taha, Zahari; Majeed, Anwar P. P. Abdul; Hakeem Deboucha, Abdel; Azraai Mohd Razman, Mohd; Aziz Jaafar, Abdul; Mohamed, Zulkifli

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton. The Euler-Lagrange formulation was used in deriving the dynamic modelling of both the human upper limb as well as the exoskeleton that consists of the upper arm and the forearm. The human model is based on anthropometrical measurements of the upper limb. The proportional-derivative (PD) computed torque control (CTC) architecture is employed in this study to investigate its efficacy performing joint-space control objectives specifically in rehabilitating the elbow and shoulder joints along the sagittal plane. An active force control (AFC) algorithm is also incorporated into the PD-CTC to investigate the effectiveness of this hybrid system in compensating disturbances. It was found that the AFC- PD-CTC performs well against the disturbances introduced into the system whilst achieving acceptable trajectory tracking as compared to the conventional PD-CTC control architecture.

  15. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor

    Science.gov (United States)

    Brown, P.; Whiteside, B. J.; Beek, T. J.; Fox, P.; Horbury, T. S.; Oddy, T. M.; Archer, M. O.; Eastwood, J. P.; Sanz-Hernández, D.; Sample, J. G.; Cupido, E.; O'Brien, H.; Carr, C. M.

    2014-12-01

    We report on the design and development of a low resource, dual sensor vector magnetometer for space science applications on very small spacecraft. It is based on a hybrid device combining an orthogonal triad of commercial anisotropic magnetoresistive (AMR) sensors with a totem pole H-Bridge drive on a ceramic substrate. The drive enables AMR operation in the more sensitive flipped mode and this is achieved without the need for current spike transmission down a sensor harness. The magnetometer has sensitivity of better than 3 nT in a 0-10 Hz band and a total mass of 104 g. Three instruments have been launched as part of the TRIO-CINEMA space weather mission, inter-calibration against the International Geomagnetic Reference Field model makes it possible to extract physical signals such as field-aligned current deflections of 20-60 nT within an approximately 45 000 nT ambient field.

  16. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Changyong Cao

    2015-01-01

    Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.

  17. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor.

    Science.gov (United States)

    Brown, P; Whiteside, B J; Beek, T J; Fox, P; Horbury, T S; Oddy, T M; Archer, M O; Eastwood, J P; Sanz-Hernández, D; Sample, J G; Cupido, E; O'Brien, H; Carr, C M

    2014-12-01

    We report on the design and development of a low resource, dual sensor vector magnetometer for space science applications on very small spacecraft. It is based on a hybrid device combining an orthogonal triad of commercial anisotropic magnetoresistive (AMR) sensors with a totem pole H-Bridge drive on a ceramic substrate. The drive enables AMR operation in the more sensitive flipped mode and this is achieved without the need for current spike transmission down a sensor harness. The magnetometer has sensitivity of better than 3 nT in a 0-10 Hz band and a total mass of 104 g. Three instruments have been launched as part of the TRIO-CINEMA space weather mission, inter-calibration against the International Geomagnetic Reference Field model makes it possible to extract physical signals such as field-aligned current deflections of 20-60 nT within an approximately 45,000 nT ambient field.

  18. An Asymmetric Image Encryption Based on Phase Truncated Hybrid Transform

    Science.gov (United States)

    Khurana, Mehak; Singh, Hukum

    2017-09-01

    To enhance the security of the system and to protect it from the attacker, this paper proposes a new asymmetric cryptosystem based on hybrid approach of Phase Truncated Fourier and Discrete Cosine Transform (PTFDCT) which adds non linearity by including cube and cube root operation in the encryption and decryption path respectively. In this cryptosystem random phase masks are used as encryption keys and phase masks generated after the cube operation in encryption process are reserved as decryption keys and cube root operation is required to decrypt image in decryption process. The cube and cube root operation introduced in the encryption and decryption path makes system resistant against standard attacks. The robustness of the proposed cryptosystem has been analysed and verified on the basis of various parameters by simulating on MATLAB 7.9.0 (R2008a). The experimental results are provided to highlight the effectiveness and suitability of the proposed cryptosystem and prove the system is secure.

  19. A New Hybrid Bathroom System Based on Energy Saving Concept

    Directory of Open Access Journals (Sweden)

    Cui Bo-wen

    2016-01-01

    Full Text Available Based on the characteristics of hot water supply in bathroom, this article proposes a new hybrid energy hot water supply system. The programmable logic controller(PLC as the master controller was adopted in this system, which could automatically detect and storage main thermal physical of the system, such as temperature, water level, solar radiation intensity, power consumption and so on. The active thermal utilization technology of solar energy, air-source heat pump technology, solar energy intensive natural ventilation technology and low temperature hot water floor radiant heating technology were organically integrated in this system, which has the advantages of energy conservation and environment protection, high automation, safe and reliable operation, etc. At the same time, it can make good use of electric power cost between on-peak and off-peak, and promote the optimal allocation of power resources and reduce the cost, which can achieve the goal of intelligent control and energy saving.

  20. Healing Temperature of Hybrid Structures Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    赵中伟; 陈志华; 刘红波

    2016-01-01

    The healing temperature of suspen-dome with stacked arches(SDSA)and arch-supported single-layer lattice shell structures was investigated based on the genetic algorithm. The temperature field of arch under solar radiation was derived by FLUENT to investigate the influence of solar radiation on the determination of the healing temperature. Moreover, a multi-scale model was established to apply the complex temperature field under solar radiation. The change in the mechanical response of these two kinds of structures with the healing temperature was discussed. It can be concluded that solar radiation has great influence on the healing temperature, and the genetic algorithm can be effectively used in the optimization of the healing temperature for hybrid structures.

  1. Hybrid Collision Detection Algorithm based on Image Space

    Directory of Open Access Journals (Sweden)

    XueLi Shen

    2013-07-01

    Full Text Available Collision detection is an important application in the field of virtual reality, and efficiently completing collision detection has become the research focus. For the poorly real-time defect of collision detection, this paper has presented an algorithm based on the hybrid collision detection, detecting the potential collision object sets quickly with the mixed bounding volume hierarchy tree, and then using the streaming pattern collision detection algorithm to make an accurate detection. With the above methods, it can achieve the purpose of balancing load of the CPU and GPU and speeding up the detection rate. The experimental results show that compared with the classic Rapid algorithm, this algorithm can effectively improve the efficiency of collision detection.

  2. Efficient Vaccine Distribution Based on a Hybrid Compartmental Model.

    Directory of Open Access Journals (Sweden)

    Zhiwen Yu

    Full Text Available To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible-exposed-infectious šC recovered model, named the hybrid SEIR-V model (HSEIR-V, which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk for controlling the spread of viral infections. Based on data from the 2009-2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics.

  3. Label-free liquid crystal biosensor for L-histidine: A DNAzyme-based platform for small molecule assay.

    Science.gov (United States)

    Liao, Shuzhen; Ding, Huazhi; Wu, Yan; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2016-05-15

    We have developed a novel DNAzyme-based liquid crystal (LC) biosensor with high sensitivity for L-histidine, which is based on L-histidine-mediated formation of DNA duplexes by cleaving DNAzyme using L-histidine, resulting in a remarkable optical signal. Firstly, an optimal amount of capture probe is bound to the glass slide, which changes the surface topology as little as possible and shows a zero-background for the sensing system. When the DNAzyme molecule is cleaved by the target, L-histidine, a partial substrate strand is produced, which in turn can hybridize with the capture probe, forming a DNA duplex. The DNA duplexes induce LC molecules to undergo a homeotropic-to-tiled transition, obtaining a remarkable optical signal. The results show that the DNAzyme-based LC biosensor is highly sensitive to L-histidine with a detection limit of 50 nM. Compared with previously reported multi-step amplified methods, this newly designed assay system for L-histidine has no amplified procedures with comparable sensitivity. This method is an unprecedented example of DNAzyme-based LC biosensor for small molecules, which has potential to offer a DNAzyme-based LC model used in various targets.

  4. Long term response of a Concanavalin-A based fluorescence glucose sensing assay

    Science.gov (United States)

    Locke, Andrea K.; Cummins, Brian M.; Abraham, Alexander A.; Coté, Gerard L.

    2015-03-01

    Competitive binding assays comprised of the protein Concanavalin A (ConA) have shown potential for use in continuous glucose monitoring devices. However, its time-dependent, thermal instability can impact the lifetime of these ConA based assays. In an attempt to design sensors with longer in vivo lifetimes, different groups have immobilized the protein to various surfaces. For example, Ballerstadt et al. have shown that immobilizing ConA onto the interior of a micro-dialysis membrane and allowing dextran to be freely suspended within solution allowed for successful in vivo glucose sensing up to 16 days. This work explores the glucose response of an assay comprised of modified ConA and a single fluorescently labeled competing ligand in free solution to increase the in vivo sensing lifetime without immobilization,. The behavior of this assay in the presence of varying glucose concentrations is monitored via fluorescence anisotropy over a 30 day period.

  5. Detection of plum pox virus by enzyme-linked immunosorbent assay in some apricot and peach varieties and hybrids in Romania.

    Science.gov (United States)

    Toma, S; Isac, M; Balan, V; Ivascu, A

    1998-09-01

    Plum pox virus (PPV) is a potyvirus widely spread in many species of the Prunus genus such as plum, apricot, peach, sweet cherry and others. This potyvirus causes great damage to stone fruit trees in Romania and other European countries as Hungary, Italy, Czech Republic, France, Spain, Greece, Turkey, and Slovak Republic. The Research Station for Fruit Tree Growing Baneasa in Bucharest has realized many studies on the epidemiology and spread of PPV and also on the disease symptomatology and detection possibilities. The control of sharka disease by sanitary selection measures requires corresponding detection techniques. The aim of this study was to determine the presence or absence of PPV in some apricot and peach varieties and hybrids in 1995-1997 by the enzyme-linked immunosorbent assay (ELISA) and to verify if some of our biological materials evaluated as symptom-free under field conditions for many years are also virus-free and can be considered healthy.

  6. Evaluation of tetrazolium-based semiautomatic colorimetric assay for measurement of human antitumor cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Heo, D.S.; Park, J.G.; Hata, K.; Day, R.; Herberman, R.B.; Whiteside, T.L. (Univ. of Pittsburgh School of Medicine, PA (USA))

    1990-06-15

    A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based colorimetric assay was developed and compared with 51Cr release from different adherent tumor cell targets (human squamous cell carcinoma lines of the head and neck established in our laboratory, melanoma, and colorectal carcinoma) using 5-7-day human lymphokine-activated killer cells and monocyte-depleted peripheral blood lymphocytes as effectors. With adherent tumor cell targets, MTT colorimetry was more sensitive than the 51Cr release assay in measuring the antitumor activity of effectors: median, 4385 (range, 988-8144) versus median, 1061 (range, 582-7294) lytic units (the number of effector cells required to lyse 20% of 5 x 10(3) targets)/10(7) effectors (P less than 0.01). Background effects (without effector cells) were comparable in 4-h assays (9% versus 10%) between MTT colorimetry and 51Cr release. In 24-h assays, MTT colorimetry showed higher antitumor activity (70-100% versus 40-60% lysis at 1:1 effector:target cell ratio) but lower background effects (6% versus 38%) than 51Cr release assay. Thus, MTT colorimetry was more sensitive, did not use radiolabeled targets, required fewer effector cells, and was easier, less expensive, and better adaptable to serial monitoring of effector cell function in cancer patients. This colorimetric assay is especially well suited to adherent tumor cell targets. The use of adherent tumor cell monolayers, as opposed to trypsinized single cell suspensions, provides an opportunity to measure interactions of effector cells with enzymatically unaltered solid tumor targets. Because of the greater sensitivity of the colorimetric assay, the transformation of MTT data into lytic units, as commonly used for 51Cr release assays, required an adjustment to avoid the extrapolation based on the exponential fit equation.

  7. Development and preliminary validation of a plate-based CB1/CB2 receptor functional assay.

    Science.gov (United States)

    Dossou, K S S; Devkota, K P; Kavanagh, P V; Beutler, J A; Egan, J M; Moaddel, R

    2013-06-15

    Cannabinoid (CB) receptors are being targeted therapeutically for the treatment of anxiety, obesity, movement disorders, glaucoma, and pain. More recently, cannabinoid agonists have displayed antiproliferative activity against breast cancer and prostate cancer in animal models. To study cannabinoid receptor ligands, we have developed a novel plate-based assay that measures internalization of CB1/CB2 receptors by determining the change in the intracellular levels of the radiolabeled agonists: [(3)H]Win55-212-2 for CB1 and [(3)H]CP55-940 for CB2. The developed plate-based assay was validated by determining IC50 values for known antagonists: AM251, AM281, AM630, and AM6545. The data obtained were consistent with previously reported values, thereby confirming that the assay can be used to determine the functional binding activities (IC50) of antagonists for the CB1 and CB2 receptors. In addition, we demonstrated that the plate-based assay may be used for screening against complex matrices. Specifically, we demonstrated that the plate-based assay was able to identify which extracts of several species of the genus Zanthoxylum had activity at the CB1/CB2 receptors.

  8. Highly Elastic and Conductive Human-Based Protein Hybrid Hydrogels.

    Science.gov (United States)

    Annabi, Nasim; Shin, Su Ryon; Tamayol, Ali; Miscuglio, Mario; Bakooshli, Mohsen Afshar; Assmann, Alexander; Mostafalu, Pooria; Sun, Jeong-Yun; Mithieux, Suzanne; Cheung, Louis; Tang, Xiaowu Shirley; Weiss, Anthony S; Khademhosseini, Ali

    2016-01-01

    A highly elastic hybrid hydrogel of methacryloyl-substituted recombinant human tropoelastin (MeTro) and graphene oxide (GO) nanoparticles are developed. The synergistic effect of these two materials significantly enhances both ultimate strain (250%), reversible rotation (9700°), and the fracture energy (38.8 ± 0.8 J m(-2) ) in the hybrid network. Furthermore, improved electrical signal propagation and subsequent contraction of the muscles connected by hybrid hydrogels are observed in ex vivo tests.

  9. Automated image-based assay for evaluation of HIV neutralization and cell-to-cell fusion inhibition

    National Research Council Canada - National Science Library

    Sheik-Khalil, Enas; Bray, Mark-Anthony; Özkaya Şahin, Gülsen; Scarlatti, Gabriella; Jansson, Marianne; Carpenter, Anne E; Fenyö, Eva Maria

    2014-01-01

    .... Here, we present a high-throughput, high-content automated plaque reduction (APR) assay based on automated microscopy and image analysis that allows evaluation of neutralization and inhibition of cell-cell fusion within the same assay...

  10. Beam Pattern Synthesis Based on Hybrid Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    YU Yan-li; WANG Ying-min; LI Lei

    2010-01-01

    As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays, a hybrid numerical synthesis method based on adaptive principle and genetic algorithm was presented in this paper. First, based on the adaptive theory, a given array was supposed as an adaptive array and its sidelobes were reduced by assigning a number of interference signals in the sidelobe region. An initial beam pattern was obtained after several iterations and adjustments of the interference intensity, and based on its parameters, a desired pattern was created. Then, an objective function based on the difference between the designed and desired patterns can be constructed. The pattern can be optimized by using the genetic algorithm to minimize the objective function. A design example for a double-circular array demonstrates the effectiveness of this method. Compared with the approaches existing before, the proposed method can reduce the sidelobe effectively and achieve less synthesis magnitude error in the mainlobe.The method can search for optimum attainable pattern for the specific elements if the desired pattern can not be found.

  11. Capacitance-based assay for real-time monitoring of endocytosis and cell viability.

    Science.gov (United States)

    Lee, Rimi; Kim, Jihun; Kim, Sook Young; Jang, Seon Mi; Lee, Sun-Mi; Choi, In-Hong; Park, Seung Woo; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2012-07-07

    Label-free cell-based assays have emerged as a promising means for high-throughput screening. Most label-free sensors are based on impedance measurements that reflect the passive electrical properties of cells. Here we introduce a capacitance-based assay that measures the dielectric constant (capacitance) of biological cells, and demonstrate the feasibility of analyzing endocytosis and screening chemotherapeutic agents with this assay. Endocytosis induces a change in the zeta potential, leading to a change in the dielectric constant which enables real-time endocytosis monitoring using the capacitance sensor. Additionally, since the dielectric constant is proportional to cell radius and cell volume, cell viability can be estimated from the change in capacitance. Therefore, the capacitance sensor array can also be used for cytotoxicity testing for large-scale chemotherapeutic screening.

  12. Processing of nanolitre liquid plugs for microfluidic cell-based assays

    Directory of Open Access Journals (Sweden)

    Junji Fukuda, Shintaro Takahashi, Tatsuya Osaki, Naoto Mochizuki and Hiroaki Suzuki

    2012-01-01

    Full Text Available Plugs, i.e. droplets formed in a microchannel, may revolutionize microfluidic cell-based assays. This study describes a microdevice that handles nanolitre-scale liquid plugs for the preparation of various culture setups and subsequent cellular assays. An important feature of this mode of liquid operation is that the recirculation flow generated inside the plug promotes the rapid mixing of different solutions after plugs are merged, and it keeps cell suspensions homogeneous. Thus, serial dilutions of reagents and cell suspensions with different cell densities and cell types were rapidly performed using nanolitres of solution. Cells seeded through the plug processing grew well in the microdevice, and subsequent plug processing was used to detect the glucose consumption of cells and cellular responses to anticancer agents. The plug-based microdevice may provide a useful platform for cell-based assay systems in various fields, including fundamental cell biology and drug screening applications.

  13. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors.

    Science.gov (United States)

    Noor, M Omair; Krull, Ulrich J

    2014-10-21

    Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an

  14. Biochemical-immunological hybrid biosensor based on two-dimensional chromatography for on-site sepsis diagnosis.

    Science.gov (United States)

    Kim, Seung-Wan; Cho, Il-Hoon; Lim, Guei-Sam; Park, Gi-Na; Paek, Se-Hwan

    2017-12-15

    A hybrid-biosensor system that can simultaneously fulfill the immunoassay for protein markers (e.g., C-reactive protein (CRP) and procalcitonin (PCT)) and the enzyme assay for metabolic substances (e.g., lactate) in the same sepsis-based sample has been devised. Such a challenge was pursued through the installation of an enzyme-reaction zone on the signal pad of the typical immuno-strip for the rapid two-dimensional (2-D)-chromatography test. To minimize the mutual interference in the hybrid assays, a pre-determined membrane site was etched in a pattern and mounted with a biochemical-reaction pad, thereby allowing a loaded sample to enter and then stay in the pad for a colored-signal production over the course of an immunoassay. By employing such a constructed system, a serum sample was analyzed according to the vertical direction flowing along the strip, which supplied lactate to the biochemical-reaction zone and then protein markers to the immunological-binding area that was pre-coated with capture antibodies. Thereafter, the enzyme-signal tracers for the immunoassay and the substrate solution were sequentially furnished using a horizontal path for the tracing of the immune complexes that were formed with CRP or PCT. The color signal that was produced from each assay was detected at a pre-determined time and quantified on a smartphone-based detector. Under the optimal conditions, the dynamic ranges for the analytes covered the respective clinical ranges, and the total coefficient of variation was between 8.6% and 13.3%. The hybrid biosensor further showed a high correlation (R(2) > 0.95) with the reference systems for the target markers. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Multi-Agent System based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper proposes multi-agent system based event- triggered hybrid controls for guaranteeing energy supply of a hybrid energy generation system with high security. First, a mul-ti-agent system is constituted by an upper-level central coordi-nated control agent combined with several lower...... switching control, distributed dynamic regulation and coordinated switching con-trol are designed fully dependent on the hybrid behaviors of all distributed energy resources and the logical relationships be-tween them, and interact with each other by means of the mul-ti-agent system to form hierarchical......-level unit agents. Each lower-level unit agent is responsible for dealing with internal switching control and distributed dynamic regula-tion for its unit system. The upper-level agent implements coor-dinated switching control to guarantee the power supply of over-all system with high security. The internal...

  16. Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications

    Science.gov (United States)

    Shen, Mingwu; Shi, Xiangyang

    2010-09-01

    This review reports some recent advances on the synthesis, self-assembly, and biofunctionalization of various dendrimer-based organic/inorganic hybrid nanoparticles (NPs) for various biomedical applications, including but not limited to protein immobilization, gene delivery, and molecular diagnosis. In particular, targeted molecular imaging of cancer using dendrimer-based organic/inorganic hybrid NPs will be introduced in detail.

  17. Zebrafish-based reporter gene assays reveal different estrogenic activities in river waters compared to a conventional human-derived assay.

    Science.gov (United States)

    Sonavane, Manoj; Creusot, Nicolas; Maillot-Maréchal, Emmanuelle; Péry, Alexandre; Brion, François; Aїt-Aïssa, Selim

    2016-04-15

    Endocrine disrupting chemicals (EDCs) act on the endocrine system through multiple mechanisms of action, among them interaction with estrogen receptors (ERs) is a well-identified key event in the initiation of adverse outcomes. As the most commonly used estrogen screening assays are either yeast- or human-cell based systems, the question of their (eco)toxicological relevance when assessing risks for aquatic species can be raised. The present study addresses the use of zebrafish (zf) derived reporter gene assays, both in vitro (i.e. zf liver cell lines stably expressing zfERα, zfERβ1 and zfERβ2 subtypes) and in vivo (i.e. transgenic cyp19a1b-GFP zf embryos), to assess estrogenic contaminants in river waters. By investigating 20 French river sites using passive sampling, high frequencies of in vitro zfER-mediated activities in water extracts were measured. Among the different in vitro assays, zfERβ2 assay was the most sensitive and responsive one, enabling the detection of active compounds at all investigated sites. In addition, comparison with a conventional human-based in vitro assay highlighted sites that were able to active zfERs but not human ER, suggesting the occurrence of zf-specific ER ligands. Furthermore, a significant in vivo estrogenic activity was detected at the most active sites in vitro, with a good accordance between estradiol equivalent (E2-EQ) concentrations derived from both in vitro and in vivo assays. Overall, this study shows the relevance and usefulness of such novel zebrafish-based assays as screening tools to monitor estrogenic activities in complex mixtures such as water extracts. It also supports their preferred use compared to human-based assays to assess the potential risks caused by endocrine disruptive chemicals for aquatic species such as fish.

  18. Optimal traffic light control method for a single intersection based on hybrid systems

    Institute of Scientific and Technical Information of China (English)

    赵晓华; 陈阳舟; 崔平远

    2003-01-01

    A single intersection of two phases is selected as a model to put forward a new optimal time-planning scheme for traffic light based on the model of hybrid automata for single intersection. A method of optimization is proposed for hybrid systems, and the average queue length over all queues is used as an objective function to find an optimal switching scheme for traffic light. It is illustrated that traffic light control for single intersection is a typical hybrid system, and the optimal planning-time scheme can be obtained using the optimal hybrid systems control based on the two stages method.

  19. Hybrid Integrated Silicon Microfluidic Platform for Fluorescence Based Biodetection

    Directory of Open Access Journals (Sweden)

    André Darveau

    2007-09-01

    Full Text Available The desideratum to develop a fully integrated Lab-on-a-chip device capable ofrapid specimen detection for high throughput in-situ biomedical diagnoses and Point-of-Care testing applications has called for the integration of some of the novel technologiessuch as the microfluidics, microphotonics, immunoproteomics and Micro ElectroMechanical Systems (MEMS. In the present work, a silicon based microfluidic device hasbeen developed for carrying out fluorescence based immunoassay. By hybrid attachment ofthe microfluidic device with a Spectrometer-on-chip, the feasibility of synthesizing anintegrated Lab-on-a-chip type device for fluorescence based biosensing has beendemonstrated. Biodetection using the microfluidic device has been carried out usingantigen sheep IgG and Alexafluor-647 tagged antibody particles and the experimentalresults prove that silicon is a compatible material for the present application given thevarious advantages it offers such as cost-effectiveness, ease of bulk microfabrication,superior surface affinity to biomolecules, ease of disposability of the device etc., and is thussuitable for fabricating Lab-on-a-chip type devices.

  20. Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories.

    Science.gov (United States)

    Christopher-Hennings, Jane; Araujo, Karla P C; Souza, Carlos J H; Fang, Ying; Lawson, Steven; Nelson, Eric A; Clement, Travis; Dunn, Michael; Lunney, Joan K

    2013-11-01

    Bead-based multiplex assays (BBMAs) are applicable for high throughput, simultaneous detection of multiple analytes in solution (from several to 50-500 analytes within a single, small sample volume). Currently, few assays are commercially available for veterinary applications, but they are available to identify and measure various cytokines, growth factors and their receptors, inflammatory proteins, kinases and inhibitors, neurobiology proteins, and pathogens and antibodies in human beings, nonhuman primates, and rodent species. In veterinary medicine, various nucleic acid and protein-coupled beads can be used in, or for the development of, antigen and antibody BBMAs, with the advantage that more data can be collected using approximately the same amount of labor as used for other antigen and antibody assays. Veterinary-related BBMAs could be used for detection of pathogens, genotyping, measurement of hormone levels, and in disease surveillance and vaccine assessment. It will be important to evaluate whether BBMAs are "fit for purpose," how costs and efficiencies compare between assays, which assays are published or commercially available for specific veterinary applications, and what procedures are involved in the development of the assays. It is expected that many veterinary-related BBMAs will be published and/or become commercially available in the next few years. The current review summarizes the BBMA technology and some of the currently available BBMAs developed for veterinary settings. Some of the human diagnostic BBMAs are also described, providing an example of possible templates for future development of new veterinary-related BBMAs.

  1. A high-throughput fluorescence-based assay for Plasmodium dihydroorotate dehydrogenase inhibitor screening.

    Science.gov (United States)

    Caballero, Iván; Lafuente, María José; Gamo, Francisco-Javier; Cid, Concepción

    2016-08-01

    Plasmodium dihydroorotate dehydrogenase (DHODH) is a mitochondrial membrane-associated flavoenzyme that catalyzes the rate-limiting step of de novo pyrimidine biosynthesis. DHODH is a validated target for malaria, and DSM265, a potent inhibitor, is currently in clinical trials. The enzyme catalyzes the oxidation of dihydroorotate to orotate using flavin mononucleotide (FMN) as cofactor in the first half of the reaction. Reoxidation of FMN to regenerate the active enzyme is mediated by ubiquinone (CoQD), which is the physiological final electron acceptor and second substrate of the reaction. We have developed a fluorescence-based high-throughput enzymatic assay to find DHODH inhibitors. In this assay, the CoQD has been replaced by a redox-sensitive fluorogenic dye, resazurin, which changes to a fluorescent state on reduction to resorufin. Remarkably, the assay sensitivity to find competitive inhibitors of the second substrate is higher than that reported for the standard colorimetric assay. It is amenable to 1536-well plates with Z' values close to 0.8. The fact that the human enzyme can also be assayed in the same format opens additional applications of this assay to the discovery of inhibitors to treat cancer, transplant rejection, autoimmune diseases, and other diseases mediated by rapid cellular growth.

  2. FluxCTTX: A LIMS-based tool for management and analysis of cytotoxicity assays data.

    Science.gov (United States)

    Faria-Campos, Alessandra C; Balottin, Luciene B; Zuin, Gianlucca; Garcia, Vinicius; Batista, Paulo H S; Granjeiro, José M; Campos, Sérgio V A

    2015-01-01

    Cytotoxicity assays have been used by researchers to screen for cytotoxicity in compound libraries. Researchers can either look for cytotoxic compounds or screen "hits" from initial high-throughput drug screens for unwanted cytotoxic effects before investing in their development as a pharmaceutical. These assays may be used as an alternative to animal experimentation and are becoming increasingly important in modern laboratories. However, the execution of these assays in large scale and different laboratories requires, among other things, the management of protocols, reagents, cell lines used as well as the data produced, which can be a challenge. The management of all this information is greatly improved by the utilization of computational tools to save time and guarantee quality. However, a tool that performs this task designed specifically for cytotoxicity assays is not yet available. In this work, we have used a workflow based LIMS -- the Flux system -- and the Together Workflow Editor as a framework to develop FluxCTTX, a tool for management of data from cytotoxicity assays performed at different laboratories. The main work is the development of a workflow, which represents all stages of the assay and has been developed and uploaded in Flux. This workflow models the activities of cytotoxicity assays performed as described in the OECD 129 Guidance Document. FluxCTTX presents a solution for the management of the data produced by cytotoxicity assays performed at Interlaboratory comparisons. Its adoption will contribute to guarantee the quality of activities in the process of cytotoxicity tests and enforce the use of Good Laboratory Practices (GLP). Furthermore, the workflow developed is complete and can be adapted to other contexts and different tests for management of other types of data.

  3. Screening of agonistic activities against four nuclear receptors in wastewater treatment plants in Japan using a yeast two-hybrid assay

    Institute of Scientific and Technical Information of China (English)

    Daisuke Inoue; Koki Nakama; Kazuko Sawada; Taro Watanabe; Hisae Matsui; Kazunari Sei; Tsuyoshi Nakanishi; Michihiko Ike

    2011-01-01

    To assess the potential endocrine disruptive effects through multiple nuclear receptors (NRs), especially non-steroidal NRs, in municipal wastewater, we examined the agonistic activities on four NRs (estrogen receptor c, thyroid hormone receptor α, retinoic acid receptor α and retinoid X receptor α) of untreated and treated wastewater from municipal wastewater treatment plants (WWTPs) in Japan using a yeast two-hybrid assay.Investigation of the infiuent and effluent of seven WWTPs revealed that agonistic activities against steroidal and non-steroidal NRs were always detected in the infiuents and partially remained in the effluents.Further investigation of four WWTPs employing conventional activated sludge, pseudo-anoxic-oxic, anoxic-oxic and anaerobic-anoxic-oxic processes revealed that the ability to reduce the agonistic activity against each of the four NRs varies depending on the treatment process.These results indicated that municipal wastewater in Japan commonly contains endocrine disrupting chemicals that exert agonistic activities on steroidal and non-steroidal NRs, and that some of these chemicals are released into the natural aquatic environment.Although the results obtained in yeast assays suggested that measured levels of non-steroidal NR agonists in the effluent of WWTPs were not likely to cause any biological effect, further study is required to assess their possible risks in detail.

  4. Shape based assignment tests suggest transgressive phenotypes in natural sculpin hybrids (Teleostei, Scorpaeniformes, Cottidae

    Directory of Open Access Journals (Sweden)

    Sheets H David

    2005-06-01

    Full Text Available Abstract Background Hybridization receives attention because of the potential role that it may play in generating evolutionary novelty. An explanation for the emergence of novel phenotypes is given by transgressive segregation, which, if frequent, would imply an important evolutionary role for hybridization. This process is still rarely studied in natural populations as samples of recent hybrids and their parental populations are needed. Further, the detection of transgressive segregation requires phenotypes that can be easily quantified and analysed. We analyse variability in body shape of divergent populations of European sculpins (Cottus gobio complex as well as natural hybrids among them. Results A distance-based method is developed to assign unknown specimens to known groups based on morphometric data. Apparently, body shape represents a highly informative set of characters that parallels the discriminatory power of microsatellite markers in our study system. Populations of sculpins are distinct and "unknown" specimens can be correctly assigned to their source population based on body shape. Recent hybrids are intermediate along the axes separating their parental groups but display additional differentiation that is unique and coupled with the hybrid genetic background. Conclusion There is a specific hybrid shape component in natural sculpin hybrids that can be best explained by transgressive segregation. This inference of how hybrids differ from their ancestors provides basic information for future evolutionary studies. Furthermore, our approach may serve to assign candidate specimens to their source populations based on morphometric data and help in the interpretation of population differentiation.

  5. Development of a versatile organophosphorous-hydrolase-based assay for organophosphate pesticides

    Science.gov (United States)

    Rogers, Kim R.; Wang, Yi; Mulchandani, Ashok; Mulchandani, P.; Chen, Wilfred

    1999-02-01

    We report a rapid and versatile organophosphorus hydrolase (OPH)-based method for measurement of organophosphate pesticides. This assay is based on a substrate-dependant change in pH near the active site of the enzyme. The pH change is monitored using fluorescein isothiocyanate (FITC) which is covalently immobilized to the enzyme. This method employs FITC-labeled enzyme adsorbed to polymethylmethacrylate beads. Analytes were measured using a microbead fluorescence analyzer. The dynamic concentration range for the assay extends from 25 (mu) M to 400 (mu) M for paraoxon with a detection limit of 8 (mu) M. This assay compared favorably to an HPLC method for monitoring the concentration of coumaphos in bioremediation filtrate samples.

  6. Cultivar origin and admixture detection in Turkish olive oils by SNP-based CAPS assays.

    Science.gov (United States)

    Uncu, Ali Tevfik; Frary, Anne; Doganlar, Sami

    2015-03-04

    The aim of this study was to establish a DNA-based identification key to ascertain the cultivar origin of Turkish monovarietal olive oils. To reach this aim, we sequenced short fragments from five olive genes for SNP (single nucleotide polymorphism) identification and developed CAPS (cleaved amplified polymorphic DNA) assays for SNPs that alter restriction enzyme recognition motifs. When applied on the oils of 17 olive cultivars, a maximum of five CAPS assays were necessary to discriminate the varietal origin of the samples. We also tested the efficiency and limit of our approach for detecting olive oil admixtures. As a result of the analysis, we were able to detect admixing down to a limit of 20%. The SNP-based CAPS assays developed in this work can be used for testing and verification of the authenticity of Turkish monovarietal olive oils, for olive tree certification, and in germplasm characterization and preservation studies.

  7. A Neutralizing Antibody Assay Based on a Reporter of Antibody-Dependent Cell-Mediated Cytotoxicity.

    Science.gov (United States)

    Wu, Yuling; Li, Jia J; Kim, Hyun Jun; Liu, Xu; Liu, Weiyi; Akhgar, Ahmad; Bowen, Michael A; Spitz, Susan; Jiang, Xu-Rong; Roskos, Lorin K; White, Wendy I

    2015-11-01

    Benralizumab is a humanized anti-IL5 receptor α (IL5Rα) monoclonal antibody (mAb) with enhanced (afucosylation) antibody-dependent cell-mediated cytotoxicity (ADCC) function. An ADCC reporter cell-based neutralizing antibody (NAb) assay was developed and characterized to detect NAb against benralizumab in human serum to support the clinical development of benralizumab. The optimal ratio of target cells to effector cells was 3:1. Neither parental benralizumab (fucosylated) nor benralizumab Fab resulted in ADCC activity, confirming the requirement for ADCC activity in the NAb assay. The serum tolerance of the cells was determined to be 2.5%. The cut point derived from normal and asthma serum samples was comparable. The effective range of benralizumab was determined, and 35 ng/mL [80% maximal effective concentration (EC80)] was chosen as the standard concentration to run in the assessment of NAb. An affinity purified goat anti-benralizumab polyclonal idiotype antibody preparation was shown to have NAb since it inhibited ADCC activity in a dose-dependent fashion. The low endogenous concentrations of IL5 and soluble IL5 receptor (sIL5R) did not demonstrate to interfere with the assay. The estimated assay sensitivities at the cut point were 1.02 and 1.10 μg/mL as determined by the surrogate neutralizing goat polyclonal and mouse monoclonal anti-drug antibody (ADA) controls, respectively. The assay can detect NAb (at 2.5 μg/mL) in the presence of 0.78 μg/mL benralizumab. The assay was not susceptible to non-specific matrix effects. This study provides an approach and feasibility of developing an ADCC cell-based NAb assay to support biopharmaceuticals with an ADCC function.

  8. Development of hybrid electric vehicle powertrain test system based on virtue instrument

    Science.gov (United States)

    Xu, Yanmin; Guo, Konghui; Chen, Liming

    2017-05-01

    Hybrid powertrain has become the standard configuration of some automobile models. The test system of hybrid vehicle powertrain was developed based on virtual instrument, using electric dynamometer to simulate the work of engines, to test the motor and control unit of the powertrain. The test conditions include starting, acceleration, and deceleration. The results show that the test system can simulate the working conditions of the hybrid electric vehicle powertrain under various conditions.

  9. Genotyping of Chlamydophila psittaci using a new DNA microarray assay based on sequence analysis of ompA genes

    Directory of Open Access Journals (Sweden)

    Schubert Evelyn

    2008-04-01

    Full Text Available Abstract Background The currently used genotyping system for the avian zoonotic pathogen Chlamydophila (C. psittaci has evolved from serology and is based on ompA sequence variations. It includes seven avian and two non-avian genotypes. Restriction enzyme cleavage of the amplified ompA gene and, less frequently, ompA sequencing are being used for examination, but, beside methodological limitations, an increasing number of recently tested strains could not be assigned to any established genotype. Results Comprehensive analysis of all available ompA gene sequences has revealed a remarkable genetic diversity within the species C. psittaci, which is only partially covered by the present genotyping scheme. We suggest adjustments and extensions to the present scheme, which include the introduction of subgroups to the more heterogeneous genotypes A, E/B and D, as well as six provisional genotypes representing so far untypable strains. The findings of sequence analysis have been incorporated in the design of a new DNA microarray. The ArrayTube™ microarray-based ompA genotyping assay has been shown to discriminate among established genotypes and identify so far untyped strains. Its high specificity, which allows detection of single-nucleotide polymorphisms, is due to the parallel approach consisting in the use of 35 hybridization probes derived from variable domains 2 and 4 of the ompA gene. Conclusion The traditional genotyping system does not adequately reflect the extent of intra-species heterogeneity in ompA sequences of C. psittaci. The newly developed DNA microarray-based assay represents a promising diagnostic tool for tracing epidemiological chains, exploring the dissemination of genotypes and identifying non-typical representatives of C. psittaci.

  10. A robotics-based automated assay for inorganic and organic phosphates.

    Science.gov (United States)

    Cogan, E B; Birrell, G B; Griffith, O H

    1999-06-15

    Phosphate analyses are fundamental to a broad range of biochemical applications involving inorganic phosphate and organic phosphoesters such as phospholipids, phosphorylated proteins, and nucleic acids. A practical automated method utilizing robotics is described in this report. Five colorimetric methods of phosphate analyses based on formation of a phosphomolybdate complex and compatible with the automated assay were tested, and the fundamental chemistry is discussed. The relative sensitivities are malachite green > crystal violet > quinaldine red > ascorbate reduction > antimony-modified ascorbate reduction, although only a fourfold improvement was observed in going from the modified ascorbate procedure to malachite green. Malachite green was selected to optimize the assay because this dye provided the highest sensitivity. However, where color stability and low blanks are more important than sensitivity, the ascorbate reduction and quinaldine red methods were found to be better choices than malachite green. Automation using a robotic liquid-handling system substantially reduces the labor required to process large arrays of samples. The result is a sensitive, nonradioactive assay of inorganic phosphate with high throughput. A digestion step in an acid-resistant 96-well plate was developed to extend the assay to phosphate esters. The robotic-based assay was demonstrated with inorganic phosphate and a common phospholipid, phosphatidylcholine.

  11. Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy

    Science.gov (United States)

    Lim, Wei Qi; Phua, Soo Zeng Fiona; Xu, Hesheng Victor; Sreejith, Sivaramapanicker; Zhao, Yanli

    2016-06-01

    In recent years, there has been a considerable research focus on integrating cancer cell imaging and therapeutic functions into single nanoscale platforms for better treatment of cancer. This task could often be achieved by incorporating multiple components into a hybrid nanosystem. In this minireview, we highlight different types of silica-based hybrid nanosystems and their recent applications as integrated multifunctional platforms for cancer imaging and treatment. The discussions are divided into several sections focusing on various types of materials employed to integrate with silica, which include silica-metallic nanoparticle based hybrid nanocarriers, silica-gold nanoparticle based hybrid nanocarriers, silica-quantum dot based hybrid nanocarriers, silica-upconversion nanoparticle based hybrid nanocarriers, silica-carbon based hybrid nanocarriers, and organosilica nanocarriers. Therapeutic agents loaded in such hybrids include chemodrugs, proteins, DNA/RNA and photosensitizers. For targeted delivery into tumor sites, targeting ligands such as antibodies, peptides, aptamers, and other small molecules are grafted on the surface of the nanocarriers. At the end of the review, a brief summary and research outlook are presented. This minireview aims to provide a quick update of recent research achievements in the field.

  12. MoSi2-Base Hybrid Composites from Aeroengine Applications

    Science.gov (United States)

    Hebsur, Mohan G.

    2000-01-01

    Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved low temperature accelerated oxidation resistance by forming a Si2ON2 protective scale and thereby eliminated catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness, and significantly lowered the CTE of the MoSi2 which eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited this excellent strength and toughness improvement up to 1673 K. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites due to improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. These hybrid composites remain competitive with ceramic matrix composites as a replacement for Ni-base superalloys in aircraft engine applications.

  13. HybridSPE: A novel technique to reduce phospholipid-based matrix effect in LC-ESI-MS Bioanalysis.

    Science.gov (United States)

    Ahmad, Shafeeque; Kalra, Harsh; Gupta, Amit; Raut, Bharat; Hussain, Arshad; Rahman, Md Akhlaquer

    2012-10-01

    When complex biological materials are analyzed without an adequate sample preparation technique, MS signal and response undergo significant alteration and result in poor quantification and assay. This problem generally takes place due to the presence of several endogenous materials component in samples. One of the major causes of ion suppression in bioanalysis is the presence of phospholipids during LC-MS analysis. The phospholipid-based matrix effect was investigated with a commercially available electro spray ionization (ESI) source coupled with a triple quadrupole mass spectrometer. HybridSPE dramatically reduced the levels of residual phospholipids in biological samples, leading to significant reduction in matrix effects. This new procedure that combines the simplicity of precipitation with the selectivity of SPE allows obtaining much cleaner extracts than with conventional procedures. HybridSPE-precipitation procedure provides significant improvement in bioanalysis and a practical and fast way to ensure the avoidance of phospholipids-based matrix effects. The present review outlines the HybridSPE technique to minimize phospholipids-based matrix effects on LC-ESI-MS bioanalysis.

  14. HybridSPE: A novel technique to reduce phospholipid-based matrix effect in LC-ESI-MS Bioanalysis

    Directory of Open Access Journals (Sweden)

    Shafeeque Ahmad

    2012-01-01

    Full Text Available When complex biological materials are analyzed without an adequate sample preparation technique, MS signal and response undergo significant alteration and result in poor quantification and assay. This problem generally takes place due to the presence of several endogenous materials component in samples. One of the major causes of ion suppression in bioanalysis is the presence of phospholipids during LC-MS analysis. The phospholipid-based matrix effect was investigated with a commercially available electro spray ionization (ESI source coupled with a triple quadrupole mass spectrometer. HybridSPE dramatically reduced the levels of residual phospholipids in biological samples, leading to significant reduction in matrix effects. This new procedure that combines the simplicity of precipitation with the selectivity of SPE allows obtaining much cleaner extracts than with conventional procedures. HybridSPE-precipitation procedure provides significant improvement in bioanalysis and a practical and fast way to ensure the avoidance of phospholipids-based matrix effects. The present review outlines the HybridSPE technique to minimize phospholipids-based matrix effects on LC-ESI-MS bioanalysis.

  15. A Dynamic Feature-Based Method for Hybrid Blurred/Multiple Object Detection in Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Tsun-Kuo Lin

    2016-01-01

    Full Text Available Vision-based inspection has been applied for quality control and product sorting in manufacturing processes. Blurred or multiple objects are common causes of poor performance in conventional vision-based inspection systems. Detecting hybrid blurred/multiple objects has long been a challenge in manufacturing. For example, single-feature-based algorithms might fail to exactly extract features when concurrently detecting hybrid blurred/multiple objects. Therefore, to resolve this problem, this study proposes a novel vision-based inspection algorithm that entails selecting a dynamic feature-based method on the basis of a multiclassifier of support vector machines (SVMs for inspecting hybrid blurred/multiple object images. The proposed algorithm dynamically selects suitable inspection schemes for classifying the hybrid images. The inspection schemes include discrete wavelet transform, spherical wavelet transform, moment invariants, and edge-feature-descriptor-based classification methods. The classification methods for single and multiple objects are adaptive region growing- (ARG- based and local adaptive region growing- (LARG- based learning approaches, respectively. The experimental results demonstrate that the proposed algorithm can dynamically select suitable inspection schemes by applying a selection algorithm, which uses SVMs for classifying hybrid blurred/multiple object samples. Moreover, the method applies suitable feature-based schemes on the basis of the classification results for employing the ARG/LARG-based method to inspect the hybrid objects. The method improves conventional methods for inspecting hybrid blurred/multiple objects and achieves high recognition rates for that in manufacturing processes.

  16. HistoFlex-a microfluidic device providing uniform flow conditions enabling highly sensitive, reproducible and quantitative in situ hybridizations

    DEFF Research Database (Denmark)

    Søe, Martin Jensen; Okkels, Fridolin; Sabourin, David;

    2011-01-01

    slides of spotted DNA microarrays when applying probe concentrations generally used in in situ hybridization (ISH) assays. The HistoFlex's novel ability in online monitoring of an in situ hybridization assay was demonstrated using direct fluorescent detection of hybridization to 18S rRNA. Tissue sections...... were not visually damaged during assaying, which enabled adapting a complete ISH assay for detection of microRNAs (miRNA). The effects of flow based incubations on hybridization, antibody incubation and Tyramide Signal Amplification (TSA) steps were investigated upon adapting the ISH assay...

  17. Conference report: the 5th cell-based assay and bioanalytical method development conference.

    Science.gov (United States)

    Ma, Mark

    2011-01-01

    Approximately 80 participants met at the Marriot Hotel, San Francisco, CA, USA, between the 4th and 6th October 2010 to share novel techniques and discuss the emerging approaches in the evolving field of cell-based assay and bioanalytical method development. This report highlights the discussion and summary of the meeting.

  18. Uncertainty budget for final assay of a pharmaceutical product based on RP-HPLC

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas; Byrialsen, Kirsten

    2003-01-01

    Compliance with specified limits for the content of active substance in a pharmaceutical drug requires knowledge of the uncertainty of the final assay. The uncertainty of measurement is based on the ISO recommendation as expressed in the Guide to the Expression of Uncertainty in Measurement (GUM...

  19. Innovative mode of action based in vitro assays for detection of marine neurotoxins

    NARCIS (Netherlands)

    Nicolas, J.A.Y.

    2015-01-01

    Innovative mode of action based in vitro assays for detection of marine neurotoxins J. Nicolas, P.J.M. Hendriksen, T.F.H. Bovee, I.M.C.M. Rietjens Marine biotoxins are naturally occurring compounds produced by particular phytoplankton species. These toxins often accumulate in seafood and thereby

  20. Serological Assays Based on Recombinant Viral Proteins for the Diagnosis of Arenavirus Hemorrhagic Fevers

    Directory of Open Access Journals (Sweden)

    Masayuki Saijo

    2012-10-01

    Full Text Available The family Arenaviridae, genus Arenavirus, consists of two phylogenetically independent groups: Old World (OW and New World (NW complexes. The Lassa and Lujo viruses in the OW complex and the Guanarito, Junin, Machupo, Sabia, and Chapare viruses in the NW complex cause viral hemorrhagic fever (VHF in humans, leading to serious public health concerns. These viruses are also considered potential bioterrorism agents. Therefore, it is of great importance to detect these pathogens rapidly and specifically in order to minimize the risk and scale of arenavirus outbreaks. However, these arenaviruses are classified as BSL-4 pathogens, thus making it difficult to develop diagnostic techniques for these virus infections in institutes without BSL-4 facilities. To overcome these difficulties, antibody detection systems in the form of an enzyme-linked immunosorbent assay (ELISA and an indirect immunofluorescence assay were developed using recombinant nucleoproteins (rNPs derived from these viruses. Furthermore, several antigen-detection assays were developed. For example, novel monoclonal antibodies (mAbs to the rNPs of Lassa and Junin viruses were generated. Sandwich antigen-capture (Ag-capture ELISAs using these mAbs as capture antibodies were developed and confirmed to be sensitive and specific for detecting the respective arenavirus NPs. These rNP-based assays were proposed to be useful not only for an etiological diagnosis of VHFs, but also for seroepidemiological studies on VHFs. We recently developed arenavirus neutralization assays using vesicular stomatitis virus (VSV-based pseudotypes bearing arenavirus recombinant glycoproteins. The goal of this article is to review the recent advances in developing laboratory diagnostic assays based on recombinant viral proteins for the diagnosis of VHFs and epidemiological studies on the VHFs caused by arenaviruses.

  1. Serological assays based on recombinant viral proteins for the diagnosis of arenavirus hemorrhagic fevers.

    Science.gov (United States)

    Fukushi, Shuetsu; Tani, Hideki; Yoshikawa, Tomoki; Saijo, Masayuki; Morikawa, Shigeru

    2012-10-12

    The family Arenaviridae, genus Arenavirus, consists of two phylogenetically independent groups: Old World (OW) and New World (NW) complexes. The Lassa and Lujo viruses in the OW complex and the Guanarito, Junin, Machupo, Sabia, and Chapare viruses in the NW complex cause viral hemorrhagic fever (VHF) in humans, leading to serious public health concerns. These viruses are also considered potential bioterrorism agents. Therefore, it is of great importance to detect these pathogens rapidly and specifically in order to minimize the risk and scale of arenavirus outbreaks. However, these arenaviruses are classified as BSL-4 pathogens, thus making it difficult to develop diagnostic techniques for these virus infections in institutes without BSL-4 facilities. To overcome these difficulties, antibody detection systems in the form of an enzyme-linked immunosorbent assay (ELISA) and an indirect immunofluorescence assay were developed using recombinant nucleoproteins (rNPs) derived from these viruses. Furthermore, several antigen-detection assays were developed. For example, novel monoclonal antibodies (mAbs) to the rNPs of Lassa and Junin viruses were generated. Sandwich antigen-capture (Ag-capture) ELISAs using these mAbs as capture antibodies were developed and confirmed to be sensitive and specific for detecting the respective arenavirus NPs. These rNP-based assays were proposed to be useful not only for an etiological diagnosis of VHFs, but also for seroepidemiological studies on VHFs. We recently developed arenavirus neutralization assays using vesicular stomatitis virus (VSV)-based pseudotypes bearing arenavirus recombinant glycoproteins. The goal of this article is to review the recent advances in developing laboratory diagnostic assays based on recombinant viral proteins for the diagnosis of VHFs and epidemiological studies on the VHFs caused by arenaviruses.

  2. Lipopolysaccharide Specific Immunochromatography Based Lateral Flow Assay for Serogroup Specific Diagnosis of Leptospirosis in India.

    Directory of Open Access Journals (Sweden)

    Shanmugam Vanithamani

    Full Text Available Leptospirosis is a re-emerging infectious disease that is under-recognized due to low-sensitivity and cumbersome serological tests. MAT is the gold standard test and it is the only serogroup specific test used till date. Rapid reliable alternative serogroup specific tests are needed for surveillance studies to identify locally circulating serogroups in the study area.In the present investigation the serological specificity of leptospiral lipopolysaccharides (LPS was evaluated by enzyme linked immunosorbent assay (ELISA, dot blot assay and rapid immunochromatography based lateral flow assay (ICG-LFA. Sera samples from 120 MAT positive cases, 174 cases with febrile illness other than leptospirosis, and 121 seronegative healthy controls were evaluated for the diagnostic sensitivity and specificity of the developed assays. LPS was extracted from five locally predominant circulating serogroups including: Australis (27.5%, Autumnalis (11.7%, Ballum (25.8%, Grippotyphosa (12.5%, Pomona (10% and were used as antigens in the diagnostics to detect IgM antibodies in patients' sera. The sensitivity observed by IgM ELISA and dot blot assay using various leptospiral LPS was >90% for homologous sera. Except for Ballum LPS, no other LPS showed cross-reactivity to heterologous sera. An attempt was made to develop LPS based ICG-LFA for rapid and sensitive serogroup specific diagnostics of leptospirosis. The developed ICG-LFA showed sensitivity in the range between 93 and 100% for homologous sera. The Wilcoxon analysis showed LPS based ICG-LFA did not differ significantly from the gold standard MAT (P>0.05.The application of single array of LPS for serogroup specific diagnosis is first of its kind. The developed assay could potentially be evaluated and employed for as MAT alternative.

  3. Development of a rapid cell-fusion-based phenotypic HIV-1 tropism assay

    Directory of Open Access Journals (Sweden)

    Phairote Teeranaipong

    2013-09-01

    Full Text Available Introduction: A dual split reporter protein system (DSP, recombining Renilla luciferase (RL and green fluorescent protein (GFP split into two different constructs (DSP1–7 and DSP8–11, was adapted to create a novel rapid phenotypic tropism assay (PTA for HIV-1 infection (DSP-Pheno. Methods: DSP1–7 was stably expressed in the glioma-derived NP-2 cell lines, which expressed CD4/CXCR4 (N4X4 or CD4/CCR5 (N4R5, respectively. An expression vector with DSP8–11 (pRE11 was constructed. The HIV-1 envelope genes were subcloned in pRE11 (pRE11-env and transfected into 293FT cells. Transfected 293FT cells were incubated with the indicator cell lines independently. In developing the assay, we selected the DSP1–7-positive clones that showed the highest GFP activity after complementation with DSP8–11. These cell lines, designated N4R5-DSP1–7, N4X4-DSP1–7 were used for subsequent assays. Results: The env gene from the reference strains (BaL for R5 virus, NL4-3 for X4 virus, SF2 for dual tropic virus subcloned in pRE11 and tested, was concordant with the expected co-receptor usage. Assay results were available in two ways (RL or GFP. The assay sensitivity by RL activity was comparable with those of the published phenotypic assays using pseudovirus. The shortest turnaround time was 5 days after obtaining the patient's plasma. All clinical samples gave positive RL signals on R5 indicator cells in the fusion assay. Median RLU value of the low CD4 group was significantly higher on X4 indicator cells and suggested the presence of more dual or X4 tropic viruses in this group of patients. Comparison of representative samples with Geno2Pheno [co-receptor] assay was concordant. Conclusions: A new cell-fusion-based, high-throughput PTA for HIV-1, which would be suitable for in-house studies, was developed. Equipped with two-way reporter system, RL and GFP, DSP-Pheno is a sensitive test with short turnaround time. Although maintenance of cell lines and

  4. A Novel Hybrid Mental Spelling Application Based on Eye Tracking and SSVEP-Based BCI

    Directory of Open Access Journals (Sweden)

    Piotr Stawicki

    2017-04-01

    Full Text Available Steady state visual evoked potentials (SSVEPs-based Brain-Computer interfaces (BCIs, as well as eyetracking devices, provide a pathway for re-establishing communication for people with severe disabilities. We fused these control techniques into a novel eyetracking/SSVEP hybrid system, which utilizes eye tracking for initial rough selection and the SSVEP technology for fine target activation. Based on our previous studies, only four stimuli were used for the SSVEP aspect, granting sufficient control for most BCI users. As Eye tracking data is not used for activation of letters, false positives due to inappropriate dwell times are avoided. This novel approach combines the high speed of eye tracking systems and the high classification accuracies of low target SSVEP-based BCIs, leading to an optimal combination of both methods. We evaluated accuracy and speed of the proposed hybrid system with a 30-target spelling application implementing all three control approaches (pure eye tracking, SSVEP and the hybrid system with 32 participants. Although the highest information transfer rates (ITRs were achieved with pure eye tracking, a considerable amount of subjects was not able to gain sufficient control over the stand-alone eye-tracking device or the pure SSVEP system (78.13% and 75% of the participants reached reliable control, respectively. In this respect, the proposed hybrid was most universal (over 90% of users achieved reliable control, and outperformed the pure SSVEP system in terms of speed and user friendliness. The presented hybrid system might offer communication to a wider range of users in comparison to the standard techniques.

  5. A Novel Hybrid Mental Spelling Application Based on Eye Tracking and SSVEP-Based BCI.

    Science.gov (United States)

    Stawicki, Piotr; Gembler, Felix; Rezeika, Aya; Volosyak, Ivan

    2017-04-05

    Steady state visual evoked potentials (SSVEPs)-based Brain-Computer interfaces (BCIs), as well as eyetracking devices, provide a pathway for re-establishing communication for people with severe disabilities. We fused these control techniques into a novel eyetracking/SSVEP hybrid system, which utilizes eye tracking for initial rough selection and the SSVEP technology for fine target activation. Based on our previous studies, only four stimuli were used for the SSVEP aspect, granting sufficient control for most BCI users. As Eye tracking data is not used for activation of letters, false positives due to inappropriate dwell times are avoided. This novel approach combines the high speed of eye tracking systems and the high classification accuracies of low target SSVEP-based BCIs, leading to an optimal combination of both methods. We evaluated accuracy and speed of the proposed hybrid system with a 30-target spelling application implementing all three control approaches (pure eye tracking, SSVEP and the hybrid system) with 32 participants. Although the highest information transfer rates (ITRs) were achieved with pure eye tracking, a considerable amount of subjects was not able to gain sufficient control over the stand-alone eye-tracking device or the pure SSVEP system (78.13% and 75% of the participants reached reliable control, respectively). In this respect, the proposed hybrid was most universal (over 90% of users achieved reliable control), and outperformed the pure SSVEP system in terms of speed and user friendliness. The presented hybrid system might offer communication to a wider range of users in comparison to the standard techniques.

  6. Demonstration of DSI-semen--A novel DNA methylation-based forensic semen identification assay.

    Science.gov (United States)

    Wasserstrom, Adam; Frumkin, Dan; Davidson, Ariane; Shpitzen, Moshe; Herman, Yael; Gafny, Ron

    2013-01-01

    Determining whether the source tissue of biological material is semen is important in confirming sexual assaults, which account for a considerable percentage of crime cases. The gold standard for confirming the presence of semen is microscopic identification of sperm cells, however, this method is labor intensive and operator-dependent. Protein-based immunologic assays, such as PSA, are highly sensitive and relatively fast, but suffer from low specificity in some situations. In addition, proteins are less stable than DNA under most environmental insults. Recently, forensic tissue identification advanced with the development of several approaches based on mRNA and miRNA for identification of various body fluids. Herein is described DNA source identifier (DSI)-semen, a DNA-based assay that determines whether the source tissue of a sample is semen based on detection of semen-specific methylation patterns in five genomic loci. The assay is comprised of a simple single tube biochemical procedure, similar to DNA profiling, followed by automatic software analysis, yielding the identification (semen/non-semen) accompanied by a statistical confidence level. Three additional internal control loci are used to ascertain the reliability of the results. The assay, which aims to replace microscopic examination, can easily be integrated by forensic laboratories and is automatable. The kit was tested on 135 samples of semen, saliva, venous blood, menstrual blood, urine, and vaginal swabs and the identification of semen vs. non-semen was correct in all cases. In order to test the assay's applicability in "real-life" situations, 33 actual casework samples from the forensic biological lab of the Israeli police were analyzed, and the results were compared with microscopic examination performed by Israeli police personnel. There was complete concordance between both analyses except for one sample, in which the assay identified semen whereas no sperm was seen in the microscope. This

  7. An assay for secologanin in plant tissues based on enzymatic conversion into strictosidine

    DEFF Research Database (Denmark)

    Hallard, Didier; van der Heijden, Robert; Contin, Adriana

    1998-01-01

    The secoiridoid glucoside secologanin is the terpenoid building block in the biosynthesis of terpenoid indole alkaloids. A method for its determination in plant tissues and cell suspension cultures has been developed. This assay is based on the condensation of secologanin with tryptamine, yielding...... of STR for secologanin, in combination with a sensitive and selective HPLC system, allows a simple extraction of secologanin from plant tissue. The detection limit of this methos is 15 ng secologanin. Using this assay, secologanin contents were determined in tissues of various plant species; Lonicera...... xylosteum hairy roots were found to contain 1 % of secologanin on a dry weight basis....

  8. Detection of Hepatitis B Virus DNA by Duplex Scorpion Primer-based PCR Assay

    Institute of Scientific and Technical Information of China (English)

    KONG De-Ming孔德明; SHEN Han-Xi沈含熙; MI Huai-Feng宓怀风

    2004-01-01

    The application of a new fiuorogenic probe-based PCR assay (PCR duplex scorpion primer assay) to the detection of Hepatitis B virus (HBV) DNA in human sera was described. Duplex scorpion primer is a modified variant of duplex Amplifluor, and the incorporation of a PCR stopper between probe and primer sequences improve the detection specificity and sensitivity. Combined with PCR amplification, this probe can give unambiguous positive results for the reactions initiated with more than 20 HBV molecules. In addition, the particular unimolecular probing mechanism of this probe makes the use of short target-specific probe sequence possible, which will render this probe applicable in some specific systems.

  9. Non-instrumented DNA isolation, amplification and microarray-based hybridization for a rapid on-site detection of devastating Phytophthora kernoviae.

    Science.gov (United States)

    Schwenkbier, Lydia; Pollok, Sibyll; Rudloff, Anne; Sailer, Sebastian; Cialla-May, Dana; Weber, Karina; Popp, Jürgen

    2015-10-07

    A rapid and simple instrument-free detection system was developed for the identification of the plant pathogen Phytophthora kernoviae (P. kernoviae). The on-site operable analysis steps include magnetic particle based DNA isolation, helicase-dependent amplification (HDA) and chip-based DNA hybridization. The isothermal approach enabled the convenient amplification of the yeast GTP-binding protein (Ypt1) target gene in a miniaturized HDA-zeolite-heater (HZH) by an exothermic reaction. The amplicon detection on the chip was performed under room temperature conditions – either by successive hybridization and enzyme binding or by a combined step. A positive signal is displayed by enzymatically generated silver nanoparticle deposits, which serve as robust endpoint signals allowing an immediate visual readout. The hybridization assay enabled the reliable detection of 10 pg μL(-1) target DNA. This is the first report of an entirely electricity-free, field applicable detection approach for devastating Phytophthora species, exemplarily shown for P. kernoviae.

  10. Facile Fabrication of 3D Layer-by-layer Graphene-gold Nanorod Hybrid Architecture for Hydrogen Peroxide Based Electrochemical Biosensor

    Science.gov (United States)

    2015-01-01

    Facile fabrication of 3D layer-by-layer graphene-gold nanorod hybrid architecture for hydrogen peroxide based electrochemical biosensor Chenming Xue...the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). 1. Introduction Electrochemical biosensors are highly effective in...measurement techniques such as radioisotope tracing, NMR spectroscopy, and microfluorometry assay [12,25,18]. In recent years, electrochemical biosensors

  11. [Changes in serum vitamin D assay usage and the need for evidence-based recommendations].

    Science.gov (United States)

    Pilon, Antoine; Lim, Soo-Kyung; Guéchot, Jérôme

    2012-01-01

    Result of renewed interest due to the large amount of literature that reported numerous epidemiological data demonstrating the high prevalence of vitamin D deficiency, the number of prescriptions of serum vitamin D assays has grown exponentially in recent years with a cost for health insurance that increased almost fivefold in four years. The quantitative and qualitative analysis of assays carried out from 2007 to 2011 in a French university adult short-stay hospital shows changes in practices not only quantitatively but also qualitatively resulting in an overtime increase in the frequency of prescriptions in patients younger, less vitamin D deficient and more frequently male. In the absence of French guidelines, this development cannot be qualified as deviant but justifies the urgent need to establish evidence-based recommendations for good prescriptions and adequate assays of blood vitamin D.

  12. Multiplex DNA assay based on nanoparticle probes by single particle inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Zhang, Shixi; Han, Guojun; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2014-04-01

    A multiplex DNA assay based on nanoparticle (NP) tags detection utilizing single particle mode inductively coupled plasma mass spectrometry (SP-ICP-MS) as ultrasensitive readout has been demonstrated in the article. Three DNA targets associated with clinical diseases (HIV, HAV, and HBV) down to 1 pM were detected by DNA probes labeled with AuNPs, AgNPs, and PtNPs via DNA sandwich assay. Single nucleotide polymorphisms in genes can also be effectively discriminated. Since our method is unaffected by the sample matrix, it is well-suited for diagnostic applications. Moreover, with the high sensitivity of SP-ICP-MS and the variety of NPs detectable by SP-ICP-MS, high-throughput DNA assay could be achieved without signal amplification or chain reaction amplification.

  13. Implementation and Use of State-of-the-Art, Cell-Based In Vitro Assays.

    Science.gov (United States)

    Langer, Gernot

    2016-01-01

    The impressive advances in the generation and interpretation of functional omics data have greatly contributed to a better understanding of the (patho-)physiology of many biological systems and led to a massive increase in the number of specific targets and phenotypes to investigate in both basic and applied research. The obvious complexity revealed by these studies represents a major challenge to the research community and asks for improved target characterisation strategies with the help of reliable, high-quality assays. Thus, the use of living cells has become an integral part of many research activities because the cellular context more closely represents target-specific interrelations and activity patterns. Although still predominant, the use of traditional two-dimensional (2D) monolayer cell culture models has been gradually complemented by studies based on three-dimensional (3D) spheroid (Sutherland 1988) and other 3D tissue culture systems (Santos et al. 2012; Matsusaki et al. 2014) in an attempt to employ model systems more closely representing the microenvironment of cells in the body. Hence, quite a variety of state-of-the-art cell culture models are available for the generation of novel chemical probes or the identification of starting points for drug development in translational research and pharma drug discovery. In order to cope with these information-rich formats and their increasing technical complexity, cell-based assay development has become a scientific research topic in its own right and is used to ensure the provision of significant, reliable and high-quality data outlasting any discussions related to the current "irreproducibility epidemic" (Dolgin 2014; Prinz et al. 2011; Schatz 2014). At the same time the use of cells in microplate assay formats has become state of the art and greatly facilitates rigorous cell-based assay development by providing the researcher with the opportunity to address the multitude of factors affecting the actual

  14. An accurate assay for HCV based on real-time fluorescence detection of isothermal RNA amplification.

    Science.gov (United States)

    Wu, Xuping; Wang, Jianfang; Song, Jinyun; Li, Jiayan; Yang, Yongfeng

    2016-09-01

    Hepatitis C virus (HCV) is one of the common reasons of liver fibrosis and hepatocellular carcinoma (HCC). Early, rapid and accurate HCV RNA detection is important to prevent and control liver disease. A simultaneous amplification and testing (SAT) assay, which is based on isothermal amplification of RNA and real-time fluorescence detection, was designed to optimize routine HCV RNA detection. In this study, HCV RNA and an internal control (IC) were amplified and analyzed simultaneously by SAT assay and detection of fluorescence using routine real-time PCR equipment. The assay detected as few as 10 copies of HCV RNA transcripts. We tested 705 serum samples with SAT, among which 96.4% (680/705) showed consistent results compared with routine real-time PCR. About 92% (23/25) discordant samples were confirmed to be same results as SAT-HCV by using a second real-time PCR. The sensitivity and specificity of SAT-HCV assay were 99.6% (461/463) and 100% (242/242), respectively. In conclusion, the SAT assay is an accurate test with a high specificity and sensitivity which may increase the detection rate of HCV. It is therefore a promising tool to diagnose HCV infection.

  15. Botulinum neurotoxin serotype A specific cell-based potency assay to replace the mouse bioassay.

    Science.gov (United States)

    Fernández-Salas, Ester; Wang, Joanne; Molina, Yanira; Nelson, Jeremy B; Jacky, Birgitte P S; Aoki, K Roger

    2012-01-01

    Botulinum neurotoxin serotype A (BoNT/A), a potent therapeutic used to treat various disorders, inhibits vesicular neurotransmitter exocytosis by cleaving SNAP25. Development of cell-based potency assays (CBPAs) to assess the biological function of BoNT/A have been challenging because of its potency. CBPAs can evaluate the key steps of BoNT action: receptor binding, internalization-translocation, and catalytic activity; and therefore could replace the current mouse bioassay. Primary neurons possess appropriate sensitivity to develop potential replacement assays but those potency assays are difficult to perform and validate. This report describes a CBPA utilizing differentiated human neuroblastoma SiMa cells and a sandwich ELISA that measures BoNT/A-dependent intracellular increase of cleaved SNAP25. Assay sensitivity is similar to the mouse bioassay and measures neurotoxin biological activity in bulk drug substance and BOTOX® product (onabotulinumtoxinA). Validation of a version of this CBPA in a Quality Control laboratory has led to FDA, Health Canada, and European Union approval for potency testing of BOTOX®, BOTOX® Cosmetic, and Vistabel®. Moreover, we also developed and optimized a BoNT/A CBPA screening assay that can be used for the discovery of novel BoNT/A inhibitors to treat human disease.

  16. Improved Activity Assay Method for Arginine Kinase Based on a Ternary Heteropolyacid System

    Institute of Scientific and Technical Information of China (English)

    陈宝玉; 郭勤; 郭智; 王希成

    2003-01-01

    This paper presents a new system for the activity assay of arginine kinase (AK), based on the spectrophotometric determination of an ascorbic acid-reduced blue ternary heteropolyacid composed of bismuth, molybdate and the released phosphate from N-phospho-L-arginine (PArg) formed in the forward catalysis reaction.The assay conditions, including the formulation of the phosphate determination reagent (PDR), the assay timing, and the linear activity range of the enzyme concentration, have been tested and optimized.For these conditions, the ternary heteropolyacid color is completely developed within 1 min and is stable for at least 15 min, with an absorbance maximum at 700 nm and a molar extinction coefficient of 15.97 (mmol/L)-1 · cm-1 for the phosphate.Standard curves for phosphate show a good linearity of 0.999.Compared with previous activity assay methods for AK, this system exhibits superior sensitivity, reproducibility, and adaptability to various conditions in enzymological studies.This method also reduces the assay time and avoids the use of some expensive instruments and reagents.

  17. A Viola-Jones based hybrid face detection framework

    Science.gov (United States)

    Murphy, Thomas M.; Broussard, Randy; Schultz, Robert; Rakvic, Ryan; Ngo, Hau

    2013-12-01

    Improvements in face detection performance would benefit many applications. The OpenCV library implements a standard solution, the Viola-Jones detector, with a statistically boosted rejection cascade of binary classifiers. Empirical evidence has shown that Viola-Jones underdetects in some instances. This research shows that a truncated cascade augmented by a neural network could recover these undetected faces. A hybrid framework is constructed, with a truncated Viola-Jones cascade followed by an artificial neural network, used to refine the face decision. Optimally, a truncation stage that captured all faces and allowed the neural network to remove the false alarms is selected. A feedforward backpropagation network with one hidden layer is trained to discriminate faces based upon the thresholding (detection) values of intermediate stages of the full rejection cascade. A clustering algorithm is used as a precursor to the neural network, to group significant overlappings. Evaluated on the CMU/VASC Image Database, comparison with an unmodified OpenCV approach shows: (1) a 37% increase in detection rates if constrained by the requirement of no increase in false alarms, (2) a 48% increase in detection rates if some additional false alarms are tolerated, and (3) an 82% reduction in false alarms with no reduction in detection rates. These results demonstrate improved face detection and could address the need for such improvement in various applications.

  18. Hybrid Network Defense Model Based on Fuzzy Evaluation

    Directory of Open Access Journals (Sweden)

    Ying-Chiang Cho

    2014-01-01

    Full Text Available With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network’s existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter’s inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  19. Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics.

    Science.gov (United States)

    Tao, Ye; Rotem, Assaf; Zhang, Huidan; Chang, Connie B; Basu, Anindita; Kolawole, Abimbola O; Koehler, Stephan A; Ren, Yukun; Lin, Jeffrey S; Pipas, James M; Feldman, Andrew B; Wobus, Christiane E; Weitz, David A

    2015-10-07

    A key viral property is infectivity, and its accurate measurement is crucial for the understanding of viral evolution, disease and treatment. Currently viral infectivity is measured using plaque assays, which involve prolonged culturing of host cells, and whose measurement is unable to differentiate between specific strains and is prone to low number fluctuation. We developed a rapid, targeted and culture-free infectivity assay using high-throughput drop-based microfluidics. Single infectious viruses are incubated in a large number of picoliter drops with host cells for one viral replication cycle followed by in-drop gene-specific amplification to detect infection events. Using murine noroviruses (MNV) as a model system, we measure their infectivity and determine the efficacy of a neutralizing antibody for different variants of MNV. Our results are comparable to traditional plaque-based assays and plaque reduction neutralization tests. However, the fast, low-cost, highly accurate genomic-based assay promises to be a superior method for drug screening and isolation of resistant viral strains. Moreover our technique can be adapted to measuring the infectivity of other pathogens, such as bacteria and fungi.

  20. Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids

    Directory of Open Access Journals (Sweden)

    Yuanhang Ren

    2015-03-01

    Full Text Available Organic–inorganic hybrid polyoxometalate (POM compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic–inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  1. Heterogeneous Catalysis of Polyoxometalate Based Organic-Inorganic Hybrids.

    Science.gov (United States)

    Ren, Yuanhang; Wang, Meiyin; Chen, Xueying; Yue, Bin; He, Heyong

    2015-03-31

    Organic-inorganic hybrid polyoxometalate (POM) compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic-inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  2. Exact Verification of Hybrid Systems Based on Bilinear SOS Representation

    CERN Document Server

    Yang, Zhengfeng; Lin, Wang

    2012-01-01

    In this paper, we address the problem of safety verification of nonlinear hybrid systems and stability analysis of nonlinear autonomous systems. A hybrid symbolic-numeric method is presented to compute exact inequality invariants of hybrid systems and exact estimates of regions of attraction of autonomous systems efficiently. Some numerical invariants of a hybrid system or an estimate of region of attraction can be obtained by solving a bilinear SOS program via PENBMI solver or iterative method, then the modified Newton refinement and rational vector recovery techniques are applied to obtain exact polynomial invariants and estimates of regions of attraction with rational coefficients. Experiments on some benchmarks are given to illustrate the efficiency of our algorithm.

  3. Passivity-based adaptive hybrid synchronization of a new hyperchaotic system with uncertain parameters.

    Science.gov (United States)

    Zhou, Xiaobing; Fan, Zhangbiao; Zhou, Dongming; Cai, Xiaomei

    2012-01-01

    We investigate the adaptive hybrid synchronization problem for a new hyperchaotic system with uncertain parameters. Based on the passivity theory and the adaptive control theory, corresponding controllers and parameter estimation update laws are proposed to achieve hybrid synchronization between two identical uncertain hyperchaotic systems with different initial values, respectively. Numerical simulation indicates that the presented methods work effectively.

  4. Passivity-Based Adaptive Hybrid Synchronization of a New Hyperchaotic System with Uncertain Parameters

    OpenAIRE

    Xiaobing Zhou; Zhangbiao Fan; Dongming Zhou; Xiaomei Cai

    2012-01-01

    We investigate the adaptive hybrid synchronization problem for a new hyperchaotic system with uncertain parameters. Based on the passivity theory and the adaptive control theory, corresponding controllers and parameter estimation update laws are proposed to achieve hybrid synchronization between two identical uncertain hyperchaotic systems with different initial values, respectively. Numerical simulation indicates that the presented methods work effectively.

  5. Quantification of microglial phagocytosis by a flow cytometer-based assay.

    Science.gov (United States)

    Pul, Refik; Chittappen, Kandiyil Prajeeth; Stangel, Martin

    2013-01-01

    Microglia represent the largest population of phagocytes in the CNS and have a principal role in immune defense and inflammatory responses in the CNS. Their phagocytic activity can be studied by a variety of techniques, including a flow cytometry-based approach utilizing polystyrene latex beads. The flow cytometry-based microglial phagocytosis assay, which is presented here, offers the advantage of rapid and reliable analysis of thousands of cells in a quantitative fashion.

  6. Measuring immunoglobulin g antibodies to tetanus toxin, diphtheria toxin, and pertussis toxin with single-antigen enzyme-linked immunosorbent assays and a bead-based multiplex assay.

    Science.gov (United States)

    Reder, Sabine; Riffelmann, Marion; Becker, Christian; Wirsing von König, Carl Heinz

    2008-05-01

    Bead-based assay systems offer the possibility of measuring several specific antibodies in one sample simultaneously. This study evaluated a vaccine panel of a multianalyte system that measures antibodies to tetanus toxin, diphtheria toxin, and pertussis toxin (PT) from Bordetella pertussis. The antibody concentrations of human immunoglobulin G (IgG) to PT, tetanus toxin, and diphtheria toxin were measured in 123 serum pairs (total of 246 sera) from a vaccine study. The multianalyte bead assay was compared to a standardized in-house IgG- anti-PT enzyme-linked immunosorbent assay (ELISA) of the German reference laboratory for bordetellae, as well as to various commercially available ELISAs for anti-PT IgG, anti-tetanus IgG, and anti-diphtheria IgG. The results of the multiplex assay regarding the antibodies against diphtheria toxin compared favorably with a regression coefficient of 0.938 for values obtained with an ELISA from the same manufacturer used as a reference. Similarly, antibodies to tetanus toxin showed a correlation of 0.910 between the reference ELISA and the multianalyte assay. A correlation coefficient of 0.905 was found when an "in-house" IgG anti-PT and the multiplex assay were compared. Compared to single ELISA systems from two other manufacturers, the multiplex assay performed similarly well or better. The multianalyte assay system was a robust system with fast and accurate results, analyzing three parameters simultaneously in one sample. The system was well suited to quantitatively determine relevant vaccine induced antibodies compared to in-house and commercially available single-antigen ELISA systems.

  7. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7.

    Science.gov (United States)

    Tan, Tingting; Wu, Di; Li, Weizhong; Zheng, Xin; Li, Weifen; Shan, Anshan

    2017-02-06

    Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH₂), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17-29) (FV-LL), FV7-magainin 2 (9-21) (FV-MA) and FV7-cecropin A (1-8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17-29) (LL), magainin 2 (9-21) (MA) and cecropin A (1-8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents.

  8. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7

    Science.gov (United States)

    Tan, Tingting; Wu, Di; Li, Weizhong; Zheng, Xin; Li, Weifen; Shan, Anshan

    2017-01-01

    Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH2), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17–29) (FV-LL), FV7-magainin 2 (9–21) (FV-MA) and FV7-cecropin A (1–8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17–29) (LL), magainin 2 (9–21) (MA) and cecropin A (1–8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents. PMID:28178190

  9. Development of in situ hybridization and PCR assays for the detection of Enterocytozoon hepatopenaei (EHP), a microsporidian parasite infecting penaeid shrimp.

    Science.gov (United States)

    Tang, Kathy F J; Pantoja, Carlos R; Redman, Rita M; Han, Jee Eun; Tran, Loc H; Lightner, Donald V

    2015-09-01

    A microsporidian parasite, Enterocytozoon hepatopenaei (abbreviated as EHP), is an emerging pathogen for penaeid shrimp. EHP has been found in several shrimp farming countries in Asia including Vietnam, Thailand, Malaysia, Indonesia and China, and is reported to be associated with growth retardation in farmed shrimp. We examined the histological features from infected shrimp collected from Vietnam and Brunei, these include the presence of basophilic inclusions in the hepatopancreas tubule epithelial cells, in which EHP is found at various developmental stages, ranging from plasmodia to mature spores. By a PCR targeting the 18S rRNA gene, a 1.1kb 18S rRNA gene fragment of EHP was amplified, and this sequence showed a 100% identity to EHP found in Thailand and China. This fragment was cloned and labeled with digoxigenin-11-dUTP, and in situ hybridized to tissue sections of infected Penaeus vannamei (from Vietnam) and P. stylirostris (Brunei). The results of in situ hybridization were specific, the probe only reacted to the EHP within the cytoplasmic inclusions, not to a Pleistophora-like microsporidium that is associated with cotton shrimp disease. Subsequently, we developed a PCR assay from this 18S rRNA gene region, this PCR is shown to be specific to EHP, did not react to 2 other parasitic pathogens, an amoeba and the cotton shrimp disease microsporidium, nor to genomic DNA of various crustaceans including polychaetes, squids, crabs and krill. EHP was detected, through PCR, in hepatopancreatic tissue, feces and water sampled from infected shrimp tanks, and in some samples of Artemia biomass. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Hybridization chain reaction-based fluorescence immunoassay using DNA intercalating dye for signal readout.

    Science.gov (United States)

    Deng, Yan; Nie, Ji; Zhang, Xiao-hui; Zhao, Ming-Zhe; Zhou, Ying-Lin; Zhang, Xin-Xiang

    2014-07-07

    A novel format of fluorescence immunosorbent assay based on the hybridization chain reaction (HCR) using a DNA intercalating dye for signal readout was constructed for the sensitive detection of targets, both in competitive and sandwich modes. In this platform, the capture and recognition processes are based on immunoreactions and the signal amplification depends on the enzyme-free, isothermal HCR-induced labelling event. After a competitive or a sandwich immunoreaction, a biotinylated capture DNA was bound to a biotinylated signal antibody through avidin, and triggered the HCR by two specific hairpins into a nicked double helix. Gene Finder (GF), a fluorescent probe for double-strand DNA, was intercalated in situ into the amplified chain to produce the fluorescence signal. The limit of detection (LOD) for rabbit IgG in competitive mode by HCR/GF immunoassay was improved at least 100-fold compared with the traditional fluorescence immunoassay using the fluorescein isothiocyanate-labelled-streptavidin or fluorescein isothiocyanate-labelled second antibody as the signal readout. The proposed fluorescence immunoassay was also demonstrated by using α-fetoprotein as the model target in sandwich mode, and showed a wide linear range from 28 ng mL(-1) to 20 μg mL(-1) with a LOD of 6.0 ng mL(-1). This method also showed satisfactory analysis in spiked human serum, which suggested that it might have great potential for versatile applications in life science and point-of-care diagnostics.

  11. Immune Monitoring in Cancer Vaccine Clinical Trials: Critical Issues of Functional Flow Cytometry-Based Assays

    Directory of Open Access Journals (Sweden)

    Iole Macchia

    2013-01-01

    Full Text Available The development of immune monitoring assays is essential to determine the immune responses against tumor-specific antigens (TSAs and tumor-associated antigens (TAAs and their possible correlation with clinical outcome in cancer patients receiving immunotherapies. Despite the wide range of techniques used, to date these assays have not shown consistent results among clinical trials and failed to define surrogate markers of clinical efficacy to antitumor vaccines. Multiparameter flow cytometry- (FCM- based assays combining different phenotypic and functional markers have been developed in the past decade for informative and longitudinal analysis of polyfunctional T-cells. These technologies were designed to address the complexity and functional heterogeneity of cancer biology and cellular immunity and to define biomarkers predicting clinical response to anticancer treatment. So far, there is still a lack of standardization of some of these immunological tests. The aim of this review is to overview the latest technologies for immune monitoring and to highlight critical steps involved in some of the FCM-based cellular immune assays. In particular, our laboratory is focused on melanoma vaccine research and thus our main goal was the validation of a functional multiparameter test (FMT combining different functional and lineage markers to be applied in clinical trials involving patients with melanoma.

  12. A mass spectrometry-based assay for improved quantitative measurements of efflux pump inhibition.

    Directory of Open Access Journals (Sweden)

    Adam R Brown

    Full Text Available Bacterial efflux pumps are active transport proteins responsible for resistance to selected biocides and antibiotics. It has been shown that production of efflux pumps is up-regulated in a number of highly pathogenic bacteria, including methicillin resistant Staphylococcus aureus. Thus, the identification of new bacterial efflux pump inhibitors is a topic of great interest. Existing assays to evaluate efflux pump inhibitory activity rely on fluorescence by an efflux pump substrate. When employing these assays to evaluate efflux pump inhibitory activity of plant extracts and some purified compounds, we observed severe optical interference that gave rise to false negative results. To circumvent this problem, a new mass spectrometry-based method was developed for the quantitative measurement of bacterial efflux pump inhibition. The assay was employed to evaluate efflux pump inhibitory activity of a crude extract of the botanical Hydrastis Canadensis, and to compare the efflux pump inhibitory activity of several pure flavonoids. The flavonoid quercetin, which appeared to be completely inactive with a fluorescence-based method, showed an IC50 value of 75 μg/mL with the new method. The other flavonoids evaluated (apigenin, kaempferol, rhamnetin, luteolin, myricetin, were also active, with IC50 values ranging from 19 μg/mL to 75 μg/mL. The assay described herein could be useful in future screening efforts to identify efflux pump inhibitors, particularly in situations where optical interference precludes the application of methods that rely on fluorescence.

  13. Gold-nanoparticle-based assay for instantaneous detection of nuclear hormone receptor-response elements interactions.

    Science.gov (United States)

    Tan, Yen Nee; Su, Xiaodi; Liu, Edison T; Thomsen, Jane S

    2010-04-01

    Gold nanoparticles (AuNPs) are widely used as colorimetric probes for biosensing, relying on their unique particle size-dependent and/or interparticle distance-dependent extinction spectrum and solution color. Herein, we describe an AuNP-based colorimetric assay to detect binding interactions between nuclear hormone receptors and their corresponding DNA-binding elements, particularly the human estrogen receptors (ERalpha and ERbeta) and their cognate estrogen response elements (EREs). We found that the protein-DNA (ER-ERE) complexes can stabilize citrate anion-capped AuNPs against salt-induced aggregation to a larger extent than the protein (ER) or the DNA (ERE) alone, due to their unique molecular size and charge properties that provide a strong electrosteric protection. Moreover, our results show that the extent of stabilization is sequence-dependent and can distinguish a single base variation in the ERE associated with minor changes in protein-DNA binding affinity. With this assay, many important parameters of protein-DNA binding events (e.g., sequence selectivity, distinct DNA binding properties of protein subtypes, binding stoichiometry, and sequence-independent transient binding) can be determined instantly without using labels, tedious sample preparations, and sophisticated instrumentation. These benefits, in particular the high-throughput potential, could enable this assay to become the assay of choice to complement conventional techniques for large scale characterization of protein-DNA interactions, a key aspect in biological research.

  14. Multiple reaction monitoring and multiple reaction monitoring cubed based assays for the quantitation of apolipoprotein F.

    Science.gov (United States)

    Kumar, Abhinav; Gangadharan, Bevin; Zitzmann, Nicole

    2016-10-15

    Apolipoprotein F (APO-F) is a novel low abundance liver fibrosis biomarker and its concentration decreases in human serum and plasma across liver fibrosis stages. Current antibody based assays for APO-F suffer from limitations such as unspecific binding, antibody availability and undetectable target if the protein is degraded; and so an antibody-free assay has the potential to be a valuable diagnostic tool. We report an antibody-free, rapid, sensitive, selective and robust LC-MS/MS (MRM and MRM(3)) method for the detection and quantitation of APO-F in healthy human plasma. With further analysis of clinical samples, this LC-MS based method could be established as the first ever antibody-free biomarker assay for liver fibrosis. We explain the use of Skyline software for peptide selection and the creation of a reference library to aid in true peak identification of endogenous APO-F peptides in digests of human plasma without protein or peptide enrichment. Detection of a glycopeptide using MRM-EPI mode and reduction of interferences using MRM3 are explained. The amount of APO-F in human plasma from a healthy volunteer was determined to be 445.2ng/mL, the coefficient of variation (CV) of precision for 20 injections was <12% and the percentage error of each point along the calibration curve was calculated to be <8%, which is in line with the assay requirements for clinical samples.

  15. Fuzzy Energy Management for a Catenary-Battery-Ultracapacitor based Hybrid Tramway

    Science.gov (United States)

    Jibin, Yang; Jiye, Zhang; Pengyun, Song

    2017-05-01

    In this paper, an energy management strategy (EMS) based on fuzzy logic control for a catenary-battery-ultracapacitor powered hybrid modern tramway was presented. The fuzzy logic controller for the catenary zone and catenary-less zone was respectively designed by analyzing the structure and working mode of the hybrid system, then an energy management strategy based on double fuzzy logic control was proposed to enhance the fuel economy. The hybrid modern tramway simulation model was developed based on MATLAB/Simulink environment. The simulation results show that the proposed EMS can satisfy the demand of dynamic performance of the tramway and achieve the power distribution reasonably between the each power source.

  16. Hybrid silica luminescent materials based on lanthanide-containing lyotropic liquid crystal with polarized emission

    Energy Technology Data Exchange (ETDEWEB)

    Selivanova, N.M., E-mail: natsel@mail.ru [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation); Vandyukov, A.E.; Gubaidullin, A.T. [A.E. Arbuzov Institute of Organic and Physical Chemistry of the Kazan Scientific Center of the Russian Academy of Sciences, 8 Acad. Arbuzov Str., Kazan 420088 (Russian Federation); Galyametdinov, Y.G. [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation)

    2014-11-14

    This paper represents the template method for synthesis of hybrid silica films based on Ln-containing lyotropic liquid crystal and characterized by efficient luminescence. Luminescence films were prepared in situ by the sol–gel processes. Lyotropic liquid crystal (LLC) mesophases C{sub 12}H{sub 25}O(CH{sub 2}CH{sub 2}O){sub 10}H/Ln(NO{sub 3}){sub 3}·6H{sub 2}O/H{sub 2}O containing Ln (III) ions (Dy, Tb, Eu) were used as template. Polarized optical microscopy, X-ray powder diffraction, and FT-IR-spectroscopy were used for characterization of liquid crystal mesophases and hybrid films. The morphology of composite films was studied by the atomic force microscopy method (AFM). The optical properties of the resulting materials were evaluated. It was found that hybrid silica films demonstrate significant increase of their lifetime in comparison with an LLC system. New effects of linearly polarized emission revealed for Ln-containing hybrid silica films. Polarization in lanthanide-containing hybrid composites indicates that silica precursor causes orientation of emitting ions. - Highlights: • We suggest a new simple approach for creating luminescence hybrid silica films. • Ln-containing hybrid silica films demonstrate yellow, green and red emissions. • Tb(III)-containing hybrid film have a high lifetime. • We report effects of linearly polarized emission in hybrid film.

  17. Comparison of microscopy and Alamar blue reduction in a larval based assay for schistosome drug screening.

    Directory of Open Access Journals (Sweden)

    Nuha R Mansour

    Full Text Available BACKGROUND: In view of the current widespread use of and reliance on a single schistosomicide, praziquantel, there is a pressing need to discover and develop alternative drugs for schistosomiasis. One approach to this is to develop High Throughput in vitro whole organism screens (HTS to identify hits amongst large compound libraries. METHODOLOGY/PRINCIPAL FINDINGS: We have been carrying out low throughput (24-well plate in vitro testing based on microscopic evaluation of killing of ex-vivo adult S. mansoni worms using selected compound collections mainly provided through the WHO-TDR Helminth Drug Initiative. To increase throughput, we introduced a similar but higher throughput 96-well primary in vitro assay using the schistosomula stage which can be readily produced in vitro in large quantities. In addition to morphological readout of viability we have investigated using fluorometric determination of the reduction of Alamar blue (AB, a redox indicator of enzyme activity widely used in whole organism screening. A panel of 7 known schistosome active compounds including praziquantel, produced diverse effects on larval morphology within 3 days of culture although only two induced marked larval death within 7 days. The AB assay was very effective in detecting these lethal compounds but proved more inconsistent in detecting compounds which damaged but did not kill. The utility of the AB assay in detecting compounds which cause severe morbidity and/or death of schistosomula was confirmed in testing a panel of compounds previously selected in library screening as having activity against the adult worms. Furthermore, in prospective library screening, the AB assay was able to detect all compounds which induced killing and also the majority of compounds designated as hits based on morphological changes. CONCLUSION: We conclude that an HTS combining AB readout and image-based analysis would provide an efficient and stringent primary assay for schistosome

  18. Determination of protease subsite preference on SPOT peptide array by fluorescence quenching-based assay.

    Science.gov (United States)

    Kim, Do-Hyun; Shin, Dong-Sik; Lee, Yoon-Sik

    2012-06-01

    A peptide SPOT array was synthesized on a glass chip and used to determine protease subsite preference. To synthesize a peptide array for positional scanning, the ratio of the isokinetic concentration was determined for every Fmoc-amino acid except Cys. Based on this ratio, a peptide array consisting of Dabcyl-X-X-P(2)-Arg-X-X-X-Lys(FITC) (X: equimolar mixture of 19 amino acids, P(2): one of 19 amino acids) was synthesized on a chitosan-grafted glass chip. Subsequently, the peptide substrates on the array were hydrolyzed by thrombin to screen for subsite specificity using a fluorescence quenching-based assay. The P(2) subsite specificity of thrombin was screened by the fluorescence images obtained after hydrolysis. Pro at the P(2) subsite showed the highest specificity for thrombin based on both the fluorescence quenching-based assay and the solution phase assay. From these results, we confirmed that our mixture-based peptide SPOT array format on the chitosan-grafted glass chips could be used to determine protease subsite preference.

  19. A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection

    Directory of Open Access Journals (Sweden)

    Van Neste Leander

    2012-06-01

    Full Text Available Abstract Background PSA-directed prostate cancer screening leads to a high rate of false positive identifications and an unnecessary biopsy burden. Epigenetic biomarkers have proven useful, exhibiting frequent and abundant inactivation of tumor suppressor genes through such mechanisms. An epigenetic, multiplex PCR test for prostate cancer diagnosis could provide physicians with better tools to help their patients. Biomarkers like GSTP1, APC and RASSF1 have demonstrated involvement with prostate cancer, with the latter two genes playing prominent roles in the field effect. The epigenetic states of these genes can be used to assess the likelihood of cancer presence or absence. Results An initial test cohort of 30 prostate cancer-positive samples and 12 cancer-negative samples was used as basis for the development and optimization of an epigenetic multiplex assay based on the GSTP1, APC and RASSF1 genes, using methylation specific PCR (MSP. The effect of prostate needle core biopsy sample volume and age of formalin-fixed paraffin-embedded (FFPE samples was evaluated on an independent follow-up cohort of 51 cancer-positive patients. Multiplexing affects copy number calculations in a consistent way per assay. Methylation ratios are therefore altered compared to the respective singleplex assays, but the correlation with patient outcome remains equivalent. In addition, tissue-biopsy samples as small as 20 μm can be used to detect methylation in a reliable manner. The age of FFPE-samples does have a negative impact on DNA quality and quantity. Conclusions The developed multiplex assay appears functionally similar to individual singleplex assays, with the benefit of lower tissue requirements, lower cost and decreased signal variation. This assay can be applied to small biopsy specimens, down to 20 microns, widening clinical applicability. Increasing the sample volume can compensate the loss of DNA quality and quantity in older samples.

  20. Development of high-throughput SNP-based genotyping in Acacia auriculiformis x A. mangium hybrids using short-read transcriptome data.

    Science.gov (United States)

    Wong, Melissa M L; Cannon, Charles H; Wickneswari, Ratnam

    2012-12-24

    Next Generation Sequencing has provided comprehensive, affordable and high-throughput DNA sequences for Single Nucleotide Polymorphism (SNP) discovery in Acacia auriculiformis and Acacia mangium. Like other non-model species, SNP detection and genotyping in Acacia are challenging due to lack of genome sequences. The main objective of this study is to develop the first high-throughput SNP genotyping assay for linkage map construction of A. auriculiformis x A. mangium hybrids. We identified a total of 37,786 putative SNPs by aligning short read transcriptome data from four parents of two Acacia hybrid mapping populations using Bowtie against 7,839 de novo transcriptome contigs. Given a set of 10 validated SNPs from two lignin genes, our in silico SNP detection approach is highly accurate (100%) compared to the traditional in vitro approach (44%). Further validation of 96 SNPs using Illumina GoldenGate Assay gave an overall assay success rate of 89.6% and conversion rate of 37.5%. We explored possible factors lowering assay success rate by predicting exon-intron boundaries and paralogous genes of Acacia contigs using Medicago truncatula genome as reference. This assessment revealed that presence of exon-intron boundary is the main cause (50%) of assay failure. Subsequent SNPs filtering and improved assay design resulted in assay success and conversion rate of 92.4% and 57.4%, respectively based on 768 SNPs genotyping. Analysis of clustering patterns revealed that 27.6% of the assays were not reproducible and flanking sequence might play a role in determining cluster compression. In addition, we identified a total of 258 and 319 polymorphic SNPs in A. auriculiformis and A. mangium natural germplasms, respectively. We have successfully discovered a large number of SNP markers in A. auriculiformis x A. mangium hybrids using next generation transcriptome sequencing. By using a reference genome from the most closely related species, we converted most SNPs to successful

  1. Development of high-throughput SNP-based genotyping in Acacia auriculiformis x A. mangium hybrids using short-read transcriptome data

    Directory of Open Access Journals (Sweden)

    Wong Melissa ML

    2012-12-01

    Full Text Available Abstract Background Next Generation Sequencing has provided comprehensive, affordable and high-throughput DNA sequences for Single Nucleotide Polymorphism (SNP discovery in Acacia auriculiformis and Acacia mangium. Like other non-model species, SNP detection and genotyping in Acacia are challenging due to lack of genome sequences. The main objective of this study is to develop the first high-throughput SNP genotyping assay for linkage map construction of A. auriculiformis x A. mangium hybrids. Results We identified a total of 37,786 putative SNPs by aligning short read transcriptome data from four parents of two Acacia hybrid mapping populations using Bowtie against 7,839 de novo transcriptome contigs. Given a set of 10 validated SNPs from two lignin genes, our in silico SNP detection approach is highly accurate (100% compared to the traditional in vitro approach (44%. Further validation of 96 SNPs using Illumina GoldenGate Assay gave an overall assay success rate of 89.6% and conversion rate of 37.5%. We explored possible factors lowering assay success rate by predicting exon-intron boundaries and paralogous genes of Acacia contigs using Medicago truncatula genome as reference. This assessment revealed that presence of exon-intron boundary is the main cause (50% of assay failure. Subsequent SNPs filtering and improved assay design resulted in assay success and conversion rate of 92.4% and 57.4%, respectively based on 768 SNPs genotyping. Analysis of clustering patterns revealed that 27.6% of the assays were not reproducible and flanking sequence might play a role in determining cluster compression. In addition, we identified a total of 258 and 319 polymorphic SNPs in A. auriculiformis and A. mangium natural germplasms, respectively. Conclusion We have successfully discovered a large number of SNP markers in A. auriculiformis x A. mangium hybrids using next generation transcriptome sequencing. By using a reference genome from the most closely

  2. [Investigation of reference intervals of blood gas and acid-base analysis assays in China].

    Science.gov (United States)

    Zhang, Lu; Wang, Wei; Wang, Zhiguo

    2015-10-01

    To investigate and analyze the upper and lower limits and their sources of reference intervals in blood gas and acid-base analysis assays. The data of reference intervals were collected, which come from the first run of 2014 External Quality Assessment (EQA) program in blood gas and acid-base analysis assays performed by National Center for Clinical Laboratories (NCCL). All the abnormal values and errors were eliminated. Data statistics was performed by SPSS 13.0 and Excel 2007 referring to upper and lower limits of reference intervals and sources of 7 blood gas and acid-base analysis assays, i.e. pH value, partial pressure of carbon dioxide (PCO2), partial pressure of oxygen (PO2), Na+, K+, Ca2+ and Cl-. Values were further grouped based on instrument system and the difference between each group were analyzed. There were 225 laboratories submitting the information on the reference intervals they had been using. The three main sources of reference intervals were National Guide to Clinical Laboratory Procedures [37.07% (400/1 079)], instructions of instrument manufactures [31.23% (337/1 079)] and instructions of reagent manufactures [23.26% (251/1 079)]. Approximately 35.1% (79/225) of the laboratories had validated the reference intervals they used. The difference of upper and lower limits in most assays among 7 laboratories was moderate, both minimum and maximum (i.e. the upper limits of pH value was 7.00-7.45, the lower limits of Na+ was 130.00-156.00 mmol/L), and mean and median (i.e. the upper limits of K+ was 5.04 mmol/L and 5.10 mmol/L, the upper limits of PCO2 was 45.65 mmHg and 45.00 mmHg, 1 mmHg = 0.133 kPa), as well as the difference in P2.5 and P97.5 between each instrument system group. It was shown by Kruskal-Wallis method that the P values of upper and lower limits of all the parameters were lower than 0.001, expecting the lower limits of Na+ with P value 0.029. It was shown by Mann-Whitney that the statistic differences were found among instrument

  3. Photochromic ordered mesoporous hybrid materials based on covalently grafted polyoxometalates.

    Science.gov (United States)

    Luo, Xiujuan; Yang, Chun

    2011-05-07

    Novel polyoxometalate (POM)-grafting mesoporous hybrid silicas, XW(11)/MHS (X=P, Si) and TBAPW(11)Si(2)/MHS, have been prepared respectively by co-condensation and post-synthesis routes based on the employment of Keggin-type monovacant XW(11) or a Si-substituted compound TBAPW(11)Si(2) as POM precursors. Upon characterization of the samples by FT-IR, XRD, ICP-AES, TEM and N(2) adsorption-desorption measurement, it was found that Keggin units were retained perfectly in ordered hexagonal mesopore channels with SBA-15 architecture and immobilized by covalent linkages on the mesopore wall. These materials, especially the co-condensed samples, exhibited stable and reversible photochromic properties under UV irradiation although no special organic component was supplied additionally as an electron donor. An investigation of the photochromism revealed that the photochromic response depended on the centre atom of the POM species (i.e., the redox potential of the POM), the content of the POM and the synthetic route of the sample, while the bleaching process was correlated not only to the redox potential but also to the pore size of the sample. The photochromic mechanism was also studied in detail by cyclic voltammetry, ESR, FT-IR and XPS techniques. It was found that the remaining P123 template acted as a reducing agent and was oxidized during the photochromic process accompanied by the reduction of the POM to heteropolyblue. Thus, a close contact between the POM and the remaining P123 chain in the sample is necessary. Low close-contact degree results in poor photochromic behavior of the post-synthesized sample and impregnated samples.

  4. Strategies to develop strain-specific PCR based assays for probiotics.

    Science.gov (United States)

    Treven, P

    2015-01-01

    Since health benefits conferred by probiotics are strain-specific, identification to the strain level is mandatory to allow the monitoring of the presence and the abundance of specific probiotic in a product or in a gastrointestinal tract. Compared to standard plate counts, the reduced duration of the assays and higher specificity makes PCR-based methods (standard PCR and quantitative PCR) very appropriate for detection or quantification of probiotics. Development of strain-specific assay consists of 4 main stages: (1) strain-specific marker identification; (2) construction of potential strain-specific primers; (3) validation on DNA from pure cultures of target and related strains; and (4) validation on spiked samples. The most important and also the most challenging step is the identification of strain-specific sequences, which can be subsequently targeted by specific primers or probes. Such regions can be identified on sequences derived from 16S-23S internally transcribed spacers, randomly amplified polymorphic DNA, representational difference analysis and suppression subtractive hybridisation. Already known phenotypic or genotypic characteristics of the target strain can also be used to develop the strain-specific assay. However, the initial stage of strain-specific assay development can be replaced by comparative genomics analysis of target genome with related genomes in public databases. Advances in whole genome sequencing (WGS) have resulted in a cost reduction for bacterial genome sequencing and consequently have made this approach available to most laboratories. In the present paper I reviewed the available literature on PCR and qPCR assays developed for detection of a specific probiotic strain and discussed future WGS and comparative genomics-based approaches.

  5. Development of Ss-NIE-1 recombinant antigen based assays for immunodiagnosis of strongyloidiasis.

    Science.gov (United States)

    Rascoe, Lisa N; Price, Courtney; Shin, Sun Hee; McAuliffe, Isabel; Priest, Jeffrey W; Handali, Sukwan

    2015-04-01

    Strongyloides stercoralis is a widely distributed parasite that infects 30 to 100 million people worldwide. In the United States strongyloidiasis is recognized as an important infection in immigrants and refugees. Public health and commercial reference laboratories need a simple and reliable method for diagnosis of strongyloidiasis to identify and treat cases and to prevent transmission. The recognized laboratory test of choice for diagnosis of strongyloidiasis is detection of disease specific antibodies, most commonly using a crude parasite extract for detection of IgG antibodies. Recently, a luciferase tagged recombinant protein of S. stercoralis, Ss-NIE-1, has been used in a luciferase immunoprecipitation system (LIPS) to detect IgG and IgG4 specific antibodies. To promote wider adoption of immunoassays for strongyloidiasis, we used the Ss-NIE-1 recombinant antigen without the luciferase tag and developed ELISA and fluorescent bead (Luminex) assays to detect S. stercoralis specific IgG4. We evaluated the assays using well-characterized sera from persons with or without presumed strongyloidiasis. The sensitivity and specificity of Ss-NIE-1 IgG4 ELISA were 95% and 93%, respectively. For the IgG4 Luminex assay, the sensitivity and specificity were 93% and 95%, respectively. Specific IgG4 antibody decreased after treatment in a manner that was similar to the decrease of specific IgG measured in the crude IgG ELISA. The sensitivities of the Ss-NIE-1 IgG4 ELISA and Luminex assays were comparable to the crude IgG ELISA but with improved specificities. However, the Ss-NIE-1 based assays are not dependent on native parasite materials and can be performed using widely available laboratory equipment. In conclusion, these newly developed Ss-NIE-1 based immunoassays can be readily adopted by public health and commercial reference laboratories for routine screening and clinical diagnosis of S. stercoralis infection in refugees and immigrants in the United States.

  6. Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression

    Science.gov (United States)

    Auld, Douglas S.; Thorne, Natasha; Maguire, William F.; Inglese, James

    2009-01-01

    High-throughput screening (HTS) assays used in drug discovery frequently use reporter enzymes such as firefly luciferase (FLuc) as indicators of target activity. An important caveat to consider, however, is that compounds can directly affect the reporter, leading to nonspecific but highly reproducible assay signal modulation. In rare cases, this activity appears counterintuitive; for example, some FLuc inhibitors, acting through posttranslational Fluc reporter stabilization, appear to activate gene expression. Previous efforts to characterize molecules that influence luciferase activity identified a subset of 3,5-diaryl-oxadiazole-containing compounds as FLuc inhibitors. Here, we evaluate a number of compounds with this structural motif for activity against FLuc. One such compound is PTC124 {3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl]benzoic acid}, a molecule originally identified in a cell-based FLuc assay as having nonsense codon suppression activity [Welch EM, et al., Nature (2007) 447:87–91]. We find that the potency of FLuc inhibition for the tested compounds strictly correlates with their activity in a FLuc reporter cell-based nonsense codon assay, with PTC124 emerging as the most potent FLuc inhibitor (IC50 = 7 ± 1 nM). However, these compounds, including PTC124, fail to show nonsense codon suppression activity when Renilla reniformis luciferase (RLuc) is used as a reporter and are inactive against the RLuc enzyme. This suggests that the initial discovery of PTC124 may have been biased by its direct effect on the FLuc reporter, implicating firefly luciferase as a molecular target of PTC124. Our results demonstrate the value of understanding potential interactions between reporter enzymes and chemical compounds and emphasize the importance of implementing the appropriate control assays before interpreting HTS results. PMID:19208811

  7. DIAGNOSIS WINDOWS PROBLEMS BASED ON HYBRID INTELLIGENCE SYSTEMS

    Directory of Open Access Journals (Sweden)

    SAFWAN O. HASOON

    2013-10-01

    Full Text Available This paper describes the artificial intelligence technologies by integrating Radial Basis Function networks with expert systems to construct a robust hybrid system. The purpose of building the hybrid system is to give recommendations to repair the operating system (Windows problems and troubleshoot the problems that can be repaired. The neural network has unique characteristics which it can complete the uncompleted data, the expert system can't deal with data that is incomplete, but using the neural network individually has some disadvantages which it can't give explanations and recommendations to the problems. The expert system has the ability to explain and give recommendations by using the rules and the human expert in some conditions. Therefore, we have combined the two technologies. The paper will explain the integration methods between the two technologies and which method is suitable to be used in the proposed hybrid system.

  8. Chitosan bio-based organic-inorganic hybrid aerogel microspheres.

    Science.gov (United States)

    El Kadib, Abdelkrim; Bousmina, Mosto

    2012-07-02

    Recently, organic-inorganic hybrid materials have attracted tremendous attention thanks to their outstanding properties, their efficiency, versatility and their promising applications in a broad range of areas at the interface of chemistry and biology. This article deals with a new family of surface-reactive organic-inorganic hybrid materials built from chitosan microspheres. The gelation of chitosan (a renewable amino carbohydrate obtained by deacetylation of chitin) by pH inversion affords highly dispersed fibrillar networks shaped as self-standing microspheres. Nanocasting of sol-gel processable monomeric alkoxides inside these natural hydrocolloids and their subsequent CO(2) supercritical drying provide high-surface-area organic-inorganic hybrid materials. Examples including chitosan-SiO(2), chitosan-TiO(2), chitosan-redox-clusters and chitosan-clay-aerogel microspheres are described and discussed on the basis of their textural and structural properties, thermal and chemical stability and their performance in catalysis and adsorption.

  9. A homogeneous europium cryptate-based assay for the diagnosis of mutations by time-resolved fluorescence resonance energy transfer.

    Science.gov (United States)

    Lopez-Crapez, E; Bazin, H; Andre, E; Noletti, J; Grenier, J; Mathis, G

    2001-07-15

    Oligonucleotide ligation assay (OLA) is considered to be a very useful methodology for the detection and characterization of mutations, particularly for clinical purposes. The fluorescence resonance energy transfer between a fluorescent donor and a suitable fluorophore as acceptor has been applied in the past to several scientific fields. This technique is well adapted to nucleic acid analysis such as DNA sequencing, DNA hybridization and polymerase chain reaction. We describe here a homogeneous format based on the use of a rare earth cryptate label as donor: tris-bipyridine-Eu(3+). The long-lived fluorescence of this label makes it possible to reach a high sensitivity by using a time-resolved detection mode. A non-radiative energy transfer technology, known as time-resolved amplification of cryptate emission (TRACE((R))) characterized by a temporal and spectral selectivity has been developed. The TRACE((R)) detection of characterized single nucleotide polymorphism using the OLA for allelic discrimination is proposed. We demonstrate the potentialities of this OLA-TRACE((R)) methodology through the analysis of K-ras oncogene point mutations.

  10. A simple technique for reducing edge effect in cell-based assays.

    Science.gov (United States)

    Lundholt, Betina Kerstin; Scudder, Kurt M; Pagliaro, Len

    2003-10-01

    Several factors are known to increase the noise and variability of cell-based assays used for high-throughput screening. In particular, edge effects can result in an unacceptably high plate rejection rate in screening runs. In an effort to minimize these variations, the authors analyzed a number of factors that could contribute to edge effects in cell-based assays. They found that pre-incubation of newly seeded plates in ambient conditions (air at room temperature) resulted in even distribution of the cells in each well. In contrast, when newly seeded plates were placed directly in the CO(2) incubator, an uneven distribution of cells occurred in wells around the plate periphery, resulting in increased edge effect. Here, the authors show that the simple, inexpensive approach of incubating newly seeded plates at room temperature before placing them in a 37 degrees C CO(2) incubator yields a significant reduction in edge effect.

  11. A highly sensitive and selective diagnostic assay based on virus nanoparticles

    Science.gov (United States)

    Park, Jin-Seung; Cho, Moon Kyu; Lee, Eun Jung; Ahn, Keum-Young; Lee, Kyung Eun; Jung, Jae Hun; Cho, Yunjung; Han, Sung-Sik; Kim, Young Keun; Lee, Jeewon

    2009-04-01

    Early detection of the protein marker troponin I in patients with a higher risk of acute myocardial infarction can reduce the risk of death from heart attacks. Most troponin assays are currently based on the conventional enzyme linked immunosorbent assay and have detection limits in the nano- and picomolar range. Here, we show that by combining viral nanoparticles, which are engineered to have dual affinity for troponin antibodies and nickel, with three-dimensional nanostructures including nickel nanohairs, we can detect troponin levels in human serum samples that are six to seven orders of magnitude lower than those detectable using conventional enzyme linked immunosorbent assays. The viral nanoparticle helps to orient the antibodies for maximum capture of the troponin markers. High densities of antibodies on the surfaces of the nanoparticles and nanohairs lead to greater binding of the troponin markers, which significantly enhances detection sensitivities. The nickel nanohairs are re-useable and can reproducibly differentiate healthy serum from unhealthy ones. We expect other viral nanoparticles to form similar highly sensitive diagnostic assays for a variety of other protein markers.

  12. Fluorescence-based assay as a new screening tool for toxic chemicals

    Science.gov (United States)

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-09-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  13. Recent Advances in Effect-directed Enzyme Assays based on Thin-layer Chromatography.

    Science.gov (United States)

    Bräm, Sarah; Wolfram, Evelyn

    2017-03-01

    Thin-layer chromatography (TLC) together with its more modern form high-performance thin-layer chromatography (HPTLC) is a rapid and cost effective analytical tool with a long tradition in quality control of medicinal plants, extracts and natural products. Separated compounds are fixed on the solid silica phase to form a compound library. Through direct coupling of visualisable enzyme reactions on the TLC plate, this compound library can also be used for activity screening. Such TLC-based bioautographic enzyme and enzyme inhibition assays complement first stage development activity screening assays. They provide not only phytochemical results by chromatographic separation, but also additional information about the activity of constituents or fractions in multi-compound mixtures, and thus can reveal and distinguish artefacts generated by certain compound classes. This review summarises recently introduced TLC bioautographic enzyme assays as well as advances in already existing procedures. Bioautographic enzyme and enzyme inhibitory assays offer a rapid, high-throughput method for screening of secondary metabolite profiles for potential enzyme and enzyme inhibitory activities. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. GFP-based fluorescence assay for CAG repeat instability in cultured human cells.

    Directory of Open Access Journals (Sweden)

    Beatriz A Santillan

    Full Text Available Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries.

  15. Development of a cell-based, high-throughput screening assay for ATM kinase inhibitors.

    Science.gov (United States)

    Guo, Kexiao; Shelat, Anang A; Guy, R Kiplin; Kastan, Michael B

    2014-04-01

    The ATM (ataxia-telangiectasia, mutated) protein kinase is a major regulator of cellular responses to DNA double-strand breaks (DSBs), DNA lesions that can be caused by ionizing irradiation (IR), oxidative damage, or exposure to certain chemical agents. In response to DSBs, the ATM kinase is activated and subsequently phosphorylates numerous downstream substrates, including p53, Chk2, BRCA1, and KAP1, which affect processes such as cell cycle progression and DNA repair. Numerous studies have demonstrated that loss of ATM function results in enhanced sensitivity to ionizing irradiation in clinically relevant dose ranges, suggesting that ATM kinase is an attractive therapeutic target for enhancing tumor cell kill with radiotherapy. Previously identified small-molecule ATM kinase inhibitors, such as CP466722 and Ku55933, were identified using in vitro kinase assays carried out with recombinant ATM kinase isolated from mammalian cells. Since it has not been feasible to express full-length recombinant ATM in bacterial or baculovirus systems, a robust in vitro screening tool has been lacking. We have developed a cell-based assay that is robust, straightforward, and sensitive. Using this high-throughput assay, we screened more than 7000 compounds and discovered additional small molecules that inhibit the ATM kinase and further validated these hits by secondary assays.

  16. Electrochemical chip-based genomagnetic assay for detection of high-risk human papillomavirus DNA.

    Science.gov (United States)

    Bartosik, Martin; Durikova, Helena; Vojtesek, Borivoj; Anton, Milan; Jandakova, Eva; Hrstka, Roman

    2016-09-15

    Cervical cancer, being the fourth leading cause of cancer death in women worldwide, predominantly originates from a persistent infection with a high-risk human papillomavirus (HPV). Detection of DNA sequences from these high-risk strains, mostly HPV-16 and HPV-18, represents promising strategy for early screening, which would help to identify women with higher risk of cervical cancer. In developing countries, inadequate screening options lead to disproportionately high mortality rates, making a fast and inexpensive detection schemes highly important. Electrochemical sensors and assays offer an alternative to current methods of detection. We developed an electrochemical-chip based assay, in which target HPV DNA is captured via magnetic bead-modified DNA probes, followed by an antidigoxigenin-peroxidase detection system at screen-printed carbon electrode chips, enabling parallel measurements of eight samples simultaneously. We show sensitive detection in attomoles of HPV DNA, selective discrimination between HPV-16 and HPV-18 and good reproducibility. Most importantly, we show application of the assay into both cancer cell lines and cervical smears from patients. The electrochemical results correlated well with standard methods, making this assay potentially applicable in clinical practice.

  17. Identification of compounds that modulate retinol signaling using a cell-based qHTS assay.

    Science.gov (United States)

    Chen, Yanling; Sakamuru, Srilatha; Huang, Ruili; Reese, David H; Xia, Menghang

    2016-04-01

    In vertebrates, the retinol (vitamin A) signaling pathway (RSP) controls the biosynthesis and catabolism of all-trans retinoic acid (atRA), which regulates transcription of genes essential for embryonic development. Chemicals that interfere with the RSP to cause abnormal intracellular levels of atRA are potential developmental toxicants. To assess chemicals for the ability to interfere with retinol signaling, we have developed a cell-based RARE (Retinoic Acid Response Element) reporter gene assay to identify RSP disruptors. To validate this assay in a quantitative high-throughput screening (qHTS) platform, we screened the Library of Pharmacologically Active Compounds (LOPAC) in both agonist and antagonist modes. The screens detected known RSP agonists, demonstrating assay reliability, and also identified novel RSP agonists including kenpaullone, niclosamide, PD98059 and SU4312, and RSP antagonists including Bay 11-7085, LY294002, 3,4-Methylenedioxy-β-nitrostyrene, and topoisomerase inhibitors (camptothecin, topotecan, amsacrine hydrochloride, and idarubicin). When evaluated in the P19 pluripotent cell, these compounds were found to affect the expression of the Hoxa1 gene that is essential for embryo body patterning. These results show that the RARE assay is an effective qHTS approach for screening large compound libraries to identify chemicals that have the potential to adversely affect embryonic development through interference with retinol signaling.

  18. An estuarine mudsnail in situ toxicity assay based on postexposure feeding.

    Science.gov (United States)

    Krell, Bonny; Moreira-Santos, Matilde; Ribeiro, Rui

    2011-08-01

    In situ assays provide more realistic exposure scenarios than laboratory assays, which is particularly pertinent for estuaries because exposure conditions are difficult to simulate. Traditionally, sublethal toxicity testing endpoints, such as growth, emergence, and reproduction, imply time-delayed extrapolations from individuals to populations, communities, and ecosystems. Sublethal responses mechanistically linked to ecosystem functions have been largely neglected. Feeding is an unequivocal ecologically meaningful response because its impairment has direct and immediate effects on ecosystems, by hampering key functions such as organic matter decomposition, long before its effects at the individual level have consequences at successively higher levels of biological organization. The ultimate goal of the present study was to widen the range of ecosystem functions for estuarine quality assessments. Specifically, a short-term in situ assay based on the postexposure feeding of the mudsnail Hydrobia ulvae is presented. Methodologies to quantify precisely postexposure egestion as a surrogate of feeding were achieved. A multiple regression model from laboratory experiments was successfully applied to an in situ assay at reference (Mira River) and contaminated Portuguese estuaries (Sado River) for predicting reference results and allowing unraveling confounding factors during exposure (temperature, salinity, sediment grain size). Sensitivity comparisons of postexposure feeding with survival and growth, after Cu exposure, were carried out and used for a first preliminary appraisal of the relative consequences of ecosystem-level immediate effects. Copyright © 2011 SETAC.

  19. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Science.gov (United States)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  20. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania)

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  1. Performance of a MALDI-TOF MS-based imipenem hydrolysis assay incorporating zinc sulfate.

    Science.gov (United States)

    Knox, James; Palombo, Enzo

    2017-03-01

    A MALDI-TOF MS(1)-based imipenem hydrolysis assay was modified by adding ZnSO4. This improved detection of metallo-β-lactamase producing strains without compromising detection of other carbapenemase types. Using 129 genetically characterized Gram-negative bacilli, the sensitivity and specificity were 98.5% (95% confidence interval [CI]: 91.9-99.7%) and 100% (95% CI: 94.3-100%), respectively.

  2. Electrochemical Genotoxicity Assay Based on a SOS/umu Test Using Hydrodynamic Voltammetry in a Droplet

    OpenAIRE

    Kazuharu Sugawara; Masami Fukushima; Shigeru Taguchi; Noriko Hata; Kazuto Sazawa; Yasuaki Nanayama; Hideki Kuramitz

    2012-01-01

    The SOS/umu genotoxicity assay evaluates the primary DNA damage caused by chemicals from the β-galactosidase activity of S. typhimurium. One of the weaknesses of the common umu test system based on spectrophotometric detection is that it is unable to measure samples containing a high concentration of colored dissolved organic matters, sediment, and suspended solids. However, umu tests with electrochemical detection techniques prove to be a better strategy because it causes less inter...

  3. Multi-agent system-based event-triggered hybrid control scheme for energy internet

    DEFF Research Database (Denmark)

    Dou, Chunxia; Yue, Dong; Han, Qing Long

    2017-01-01

    This paper is concerned with an event-triggered hybrid control for the energy Internet based on a multi-agent system approach with which renewable energy resources can be fully utilized to meet load demand with high security and well dynamical quality. In the design of control, a multi-agent system...... framework is first constructed. Then, to describe fully the hybrid behaviors of all distributed energy resources and logical relationships between them, a differential hybrid Petri-net model is established, which is an original work. The most important contributions based on this model propose four types...

  4. PV-solar / wind hybrid energy system for GSM/CDMA type mobile telephony base station

    OpenAIRE

    Pragya Nema, R.K. Nema, Saroj Rangnekar

    2010-01-01

    This paper gives the design idea of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in central India (Bhopal) . For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Bhopal-Central India (Longitude 77o.23'and Latitude 23o.21' ) and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid en...

  5. PV-solar / Wind Hybrid Energy System for GSM/CDMA Type Mobile Telephony Base

    OpenAIRE

    Station Md. Ibrahim; Mohammad Tayyab

    2015-01-01

    This paper presents the design of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in south India (Chennai). For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Chennai (Longitude 80ο .16’and Latitude 13ο .5’ ) and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid ...

  6. A PCR-based assay for discriminating Cervus and Rangifer (Cervidae) antlers with mitochondrial DNA polymorphisms.

    Science.gov (United States)

    Kim, Young Hwa; Kim, Eung Soo; Ko, Byong Seob; Oh, Seung-Eun; Ryuk, Jin-Ah; Chae, Seong Wook; Lee, Hye Won; Choi, Go Ya; Seo, Doo Won; Lee, Mi Young

    2012-07-01

    This study describes a method for discriminating Rangifer antlers from true Cervus antlers using agarose gel electrophoresis, capillary electrophoresis, quantitative real-time PCR, and allelic discrimination. Specific primers labeled with fluorescent tags were designed to amplify fragments from the mitochondrial D-loop genes for various Cervus subspecies and Rangifer tarandus differentially. A 466-bp fragment that was observed for both Cervus and Rangifer antlers served as a positive control, while a 270-bp fragment was specifically amplified only from Rangifer antlers. Allelic discrimination was used to differentiate between Cervus and Rangifer antlers, based on the amplification of specific alleles for both types of antlers. These PCR-based assays can be used for forensic and quantitative analyses of Cervus and Rangifer antlers in a single step, without having to obtain any sequence information. In addition, multiple PCR-based assays are more accurate and reproducible than a single assay for species-specific analysis and are especially useful in this study for the identification of original Cervus deer products from fraudulent Rangifer antlers.

  7. Microtiterplate phosphate assay based on luminescence quenching of a terbium complex amenable to decay time detection.

    Science.gov (United States)

    Turel, Matejka; Duerkop, Axel; Yegorova, Alla; Karasyov, Alexander; Scripinets, Yulia; Lobnik, Aleksandra

    2010-08-18

    We describe a terbium-ligand complex (TbL) for a microtiterplate assay for phosphate (P) in the 0.3-100 micromol L(-1) range based on luminescence quenching. As the pH optimum is at neutral pH (7.4) the probe is quenched by both, primary (H(2)PO(4)(-)) and secondary phosphate (HPO(4)(2-)). The LOD is 110 nmol L(-1). A Stern-Volmer study revealed that quenching is mostly static. Due to the ms-decay time of TbL, the first luminescence lifetime assay for phosphate could also be developed. The lifetime-based calibration plot is linear between 0.5 and 5 micromol L(-1) of P. The effect of various surfactants on assay performance and a study on interferents are presented. The probe was successfully applied to determination of P in commercial plant fertilizers and validated against the molybdenum blue test. The probe is the most sensitive lanthanide-based probe for phosphate. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Detection of Alternaria fungal contamination in cereal grains by a polymerase chain reaction-based assay.

    Science.gov (United States)

    Zur, Gideon; Shimoni, Eyal; Hallerman, Eric; Kashi, Yechezkel

    2002-09-01

    Alternaria sp. are important fungal contaminants of grain products; they secrete four structural classes of compounds that are toxic or carcinogenic to plants and animals and cause considerable economic losses to growers and the food-processing industry. Alternaria toxins have been detected by high-performance liquid chromatography (HPLC), enzyme-linked immunosorbent assay, and other techniques. Here, we report the development of a polymerase chain reaction (PCR)-based method for the detection of Alternaria DNA. PCR primers were designed to anneal to the ITS1 and ITS2 regions of the 5.8S rDNA gene of Alternaria alternata or Alternaria solani but not to other microbial or plant DNA. We compared the sensitivity of PCR in detecting Alternaria DNA, that of the HPLC method in detecting Alternaria alternariol and alternariol methyl ether toxins, and that of the morphological examination of mycelia and conidia in experimentally infested corn samples. The sensitivity of toxin detection for HPLC was above the level of contamination in a set of commercially obtained grain samples, resulting in negative scores for all samples, while the PCR-based method and mold growth plating followed by morphological identification of Alternaria gave parallel, positive results for 8 of 10 samples. The PCR assay required just 8 h, enabling the rapid and simultaneous testing of many samples at a low cost. PCR-based evidence for the presence of Alternaria DNA followed by positive assay results for Alternaria toxins would support the rejection of a shipment of grain.

  9. An integrated hybrid microfluidic device for oviposition-based chemical screening of adult Drosophila melanogaster.

    Science.gov (United States)

    Leung, Jacob C K; Hilliker, Arthur J; Rezai, Pouya

    2016-02-21

    Chemical screening using Drosophila melanogaster (the fruit fly) is vital in drug discovery, agricultural, and toxicological applications. Oviposition (egg laying) on chemically-doped agar plates is an important read-out metric used to quantitatively assess the biological fitness and behavioral responses of Drosophila. Current oviposition-based chemical screening studies are inaccurate, labor-intensive, time-consuming, and inflexible due to the manual chemical doping of agar. In this paper, we have developed a novel hybrid agar-polydimethylsiloxane (PDMS) microfluidic device for single- and multi-concentration chemical dosing and on-chip oviposition screening of free-flying adult stage Drosophila. To achieve this, we have devised a novel technique to integrate agar with PDMS channels using ice as a sacrificial layer. Subsequently, we have conducted single-chemical toxicity and multiple choice chemical preference assays on adult Drosophila melanogaster using zinc and acetic acid at various concentrations. Our device has enabled us to 1) demonstrate that Drosophila is capable of sensing the concentration of different chemicals on a PDMS-agar microfluidic device, which plays significant roles in determining oviposition site selection and 2) investigate whether oviposition preference differs between single- and multi-concentration chemical environments. This device may be used to study fundamental and applied biological questions in Drosophila and other egg laying insects. It can also be extended in design to develop sophisticated and dynamic chemical dosing and high-throughput screening platforms in the future that are not easily achievable with the existing oviposition screening techniques.

  10. Differentiation between spore-forming and asporogenic bacteria using a PCR and southern hybridization based method

    Energy Technology Data Exchange (ETDEWEB)

    Brill, J.A.; Wiegel, J. [Univ. of Georgia, Athens, GA (United States)

    1997-12-31

    A set of molecular probes was devised to develop a method for screening for the presence of sequences homologous to three representative genes exclusively involved in endosporulation. Based on known gene sequences, degenerate PCR primers were designed against spo0A and ssp. Experimental conditions were devised under which homologs of both genes were consistently detected in endospore-forming bacteria, but not in asporogenic bacteria. The PCR amplification products and dpaA/B from Bacillus subtilis were used as hybridization probes for Southern blots. Identical conditions were used with the genomic DNA from endospore-forming and asporogenic bacteria. We therefore concluded that the probes specifically detect the targeted sporulation genes and we obtained no indication that genes homologous to ssp, spo0A and dpaA/B are present in asporogenic bacteria. Thus, this assay can potentially be used to detect spore-forming bacteria in various kinds of samples and to distinguish between bacteria containing sporulation genes and those who do not regardless of whether sporulation is observed or not. 43 refs., 3 figs., 1 tab.

  11. Structural investigation of the zirconium-titanium based amino trimethylene phosphonate hybrid coating on aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Shuanghong WANG; Changsheng LIU; Fengjun SHAN

    2009-01-01

    A zirconium-titanium based amino trimethylene phosphonate hybrid coating on AA6061 aluminum alloys was formed by dipping in a fluorotitanate/zirconate acid and amino trimethylene phosphonic acid (ATMP) solution for improving the lacquer adhesion and corrosion resistance as a substitute of chromate coatings. The morphol-ogy and structure of the hybrid coating were studied by means of scanning electror microscopy (SEM) and atomic force microscopy (AFM). The surface compositior and structure characteristics were also investigated by means of X-ray photoelectron spectroscopy (XPS) and Fourier transformation infra-red spectroscopy (FTIR). The results of SEM and AFM show that the hybrid coating present piece particle distrib-ution which is much denser than that of the zirconium-titanium coating. The results of XPS and FTIR indicate that the hybrid coating is a hybrid composite structure composed of both the zirconium-titanium and amino trimethylene phosphonate coat-ings.

  12. Three hybridization models based on local search scheme for job shop scheduling problem

    Science.gov (United States)

    Balbi Fraga, Tatiana

    2015-05-01

    This work presents three different hybridization models based on the general schema of Local Search Heuristics, named Hybrid Successive Application, Hybrid Neighborhood, and Hybrid Improved Neighborhood. Despite similar approaches might have already been presented in the literature in other contexts, in this work these models are applied to analyzes the solution of the job shop scheduling problem, with the heuristics Taboo Search and Particle Swarm Optimization. Besides, we investigate some aspects that must be considered in order to achieve better solutions than those obtained by the original heuristics. The results demonstrate that the algorithms derived from these three hybrid models are more robust than the original algorithms and able to get better results than those found by the single Taboo Search.

  13. Mechanical and tribological studies on nano particles reinforced hybrid aluminum based composite

    Directory of Open Access Journals (Sweden)

    Muley Aniruddha V.

    2015-01-01

    Full Text Available Hybrid metal matrix composites are new class of materials due to their better mechanical properties which can be achieved through proper selection and combination of materials. The work reported in this paper is based on fabrication of hybrid composites by using nano particles as reinforcements. The hybrid composites were fabricated by reinforcing them with nano sized SiC and Al2O3 particles in order to study mechanical and tribological properties of these enhanced materials. A stir casting method was used to obtain hybrid composites. LM 6 aluminum alloy was used as a matrix material. The results shown increase in hardness as well as in ultimate tensile strength of the composites with small wt.% of nano-sized hybrid reinforcements. The composites produced also exhibit better tribological properties.

  14. Methods for mapping QTLs underlying endosperm traits based on random hybridization design

    Institute of Scientific and Technical Information of China (English)

    WEN Yongxian; WU Weiren

    2006-01-01

    Several methods of interval mapping of QTLs underlying endosperm traits based on random hybridization designs and the triploid genetic model are proposed. The basic idea is: plants (or lines) from a population with known marker genotype information are randomly hybridized to generate a population of hybrid lines for endosperm QTL mapping; a mixture of seeds of each hybrid line is measured for the endosperm trait to get the mean of the line; then endosperm QTL mapping and effect estimation is performed using the endosperm trait means of hybrid lines and the marker genotype information of parental plants (or lines). The feasibility and efficiency of the methods are examined by computer simulations. Results show that the methods can precisely map endosperm QTLs and unbiasedly and efficiently estimate the three effects (additive effect, first dominant effect, second dominant effect) of endosperm QTLs.

  15. Polylactide-based bionanocomposites: a promising class of hybrid materials.

    Science.gov (United States)

    Sinha Ray, Suprakas

    2012-10-16

    Polylactide (PLA) is the oldest and potentially one of the most interesting and useful biodegradable man-made polymers because of its renewable origin, controlled synthesis, good mechanical properties, and inherent biocompatibility. The blending of PLA with functional nanoparticles can yield a new class of hybrid materials, commonly known as bionanocomposites, where 1-5% nanoparticles by volume are molecularly dispersed within the PLA matrix. The dispersed nanoparticles with their large surface areas and low percolation thresholds both can improve the properties significantly in comparison with neat PLA and can introduce new value-added properties. Recently, researchers have made extraordinary progress in the practical processing and development of products from PLA bionanocomposites. The variation of the nanofillers with different functionalities can lead to many bionanocomposite applications including environmentally friendly packaging, materials for construction, automobiles, and tissue regeneration, and load-bearing scaffolds for bone reconstruction. This Account focuses on these recent research efforts, processing techniques, and key research challenges in the development of PLA-based bionanocomposites for use in applications from green plastics to biomedical applications. Growing concerns over environmental issues and high demand for advanced polymeric materials with balanced properties have led to the development of bionanocomposites of PLA and natural origin fillers, such as nanoclays. The combination of nanoclays with the PLA matrix allows us to develop green nanocomposites that possess several superior properties. For example, adding ∼5 vol % clay to PLA improved the storage modulus, tensile strength, break elongation, crystallization rate, and other mechanical properties. More importantly, the addition of clay decreases the gas and water vapor permeation, increases the heat distortion temperature and scratch resistance, and controls the biodegradation

  16. Analyzing Dynamic Task-Based Applications on Hybrid Platforms: An Agile Scripting Approach

    OpenAIRE

    Garcia Pinto, Vinicius; Stanisic, Luka; Legrand, Arnaud; Mello Schnorr, Lucas; Thibault, Samuel; Danjean, Vincent

    2016-01-01

    In this paper, we present visual analysis techniques to evaluate the performance of HPC task-based applications on hybrid architectures. Our approach is based on composing modern data analysis tools (pjdump, R, ggplot2, plotly), enabling an agile and flexible scripting framework with minor development cost. We validate our proposal by analyzing traces from the full-fledged implementation of the Cholesky decomposition available in the MORSE library running on a hybrid (CPU/GPU) platform. The a...

  17. Microwave-induced inactivation of DNA-based hybrid catalyst in asymmetric catalysis.

    Science.gov (United States)

    Zhao, Hua; Shen, Kai

    2016-03-01

    DNA-based hybrid catalysts have gained strong interests in asymmetric reactions. However, to maintain the high enantioselectivity, these reactions are usually conducted at relatively low temperatures (e.g. DNA-based hybrid catalyst even at low temperatures (such as 5 °C). Circular dichroism (CD) spectra and gel electrophoresis of DNA suggest that microwave exposure degrades DNA molecules and disrupts DNA double-stranded structures, causing changes of DNA-metal ligand binding properties and thus poor DNA catalytic performance.

  18. Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents, Pinus tabuliformis and Pinus yunnanensis.

    Science.gov (United States)

    Xing, Fangqian; Mao, Jian-Feng; Meng, Jingxiang; Dai, Jianfeng; Zhao, Wei; Liu, Hao; Xing, Zhen; Zhang, Hua; Wang, Xiao-Ru; Li, Yue

    2014-05-01

    Genetic analyses indicate that Pinus densata is a natural homoploid hybrid originating from Pinus tabuliformis and Pinus yunnanensis. Needle morphological and anatomical features show relative species stability and can be used to identify coniferous species. Comparative analyses of these needle characteristics and phenotypic differences between the artificial hybrids, P. densata, and parental species can be used to determine the genetic and phenotypic evolutionary consequences of natural hybridization. Twelve artificial hybrid families, the two parental species, and P. densata were seeded in a high-altitude habitat in Linzhi, Tibet. The needles of artificial hybrids and the three pine species were collected, and 24 needle morphological and anatomical traits were analyzed. Based on these results, variations in 10 needle traits among artificial hybrid families and 22 traits among species and artificial hybrids were predicted and found to be under moderate genetic control. Nineteen needle traits in artificial hybrids were similar to those in P. densata and between the two parental species, P. tabuliformis and P. yunnanensis. The ratio of plants with three needle clusters in artificial hybrids was 22.92%, which was very similar to P. densata. The eight needle traits (needle length, the mean number of stomata in sections 2 mm in length of the convex and flat sides of the needle, mean stomatal density, mesophyll/vascular bundle area ratio, mesophyll/resin canal area ratio, mesophyll/(resin canals and vascular bundles) area ratio, vascular bundle/resin canal area ratio) relative to physiological adaptability were similar to the artificial hybrids and P. densata. The similar needle features between the artificial hybrids and P. densata could be used to verify the homoploid hybrid origin of P. densata and helps to better understand of the hybridization roles in adaptation and speciation in plants.

  19. A Shared-Electrode-Based Hybridized Electromagnetic-Triboelectric Nanogenerator.

    Science.gov (United States)

    Quan, Ting; Wang, Zhong Lin; Yang, Ya

    2016-08-03

    Integration of electromagnetic generators (EMGs) and triboelectric nanogenerators (TENGs) can increase the total energy conversion efficiency from one mechanical motion by connecting the two devices in parallel after using power management circuits. A critical issue is how to realize the integration of the EMG and TENG in the same current circuits. Here, a hybridized nanogenerator, including an EMG and a TENG with the same set of electrodes, has been utilized to simultaneously scavenge mechanical energy. The hybridized nanogenerator can deliver a high output current of about 3.8 mA and a high output voltage of about 245 V when the switch in the device circuit was turned on and off, respectively. A acceleration sensor can be achieved by using the hybridized nanogenerator, where the detection sensitivities are about 143.2 V/(m/s(2)) for TENG and 291.7 μA/(m/s(2)) for EMG. The fabricated hybridized nanogenerator may have practical use for scavenging mechanical energy and self-powered acceleration sensor systems.

  20. Hybrid multiple attribute decision making model based on entropy

    Institute of Scientific and Technical Information of China (English)

    Wang Wei; Cui Mingming

    2007-01-01

    From the viewpoint of entropy, this paper investigates a hybrid multiple attribute decision making problem with precision number, interval number and fuzzy number. It defines a new concept: project entropy and the decision is taken according to the values. The validity and scientific nature of the given is proven.

  1. Model-based health monitoring of hybrid systems

    CERN Document Server

    Wang, Danwei; Low, Chang Boon; Arogeti, Shai

    2013-01-01

    Offers in-depth comprehensive study on health monitoring for hybrid systems Includes new concepts, such as GARR, mode tracking and multiple failure prognosis Contains many examples, making the developed techniques easily understandable and accessible Introduces state-of-the-art algorithms and methodologies from experienced researchers

  2. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO{sub 2}) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity.

  3. A novel mass spectrometry-based assay for GSK-3β activity

    Directory of Open Access Journals (Sweden)

    Gan Bing Siang

    2005-12-01

    Full Text Available Abstract Background As a component of the progression from genomic to proteomic analysis, there is a need for accurate assessment of protein post-translational modifications such as phosphorylation. Traditional kinase assays rely heavily on the incorporation of γ-P32 radiolabeled isotopes, monoclonal anti-phospho-protein antibodies, or gel shift analysis of substrate proteins. In addition to the expensive and time consuming nature of these methods, the use of radio-ligands imposes restrictions based on the half-life of the radionucleotides and pose potential health risks to researchers. With the shortcomings of traditional assays in mind, the aim of this study was to develop a high throughput, non-radioactive kinase assay for screening Glycogen Synthase Kinase-3beta (GSK-3β activity. Results Synthetic peptide substrates designed with a GSK-3β phosphorylation site were assayed with both recombinant enzyme and GSK-3β immunoprecipitated from NIH 3T3 fibroblasts. A molecular weight shift equal to that of a single phosphate group (80 Da. was detected by surface enhanced laser desorption/ionization time of flight mass spectrometry (SELDI-TOF-MS in a GSK-3β target peptide (2B-Sp. Not only was there a dose-dependent response in molecular weight shift to the amount of recombinant GSK-3β used in this assay, this shift was also inhibited by lithium chloride (LiCl, in a dose-dependent manner. Conclusion We present here a novel method to sensitively measure peptide phosphorylation by GSK-3β that, due to the incorporation of substrate controls, is applicable to either purified enzyme or cell extracts. Future studies using this method have the potential to elucidate the activity of GSK-3β in vivo, and to screen enzyme activity in relation to a variety of GSK-3β related disorders.

  4. Agent-based power sharing scheme for active hybrid power sources

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhenhua [Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL 33146 (United States)

    2008-02-15

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles. (author)

  5. Agent-based power sharing scheme for active hybrid power sources

    Science.gov (United States)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  6. Failure assessment of aluminum liner based filament-wound hybrid riser subjected to internal hydrostatic pressure

    Science.gov (United States)

    Dikshit, Vishwesh; Seng, Ong Lin; Maheshwari, Muneesh; Asundi, A.

    2015-03-01

    The present study describes the burst behavior of aluminum liner based prototype filament-wound hybrid riser under internal hydrostatic pressure. The main objective of present study is to developed an internal pressure test rig set-up for filament-wound hybrid riser and investigate the failure modes of filament-wound hybrid riser under internal hydrostatic burst pressure loading. The prototype filament-wound hybrid riser used for burst test consists of an internal aluminum liner and outer composite layer. The carbon-epoxy composites as part of the filament-wound hybrid risers were manufactured with [±55o] lay-up pattern with total composite layer thickness of 1.6 mm using a CNC filament-winding machine. The burst test was monitored by video camera which helps to analyze the failure mechanism of the fractured filament-wound hybrid riser. The Fiber Bragg Grating (FBG) sensor was used to monitor and record the strain changes during burst test of prototype filament-wound hybrid riser. This study shows good improvements in burst strength of filament-wound hybrid riser compared to the monolithic metallic riser. Since, strain measurement using FBG sensors has been testified as a reliable method, we aim to further understand in detail using this technique.

  7. A new scintillation proximity assay-based approach for the detection of KRAS mutations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So-Young; Lim, Jae-Cheong; Cho, Eun-Ha; Jung, Sung-Hee [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of). Radioisotope Research Div.

    2016-04-01

    KRAS is very commonly mutated resulting in a constitutively activated protein, which is independent of epidermal growth factor receptor (EGFR) ligand binding and resistant to anti-EGFR therapy. Although KRAS is frequently studied, there is still no uniform standard for detecting of KRAS mutations. In this report, a new scintillation proximity assay-based approach is described that determines the relative affinities of wild-type and mutated KRAS to the anti-KRAS antibody. We performed in vitro experiments using normal human colonic cells (CCD18Co), KRAS wild type (Caco-2) and KRAS mutant (HCT 116) cell lines to determine the relative affinities of wild type or mutated KRAS toward an anti-KRAS monoclonal antibody. The process consists of two primary steps: immunoprecipitation from cell lysate to enrich the KRAS protein and the scintillation proximity assay of the immunoprecipitant to determine the relative affinity against the antibody. A fixed concentration of cell lysates was purified by the immunoprecipitation method. The expressions of the KRAS protein in all cell lines was quantitatively confirmed by western blot analysis. For the scintillation proximity assay, the KRAS standard protein was radiolabeled with {sup 125}I by a simple mixing process in the iodogen tube immediately at room temperature immediately before use. The obtained CPM (count per minute) values of were used to calculate the KRAS concentration using purified KRAS as the standard. The calculated relative affinities of 7 μg of Caco-2 and HCT 116 immunoprecipitants for the anti-KRAS antibody were 77 and 0%, respectively. The newly developed scintillation proximity assay-based strategy determines the relative affinities of wild-type or mutated KRAS towards the anti-KRAS monoclonal antibody. This determination can help distinguish mutated KRAS from the wild type protein. The new SPA based approach for detecting KRAS mutations is applicable to many other cancer-related mutations.

  8. Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.

    Science.gov (United States)

    Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan

    2014-09-01

    Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors.

  9. Comparison of hybridization-based and sequencing-based gene expression technologies on biological replicates

    Directory of Open Access Journals (Sweden)

    Cepko Connie L

    2007-06-01

    Full Text Available Abstract Background High-throughput systems for gene expression profiling have been developed and have matured rapidly through the past decade. Broadly, these can be divided into two categories: hybridization-based and sequencing-based approaches. With data from different technologies being accumulated, concerns and challenges are raised about the level of agreement across technologies. As part of an ongoing large-scale cross-platform data comparison framework, we report here a comparison based on identical samples between one-dye DNA microarray platforms and MPSS (Massively Parallel Signature Sequencing. Results The DNA microarray platforms generally provided highly correlated data, while moderate correlations between microarrays and MPSS were obtained. Disagreements between the two types of technologies can be attributed to limitations inherent to both technologies. The variation found between pooled biological replicates underlines the importance of exercising caution in identification of differential expression, especially for the purposes of biomarker discovery. Conclusion Based on different principles, hybridization-based and sequencing-based technologies should be considered complementary to each other, rather than competitive alternatives for measuring gene expression, and currently, both are important tools for transcriptome profiling.

  10. Microcantilver-based DNA hybridization sensors for Salmonella identification

    Directory of Open Access Journals (Sweden)

    Carlo Ricciardi

    2012-02-01

    Full Text Available The detection of pathogenic microorganisms in foods remains a challenging since the safety of foodstuffs has to be ensured by the food producing companies. Conventional methods for the detection and identification of bacteria mainly rely on specific microbiological and biochemical identification. Biomolecular methods, are commonly used as a support for traditional techniques, thanks to their high sensitivity, specificity and not excessive costs. However, new methods like biosensors for example, can be an exciting alternative to the more traditional tecniques for the detection of pathogens in food. In this study we report Salmonella enterica serotype Enteritidis DNA detection through a novel class of label-free biosensors: microcantilevers (MCs. In general, MCs can operate as a microbalance and is used to detect the mass of the entities anchored to the cantilever surface using the decrease in the resonant frequency. We use DNA hybridization as model reaction system and for this reason, specific single stranded probe DNA of the pathogen and three different DNA targets (single-stranded complementary DNA, PCR product and serial dilutions of DNA extracted from S. Enteritidis strains were applied. Two protocols were reported in order to allow the probe immobilization on cantilever surface: i MC surface was functionalized with 3-aminopropyltriethoxysilane and glutaraldehyde and an amino-modified DNA probe was used; ii gold-coated sensors and thiolated DNA probes were used in order to generate a covalent bonding (Th-Au. For the first one, measures after hybridization with the PCR product showed related frequency shift 10 times higher than hybridization with complementary probe and detectable signals were obtained at the concentrations of 103 and 106 cfu/mL after hybridization with bacterial DNA. There are currently optimizations of the second protocol, where preliminary results have shown to be more uniform and therefore more precise within each of the

  11. Hybrid biomaterials based on calcium carbonate and polyaniline nanoparticles for application in photothermal therapy.

    Science.gov (United States)

    Neira-Carrillo, Andrónico; Yslas, Edith; Marini, Yazmin Amar; Vásquez-Quitral, Patricio; Sánchez, Marianela; Riveros, Ana; Yáñez, Diego; Cavallo, Pablo; Kogan, Marcelo J; Acevedo, Diego

    2016-09-01

    Inorganic materials contain remarkable properties for drug delivery, such as a large surface area and nanoporous structure. Among these materials, CaCO3 microparticles (CMPs) exhibit a high encapsulation efficiency and solubility in acidic media. The extracellular pH of tumor neoplastic tissue is significantly lower than the extracellular pH of normal tissue facilitating the release of drug-encapsulating CMPs in this area. Conducting polyaniline (PANI) absorbs light energy and transforms it into localized heat to produce cell death. This work aimed to generate hybrid CMPs loaded with PANI for photothermal therapy (PTT). The hybrid nanomaterial was synthesized with CaCO3 and carboxymethyl cellulose in a simple, reproducible manner. The CMP-PANI-Cys particles were developed for the first time and represent a novel type of hybrid biomaterial. Resultant nanoparticles were characterized utilizing scanning electron microscopy, dynamic light scattering, zeta potential, UV-vis, FTIR and Raman spectroscopy. In vitro HeLa cells in dark and irradiated conditions showed that CMP-PANI-Cys and PANI-Cys are nontoxic at the assayed concentrations. Hybrid biomaterials displayed high efficiency for potential PTT compared with PANI-Cys. In summary, hierarchical hybrid biomaterials composed of CMPs and PANI-Cys combined with near infrared irradiation represents a useful alternative in PTT.

  12. Comparative cytotoxic and genotoxic potential of 13 drinking water disinfection by-products using a microplate-based cytotoxicity assay and a developed SOS/umu assay.

    Science.gov (United States)

    Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing

    2016-01-01

    The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively.

  13. Design and Synthesis of Functional Silsesquioxane-Based Hybrids by Hydrolytic Condensation of Bulky Triethoxysilanes

    Directory of Open Access Journals (Sweden)

    Hideharu Mori

    2012-01-01

    Full Text Available This paper presents a short overview of recent advances in the design and synthesis of organic-inorganic hybrids using silsesquioxane-based nanoparticles having nanometer size, relatively narrow size distribution, high functionalities, and various characteristic features, mainly focusing on our recent researches related to the subject. A highlight of this paper is the water-soluble silsesquioxane-based nanoparticles, including hydroxyl-functionalized and cationic silsesquioxanes, which were synthesized via the one-step condensation of the bulky triethoxysilane precursors. The design and synthesis of R-SiO1.5/SiO2 and R-SiO1.5/TiO2 hybrids by hydrolytic cocondensation of a triethoxysilane precursor and metal alkoxides are briefly introduced. This paper also deals with recent results in stimuli-responsive hybrids based on the water-soluble silsesquioxane nanoparticles and fluorinated and amphiphilic silsesquioxane hybrids.

  14. An enzyme thermistor-based assay for total and free cholesterol.

    Science.gov (United States)

    Raghavan, V; Ramanathan, K; Sundaram, P V; Danielsson, B

    1999-11-01

    A method to evaluate the free (FC) and total cholesterol (TC) in human serum, bile and gallstone extract using an enzyme thermistor (ET)-based flow injection analysis (FIA) is presented. The cholesterol in high-density (HDL-C) and low density lipoprotein (LDL-C) have also been evaluated. A heparin functionalized Sepharose column was employed for the isolation of HDL and LDL fractions from serum. The estimation of cholesterol and its esters was based on their reaction with cholesterol oxidase (CO), cholesterol esterase (CE) and catalase (CAT). Three different enzyme columns, i.e. co-immobilized CO/CAT (column A), only CE (column B) and co-immobilized CO/CE/CAT (column C) were prepared by cross-linking the enzymes on glass beads using glutaraldehyde. Column A was used for estimating FC and column C was used for estimating total cholesterol (cholesterol plus esterified cholesterol). Column B was used as a pre-column which could be switched 'in' or 'out' in conjunction with column A for the estimation of TC or FC, respectively. A calibration between 1.0 and 8.0 mmol/l for FC and 0. 25 and 4.0 mmol/l for TC was obtained. For more than 2000 assays with the ET device a C.V. of less than 4% was obtained. The assay time was approximately 4 min per assay. The cholesterol estimations on the ET correlated well with similar estimations using a commercially available cholesterol diagnostic kit.

  15. Novel PCR Assays Complement Laser Biosensor-Based Method and Facilitate Listeria Species Detection from Food.

    Science.gov (United States)

    Kim, Kwang-Pyo; Singh, Atul K; Bai, Xingjian; Leprun, Lena; Bhunia, Arun K

    2015-09-08

    The goal of this study was to develop the Listeria species-specific PCR assays based on a house-keeping gene (lmo1634) encoding alcohol acetaldehyde dehydrogenase (Aad), previously designated as Listeria adhesion protein (LAP), and compare results with a label-free light scattering sensor, BARDOT (bacterial rapid detection using optical scattering technology). PCR primer sets targeting the lap genes from the species of Listeria sensu stricto were designed and tested with 47 Listeria and 8 non-Listeria strains. The resulting PCR primer sets detected either all species of Listeria sensu stricto or individual L. innocua, L. ivanovii and L. seeligeri, L. welshimeri, and L. marthii without producing any amplified products from other bacteria tested. The PCR assays with Listeria sensu stricto-specific primers also successfully detected all species of Listeria sensu stricto and/or Listeria innocua from mixed culture-inoculated food samples, and each bacterium in food was verified by using the light scattering sensor that generated unique scatter signature for each species of Listeria tested. The PCR assays based on the house-keeping gene aad (lap) can be used for detection of either all species of Listeria sensu stricto or certain individual Listeria species in a mixture from food with a detection limit of about 10⁴ CFU/mL.

  16. Rapid PCR-based assay for Sclerotinia sclerotiorum detection on soybean seeds

    Directory of Open Access Journals (Sweden)

    Edilaine Mauricia Gelinski Grabicoski

    2015-02-01

    Full Text Available Caused by Sclerotinia sclerotiorum, white mold is an important seed-transmitted disease of soybean (Glycine max. Incubation-based methods available for the detection and quantification of seed-borne inoculum such as the blotter test, paper roll and Neon-S assay are time-consuming, laborious, and not always sensitive. In this study, we developed and evaluated a molecular assay for the detection of S. sclerotiorum in soybean seeds using a species-specific PCR (polymerase chain reaction primer set and seed soaking (without DNA extraction for up to 72 h. The PCR products were amplified in all the samples infected with the pathogen, but not in the other samples of plant material or the other seed-borne fungi DNA. The minimum amount of DNA detected was 10 pg, or one artificially infested seed in a 400-seed sample (0.25 % fungal incidence and one naturally infected seed in a 300-seed sample (0.33 % incidence. The PCR-based assay was rapid (< 9 h, did not require DNA extraction and was very sensitive.

  17. Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine.

    Science.gov (United States)

    Sechi, Deidre; Greer, Brady; Johnson, Jesse; Hashemi, Nastaran

    2013-11-19

    The first step in curing a disease is being able to detect the disease effectively. Paper-based microfluidic devices are biodegradable and can make diagnosing diseases cost-effective and easy in almost all environments. We created a three-dimesnional (3D) paper device using wax printing fabrication technique and basic principles of origami. This design allows for a versatile fabrication technique over previously reported patterning of SU-8 photoresist on chromatography paper by employing a readily available wax printer. The design also utilizes multiple colorimetric assays that can accommodate one or more analytes including urine, blood, and saliva. In this case to demonstrate the functionality of the 3D paper-based microfluidic system, a urinalysis of protein and glucose assays is conducted. The amounts of glucose and protein introduced to the device are found to be proportional to the color change of each assay. This color change was quantified by use of Adobe Photoshop. Urine samples from participants with no pre-existing health conditions and one person with diabetes were collected and compared against synthetic urine samples with predetermined glucose and protein levels. Utilizing this method, we were able to confirm that both protein and glucose levels were in fact within healthy ranges for healthy participants. For the participant with diabetes, glucose was found to be above the healthy range while the protein level was in the healthy range.

  18. Rapid detection of DNMT3A R882 mutations in hematologic malignancies using a novel bead-based suspension assay with BNA(NC probes.

    Directory of Open Access Journals (Sweden)

    Velizar Shivarov

    Full Text Available Mutations in the human DNA methyl transferase 3A (DNMT3A gene are recurrently identified in several hematologic malignancies such as Philadelphia chromosome-negative myeloproliferative neoplasms (MPN, myelodysplastic syndromes (MDS, MPN/MDS overlap syndromes and acute myeloid leukemia (AML. They have been shown to confer worse prognosis in some of these entities. Notably, about 2/3 of these mutations are missense mutations in codon R882 of the gene. We aimed at the development and validation of a novel easily applicable in routine practice method for quantitative detection of the DNMT3A p.R882C/H/R/S mutations bead-based suspension assay. Initial testing on plasmid constructs showed excellent performance of BNA(NC-modified probes with an optimal hybridization temperature of 66°C. The method appeared to be quantitative and showed sensitivity of 2.5% for different mutant alleles, making it significantly superior to direct sequencing. The assay was further validated on plasmid standards at different ratios between wild type and mutant alleles and on clinical samples from 120 patients with known or suspected myeloid malignancies. This is the first report on the quantitative detection of DNMT3A R882 mutations using bead-based suspension assay with BNA(NC-modified probes. Our data showed that it could be successfully implemented in the diagnostic work-up for patients with myeloid malignancies, as it is rapid, easy and reliable in terms of specificity and sensitivity.

  19. Cell-based semiquantitative assay for sulfated glycosaminoglycans facilitating the identification of chondrogenesis.

    Science.gov (United States)

    Yen, Ching-Yu; Wu, Yu-Wei; Hsiung, Chao-Nan; Yeh, Min-I; Lin, Yi-Ming; Lee, Sheng-Yang

    2015-10-01

    Glycosaminoglycans (GAGs), in particular chondroitin sulfate, are an accepted marker of chondrogenic cells. In this study, a cell-based sulfated GAG assay for identifying the chondrogenesis of mesenchymal stem cells was developed. Based on fluorescent staining using safranin O and 4',6-diamidino-2-phenylindole (DAPI), this method was highly sensitive. The results were both qualitative and quantitative. The method is suitable for identifying the chondrogenic process and also for screening compounds. The method may be helpful for discovering novel bioactive compounds for cartilage regeneration.

  20. An extended set of yeast-based functional assays accurately identifies human disease mutations

    Science.gov (United States)

    Sun, Song; Yang, Fan; Tan, Guihong; Costanzo, Michael; Oughtred, Rose; Hirschman, Jodi; Theesfeld, Chandra L.; Bansal, Pritpal; Sahni, Nidhi; Yi, Song; Yu, Analyn; Tyagi, Tanya; Tie, Cathy; Hill, David E.; Vidal, Marc; Andrews, Brenda J.; Boone, Charles; Dolinski, Kara; Roth, Frederick P.

    2016-01-01

    We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease- and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods. PMID:26975778

  1. SDS-PAGE-Based Quantitative Assay for Screening of Kidney Stone Disease

    Directory of Open Access Journals (Sweden)

    Wai-Hoe Lau

    2009-05-01

    Full Text Available Abstract Kidney stone disease is a common health problem in industrialised nations. We developed a SDS-PAGE-based method to quantify Tamm Horsfall glycoprotein (THP for screening of kidney stone disease. Urinary proteins were extracted by using ammonium sulphate precipitation at 0.27 g salt/mL urine. The resulted pellet was dissolved in TSE buffer. Ten microliters of the urinary proteins extract was loaded and separated on 10% SDS-PAGE under reducing condition. THP migrated as single band in SDS-PAGE. The assay reproducibility and repeatability were 4.8% CV and 2.6% CV, respectively. A total of 117 healthy subjects and 58 stone patients were tested using this assay, and a distinct cut-off (P

  2. Partitioning and interpolation based hybrid ARIMA–ANN model for time series forecasting

    Indian Academy of Sciences (India)

    C NARENDRA BABU; PALLAVIRAM SURE

    2016-07-01

    Time series data (TSD) originating from different applications have dissimilar characteristics. Hence for prediction of TSD, diversified varieties of prediction models exist. In many applications, hybrid models provide more accurate predictions than individual models. One such hybrid model, namely auto regressive integrated moving average – artificial neural network (ARIMA–ANN) is devised in many different ways in the literature. However, the prediction accuracy of hybrid ARIMA–ANN model can be further improved by devising suitable processing techniques. In this paper, a hybrid ARIMA–ANN model is proposed, which combines the concepts of the recently developed moving average (MA) filter based hybrid ARIMA–ANN model, with a processing technique involving a partitioning–interpolation (PI) step. The improved prediction accuracy of the proposed PI based hybrid ARIMA–ANN model is justified using a simulation experiment.Further, on different experimental TSD like sunspots TSD and electricity price TSD, the proposed hybrid model is applied along with four existing state-of-the-art models and it is found that the proposed model outperforms all the others, and hence is a promising model for TSD prediction

  3. Tracking the Invasion of Small Numbers of Cells in Paper-Based Assays with Quantitative PCR.

    Science.gov (United States)

    Truong, Andrew S; Lochbaum, Christian A; Boyce, Matthew W; Lockett, Matthew R

    2015-11-17

    Paper-based scaffolds are an attractive material for culturing mammalian cells in a three-dimensional environment. There are a number of previously published studies, which utilize these scaffolds to generate models of aortic valves, cardiac ischemia and reperfusion, and solid tumors. These models have largely relied on fluorescence imaging and microscopy to quantify cells in the scaffolds. We present here a polymerase chain reaction (PCR)-based method, capable of quantifying multiple cell types in a single culture with the aid of DNA barcodes: unique sequences of DNA introduced to the genome of individual cells or cell types through lentiviral transduction. PCR-based methods are highly specific and are amenable to high-throughput and multiplexed analyses. To validate this method, we engineered two different breast cancer lines to constitutively express either a green or red fluorescent protein. These cells lines allowed us to directly compare the ability of fluorescence imaging (of the fluorescent proteins) and qPCR (of the unique DNA sequences of the fluorescent proteins) to quantify known numbers of cells in the paper based-scaffolds. We also used both methods to quantify the distribution of these breast cell lines in homotypic and heterotypic invasion assays. In the paper-based invasion assays, a single sheet of paper containing cells suspended in a hydrogel was sandwiched between sheets of paper containing only hydrogel. The stack was incubated, and the cells invaded the adjacent layers. The individual sheets of the invasion assay were then destacked and the number of cells in each layer quantified. Our results show both methods can accurately detect cell populations of greater than 500 cells. The qPCR method can repeatedly and accurately detect as few as 50 cells, allowing small populations of highly invasive cells to be detected and differentiated from other cell types.

  4. Best practice recommendations for the transfer of cell-based assays for the measurement of neutralizing anti-drug antibodies.

    Science.gov (United States)

    Belouski, Shelley S; Born, Danika; Jacques, Susan; Harder, Brandon; Reynhardt, Kai; Kaliyaperumal, Arunan; Gupta, Shalini

    2016-09-01

    We recommend the application of a strategically designed step-wise approach to transfer cell-based assays that includes assessing analytical performance (through a fit for purpose validation and/or design of experiment robustness characterization), clinical performance (i.e., concordance) and performance or proficiency testing for long-term method monitoring. Here we focus on the application of this strategy to cell-based assays for the measurement of neutralizing anti-drug antibodies. This application is unique in that it requires a custom cell-based assay to be used over a long period of time (potentially phase 1a through the life of a marketed product) with the confidence of consistent method performance and result reporting. But, the process is adaptable to a variety of assay types and applications. We present lessons learned from two cell-based assay transfers that met relevant challenges while implementing alternative permutations of the recommended method transfer process.

  5. Optical fiber-based core-shell coaxially structured hybrid cells for self-powered nanosystems

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Caofeng; Zhu, Guang [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Guo, Wenxi [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Dong, Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); School of Materials Science and Enginnering, Zhenzhou University, Zhenghou 450001 (China); Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia (United States); Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing (China)

    2012-07-03

    An optical fiber-based 3D hybrid cell consisting of a coaxially structured dye-sensitized solar cell (DSSC) and a nanogenerator (NG) for simultaneously or independently harvesting solar and mechanical energy is demonstrated. The current output of the hybrid cell is dominated by the DSSC, and the voltage output is dominated by the NG; these can be utilized complementarily for different applications. The output of the hybrid cell is about 7.65 {mu}A current and 3.3 V voltage, which is strong enough to power nanodevices and even commercial electronic components. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    S. Talatahari

    2014-01-01

    Full Text Available A hybrid optimization method is presented to optimum seismic design of steel frames considering four performance levels. These performance levels are considered to determine the optimum design of structures to reduce the structural cost. A pushover analysis of steel building frameworks subject to equivalent-static earthquake loading is utilized. The algorithm is based on the concepts of the charged system search in which each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Comparison of the results of the hybrid algorithm with those of other metaheuristic algorithms shows the efficiency of the hybrid algorithm.

  7. Preparation and property of a novel soluble electron transport POSS-based hybrid material

    Institute of Scientific and Technical Information of China (English)

    Xin Wang; Juan Shen; Jin Cui Wu; Min Fang; Hong Yao Xu

    2008-01-01

    A novel POSS-based organic/inorganic hybrid covalently attached at molecular level, 2-(4-(allyloxy)phenyl)-5-(4-(octyloxy)phenyl)-1,3,4-oxadiazole-POSS (6) (abbreviated as oxadiazole-POSS) was synthesized by Pt (dcp) catalyst. The hybrid was soluble in common organic solvents such as CHCl3, toluene, C2H4Cl2, and THF. Its structures and properties were characterized and evaluated with FTIR, 1H NMR, 13C NMR, 29Si NMR, EA, TGA, DSC, GPC, and CV, respectively. The results show that the novel hybrid possesses high thermal stability and good electron injection ability.

  8. Nanoparticles-based phenol-formaldehyde hybrid resins.

    Science.gov (United States)

    Hernández-Padrón, Genoveva; García-Garduño, Margarita; Canseco, Miguel A; Castaño, Victor M

    2008-06-01

    The synthesis, characterization and corrosion properties of a novel material, produced by the reaction of silica nanoparticles with a functionalized Phenol-Formaldehyde Resin (PFR), are presented. Carboxylic groups were attached in situ to the PFR skeleton to produce a functionalized resin (PFR-SA), which is then reacted with sol-gel-prepared silica nanoparticles, yielding a novel hybrid (organic/inorganic) material (PFR-SA-nanoSiO2). This hybrid material was characterized by FT-IR, FT-Raman, TGA, DSC, SEM and corrosion tests, whose results showed significant improvement of the thermal properties in comparison with the PFR coating. In addition, the new material was efficient and durable against corrosion of metals, with the anticorrosive performance of PFR-SA and PFR-SA/nanoSiO2 coating films being superior to those of the original PFR coating.

  9. Epoxy Resin Composite Based on Functional Hybrid Fillers

    Directory of Open Access Journals (Sweden)

    Mariusz Oleksy

    2014-08-01

    Full Text Available A study was carried out involving the filling of epoxy resin (EP with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS. The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS curves, and an exfoliated structure observed by TEM.

  10. Density-based mixing parameter for hybrid functionals

    Science.gov (United States)

    Marques, Miguel A. L.; Vidal, Julien; Oliveira, Micael J. T.; Reining, Lucia; Botti, Silvana

    2011-01-01

    A very popular ab initio scheme to calculate electronic properties in solids is the use of hybrid functionals in density functional theory (DFT) that mixes a portion of the Fock exchange with DFT functionals. In spite of its success, a major problem still remains, related to the use of one single mixing parameter for all materials. Guided by physical arguments that connect the mixing parameter to the dielectric properties of the solid, and ultimately to its band gap, we propose a method to calculate this parameter from the electronic density alone. This approach is able to cut significantly the error of traditional hybrid functionals for large and small gap materials, while retaining a good description of the structural properties. Moreover, its implementation is simple and leads to a negligible increase of the computational time.

  11. Epoxy Resin Composite Based on Functional Hybrid Fillers

    Science.gov (United States)

    Oleksy, Mariusz; Szwarc-Rzepka, Karolina; Heneczkowski, Maciej; Oliwa, Rafał; Jesionowski, Teofil

    2014-01-01

    A study was carried out involving the filling of epoxy resin (EP) with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS). The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS) curves, and an exfoliated structure observed by TEM. PMID:28788177

  12. Design of Transport Layer Based Hybrid Covert Channel Detection Engine

    CERN Document Server

    K, Anjan; Jadhav, Mamatha; 10.5121/ijasuc.2010.1409

    2011-01-01

    Computer network is unpredictable due to information warfare and is prone to various attacks. Such attacks on network compromise the most important attribute, the privacy. Most of such attacks are devised using special communication channel called "Covert Channel". The word "Covert" stands for hidden or non-transparent. Network Covert Channel is a concealed communication path within legitimate network communication that clearly violates security policies laid down. The non-transparency in covert channel is also referred to as trapdoor. A trapdoor is unintended design within legitimate communication whose motto is to leak information. Subliminal channel, a variant of covert channel works similarly except that the trapdoor is set in a cryptographic algorithm. A composition of covert channel with subliminal channel is the "Hybrid Covert Channel". Hybrid covert channel is homogenous or heterogeneous mixture of two or more variants of covert channels either active at same instance or at different instances of time...

  13. Novel microwell-based spectrophotometric assay for determination of atorvastatin calcium in its pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    Abdel-Rahman Hamdy M

    2011-10-01

    Full Text Available Abstract The formation of a colored charge-transfer (CT complex between atorvastatin calcium (ATR-Ca as a n-electron donor and 2, 3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ as a π-electron acceptor was investigated, for the first time. The spectral characteristics of the CT complex have been described, and the reaction mechanism has been proved by computational molecular modeling. The reaction was employed in the development of a novel microwell-based spectrophotometric assay for determination of ATR-Ca in its pharmaceutical formulations. The proposed assay was carried out in 96-microwell plates. The absorbance of the colored-CT complex was measured at 460 nm by microwell-plate absorbance reader. The optimum conditions of the reaction and the analytical procedures of the assay were established. Under the optimum conditions, linear relationship with good correlation coefficient (0.9995 was found between the absorbance and the concentration of ATR-Ca in the range of 10-150 μg/well. The limits of detection and quantitation were 5.3 and 15.8 μg/well, respectively. No interference was observed from the additives that are present in the pharmaceutical formulation or from the drugs that are co-formulated with ATR-Ca in its combined formulations. The assay was successfully applied to the analysis of ATR-Ca in its pharmaceutical dosage forms with good accuracy and precision. The assay described herein has great practical value in the routine analysis of ATR-Ca in quality control laboratories, as it has high throughput property, consumes minimum volume of organic solvent thus it offers the reduction in the exposures of the analysts to the toxic effects of organic solvents, and reduction in the analysis cost by 50-fold. Although the proposed assay was validated for ATR-Ca, however, the same methodology could be used for any electron-donating analyte for which a CT reaction can be performed.

  14. A pseudovirus-based hemagglutination-inhibition assay as a rapid, highly sensitive, and specific assay for detecting avian influenza A (H7N9 antibodies

    Directory of Open Access Journals (Sweden)

    Anli Zhang

    2015-06-01

    Full Text Available Background Increased surveillance of avian-origin influenza A (H7N9 virus infection is critical to assess the risk of new outbreaks in China. A high-throughput assay with a good safety profile, sensitivity, and specificity is urgently needed. Methods We used a hemagglutination-inhibition (HI assay based on an H7N9-enveloped pseudovirus to assess serum neutralization antibodies level in 40 H7N9 positive sera and 40 H7N9 negative sera and compared the efficacy of the assay with traditional HI test and micro-neutralization (MN test. Results Spearman’s rank correlation coefficient analysis showed pseudovirus HI (PHI titers correlated well with both HI titers and MN titers. Receiver operating characteristic (ROC curves test revealed using a PHI cut-off titer of 10, the sensitivity and specificity reached 1.0. Conclusions PHI can be used in H7N9-related serological studies. This assay is high-throughput, very sensitive and specific, and cost effective.

  15. A hybrid-stress element based on Hamilton principle

    Science.gov (United States)

    Cen, Song; Zhang, Tao; Li, Chen-Feng; Fu, Xiang-Rong; Long, Yu-Qiu

    2010-08-01

    A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3 β here. Firstly, the theoretical basis of the traditional hybrid-stress elements, i.e., the Hellinger-Reissner variational principle, is replaced by the Hamilton variational principle, in which the number of the stress variables is reduced from 3 to 2. Secondly, three stress parameters and corresponding trial functions are introduced into the system equations. Thirdly, the displacement fields of the conventional bilinear isoparametric element are employed in the new models. Finally, from the stationary condition, the stress parameters can be expressed in terms of the displacement parameters, and thus the new element stiffness matrices can be obtained. Since the required number of stress variables in the Hamilton variational principle is less than that in the Hellinger-Reissner variational principle, and no additional incompatible displacement modes are considered, the new hybrid-stress element is simpler than the traditional ones. Furthermore, in order to improve the accuracy of the stress solutions, two enhanced post-processing schemes are also proposed for element HH4-3 β. Numerical examples show that the proposed model exhibits great improvements in both displacement and stress solutions, implying that the proposed technique is an effective way for developing simple finite element models with high performance.

  16. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid.

    Science.gov (United States)

    Xie, Yibing; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. © 2013 Elsevier B.V. All rights reserved.

  17. Bio-hybrid cell-based actuators for microsystems.

    Science.gov (United States)

    Carlsen, Rika Wright; Sitti, Metin

    2014-10-15

    As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.

  18. Supercapacitor electrode based on three-dimensional graphene-polyaniline hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Dong Xiaochen; Wang Jingxia [Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications NUPT, 9 Wenyuan Road, Nanjing 210046 (China); Wang Jing; Chan-Park, Mary B. [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Li Xingao; Wang Lianhui; Huang Wei [Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications NUPT, 9 Wenyuan Road, Nanjing 210046 (China); Chen Peng, E-mail: chenpeng@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore)

    2012-06-15

    Three-dimensional (3D) graphene was synthesized by chemical vapour deposition with nickel foam as a substrate. Based on the 3D graphene foams, free-standing graphene-polyaniline (PANI) hybrids were produced by in-situ polymerization of aniline monomer under acid condition, and characterized by scanning electron microscopy (SEM), Fourier transformation infrared (FTIR), and Raman spectroscopy. Furthermore, we show that supercapacitor electrodes based on the 3D graphene-PANI hybrid exhibit high specific capacitances (346 Fg{sup -1} at a discharge current density of 4 Ag{sup -1}), suggesting that the light and inexpensive 3D graphene foams are a promising candidate for energy storage. - Highlights: Black-Right-Pointing-Pointer Three-dimensional (3D) graphene was synthesized by chemical vapour deposition. Black-Right-Pointing-Pointer Graphene-polyaniline (PANI) hybrids were produced by in-situ polymerization. Black-Right-Pointing-Pointer Graphene-PANI hybrid exhibits high specific capacitances.

  19. Hybrid Asymmetric Space Vector Modulation for inverter based direct torque control induction motor drive

    Directory of Open Access Journals (Sweden)

    Nandakumar Sundararaju

    2014-05-01

    Full Text Available This paper proposes novel hybrid asymmetric space vector modulation technique for inverter operated direct torque control induction motor drive. The hybridization process is performed by the combination of continuous asymmetric space vector modulation pulse width technique (ASVPWM and fuzzy operated discontinuous ASVPWM technique. Combination process is based on pulse mismatching technique. Pulse mismatching technique helps to reduce the active region of the switch. Finally, optimal pulses are applied to control the inverter. The optimal hybrid pulse condense switching losses of the inverter and also improves the operating performance of the direct torque control (DTC based drive system like smooth dynamic response in speed reversal, minimum torque error, settling time of speed. Simulation results of proposed hybrid asymmetric space vector pulse width modulation technique to direct torque control (HASVPWM-DTC approach has been carried out by using Matlab-Simulink environment.

  20. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays.

    Science.gov (United States)

    Hung, Paul J; Lee, Philip J; Sabounchi, Poorya; Lin, Robert; Lee, Luke P

    2005-01-05

    We present for the first time a microfluidic cell culture array for long-term cellular monitoring. The 10 x 10 array could potentially assay 100 different cell-based experiments in parallel. The device was designed to integrate the processes used in typical cell culture experiments on a single self-contained microfluidic system. Major functions include repeated cell growth/passage cycles, reagent introduction, and real-time optical analysis. The single unit of the array consists of a circular microfluidic chamber, multiple narrow perfusion channels surrounding the main chamber, and four ports for fluidic access. Human carcinoma (HeLa) cells were cultured inside the device with continuous perfusion of medium at 37 degrees C. The observed doubling time was 1.4 +/- 0.1 days with a peak cell density of approximately 2.5*10(5) cells/cm(2). Cell assay was demonstrated by monitoring the fluorescence localization of calcein AM from 1 min to 10 days after reagent introduction. Confluent cell cultures were passaged within the microfluidic chambers using trypsin and successfully regrown, suggesting a stable culture environment suitable for continuous operation. The cell culture array could offer a platform for a wide range of assays with applications in drug screening, bioinformatics, and quantitative cell biology. (c) 2004 Wiley Periodicals, Inc.

  1. An Acetylcholinesterase-Based Chronoamperometric Biosensor for Fast and Reliable Assay of Nerve Agents

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2013-08-01

    Full Text Available The enzyme acetylcholinesterase (AChE is an important part of cholinergic nervous system, where it stops neurotransmission by hydrolysis of the neurotransmitter acetylcholine. It is sensitive to inhibition by organophosphate and carbamate insecticides, some Alzheimer disease drugs, secondary metabolites such as aflatoxins and nerve agents used in chemical warfare. When immobilized on a sensor (physico-chemical transducer, it can be used for assay of these inhibitors. In the experiments described herein, an AChE- based electrochemical biosensor using screen printed electrode systems was prepared. The biosensor was used for assay of nerve agents such as sarin, soman, tabun and VX. The limits of detection achieved in a measuring protocol lasting ten minutes were 7.41 × 10−12 mol/L for sarin, 6.31 × 10−12 mol /L for soman, 6.17 × 10−11 mol/L for tabun, and 2.19 × 10−11 mol/L for VX, respectively. The assay was reliable, with minor interferences caused by the organic solvents ethanol, methanol, isopropanol and acetonitrile. Isopropanol was chosen as suitable medium for processing lipophilic samples.

  2. A simple, versatile and sensitive cell-based assay for prions from various species.

    Directory of Open Access Journals (Sweden)

    Zaira E Arellano-Anaya

    Full Text Available Detection and quantification of prion infectivity is a crucial step for various fundamental and applied aspects of prion research. Identification of cell lines highly sensitive to prion infection led to the development of cell-based titration procedures aiming at replacing animal bioassays, usually performed in mice or hamsters. However, most of these cell lines are only permissive to mouse-adapted prions strains and do not allow titration of prions from other species. In this study, we show that epithelial RK13, a cell line permissive to mouse and bank vole prion strains and to natural prion agents from sheep and cervids, enables a robust and sensitive detection of mouse and ovine-derived prions. Importantly, the cell culture work is strongly reduced as the RK13 cell assay procedure designed here does not require subcultivation of the inoculated cultures. We also show that prions effectively bind to culture plastic vessel and are quantitatively detected by the cell assay. The possibility to easily quantify a wider range of prions, including rodent experimental strains but also natural agents from sheep and cervids, should prompt the spread of cell assays for routine prion titration and lead to valuable information in fundamental and applied studies.

  3. Sensitive measurement of thrombopoietin by a monoclonal antibody based sandwich enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Folman, C C; von dem Borne, A E; Rensink, I H; Gerritsen, W; van der Schoot, C E; de Haas, M; Aarden, L

    1997-10-01

    In this report a sensitive enzyme-linked immunosorbent assay (ELISA) for the measurement of plasma thrombopoietin (Tpo) is described that is solely based on monoclonal antibodies (MoAbs). The assay has an intra and inter-assay variance of 5-7% and 7-13%, respectively. Native and recombinant human Tpo (rhTpo) were recognized equally well, no cross reactivity with other cytokines was found and rhTpo added to plasma and serum was completely recovered. With the ELISA, Tpo concentrations in EDTA-anticoagulated plasma of all controls (n = 193) could be determined, since the limit of detection (2 +/- 0.8 A.U./ml, mean +/- sd) was lower than the concentration found in controls (11 +/- 8 A.U./ml, mean +/- sd; 2.5th-97.5th percentile: 4-32 A.U./ml). Tpo levels in serum were on average 3.4 times higher than in plasma. We showed in vivo that Tpo is bound by platelets, as in thrombocytopenic patients (n = 5) a platelet transfusion immediately led to a drop in plasma Tpo level, whereas in patients receiving chemotherapy the induced thrombocytopenia was followed by a rise in plasma Tpo levels. In summary, these results indicate that this ELISA is a reliable tool for Tpo measurements and is applicable for large scale studies.

  4. Single rapid TaqMan fluorogenic probe based PCR assay that detects all four dengue serotypes.

    Science.gov (United States)

    Warrilow, David; Northill, Judith A; Pyke, Alyssa; Smith, Greg A

    2002-04-01

    Public health laboratories require rapid diagnosis of dengue outbreaks for application of measures such as vector control. We have developed a rapid single fluorogenic probe-based polymerase chain reaction assay for the detection of all four dengue serotypes (FUDRT-PCR). The method employs primers and probe that are complementary to the evolutionarily conserved 3' untranslated region of the dengue genome. The assay detected viral RNA of strains of all four dengue serotypes but not of the flaviviruses Japanese encephalitis virus, Murray Valley encephalitis virus, Kunjin, Stratford, West Nile, Alfuy or Yellow fever. When compared to an existing nested-PCR assay for the detection of dengue on clinical samples, FUDRT-PCR detected dengue 1 (100%, n=14), dengue 2 (85%, n=13), dengue 3 (64%, n=14) and dengue 4 (100%, n=3) with the indicated sensitivities. FUDRT-PCR enables diagnosis of acute dengue infection in four hours from sample receipt. In addition, a single-test procedure should result in a reduction in the number of tests performed with considerable cost savings for diagnostic laboratories.

  5. Quantitative serine protease assays based on formation of copper(II)-oligopeptide complexes.

    Science.gov (United States)

    Ding, Xiaokang; Yang, Kun-Lin

    2015-01-07

    A quantitative protease assay based on the formation of a copper-oligopeptide complex is developed. In this assay, when a tripeptide GGH fragment is cleaved from an oligopeptide chain by serine proteases, the tripeptide quickly forms a pink GGH/Cu(2+) complex whose concentration can be determined quantitatively by using UV-Vis spectroscopy. Therefore, activities of serine proteases can be determined from the formation rate of the GGH/Cu(2+) complex. This principle can be used to detect the presence of serine protease in a real-time manner, or measure proteolytic activities of serine protease cleaving different oligopeptide substrates. For example, by using this assay, we demonstrate that trypsin, a model serine protease, is able to cleave two oligopeptides GGGGKGGH () and GGGGRGGH (). However, the specificity constant (kcat/Km) for is higher than that of (6.4 × 10(3) mM(-1) min(-1)vs. 1.3 × 10(3) mM(-1) min(-1)). This result shows that trypsin is more specific toward arginine (R) than lysine (K) in the oligopeptide sequence.

  6. An Escherichia coli-Based Assay to Assess the Function of Recombinant Human Hemichannels.

    Science.gov (United States)

    Krishnan, Srinivasan; Fiori, Mariana C; Whisenant, Ty E; Cortes, D Marien; Altenberg, Guillermo A; Cuello, Luis G

    2017-02-01

    Connexins form the gap junctional channels that mediate cell-to-cell communication, and also form hemichannels present at the plasma membrane. Hemichannels are permeable to small hydrophilic compounds, including molecules involved in autocrine and paracrine signaling. An abnormal hemichannel opening causes or contributes to cell damage in common human disorders (e.g., cardiac infarct, cerebrovascular accidents, deafness, skin diseases, and cataracts) and is therefore a potential pharmacological target. The discovery of useful hemichannels inhibitors has been hampered in part by the lack of suitable high-throughput functional assays. Here, we developed and characterized an assay useful to assess the function of hemichannels formed by human connexins expressed in a genetically modified Escherichia coli strain. The LB2003 cells, devoid of three key K(+) uptake transport mechanisms, cannot grow in low-[K(+)] medium, but expression of Cx26, Cx43, or Cx46 rescues their growth defect (growth complementation). We developed a protocol for a simple, inexpensive, easily scalable, reproducible, and sensitive assay that should be useful for the discovery of new and better hemichannel inhibitors based on the analysis of small-compound libraries.

  7. A novel in vitro image-based assay identifies new drug leads for giardiasis.

    Science.gov (United States)

    Hart, Christopher J S; Munro, Taylah; Andrews, Katherine T; Ryan, John H; Riches, Andrew G; Skinner-Adams, Tina S

    2017-01-27

    Giardia duodenalis is an intestinal parasite that causes giardiasis, a widespread human gastrointestinal disease. Treatment of giardiasis relies on a small arsenal of compounds that can suffer from limitations including side-effects, variable treatment efficacy and parasite drug resistance. Thus new anti-Giardia drug leads are required. The search for new compounds with anti-Giardia activity currently depends on assays that can be labour-intensive, expensive and restricted to measuring activity at a single time-point. Here we describe a new in vitro assay to assess anti-Giardia activity. This image-based assay utilizes the Perkin-Elmer Operetta(®) and permits automated assessment of parasite growth at multiple time points without cell-staining. Using this new approach, we assessed the "Malaria Box" compound set for anti-Giardia activity. Three compounds with sub-μM activity (IC50 0.6-0.9 μM) were identified as potential starting points for giardiasis drug discovery.

  8. EicosaCell: An Imaging-Based Assay to Identify Spatiotemporal Eicosanoid Synthesis.

    Science.gov (United States)

    Bandeira-Melo, Christianne; Paiva, Ligia Almeida; Amorim, Natália R T; Weller, Peter F; Bozza, Patricia T

    2017-01-01

    Eicosanoids are bioactive lipids derived from enzymatic metabolism of arachidonic acid via the cyclooxygenase (COX) and lipoxygenase (LOX) pathways. These lipids are newly formed and nonstorable molecules that have important roles in physiological and pathological processes. The particular interest to determine intracellular compartmentalization of eicosanoid-synthetic machinery has emerged as a key component in the regulation of eicosanoid synthesis and in delineating functional intracellular and extracellular actions of eicosanoids. In this chapter, we discuss the EicosaCell protocol, an assay that enables the intracellular detection and localization of eicosanoid lipid mediator-synthesizing compartments by means of a strategy to covalently cross-link and immobilize eicosanoids at their sites of synthesis followed by immunofluorescent-based localization of the targeted eicosanoid. EicosaCell assays have been successfully used to identify different intracellular compartments of synthesis of prostaglandins and leukotrienes upon cellular activation. This chapter covers basics of EicosaCell assay including its selection of reagents, immunodetection design as well as some troubleshooting recommendations.

  9. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants.

    Science.gov (United States)

    Wan, Hongxia; Liu, Dong; Yu, Xiangying; Sun, Haiyan; Li, Yan

    2015-05-15

    A Caco-2 cell-based antioxidant activity (CAA) assay for quantitative evaluation of antioxidants was developed by optimizing seeding density and culture time of Caco-2 cells, incubation time and concentration of fluorescent probe (2',7'-dichlorofluorescin diacetate, DCFH-DA), incubation way and incubation time of antioxidants (pure phytochemicals) and DCFH-DA with cells, and detection time of fluorescence. Results showed that the CAA assay was of good reproducibility and could be used to evaluate the antioxidant activity of antioxidants at the following conditions: seeding density of 5 × 10(4)/well, cell culture time of 24h, co-incubation of 60 μM DCFH-DA and pure phytochemicals with Caco-2 cells for 20 min and fluorescence recorded for 90 min. Additionally, a significant correlation was observed between CAA values and rat plasma ORAC values following the intake of antioxidants for selected pure phytochemicals (R(2) = 0.815, p < 0.01), demonstrating the good biological relevance of CAA assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Naked-eye quantitative aptamer-based assay on paper device.

    Science.gov (United States)

    Zhang, Yun; Gao, Dong; Fan, Jinlong; Nie, Jinfang; Le, Shangwang; Zhu, Wenyuan; Yang, Jiani; Li, Jianping

    2016-04-15

    This work initially describes the design of low-cost, naked-eye quantitative aptamer-based assays by using microfluidic paper-based analytical device (μPAD). Two new detection motifs are proposed for quantitative μPAD measurement without using external electronic readers, which depend on the length of colored region in a strip-like μPAD and the number of colorless detection microzones in a multi-zone μPAD. The length measuring method is based on selective color change of paper from colorless to blue-black via formation of iodine-starch complex. The counting method is conducted on the basis of oxidation-reduction reaction between hydrogen peroxide and potassium permanganate. Their utility is well demonstrated with sensitive, specific detection of adenosine as a model analyte with the naked eye in buffer samples and undiluted human serum. These equipment-free quantitative methods proposed thus hold great potential for the development of more aptamer-based assays that are simple, cost-efficient, portable, and user-friendly for various point-of-care applications particularly in resource-constrained environments.

  11. Comparison of SNP-based detection assays for food analysis: Coffee authentication.

    Science.gov (United States)

    Spaniolas, Stelios; Bazakos, Christos; Tucker, Gregory A; Bennett, Malcolm J

    2014-01-01

    Recently, DNA-based authentication methods were developed to serve as complementary approaches to analytical chemistry techniques. The single nucleotide polymorphism (SNP)-based reaction chemistries, when combined with the existing detection methods, could result in numerous analytical approaches, all with particular advantages and disadvantages. The dual aim of this study was (a) to develop SNP-based analytical assays such as the single-base primer extension (SNaPShot) and pyrosequencing in order to differentiate Arabica and Robusta varieties for the authentication of coffee beans and (b) to compare the performances of SNaPshot, pyrosequencing and the previously developed polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using an Agilent 2100 Bioanalyzer on the basis of linearity (R2) and LOD, expressed as percentage of the adulterant species, using green coffee beans (Arabica and Robusta) as a food model. The results showed that SNaPshot analysis exhibited the best LOD, whereas pyrosequencing revealed the best linearity (R2 = 0.997). The PCR-RFLP assay using the Agilent 2100 Bioanalyzer could prove to be a very useful method for a laboratory that lacks sequencing facilities but it can be used only if a SNP creates/deletes a restriction site.

  12. A Rough Set GA-based Hybrid Method for Robot Path Planning

    Institute of Scientific and Technical Information of China (English)

    Cheng-Dong Wu; Ying Zhang; Meng-Xin Li; Yong Yue

    2006-01-01

    In this paper, a hybrid method based on rough sets and genetic algorithms, is proposed to improve the speed of robot path planning. Decision rules are obtained using rough set theory. A series of available paths are produced by training obtained minimal decision rules. Path populations are optimised by using genetic algorithms until the best path is obtained. Experiment results show that this hybrid method is capable of improving robot path planning speed.

  13. Hardness and degree of conversion of dental restorative composites based on an organic-inorganic hybrid

    OpenAIRE

    Sandro Aurélio de Souza Venter; Silvia Luciana Fávaro; Eduardo Radovanovic; Emerson Marcelo Girotto

    2013-01-01

    This paper presents a factorial design (mixture design) used to analyze the hardness and degree of monomer conversion into composites containing conventional monomers and an organic-inorganic hybrid polymer-based methacryloyloxypropyl trimethoxysilane (MEMO). For this purpose, resins (composites with SiO2) were formulated with the hybrid polymer (polycondensed, pMEMO), and two conventional monomers used in dentistry, bisphenol-A dimethacrylate (Bis-GMA) and triethyleneglycol dimethacrylate (T...

  14. Sizing and Energy Management of a Hybrid Locomotive Based on Flywheel and Accumulators

    OpenAIRE

    Jaafar, Amine; Akli, Cossi Rockys; Sareni, Bruno; Roboam, Xavier; Jeunesse, Alain

    2009-01-01

    The French National Railways Company (SNCF) is interested in the design of a hybrid locomotive based on various storage devices (accumulator, flywheel, and ultracapacitor) and fed by a diesel generator. This paper particularly deals with the integration of a flywheel device as a storage element with a reduced-power diesel generator and accumulators on the hybrid locomotive. First, a power flow model of energy-storage elements (flywheel and accumulator) is developed to achieve the design of...

  15. Hybrid Luminescent Films Obtained by Covalent Anchoring Terbium Complex to Silica-based Network

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    New monomer N-(4-carboxyphenyl)-NL-(propyltriethoxysilyl)urea (1) which acts as both a ligand for Tb3+ ion and a sol-gel precursor has been synthesized and characterized by 1H NMR, and MS. Hybrid luminescent thin films consisting of organoterbium covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. Strong line emission of Tb3+ ion was observed from the hybrid luminescent films under UV excitation.

  16. 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.

    Science.gov (United States)

    Huang, Xiao; Tan, Chaoliang; Yin, Zongyou; Zhang, Hua

    2014-04-09

    Two-dimensional (2D) nanomaterials, such as graphene and transition metal dichalcogenides (TMDs), receive a lot of attention, because of their intriguing properties and wide applications in catalysis, energy-storage devices, electronics, optoelectronics, and so on. To further enhance the performance of their application, these 2D nanomaterials are hybridized with other functional nanostructures. In this review, the latest studies of 2D nanomaterial-based hybrid nanostructures are discussed, focusing on their preparation methods, properties, and applications.

  17. Control and fault diagnosis based sliding mode observer of a multicellular converter: Hybrid approach

    KAUST Repository

    Benzineb, Omar

    2013-01-01

    In this article, the diagnosis of a three cell converter is developed. The hybrid nature of the system represented by the presence of continuous and discrete dynamics is taken into account in the control design. The idea is based on using a hybrid control and an observer-type sliding mode to generate residuals from the observation errors of the system. The simulation results are presented at the end to illustrate the performance of the proposed approach. © 2013 FEI STU.

  18. Diagnosis of Morquio Syndrome in Dried Blood Spots Based on a New MRM-MS Assay.

    Directory of Open Access Journals (Sweden)

    Claudia Cozma

    Full Text Available Mucopolysaccharidosis IVA (MPS IVA; Morquio A disease is an autosomal recessive disease caused and characterized by a decreased activity of N-acetylgalactosamine-6-sulfate sulfatase (GALNS, resulting in accumulation of keratan sulfate and chondroitin-6-sulfate in tissues and secondary organ damage. Recently approved enzyme replacement therapy renders the easy and early identification of MPS IVA of out-most importance.We propose a completely new assay for the stable and reproducible detection of GALNS deficiency in dry blood spots (DBS. For the validation blood samples were taken from 59 healthy individuals and 24 randomly selected genetically confirmed MPS IVA patients. The material extracted from DBS was incubated with a 4-methylumbelliferyl-β-D-galactopyranoside-6-sulfate as a specific substrate. Final enzymatic product, 4-methylumbelliferone, obtained after adding exogenous beta-galactosidase, was quantified by LC/MRM-MS (liquid-chromatography/multiple-reaction-monitoring mass-spectrometry. 4-propyl-5-hydroxy-7-methyl-2h-chromen-2-one was used as internal standard, a compound with a similar molecular structure and fragmentation pattern in negative ion mode as 4-methylumbelliferone.The enzymatic assay yielded a positive and negative predictive value of 1.0 for genetically confirmed MPS IVA patients (GALNS activity of 0.35 ± 0.21 μmol/L/h and for controls with normal GALNS activity (23.1 ± 5.3 μmol/L /h. With present enzymatic conditions, the reaction yield in dried blood spots is at least 20 fold higher than any previously reported data with other assays.The present LC/MRM-MS based assay for MPS IVA diagnosis provides an easy, highly-standardized, accurate and innovative quantification of the enzymatic product in vitro and distinguishes perfectly between MPS IVA affected patients and normal controls. This technique will significantly simplify the early detection of MPS IVA patients.

  19. Generator maintenance scheduling in power systems using metaheuristic-based hybrid approaches

    Energy Technology Data Exchange (ETDEWEB)

    Dahal, Keshav P. [School of Informatics, University of Bradford, Bradford (United Kingdom); Chakpitak, Nopasit [College of Arts, Media and Technology, Chiang Mai University, Chiang Mai (Thailand)

    2007-05-15

    The effective maintenance scheduling of power system generators is very important for the economical and reliable operation of a power system. This represents a tough scheduling problem which continues to present a challenge for efficient optimization solution techniques. This paper presents the application of metaheuristic approaches, such as a genetic algorithm (GA), simulated annealing (SA) and their hybrid for generator maintenance scheduling (GMS) in power systems using an integer representation. This paper mainly focuses on the application of GA/SA and GA/SA/heuristic hybrid approaches. GA/SA hybrid uses the probabilistic acceptance criterion of SA within the GA framework. GA/SA/heuristic hybrid combines heuristic approaches within the GA/SA hybrid to seed the initial population. A case study is formulated in this paper as an integer programming problem using a reliability-based objective function and typical problem constraints. The implementation and performance of the metaheuristic approaches and their hybrid for the test case study are discussed. The results obtained are promising and show that the hybrid approaches are less sensitive to the variations of technique parameters and offer an effective alternative for solving the generator maintenance scheduling problem. (author)

  20. Cost based reactive power participation for voltage control in multi units based isolated hybrid power system

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Saxena

    2016-12-01

    Full Text Available Multi units of wind and diesel based generators in isolated hybrid power system have technical and operational advantages over single units system. They require dynamic reactive power compensation for fast recovery of voltage under load and input changes. In developing countries like India, investors’ prime concern is to provide continuous electricity at low rate while quality degradation can be permitted within pre defined acceptable range. The use of static compensator along with dynamic compensator may give cost effective reactive power participation for system. This paper presented pricing of reactive power compensation under steady state and transient conditions of system with fixed capacitor and STATCOM. The main contributions of the paper are; (i evaluating reactive power balance equation for generalized multi units of wind and diesel based isolated hybrid power system, (ii reactive power compensation using fixed capacitor and STATCOM in presence of composite load model, (ii fast recovery of voltage response using genetic algorithm based tuning of STATCOM controller, (iii evaluation of reactive power compensation cost for steady and dynamic conditions due to probabilistic change in load and/or input demand and (iv comparison of results with existing reference compensation method.

  1. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences

    NARCIS (Netherlands)

    Agren, J.; Hamidjaja, R.A.; Hansen, T.; Ruuls, R.C.; Thierry, S.; Vigre, H.; Janse, I.; Sundström, A.; Segerman, B.; Koene, M.G.J.; Löfström, Ch.; Rotterdam, van B.; Derzelle, S.

    2013-01-01

    Bacillus anthracis, the causative agent of anthrax, is a zoonotic pathogen that is relatively common throughout the world and may cause life threatening diseases in animals and humans. There are many PCR-based assays in use for the detection of B. anthracis. While most of the developed assays rely o

  2. Evaluation and validation of a single-dilution potency assay based upon serology of vaccines containing diphtheria toxoid: statistical analysis

    NARCIS (Netherlands)

    Marsman FR; Akkermans AM; Hendriksen CFM; de Jong WH

    1993-01-01

    This document presents the results of a validation study to the use of a single dilution assay in potency testing of the diphtheria component of DPT-polio vaccines. Based on historical data of multi-dilution assays on 27 consecutive batches a simulation study was performed to test the actual perfor

  3. Development of a robust reporter-based assay for the bioactivity determination of anti-VEGF therapeutic antibodies.

    Science.gov (United States)

    Wang, Lan; Xu, Gang-Ling; Gao, Kai; Wilkinson, Jennifer; Zhang, Feng; Yu, Lei; Liu, Chun-Yu; Yu, Chuan-Fei; Wang, Wen-Bo; Li, Meng; Chen, Wei; Fan, Frank; Cong, Mei; Wang, Jun-Zhi

    2016-06-05

    Development of anti-VEGF based biologic agents has been a focus in cancer treatment for the past decades, and several anti-VEGF pharmaceuticals have been already approved for treatment of various medical indications especially in cancer. The first anti-angiogenic agent approved by FDA was bevacizumab (BVZ, trade name Avastin, Genentech/Roche), a humanized anti-VEGF monoclonal antibody. Accurate determination of bioactivity is crucial for the safety and efficacy of therapeutic antibodies. The current method widely used in the lot release and stability test for clinical trial batches of BVZ is anti-proliferation assay using primary human umbilical vein endothelial cells (HUVEC), which is tedious with high assay variations. We describe here the development and preliminary validation of a reporter gene assay (RGA) that is based on an HEK293 cell line stably expressing vascular endothelial growth factor receptor 2 (VEGFR-2), and a luciferase reporter under the control of nuclear factor activated T cell (NFAT) response elements. Our study shows this assay not only to be superior on precision, sensitivity and assay simplicity compared with HUVEC assay, but also applicable to other VEGF-targeted biotherapeutics. These results show for the first time that this new reporter assay, based on the VEGF-VEGFR-NFAT pathway, can be a viable supplement to the HUVEC assay and employed in potency determination of BVZ and other kinds of anti-VEGF antibody-based biotherapeutics. Copyright © 2016. Published by Elsevier B.V.

  4. A facile low-cost enzymatic paper-based assay for the determination of urine creatinine.

    Science.gov (United States)

    Talalak, Kwanrutai; Noiphung, Julaluk; Songjaroen, Temsiri; Chailapakul, Orawon; Laiwattanapaisal, Wanida

    2015-11-01

    Creatinine is one of many markers used to investigate kidney function. This paper describes a low-cost enzymatic paper-based analytical device (enz-PAD) for determining urine creatinine. The disposable dead volumes of creatinine enzyme reagents from an automatic analyser cassette were utilised. Whatman No. 3 paper was cut into long rectangular shapes (4×40 mm(2)) on which the enzyme reagents, R1 and R2, were adsorbed in two consecutive regions. The assay was performed by immersing test strips into urine samples contained in microwells to allow creatinine in the sample to react with immobilised active ingredients and, then, traverse via capillary action to the detection area where chromogen products accumulated. The method is based on hydrogen peroxide (H2O2) formation via creatinine conversion using creatininase, creatinase, and sarcosine oxidase. The liberated H2O2 reacts with 4-aminophenazone and 2,4,6-triiodo-3-hydroxybenzoic acid to form quinoneimine with a pink-red colour at the detection zone. The linear range of the creatinine assay was 2.5-25 mg dL(-1) (r(2)=0.983), and the detection limit was 2.0 mg dL(-1). The colorimetric enz-PAD for the creatinine assay was highly correlated with a conventional alkaline picrate method when real urine samples were evaluated (r(2)=0.977; n=40). This simple and nearly zero-cost paper-based device provides a novel alternative method for screening urinary creatinine and will be highly beneficial for developing countries.

  5. Functionomics of NCC mutations in Gitelman syndrome using a novel mammalian cell-based activity assay.

    Science.gov (United States)

    Valdez-Flores, Marco A; Vargas-Poussou, Rosa; Verkaart, Sjoerd; Tutakhel, Omar A Z; Valdez-Ortiz, Angel; Blanchard, Anne; Treard, Cyrielle; Hoenderop, Joost G J; Bindels, René J M; Jeleń, Sabina

    2016-12-01

    Gitelman syndrome (GS) is an autosomal recessive salt-wasting tubular disorder resulting from loss-of-function mutations in the thiazide-sensitive NaCl cotransporter (NCC). Functional analysis of these mutations has been limited to the use of Xenopus laevis oocytes. The aim of the present study was, therefore, to analyze the functional consequences of NCC mutations in a mammalian cell-based assay, followed by analysis of mutated NCC protein expression as well as glycosylation and phosphorylation profiles using human embryonic kidney (HEK) 293 cells. NCC activity was assessed with a novel assay based on thiazide-sensitive iodide uptake in HEK293 cells expressing wild-type or mutant NCC (N59I, R83W, I360T, C421Y, G463R, G731R, L859P, or R861C). All mutations caused a significantly lower NCC activity. Immunoblot analysis of the HEK293 cells revealed that 1) all NCC mutants have decreased NCC protein expression; 2) mutant N59I, R83W, I360T, C421Y, G463R, and L859P have decreased NCC abundance at the plasma membrane; 3) mutants C421Y and L859P display impaired NCC glycosylation; and 4) mutants N59I, R83W, C421Y, C731R, and L859P show affected NCC phosphorylation. In conclusion, we developed a mammalian cell-based assay in which N