WorldWideScience

Sample records for hybrid-field synchronous motors

  1. Acoustic Characterization of a Stationary Field Synchronous Motor

    National Research Council Canada - National Science Library

    Woodward, E

    2001-01-01

    .... We investigate the gross acoustic signature of a notional stationary field synchronous motor utilized as a marine propulsion motor in a naval combatant using the following methodology: (1) model the forces...

  2. Presentation of electric motor and motor control technology for electric vehicles and hybrid vehicles; Denki jidosha hybrid sha yo motor oyobi motor seigyo gijutsu no shokai

    Energy Technology Data Exchange (ETDEWEB)

    Matsudaira, N.; Masakik, R.; Tajima, F. [Hitachi, Ltd., Tokyo (Japan)

    1999-02-01

    The authors have developed a motor drive system for electric vehicles and hybrid vehicles. This system consists of a permanent magnet type synchronous motor, an inverter using insulated gate bipolar transistors (IGBTs) and a controller based on a single-chip microcomputer. To achieve a compact and light weight synchronous motor, an internal permanent magnet type rotor structure was designed. This paper presents motor control technology for electric vehicles, such as an optimization method of field weakening control and a new current control method. (author)

  3. An induction/synchronous motor with high temperature superconductor/normal conductor hybrid double-cage rotor windings

    International Nuclear Information System (INIS)

    Nakamura, T; Nagao, K; Nishimura, T; Matsumura, K

    2009-01-01

    We propose hybrid double-cage rotor windings that consist of a high temperature superconductor (HTS) and a normal conductor, which are introduced into an HTS induction/synchronous motor (HTS-ISM). The motor rotates as a conventional induction motor when the operating temperature of the hybrid rotor is above the critical temperature of the HTS bars, i.e., in the normal conducting state. On the other hand, the HTS-ISM rotates as a synchronous motor when the temperature is below the critical temperature, i.e., in the superconducting (zero resistance) state. In other words, we do not always need to take care of the cooling conditions, if the HTS-ISM is automatically, as well as appropriately, controlled, depending upon the rotation mode. Namely, the above-mentioned hybrid double-cage HTS-ISM is possibly a breakthrough in solving the cooling problems of HTS rotating machines, especially for industrial applications. The experimental results of the aforementioned motor are reported. An example of an operation flowchart of the motor is also presented and discussed.

  4. Flux-weakening control methods for hybrid excitation synchronous motor

    Directory of Open Access Journals (Sweden)

    Mingming Huang

    2015-09-01

    Full Text Available The hybrid excitation synchronous motor (HESM, which aim at combining the advantages of permanent magnet motor and wound excitation motor, have the characteristics of low-speed high-torque hill climbing and wide speed range. Firstly, a new kind of HESM is presented in the paper, and its structure and mathematical model are illustrated. Then, based on a space voltage vector control, a novel flux-weakening method for speed adjustment in the high speed region is presented. The unique feature of the proposed control method is that the HESM driving system keeps the q-axis back-EMF components invariable during the flux-weakening operation process. Moreover, a copper loss minimization algorithm is adopted to reduce the copper loss of the HESM in the high speed region. Lastly, the proposed method is validated by the simulation and the experimental results.

  5. Control of a superconducting synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y; Pei, R; Jiang, Q; Hong, Z; Coombs, T A [Engineering Department, Cambridge University, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-04-15

    This paper presents a control algorithm for starting up a high temperature superconducting synchronous motor. The mathematical model of the motor has been established in m-file in Matlab and the parameters have been identified by means of the finite-element analysis method. Different starting methods for the motor have been compared and discussed, and eventually a hybrid control algorithm is proposed.

  6. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O

    1999-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  7. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O.

    1998-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  8. Dynamic Shift Coordinated Control Based on Motor Active Speed Synchronization with the New Hybrid System

    Directory of Open Access Journals (Sweden)

    Ting Yan

    2017-01-01

    Full Text Available Considering the inherent disadvantages that severely affect driving comfortability during the shift process in HEVs, a dynamic shift coordinated control based on motor active speed synchronization is proposed to improve shift quality by reduction of shift vibration. The whole control scheme is comprised of three phases, preparatory phase, speed regulation phase, and synchronization phase, which are implemented consecutively in order. The key to inhibiting impact and jerk depends on the speed regulation phase, where motor active speed synchronization is utilized to reach the minimum speed difference between the two ends of synchronizer. A new hybrid system with superior performances is applied to present the validity of the adopted control algorithm during upshift or downshift, which can represent planetary gear system and conventional AMT shift procedure, respectively. Bench test, simulation, and road test results show that, compared with other methods, the proposed dynamic coordinated control can achieve shifting control in real time to effectively improve gear-shift comfort and shorten power interruption transients, with robustness in both conventional AMT and planetary gear train.

  9. Spectral element model for 2-D electrostatic fields in a linear synchronous motor

    NARCIS (Netherlands)

    van Beek, T.A.; Curti, M.; Jansen, J.W.; Gysen, B.L.J.; Paulides, J.J.H.; Lomonova, E.A.

    2017-01-01

    This paper presents a fast and accurate 2-D spectral element model for analyzing electric field distributions in linear synchronous motors. The electric field distribution is derived using the electric scalar potential for static cases. The spatial potential and electric field distributions obtained

  10. Synchronous motor with HTS-2G wires

    Science.gov (United States)

    Dezhin, D.; Ilyasov, R.; Kozub, S.; Kovalev, K.; Verzhbitsky, L.

    2014-05-01

    One of the applications of new high-temperature superconductor materials (HTS) is field coils for synchronous electrical machines. The use of YBCO 2G HTS tapes (HTS-2G) allows increasing of magnetic flux density in the air gap, which will increase the output power and reduce the dimensions of the motor. Such motors with improved characteristics can be successfully used in transportation as traction motor. In MAI-based "Center of Superconducting machines and devices" with the support of "Rosatom" has been designed and tested a prototype of the 50 kW synchronous motor with radial magnetic flux from a field-coils based on HTS-2G tapes. The experimental and theoretical results are presented.

  11. Synchronous motor with hybrid permanent magnets on the rotor.

    Science.gov (United States)

    Slusarek, Barbara; Kapelski, Dariusz; Antal, Ludwik; Zalas, Pawel; Gwoździewicz, Maciej

    2014-07-10

    Powder metallurgy allows designers of electric motors to implement new magnetic circuit structures. A relatively new concept is the use of a magnet system consisting of various types of magnets on one rotor, for example sintered and bonded magnets. This concept has been applied to the design and manufacture of the four-pole rotor of a synchronous motor with 400 W power and a rotational speed of 1500 rpm. In this motor, the stator of an asynchronous motor type Sh 71-4B is applied. The application of the new construction of the rotor resulted in an increase in motor efficiency and power factor compared to an asynchronous motor with the same volume.

  12. Synchronous Motor with Hybrid Permanent Magnets on the Rotor

    Directory of Open Access Journals (Sweden)

    Barbara Slusarek

    2014-07-01

    Full Text Available Powder metallurgy allows designers of electric motors to implement new magnetic circuit structures. A relatively new concept is the use of a magnet system consisting of various types of magnets on one rotor, for example sintered and bonded magnets. This concept has been applied to the design and manufacture of the four-pole rotor of a synchronous motor with 400 W power and a rotational speed of 1500 rpm. In this motor, the stator of an asynchronous motor type Sh 71-4B is applied. The application of the new construction of the rotor resulted in an increase in motor efficiency and power factor compared to an asynchronous motor with the same volume.

  13. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  14. Efficiency Characteristics of Low Power Hybrid Switched Reluctance Motor

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Ahn, Jin-Woo

    2009-01-01

    Switched reluctance motors (SRM) are usually considered inferior in terms of efficiency as compared to permanent magnet synchronous motors (PMSM) and brushless DC-motors (BLDC), but less costly. This article presents a test of a 70W hybrid switched reluctance motor (HSRM), that archieves a peak...... efficiency for the motor drive of more than 74%, and an efficiency for the motor of almost 80%....

  15. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid ...

  16. Research on the influence of driving harmonic on electromagnetic field and temperature field of permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Qiu Hongbo

    2017-06-01

    Full Text Available At present, the drivers with different control methods are used in most of permanent magnet synchronous motors (PMSM. A current outputted by a driver contains a large number of harmonics that will cause the PMSM torque ripple, winding heating and rotor temperature rise too large and so on. In this paper, in order to determine the influence of the current harmonics on the motor performance, different harmonic currents were injected into the motor armature. Firstly, in order to study the influence of the current harmonic on the motor magnetic field, a novel decoupling method of the motor magnetic field was proposed. On this basis, the difference of harmonic content in an air gap magnetic field was studied, and the influence of a harmonic current on the air gap flux density was obtained. Secondly, by comparing the fluctuation of the motor torque in the fundamental and different harmonic currents, the influence of harmonic on a motor torque ripple was determined. Then, the influence of different current harmonics on the eddy current loss of the motor was compared and analyzed, and the influence of the drive harmonic on the eddy current loss was obtained. Finally, by using a finite element method (FEM, the motor temperature distribution with different harmonics was obtained.

  17. Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque

    Science.gov (United States)

    Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

    2014-10-28

    A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.

  18. Design and simulation of permanent magnet synchronous motor control system

    Science.gov (United States)

    Li, Li; Liu, Yongqiu

    2018-06-01

    In recent years, with the development of power electronics, microelectronics, new motor control theory and rare earth permanent magnet materials, permanent magnet synchronous motors have been rapidly applied. Permanent magnet synchronous motors have the advantages of small size, low loss and high efficiency. Today, energy conservation and environmental protection are increasingly valued. It is very necessary to study them. Permanent magnet synchronous motor control system has a wide range of application prospects in the fields of electric vehicles, ships and other transportation. Using the simulation function of MATLAB/SIMULINK, a modular design structure was used to simulate the whole system model of speed loop adjustment, current PI modulation, SVPWM (Space Vector Pulse Width Module) wave generation and double closed loop. The results show that this control method has good robustness, and this method can improve the design efficiency and shorten the system design time. In this article, the analysis of the control principle of modern permanent magnet synchronous motor and the various processes of MATLAB simulation application will be analyzed in detail. The basic theory, basic method and application technology of the permanent magnet synchronous motor control system are systematically introduced.

  19. MODELING OF TRACTION SYNCHRONOUS PERMANENT MAGNET MOTOR MODES

    Directory of Open Access Journals (Sweden)

    Y.N. Vas’kovsky

    2013-10-01

    Full Text Available A mathematical model of electromagnetic field for simulating operational modes of traction synchronous motors with permanent magnets intended for electric vehicles is developed. The mathematical model takes into account real-time rotor rotation and allows calculating and analyzing the motor basic running characteristics as time functions.

  20. Control of synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in

  1. State-dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats.

    Science.gov (United States)

    Brazhnik, Elena; Cruz, Ana V; Avila, Irene; Wahba, Marian I; Novikov, Nikolay; Ilieva, Neda M; McCoy, Alex J; Gerber, Colin; Walters, Judith R

    2012-06-06

    Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, 7 d after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8-25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25-40 Hz band with a peak frequency at 30-35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons, and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25-40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity.

  2. Linear Synchronous Motor Repeatability Tests

    International Nuclear Information System (INIS)

    Ward, C.R.

    2002-01-01

    A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility

  3. Theoretical and Experimental Research of Synchronous Reluctance Motor

    Science.gov (United States)

    Dobriyan, R.; Vitolina, S.; Lavrinovicha, L.; Dirba, J.

    2017-10-01

    The paper presents the research on evaluation of accuracy of magnetic field calculations of synchronous reluctance motor in comparison with the results obtained in experiments. Magnetic field calculations are performed with the finite element method to determine values of the magnetic flux and electromagnetic torque according to the current value in motor stator and load angle between the rotor direct-axis and axis of stator magnetomotive force (MMF). Experimental values of magnetic flux and electromagnetic torque are obtained on motor with locked rotor while equivalent direct current is applied to the stator windings. The research shows that the results obtained from the magnetic field calculations coincide well with the experimental data.

  4. Design and AC loss analysis of a superconducting synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Majoros, M [Department of Materials Science and Engineering, Ohio State University (United States); Hong, Z [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Campbell, A M [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Coombs, T A [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2006-11-15

    This paper gives a conceptual design of a superconducting synchronous motor consisting of both high-temperature superconducting rotating field winding and armature winding. The AC losses of the armature winding of the motor have been investigated experimentally and numerically, by considering the self-field of the superconducting coils and the rotating magnetic field exposed on the armature winding. The recent developments of YBCO-coated conductors present the possibility of achieving a wholly superconducting machine of significantly smaller size and weight than a conventional machine. Both the rotating field winding and the armature winding are composed of YBCO high-temperature superconducting (HTS) coils. A low AC loss armature winding design has been developed for this superconducting synchronous motor. The performance of the machine was investigated by modelling with the finite-element method. The machine's torque is calculated from first principles by considering the angle between the field and the armature main flux lines.

  5. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  6. Comparison of 48V rare-earth-free reluctance traction motor drives for mild hybrid powertrain

    NARCIS (Netherlands)

    Bao, J.; Boynov, K.; Paulides, J.J.H.; Wijnands, C.G.E. (Korneel); Lomonova, E.

    2016-01-01

    This paper provides a comparative analysis of three types of electrical drives with rare-earth- free reluctance motors for next-generation 48V mild hybrid automotive applications. The drives with switched reluctance motors (SRM), variable flux reluctance motors (VFRM) and synchronous reluctance

  7. Magnetic Field Equivalent Current Analysis-Based Radial Force Control for Bearingless Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Huangqiu Zhu

    2015-05-01

    Full Text Available Bearingless permanent magnet synchronous motors (BPMSMs, with all advantages of permanent magnet motors (PMSMs and magnetic bearings, have become an important research direction in the bearingless motor field. To realize a stable suspension for the BPMSM, accurate decoupling control between the electromagnetic torque and radial suspension force is indispensable. In this paper, a concise and reliable analysis method based on a magnetic field equivalent current is presented. By this analysis method, the operation principle is analyzed theoretically, and the necessary conditions to produce a stable radial suspension force are confirmed. In addition, mathematical models of the torque and radial suspension force are established which is verified by the finite element analysis (FEA software ANSYS. Finally, an experimental prototype of a 2-4 poles surface-mounted BPMSM is tested with the customized control strategy. The simulation and experimental results have shown that the motor has good rotation and suspension performance, and validated the accuracy of the proposed analysis method and the feasibility of the control strategy.

  8. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism.

    Science.gov (United States)

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-07-01

    Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and assessments of ASD traits. We found (a) spontaneous social motor synchronization was associated with responding to joint attention, cooperation, and theory of mind while intentional social motor synchronization was associated with initiating joint attention and theory of mind; and (b) social motor synchronization was associated with ASD severity but not fully explained by motor problems. Findings suggest that objective measures of social motor synchronization may provide insights into understanding ASD traits.

  9. Control of permanent magnet synchronous motors

    CERN Document Server

    Vaez-Zadeh, Sadegh

    2018-01-01

    This is the first comprehensive, coherent, and up-to-date book devoted solely to the control of permanent magnet synchronous (PMS) motors, as the fastest growing AC motor. It covers a deep and detailed presentation of major PMS motor modeling and control methods. The readers can find rich materials on the fundamentals of PMS motor control in addition to new motor control methods, which have mainly been developed in the last two decades, including recent advancements in the field in a systematic manner. These include extensive modeling of PMS motors and a full range of vector control and direct torque control schemes, in addition to predictive control, deadbeat control, and combined control methods. All major sensorless control and parameter estimation methods are also studied. The book covers about 10 machine models in various reference frames and 70 control and estimation schemes with sufficient analytical and implementation details including about 200 original figures. A great emphasis is placed on energy-s...

  10. Field oriented control of permanent magnet synchronous motors with time constant adaption

    International Nuclear Information System (INIS)

    Afsharnia, S.; Vahedi, A.

    2001-01-01

    In this paper, initially, we present a method for on-line identifying of Permanent Magnet Synchronous Machine electrical parameters, then these parameters will be used in the vector control structure of motors. Simulation results show the efficiency of this method to parameters identifying of machine even in the presence of saturation, variation of temperature and etc. Because of simplicity and being economic, this method can be used by electro motors constructors to identify motor parameters for different operating points

  11. Synchronization of low- and high-threshold motor units.

    Science.gov (United States)

    Defreitas, Jason M; Beck, Travis W; Ye, Xin; Stock, Matt S

    2014-04-01

    We examined the degree of synchronization for both low- and high-threshold motor unit (MU) pairs at high force levels. MU spike trains were recorded from the quadriceps during high-force isometric leg extensions. Short-term synchronization (between -6 and 6 ms) was calculated for every unique MU pair for each contraction. At high force levels, earlier recruited motor unit pairs (low-threshold) demonstrated relatively low levels of short-term synchronization (approximately 7.3% extra firings than would have been expected by chance). However, the magnitude of synchronization increased significantly and linearly with mean recruitment threshold (reaching 22.1% extra firings for motor unit pairs recruited above 70% MVC). Three potential mechanisms that could explain the observed differences in synchronization across motor unit types are proposed and discussed. Copyright © 2013 Wiley Periodicals, Inc.

  12. Evaluating the importance of social motor synchronization and motor skill for understanding autism.

    Science.gov (United States)

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-10-01

    Impairments in social interaction and communicating with others are core features of autism spectrum disorder (ASD), but the specific processes underlying such social competence impairments are not well understood. An important key for increasing our understanding of ASD-specific social deficits may lie with the social motor synchronization that takes place when we implicitly coordinate our bodies with others. Here, we tested whether dynamical measures of synchronization differentiate children with ASD from controls and further explored the relationships between synchronization ability and motor control problems. We found (a) that children with ASD exhibited different and less stable patterns of social synchronization ability than controls; (b) children with ASD performed motor movements that were slower and more variable in both spacing and timing; and (c) some social synchronization that involved motor timing was related to motor ability but less rhythmic synchronization was not. These findings raise the possibility that objective dynamical measures of synchronization ability and motor skill could provide new insights into understanding the social deficits in ASD that could ultimately aid clinical diagnosis and prognosis. Autism Res 2017, 10: 1687-1699. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  13. Dual motor drive vehicle speed synchronization and coordination control strategy

    Science.gov (United States)

    Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing

    2018-04-01

    Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.

  14. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    Science.gov (United States)

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease.

    Science.gov (United States)

    Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael

    2018-03-01

    In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P synchronization (r = -0.356; P synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  16. Dynamic eccentricity fault diagnosis in round rotor synchronous motors

    International Nuclear Information System (INIS)

    Ebrahimi, Bashir Mahdi; Etemadrezaei, Mohammad; Faiz, Jawad

    2011-01-01

    Research highlights: → We have presented a novel approach to detect dynamic eccentricity in round rotor synchronous motors. → We have introduced an efficient index based on processing torque using time series data mining method. → The stator current spectrum of the motor under different levels of fault and load are computed. → Winding function method has been employed to model healthy and faulty synchronous motors. -- Abstract: In this paper, a novel approach is presented to detect dynamic eccentricity in round rotor synchronous motors. For this, an efficient index is introduced based on processing developed torque using time series data mining (TSDM) method. This index can be utilized to diagnose eccentricity fault and its degree. The capability of this index to predict dynamic eccentricity is illustrated by investigation of load variation impacts on the nominated index. Stator current spectrum of the faulty synchronous motor under different loads and dynamic eccentricity degrees are computed. Effects of the dynamic eccentricity and load variation simultaneously are scrutinized on the magnitude of 17th and 19th harmonic components as traditional indices for eccentricity fault diagnosis in synchronous motors. Necessity signals and parameters for processing and feature extraction are evaluated by winding function method which is employed to model healthy and faulty synchronous motors.

  17. Synchronization of motor neurons during locomotion in the neonatal rat

    DEFF Research Database (Denmark)

    Tresch, Matthew C.; Kiehn, Ole

    2002-01-01

    We describe here the robust synchronization of motor neurons at a millisecond time scale during locomotor activity in the neonatal rat. Action potential activity of motor neuron pairs was recorded extracellularly using tetrodes during locomotor activity in the in vitro neonatal rat spinal cord....... Approximately 40% of motor neuron pairs recorded in the same spinal segment showed significant synchronization, with the duration of the central peak in cross-correlograms between motor neurons typically ranging between ∼ 30 and 100 msec. The percentage of synchronized motor neuron pairs was considerably higher...... between motor neurons persisted. On the other hand, both local and distant coupling between motor neurons were preserved after antagonism of gap junction coupling between motor neurons. These results demonstrate that motor neuron activity is strongly synchronized at a millisecond time scale during...

  18. I-f Starting and Active Flux Based Sensorless Vector Control of Reluctance Synchronous Motors, with Experiments

    DEFF Research Database (Denmark)

    Agarlita, Sorin-Christian; Fatu, M.; Tutelea, L. N.

    2010-01-01

    This paper presents a novel, hybrid, motion sensorless control of an axially laminated anisotropic (ALA) reluctance synchronous machine (RSM). By separately controlling Id and Iq currents with the reference currents Id*, Iq* being held constant, and ramping the reference frequency, the motor starts...

  19. CONFIRMATION OF THE MATHEMATICAL MODEL ADEQUACY OF A LINEAR SYNCHRONOUS MOTOR

    Directory of Open Access Journals (Sweden)

    V. F. Novikov

    2015-06-01

    Full Text Available Purpose.To reduce labor costs and the amount of computer time in the design of linear synchronous motors with excitation from a source of a constant magnetic field of high-speed ground transportation it is necessary to use engineering methods. The purpose of this study is to confirm the adequacy of the previously proposed mathematical model of this engine and assumptions. It is also intended to confirm the possibility of applying the method of calculation of traction that occurs in the engine in the interaction of the permanent magnetic field of the excitation system of a vehicle with a coil track structure.Methodology. As for empirical theories the positive result of the experiment is not absolute proof of the truth, for an unambiguous conclusion about the adequacy of the developed model and the effectiveness of the developed methods need to be tested for falsification. In accordance with this criterion, it is necessary to conduct an experiment, the results of which will coincide with the calculation but you also need to avoid errors caused by random coincidences. For this purpose the experiments with varying parameters are conducted. Findings. In a critical experiment configuration changes of the excitation system were held so that the shape dependence of traction from displacement is differed significantly. The comparison of the results of the calculated and experimental values of traction for different configurations showed that the differences are minor and easily explained by measurement error and uneven gaps between the poles and excitation coils of the track structure. Originality. The adequacy of the mathematical model of a linear synchronous motor without a ferromagnetic magnetic circuit and the assumptions and applicability of the calculation method of traction forces involved in it, at the interaction of a permanent magnetic field of the excitation system of a vehicle with a coil track structure were proved. This proof is built on

  20. Development of the cryo-rotary joint for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    International Nuclear Information System (INIS)

    Miki, M; Felder, B; Tsuzuki, K; Izumi, M; Hayakawa, H

    2010-01-01

    We have studied a prototype of an axial-gap type synchronous motor with Gd-bulk HTS field-pole magnets since 2001. At the liquid nitrogen temperature, these bulks have trapped over 1 T inside the motor after being applied the pulsed field magnetization method. Increasing the flux of the field poles is the most straightforward way of improving the output power of the motor. Cooling down the bulk HTS magnets below the liquid nitrogen temperature provides an effective alternative to increase the magnetic flux trapping. In 2007, we exchanged the cryogen from liquid nitrogen to condensed neon. The key technology of this challenge is a rotary joint, introducing a fluid cryogen into the rotating body in the motor from the static reservoir. We have successfully developed a compact rotary joint which is smaller and lighter than the existent one (1/10 volume, 1/3 length and 1/12 weight). The present joint was manufactured and evaluated with liquid nitrogen and condensed neon. We presume a total heat loss of this rotary joint of less than 10 watts. Successful cooling and rotating tests of the bulk-HTS motor with this novel rotary joint are conducted.

  1. Development of the cryo-rotary joint for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Miki, M; Felder, B; Tsuzuki, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H, E-mail: d082025@kaiyodai.ac.j [Kitano Seiki Co. Ltd., 7-17-3, Chuo, Ohta-ku, Tokyo 143-0024 (Japan)

    2010-06-01

    We have studied a prototype of an axial-gap type synchronous motor with Gd-bulk HTS field-pole magnets since 2001. At the liquid nitrogen temperature, these bulks have trapped over 1 T inside the motor after being applied the pulsed field magnetization method. Increasing the flux of the field poles is the most straightforward way of improving the output power of the motor. Cooling down the bulk HTS magnets below the liquid nitrogen temperature provides an effective alternative to increase the magnetic flux trapping. In 2007, we exchanged the cryogen from liquid nitrogen to condensed neon. The key technology of this challenge is a rotary joint, introducing a fluid cryogen into the rotating body in the motor from the static reservoir. We have successfully developed a compact rotary joint which is smaller and lighter than the existent one (1/10 volume, 1/3 length and 1/12 weight). The present joint was manufactured and evaluated with liquid nitrogen and condensed neon. We presume a total heat loss of this rotary joint of less than 10 watts. Successful cooling and rotating tests of the bulk-HTS motor with this novel rotary joint are conducted.

  2. Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion

    Science.gov (United States)

    Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.

    2017-01-01

    The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.

  3. Loss analysis of a 1 MW class HTS synchronous motor

    International Nuclear Information System (INIS)

    Baik, S K; Kwon, Y K; Kim, H M; Lee, J D; Kim, Y C; Park, H J; Kwon, W S; Park, G S

    2009-01-01

    The HTS (High-Temperature Superconducting) synchronous motor has advantages over the conventional synchronous motor such as smaller size and higher efficiency. Higher efficiency is due to smaller loss than the conventional motor, so it is important to do loss analysis in order to develop a machine with higher efficiency. This paper deals with machine losses those are dissipated in each part of a HTS synchronous motor. These losses are analyzed theoretically and compared with loss data obtained from experimental results of a 1 MW class HTS synchronous motor. Each machine loss is measured based on IEEE 115 standard and the results are analyzed and considered based on the manufacturing of the test machine.

  4. Design and control of a superconducting permanent magnet synchronous motor

    International Nuclear Information System (INIS)

    Jiang, Y; Pei, R; Hong, Z; Song, J; Fang, F; Coombs, T A

    2007-01-01

    This paper gives a detailed description of the design of a superconducting permanent magnet synchronous motor. The parameters of the motor have been identified, and the torque equation has been stated. A direct torque control algorithm is introduced and applied to a traditional permanent magnet synchronous motor and the superconducting permanent magnet synchronous motor described in this paper. The motor performance shows that the direct torque control algorithm provides excellent control to the superconducting motor, and guarantees that the magnitude of the operational armature currents is smaller than the value of the critical current of the superconducting tape used for stator winding

  5. Design and control of a superconducting permanent magnet synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Pei, R [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Hong, Z [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Song, J [Huazhong University of Science of Technology, Wuhan 430074 (China); Fang, F [Huazhong University of Science of Technology, Wuhan 430074 (China); Coombs, T A [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-07-15

    This paper gives a detailed description of the design of a superconducting permanent magnet synchronous motor. The parameters of the motor have been identified, and the torque equation has been stated. A direct torque control algorithm is introduced and applied to a traditional permanent magnet synchronous motor and the superconducting permanent magnet synchronous motor described in this paper. The motor performance shows that the direct torque control algorithm provides excellent control to the superconducting motor, and guarantees that the magnitude of the operational armature currents is smaller than the value of the critical current of the superconducting tape used for stator winding.

  6. Coupling with concentric contact around motor shaft for line start synchronous motor

    Science.gov (United States)

    Melfi, Michael J.; Burdeshaw, Galen E.

    2017-10-03

    A method comprises providing a line-start synchronous motor. The motor has a stator, a rotor core disposed within the stator, and a motor shaft. In accordance with a step of the method, a coupling for coupling a load to the motor is provided. The coupling has a motor shaft attachment portion configured to provide substantially concentric contact around the shaft at the end of the motor shaft. The coupling has a load attachment portion configured to operatively connect to a load. In accordance with a step of the method, a load is coupled to the motor with the coupling, and driven from start to at least near synchronous speed during steady state operation of the motor with a load coupled thereto. The motor shaft attachment portion may comprise a bushing assembly with matching and opposed tapered surfaces that cooperate to secure the motor shaft attachment portion around the motor shaft.

  7. Sensorless V/f Control of Permanent Magnet Synchronous Motors

    OpenAIRE

    Montesinos-Miracle, Daniel; Perera, P. D. Chandana; Galceran-Arellano, Samuel; Blaabjerg, Frede

    2010-01-01

    V/f control strategy for permanent magnet synchronous motors can be useful for HVAC applications, where not high performance is required. Permanent magnet synchronous motors have efficiency advantages over the induction motor. But open loop V/f control is not stable in the whole frequency range. As demonstrated, the V/f control strategy becomes

  8. Position sensor for linear synchronous motors employing halbach arrays

    Science.gov (United States)

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  9. Design comparison of single phase outer and inner-rotor hybrid excitation flux switching motor for hybrid electric vehicles

    Science.gov (United States)

    Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal

    2015-05-01

    In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.

  10. System and method to allow a synchronous motor to successfully synchronize with loads that have high inertia and/or high torque

    Science.gov (United States)

    Melfi, Michael J.

    2015-10-20

    A mechanical soft-start type coupling is used as an interface between a line start, synchronous motor and a heavy load to enable the synchronous motor to bring the heavy load up to or near synchronous speed. The soft-start coupling effectively isolates the synchronous motor from the load for enough time to enable the synchronous motor to come up to full speed. The soft-start coupling then brings the load up to or near synchronous speed.

  11. Features of Synchronous Electronically Commutated Motors in Servomotor Operation Modes

    Directory of Open Access Journals (Sweden)

    Dirba J.

    2017-04-01

    Full Text Available The authors consider the features and operation specifics of the synchronous permanent magnet motors and the synchronous reluctance motors with electronic commutation in servomotor operation modes. Calculation results show that mechanical and control characteristics of studied motors are close to a linear shape. The studied motor control is proposed to implement similar to phase control of induction servomotor; it means that angle θ (angle between vectors of the supply voltage and non-load electromotive force or angle ε (angle between rotor direct axis and armature magnetomotive force axis is changed. The analysis results show that synchronous electronically commutated motors could be used as servomotors.

  12. Features of Synchronous Electronically Commutated Motors in Servomotor Operation Modes

    Science.gov (United States)

    Dirba, J.; Lavrinovicha, L.; Dobriyan, R.

    2017-04-01

    The authors consider the features and operation specifics of the synchronous permanent magnet motors and the synchronous reluctance motors with electronic commutation in servomotor operation modes. Calculation results show that mechanical and control characteristics of studied motors are close to a linear shape. The studied motor control is proposed to implement similar to phase control of induction servomotor; it means that angle θ (angle between vectors of the supply voltage and non-load electromotive force) or angle ɛ (angle between rotor direct axis and armature magnetomotive force axis) is changed. The analysis results show that synchronous electronically commutated motors could be used as servomotors.

  13. Modeling and simulation of permanent magnet synchronous motor based on neural network control strategy

    Science.gov (United States)

    Luo, Bingyang; Chi, Shangjie; Fang, Man; Li, Mengchao

    2017-03-01

    Permanent magnet synchronous motor is used widely in industry, the performance requirements wouldn't be met by adopting traditional PID control in some of the occasions with high requirements. In this paper, a hybrid control strategy - nonlinear neural network PID and traditional PID parallel control are adopted. The high stability and reliability of traditional PID was combined with the strong adaptive ability and robustness of neural network. The permanent magnet synchronous motor will get better control performance when switch different working modes according to different controlled object conditions. As the results showed, the speed response adopting the composite control strategy in this paper was faster than the single control strategy. And in the case of sudden disturbance, the recovery time adopting the composite control strategy designed in this paper was shorter, the recovery ability and the robustness were stronger.

  14. Hybrid Chaos Synchronization of Four-Scroll Systems via Active Control

    Science.gov (United States)

    Karthikeyan, Rajagopal; Sundarapandian, Vaidyanathan

    2014-03-01

    This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.

  15. Discrete Current Control Strategy of Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yan Dong

    2013-01-01

    Full Text Available A control strategy of permanent magnet synchronous motors (PMSMs, which is different from the traditional vector control (VC and direct torque control (DTC, is proposed. Firstly, the circular rotating magnetic field is analyzed on the simplified model and discredited into stepping magnetic field. The stepping magnetomotive force will drive the rotor to run as the stepping motor. Secondly, the stator current orientation is used to build the control model instead of rotor flux orientation. Then, the discrete current control strategy is set and adopted in positioning control. Three methods of the strategy are simulated in computer and tested on the experiment platform of PMSM. The control precision is also verified through the experiment.

  16. The study of transient processes in the asynchronous starting of the synchronous motor

    OpenAIRE

    Alexandru Bârlea; Olivian Chiver

    2012-01-01

    Starting synchronous motors can be achieved by several ethods: starting with an auxiliary motor launch, starting in asynchronous regim, by feeding from a variable frequency source, auto-synchronization with the network.. In our case we study the transient processes in a asynchronous regim . In this case the synchronous motor is started like a squirrel cage induction motor . To start, the synchronous motor is equipped with a starting winding cage placed in the pole pieces of polar inducers; la...

  17. Gd-123 bulk field pole magnets cooled with condensed neon for axial-gap type synchronous motor

    International Nuclear Information System (INIS)

    Sano, T.; Kimura, Y.; Sugyo, D.; Yamaguchi, K.; Izumi, M.; Ida, T.; Sugimoto, H.; Miki, M.

    2008-01-01

    We have conducted to develop an axial-gap type synchronous propulsion motor with Gd-bulk HTS field pole magnets. It has been established on the fundamental technology upon the liquid nitrogen cooling. In the present study, we aimed an output improvement of the motor by the magnetic flux density enhancement of the bulk HTS, in a word, the trapped magnetic flux density on the HTS bulk. The output of the motor depends on the physics of the motor, the magnetic flux density, and the electric current density flowing through the armature. We have employed a condensed neon with a helium GM refrigerator. The bulk HTS placed on the rotor disk inside the motor frame was successfully cooled down with circulating condensed neon. The temperature at the bulk HTS surface reached 38 K. Upon magnetization, we developed controlled magnetic field density distribution coil (CMDC) composed of a couple of pulsed copper armature coil. In the magnetization procedure, with decreasing magnetization temperature, minute by minute, after Sander and Kamijyo that the step cooling magnetization method was used. In addition, the CMDC coil has enabled to control the applied flux distribution. Three parameters as the temperature, the applied magnetic field, and the effective applied flux density distribution were changed within eight times pulsed magnetizations in total. Up to 4th pulsed magnetization, we kept (1st step) high temperature, and subsequent pulsed magnetizations were done at low temperature. As a result, the highest maximum trapped magnetic flux density was reached 1.31 T, about 2.5 times compared to the value obtained upon cooling with liquid nitrogen. Consequently, the output of the motor has been enhanced to 25 kW from 10 kW taken in the previous operation

  18. I-F starting method with smooth transition to EMF based motion-sensorless vector control of PM synchronous motor/generator

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Fatu, M.

    2008-01-01

    This paper proposes a novel hybrid motion- sensorless control system for permanent magnet synchronous motors (PMSM) using a new robust start-up method called I-f control, and a smooth transition to emf-based vector control. The I-f method is based on separate control of id, iq currents with the r......This paper proposes a novel hybrid motion- sensorless control system for permanent magnet synchronous motors (PMSM) using a new robust start-up method called I-f control, and a smooth transition to emf-based vector control. The I-f method is based on separate control of id, iq currents......-adaptive compensator to eliminate dc-offset and phase-delay. Digital simulations for PMSM start-up with full load torque are presented for different initial rotor-positions. The transitions from I-f to emf motion-sensorless vector control and back as well, at very low-speeds, are fully validated by experimental...

  19. Demagnetization diagnosis in permanent magnet synchronous motors under non-stationary speed conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Jordi-Roger Riba [EUETII, Dept. d' Enginyeria Electrica, Universitat Politecnica de Catalunya, Placa del Rei 15, 08700 Igualada, Barcelona (Spain); Garcia Espinosa, Antonio [Dept. d' Enginyeria Electrica, Universitat Politecnica de Catalunya C/Colom 1, 08222 Terrassa (Spain); Romeral, Luis; Cusido, Jordi [Dept. d' Enginyeria Electronica, Universitat Politecnica de Catalunya C/Colom 1, 08222 Terrassa (Spain)

    2010-10-15

    Permanent magnet synchronous motors (PMSMs) are applied in high performance positioning and variable speed applications because of their enhanced features with respect to other AC motor types. Fault detection and diagnosis of electrical motors for critical applications is an active field of research. However, much research remains to be done in the field of PMSM demagnetization faults, especially when running under non-stationary conditions. This paper presents a time-frequency method specifically focused to detect and diagnose demagnetization faults in PMSMs running under non-stationary speed conditions, based on the Hilbert Huang transform. The effectiveness of the proposed method is proven by means of experimental results. (author)

  20. Comparison of capabilities of reluctance synchronous motor and induction motor

    International Nuclear Information System (INIS)

    Stumberger, Gorazd; Hadziselimovic, Miralem; Stumberger, Bojan; Miljavec, Damijan; Dolinar, Drago; Zagradisnik, Ivan

    2006-01-01

    This paper compares the capabilities of a reluctance synchronous motor (RSM) with those of an induction motor (IM). An RSM and IM were designed and made, with the same rated power and speed. They differ only in the rotor portion while their stators, housings and cooling systems are identical. The capabilities of both motors in a variable speed drive are evaluated by comparison of the results obtained by magnetically nonlinear models and by measurements

  1. Analysis of Synchronization for Coupled Hybrid Systems

    DEFF Research Database (Denmark)

    Li, Zheng; Wisniewski, Rafal

    2006-01-01

    In the control systems with coupled multi-subsystem, the subsystems might be synchronized (i.e. all the subsystems have the same operation states), which results in negative influence to the whole system. For example, in the supermarket refrigeration systems, the synchronized switch of each...... subsystem will cause low efficiency, inferior control performance and a high wear on the compressor. This paper takes the supermarket refrigeration systems as an example to analyze the synchronization and its coupling strengths of coupled hybrid systems, which may provide a base for further research...... of control strategies. This paper combines topology and section mapping theories together to show a new way of analyzing hybrid systems...

  2. Controlling chaos in the permanent magnet synchronous motor

    International Nuclear Information System (INIS)

    Zribi, Mohamed; Oteafy, Ahmed; Smaoui, Nejib

    2009-01-01

    The Permanent Magnet Synchronous Motor (PMSM) is known to exhibit chaotic behavior under certain conditions. This paper proposes to use an instantaneous Lyapunov exponent control algorithm to control the PMSM. One of the objectives of the control approach is to bring order to the PMSM and to drive it to any user-defined desired state. Simulation results under different operating conditions indicate that the proposed control scheme works well. Moreover, the proposed Lyapunov exponent control scheme is able to induce chaos on the permanent magnet synchronous motor. Simulation results show the effectiveness of the proposed control scheme in chaotifing the response of the motor.

  3. Full state hybrid projective synchronization in hyperchaotic systems

    International Nuclear Information System (INIS)

    Chu Yandong; Chang Yingxiang; Zhang Jiangang; Li Xianfeng; An Xinlei

    2009-01-01

    In this letter, we investigate the full state hybrid projective synchronization (FSHPS) which includes complete synchronization, anti-synchronization and projective synchronization as its special items. Based on Lyapunov stability theory a controller can be designed for achieving the FSHPS of hyperchaotic systems. Numerical simulations are provided to verify the effectiveness of the proposed scheme.

  4. The electric motor in the hybrid vehicle. A comparison of three different types of electric motors; Der Elektromotor im Hybridfahrzeug. Vergleich von drei unterschiedlichen Elektromotorentypen

    Energy Technology Data Exchange (ETDEWEB)

    Petschnik, Harald

    2009-07-01

    According to the experts, hybrid technology is the key technology in the automotive industry for the next few decades. Many of the well established automobile manufacturers are focusing their research and development activities on this upcoming technology. The big advantage of hybrid vehicles is the electrified powertrain. Due to intelligent combination of the combustion- and electric engine, the benefits of the two different powertrain configurations can be used. The following research is concerned and closely examines the role of the electric engine in the hybrid vehicle. The scope of the research is focused on the demands of an electric engine, the technical configuration, functionality and economy of three different engine types which are often used in the serial production and prototyping. In order to make a direct comparison of the performance of this different engine types, they were all tested in a go-cart. The go-carts for each engine were constructed in the same way. The interpretation of the measurement results showed that the synchronous engine with permanent magnets had the best performance when considering the level of electrical efficiency, closely followed by the switched reluctance motor. The efficiency of the electrical motor makes a high contribution to the total efficiency of the vehicle. The measurement result confirms the selection of a synchronous motor is, under consideration of the electrical efficiency, the most advantageous solution for hybrid vehicles. (orig.)

  5. Hybrid synchronization of two independent chaotic systems on ...

    Indian Academy of Sciences (India)

    Keywords. Hybrid synchronization; complex network; information source; chaotic system. ... encryption and decryption through synchronization. However, the ... Certainly, if the two systems are different, the security would be improved. How.

  6. A seismic vertical vibrator driven by linear synchronous motors

    NARCIS (Netherlands)

    Noorlandt, R.P.; Drijkoningen, G.G.; Dams, J.; Jenneskens, R.

    2015-01-01

    A linear synchronous motor (LSM) is an electric motor that can produce large controllable forces and is therefore suitable as a driving engine for a seismic vibrator. This motor consists of two independent elements, a magnet track and a coil track, allowing practically unlimited motor displacements.

  7. The rediscovery of synchronous reluctance and ferrite permanent magnet motors tutorial course notes

    CERN Document Server

    Pellegrino, Gianmario; Bianchi, Nicola; Soong, Wen; Cupertino, Francesco

    2016-01-01

    This book offers an essential compendium on the analysis and design of synchronous motors for variable-speed applications. Focusing on synchronous reluctance and ferrite permanent-magnet (PM) synchronous reluctance machines, it provides a broad perspective on three-phase machines for variable speed applications, a field currently dominated by asynchronous machines and rare-earth PM synchronous machines. It also describes synchronous reluctance machines and PM machines without rare-earth materials, comparing them to state-of-the-art solutions. The book provides readers with extensive information on and finite element models of PM synchronous machines, including all relevant equations and with an emphasis on synchronous-reluctance and PM-assisted synchronous-reluctance machines. It covers ferrite-assisted machines, modeled as a subcase of PM-assistance, fractional slot combinations solutions, and a quantitative, normalized comparison of torque capability with benchmark PM machines. The book discusses a wealth o...

  8. Fixed-Time Stability Analysis of Permanent Magnet Synchronous Motors with Novel Adaptive Control

    Directory of Open Access Journals (Sweden)

    Maoxing Liu

    2017-01-01

    Full Text Available We firstly investigate the fixed-time stability analysis of uncertain permanent magnet synchronous motors with novel control. Compared with finite-time stability where the convergence rate relies on the initial permanent magnet synchronous motors state, the settling time of fixed-time stability can be adjusted to desired values regardless of initial conditions. Novel adaptive stability control strategy for the permanent magnet synchronous motors is proposed, with which we can stabilize permanent magnet synchronous motors within fixed time based on the Lyapunov stability theory. Finally, some simulation and comparison results are given to illustrate the validity of the theoretical results.

  9. A Simple Hybrid Synchronization for a Class of Chaotic Financial Systems

    Directory of Open Access Journals (Sweden)

    Jiming Zheng

    2017-01-01

    Full Text Available It is an important to achieve the hybrid synchronization of the chaotic financial system. Chaos synchronization is equivalent to the error system which is asymptotically stable. The hybrid synchronization for a class of finance chaotic systems is discussed. First, a simple single variable controller is obtained to synchronize two identical chaotic financial systems with different initial conditions. Second, a novel algorithm is proposed to determine the variables of the master system that should antisynchronize with corresponding variables of the slave system and use this algorithm to determine the corresponding variables in the chaotic financial systems. The hybrid synchronization of the chaotic financial systems is realized by a simple controller. At the same time, different controllers can implement the chaotic financial system hybrid synchronization. In comparison with the existing results, the obtained controllers in this paper are simpler than those of the existing results. Finally, numerical simulations show the effectiveness of the proposed results.

  10. Mathematical foundations of hybrid data assimilation from a synchronization perspective

    Science.gov (United States)

    Penny, Stephen G.

    2017-12-01

    The state-of-the-art data assimilation methods used today in operational weather prediction centers around the world can be classified as generalized one-way coupled impulsive synchronization. This classification permits the investigation of hybrid data assimilation methods, which combine dynamic error estimates of the system state with long time-averaged (climatological) error estimates, from a synchronization perspective. Illustrative results show how dynamically informed formulations of the coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing networks are sparse and how hybrid methods can lead to synchronization when those dynamic formulations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean general circulation model is also presented. Results indicate that the hybrid methods also have useful applications in generalized synchronization, in particular, for correcting systematic model errors.

  11. Rotor design of a novel self-start type permanent magnet synchronous motor

    OpenAIRE

    Egawa, T; Higuchi, Tsuyoshi; Yokoi, Yuichi; Abe, T; Miyamoto, Yasuhiro; Ohto, M

    2012-01-01

    Recently, permanent magnet type synchronous motor has been used widely for industry application. In the paper, we propose a novel self-start type permanent magnet synchronous motor with squirrel-cage and analyze the basic characteristics of the motor. We try to increase the efficiency by the rotor design with the finite element analysis.

  12. Cluster synchronization in community network with hybrid coupling

    International Nuclear Information System (INIS)

    Yang, Lixin; Jiang, Jun; Liu, Xiaojun

    2016-01-01

    Highlights: • A community network model with hybrid coupling is proposed. • Control scheme is designed via combining adaptive external coupling strength and feedback control. • The influence of topology structure on synchronization of community network is discussed. - Abstract: A general model of community network with hybrid coupling is proposed in this paper. In the community network model with hybrid coupling, the inner connections are in the same type of coupling within the same community and in different types of coupling in different communities. The connections between different pair of communities are also nonidentical. Cluster synchronization of community network with hybrid coupling is investigated via adaptive couplings control scheme. Effective controllers are designed for constructing an effective control scheme and adjusting automatically the adaptive external coupling strength by taking external coupling strength as adaptive variables on a small fraction of network edges. Moreover, the impact of the topology on the synchronizability of community network is investigated. The numerical results reveal that the number of links between communities and the degree of the connector nodes have significant effects on the synchronization performance.

  13. Improved Eddy-current Field Loss Model and Scaling Index for Magnets of Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Zhang Lei

    2015-01-01

    Full Text Available The paper gives detailed systematic researches on the mechanism and key factors of eddy-current losses in rotor magnets of high power-density permanent magnet synchronous motors(PMSMs. Firstly, this paper establishes quantitative mathematic model of eddy-current losses for surface-mounted PMSM based on eddy current field model and Maxwell equations. Then, a scaling index is put forward to weigh the key factors relevant to the eddy-current losses in magnets. At the same time, the principles of eddy-current losses in prototype PMSM are analyzed by the finite element analysis (FEA software. The contents researched in the paper have practical reference values for design and reliability analysis of PMSMs.

  14. Regenerative braking system of PM synchronous motor

    Science.gov (United States)

    Gao, Qian; Lv, Chengxing; Zhao, Na; Zang, Hechao; Jiang, Huilue; Zhang, Zhaowen; Zhang, Fengli

    2018-04-01

    Permanent-magnet synchronous motor is widely adopted in many fields with the advantage of a high efficiency and a high torque density. Regenerative Braking Systems (RBS) provide an efficient method to assist PMSM system achieve better fuel economy and lowering exhaust emissions. This paper describes the design and testing of the regenerative braking systems of PMSM. The mode of PWM duty has been adjusted to control regenerative braking of PMSM using energy controller for the port-controlled Hamiltonian model. The simulation analysis indicates that a smooth control could be realized and the highest efficiency and the smallest current ripple could be achieved by Regenerative Braking Systems.

  15. Electrical performance analysis of HTS synchronous motor based on 3D FEM

    International Nuclear Information System (INIS)

    Baik, S.K.; Kwon, Y.K.; Kim, H.M.; Lee, J.D.; Kim, Y.C.; Park, G.S.

    2010-01-01

    A 1-MW class superconducting motor with High-Temperature Superconducting (HTS) field coil is analyzed and tested. This machine is a prototype to make sure applicability aimed at generator and industrial motor applications such as blowers, pumps and compressors installed in large plants. This machine has the HTS field coil made of Bi-2223 HTS wire and the conventional copper armature (stator) coils cooled by water. The 1-MW class HTS motor is analyzed by 3D electromagnetic Finite Element Method (FEM) to get magnetic field distribution, self and mutual inductance, and so forth. Especially excitation voltage (Back EMF) is estimated by using the mutual inductance between armature and field coils and compared with experimental result. Open and short circuit tests were conducted in generator mode while a 1.1-MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests and also compared with the analysis results from FEM.

  16. Testing of motor unit synchronization model for localized muscle fatigue.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K; Yadav, Vivek; Wheeler, Katherine; Arjunan, Sridhar

    2009-01-01

    Spectral compression of surface electromyogram (sEMG) is associated with onset of localized muscle fatigue. The spectral compression has been explained based on motor unit synchronization theory. According to this theory, motor units are pseudo randomly excited during muscle contraction, and with the onset of muscle fatigue the recruitment pattern changes such that motor unit firings become more synchronized. While this is widely accepted, there is little experimental proof of this phenomenon. This paper has used source dependence measures developed in research related to independent component analysis (ICA) to test this theory.

  17. Hybrid electronic/optical synchronized chaos communication system.

    Science.gov (United States)

    Toomey, J P; Kane, D M; Davidović, A; Huntington, E H

    2009-04-27

    A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.

  18. Performance test of a 1 MW class HTS synchronous motor for industrial application

    International Nuclear Information System (INIS)

    Kwon, Y.K.; Kim, H.M.; Baik, S.K.; Lee, E.Y.; Lee, J.D.; Kim, Y.C.; Lee, S.H.; Hong, J.P.; Jo, Y.S.; Ryu, K.S.

    2008-01-01

    This paper deals with development activities of high temperature superconducting (HTS) synchronous motor at DOOSAN heavy industry and Korea Electrotechnology Research Institute (KERI) in Korea, and is sponsored by DAPAS program which is supported by Korean government. The final aim of the project is realization of HTS motor in the field of industry such as large driving pumps, fans and compressors for utility and industrial environments. At present time, 1 MW HTS motor is developed for the purpose to fully represent the design and manufacturing issues for the larger capacity machine. The number of pole and rotating speed of machine are 2 pole and 3600 rpm. The HTS field coil of the developed motor is cooled by way of neon thermosyphon mechanism and the stator coil is cooled by water through hollow copper conductor. This paper describes status of 1 MW HTS motor development, such as design, fabrication and performance test results, which was conducted at steady state in generator mode and motor mode

  19. Rotor compound concept for designing an industrial HTS synchronous motor

    International Nuclear Information System (INIS)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-01-01

    Highlights: • The superconducting tapes are used in the industrial synchronous motor winding due to their electrical characteristics. • The high magnetic field with no electric loss is obtainable by using the superconducting rotor coils. • The rotor core can be replaced by light non-magnetic materials which drops the rotor total weight up to 50%. • Decreasing the rotor weight was verified by FEM analyses for a sample motor. -- Abstract: Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model

  20. Comparison of torque capability of three-phase permanent magnet synchronous motors with different permanent magnet arrangement

    International Nuclear Information System (INIS)

    Stumberger, Bojan; Stumberger, Gorazd; Hadziselimovic, Miralem; Hamler, Anton; Gorican, Viktor; Jesenik, Marko; Trlep, Mladen

    2007-01-01

    The paper presents a comparison of torque capability of three-phase permanent magnet synchronous motors with different permanent magnet arrangement. Motors with the following permanent magnet topologies were accounted for in the comparison: the surface-mounted permanent magnet synchronous motor (SMPMSM), the interior permanent magnet synchronous motor (IPMSM), the permanent magnet-assisted synchronous reluctance motor (PMASRM) and the flux reversal permanent magnet motor (FRPMM). Finite element method analysis is employed to determine the performance of each motor. Calculated performance of four-pole IPMSM determined by finite element method calculation is confirmed with the measurements at nearly constant nominal output power in the range of speed 3000-10,000 rpm

  1. The design, magnetization and control of a superconducting permanent magnet synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y; Pei, R; Xian, W; Hong, Z; Coombs, T A [Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)], E-mail: yj222@cam.ac.uk

    2008-06-15

    This paper describes in detail the method of magnetization of a superconducting permanent magnet synchronous motor. The rotor of the motor consists of 60 superconducting pucks, which are magnetized by two additional copper windings. The pulse field magnetization (PFM) method is considered and the resulted distribution of the magnetizing flux linkage from the rotor is not a perfect sine wave in the air gap, which leads to a large torque ripple and harmonics of the stator currents. In order to suppress the torque ripple, an iterative learning control (ILC) algorithm is used in addition to the former field-oriented control method. The results show the ILC algorithm can largely reduce the torque ripple.

  2. Development of super-synchronization speed control assembly for 2500 kW double-fed motor

    International Nuclear Information System (INIS)

    Li Huajun; Xuan Weimin; Peng Jianfei; Hu Haotian; Wang Shujing; Kang Li; Xu Lirong; Huang Zhaorong; Wang Xiaoping; Du Cang; Liu Ling

    2007-01-01

    The super-synchronization speed control assemblies for the two 2500 kW induction motors have been developed successfully in order to meet the need for toroidal field increasing in HL-2A tokamak. Based on the a.c./a.c. cycloconverter, the speed of each 2500 kW motor has been regulated by means of vector control technology for double-fed motor. The highest rotate speed of the two 80 MVA generator sets have been increased from 1488 rpm rated speed to 1650 rpm and the released energy of each generator set in one pulse discharge can reach 500 MJ. Therefore the toroidal field system is able to reach 2.8T for experiment. (authors)

  3. Performance Comparison between a Permanent Magnet Synchronous Motor and an Induction Motor as a Traction Motor for High Speed Train

    Science.gov (United States)

    Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo

    Performance tests are carried out to demonstrate the superiority of a permanent magnet synchronous motor to an induction motor as a traction motor for high-speed train. A prototype motor was manufactured by replacing the rotor of a conventional induction motor. The test results show that the permanent magnet motor is lighter, efficient and more silent than the induction motor because of the different rotor structure.

  4. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    International Nuclear Information System (INIS)

    Xu Yuhua; Zhou Wuneng; Fang Jianan

    2009-01-01

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  5. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China)], E-mail: yuhuaxu2004@163.com; Zhou Wuneng [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)], E-mail: wnzhou@163.com; Fang Jianan [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)

    2009-11-15

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  6. STUDYING THE EFFECT OF AN ADDITIONAL ACTIVE RESISTANCE IN THE FIELD WINDING CIRCUIT ON STARTING CHARACTERISTICS OF SALIENT-POLE SYNCHRONOUS MOTORS

    Directory of Open Access Journals (Sweden)

    V. S. Malyar

    2018-04-01

    Full Text Available On the basis of the developed method for calculating steady-state asynchronous operation modes of salient-pole synchronous motors, a procedure of mathematical modelling of the starting characteristics is proposed. The problem of calculating the steady-state asynchronous mode is solved as a boundary value one for differential equations of motor circuit electrical equilibrium. Algebraization of the system of differential equations is carried out by approximating the equations of state using cubic spline functions on a grid of period nodes, taking into account the periodic law of variation of the coordinates. This results in the changeover from continual values to nodal ones. The starting static characteristics are calculated using the parameter continuation method. The study of the effect of the starting resistance value on the asynchronous characteristics of the motor relied on a mathematical model of the motor taking into consideration real field circuits, saturation and asymmetry of the magnetic path.

  7. 2D analytical modeling of a wholly superconducting synchronous reluctance motor

    International Nuclear Information System (INIS)

    Male, G; Lubin, T; Mezani, S; Leveque, J

    2011-01-01

    An analytical computation of the magnetic field distribution in a wholly superconducting synchronous reluctance motor is proposed. The stator of the studied motor consists of three-phase HTS armature windings fed by AC currents. The rotor is made with HTS bulks which have a nearly diamagnetic behavior under zero field cooling. The electromagnetic torque is obtained by the interaction between the rotating magnetic field created by the HTS windings and the HTS bulks. The proposed analytical model is based on the resolution of Laplace's and Poisson's equations (by the separation-of-variables technique) for each sub-domain, i.e. stator windings, air-gap, holes between HTS bulks and exterior iron shield. For the study, the HTS bulks are considered as perfect diamagnetic materials. The boundary and continuity conditions between the sub-domains yield to the global solution. Magnetic field distributions and electromagnetic torque obtained by the analytical method are compared with those obtained from finite element analyses.

  8. 2D analytical modeling of a wholly superconducting synchronous reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Male, G; Lubin, T; Mezani, S; Leveque, J, E-mail: gael.male@green.uhp-nancy.fr [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Universite Henri Poincare, Faculte des Sciences et Technologies BP 70239, 54506 Vandoeuvre les Nancy CEDEX (France)

    2011-03-15

    An analytical computation of the magnetic field distribution in a wholly superconducting synchronous reluctance motor is proposed. The stator of the studied motor consists of three-phase HTS armature windings fed by AC currents. The rotor is made with HTS bulks which have a nearly diamagnetic behavior under zero field cooling. The electromagnetic torque is obtained by the interaction between the rotating magnetic field created by the HTS windings and the HTS bulks. The proposed analytical model is based on the resolution of Laplace's and Poisson's equations (by the separation-of-variables technique) for each sub-domain, i.e. stator windings, air-gap, holes between HTS bulks and exterior iron shield. For the study, the HTS bulks are considered as perfect diamagnetic materials. The boundary and continuity conditions between the sub-domains yield to the global solution. Magnetic field distributions and electromagnetic torque obtained by the analytical method are compared with those obtained from finite element analyses.

  9. Novel rotating characteristics of a squirrel-cage-type HTS induction/synchronous motor

    International Nuclear Information System (INIS)

    Nakamura, T; Ogama, Y; Miyake, H; Nagao, K; Nishimura, T

    2007-01-01

    This paper describes the rotating characteristics of a high-T c superconducting induction/synchronous motor, which possesses both asynchronous and synchronous torques even though its structure is exactly the same as the squirrel-cage-type induction motor. Two kinds of Bi-2223/Ag multifilamentary tapes were utilized for the secondary windings. A commercialized motor (1.5 kW) was subjected to this study. A conventional (normal conducting) stator (three-phase, four-pole) was directly utilized, and only the squirrel-cage windings were replaced with the superconducting tapes. The tests were performed after the fabricated motor was immersed in liquid nitrogen. The operating temperature was also varied by pumping out the liquid nitrogen. It is shown that the motor is successfully synchronized for the temperature range from 65 to 77 K. Detailed discussions for such novel rotating characteristics are reported based on the electrical equivalent circuit

  10. Axial Field Electric Motor and Method

    National Research Council Canada - National Science Library

    Cho, Chahee P

    2007-01-01

    .... A hybrid field, brushless, permanent magnet electric motor utilizing a rotor with two sets of permanent magnets oriented such that the flux produced by the two sets of magnets is perpendicular to each...

  11. Speed Synchronization of Multi Induction Motors with Fuzzy Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    HACHEMI Glaoui

    2013-05-01

    Full Text Available A continuous web winding system is a large-scale, complex interconnected dynamic system with numerous tension zones to transport the web while processing it. There are two control schemes for large-scale system control: the centralized scheme and the decentralized scheme. Centralized control is the traditional control method, which considers all the information about the system to be a single dynamic model and design a control system for this model. Aspeed synchronization control strategy for multiple induction motors, based on adjacent cross-coupling control structure, is developed by employing total sliding mode control method. The proposed controlstrategy is to stabilize speed tracking of each induction motor while synchronizing its speed with the speed of the other motors so as to make speed synchronization error amongst induction motors converge to zero. The global stability and the convergence of the designedcontroller are proved by using Lyapunov method. Simulation results demonstrate the effectiveness of the proposed method.

  12. A novel rotor design for a hybrid excited synchronous machine

    Directory of Open Access Journals (Sweden)

    Paplicki Piotr

    2017-03-01

    Full Text Available The paper presents three novel rotor design concepts for a three-phase electric controlled permanent magnet synchronous machine (ECPMS-machine with hybrid excitation. The influence of magnets and flux-barriers arrangement on the magnetic field distribution and field-weakening characteristics of the machine is examined, based on a three-dimensional finite element analysis (3D-FEA. Moreover, a prototype rotor design based on a new rotor concept with a good field-weakening capability is presented in detail. Finally, the experimental results of no-load back electromotive force (back-EMF waveforms and field-weakening characteristics versus a control coil current of the machine are reported.

  13. Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.

    Science.gov (United States)

    Chen, Qiang; Ren, Xuemei; Na, Jing

    2015-09-01

    In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs.

    Science.gov (United States)

    Kline, Joshua C; De Luca, Carlo J

    2016-01-01

    Synchronous motor unit firing instances have been attributed to anatomical inputs shared by motoneurons. Yet, there is a lack of empirical evidence confirming the notion that common inputs elicit synchronization under voluntary conditions. We tested this notion by measuring synchronization between motor unit action potential trains (MUAPTs) as their firing rates progressed within a contraction from a relatively low force level to a higher one. On average, the degree of synchronization decreased as the force increased. The common input notion provides no empirically supported explanation for the observed synchronization behavior. Therefore, we investigated a more probable explanation for synchronization. Our data set of 17,546 paired MUAPTs revealed that the degree of synchronization varies as a function of two characteristics of the motor unit firing rate: the similarity and the slope as a function of force. Both are measures of the excitation of the motoneurons. As the force generated by the muscle increases, the firing rate slope decreases, and the synchronization correspondingly decreases. Different muscles have motor units with different firing rate characteristics and display different amounts of synchronization. Although this association is not proof of causality, it consistently explains our observations and strongly suggests further investigation. So viewed, synchronization is likely an epiphenomenon, subject to countless unknown neural interactions. As such, synchronous firing instances may not be the product of a specific design and may not serve a specific physiological purpose. Our explanation for synchronization has the advantage of being supported by empirical evidence, whereas the common input does not. Copyright © 2016 the American Physiological Society.

  15. Chaos synchronization in autonomous chaotic system via hybrid feedback control

    International Nuclear Information System (INIS)

    Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng; Chang Yingxiang

    2009-01-01

    This paper presents the synchronization of chaos by designing united controller. First, this method is implemented in synchronization of a simple system, then we realize the synchronization of Lue hyperchaotic system, we also take tracking control to realize the synchronization of Lue hyperchaotic system. Comparing with results, we can find that hybrid feedback control approach is more effective than tracking control for hyperchaotic system. Numerical simulations show the united synchronization method works well.

  16. Calculation of electromagnetic torque for synchronous motor with modulated magnetic flux and smooth harmonic rotor

    Science.gov (United States)

    Shevchenko, A. F.; Shevchenko, L. G.

    2017-10-01

    Results of the electromagnetic torque calculation for the synchronous motor with modulated magnetic flux and a smooth harmonic rotor are presented in this paper. The value of the torque is determined from the electromagnetic forces, which appear due to interaction of magnetic field in the gap with the rotor surface elements. The obtained analytical expression makes it possible to determine easily the electromagnetic torque for the considered motor in the MathCAD environment.

  17. Hybrid synchronization of two independent chaotic systems on ...

    Indian Academy of Sciences (India)

    One is how the same network node of the complex network was affected by different information sources. Another is how to achieve hybrid synchronization on the network. In this paper, the theoretical analysis andnumerical simulation on various complex networks are implemented. The results indicate that the hybrid ...

  18. Optimum design and research on novel vehicle hybrid excitation synchronous generator

    Directory of Open Access Journals (Sweden)

    Liu Zhong-Shu

    2017-01-01

    Full Text Available Hybrid excitation is an organic combination of permanent magnet excitation and electric excitation. Hybrid excitation synchronous generator (HESG both has the advantages of light quality, less losses and high efficiency like permanent magnet generator and the advantages of good magnetic field adjusting performance like electric excitation generator, so it is very suitable for the vehicle application. This paper presented a novel vehicle HESG which has skew stator core, permanent magnet rotor and both armature winding and field winding in the stator. Using ANSYS software, simulating the electric excitation field and the magnetic field, and finally the main parameters of HESG were designed. The simulation and the test results both show that the novel vehicle PMSG has the advantages of small cogging torque, high efficiency, small harmonic component output voltage and low waveform aberration, so as to meet the design requirements fully.

  19. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    Science.gov (United States)

    Coffey, Howard T.

    1993-01-01

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  20. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    Science.gov (United States)

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  1. Sensorless interior permanent magnet synchronous motor control with rotational inertia adjustment

    Directory of Open Access Journals (Sweden)

    Yongle Mao

    2016-12-01

    Full Text Available Mechanical model is generally required in high dynamic sensorless motor control schemes for zero phase lag estimation of rotor position and speed. However, the rotational inertia uncertainty will cause dynamic estimation errors, eventually resulting in performance deterioration of the sensorless control system. Therefore, this article proposes a high dynamic performance sensorless control strategy with online adjustment of the rotational inertia. Based on a synthetic back electromotive force model, the voltage equation of interior permanent magnet synchronous motor is transformed to that of an equivalent non-salient permanent magnet synchronous motor. Then, an extended nonlinear observer is designed for interior permanent magnet synchronous motor in the stator-fixed coordinate frame, with rotor position, speed and load torque simultaneously estimated. The effect of inaccurate rotational inertia on the estimation of rotor position and speed is investigated, and a novel rotational inertia adjustment approach that employs the gradient descent algorithm is proposed to suppress the dynamic estimation errors. The effectiveness of the proposed control strategy is demonstrated by experimental tests.

  2. Diagnostics of synchronous motor based on analysis of acoustic signals with application of MFCC and Nearest Mean classifier

    OpenAIRE

    Adam Głowacz; Witold Głowacz; Andrzej Głowacz

    2010-01-01

    The paper presents method of diagnostics of imminent failure conditions of synchronous motor. This method is based on a study ofacoustic signals generated by synchronous motor. Sound recognition system is based on algorithms of data processing, such as MFCC andNearest Mean classifier with cosine distance. Software to recognize the sounds of synchronous motor was implemented. The studies werecarried out for four imminent failure conditions of synchronous motor. The results confirm that the sys...

  3. Design of permanent magnet synchronous motor within minimum cost

    OpenAIRE

    Півняк, Геннадій Григорович; Бешта, Олександр Степанович; Фурса, Сергій Григорійович; Neuberger, Nikolaus; Nolle, N.

    2010-01-01

    The article describes design and simulation experience of permanent magnet synchronous motor (PMSM). The design goal is to develop PMSM of the least possible cost. For that purpose the standard induction motor stator was applied as a basic solution and permanent magnets were installed in rotor. Simulation results are presented, the dependence of efficiency and total loss on magnet material mass are obtained. The optimal value of permanent magnets is estimated for the given electric motor frame.

  4. Statistically rigorous calculations do not support common input and long-term synchronization of motor-unit firings

    Science.gov (United States)

    Kline, Joshua C.

    2014-01-01

    Over the past four decades, various methods have been implemented to measure synchronization of motor-unit firings. In this work, we provide evidence that prior reports of the existence of universal common inputs to all motoneurons and the presence of long-term synchronization are misleading, because they did not use sufficiently rigorous statistical tests to detect synchronization. We developed a statistically based method (SigMax) for computing synchronization and tested it with data from 17,736 motor-unit pairs containing 1,035,225 firing instances from the first dorsal interosseous and vastus lateralis muscles—a data set one order of magnitude greater than that reported in previous studies. Only firing data, obtained from surface electromyographic signal decomposition with >95% accuracy, were used in the study. The data were not subjectively selected in any manner. Because of the size of our data set and the statistical rigor inherent to SigMax, we have confidence that the synchronization values that we calculated provide an improved estimate of physiologically driven synchronization. Compared with three other commonly used techniques, ours revealed three types of discrepancies that result from failing to use sufficient statistical tests necessary to detect synchronization. 1) On average, the z-score method falsely detected synchronization at 16 separate latencies in each motor-unit pair. 2) The cumulative sum method missed one out of every four synchronization identifications found by SigMax. 3) The common input assumption method identified synchronization from 100% of motor-unit pairs studied. SigMax revealed that only 50% of motor-unit pairs actually manifested synchronization. PMID:25210152

  5. A New Torque Control System of Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Evstratov Andrey

    2017-01-01

    Full Text Available The article describes a new approach to control of permanent magnet synchronous motor drive based on the analysis of the electromechanical transformation. The proposed control system provides quick response and low ripple of the motor torque and flux. To synthesis this control system, the authors put the electromagnetic torque and the modulus of stator flux vector as controlled values and use the Lyapunov’s second method. In addition, the stator voltage constriction and ability of low-pass filtration are taken into account. The investigation of the proposed control system has carried out with the simulation and the experimental research which have confirmed that the proposed control system correspond to all above-mentioned control tasks and the permanent magnet synchronous motor controlled under this system may be recommended to use in robotics.

  6. Development and fundamental study on a superconducting induction/synchronous motor incorporated with MgB2 cage windings

    International Nuclear Information System (INIS)

    Nakamura, T; Yamada, Y; Nishio, H; Sugano, M; Amemiya, N; Kajikawa, K; Wakuda, T; Takahashi, M; Okada, M

    2012-01-01

    In this paper, a fundamental study of the rotating characteristics of a induction/synchronous motor by use of superconducting MgB 2 cage windings is carried out based on analysis and experiment. Current transport properties of the produced monofilamentary MgB 2 wires are firstly characterized, and then utilized for the determination of the current carrying capacity of the rotor bars. Then, the motor model is designed and fabricated with the aid of conventional (copper) stator windings. We successfully observe the synchronous rotation of the fabricated motor at a rotation speed range from 300 to 1800 rpm. We can also realize an almost constant torque versus speed curve, and this characteristic is explained from the steep take-off of the electric field versus the current density curve, based on the nonlinear electrical equivalent circuit. These results are promising for the practical applications of a high efficiency motor for a liquid hydrogen circulation pump.

  7. Mechanical design of a synchronous rotating machines with Gd-Ba-Cu-O HTS bulk pole-field magnets operated by a pulsed-field magnetization with armature copper coils

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, H [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Kimura, Y [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Ohtani, I [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Morita, E [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Ogata, H [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Izumi, M [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Ida, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, Hiroshima 725-0231 (Japan); Sugimoto, H [Department of Electrical and Electronic Engineering, Fukui University, Fukui 910-8507 (Japan); Miki, M [Kitano Seiki Co. Ltd., Ohta-ku, Tokyo 143-0024 (Japan); Kitano, M [Kitano Seiki Co. Ltd., Ohta-ku, Tokyo 143-0024 (Japan)

    2006-06-01

    We studied a high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk pole-field magnets. The structure of a HTS motor is an axial gap type with neither brushes/slip rings nor iron core. The specific feature is that the rotor pole-field magnets of bulk are magnetized with pulsed current flow through vortex-type armature copper windings. The rotor pole bulks and armature coils are cooled down with liquid nitrogen. Cooling and magnetization of bulk pole field magnets are performed inside of the rotor. The trapped peak magnetic field of more than 0.5 T of the bulk magnets provided the motor performance of 3.1 kW with 720 rpm. In order to attain high output, single rotor plate with 8 bulks was substituted with a twinned rotor plates with 16 bulks together with triple layer armature units. We report on the test results and performance of the present twinned rotor-type HTS synchronous motor.

  8. Asynchronous slip-ring motor synchronized with permanent magnets

    Directory of Open Access Journals (Sweden)

    Glinka Tadeusz

    2017-03-01

    Full Text Available The electric LSPMSM motor presented in the paper differs from standard induction motor by rotor design. The insulated start-up winding is located in slots along the rotor circumference. The winding ends are connected to the slip-rings. The rotor core contains permanent magnets. The electromechanical characteristics for synchronous operation were calculated, as were the start-up characteristics for operation with a short-circuited rotor winding. Two model motors were used for the calculations, the V-shaped Permanent Magnet (VPM – Fig. 3, and the Linear Permanent Magnet (IPM – Fig. 4, both rated at 14.5 kW. The advantages of the investigated motor are demonstrated in the conclusions.

  9. Performance analysis of PM synchronous motor using fuzzy logic and self tuning fuzzy PI speed controls

    International Nuclear Information System (INIS)

    Karakaya, A.; Karakas, E.

    2008-01-01

    Permanent Magnet Synchronous Motors have nonlinear characteristics whose dynamics changes with time. In spite of this structure the permanent magnet synchronous motor has answered engineering problems in industry such as motion control which need high torque values. This paper obtains a nonlinear mathematical model for Permanent Magnet Synchronous Motor and realizes stimulation of the obtained model in the Matlab/Simulink program. Motor parameters are determined by an experimental set-up and they are used in the motor model. Speed control of motor model is made with Fuzzy Logic and Self Tuning logic PI controllers. Using the speed graphs obtained, rise time, overshoot, steady-state error and settling time are analyzed and controller performances are compared. (author)

  10. Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system

    Science.gov (United States)

    Kong, Xiangxi; Chen, Changzheng; Wen, Bangchun

    2018-03-01

    This paper addresses the problem of composite synchronization of three eccentric rotors (ERs) driven by induction motors in a vibrating system. The composite synchronous motion of three ERs is composed of the controlled synchronous motion of two ERs and the self-synchronous motion of the third ER. Combining an adaptive sliding mode control (ASMC) algorithm with a modified master-slave control structure, the controllers are designed to implement controlled synchronous motion of two ERs with zero phase difference. Based on Lyapunov stability theorem and Barbalat's lemma, the stability of the designed controllers is verified. On basis of controlled synchronization of two ERs, self-synchronization of the third ER is introduced to implement composite synchronous motion of three ERs. The feasibility of the proposed composite synchronization method is analyzed by numerical method. The effects of motor and structure parameters on composite synchronous motion are discussed. Experiments on a vibrating test bench driven by three ERs are operated to validate the effectiveness of the proposed composite synchronization method, including a comparison with self-synchronization method.

  11. Synchronization of lower limb motor unit activity during walking in human subjects

    DEFF Research Database (Denmark)

    Hansen, Naja L; Hansen, S; Christensen, L. O. D.

    2001-01-01

    lateralis and medialis of quadriceps), but not or rarely for paired recordings from ankle and knee muscles. The data demonstrate that human motor units within a muscle as well as synergistic muscles acting on the same joint receive a common synaptic drive during human gait. It is speculated that the common...... drive responsible for the motor unit synchronization during gait may be similar to that responsible for short-term synchronization during tonic voluntary contraction....

  12. Nonlinear Speed Control of Permanent Magnet Synchronous Motor with Salient Poles

    Directory of Open Access Journals (Sweden)

    K. Kyslan

    2015-12-01

    Full Text Available This paper presents the speed control of permanent magnet synchronous motor with salient poles based on two-step linearization method. In the first step, the direct compensation of the nonlinearities in the equations of current is used. In the second step, the input-output linearization in the state space is used for the decoupling of flux and torque axis. Simulated results are compared to the field oriented vector control structure with PI controllers in order to show differences in the performance of both approaches.

  13. The Static Eccentricity Fault Diagnosis in Time Domain at Line Start Permanent Magnet Synchronous Motor

    OpenAIRE

    DOGAN, Zafer

    2016-01-01

    Recently, Line Start Permanent Magnet Synchronous Motor have been commonly utilized in industrial areas because of their high efficiency. Motor faults during operation cause losses of production and high maintenance and repair expenditures. In this study, the effect of static eccentricity fault on line start permanent magnet synchronous motor was investigated. The simulation models of motor belonging to healthy and fault status were formed via Finite Elements Method. The analyses in time doma...

  14. Geometry optimization of five-phase permanent magnet synchronous motors using Bees algorithm

    Directory of Open Access Journals (Sweden)

    R Ilka

    2015-12-01

    Full Text Available Among all types of electrical motors, permanent magnet synchronous motors (PMSMs are reliable and efficient motors in industrial applications. Because of their superiority over other kinds of motors, they are replacing conventional electric motors. On the other hand, high-phase PMSMs are good candidates to be used in certain industrial and military projects such as electric vehicles, spacecrafts, naval systems and etc. In these cases, the motor has to be designed with minimum volume and high torque and efficiency. Design optimization can improve their features noticeably, thus reduce volume and enhance performance of motors. In this paper, a new method for optimum design of a five-phase surface-mounted permanent magnet synchronous motor is presented to achieve minimum permanent magnets (PMs volume with an increased torque and efficiency. Design optimization is performed in search for optimum dimensions of the motor and its permanent magnets using Bees Algorithm (BA. The design optimization results in a motor with great improvement regarding the original motor which is compared with two well-known evolutionary algorithms i.e. GA and PSO. Finally, finite element method simulation is utilized to validate the accuracy of the design.

  15. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    Science.gov (United States)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  16. Hybrid Prediction Model of the Temperature Field of a Motorized Spindle

    Directory of Open Access Journals (Sweden)

    Lixiu Zhang

    2017-10-01

    Full Text Available The thermal characteristics of a motorized spindle are the main determinants of its performance, and influence the machining accuracy of computer numerical control machine tools. It is important to accurately predict the thermal field of a motorized spindle during its operation to improve its thermal characteristics. This paper proposes a model to predict the temperature field of a high-speed and high-precision motorized spindle under different working conditions using a finite element model and test data. The finite element model considers the influence of the parameters of the cooling system and the lubrication system, and that of environmental conditions on the coefficient of heat transfer based on test data for the surface temperature of the motorized spindle. A genetic algorithm is used to optimize the coefficient of heat transfer of the spindle, and its temperature field is predicted using a three-dimensional model that employs this optimal coefficient. A prediction model of the 170MD30 temperature field of the motorized spindle is created and simulation data for the temperature field are compared with the test data. The results show that when the speed of the spindle is 10,000 rpm, the relative mean prediction error is 1.5%, and when its speed is 15,000 rpm, the prediction error is 3.6%. Therefore, the proposed prediction model can predict the temperature field of the motorized spindle with high accuracy.

  17. Pole Shape Optimization of Permanent Magnet Synchronous Motors Using the Reduced Basis Technique

    Directory of Open Access Journals (Sweden)

    A. Jabbari

    2010-03-01

    Full Text Available In the present work, an integrated method of pole shape design optimization for reduction of torque pulsation components in permanent magnet synchronous motors is developed. A progressive design process is presented to find feasible optimal shapes. This method is applied on the pole shape optimization of two prototype permanent magnet synchronous motors, i.e., 4-poles/6-slots and 4-poles-12slots.

  18. Characteristic analysis of a less-rare-earth hybrid PM-assisted synchronous reluctance motor for EVs application

    Directory of Open Access Journals (Sweden)

    Wenye Wu

    2017-05-01

    Full Text Available Low-energy permanent magnet (PM such as ferrite is usually adopted in a PM-assisted reluctance (PMAREL motor to enhance the output torque and reduce costs. However, the relatively low magnetic energy product and remanence in such PMs may lead to the risk of demagnetization. By using two types of materials of rare-earth NdFeB and non-rare-earth ferrite PM, a new less-rare-earth hybrid PMAREL motor is proposed in this paper, where the output torque and the power factor can be improved obviously, and meanwhile the risk of irreversible demagnetization in ferrite PMs can be reduced significantly due to the existence of NdFeB PMs. To verify the validity of the proposed motor, the operating principles of the motor and the positive interaction influences between the two involved types of PMs are analyzed. Moreover, by using the finite element method, the torque characteristics and anti-demagnetization capabilities are also investigated in details. Both the theoretical analysis and simulated results confirm the advantages of the proposed motor.

  19. Characteristic analysis of a less-rare-earth hybrid PM-assisted synchronous reluctance motor for EVs application

    Science.gov (United States)

    Wu, Wenye; Zhu, Xiaoyong; Quan, Li; Fan, Deyang; Xiang, Zixuan

    2017-05-01

    Low-energy permanent magnet (PM) such as ferrite is usually adopted in a PM-assisted reluctance (PMAREL) motor to enhance the output torque and reduce costs. However, the relatively low magnetic energy product and remanence in such PMs may lead to the risk of demagnetization. By using two types of materials of rare-earth NdFeB and non-rare-earth ferrite PM, a new less-rare-earth hybrid PMAREL motor is proposed in this paper, where the output torque and the power factor can be improved obviously, and meanwhile the risk of irreversible demagnetization in ferrite PMs can be reduced significantly due to the existence of NdFeB PMs. To verify the validity of the proposed motor, the operating principles of the motor and the positive interaction influences between the two involved types of PMs are analyzed. Moreover, by using the finite element method, the torque characteristics and anti-demagnetization capabilities are also investigated in details. Both the theoretical analysis and simulated results confirm the advantages of the proposed motor.

  20. Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses

    International Nuclear Information System (INIS)

    Liu, Chen; Wang, Jiang; Wang, Lin; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok

    2014-01-01

    Highlights: • Synchronization transitions in hybrid scale-free neuronal networks are investigated. • Multiple synchronization transitions can be induced by the time delay. • Effect of synchronization transitions depends on the ratio of the electrical and chemical synapses. • Coupling strength and the density of inter-neuronal links can enhance the synchronization. -- Abstract: The impacts of information transmission delay on the synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses are investigated. Numerical results show that multiple appearances of synchronization regions transitions can be induced by different information transmission delays. With the time delay increasing, the synchronization of neuronal activities can be enhanced or destroyed, irrespective of the probability of chemical synapses in the whole hybrid neuronal network. In particular, for larger probability of electrical synapses, the regions of synchronous activities appear broader with stronger synchronization ability of electrical synapses compared with chemical ones. Moreover, it can be found that increasing the coupling strength can promote synchronization monotonously, playing the similar role of the increasing the probability of the electrical synapses. Interestingly, the structures and parameters of the scale-free neuronal networks, especially the structural evolvement plays a more subtle role in the synchronization transitions. In the network formation process, it is found that every new vertex is attached to the more old vertices already present in the network, the more synchronous activities will be emerge

  1. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  2. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  3. Fuzzy Adaptive Model Following Speed Control for Vector Controlled Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Baghdad BELABES

    2008-12-01

    Full Text Available In this paper a hybrid controller combining a linear model following controller (LMFC and fuzzy logic control (FLC for speed vector controlled permanent magnet synchronous motor (PMSM is described on this study. The FLC is introduced at the adaptive mechanism level. First, an LMFC system is designed to allow the plant states to be controlled to follow the states produced by a reference model. In the nominal conditions, the model following is perfect and the adaptive mechanism based on the fuzzy logic is idle. Secondly, when parameter variations or external disturbances occur, an augmented signal will be generated by FLC mechanism to preserve the desired model following control performance. The effectiveness and robustness of the proposed controller is demonstrated by some simulation results.

  4. Programmable logic controller based synchronous motor excitation system

    Directory of Open Access Journals (Sweden)

    Janda Žarko

    2011-01-01

    Full Text Available This paper presents a 3.5 MW synchronous motor excitation system reconstruction. In the proposed solution programmable logic controller is used to control motor, which drives the turbo compressor. Comparing to some other solutions that are used in similar situations, the proposed solution is superior due to its flexibility and usage of mass-production hardware. Moreover, the implementation of PLC enables easy integration of the excitation system with the other technological processes in the plant as well as in the voltage regulation of 'smart grid' system. Also, implementation of various optimization algorithms can be done comfortably and it does not require additional investment in hardware. Some experimental results that depict excitation current during motor start-up, as well as, measured static characteristics of the motor, were presented.

  5. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease

    Science.gov (United States)

    Klotz, Rosa; Govindan, Rathinaswamy B.; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko

    2015-01-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson’s disease. Here, we set out to address the motor network activity and synchronization in Parkinson’s disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson’s disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with ‘stimulation on’ compared to ‘stimulation off’ on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With ‘stimulation on’, interhemispheric cortico

  6. Mobility-aware Hybrid Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    Random mobility of node causes the frequent changes in the network dynamics causing the increased cost in terms of energy and bandwidth. It needs the additional efforts to synchronize the activities of nodes during data collection and transmission in Wireless Sensor Networks (WSNs). A key challenge...... in maintaining the effective data collection and transmission is to schedule and synchronize the activities of the nodes with the global clock. This paper proposes the Mobility-aware Hybrid Synchronization Algorithm (MHS) which works on the formation of cluster based on spanning tree mechanism (SPT). Nodes used...... for formation of the network have random mobility and heterogeneous in terms of energy with static sink. The nodes in the cluster and cluster heads in the network are synchronized with the notion of global time scale. In the initial stage, the algorithm establishes the hierarchical structure of the network...

  7. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    Science.gov (United States)

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand.

  8. Chaos synchronization and parameter identification of three time scales brushless DC motor system

    International Nuclear Information System (INIS)

    Ge, Z.-M.; Cheng, J.-W.

    2005-01-01

    Chaotic anticontrol and chaos synchronization of brushless DC motor system are studied in this paper. Nondimensional dynamic equations of three time scale brushless DC motor system are presented. Using numerical results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions can be observed. Then, chaos synchronization of two identical systems via additional inputs and Lyapunov stability theory are studied. And further, the parameter of the system is traced via adaptive control and random optimization method

  9. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  10. Chaos anticontrol and synchronization of three time scales brushless DC motor system

    International Nuclear Information System (INIS)

    Ge Zhengming; Cheng Juiwen; Chen Yensheng

    2004-01-01

    Chaos anticontrol of three time scale brushless dc motors and chaos synchronization of different order systems are studied. Nondimensional dynamic equations of three time scale brushless DC motor system are presented. Using numerical results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions can be observed. By adding constant term, periodic square wave, the periodic triangle wave, the periodic sawtooth wave, and kx vertical bar x vertical bar term, to achieve anticontrol of chaotic or periodic systems, it is found that more chaotic phenomena of the system can be observed. Then, by coupled terms and linearization of error dynamics, we obtain the partial synchronization of two different order systems, i.e. brushless DC motor system and rate gyroscope system

  11. GENETIC ALGORITHM IN OPTIMIZATION DESIGN OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

    Directory of Open Access Journals (Sweden)

    Phuong Le Ngo

    2017-01-01

    Full Text Available Classical method of designing electric motors help to achieve functional motor, but doesn’t ensure minimal cost in manufacturing and operating. Recently optimization is becoming an important part in modern electric motor design process. The objective of the optimization process is usually to minimize cost, energy loss, mass, or maximize torque and efficiency. Most of the requirements for electrical machine design are in contradiction to each other (reduction in volume or mass, improvement in efficiency etc.. Optimization in design permanent magnet synchronous motor (PMSM is a multi-objective optimization problem. There are two approaches for solving this problem, one of them is evolution algorithms, which gain a lot of attentions recently. For designing PMSM, evolution algorithms are more attractive approach. Genetic algorithm is one of the most common. This paper presents components and procedures of genetic algorithms, and its implementation on computer. In optimization process, analytical and finite element method are used together for better performance and precision. Result from optimization process is a set of solutions, from which engineer will choose one. This method was used to design a permanent magnet synchronous motor based on an asynchronous motor type АИР112МВ8.

  12. Speed Sensorless Control of Permanent Magnet Synchronous Motors in Mine Electric Locomotive Drive

    Directory of Open Access Journals (Sweden)

    Yudong LI

    2014-04-01

    Full Text Available This paper presents a novel sensorless control method of permanent magnet synchronous motors a low speed based on a high-frequency voltage signal injection. The approach superimposes a persistent HF voltage signal into the estimated d-axis to get the rotor position error angle-related signal by detecting the corresponding voltage response and current response. Then the rotor position and motor speed are obtained. Theoretical analysis and simulation results demonstrate that the approach can achieve sensorless control of permanent magnet synchronous motors at zero and low speed, ensure good dynamic and static performances, and achieve effective control when applied to servo system. Finally, a test prototype system which used a digital signal processor and space vector pulse width modulation technology has been developed. Experimental results show that the system has better static, the effectiveness and dynamic performance of the adaptive test signals in a sensorless controlled surface-mounted permanent magnet synchronous machines.

  13. Influence of different rotor magnetic circuit structure on the performance of permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Qiu Hongbo

    2017-09-01

    Full Text Available In order to compare the performance difference of the permanent magnet synchronous motors (PMSM with different rotor structure, two kinds of rotor magnetic circuit structure with surface-mounted radial excitation and tangential excitation are designed respectively. By comparing and analyzing the results, the difference of the motor performance was determined. Firstly, based on the finite element method (FEM, the motor electromagnetic field performance was studied, and the magnetic field distribution of the different magnetic circuit structure was obtained. The influence mechanism of the different magnetic circuit structure on the air gap flux density was obtained by using the Fourier theory. Secondly, the cogging torque, output torque and overload capacity of the PMSM with different rotor structure were studied. The effect mechanism of the different rotor structure on the motor output property difference was obtained. The motor prototype with two kinds of rotor structure was manufactured, and the experimental study was carried out. By comparing the experimental data and simulation data, the correctness of the research is verified. This paper lays a foundation for the research on the performance of the PMSM with different magnetic circuit structure.

  14. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    Directory of Open Access Journals (Sweden)

    Maurice Mohr

    Full Text Available Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM and Lateralis (VL. Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role.Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum.For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat.There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement

  15. Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance.

    Science.gov (United States)

    Wang, Minlin; Ren, Xuemei; Chen, Qiang

    2018-01-01

    The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Design of digital load torque observer in hybrid electric vehicle

    Science.gov (United States)

    Sun, Yukun; Zhang, Haoming; Wang, Yinghai

    2008-12-01

    In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.

  17. Direct electrical arc ignition of hybrid rocket motors

    Science.gov (United States)

    Judson, Michael I., Jr.

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

  18. Advanced drive package saves energy. Synchronous reluctance motor with frequency converter; Energiesparpaket der Zukunft. Synchronreluktanzmotor und Frequenzumrichter

    Energy Technology Data Exchange (ETDEWEB)

    Donabauer, Fred [ABB Automation Products GmbH, Ladenburg (Germany); Lendenmann, Heinz [ABB AB, Vaesteras (Sweden)

    2011-07-01

    The drive package consisting of a synchronous reluctance motor and a frequency converters with Direct Torque Control (DTC) reaches a high level of efficiency and can make a substantial contribution to energy saving in many drive applications. The motor needs no permanent magnets or excitation system. The synchronous reluctance motor is up to two sizes smaller than an induction motor with a similar output and its power density is up to 40% higher than that of an induction motor. A frequency converter with DTC enables exact speed control without requiring an encoder. (orig.)

  19. Optimal Rotor Design of Line Start Permanent Magnet Synchronous Motor by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Bui Minh Dinh

    2017-07-01

    Full Text Available Line start permanent magnet synchronous motor (LSPMSM is one of the highest efficiency motors due to no rotor copper loss at synchronous speed and self-starting. LSPMSM has torque characteristics of both induction motor IM and Permanent Magnet Synchronous Motor-PMSM. Using Genetic Algorithm (GA for balancing magnetic cost and for copper loss minimization, the magnetic sizes and geometry parameter of stator and rotor are found and manufactured for industrial evaluation. This article is also taking account practical manufacturing factors to minimize mass production cost. In order to maximize efficiency, an optimal design method of cage-bars and magnet shape has to be considered. The geometry parameters of stator and rotor can be obtained by an analytical model method and validated by FEM simulation. This paper presents the optimal rotor design of a three-phase line-start permanent magnet motor (LSPM considering the starting torque and efficiency. To consider nonlinear characteristics, the design process is comprised of the FEM and analytical method. During this study, permanent-magnets and cage bars were designed using the magnetic equivalent circuit method and the barriers that control all magnetic flux were designed using the FEM, and the tradeoff of starting torque and efficiency is controlled by weight function in Taguchi method simulation. Finally, some practical results have been obtained and analyzed based on a LSPMSM test bench.

  20. Evaluation of Iron Loss in Interior Permanent Magnet Synchronous Motor with Consideration of Rotational Field

    Science.gov (United States)

    Ma, Lei; Sanada, Masayuki; Morimoto, Shigeo; Takeda, Yoji; Kaido, Chikara; Wakisaka, Takeaki

    Loss evaluation is an important issue in the design of electrical machines. Due to the complicate structure and flux distribution, it is difficult to predict the iron loss in the machines exactly. This paper studies the iron loss in interior permanent magnet synchronous motors based on the finite element method. The iron loss test data of core material are used in the fitting of the hysteresis and eddy current loss constants. For motors in practical operation, additional iron losses due to the appearance of rotation of flux density vector and harmonic flux density distribution makes the calculation data deviates from the measured ones. Revision is made to account for these excess iron losses which exist in the practical operating condition. Calculation results show good consistence with the experimental ones. The proposed method provides a possible way to predict the iron loss of the electrical machine with good precision, and may be helpful in the selection of the core material which is best suitable for a certain machine.

  1. Design optimization of a linear permanent magnet synchronous motor for extra low force pulsations

    International Nuclear Information System (INIS)

    Isfahani, Aarsh Hassanpour; Vaez-Zadeh, Sadegh

    2007-01-01

    Air cored linear permanent magnet synchronous motors have essentially low force pulsations due to the lack of the primary iron core and teeth. However, a motor design with much lower force pulsations is required for many precise positioning systems, as in fabrication of microelectronic chips. This paper presents the design optimization of an air cored linear permanent magnet synchronous motor with extra low force pulsations for such applications. In order to achieve the goal, an analytical layer model of the machine is developed. A very effective objective function regarding force pulsations is then proposed; while the selected motor dimensions are regarded as the design variables. A genetic algorithm is used to find the optimal motor dimensions. This results in a substantial ninety percent reduction in the force pulsations. The design optimization is verified by a finite element method

  2. Fuzzy Impulsive Control of Permanent Magnet Synchronous Motors

    International Nuclear Information System (INIS)

    Dong, Li; Shi-Long, Wang; Xiao-Hong, Zhang; Dan, Yang; Hui, Wang

    2008-01-01

    The permanent magnet synchronous motors (PMSMs) may experience chaotic behaviours with systemic parameters falling into a certain area or under certain working conditions, which threaten the secure and stable operation of motor-driven. Hence, it is important to study the methods of controlling or suppressing chaos in PMSMs. In this work, the Takagi–Sugeno (T-S) fuzzy impulsive control model for PMSMs is established via the T-S modelling methodology and impulsive technology. Based on the new model, the control conditions of asymptotical stability and exponential stability for PMSMs have been derived by the Lyapunov method. Finally, an illustrated example is also given to show the effectiveness of the obtained results

  3. Induction motor for superconducting synchronous/asynchronous motor

    International Nuclear Information System (INIS)

    Litz, D.C.; Haller, H.E. III.

    1975-01-01

    An induction motor structure for use on the outside of a superconducting rotor comprising a cylindrical shell of solid and laminated, magnetic iron with squirrel cage windings embedded in the outer circumference of said shell is described. The sections of the shell between the superconducting windings of the rotor are solid magnetic iron. The sections of the shell over the superconducting windings are made of laminations of magnetic iron. These laminations are parallel to the axis of the machine and are divided in halves with the laminations in each half oriented in diagonal opposition so that the intersection of the laminations forms a V. This structure presents a relatively high reluctance to leakage flux from the superconducting windings in the synchronous operating mode, while presenting a low reluctance path to the stator flux during asynchronous operation

  4. Air Compressor Driving with Synchronous Motors at Optimal Parameters

    Directory of Open Access Journals (Sweden)

    Iuliu Petrica

    2010-10-01

    Full Text Available In this paper a method of optimal compensation of the reactive load by the synchronous motors, driving the air compressors, used in mining enterprises is presented, taking into account that in this case, the great majority of the equipment (compressors, pumps are generally working a constant load.

  5. World championship with synchronous motors; Mit Synchronmotoren zur Weltmeisterschaft

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Juergen [AMK Arnold Mueller GmbH und Co. KG, Kirchheim/Teck (Germany). Technisches Marketing

    2011-03-15

    The Greenteam of Stuttgart University was clearly superior in the Formular Student Electric with their electric racing car EO711-1. The racing car accelerates from 0 km/h to 100 km/h in 3.3 s, owing to two permanently excited synchronous motors by AMK which are commonly used in mechanical engineering applications. The motors communicate in real time with the current inverters and with the control unit that was also supplied by AMK of Kirchheim/Teck. In all, a drive concept with high power density was obtained.

  6. Design Challenges and Potentials of HTS Synchronous Motor for Superbus

    NARCIS (Netherlands)

    Ani, S.O.; Polinder, H.; Ferreira, J.A.; Ockels, W.J.

    2009-01-01

    This paper discusses the possibilities of applying high temperature superconducting (HTS) synchronous motor to Superbus, an alternative and sustainable type of public transportation developed at TU Delft. Two important factors within the Superbus drive that influence the operating range are weight

  7. Nonlinear control of permanent magnet synchronous motor driving a ...

    African Journals Online (AJOL)

    This paper presents a non-linear control of permanent magnet synchronous motor (PMSM) fed by a PWM voltage source inverter. To improve the performance of this control technique, the input-output linearization technique is proposed for a system driving a mechanical load with two masses. In order to ensure a steady ...

  8. Performance Analysis of Regenerative Braking in Permanent Magnet Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Andrew Adib

    2018-02-01

    Full Text Available This paper describes the design and analysis of a regenerative braking system for a permanent magnet synchronous motor (PMSM drive for electric vehicle (EV applications. First studied is the principle for electric braking control of a PMSM motor under field-oriented control (FOC. Next, the maximum braking torque in the regeneration mode as well as the braking torque for the maximum regeneration power, respectively, are deduced. Additionally, an optimum switching scheme for the inverter is developed with the objective of maximizing energy recovery during regenerative braking to the DC-bus capacitor. The integration of an ultra-capacitor module with the battery allows for the efficient and high power transfer under regenerative braking. It was important to manage the power flow to the DC-bus as this is a key issue that affects the efficiency of the overall system. Finally, the amounts of braking energy that can be recovered, and the efficiency with which it can be returned to the battery/ultra-capacitor, is analyzed for a PMSM coupled with a DC motor as the load. The results of the analysis are validated through experimentation.

  9. Hybrid rocket motor testing at Nammo Raufoss A/S

    Science.gov (United States)

    Rønningen, Jan-Erik; Kubberud, Nils

    2005-08-01

    Hybrid rocket motor technology and the use of hybrid rockets have gained increased interest in recent years in many countries. A typical hybrid rocket consists of a tank containing the oxidizer in either liquid or gaseous state connected to the combustion chamber containing an injector, inert solid fuel grain and nozzle. Nammo Raufoss A/S has for almost 40 years designed and produced high-performance solid propellant rocket motors for many military missile systems as well as solid propellant rocket motors for civil space use. In 2003 an in-house technology program was initiated to investigate and study hybrid rocket technology. On 23 September 2004 the first in-house designed hybrid test rocket motor was static test fired at Nammo Raufoss Test Center. The oxidizer was gaseous oxygen contained in a tank pressurized to 10MPa, flow controlled through a sonic orifice into the combustion chamber containing a multi port radial injector and six bore cartridge-loaded fuel grain containing a modified HTPB fuel composition. The motor was ignited using a non-explosive heated wire. This paper will present what has been achieved at Nammo Raufoss since the start of the program.

  10. Hybrid synchronization of two independent chaotic systems on ...

    Indian Academy of Sciences (India)

    The real network nodes are always interfered by other messages. So, how to realize the hybrid synchronization of two independent chaotic systems based on the complex network is very important. To solve this problem, two other problems should be considered. One is how the same network node of the complex network ...

  11. Determination of the High Frequency Inductance Profile of Surface Mounted Permanent Magnet Synchronous Motors

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2008-01-01

    ) synchronous motors. This paper presents an AC+DC measurement method for determination of the d-axis and q-axis high frequency inductance profiles of SMPM synchronous motors. This method uses DC currents to set a desired magnetic working point on the motor laminations, and then superimpose balanced small AC......Accurate knowledge of the high frequency inductance profile plays an important role in many designs of sensorless controllers for Surface inductance. A special algorithm is used to decouple the cross-coupling effects between the d-axis and the q-axis, which allows Mounted Permanent Magnet (SMPM...... signals to measure the incremental a separate determination of the d, q inductance profiles as functions of the d, q currents. Experimental results on a commercial SMPM motor using the proposed method are presented in this paper....

  12. Dynamic and steady state performance comparison of line-start permanent magnet synchronous motors with interior and surface rotor magnets

    Directory of Open Access Journals (Sweden)

    Ogbuka Cosmas

    2016-03-01

    Full Text Available A comprehensive comparison of the dynamic and steady state performance characteristics of permanent magnet synchronous motors (PMSM with interior and surface rotor magnets for line-start operation is presented. The dynamic model equations of the PMSM, with damper windings, are utilized for dynamic studies. Two typical loading scenarios are examined: step and ramp loading. The interior permanent magnet synchronous motor (IPMSM showed superior asynchronous performance under no load, attaining faster synchronism compared to the surface permanent magnet synchronous motor (SPMSM. With step load of 10 Nm at 2 s the combined effect of the excitation and the reluctance torque forced the IPMSM to pull into synchronism faster than the SPMSM which lacks saliency. The ability of the motors to withstand gradual load increase, in the synchronous mode, was examined using ramp loading starting from zero at 2 s. SPMSM lost synchronism at 12 s under 11 Nm load while the IPMSM sustained synchronism until 41 seconds under 40 Nm load. This clearly suggests that the IPMSM has superior load-withstand capability. The superiority is further buttressed with the steady state torque analysis where airgap torque in IPMSM is enhanced by the reluctance torque within 90° to 180° torque angle.

  13. Application of static var compensator on large synchronous motors based on linear optimization control design

    International Nuclear Information System (INIS)

    Soltani, J.; Fath Abadi, A.M.

    2003-01-01

    This paper describes the application of static var compensators, on an electrical distribution network containing two large synchronous motors, one of which is excited via a three-phase thyristor bridge rectifier. The second machine is excited via a diode bridge rectifier. Based on linear optimization control, the measurable feedback signals are applied to the control system loops of static var compensators and the excitation control loop of the first synchronous motor. The phase equations method was used to develop a computer program to model the distribution network. Computer results were obtained to demonstrate the system performance for some abnormal modes of operation. These results show that employing static var compensators based on the linear optimization control design for electrical distribution networks containing large synchronous motors is beneficial and may be considered a first stage of the system design

  14. Impact of delays on the synchronization transitions of modular neuronal networks with hybrid synapses

    Science.gov (United States)

    Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok

    2013-09-01

    The combined effects of the information transmission delay and the ratio of the electrical and chemical synapses on the synchronization transitions in the hybrid modular neuronal network are investigated in this paper. Numerical results show that the synchronization of neuron activities can be either promoted or destroyed as the information transmission delay increases, irrespective of the probability of electrical synapses in the hybrid-synaptic network. Interestingly, when the number of the electrical synapses exceeds a certain level, further increasing its proportion can obviously enhance the spatiotemporal synchronization transitions. Moreover, the coupling strength has a significant effect on the synchronization transition. The dominated type of the synapse always has a more profound effect on the emergency of the synchronous behaviors. Furthermore, the results of the modular neuronal network structures demonstrate that excessive partitioning of the modular network may result in the dramatic detriment of neuronal synchronization. Considering that information transmission delays are inevitable in intra- and inter-neuronal networks communication, the obtained results may have important implications for the exploration of the synchronization mechanism underlying several neural system diseases such as Parkinson's Disease.

  15. Electric Motor-Generator for a Hybrid Electric Vehicle

    OpenAIRE

    Odvářka, Erik; Mebarki, Abdeslam; Gerada, David; Brown, Neil; Ondrůšek, Čestmír

    2009-01-01

    Several topologies of electrical machines can be used to meet requirements for application in a hybrid electric vehicle. This paper describes process of an electric motor-generator selection, considering electromagnetic, thermal and basic control design. The requested electrical machine must develop 45 kW in continuous operation at 1300 rpm with field weakening capability up to 2500 rpm. Both radial and axial flux topologies are considered as potential candidates. A family of axial flux machi...

  16. Development of Traction Drive Motors for the Toyota Hybrid System

    Science.gov (United States)

    Kamiya, Munehiro

    Toyota Motor Corporation developed in 2005 a new hybrid system for a large SUV. This system included the new development of a high-speed traction drive motor achieving a significant increase in power weight ratio. This paper provides an overview of the hybrid system, discusses the characteristics required of a traction drive motor, and presents the technologies employed in the developed motor.

  17. Fault location repair, rewinding and commissioning of 3.3 kV, 850 kW synchronous motor (Paper No. 5.9)

    International Nuclear Information System (INIS)

    Subramanian, A.R.; Palani, R.A.A.

    1992-01-01

    The 20K41 compressor in Heavy Water Plant, Tuticorin is compressing medium pressure synthesis gas to high pressure. The compressor is driven by synchronous motor of capacity 850 kW at 3.3 kV. The synchronous motor had been selected for operating a reciprocating compressor because of the compressor's low speed, higher capacity, vibration level etc. Partially it helps for power factor improvement and constant compression of the gas. This paper describes the details of the motor, stator and rotor, method of repair and rewinding of synchronous motor. (author)

  18. Dynamics and Stability of Permanent-Magnet Synchronous Motor

    OpenAIRE

    He, Ren; Han, Qingzhen

    2017-01-01

    The aim of this article is to explore the dynamic characteristics and stability of the permanent-magnet synchronous motor (PMSM). PMSM equilibrium local stability condition and Hopf  bifurcation condition, pitchfork bifurcation condition, and fold bifurcation condition have been derived by using the Routh-Hurwitz criterion and the bifurcation theory, respectively. Bifurcation curves of the equilibrium with single and double parameters are obtained by continuation method. Numerical simulations...

  19. Fuzzy adaptive speed control of a permanent magnet synchronous motor

    Science.gov (United States)

    Choi, Han Ho; Jung, Jin-Woo; Kim, Rae-Young

    2012-05-01

    A fuzzy adaptive speed controller is proposed for a permanent magnet synchronous motor (PMSM). The proposed fuzzy adaptive speed regulator is insensitive to model parameter and load torque variations because it does not need any accurate knowledge about the motor parameter and load torque values. The stability of the proposed control system is also proven. The proposed adaptive speed regulator system is implemented by using a TMS320F28335 floating point DSP. Simulation and experimental results are presented to verify the effectiveness of the proposed fuzzy adaptive speed controller under uncertainties such as motor parameter and load torque variations using a prototype PMSM drive system.

  20. Combining motor imagery with selective sensation toward a hybrid-modality BCI.

    Science.gov (United States)

    Yao, Lin; Meng, Jianjun; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2014-08-01

    A hybrid modality brain-computer interface (BCI) is proposed in this paper, which combines motor imagery with selective sensation to enhance the discrimination between left and right mental tasks, e.g., the classification between left/ right stimulation sensation and right/ left motor imagery. In this paradigm, wearable vibrotactile rings are used to stimulate both the skin on both wrists. Subjects are required to perform the mental tasks according to the randomly presented cues (i.e., left hand motor imagery, right hand motor imagery, left stimulation sensation or right stimulation sensation). Two-way ANOVA statistical analysis showed a significant group effect (F (2,20) = 7.17, p = 0.0045), and the Benferroni-corrected multiple comparison test (with α = 0.05) showed that the hybrid modality group is 11.13% higher on average than the motor imagery group, and 10.45% higher than the selective sensation group. The hybrid modality experiment exhibits potentially wider spread usage within ten subjects crossed 70% accuracy, followed by four subjects in motor imagery and five subjects in selective sensation. Six subjects showed statistically significant improvement ( Benferroni-corrected) in hybrid modality in comparison with both motor imagery and selective sensation. Furthermore, among subjects having difficulties in both motor imagery and selective sensation, the hybrid modality improves their performance to 90% accuracy. The proposed hybrid modality BCI has demonstrated clear benefits for those poorly performing BCI users. Not only does the requirement of motor and sensory anticipation in this hybrid modality provide basic function of BCI for communication and control, it also has the potential for enhancing the rehabilitation during motor recovery.

  1. Sensorless control of low-cost single-phase hybrid switched reluctance motor drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan; Rasmussen, Peter Omand

    2013-01-01

    This paper presents a sensorless-controlled, low-cost, low-power, variable-speed drive system suitable for fan and pump applications. The main advantages of this drive system are the low system cost, simple converter structure, and simple but robust sensorless control technique. The drive motor...... is a special Hybrid Switched Reluctance Motor (HSRM). The proposed sensorless control method utilizes beneficially the stator side permanent magnet field and its performance is motor parameter independent. The unique low-cost drive system solution, simple and robust sensorless control features of this drive...

  2. Sensorless Control of Low-cost Single-phase Hybrid Switched Reluctance Motor Drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    This paper presents a sensorless-controlled, low-cost, low-power, and variable-speed drive system suitable for fan and pump applications. The main advantages of this drive system are the low system cost, simple converter structure, and simple but robust sensorless control technique. The drive motor...... is a special hybrid switched reluctance motor. The proposed sensorless control method beneficially utilizes the stator side PM field and its performance is motor parameter independent. The unique low-cost drive system solution, simple and robust sensorless control features of this drive system, is demonstrated...

  3. Hybrid Switch Reluctance Drives For Pump Applications

    DEFF Research Database (Denmark)

    Jakobsen, Uffe

    be the single phase hybrid switched reluctance motor (HSRM). Due to the simple construction of the single phase HSRM, manufacturing may be simplified compared to a three phase permanent magnet motor and consumption of copper may be lowered when compared to both the induction motor and some three phase permanent...... magnet synchronous motor (PMSM), the HSRM needs information about rotor position to be properly controlled. For BLDC, PMSM, induction motors, and the normal SRM position sensorless methods are relatively well established and have been used for some time. For the single phase switched reluctance motor......The initial research problem is to investigate an alternative motor drive to the existing permanent magnet synchronous and brushless DC-motor drives for pump applications. A review of different motor types showed that a possible candidate for another low cost permanent magnet motor may...

  4. Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control

    Science.gov (United States)

    Cheng, Lin; Yang, Yongqing; Li, Li; Sui, Xin

    2018-06-01

    This paper studies the finite-time hybrid projective synchronization of the drive-response complex networks. In the model, general transmission delays and distributed delays are also considered. By designing the adaptive intermittent controllers, the response network can achieve hybrid projective synchronization with the drive system in finite time. Based on finite-time stability theory and several differential inequalities, some simple finite-time hybrid projective synchronization criteria are derived. Two numerical examples are given to illustrate the effectiveness of the proposed method.

  5. Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering.

    Science.gov (United States)

    Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar

    2015-01-01

    Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed.

  6. Force Analysis and Energy Operation of Chaotic System of Permanent-Magnet Synchronous Motor

    Science.gov (United States)

    Qi, Guoyuan; Hu, Jianbing

    2017-12-01

    The disadvantage of a nondimensionalized model of a permanent-magnet synchronous Motor (PMSM) is identified. The original PMSM model is transformed into a Kolmogorov system to aid dynamic force analysis. The vector field of the PMSM is analogous to the force field including four types of torque — inertial, internal, dissipative, and generalized external. Using the feedback thought, the error torque between external torque and dissipative torque is identified. The pitchfork bifurcation of the PMSM is performed. Four forms of energy are identified for the system — kinetic, potential, dissipative, and supplied. The physical interpretations of the decomposition of force and energy exchange are given. Casimir energy is stored energy, and its rate of change is the error power between the dissipative energy and the energy supplied to the motor. Error torque and error power influence the different types of dynamic modes. The Hamiltonian energy and Casimir energy are compared to find the function of each in producing the dynamic modes. A supremum bound for the chaotic attractor is proposed using the error power and Lagrange multiplier.

  7. On-line efficiency optimization of a synchronous reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Lubin, Thierry; Razik, Hubert; Rezzoug, Abderrezak [Groupe de Recherche en Electrotechnique et Electronique de Nancy, GREEN, CNRS-UMR 7037, Universite Henri Poincare, BP 239, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2007-04-15

    This paper deals with an on-line optimum-efficiency control of a synchronous reluctance motor drive. The input power minimization control is implemented with a search controller using Fibonacci search algorithm. It searches the optimal reference value of the d-axis stator current for which the input power is minimum. The input power is calculated from the measured dc-bus current and dc-bus voltage of the inverter. A rotor-oriented vector control of the synchronous reluctance machine with the optimization efficiency controller is achieved with a DSP board (TMS302C31). Experimental results are presented to validate the proposed control methods. It is shown that stability problems can appear during the search process. (author)

  8. Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs

    NARCIS (Netherlands)

    Boonstra, T.W.; Daffertshofer, A.; van Ditshuizen, J.C.; van den Heuvel, M.R.C.; Hofman, C.; Willigenburg, N.W.; Beek, P.J.

    2008-01-01

    Two experiments were conducted to examine effects of muscle fatigue on motor-unit synchronization of quadriceps muscles (rectus femoris, vastus medialis, vastus lateralis) within and between legs. We expected muscle fatigue to result in an increased common drive to different motor units of

  9. Impulsive control of permanent magnet synchronous motors with parameters uncertainties

    International Nuclear Information System (INIS)

    Li Dong; Zhang Xiaohong; Wang Shilong; Yan Dan; Wang Hui

    2008-01-01

    The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven. It is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, robust stabilities of PMSM with parameter uncertainties are investigated. After the uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established. Some illustrated examples are also given to show the effectiveness of the obtained results

  10. Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems

    International Nuclear Information System (INIS)

    Chen, J.-H.; Chen, H.-K.; Lin, Y.-K.

    2009-01-01

    This study demonstrates that synchronization and anti-synchronization can coexist in Chen-Lee chaotic systems by direct linear coupling. Based on Lyapunov's direct method, a linear controller was designed to assure that two different types of synchronization can simultaneously be achieved. Further, the hybrid projective synchronization of Chen-Lee chaotic systems was studied using a nonlinear control scheme. The nonlinear controller was designed according to the Lyapunov stability theory to guarantee the hybrid projective synchronization, including synchronization, anti-synchronization, and projective synchronization. Finally, numerical examples are presented in order to illustrate the proposed synchronization approach.

  11. Application of Finite Element Method to Determine the Performances of a Permanent Magnet Synchronous Motor for Driving a Bicycle

    Directory of Open Access Journals (Sweden)

    Nicolae Digă

    2014-09-01

    Full Text Available In this paper, the authors present a case study in which was analyzed by finite element method a permanent magnet synchronous motor for driving a bicycle using the analysis and simulation software ANSYS Electromagnetics Low Frequency of ANSYS Inc. Company. Modelling and simulation with ANSYS ® Maxwell 2D of electromagnetic field in the studied motor was conducted for different initial positions (internal angle rotor-stator configured (set δ1. It was identified the internal angle for which the performances of PMSM are very close to those obtained by computation.

  12. Estimation of parameters of interior permanent magnet synchronous motors

    International Nuclear Information System (INIS)

    Hwang, C.C.; Chang, S.M.; Pan, C.T.; Chang, T.Y.

    2002-01-01

    This paper presents a magnetic circuit model to the estimation of machine parameters of an interior permanent magnet synchronous machine. It extends the earlier work of Hwang and Cho that focused mainly on the magnetic aspects of motor design. The proposed model used to calculate EMF, d- and q-axis reactances. These calculations are compared to those from finite element analysis and measurement with good agreement

  13. Estimation of parameters of interior permanent magnet synchronous motors

    CERN Document Server

    Hwang, C C; Pan, C T; Chang, T Y

    2002-01-01

    This paper presents a magnetic circuit model to the estimation of machine parameters of an interior permanent magnet synchronous machine. It extends the earlier work of Hwang and Cho that focused mainly on the magnetic aspects of motor design. The proposed model used to calculate EMF, d- and q-axis reactances. These calculations are compared to those from finite element analysis and measurement with good agreement.

  14. General hybrid projective complete dislocated synchronization with non-derivative and derivative coupling based on parameter identification in several chaotic and hyperchaotic systems

    International Nuclear Information System (INIS)

    Sun Jun-Wei; Shen Yi; Zhang Guo-Dong; Wang Yan-Feng; Cui Guang-Zhao

    2013-01-01

    According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rössler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods. (general)

  15. Bandwidth Efficient Hybrid Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    Data collection and transmission are the fundamental operations of Wireless Sensor Networks (WSNs). A key challenge in effective data collection and transmission is to schedule and synchronize the activities of the nodes with the global clock. This paper proposes the Bandwidth Efficient Hybrid...... in the network and then perform the pair-wise synchronization. With the mobility of node, the structure frequently changes causing an increase in energy consumption. To mitigate the problem BESDA aggregate data with the notion of a global timescale throughout the network and schedule based time-division multiple...... accesses (TDMA) techniques as MAC layer protocol. It reduces the collision of packets. Simulation results show that BESDA is energy efficient, with increased throughput, and has less delay as compared with state-of-the-art....

  16. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

    DEFF Research Database (Denmark)

    Liang, Jianing; Xu, Guoqing; Jian, Linni

    2011-01-01

    In this paper, a novel single phase hybrid switched reluctance motor(SRM) drive system is proposed. It integrated a single phase hybrid SRM and a novel single phase boost converter. This motor can reduce the number of phase switch. And the permanent magnet which is used in the motor can improve...... the performance and efficiency of SR motor. However, the inherent characteristic of this motor is that the negative torque is very sensitive with the excitation current near the turn-on angle. The slow excitation current limits the torque generation region and reduces the average torque. Therefore, a novel single...... phase boost converter is applied to improve the performance of this motor. It is easy to generate a double dclink voltage and dc-link voltage and switch both of them. The voltage of boost capacitor is self balance, so the protective circuit is not need to consider. The fast excitation mode helps hybrid...

  17. Rotor compound concept for designing an industrial HTS synchronous motor

    Science.gov (United States)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-06-01

    Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model potentially is more effective than the other iron made HTS motors.

  18. Thrust Reduction of Magnetic Levitation Vehicle Driven by Long Stator Linear Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Wan-Tsun Tseng

    2013-01-01

    Full Text Available The propulsion technology of long stator linear synchronous motors is used to drive high-speed maglev trains. The linear synchronous motor stator is divided into sections placed on guideway. The electric power supplies to stator sections in which the train just passes in change-step mode for long-distance operation. However, a thrust drop will be caused by change-step machinery for driving magnetic vehicle. According to the train speed and vehicle data, the change-step mode has three types of operation, namely premature commutation, simultaneous commutation, and late commutation. Each type of operation has a different thrust drop which can be affected by several parameters such as jerk, running speed, motor section length, and vehicle data. This paper focuses on determining the thrust drop of the change-step mode. The study results of this paper can be used to improve the operation system of high-speed maglev trains.

  19. Unified synchronization criteria in an array of coupled neural networks with hybrid impulses.

    Science.gov (United States)

    Wang, Nan; Li, Xuechen; Lu, Jianquan; Alsaadi, Fuad E

    2018-05-01

    This paper investigates the problem of globally exponential synchronization of coupled neural networks with hybrid impulses. Two new concepts on average impulsive interval and average impulsive gain are proposed to deal with the difficulties coming from hybrid impulses. By employing the Lyapunov method combined with some mathematical analysis, some efficient unified criteria are obtained to guarantee the globally exponential synchronization of impulsive networks. Our method and criteria are proved to be effective for impulsively coupled neural networks simultaneously with synchronizing impulses and desynchronizing impulses, and we do not need to discuss these two kinds of impulses separately. Moreover, by using our average impulsive interval method, we can obtain an interesting and valuable result for the case of average impulsive interval T a =∞. For some sparse impulsive sequences with T a =∞, the impulses can happen for infinite number of times, but they do not have essential influence on the synchronization property of networks. Finally, numerical examples including scale-free networks are exploited to illustrate our theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Optimal design of the rotor geometry of line-start permanent magnet synchronous motor using the bat algorithm

    Science.gov (United States)

    Knypiński, Łukasz

    2017-12-01

    In this paper an algorithm for the optimization of excitation system of line-start permanent magnet synchronous motors will be presented. For the basis of this algorithm, software was developed in the Borland Delphi environment. The software consists of two independent modules: an optimization solver, and a module including the mathematical model of a synchronous motor with a self-start ability. The optimization module contains the bat algorithm procedure. The mathematical model of the motor has been developed in an Ansys Maxwell environment. In order to determine the functional parameters of the motor, additional scripts in Visual Basic language were developed. Selected results of the optimization calculation are presented and compared with results for the particle swarm optimization algorithm.

  1. Permanent Magnet Synchronous Motor with Different Rotor Structures for Traction Motor in High Speed Trains

    Directory of Open Access Journals (Sweden)

    Marcel Torrent

    2018-06-01

    Full Text Available In this work we proposed to study the use of permanent magnet synchronous motors (PMSM for railway traction in the high-speed trains (HST of Renfe Operadora (the Spanish national railway operator. Currently, induction motors (IM are used in AVE classes 102–112 trains, so, the IM used as a traction motor in these trains has been studied and characterized by comparing the results with data provided by Renfe. A PMSM of equivalent power to the IM has been dimensioned, and different electromagnetic structures of the PMSM rotor have been evaluated. The simulation by the finite element method and analysis of the equivalent electrical circuit used in all the motors have been studied to evaluate the performance of the motors in this application. Efficiency is calculated at different operating points due to its impact on the energy consumption of railway traction. The implementation of the PMSM evaluated is recommended, mainly due to the improvements achieved in efficiency as compared with the IM currently used.

  2. A COMPENSATOR APPLICATION USING SYNCHRONOUS MOTOR WITH A PI CONTROLLER BASED ON PIC

    Directory of Open Access Journals (Sweden)

    Ramazan BAYINDIR

    2009-01-01

    Full Text Available In this paper, PI control of a synchronous motor has been realized by using a PIC 18F452 microcontroller and it has been worked as ohmic, inductive and capacitive with different excitation currents. Instead of solving integral operation of PI control which has difficulties with conversion to the digital system, summation of all error values of a defined time period are multiplied with the sampling period. Reference values of the PI algorithm are determined with Ziegler-Nicholas method. These parameters are calculated into the microcontroller and changed according to the algorithm. In addition, this work designed to provide visualization for the users. Current, voltage and power factor data of the synchronous motor can be observed easily on the LCD instantly.

  3. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor

    Science.gov (United States)

    Cai, Guobiao; Li, Chengen; Tian, Hui

    2016-11-01

    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  4. High frequency injection assisted “active flux” based sensorless vector control of reluctance synchronous motors, with experiments from zero speed

    DEFF Research Database (Denmark)

    Agarliţă, Sorin-Cristian; Boldea, I.; Blaabjerg, Frede

    2011-01-01

    This paper presents a hybrid, motion sensorless control of an Axially Laminated Anisotropic (ALA) Reluctance Synchronous Machine (RSM). The zero and low speed sensorless method is a saliency based High Frequency Signal Injection technique (HFSI) that uses the motor itself as a resolver. The second...... method is based on a state observer incorporating the “active flux” concept used to deliver RSM rotor position and speed information for medium and high speed range. Even if both methods perform successfully in separate speed regions, estimation of the two algorithms is combined as a sensor fusion...... to improve performance at zero and very low speeds. Experimental results validate the proposed control strategies....

  5. High frequency injection assisted “active flux” based sensorless vector control of reluctance synchronous motors, with experiments from zero speed

    DEFF Research Database (Denmark)

    Agarlita, Sorin-Cristian; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    This paper presents a hybrid, motion sensorless control of an Axially Laminated Anisotropic (ALA) Reluctance Synchronous Machine (RSM). The zero and low speed sensorless method is a saliency based High Frequency Signal Injection technique (HFSI) that uses the motor itself as a resolver. The second...... method is based on a state observer incorporating the “active flux” concept used to deliver RSM rotor position and speed information for medium and high speed range. Even if both methods perform successfully in separate speed regions, estimation of the two algorithms is combined as a sensor fusion...... to improve performance at zero and very low speeds. Experimental results validate the proposed control strategies....

  6. Effect of magnetic properties of non-oriented electrical steel on torque characteristics of interior-permanent-magnet synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Hiroshi [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fuso-cho, Amagasaki 660-0891 (Japan)], E-mail: fujimura-hrs@sumitomometals.co.jp; Nitomi, Hirokatsu; Yashiki, Hiroyoshi [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fuso-cho, Amagasaki 660-0891 (Japan)

    2008-10-15

    The torque characteristics of interior-permanent-magnet synchronous motor (IPMSM), in which core materials were our conventional non-oriented electrical steel 35SX250 and our developed steels 35SXH, 27SXH with high permeability, were measured by a pulse wave modulation (PWM) inverter control. The torque characteristics of the motor with developed steels were superior to that of conventional steel. The advantage of developed steels was remarkable in the high-toque region. Experimental torque separation using current phase control showed that reluctance torque was strongly affected by the magnetic properties of core materials. And we did magnetic field analysis of the motors by finite element method (FEM). The flux density in the teeth of the stator core was higher in the high permeability steels than that in the conventional steel under the same current condition. The developed steels are expected to be suited to the stator material of IPMSM used as drive motors for electric vehicles and compressor motors for air conditioner.

  7. Effect of magnetic properties of non-oriented electrical steel on torque characteristics of interior-permanent-magnet synchronous motor

    International Nuclear Information System (INIS)

    Fujimura, Hiroshi; Nitomi, Hirokatsu; Yashiki, Hiroyoshi

    2008-01-01

    The torque characteristics of interior-permanent-magnet synchronous motor (IPMSM), in which core materials were our conventional non-oriented electrical steel 35SX250 and our developed steels 35SXH, 27SXH with high permeability, were measured by a pulse wave modulation (PWM) inverter control. The torque characteristics of the motor with developed steels were superior to that of conventional steel. The advantage of developed steels was remarkable in the high-toque region. Experimental torque separation using current phase control showed that reluctance torque was strongly affected by the magnetic properties of core materials. And we did magnetic field analysis of the motors by finite element method (FEM). The flux density in the teeth of the stator core was higher in the high permeability steels than that in the conventional steel under the same current condition. The developed steels are expected to be suited to the stator material of IPMSM used as drive motors for electric vehicles and compressor motors for air conditioner

  8. Music-supported motor training after stroke reveals no superiority of synchronization in group therapy

    Science.gov (United States)

    Van Vugt, Floris T.; Ritter, Juliane; Rollnik, Jens D.; Altenmüller, Eckart

    2014-01-01

    Background: Music-supported therapy has been shown to be an effective tool for rehabilitation of motor deficits after stroke. A unique feature of music performance is that it is inherently social: music can be played together in synchrony. Aim: The present study explored the potential of synchronized music playing during therapy, asking whether synchronized playing could improve fine motor rehabilitation and mood. Method: Twenty-eight patients in neurological early rehabilitation after stroke with no substantial previous musical training were included. Patients learned to play simple finger exercises and familiar children's songs on the piano for 10 sessions of half an hour. Patients first received three individual therapy sessions and then continued in pairs. The patient pairs were divided into two groups. Patients in one group played synchronously (together group) whereas the patients in the other group played one after the other (in-turn group). To assess fine motor skill recovery the patients performed standard clinical tests such as the nine-hole-pegboard test (9HPT) and index finger-tapping speed and regularity, and metronome-paced finger tapping. Patients' mood was established using the Profile of Mood States (POMS). Results: Both groups showed improvements in fine motor control. In metronome-paced finger tapping, patients in both groups improved significantly. Mood tests revealed reductions in depression and fatigue in both groups. During therapy, patients in the in-turn group rated their partner as more sympathetic than the together-group in a visual-analog scale. Conclusions: Our results suggest that music-supported stroke rehabilitation can improve fine motor control and mood not only individually but also in patient pairs. Patients who were playing in turn rather than simultaneously tended to reveal greater improvement in fine motor skill. We speculate that patients in the former group may benefit from the opportunity to learn from observation. PMID

  9. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization.

    Science.gov (United States)

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  10. Direct torque control via feedback linearization for permanent magnet synchronous motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    The paper describes a direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drive that employs feedback linearization and uses sliding-mode and linear controllers. We introduce a new feedback linearization approach that yields a decoupled linear PMSM model with two state...

  11. Brushed permanent magnet DC MLC motor operation in an external magnetic field.

    Science.gov (United States)

    Yun, J; St Aubin, J; Rathee, S; Fallone, B G

    2010-05-01

    Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450 +/- 10 G. The carriage motor tolerated up to 2000 +/- 10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600 +/- 10 G. The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of

  12. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2010-05-15

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450{+-}10 G. The carriage motor tolerated up to 2000{+-}10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600{+-}10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the

  13. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    International Nuclear Information System (INIS)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G.

    2010-01-01

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450±10 G. The carriage motor tolerated up to 2000±10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600±10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance

  14. Novel Synchronous Linear and Rotatory Micro Motors Based on Polymer Magnets with Organic and Inorganic Insulation Layers

    Directory of Open Access Journals (Sweden)

    Andreas WALDSCHIK

    2008-12-01

    Full Text Available In this work, we report on the development of several synchronous motors with rotatory or linear movements. The synchronous micro motors are brushless DC motors or stepper motors with electrically controlled commutation consisting of a stator and a rotor. The rotor is mounted onto the stator and is adjusted by an integrated guidance. Inside the stator different coil systems are realized, like double layer sector coils or special nested coils. The coil systems can be controlled by three or six phases depending on the operational mode. Furthermore, inorganic insulation layers were used in order to reduce the thickness of the system. By this means four layers of electrical conductors can be realized especially for the 2D devices. The smallest diameter of the rotatory motor is 1 mm and could be successfully driven.

  15. Optimization of a condensed-neon cooling system for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Felder, B; Miki, M; Tsuzuki, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchujima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H, E-mail: d082028@kaiyodai.ac.j [Kitano Seiki Co. Ltd., 7-17-3, Chuo, Ota-ku, Tokyo 143-0024 (Japan)

    2010-06-01

    The axial-gap synchronous machine developed in our laboratory is based on Gd-bulk HTS field-pole magnets, able to trap a part of the magnetic flux they are submitted to when cooled down below T{sub c}. At the liquid nitrogen temperature, by the Pulsed-Field Magnetization (PFM), 1.04 T was trapped in 60 mm-diameter and 20 mm-thickness magnets, leading to an output power of the motor of 10 kW at 720 rpm. To enhance this performance, we have to increase the total amount of trapped flux in the bulk, the shortest way being to decrease the temperature of the bulk HTS. Thus, we focused on the improvement of the condensed-neon cooling system, a closed-cycle thermosyphon, so that it provided enough cooling power to lead the rotor plate enclosing the magnets to a low temperature. The present study implied coming out with a new fin-oriented design of the condensation chamber; hence, the numeric calculations and FEM software (ANSYS) heat transfer simulations were conducted for various shapes and positions of the fins. The trapezoidal design offering the best efficiency was then manufactured for testing in a heat-load test configuration, leading to cooling times divided by three and a maximum heat load endured of 55 W.

  16. Optimization of a condensed-neon cooling system for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    Science.gov (United States)

    Felder, B.; Miki, M.; Tsuzuki, K.; Izumi, M.; Hayakawa, H.

    2010-06-01

    The axial-gap synchronous machine developed in our laboratory is based on Gd-bulk HTS field-pole magnets, able to trap a part of the magnetic flux they are submitted to when cooled down below Tc. At the liquid nitrogen temperature, by the Pulsed-Field Magnetization (PFM), 1.04 T was trapped in 60 mm-diameter and 20 mm-thickness magnets, leading to an output power of the motor of 10 kW at 720 rpm. To enhance this performance, we have to increase the total amount of trapped flux in the bulk, the shortest way being to decrease the temperature of the bulk HTS. Thus, we focused on the improvement of the condensed-neon cooling system, a closed-cycle thermosyphon, so that it provided enough cooling power to lead the rotor plate enclosing the magnets to a low temperature. The present study implied coming out with a new fin-oriented design of the condensation chamber; hence, the numeric calculations and FEM software (ANSYS) heat transfer simulations were conducted for various shapes and positions of the fins. The trapezoidal design offering the best efficiency was then manufactured for testing in a heat-load test configuration, leading to cooling times divided by three and a maximum heat load endured of 55 W.

  17. Solid Rocket Motor Design Using Hybrid Optimization

    Directory of Open Access Journals (Sweden)

    Kevin Albarado

    2012-01-01

    Full Text Available A particle swarm/pattern search hybrid optimizer was used to drive a solid rocket motor modeling code to an optimal solution. The solid motor code models tapered motor geometries using analytical burn back methods by slicing the grain into thin sections along the axial direction. Grains with circular perforated stars, wagon wheels, and dog bones can be considered and multiple tapered sections can be constructed. The hybrid approach to optimization is capable of exploring large areas of the solution space through particle swarming, but is also able to climb “hills” of optimality through gradient based pattern searching. A preliminary method for designing tapered internal geometry as well as tapered outer mold-line geometry is presented. A total of four optimization cases were performed. The first two case studies examines designing motors to match a given regressive-progressive-regressive burn profile. The third case study studies designing a neutrally burning right circular perforated grain (utilizing inner and external geometry tapering. The final case study studies designing a linearly regressive burning profile for right circular perforated (tapered grains.

  18. Chaotic system synchronization with an unknown master model using a hybrid HOD active control approach

    Energy Technology Data Exchange (ETDEWEB)

    Du Shengzhi [Department of EAD, ICT Faculty, Tshwane University of Technology, Pretoria 0001 (South Africa); French South Africa Technical Institute of Electronics (F' SATIE), Tshwane University of Technology, Pretoria 0001 (South Africa)], E-mail: dushengzhi@gmail.com; Wyk, Barend J. van; Qi Guoyuan; Tu Chunling [French South Africa Technical Institute of Electronics (F' SATIE), Tshwane University of Technology, Pretoria 0001 (South Africa)

    2009-11-15

    In this paper, a hybrid method using active control and a High Order Differentiator (HOD) methodology is proposed to synchronize chaotic systems. Compared to some traditional active control methods, this new method can synchronize chaotic systems where only output states of the master system are available, i.e. the system is considered a black box. The HOD is used to estimate the derivative information of the master system followed by an active control methodology relying on HOD information. The Qi hyperchaotic system is used to verify the performance of this hybrid method. The proposed method is also compared to some traditional methods. Experimental results show that the proposed method has high synchronization precision and speed and is robust against uncertainties in the master system. The circus implements of the proposed synchronizing scheme are included in this paper. The simulation results show the feasibility of the proposed scheme.

  19. The Power of Auditory-Motor Synchronization in Sports: Enhancing Running Performance by Coupling Cadence with the Right Beats

    Science.gov (United States)

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants’ cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants’ cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli –which was most salient during the metronome condition– helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner’s cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by

  20. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats.

    Directory of Open Access Journals (Sweden)

    Robert Jan Bood

    Full Text Available Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1 a control condition without acoustic stimuli, 2 a metronome condition with a sequence of beeps matching participants' cadence (synchronization, and 3 a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation. Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps. These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by

  1. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats.

    Science.gov (United States)

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants' cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by auditory-motor

  2. A time-space synchronization of coherent Doppler scanning lidars for 3D measurements of wind fields

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola

    initiates the laser pulse emission and acquisition of the backscattered light, while the two servo motors conduct the scanner head rotation that provides means to direct the laser pulses into the atmosphere. By controlling the rotation of the three motors from the motion controller the strict......-dimensional flow field by emitting the laser beams from the three spatially separated lidars, directing them to intersect, and moving the beam intersection over an area of interest. Each individual lidar was engineered to be powered by two real servo motors, and one virtual stepper motor. The stepper motor...... synchronization and time control of the emission, steering and acquisition were achieved, resulting that the complete lidar measurement process is controlled from the single hardware component. The system was formed using a novel approach, in which the master computer simultaneously coordinates the remote lidars...

  3. Optimum Design of a Five-Phase Permanent Magnet Synchronous Motor for Underwater Vehicles by use of Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    S. Asghar Gholamian

    2012-12-01

    Full Text Available Permanent magnet synchronous motors are efficient motors which have widespread applications in electric industry due to their noticeable features. One of the interesting applications of such motors is in underwater vehicles. In these cases, reaching to minimum volume and high torque of the motor are the major concern. Design optimization can enhance their merits considerably, thus reduce volume and improve performance of motors. In this paper, a new method for optimum design of a five-phase surface-mounted permanent magnet synchronous motor is presented to achieve minimum loss and magnet volume with an increased torque. A multi-objective optimization is performed in search for optimum dimensions of the motor and its permanent magnets using particle swarm optimization. The design optimization results in a motor with great improvement regarding the original motor. Finally, finite element analysis is utilized to validate the accuracy of the design.

  4. Development and test of an axial flux type PM synchronous motor with liquid nitrogen cooled HTS armature windings

    International Nuclear Information System (INIS)

    Sugimoto, H; Morishita, T; Tsuda, T; Takeda, T; Togawa, H; Oota, T; Ohmatsu, K; Yoshida, S

    2008-01-01

    We developed an axial gap permanent magnet type superconducting synchronous motor cooled by liquid nitrogen (LN 2 ). The motor includes 8 poles and 6 armature windings. The armature windings are made from BSCCO wire operated at the temperature level between 66K∼70K. The design of the rated output is 400kW at 250rpm. Because HTS wires produce AC loss, there are few motors developed with a superconducting armature winding. In a large capacity motor, HTS windings need to be connected in parallel way. However, the parallel connection causes different current flowing to each HTS winding. To solve this problem, we connected a current distributor to the motor. As a result, not only the current difference can be suppressed, but also the current of each winding can be adjusted freely. The low frequency and less flux penetrating HTS wire because of current distributor contribute to low AC loss. This motor is an axial gap rotating-field one, the cooling parts are fixed. This directly leads to simple cooling system. The motor is also brushless. This paper presents the structure, the analysis of the motor and the tests

  5. Control design for axial flux permanent magnet synchronous motor which operates above the nominal speed

    Directory of Open Access Journals (Sweden)

    Xuan Minh Tran

    2017-04-01

    Full Text Available The axial flux permanent magnet synchronous motor (AFPM motor using magnet bearings instead of ball-bearings at both two shaft ends could allow rotational speed of shaft much greater than nominal speed. One of the solutions to increase motor speed higher than its nameplate speed is reducing rotor’s pole magnetic flux of rotor (Yp. This paper proposes a method to boost the speed of AFPM motor above nominal speed by adding a reversed current isd of (Yp.

  6. Drive equipment of the TRANSRAPID 06 with an iron bearing synchronous long stator motor

    Energy Technology Data Exchange (ETDEWEB)

    Parsch, C P; Ciessow, G

    1981-01-01

    For the testing of an application orientated Maglev the TRANSRAPID test center Emsland is being installed by the joint venture TRANSRAPID. The drive of the vehicle TRANSRAPID 06 is realized by an iron bearing synchronous long stator motor. A description is given of the principle of this drive, the output of traction motor and substation and of the dynamics of vehicle movement's calculations.

  7. Impulsive control for permanent magnet synchronous motors with uncertainties: LMI approach

    International Nuclear Information System (INIS)

    Dong, Li; Shi-Long, Wang; Xiao-Hong, Zhang; Dan, Yang

    2010-01-01

    A permanent magnet synchronous motor (PMSM) may have chaotic behaviours under certain working conditions, especially for uncertain values of parameters, which threatens the security and stability of motor-driven operation. Hence, it is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, the stability of a PMSM with parameter uncertainties is investigated. After uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established by employing the method of Lyapunov functions and linear matrix inequality technology. An example is also given to illustrate the effectiveness of our results. (general)

  8. Novel Sensorless Six-Step Communication Strategy for a Surface Permanent Magnet Synchronous Motor with DC Link Measurement

    DEFF Research Database (Denmark)

    Munteanu, A.; Agarlita, S. C.; Blaabjerg, Frede

    2012-01-01

    The present paper introduces a novel six-step commutation strategy for sensorless control applied for a surface permanent magnet synchronous motor that implies only dc link measurement (battery current and battery voltage). The control strategy makes use of a modified I-f starting procedure and t......-crossing of the back-emf are obtained from an observer that uses both current and battery voltage. The case study is represented by a surface permanent magnet synchronous motor prototype (6 /8 configuration), designed for the automotive air conditioning compressor drive....

  9. High-Tc superconducting electric motors

    International Nuclear Information System (INIS)

    Schiferl, R.; Stein, J.

    1992-01-01

    In this paper, the advantages and limitations of using superconductors in motors are discussed. A synchronous motor with a high temperature superconducting field winding for pump and fan drive applications is described and some of its unique design features are identified. A 10,000 horsepower superconducting motor design is presented. The critical field and current density requirements for high temperature superconducting wire in motors is discussed. Finally, recent progress in superconducting wire performance is presented

  10. Hybrid synchronous motor electromagnetic torque research

    Directory of Open Access Journals (Sweden)

    Suvorkova Elena E.

    2014-01-01

    Full Text Available Electromagnetic field distribution models in reluctance and permanent magnet parts were made by means of Elcut. Dependences of electromagnetic torque on torque angle were obtained.

  11. Current error vector based prediction control of the section winding permanent magnet linear synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Hong Junjie, E-mail: hongjjie@mail.sysu.edu.cn [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Li Liyi, E-mail: liliyi@hit.edu.cn [Dept. Electrical Engineering, Harbin Institute of Technology, Harbin 150000 (China); Zong Zhijian; Liu Zhongtu [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China)

    2011-10-15

    Highlights: {yields} The structure of the permanent magnet linear synchronous motor (SW-PMLSM) is new. {yields} A new current control method CEVPC is employed in this motor. {yields} The sectional power supply method is different to the others and effective. {yields} The performance gets worse with voltage and current limitations. - Abstract: To include features such as greater thrust density, higher efficiency without reducing the thrust stability, this paper proposes a section winding permanent magnet linear synchronous motor (SW-PMLSM), whose iron core is continuous, whereas winding is divided. The discrete system model of the motor is derived. With the definition of the current error vector and selection of the value function, the theory of the current error vector based prediction control (CEVPC) for the motor currents is explained clearly. According to the winding section feature, the motion region of the mover is divided into five zones, in which the implementation of the current predictive control method is proposed. Finally, the experimental platform is constructed and experiments are carried out. The results show: the current control effect has good dynamic response, and the thrust on the mover remains constant basically.

  12. General motors front wheel drive 2-mode hybrid transmission

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, James [General Motors Corp., Pontiac, MI (United States). New Transmission Products Group.; Holmes, Alan G. [General Motors Corp., Pontiac, MI (United States). Powertrain Hybrid Architecture

    2009-07-01

    General Motors now expands the application of two-mode hybrid technology to front wheel drive vehicles with the development of a hybrid electric transmission packaged into essentially the same space as a conventional automatic transmission for front wheel drive. This was accomplished using a space-efficient arrangement based on two planetary gear sets and electric motor-generators with large internal diameters. A combination of damper and hydraulically-controlled clutch allow comfortable shutdown and restarting of large-displacement engines in front wheel drive vehicles. The hybrid system delivers electric low-speed urban driving, two continuously variable ranges of transmission speed ratios, four fixed transmission speed ratios, electric acceleration boosting, and regenerative braking. In the first vehicle application, the two-mode hybrid helps to reduce vehicle fuel consumption by approximately one-third. (orig.)

  13. Performance analysis of samarium cobalt P.M. synchronous motor fed from PWM inverters

    International Nuclear Information System (INIS)

    Rahman, M.A.; Choudhury, M.A.

    1985-01-01

    This paper presents an analysis and performance of samarium cobalt permanent magnet (P.M.) synchronous motors fed from two types of voltage source pulse width modulated (PWM) inverters. The analysis and test results on the steady state performance of a P.M. motor fed from PWM inverters are presented. PWM inverters are used in variable voltage variable frequency applications to avoid a double conversion process of ordinary inverters. In drives, they are used for voltage and speed regulation of motors. Use of modulation technique in inverters also allow to eliminate or minimize selected harmonics from the inverter output voltage

  14. Contribution à la conception et à la commande des machines synchrones à double excitation. Application au véhicule hybride.

    OpenAIRE

    AMARA , Yacine

    2001-01-01

    This Thesis concerns the design of hybrid excited synchronous machines used for hybrid and/or electric vehicles traction.; Les travaux présentés dans ce mémoire concernent la conception et la commande des machines synchrones à double excitation. Ce concept apparaît viable et améliore les performances des machines synchrones et plus globalement les systèmes d’entraînement où elles s’intègrent.

  15. Mathematical Modelling and Predictive Control of Permanent Magnet Synchronous Motor Drives

    Czech Academy of Sciences Publication Activity Database

    Belda, Květoslav

    2013-01-01

    Roč. 2, č. 4 (2013), s. 114-120 ISSN 1805-3386 R&D Projects: GA ČR(CZ) GAP102/11/0437 Institutional support: RVO:67985556 Keywords : Permanent magnet synchronous motor * mathematical modelling * discrete predictive control * multistep explicit control law * square-root optimization Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2014/AS/belda-0422285.pdf

  16. Hybrid Adaptive Observer for a Brushless DC Motor

    DEFF Research Database (Denmark)

    Niemczyk, Piotr; Porchez, Thomas; Bendtsen, Jan Dimon

    2008-01-01

    A novel hybrid adaptive observer for Brushless DC Motors (BLDCM) is presented. It uses two current measurements of BLDCM phases to estimate the angle and the speed of the rotor. The observer is designed on the basis of a hybrid model, which is also presented in this paper. The parameters...

  17. Photovoltaic-wind hybrid system for permanent magnet DC motor

    Science.gov (United States)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  18. Investigation of mechanical field weakening of axial flux permanent magnet motor

    Science.gov (United States)

    Syaifuddin Mohd, M.; Aziz, A. Rashid A.; Syafiq Mohd, M.

    2015-12-01

    An investigation of axial flux permanent magnet motor (AFPM) characteristics was conducted with a proposed mechanical field weakening control mechanisms (by means of stator-rotor force manipulation) on the motor through modeling and experimentation. By varying the air gap between at least two bistable positions, the peak torque and top speed of the motor can be extended. The motor high efficiency region can also be extended to cover greater part of the motor operating points. An analytical model of the motor had been developed to study the correlation between the total attraction force (between the rotor and the stator) and the operating parameters of the motor. The test results shows that the motor output complies with the prediction of the research hypothesis and it is likely that a spring locking mechanism can be built to dynamically adjust the air gap of the motor to increase the operating range and could be applied in electric drivetrain applications to improve overall efficiency of electric and hybrid electric vehicles.

  19. Exponential Synchronization of Networked Chaotic Delayed Neural Network by a Hybrid Event Trigger Scheme.

    Science.gov (United States)

    Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun; Zhongyang Fei; Chaoxu Guan; Huijun Gao; Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun

    2018-06-01

    This paper is concerned with the exponential synchronization for master-slave chaotic delayed neural network with event trigger control scheme. The model is established on a network control framework, where both external disturbance and network-induced delay are taken into consideration. The desired aim is to synchronize the master and slave systems with limited communication capacity and network bandwidth. In order to save the network resource, we adopt a hybrid event trigger approach, which not only reduces the data package sending out, but also gets rid of the Zeno phenomenon. By using an appropriate Lyapunov functional, a sufficient criterion for the stability is proposed for the error system with extended ( , , )-dissipativity performance index. Moreover, hybrid event trigger scheme and controller are codesigned for network-based delayed neural network to guarantee the exponential synchronization between the master and slave systems. The effectiveness and potential of the proposed results are demonstrated through a numerical example.

  20. Hybrid Adaptive Observer for a Brushless DC Motor

    DEFF Research Database (Denmark)

    Niemczyk, Piotr; Porchez, Thomas; Bendtsen, Jan Dimon

    2008-01-01

    A novel hybrid adaptive observer for Brushless DC Motors (BLDCM) is presented. It uses two current measurements of BLDCM phases to estimate the angle and the speed of the rotor. The observer is designed on the basis of a hybrid model, which is also presented in this paper. The parameters of the o...

  1. Materials processing, pulsed field magnetization and field-pole application to propulsion motors on Gd123 bulk superconductors

    International Nuclear Information System (INIS)

    Izumi, M; Xu, C; Xu, Y; Morita, E; Kimura, Y; Hu, A; Ichihara, M; Murakami, M; Sakai, N; Hirabayashi, I; Sugimoto, H; Miki, M

    2008-01-01

    Gd123 bulk superconductor is one of the promising magnet materials. We studied the materials processing to grow high performance magnet with a doping of nano-sized metal oxides such as ZrO 2 as a candidature of pinning centre. The enhancement of the critical current density was obtained. Growth of nano-sized particles of Gd211 in addition to BaZrO 3 were observed by TEM. The formation of nano-sized particles appears a key to improve the integrated flux trapped inside the bulks and the TEM reveals an intriguing effect of the addition to the microstructure of bulk materials. Magnetization process is crucial especially for an extended machinery. Pulsed field magnetization was applied to the field-pole bulk on the rotor disk of the tested synchronous motor. The trapped flux density of 1.3 T for Gd123 bulk sample and of 60 mm diameter was reached in the limited dimension of the tested motor by a step cooling method down to 38 K with a closed-cycle condensed neon. The pulsed magnetic field was applied with a new type of split-armature coil. A large bulk of 140 mm diameter has also shown a potential flux trapping superior to other smaller specimens. The bulk magnet provides a strong magnetic field around the bulk body itself with high current density relative to a coil winding. A comparative drawing of a 'torque density' of a variety of motors which is defined as the torque divided by the volume of the motor indicates a potential advantage of bulk motor as a super permanent magnet motor

  2. Projective and hybrid projective synchronization for the Lorenz-Stenflo system with estimation of unknown parameters

    International Nuclear Information System (INIS)

    Mukherjee, Payel; Banerjee, Santo

    2010-01-01

    In this work, in the first phase, we study the phenomenon of projective synchronization in the Lorenz-Stenflo system. Synchronization is then investigated for the same system with unknown parameters. We show analytically that synchronization is possible for some proper choice of the nonlinear controller by using a suitable Lyapunov function. With the help of this result, it is also possible to estimate the values of the unknown system parameters. In the second phase as an extension of our analysis, we investigate the new hybrid projective synchronization for the same system. All our analyses are well supported with numerical evidence.

  3. Pinning synchronization of hybrid-coupled directed delayed dynamical network via intermittent control.

    Science.gov (United States)

    Cai, Shuiming; Zhou, Peipei; Liu, Zengrong

    2014-09-01

    This paper concerns the problem of exponential synchronization for a class of general delayed dynamical networks with hybrid coupling via pinning periodically intermittent control. Both the internal delay and coupling delay are taken into account in the network model. Meanwhile, the transmission delay and self-feedback delay are involved in the delayed coupling term. By establishing a new differential inequality, several simple and useful exponential synchronization criteria are derived analytically. It is shown that the controlled synchronization state can vary in comparison with the conventional synchronized solution, and the degree of the node and the inner delayed coupling matrix play important roles in the controlled synchronization state. By choosing different inner delayed coupling matrices and the degrees of the node, different controlled synchronization states can be obtained. Furthermore, the detail pinning schemes deciding what nodes should be chosen as pinned candidates and how many nodes are needed to be pinned for a fixed coupling strength are provided. The simple procedures illuminating how to design suitable intermittent controllers in real application are also given. Numerical simulations, including an undirected scale-free network and a directed small-world network, are finally presented to demonstrate the effectiveness of the theoretical results.

  4. Development of Digital Control for High Power Permanent-Magnet Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Ming-Hung Chen

    2014-01-01

    Full Text Available This paper is concerned with the development of digital control system for high power permanent-magnet synchronous motor (PMSM to yield good speed regulation, low current harmonic, and stable output speed. The design of controller is conducted by digitizing the mathematical model of PMSM using impulse invariance technique. The predicted current estimator, which is insensitive to motor feedback currents, is proposed to function under stationary frame for harmonic current suppression. In the AC/DC power converter, mathematical model and dc-link voltage limit of the three-phase switch-mode rectifier are derived. In addition, a current controller under synchronous frame is introduced to reduce the current harmonics and increase the power factor on the input side. A digital control system for 75 kW PMSM is realized with digital signal processor (R5F5630EDDFP. Experimental results indicate that the total harmonic distortion of current is reduced from 4.1% to 2.8% for 50 kW output power by the proposed predicted current estimator technique.

  5. Efficiency Optimization Control of IPM Synchronous Motor Drives with Online Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Sadegh Vaez-Zadeh

    2011-04-01

    Full Text Available This paper describes an efficiency optimization control method for high performance interior permanent magnet synchronous motor drives with online estimation of motor parameters. The control system is based on an input-output feedback linearization method which provides high performance control and simultaneously ensures the minimization of the motor losses. The controllable electrical loss can be minimized by the optimal control of the armature current vector. It is shown that parameter variations except at near the nominal conditions have undesirable effect on the controller performance. Therefore, a parameter estimation method based on the second method of Lyapunov is presented which guarantees the stability and convergence of the estimation. The extensive simulation results show the feasibility of the proposed controller and observer and their desirable performances.

  6. CALCULATION OF INDUCTANCE OF THE INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

    Directory of Open Access Journals (Sweden)

    Phyong Le Ngo

    2017-01-01

    Full Text Available Interior permanent magnet synchronous motor (IPMSM refers to salient-pole synchronous motors, characterized by inequality of inductances of longitudinal (d and transverse (q axes. Electromagnetic torque of IPMSM consists of two components: active torque and reactive torque; the latter depends on inductances of d and q axes. An analytical method to calculate own inductances and mutual inductances of a three-phase IPMSM is presented. Distributed windings of the stator are substituted by equivalent sine distributed windings. An interior permanent magnets rotor is substituted by an equivalent salient-pole rotor. Sections of a magnetic circuit comprising interior permanent magnets, air barriers and steel bridges are substituted by equivalent air-gap. The expressions of the magnetic induction created by current of the stator windings at each point of the air gap as well as of magnetic flux linkage of the stator windings have been obtained. The equations of the self-inductances of phases A, B, C, and of inductance of mutual induction are determined from magnetic flux linkage. The inductance of the d and q axes have been obtained as a result of transformation of the axes abc–dq. The results obtained with the use of the proposed analytical method and the finite element method are presented in the form of a graph; the calculations that have been obtained by these two methods were compared. 

  7. Adaptive sensorless field oriented control of PM motors including zero speed

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2004-01-01

    This paper presents a simple control method for controlling permanent magnet synchronous motors (PMSM) in a wide speed range without a shaft sensor. An adaptive observer is used for estimation of the rotor position and speed of a permanent magnet synchronous motors (PMSM). The observer compensates...... for voltage offsets and permanent magnet strength variations. The adaption structure for estimating the strength of the permanent magnet is determined from a Lyapunov stability proof. The control method is made robust at zero and low speed by changing the direct vector current component to a value different...... from zero. In order to verify the applicability of the method the controller has been implemented and tested on a 800 W motor....

  8. Field effects and ictal synchronization: insights from in homine observations.

    Directory of Open Access Journals (Sweden)

    Shennan Aibel Weiss

    2013-12-01

    Full Text Available It has been well established in animal models that electrical fields generated during inter-ictal and ictal discharges are strong enough in intensity to influence action potential firing threshold and synchronization. We discuss recently published data from microelectrode array recordings of human neocortical seizures and what they imply about the possible role of field effects in neuronal synchronization. We have identified two distinct seizure territories that cannot be easily distinguished by traditional EEG analysis. The ictal core exhibits synchronized neuronal burst firing, while the surrounding ictal penumbra exhibits asynchronous and relatively sparse neuronal activity. In the ictal core large amplitude rhythmic ictal discharges produce large electric fields that correspond with relatively synchronous neuronal firing. In the penumbra rhythmic ictal discharges are smaller in amplitude, but large enough to influence spike timing, yet neuronal synchrony is not observed. These in homine observations are in accord with decades of animal studies supporting a role of field effects in neuronal synchronization during seizures, yet also highlight how field effects may be negated in the presence of strong synaptic inhibition in the penumbra.

  9. Illusory body ownership of an invisible body interpolated between virtual hands and feet via visual-motor synchronicity.

    Science.gov (United States)

    Kondo, Ryota; Sugimoto, Maki; Minamizawa, Kouta; Hoshi, Takayuki; Inami, Masahiko; Kitazaki, Michiteru

    2018-05-15

    Body ownership can be modulated through illusory visual-tactile integration or visual-motor synchronicity/contingency. Recently, it has been reported that illusory ownership of an invisible body can be induced by illusory visual-tactile integration from a first-person view. We aimed to test whether a similar illusory ownership of the invisible body could be induced by the active method of visual-motor synchronicity and if the illusory invisible body could be experienced in front of and facing away from the observer. Participants observed left and right white gloves and socks in front of them, at a distance of 2 m, in a virtual room through a head-mounted display. The white gloves and socks were synchronized with the observers' actions. In the experiments, we tested the effect of synchronization, and compared this to a whole-body avatar, measuring self-localization drift. We observed that visual hands and feet were sufficient to induce illusory body ownership, and this effect was as strong as using a whole-body avatar.

  10. Calculation of Cogging Torque in Hybrid Stepping Motors | Agber ...

    African Journals Online (AJOL)

    When the windings of a hybrid stepping motor are unexcited the permanent magnet's flux produces cogging torque. This torque has both desirable and undesirable features depending on the application that the motor is put into. This paper formulates an analytical method for predicting cogging torque using measured ...

  11. Optimal Velocity Control for a Battery Electric Vehicle Driven by Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Dongbin Lu

    2014-01-01

    Full Text Available The permanent magnet synchronous motor (PMSM has high efficiency and high torque density. Field oriented control (FOC is usually used in the motor to achieve maximum efficiency control. In the electric vehicle (EV application, the PMSM efficiency model, combined with the EV and road load system model, is used to study the optimal energy-saving control strategy, which is significant for the economic operation of EVs. With the help of GPS, IMU, and other information technologies, the road conditions can be measured in advance. Based on this information, the optimal velocity of the EV driven by PMSM can be obtained through the analytical algorithm according to the efficiency model of PMSM and the vehicle dynamic model in simple road conditions. In complex road conditions, considering the dynamic characteristics, the economic operating velocity trajectory of the EV can be obtained through the dynamic programming (DP algorithm. Simulation and experimental results show that the minimum energy consumption and global energy optimization can be achieved when the EV operates in the economic operation area.

  12. MAGNETIC CIRCUIT EQUIVALENT OF THE SYNCHRONOUS MOTOR WITH INCORPORATED MAGNETS

    Directory of Open Access Journals (Sweden)

    Fyong Le Ngo

    2015-01-01

    Full Text Available Magnetic circuitry computation is one of the central stages of designing a synchronous motor with incorporated magnets, which can be performed by means of a simplified method of the magnetic-circuits equivalent modeling. The article studies the magnetic circuit of the motor with the rotor-incorporated magnets, which includes four sectors: constant magnets with the field pole extension made of magnetically soft steel, magniflux dispersion sections containing air barriers and steel bridges; the air gap; the stator grooves, cogs and the frame yoke. The authors introduce an equivalent model of the magnetic circuit. High-energy magnets with a linear demagnetization curve are employed in the capacity of constant magnets. Two magnets create the magnetic flux for one pole. The decline of magnetic potential in the steel of the pole is negligible consequent on the admission that the poles magnetic inductivity µ = ∞. The rotor design provides for the air barriers and the steel bridges that close leakage flux. The induction-permeability curve linearization serves for the bridges magnetic saturation accountability and presents a polygonal line consisting of two linear sections. The estimation of the magnet circuit section including the cogs and the frame yoke is executed with account of the steel saturation, their magnetic conductivities thereat being dependent on the saturation rate. Relying on the equivalent model of the magnetic circuit, the authors deduce a system of two equations written from the first and the second Kirchhoff laws of the magnetic circuits. These equations allow solving two problems: specifying dimensions of the magnets by the preset value of the magnetic flow in the clearance and determining the clearance magnetic flow at the preset motor rotor-and-stator design.

  13. Direct torque and flux regulation of synchronous reluctance motor drives based on input-output feedback linearization

    International Nuclear Information System (INIS)

    Abootorabi Zarchi, H.; Arab Markadeh, Gh.R.; Soltani, J.

    2010-01-01

    In this paper, a nonlinear speed tracking controller is introduced for three-phase synchronous reluctance motor (SynRM) on the basis of input-output feedback linearization (IOFL), considering the different control strategies (maximum torque per Ampere, high efficiency and minimum KVA rating for the inverter) related to this motor. The proposed control approach is capable of decoupling control of stator flux and motor generated torque. The validity and effectiveness of the method is verified by simulation and experimental results.

  14. Control for stabilizing the alignment position of the rotor of the synchronous motor

    Science.gov (United States)

    Donley, L.I.

    1985-03-12

    A method and apparatus is described for damping oscillations in the rotor load angle of a synchronous motor to provide stable rotational alignment in high precision applications. The damping method includes sensing the angular position of the rotor and utilizing the position signal to generate an error signal in response to changes in the period of rotation of the rotor. The error signal is coupled to phase shift amplifiers which shift the phase of the motor drive signal in a direction to damp out the oscillations in the rotor load angle.

  15. Electric motors and drives. Pt. 37. Permanent-magnet-excited synchronous motors. Pt. 3; Elektrische Maschinen und Antriebe. T. 37. Die permanentmagneterregte Synchronmaschine. T. 3

    Energy Technology Data Exchange (ETDEWEB)

    Baral, Andreas [FHWT - Private Fachhochschule fuer Wirtschaft und Technik, Oldenburg (Germany). Elektrische Maschinen und Antriebstechnik

    2011-01-15

    The contribution explains the principle of permanent-magnet-excited synchronous motors. They are used as positioning drives in many automation applications, usually in combination with a servo-controller.

  16. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.

    Science.gov (United States)

    Koo, Bonkon; Lee, Hwan-Gon; Nam, Yunjun; Kang, Hyohyeong; Koh, Chin Su; Shin, Hyung-Cheul; Choi, Seungjin

    2015-04-15

    For a self-paced motor imagery based brain-computer interface (BCI), the system should be able to recognize the occurrence of a motor imagery, as well as the type of the motor imagery. However, because of the difficulty of detecting the occurrence of a motor imagery, general motor imagery based BCI studies have been focusing on the cued motor imagery paradigm. In this paper, we present a novel hybrid BCI system that uses near infrared spectroscopy (NIRS) and electroencephalography (EEG) systems together to achieve online self-paced motor imagery based BCI. We designed a unique sensor frame that records NIRS and EEG simultaneously for the realization of our system. Based on this hybrid system, we proposed a novel analysis method that detects the occurrence of a motor imagery with the NIRS system, and classifies its type with the EEG system. An online experiment demonstrated that our hybrid system had a true positive rate of about 88%, a false positive rate of 7% with an average response time of 10.36 s. As far as we know, there is no report that explored hemodynamic brain switch for self-paced motor imagery based BCI with hybrid EEG and NIRS system. From our experimental results, our hybrid system showed enough reliability for using in a practical self-paced motor imagery based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. RESONANT PROCESSES IN STARTING MODES OF SYNCHRONOUS MOTORS WITH CAPACITORS IN THE EXCITATION WINDINGS CIRCUIT

    Directory of Open Access Journals (Sweden)

    V. S. Malyar

    2017-08-01

    Full Text Available Purpose. Development of a mathematical model that enables to detect resonance modes during asynchronous startup of salient-pole synchronous motors, in which capacitors are switched on to increase the electromagnetic moment in the circuit of the excitation winding. Methodology. The asynchronous mode is described by a system of differential equations of the electric equilibrium of motor circuits written in orthogonal coordinate axes. The basis of the developed algorithm is the mathematical model of the high-level adequacy motor and the projection method for solving the boundary value problem for the equations of the electric equilibrium of the circuits written in orthogonal coordinate axes, taking into account the presence of capacitors in the excitation winding. The coefficients of differential equations are the differential inductances of the motor circuits, which are determined on the basis of the calculation of its magnetic circuit. As a result of the asymmetry of the rotor windings in the asynchronous mode, the current coupling and currents change according to the periodic law. The problem of its definition is solved as a boundary one. Results. A mathematical model for studying the asynchronous characteristics of synchronous motors with capacitors in an excitation winding is developed, by means of which it is possible to investigate the influence of the size of the capacity on the motor's starting properties and the resonance processes which may arise in this case. Scientific novelty. The developed method of mathematical modeling is based on a fundamentally new mathematical basis for the calculation of stationary dynamic modes of nonlinear electromagnetic circuits, which enables to obtain periodic coordinate dependencies, without resorting to the calculation of the transients. The basis of the developed algorithm is based on the approximation of state variables by cubic splines, the projection method of decomposition for the boundary value

  18. Linear motor with contactless energy transfer

    NARCIS (Netherlands)

    2014-01-01

    An integrated electromagnetic energy conversions device is provided that includes a synchronous or brushless linear (SoBL) motor, and a transformer, where the transformer is integrated electromagnetically and topologically with the SoBL motor, where an electromagnetic field orientation of the

  19. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2017-10-01

    Full Text Available Moving towards the more electric aircraft (MEA, a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA into primary flight control. In the hybrid actuation system (HAS, an electro-hydraulic servo actuator (EHSA and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.

  20. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    Science.gov (United States)

    Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-01-01

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392

  1. Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order

    International Nuclear Information System (INIS)

    Hu Manfeng; Xu Zhenyuan; Zhang Rong; Hu Aihua

    2007-01-01

    This Letter further investigates the full state hybrid projective synchronization (FSHPS) of chaotic and hyper-chaotic systems with fully unknown parameters. Based on the Lyapunov stability theory, a unified adaptive controller and parameters update law can be designed for achieving the FSHPS of chaotic and/or hyper-chaotic systems with the same and different order. Especially, for two chaotic systems with different order, reduced order MFSHPS (an acronym for modified full state hybrid projective synchronization) and increased order MFSHPS are first studied in this Letter. Five groups numerical simulations are provided to verify the effectiveness of the proposed scheme. In addition, the proposed FSHPS scheme is quite robust against the effect of noise

  2. Phase synchronization for two Brownian motors with bistable coupling on a ratchet

    International Nuclear Information System (INIS)

    Mateos, Jose L.; Alatriste, F.R.

    2010-01-01

    Graphical abstract: We study phase synchronization for a walker with two Brownian motors with bistable coupling on a ratchet and show a connection between synchronization and optimal transport. - Abstract: We study phase synchronization for a walker on a ratchet potential. The walker consist of two particles coupled by a bistable potential that allow the interchange of the order of the particles while moving through a one-dimensional asymmetric periodic ratchet potential. We consider the deterministic and the stochastic dynamics of the center of mass of the walker in a tilted ratchet potential with an external periodic forcing, in the overdamped case. The ratchet potential has to be tilted in order to obtain a rotator or self-sustained nonlinear oscillator in the absence of external periodic forcing. This oscillator has an intrinsic frequency that can be entrained with the frequency of the external driving. We introduced a linear phase through a set of discrete time events and the associated average frequency, and show that this frequency can be synchronized with the frequency of the external driving. In this way, we can properly characterize the phenomenon of synchronization through Arnold tongues and show that the local maxima in the average velocity of the center of mass of the walker, both in the deterministic case and in the presence of noise, correspond to the borders of these Arnold tongues. In this way, we established a connection between optimal transport in ratchets and the phenomenon of phase synchronization.

  3. Loss Minimization Sliding Mode Control of IPM Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Mehran Zamanifar

    2010-01-01

    Full Text Available In this paper, a nonlinear loss minimization control strategy for an interior permanent magnet synchronous motor (IPMSM based on a newly developed sliding mode approach is presented. This control method sets force the speed control of the IPMSM drives and simultaneously ensures the minimization of the losses besides the uncertainties exist in the system such as parameter variations which have undesirable effects on the controller performance except at near nominal conditions. Simulation results are presented to show the effectiveness of the proposed controller.

  4. Bio-hybrid micro/nanodevices powered by flagellar motor: challenges and strategies

    Directory of Open Access Journals (Sweden)

    Jin-Woo eKim

    2015-07-01

    Full Text Available Molecular motors, which are precision-engineered by nature, offer exciting possibilities for bio-hybrid engineered systems. They could enable real applications ranging from micro/nano fluidics, to biosensing, to medical diagnoses. This review describes the fundamental biological insights and fascinating potentials of these remarkable sensing and actuation machines, in particular bacterial flagellar motors, as well as their engineering perspectives with regard to applications in bio-engineered hybrid systems and nanobiotechnology.

  5. Flow-synchronous field motion refrigeration

    Science.gov (United States)

    Hassen, Charles N.

    2017-08-22

    An improved method to manage the flow of heat in an active regenerator in a magnetocaloric or an electrocaloric heat-pump refrigeration system, in which heat exchange fluid moves synchronously with the motion of a magnetic or electric field. Only a portion of the length of the active regenerator bed is introduced to or removed from the field at one time, and the heat exchange fluid flows from the cold side toward the hot side while the magnetic or electric field moves along the active regenerator bed.

  6. DC Motor control using motor-generator set with controlled generator field

    Science.gov (United States)

    Belsterling, Charles A.; Stone, John

    1982-01-01

    A d.c. generator is connected in series opposed to the polarity of a d.c. power source supplying a d.c. drive motor. The generator is part of a motor-generator set, the motor of which is supplied from the power source connected to the motor. A generator field control means varies the field produced by at least one of the generator windings in order to change the effective voltage output. When the generator voltage is exactly equal to the d.c. voltage supply, no voltage is applied across the drive motor. As the field of the generator is reduced, the drive motor is supplied greater voltage until the full voltage of the d.c. power source is supplied when the generator has zero field applied. Additional voltage may be applied across the drive motor by reversing and increasing the reversed field on the generator. The drive motor may be reversed in direction from standstill by increasing the generator field so that a reverse voltage is applied across the d.c. motor.

  7. Identification of a Group's Physiological Synchronization with Earth's Magnetic Field.

    Science.gov (United States)

    Timofejeva, Inga; McCraty, Rollin; Atkinson, Mike; Joffe, Roza; Vainoras, Alfonsas; Alabdulgader, Abdullah A; Ragulskis, Minvydas

    2017-09-01

    A new analysis technique for the evaluation of the degree of synchronization between the physiological state of a group of people and changes in the Earth's magnetic field based on their cardiac inter-beat intervals was developed and validated. The new analysis method was then used to identify clusters of similar synchronization patterns in a group of 20 individuals over a two-week period. The algorithm for the identification of slow wave dynamics for every person was constructed in order to determine meaningful interrelationships between the participants and the local magnetic field data. The results support the hypothesis that the slow wave rhythms in heart rate variability can synchronize with changes in local magnetic field data, and that the degree of synchronization is affected by the quality of interpersonal relationships.

  8. A study on the integration of contactless energy transfer in the end teeth of a PM synchronous linear motor

    NARCIS (Netherlands)

    Krop, D.C.J.; Lomonova, E.A.; Jansen, J.W.; Paulides, J.J.H.

    2009-01-01

    Linear motors find their utilization in an increasing number of industrial applications. Permanent magnet linear synchronous motors (PMLSMs) are favorable in many applications due to their servo characteristics, robustness, and high force density. The major disadvantage of moving coil type PMLSMs is

  9. Classification Method to Define Synchronization Capability Limits of Line-Start Permanent-Magnet Motor Using Mesh-Based Magnetic Equivalent Circuit Computation Results

    Directory of Open Access Journals (Sweden)

    Bart Wymeersch

    2018-04-01

    Full Text Available Line start permanent magnet synchronous motors (LS-PMSM are energy-efficient synchronous motors that can start asynchronously due to a squirrel cage in the rotor. The drawback, however, with this motor type is the chance of failure to synchronize after start-up. To identify the problem, and the stable operation limits, the synchronization at various parameter combinations is investigated. For accurate knowledge of the operation limits to assure synchronization with the utility grid, an accurate classification of parameter combinations is needed. As for this, many simulations have to be executed, a rapid evaluation method is indispensable. To simulate the dynamic behavior in the time domain, several modeling methods exist. In this paper, a discussion is held with respect to different modeling methods. In order to include spatial factors and magnetic nonlinearities, on the one hand, and to restrict the computation time on the other hand, a magnetic equivalent circuit (MEC modeling method is developed. In order to accelerate numerical convergence, a mesh-based analysis method is applied. The novelty in this paper is the implementation of support vector machine (SVM to classify the results of simulations at various parameter combinations into successful or unsuccessful synchronization, in order to define the synchronization capability limits. It is explained how these techniques can benefit the simulation time and the evaluation process. The results of the MEC modeling correspond to those obtained with finite element analysis (FEA, despite the reduced computation time. In addition, simulation results obtained with MEC modeling are experimentally validated.

  10. Modulated Field Synchronous Generator for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper presents a modern electromechanical conversion systemsolution as the modulated field synchronous generator, offering on theone hand, an output voltage with constant frequency in terms of speedvariation of the wind turbine and on the other hand an advantagepower / weight ratio due to the high frequency for which the magneticcircuit of the electric machine is sized. The mathematical model of the modulated field synchronous generator is implemented in MatLABmodeling language, highlighting the command structure on thetransistors bases of the inverter transistors, through which thefunctioning of the electric machine can be studied, especially in terms of the frequency of the delivered voltage.

  11. Inverse modelling and pulsating torque minimization of salient pole non-sinusoidal synchronous machines

    Energy Technology Data Exchange (ETDEWEB)

    Ait-gougam, Y.; Ibtiouen, R.; Touhami, O. [Laboratoire de Recherche en Electrotechnique, Ecole Nationale Polytechnique, BP 182, El-Harrach 16200 (Algeria); Louis, J.-P.; Gabsi, M. [Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE), CNRS UMR 8029, Ecole Normale Superieure de Cachan, 61 Avenue du President Wilson, 94235 Cachan Cedex (France)

    2008-01-15

    Sinusoidal motor's mathematical models are usually obtained using classical d-q transformation in the case of salient pole synchronous motors having sinusoidal field distribution. In this paper, a new inverse modelling for synchronous motors is presented. This modelling is derived from the properties of constant torque curves in the Concordia's reference frame. It takes into account the non-sinusoidal field distribution; EMF, self and mutual inductances having non-sinusoidal variations with respect to the angular rotor position. Both copper losses and torque ripples are minimized by adapted currents waveforms calculated from this model. Experimental evaluation was carried out on a DSP-controlled PMSM drive platform. Test results obtained demonstrate the effectiveness of the proposed method in reducing torque ripple. (author)

  12. Study on a high thrust force bi-double-sided permanent magnet linear synchronous motor

    Directory of Open Access Journals (Sweden)

    Liang Tong

    2016-03-01

    Full Text Available A high thrust force bi-double-sided permanent magnet linear synchronous motor used in gantry-type five-axis machining center is designed and its performance was tested in this article. This motor is the subproject of Chinese National Science and Technology Major Project named as “development of domestic large thrust linear motor used in high-speed gantry-type five-axis machining center project” jointly participated by enterprises and universities. According to the requirement of the application environment and motor performance parameters, the linear motor’s basic dimensions, form of windings, and magnet arrangement are preliminarily specified through theoretical analysis and calculation. To verify the correctness of the result of the calculation, the finite element model of the motor is established. The static and dynamic characteristics of the motor are studied and analyzed through the finite element method, and the initial scheme is revised. The prototype of the motor is manufactured based on the final revised structure parameters, and the performance of the motor is fully tested using the evaluation platform for direct-drive motor component. Experimental test results meet the design requirements and show the effectiveness of design method and process.

  13. Synchronous machines. General principles and structures; Machines synchrones. Principes generaux et structures

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ahmed, H.; Feld, G.; Multon, B. [Ecole Normale Superieure de Cachan, Lab. SATIE, Systemes et Applications des Technologies de l' Information et de l' Energie, UMR CNRS 8029, 94 (France); Bernard, N. [Institut Universitaire de Saint-Nazaire, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 44 - Nantes (France)

    2005-10-01

    Power generation is mainly performed by synchronous rotating machines which consume about a third of the world primary energy. Electric motors used in industrial applications convert about two thirds of this electricity. Therefore, synchronous machines are present everywhere at different scales, from micro-actuators of few micro-watts to thermo-mechanical production units of more than 1 GW, and represent a large variety of structures which have in common the synchronism between the frequency of the power supply currents and the relative movement of the fixed part with respect to the mobile part. Since several decades, these machines are more and more used as variable speed motors with permanent magnets. The advances in power electronics have contributed to the widening of their use in various applications with a huge range of powers. This article presents the general principle of operation of electromechanical converters of synchronous type: 1 - electromechanical conversion in electromagnetic systems: basic laws and elementary structures (elementary structure, energy conversion cycle, case of a system working in linear magnetic regime), rotating fields structure (magneto-motive force and Ferraris theorem, superficial air gap permeance, air gap magnetic induction, case of a permanent magnet inductor, magnetic energy and electromagnetic torque, conditions for reaching a non-null average torque, application to common cases); 2 - constitution, operation modes and efficiency: constitution and main types of synchronous machines, efficiency - analysis by similarity laws (other expression of the electromagnetic torque, thermal limitation in permanent regime, scale effects, effect of pole pairs number, examples of efficiencies and domains of use), operation modes. (J.S.)

  14. Three-Dimensional Temperature Field Calculation and Analysis of an Axial-Radial Flux-Type Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Dong Li

    2018-05-01

    Full Text Available This article concentrates on the steady-state thermal characteristics of the Axial-Radial Flux-Type Permanent Magnet Synchronous Motor (ARFTPMSM. Firstly, the three-dimensional mathematical models for electromagnetic calculation and analyses are established, and the machine loss, including the stator loss, armature winding loss, rotor loss, and axial structure loss is calculated by using time-step Finite Element Method (FEM. Then, the loss distribution is assigned as the heat source for the thermal calculation. Secondly, the mathematical model for thermal calculation is also established. The assumptions and the boundary conditions are proposed to simplify the calculation and to improve convergence. Thirdly, the three-dimensional electromagnetic and thermal calculations of the machine, of which the armature winding and axial field winding are developed by using copper wires, are solved, from which the temperature distributions of the machine components are obtained. The experiments are carried out on the prototype with copper wires to validate the accuracy of the established models. Then, the temperature distributions of machine components under different Axial Magnetic Motive Force (AMMF are investigated. Since the machine is finally developing by using HTS wires, the temperature distributions of machine developed by utilizing High Temperature Superconducting (HTS wires, are also studied. The temperature distribution differences of the machine developed by using copper wires and HTS wires are drawn. All of these above will provide a helpful reference for the thermal calculation of the ARFTPMSM, as well as the design of the HTS coils and the cryogenic cooling system.

  15. Computer-aided design studies of the homopolar linear synchronous motor

    Science.gov (United States)

    Dawson, G. E.; Eastham, A. R.; Ong, R.

    1984-09-01

    The linear induction motor (LIM), as an urban transit drive, can provide good grade-climbing capabilities and propulsion/braking performance that is independent of steel wheel-rail adhesion. In view of its 10-12 mm airgap, the LIM is characterized by a low power factor-efficiency product of order 0.4. A synchronous machine offers high efficiency and controllable power factor. An assessment of the linear homopolar configuration of this machine is presented as an alternative to the LIM. Computer-aided design studies using the finite element technique have been conducted to identify a suitable machine design for urban transit propulsion.

  16. Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor

    Science.gov (United States)

    Zhong, Chongquan; Lin, Yaoyao

    2017-11-01

    In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.

  17. The Numerical Calculation and Experimental Measurement of the Inductance Parameters for Permanent Magnet Synchronous Motor in Electric Vehicle

    Science.gov (United States)

    Jiang, Chao; Qiao, Mingzhong; Zhu, Peng

    2017-12-01

    A permanent magnet synchronous motor with radial magnetic circuit and built-in permanent magnet is designed for the electric vehicle. Finite element numerical calculation and experimental measurement are adopted to obtain the direct axis and quadrature axis inductance parameters of the motor which are vital important for the motor control. The calculation method is simple, the measuring principle is clear, the results of numerical calculation and experimental measurement are mutual confirmation. A quick and effective method is provided to obtain the direct axis and quadrature axis inductance parameters of the motor, and then improve the design of motor or adjust the control parameters of the motor controller.

  18. Sensorless Speed Control of Permanent Magnet Synchronous Motors by Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Ming-Shyan Wang

    2014-01-01

    Full Text Available The sliding mode control has the merits with respect to the variation of the disturbance and robustness. In this paper, the sensorless sliding-mode observer with least mean squared error approach for permanent magnet synchronous motor (PMSM to detect the rotor position by counter electromotive force and then compute motor speed is designed and implemented. In addition, the neural network control is also used to compensate the PI gain tuning to increase the speed accuracy without regarding the errors of the current measurement and motor noise. In this paper, a digital signal processor TMS320F2812 utilizes its high-speed ADC module to get current feedback information and thus to estimate the rotor position and takes advantage of the built-in modules to achieve SVPWM current control so that the senseless speed control will be accomplished. The correctness and effectiveness of the proposed control system will be verified from the experimental results.

  19. Numerical analysis and finite element modelling of an HTS synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Ainslie, M.D., E-mail: mda36@cam.ac.u [University of Cambridge, Department of Electrical Engineering (Division B), CAPE Building, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Jiang, Y.; Xian, W.; Hong, Z.; Yuan, W.; Pei, R.; Flack, T.J.; Coombs, T.A. [University of Cambridge, Department of Electrical Engineering (Division B), CAPE Building, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2010-11-01

    This paper investigates the electromagnetic properties of high-temperature superconductors with a particular focus on the AC loss in coils made from YBCO superconductors. The numerical analysis and finite element modelling of the YBCO superconductors used in Cambridge's superconducting permanent magnet synchronous motor currently in development is described. The stack of tapes in the superconducting coils is modelled using the direct H formulation, a B-dependent critical current density and a bulk approximation. Magnetic boundary conditions for this model are derived from a 2D finite element method (FEM) motor model. The combination of these models allows the total AC loss (combined transport and magnetisation losses) in the HTS coils used in an all-superconducting machine design to be estimated. The raw AC loss figures are compared to the output power of the motor for two test cases, and it is found that the AC loss contributes significantly to the total loss and therefore efficiency. An experimental rig is also described, which has been built in order to test the electromagnetic properties and performance of the motor. It is explained how this rig will be used to investigate the magnetisation of the rotor and carry out AC loss measurements on the stator coils.

  20. Speed Control Design of Permanent Magnet Synchronous Motor using TakagiSugeno Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Ahmad Asri Abd Samat

    2017-12-01

    Full Text Available This paper proposes a speed control design of Permanent Magnet Synchronous Motor (PMSM using Field Oriented Control (FOC. The focus is to design a speed control using Takagi — Sugeno Fuzzy Logic Control (T-S FLS. These systems will replace the conventional method which is proportional-integral (PI. The objective of this paper is to study the T—S Fuzzy Inference System (FIS speed regulator and acceleration observer for PMSM. The scope of study basically is to design and analyse the Takagi Sugeno FLC and the PMSM. This paper also will describe the methodology and process of modelling the PMSM including data analysis. The simulation work is implemented in Matlab-Simulink to verify the control method. The effectiveness of this proposed control method was confirmed through various range of speed and torque variation.

  1. Mathematical modeling and dynamic simulation of a class of drive systems with permanent magnet synchronous motors

    Directory of Open Access Journals (Sweden)

    Mikhov M.

    2009-12-01

    Full Text Available The performance of a two-coordinate drive system with permanent magnet synchronous motors is analyzed and discussed in this paper. Both motors have been controlled in brushless DC motor mode in accordance with the rotor positions. Detailed study has been carried out by means of mathematical modeling and computer simulation for the respective transient and steady-state regimes at various load and work conditions. The research carried out as well as the results obtained can be used in the design, optimization and tuning of such types of drive systems. They could be also applied in the teaching process.

  2. Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.

    Science.gov (United States)

    Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa; Grün, Sonja

    2016-08-10

    a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. Copyright © 2016 Torre, et al.

  3. Sensorless control of interior permanent-magnet synchronous motors with compressor load

    DEFF Research Database (Denmark)

    Huang, Shoudao; Gao, Jian; Xiao, Lei

    2013-01-01

    This paper analyzes the mathematical model of the interior permanent-magnet synchronous motors (IPMSM). Through the mathematical deformation, the paper proposes the new sensorless method based on sliding mode observer for a IPMSM. The model is only associated with the q-axis inductance, and without...... the d-axis inductance. Dual filter is set series to extract the electromotive force information, and then filter phase shift is measured real-time at different speeds for angle compensation. An I-F strategy is adopted to start the IPMSM with compressor load. Finally, the experimental proves the validity...

  4. Series hybrid vehicle system analysis using an in-wheel motor design

    NARCIS (Netherlands)

    Paulides, J.J.H.; Kazmin, Evgeny; Gysen, B.L.J.; Lomonova, E.

    2008-01-01

    Hybrid vehicles, which employ a technology combining gasoline and electric motors, are a hot item these days for transporters looking for ways to cut their fuel bills. To date, commercial systems implement diesel assisted electrical drives. As such the electrical motor is placed in a series or

  5. A new nonlinear magnetic circuit model for dynamic analysis of interior permanent magnet synchronous motor

    International Nuclear Information System (INIS)

    Nakamura, Kenji; Saito, Kenichi; Watanabe, Tadaaki; Ichinokura, Osamu

    2005-01-01

    Interior permanent magnet synchronous motors (IPMSMs) have high efficiency and torque, since the motors can utilize reluctance torque in addition to magnet torque. The IPMSMs are widely used for electric household appliances and electric bicycles and vehicles. A quantitative analysis method of dynamic characteristics of the IPMSMs, however, has not been clarified fully. For optimum design, investigation of dynamic characteristics considering magnetic nonlinearity is needed. This paper presents a new nonlinear magnetic circuit model of an IPMSM, and suggests a dynamic analysis method using the proposed magnetic circuit model

  6. Magnetically nonlinear dynamic model of synchronous motor with permanent magnets

    International Nuclear Information System (INIS)

    Hadziselimovic, Miralem; Stumberger, Gorazd; Stumberger, Bojan; Zagradisnik, Ivan

    2007-01-01

    This paper deals with a magnetically nonlinear two-axis dynamic model of a permanent magnet synchronous motor (PMSM). The geometrical and material properties of iron core and permanent magnets, the effects of winding distribution, saturation, cross-saturation and slotting effects are, for the first time, simultaneously accounted for in a single two-axis dynamic model of a three-phase PMSM. They are accounted for by current- and position-dependent characteristics of flux linkages. These characteristics can be determined either experimentally or by the finite element (FE) computations. The results obtained by the proposed dynamic model show a very good agreement with the measured ones and those obtained by the FE computation

  7. Complex Modified Hybrid Projective Synchronization of Different Dimensional Fractional-Order Complex Chaos and Real Hyper-Chaos

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2014-11-01

    Full Text Available This paper introduces a type of modified hybrid projective synchronization with complex transformationmatrix (CMHPS for different dimensional fractional-order complex chaos and fractional-order real hyper-chaos. The transformationmatrix in this type of chaotic synchronization is a non-square matrix, and its elements are complex numbers. Based on the stability theory of fractional-order systems, by employing the feedback control technique, necessary and sufficient criteria on CMHPS are derived. Furthermore, CMHPS between fractional-order real hyper-chaotic Rössler system and other two different dimensional fractional-order complex Lorenz-like chaotic systems is provided as two examples to discuss reduced order and increased order synchronization, respectively.

  8. The heart field effect: Synchronization of healer-subject heart rates in energy therapy.

    Science.gov (United States)

    Bair, Christine Caldwell

    2008-01-01

    Recent health research has focused on subtle energy and vibrational frequency as key components of health and healing. In particular, intentional direction of bioenergy is receiving increasing scientific attention. This study investigates the effect of the healer's electromagnetic (EM) heart field upon subjects during energy healing as measured by synchronization of heart rates and scores on a Subjective Units of Distress (SUD) scale and a Profile of Mood States (POMS) inventory. A nonequivalent pretest-posttest design was used based on heart rate comparisons between healer and subject and correlated with pre-and posttest SUD and POMS scores. Subjects included those who sat within the 3- to 4-foot "strong" range of the independent variable, the healer's heart field, while performing self-application of WHEE (the wholistic hybrid derived from EMDR [eye movement desensitization and reprocessing], and EFT [emotional freedom technique]), a meridian-based tapping technique (n=50); and those who performed the same process beyond the 15- to 18-foot range of the healer's EM heart field (n=41). The dependent variables were heart rate, SUD, and POMS inventory. All subjects completed these measures within 1 hour. Study results showed statistically significant heart-rate synchronization with the intervention population. In addition, SUD and POMS scores demonstrated considerably more improvement than in the control population, indicating additional benefit beyond the meridian-based therapies, such as WHEE, alone. Additional findings and future research recommendations are presented in this article.

  9. Vibration analysis of the synchronous motor of a propane compressor

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, D.; Rangel Junior, J. de S. [Petroleo Brasileiro S.A. - PETROBRAS, Rio de Janeiro, RJ (Brazil)], Emails: diananogueira@petrobras.com.br, joilson_jr@petrobras.com.br; Moreira, R.G. [Petroleo Brasileiro S.A. - PETROBRAS, Cabiunas, RJ (Brazil)], E-mail: ricgmoreira@petrobras.com.br

    2010-07-01

    This paper aims at describing the Analysis of a synchronous electric motor which presented high vibration levels (shaft displacement and bearing housing vibration) during the commissioning process, as well as propose the best practices for the solution of vibration problems in similar situations. This motor belongs to the propane centrifugal compressor installed at a Gas Compression Station. The methodology used in this study conducted an investigation of the problems presented in the motor through the execution of many types of tests and the analysis of the results. The main evaluations were performed, such as the vibration analysis and the rotor dynamic analysis. The electric motor was shipped back to the manufacturer's shop, where the manufacturer made certain modifications to the motor structure so as to improve the structure stiffness, such as the improvement of the support and the increase of the thickness of the structural plates. In addition to that, the dynamic balancing of the rotating set was checked. Finally, the excitation at a critical speed close to the rated speed was found after Rotor Dynamics Analysis was performed again, because of the increase in bearing clearances. The bearing shells were replaced so as to increase the separation margin between these frequencies. In order to verify the final condition of the motor, the manufacturer repeated the standard tests - FAT (Factory Acceptance Tests) - according to internal procedure and international standards. As a result of this work, it was possible to conclude that there was a significant increase in the vibration levels due to unbalance conditions. It was also possible to conclude that there are close relationships between high vibration levels and unbalance conditions, as well as between high vibration levels and the stiffness of the system and its support. Certain points of attention related to the manufacturing process of the motor compressor are described at the end of this paper, based

  10. Phase-Inductance-Based Position Estimation Method for Interior Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Xin Qiu

    2017-12-01

    Full Text Available This paper presents a phase-inductance-based position estimation method for interior permanent magnet synchronous motors (IPMSMs. According to the characteristics of phase induction of IPMSMs, the corresponding relationship of the rotor position and the phase inductance is obtained. In order to eliminate the effect of the zero-sequence component of phase inductance and reduce the rotor position estimation error, the phase inductance difference is employed. With the iterative computation of inductance vectors, the position plane is further subdivided, and the rotor position is extracted by comparing the amplitudes of inductance vectors. To decrease the consumption of computer resources and increase the practicability, a simplified implementation is also investigated. In this method, the rotor position information is achieved easily, with several basic math operations and logical comparisons of phase inductances, without any coordinate transformation or trigonometric function calculation. Based on this position estimation method, the field orientated control (FOC strategy is established, and the detailed implementation is also provided. A series of experiment results from a prototype demonstrate the correctness and feasibility of the proposed method.

  11. Anti-control of chaos of single time scale brushless dc motors and chaos synchronization of different order systems

    International Nuclear Information System (INIS)

    Ge Zhengming; Chang Chingming; Chen Yensheng

    2006-01-01

    Anti-control of chaos of single time scale brushless dc motors (BLDCM) and chaos synchronization of different order systems are studied in this paper. By addition of an external nonlinear term, we can obtain anti-control of chaos. Then, by addition of the coupling terms, by the use of Lyapunov stability theorem and by the linearization of the error dynamics, chaos synchronization between a third-order BLDCM and a second-order Duffing system are presented

  12. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  13. Electromagnetic characteristics and static torque of a solid salient poles synchronous motor computed by 3D-finite element method magnetics

    International Nuclear Information System (INIS)

    Popnikolova Radevska, Mirka; Cundev, Milan; Petkovska, Lidija

    2002-01-01

    In these paper is presented a methodology for numerical determination and complex analysis of the electromagnetic characteristics of the Solid Salient Poles Synchronous Motor, with rated data: 2.5 kW, 240 V and 1500 r.p.m.. A mathematical model and original algorithm for the nonlinear and iterative calculations by using Finite Element Method in 3D domain will be given. The program package FEM-3D will be used to perform automatically mesh generation of the finite elements in the 3D domain, calculation of the magnetic field distribution, as well as electromagnetic characteristics and Static torque in SSPSM. (Author)

  14. Electric Motors for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion

    Science.gov (United States)

    Duffy, Kirsten P.

    2015-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.

  15. Dynamics and Stability of Permanent-Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Ren He

    2017-01-01

    Full Text Available The aim of this article is to explore the dynamic characteristics and stability of the permanent-magnet synchronous motor (PMSM. PMSM equilibrium local stability condition and Hopf  bifurcation condition, pitchfork bifurcation condition, and fold bifurcation condition have been derived by using the Routh-Hurwitz criterion and the bifurcation theory, respectively. Bifurcation curves of the equilibrium with single and double parameters are obtained by continuation method. Numerical simulations not only confirm the theoretical analysis results but also show one kind of codimension-two-bifurcation points of the equilibrium. PMSM, with or without external load, can exhibit rich dynamic behaviors in different parameters regions. It is shown that if unstable equilibrium appears in the parameters regions, the PMSM may not be able to work stably. To ensure the PMSMs work stably, the inherent parameters should be designed in the region which has only one stable equilibrium.

  16. Lift force fluctuations of magnetically levitated vehicles with an integrated synchronous linear motor and their significance for the technical security

    Energy Technology Data Exchange (ETDEWEB)

    Mnich, P; Huebner, K D

    1980-07-15

    In this paper the influence of the motor current on the magnetic force is investigated by an analytical method. With the integrated synchronous linear motor the reactions of the current sheet on the excitation field are depending on the pole angle and the amplitude of the current sheet. For an undisturbed operation - current sheet and induction wave in phase - the influence of the motor current on the magnetic force can be neglected. In case of a disturbed performance, i.e. when the pole angle is changing periodically, fluctuations of the magnetic force will be found. This effect has to be compensated by a reserve magnetic force in the levitation control. With the technical data for the new magnetic levitation pilots plants (International Traffic Fair 1979 at Hamburg and Transrapid - Pilot Plant Emsland) the stated relations are evaluated. Approximated relations for the levitation force are derived. For comparison, a finite-difference computer programme from the 'Institut fuer elektrische Maschinen, Antriebe und Bahnen, Technische Universitaet Braunschweig' is applied. The approximated relations developed in this paper are verified - with a sufficient precision - by the numerical calculations.

  17. Exponential lag function projective synchronization of memristor-based multidirectional associative memory neural networks via hybrid control

    Science.gov (United States)

    Yuan, Manman; Wang, Weiping; Luo, Xiong; Li, Lixiang; Kurths, Jürgen; Wang, Xiao

    2018-03-01

    This paper is concerned with the exponential lag function projective synchronization of memristive multidirectional associative memory neural networks (MMAMNNs). First, we propose a new model of MMAMNNs with mixed time-varying delays. In the proposed approach, the mixed delays include time-varying discrete delays and distributed time delays. Second, we design two kinds of hybrid controllers. Traditional control methods lack the capability of reflecting variable synaptic weights. In this paper, the controllers are carefully designed to confirm the process of different types of synchronization in the MMAMNNs. Third, sufficient criteria guaranteeing the synchronization of system are derived based on the derive-response concept. Finally, the effectiveness of the proposed mechanism is validated with numerical experiments.

  18. System Efficiency Improvement for Electric Vehicles Adopting a Permanent Magnet Synchronous Motor Direct Drive System

    Directory of Open Access Journals (Sweden)

    Chengming Zhang

    2017-12-01

    Full Text Available To improve the endurance mileage of electric vehicles (EVs, it is important to decrease the energy consumption of the Permanent Magnet Synchronous Motor (PMSM drive system. This paper proposes a novel loss optimization control strategy named system efficiency improvement control which can optimize both inverter and motor losses. A nonlinear power converter loss model is built to fit the nonlinear characteristics of power devices. This paper uses double Fourier integral analysis to analytically calculate the fundamental and harmonic components of motor current by which the fundamental motor loss and harmonic motor loss can be accurately analyzed. From these loss models, a whole-frequency-domain system loss model is derived and presented. Based on the system loss model, the system efficiency improvement control method applies the genetic algorithm to adjust the motor current and PWM frequency together to optimize the inverter and motor losses by which the system efficiency can be significantly improved without seriously influence on the system stability over the whole operation range of EVs. The optimal effects of system efficiency is verified by the experimental results in both Si-IGBT-based PMSM system and SiC-MOSFET-based system.

  19. Synchronous Supraglottic and Esophageal Squamous Cell Carcinomas Treated with a Monoisocentric Hybrid Intensity-Modulated Radiation Technique

    Directory of Open Access Journals (Sweden)

    Christian L. Barney

    2018-01-01

    Full Text Available Risk factors for squamous cell carcinomas (SCCs of the head and neck (HN and esophagus are similar. As such, synchronous primary tumors in these areas are not entirely uncommon. Definitive chemoradiation (CRT is standard care for locally advanced HNSCC and is a preferred option for inoperable esophageal SCC. Simultaneous treatment of both primaries with CRT can present technical challenges. We report a case of synchronous supraglottic and esophageal SCC primary tumors, highlighting treatment with a monoisocentric hybrid radiation technique and normal tissue toxicity considerations.

  20. Numerical investigation on the regression rate of hybrid rocket motor with star swirl fuel grain

    Science.gov (United States)

    Zhang, Shuai; Hu, Fan; Zhang, Weihua

    2016-10-01

    Although hybrid rocket motor is prospected to have distinct advantages over liquid and solid rocket motor, low regression rate and insufficient efficiency are two major disadvantages which have prevented it from being commercially viable. In recent years, complex fuel grain configurations are attractive in overcoming the disadvantages with the help of Rapid Prototyping technology. In this work, an attempt has been made to numerically investigate the flow field characteristics and local regression rate distribution inside the hybrid rocket motor with complex star swirl grain. A propellant combination with GOX and HTPB has been chosen. The numerical model is established based on the three dimensional Navier-Stokes equations with turbulence, combustion, and coupled gas/solid phase formulations. The calculated fuel regression rate is compared with the experimental data to validate the accuracy of numerical model. The results indicate that, comparing the star swirl grain with the tube grain under the conditions of the same port area and the same grain length, the burning surface area rises about 200%, the spatially averaged regression rate rises as high as about 60%, and the oxidizer can combust sufficiently due to the big vortex around the axis in the aft-mixing chamber. The combustion efficiency of star swirl grain is better and more stable than that of tube grain.

  1. Variation in motor output and motor performance in a centrally generated motor pattern

    Science.gov (United States)

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  2. Single-Phase Hybrid Switched Reluctance Motor for Low-Power Low-Cost Applications

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Jakobsen, Uffe

    2011-01-01

    This paper presents a new single-phase, Hybrid Switched Reluctance (HSR) motor for low-cost, low-power, pump or fan drive systems. Its single-phase configuration allows use of a simple converter to reduce the system cost. Cheap ferrite magnets are used and arranged in a special flux concentration...... manner to increase effectively the torque density and efficiency of this machine. The efficiency of this machine is comparable to the efficiency of a traditional permanent magnet machine in the similar power range. The cogging torque, due to the existence of the permanent magnetic field, is beneficially...

  3. Pole-shape optimization of permanent-magnet linear synchronous motor for reduction of thrust ripple

    Energy Technology Data Exchange (ETDEWEB)

    Tavana, Nariman Roshandel, E-mail: nroshandel@ee.iust.ac.i [Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Shoulaie, Abbas, E-mail: shoulaie@iust.ac.i [Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of)

    2011-01-15

    In this paper, we have used magnet arc shaping technique in order to improve the performance of permanent-magnet linear synchronous motor (PMLSM). At first, a detailed analytical modeling based on Maxwell equations is presented for the analysis and design of PMLSM with the arc-shaped magnetic poles (ASMPs). Then the accuracy of presented method is verified by finite-element method. Very close agreement between the analytical and finite-element results shows the effectiveness of the proposed method. Finally, a magnet shape design is carried out based on the analytical method to enhance the motor developed thrust. Pertinent evaluations on the optimal design performance demonstrate that shape optimization leads to a design with extra low thrust ripple.

  4. Pole-shape optimization of permanent-magnet linear synchronous motor for reduction of thrust ripple

    International Nuclear Information System (INIS)

    Tavana, Nariman Roshandel; Shoulaie, Abbas

    2011-01-01

    In this paper, we have used magnet arc shaping technique in order to improve the performance of permanent-magnet linear synchronous motor (PMLSM). At first, a detailed analytical modeling based on Maxwell equations is presented for the analysis and design of PMLSM with the arc-shaped magnetic poles (ASMPs). Then the accuracy of presented method is verified by finite-element method. Very close agreement between the analytical and finite-element results shows the effectiveness of the proposed method. Finally, a magnet shape design is carried out based on the analytical method to enhance the motor developed thrust. Pertinent evaluations on the optimal design performance demonstrate that shape optimization leads to a design with extra low thrust ripple.

  5. Open-Phase Fault Tolerance Techniques of Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-11-01

    Full Text Available Multi-phase motors are gaining more attention due to the advantages of good fault tolerance capability and high power density, etc. By applying dual-rotor technology to multi-phase machines, a five-phase dual-rotor permanent magnet synchronous motor (DRPMSM is researched in this paper to further promote their torque density and fault tolerance capability. It has two rotors and two sets of stator windings, and it can adopt a series drive mode or parallel drive mode. The fault-tolerance capability of the five-phase DRPMSM is researched. All open circuit fault types and corresponding fault tolerance techniques in different drive modes are analyzed. A fault-tolerance control strategy of injecting currents containing a certain third harmonic component is proposed for five-phase DRPMSM to ensure performance after faults in the motor or drive circuit. For adjacent double-phase faults in the motor, based on where the additional degrees of freedom are used, two different fault-tolerance current calculation schemes are adopted and the torque results are compared. Decoupling of the inner motor and outer motor is investigated under fault-tolerant conditions in parallel drive mode. The finite element analysis (FMA results and co-simulation results based on Simulink-Simplorer-Maxwell verify the effectiveness of the techniques.

  6. Experimental Study of the Swirling Oxidizer Flow in HTPB/N2O Hybrid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Heydari

    2017-01-01

    Full Text Available Effects of swirling oxidizer flow on the performance of a HTPB/N2O Hybrid rocket motor were studied. A hybrid propulsion laboratory has been developed, to characterize internal ballistics characteristics of swirl flow hybrid motors and to define the operating parameters, like fuel regression rate, specific impulse, and characteristics velocity and combustion efficiency. Primitive variables, like pressure, thrust, temperature, and the oxidizer mass flow rate, were logged. A modular motor with 70 mm outer diameter and variable chamber length is designed for experimental analysis. The injector module has four tangential injectors and one axial injector. Liquid nitrous oxide (N2O as an oxidizer is injected at the head of combustion chamber into the motor. The feed system uses pressurized air as the pressurant. Two sets of tests have been performed. Some tests with axial and tangential oxidizer injection and a test with axial oxidizer injection were done. The test results show that the fuel grain regression rate has been improved by applying tangential oxidizer injection at the head of the motor. Besides, it was seen that combustion efficiency of motors with the swirl flow was about 10 percent more than motors with axial flow.

  7. Determination of performance characteristics of robotic manipulator's permanent magnet synchronous motor by learning its FEM model

    International Nuclear Information System (INIS)

    Bharadvaj, Bimmi; Saini, Surendra Singh; Swaroop, Teja Tumapala; Sarkar, Ushnish; Ray, Debashish Datta

    2016-01-01

    Permanent Magnet Synchronous Motors (PMSM) are widely used as actuators because of high torque density, high efficiency and reliability. Robotic Manipulator designed for specific task generally requires actuators with very high intermittent torque and speed for their operation in limited space. Hence accurate performance characteristics of PMSM must be known beforehand under these conditions as it may damage the motor. Therefore an advanced mathematical model of PMSM is required for its control synthesis and performance analysis over wide operating range. The existing mathematical models are developed considering ideal motor without including the geometrical deviations that occur during manufacturing process of the motor or its components. These manufacturing tolerance affect torque ripple, operating current range etc. thereby affecting motor performance. In this work, the magnetically non-linear dynamic model is further exploited to refine the FE model using a proposed algorithm to iteratively compensate for the experimentally observed deviations due to manufacturing. (author)

  8. The power of auditory-motor synchronization in sports: Enhancing running performance by coupling cadence with the right beats

    NARCIS (Netherlands)

    Bood, R.J.; Nijssen, M; van der Kamp, J.; Roerdink, M.

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our

  9. Development of Propulsion Inverter Control System for High-Speed Maglev based on Long Stator Linear Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jeong-Min Jo

    2017-02-01

    Full Text Available In the case of a long-stator linear drive, unlike rotative drives for which speed or position sensors are a single unit attached to the shaft, these sensors extend along the guideway. The position signals transmitted from a maglev vehicle cannot meet the need of the real-time propulsion control in the on-ground inverter power substations. In this paper the design of the propulsion inverter control system with a position estimator for driving a long-stator synchronous motor in a high-speed maglev train is proposed. The experiments have been carried out at the 150 m long guideway at the O-song test track. To investigate the performance of the position estimator, the propulsion control system with, and without, the position estimator are compared. The result confirms that the proposed strategy can meet the dynamic property needs of the propulsion inverter control system for driving long-stator linear synchronous motors.

  10. A COMPENSATOR APPLICATION USING SYNCHRONOUS MOTOR WITH A PI CONTROLLER BASED ON PIC

    OpenAIRE

    Ramazan BAYINDIR; Alper GÖRGÜN

    2009-01-01

    In this paper, PI control of a synchronous motor has been realized by using a PIC 18F452 microcontroller and it has been worked as ohmic, inductive and capacitive with different excitation currents. Instead of solving integral operation of PI control which has difficulties with conversion to the digital system, summation of all error values of a defined time period are multiplied with the sampling period. Reference values of the PI algorithm are determined with Ziegler-Nicholas method. These ...

  11. HTSL massive motor. Project: Motor field calculation. Final report

    International Nuclear Information System (INIS)

    Gutt, H.J.; Gruener, A.

    2003-01-01

    HTS motors up to 300 kW were to be developed and optimized. For this, specific calculation methods were enhanced to include superconducting rotor types (hysteresis, reluctance and permanent magnet HTS rotors). The experiments were carried out in a SHM70-45 hysteresis motor. It was shown how static and dynamic trapped field magnetisation of the rotor with YBCO rings will increase flux in the air gap motor, increasing the motor capacity to twice its original level. (orig.) [de

  12. Closed-loop thrust and pressure profile throttling of a nitrous oxide/hydroxyl-terminated polybutadiene hybrid rocket motor

    Science.gov (United States)

    Peterson, Zachary W.

    Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.

  13. Analysis of Nonlinear Vibration in Permanent Magnet Synchronous Motors under Unbalanced Magnetic Pull

    Directory of Open Access Journals (Sweden)

    Ao Zhang

    2018-01-01

    Full Text Available The vibration and noise of permanent magnet synchronous motors (PMSM are mainly caused by unbalanced magnetic pull (UMP. This paper aims to investigate nonlinear vibration in PMSMs. Firstly, the analytical model of the air-gap magnetic field with an eccentric rotor in PMSM is studied, and the analytical model is verified by the finite element method. Then the dynamic model of an offset rotor-bearing system is established, and the gyroscopic effect, nonlinear bearing force and UMP are taken into consideration. Finally, the dynamic characteristics of different static displacement eccentricities, rotor offsets and radial clearances are investigated in both the time domain and the frequency domain. The results show that the amplitudes of dynamic responses increase with the static displacement eccentricity and rotor offset and high integer multiples of rotating frequency appear with the increase of displacement eccentricity. The coupling effects of bearing force, unbalanced mass force and UMP are observed in the frequency domain, and the frequency components in the dynamic responses indicate that the bearings have an effect on the system.

  14. Failure Diagnosis for Demagnetization in Interior Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Takeo Ishikawa

    2017-01-01

    Full Text Available Since a high degree of reliability is necessary for permanent magnet synchronous motors, the detection of a precursor for the demagnetization of permanent magnets is very important. This paper investigates the diagnosis of very slight PM demagnetization. The permanent magnet volume is altered so as to mimic the effect of demagnetization. This paper investigates the influence of demagnetization by using several methods: the 3D finite element analysis (FEA of the motor, the measurement of high-frequency impedance, and the measurement and FEA of the stator voltage and current under vector control. We have obtained the following results. The back-EMF is proportional to permanent magnet volume, and there is no difference in the demagnetization in the radial direction and in the axial direction. Even harmonics and subharmonics of flux density at the teeth tip could be useful for diagnosis if a search coil is installed there. The relatively low frequency resistance at the d-axis position is useful for diagnosis. Under vector control, the stator voltage is useful except in an intermediate torque range, and the intermediate torque is expressed by a simple equation.

  15. IMPROVED MOTOR-TIMING: EFFECTS OF SYNCHRONIZED METRO-NOME TRAINING ON GOLF SHOT ACCURACY

    Directory of Open Access Journals (Sweden)

    Louise Rönnqvist

    2009-12-01

    Full Text Available This study investigates the effect of synchronized metronome training (SMT on motor timing and how this training might affect golf shot accuracy. Twenty-six experienced male golfers participated (mean age 27 years; mean golf handicap 12.6 in this study. Pre- and post-test investigations of golf shots made by three different clubs were conducted by use of a golf simulator. The golfers were randomized into two groups: a SMT group and a Control group. After the pre-test, the golfers in the SMT group completed a 4-week SMT program designed to improve their motor timing, the golfers in the Control group were merely training their golf-swings during the same time period. No differences between the two groups were found from the pre-test outcomes, either for motor timing scores or for golf shot accuracy. However, the post-test results after the 4-weeks SMT showed evident motor timing improvements. Additionally, significant improvements for golf shot accuracy were found for the SMT group and with less variability in their performance. No such improvements were found for the golfers in the Control group. As with previous studies that used a SMT program, this study's results provide further evidence that motor timing can be improved by SMT and that such timing improvement also improves golf accuracy

  16. Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

    International Nuclear Information System (INIS)

    Kim, J. H.; Park, S. I.; Im, S. H.; Kim, H. M.

    2013-01-01

    Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

  17. Two-phase induction motor drives

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Lungeanu, Florin; Skaug, Kenneth

    2004-01-01

    There is a continuous debate today concerning the ?motor of the future? for low-power applications requiring less than 1-2 kW. The specialists are focusing on superior motors [1] like brushless-dc, permanent-magnet synchronous, or electronically commutated types, because they show improvements...... in efficiency, reliability, torque-per-volume/mass ratio, maintenance, and service life. Despite this effort, the industry seems to be responding with manifest rigidity in changing standard induction motor solutions when considering the installed volume into the field, the investment in manufacturing base...

  18. Electric Motor Considerations for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion

    Science.gov (United States)

    Duffy, Kirsten P.

    2015-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.

  19. A separately excited synchronous motor as high efficient drive in electric vehicles; Die stromerregte Synchronmaschine als hocheffizienter Traktionsmotor in Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Illiano, Enzo [ETH Zuerich, Zurich (Switzerland). Inst. fuer Werkzeugmaschinen und Fertigung; Brusa Elektronik AG, Sennfeld (Switzerland)

    2013-08-15

    The separately excited synchronous motor has several advantages which make this topology a very promising traction drive for electric vehicles. The comparison of the separately excited motor with other common topologies also shows the proper regulation of the current in the rotor will rise the complexity of the entire system. In addition the presence of a rotor current has a negative effect on the continuous power of the motor, as the investigations of ETH Zuerich and Brusa show. An optimised motor regulation and an accurate rotor shape design are indispensible to reduce the power deficit. (orig.)

  20. Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory

    International Nuclear Information System (INIS)

    Du-Qu, Wei; Bo, Zhang

    2009-01-01

    This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation. (general)

  1. Comparison of Unmodulated Current Control Characteristics of Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Anwar Muqorobin

    2014-12-01

    Full Text Available This paper discusses comparison of unmodulated current controls in PMSM, more specifically, on-off, sliding mode, predictive and hybrid controls. The purpose of this study is to select the most appropriate control technique to be adopted. The comparison method is preceded by modeling the motor and entering the values of the motor parameters. PI control is used for speed control and zero d-axis current is employed. Furthermore, performing simulation for each type ofthe selected current controls and analyzing their responses in terms of dq and abc currents, q-axis current response with step reference, as well as THD. Simulation results show that the on-off control gives the best overall performance based on its abc-axis current ripple and THD at large load torque. The hybrid control shows the best response occurring only at the fastest transient time of q-axis current but its response exhibits bad qualities compared with other controls. The predictive control yields the best responses offering the smallest d-axis ripple current and THD at small load torque condition. The sliding mode control, however, does not exhibit any prominent performance compared to the others. Results presented in this paper further indicate that for the PMSM used in the simulation the most appropriate control is the predictive control.

  2. Practical Wide-speed-range Sensorless Control System for Permanent Magnet Reluctance Synchronous Motor Drives via Active Flux Model

    DEFF Research Database (Denmark)

    Ancuti, Mihaela Codruta; Tutelea, Lucian; Andreescu, Gheorghe-Daniel

    2014-01-01

    This article introduces a control strategy to obtain near-maximum available torque in a wide speed range with sensorless operation via the active flux concept for permanent magnet-reluctance synchronous motor drives. A new torque dq current reference calculator is proposed, with reference torque...

  3. Iron-YBCO heterostructures and their application for trapped field superconducting motor

    International Nuclear Information System (INIS)

    Granados, X; Bartolome, E; Obradors, X; Tornes, M; Rodrigues, L; Gawalek, W; McCulloch, M; Hughes, D Dew; Campbell, A; Coombs, T; Ausloos, M; Cloots, R

    2006-01-01

    In this work we report on the magnetic behavior of the heterostructures formed by bulk based YBCO rings and ferromagnetic yoke. The magnetization cycle has been performed by an In-Field Hall Mapping technique. A video-like recording of the magnetization process makes it possible to obtain the magnetization of selected areas. The current flowing through the superconducting rings can be deduced from the magnetic field maps. The displacement of the peak of magnetization due to the flux reversal produced by the magnetization of the yoke is also considered. These hybrid heterostructures formed by ferromagnetic and superconducting material have been applied in the construction of the rotor for a brushless AC motor. The design and construction of this machine was carried out within the framework of the TMR Network SUPERMACHINES. The rotor has been designed in a quadrupolar configuration by cutting large YBCO 'window frames' from seeded melt-textured single domain YBCO pellets. This rotor has been coupled to a conventional stator of copper coils wound on an iron armature. The stator can be excited both in bipolar or quadrupolar mode. We report on the behaviour of the motor after a field cooling process when excited in quadrupolar mode

  4. On-Line Detection of Coil Inter-Turn Short Circuit Faults in Dual-Redundancy Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yiguang Chen

    2018-03-01

    Full Text Available In the aerospace and military fields, with high reliability requirements, the dual-redundancy permanent magnet synchronous motor (DRPMSM with weak thermal coupling and no electromagnetic coupling is needed. A common fault in the DRPMSM is the inter-turn short circuit fault (ISCF. However, research on how to diagnose ISCF and the set of faulty windings in the DRPMSM is lacking. In this paper, the structure of the DRPMSM is analyzed and mathematical models of the motor under normal and faulty conditions are established. Then an on-line ISCF detection scheme, which depends on the running modes of the DRPMSM and the average values for the difference of the d-axis voltages between two sets of windings in the latest 20 sampling periods, is proposed. The main contributions of this paper are to analyze the calculation for the inductance of each part of the stator windings and propose the on-line diagnosis method of the ISCF under various operating conditions. The simulation and experimental results show that the proposed method can quickly and effectively diagnose ISCF and determine the set of faulty windings of the DRPMSM.

  5. Design of permanent magnet synchronous motor speed loop controller based on sliding mode control algorithm

    Science.gov (United States)

    Qiang, Jiang; Meng-wei, Liao; Ming-jie, Luo

    2018-03-01

    Abstract.The control performance of Permanent Magnet Synchronous Motor will be affected by the fluctuation or changes of mechanical parameters when PMSM is applied as driving motor in actual electric vehicle,and external disturbance would influence control robustness.To improve control dynamic quality and robustness of PMSM speed control system, a new second order integral sliding mode control algorithm is introduced into PMSM vector control.The simulation results show that, compared with the traditional PID control,the modified control scheme optimized has better control precision and dynamic response ability and perform better with a stronger robustness facing external disturbance,it can effectively solve the traditional sliding mode variable structure control chattering problems as well.

  6. Nonlinear Dynamics of Permanent-magnet Synchronous Motor with v/f Control

    International Nuclear Information System (INIS)

    Wei Du-Qu; Luo Xiao-Shu; Zhang Bo; Qiu Dong-Yuan

    2013-01-01

    The nonlinear dynamics of permanent-magnet synchronous motor (PMSM) with v/f control signals is investigated intensively. First, the equilibria and steady-state characteristics of the system are formulated by analytical analysis. Then, some of its basic dynamical properties, such as characteristic eigenvalues, Lyapunov exponents and phase trajectories are studied by varying the values of system parameters. It is found that when the values of the system parameters are smaller, the PMSM operates in stable domains, no matter what the values of control gains are. With the values of parameters increasing, the unstability appears and PMSM falls into chaotic operation. Furthermore, the complex dynamic behaviors are verified by means of simulation. (general)

  7. Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages

    Directory of Open Access Journals (Sweden)

    Borzou Yousefi

    2017-09-01

    Full Text Available Five-phase permanent magnet synchronous motors (PMSM have special applications in which highly accurate speed and torque control of the motor are a strong requirement. Direct Torque Control (DTC is a suitable method for the driver structure of these motors. If in this method, instead of using a common five-phase voltage source inverter, a three-phase to five-phase matrix converter is used, the low-frequency current harmonics and the high torque ripple are limited, and an improved input power factor is obtained. Because the input voltages of such converters are directly supplied by input three-phase supply voltages, an imbalance in the voltages will cause problems such as unbalanced stator currents and electromagnetic torque fluctuations. In this paper, a new method is introduced to remove speed and torque oscillator factors. For this purpose, motor torque equations were developed and the oscillation components created by the unbalanced source voltage, determined. Then, using the active and reactive power reference generator, the controller power reference was adjusted in such a way that the electromagnetic torque of the motor did not change. By this means, a number of features including speed, torque, and flux of the motor were improved in terms of the above-mentioned conditions. Simulations were analyzed using Matlab/Simulink software.

  8. Study and realization of static excitation of a synchronous motor-alternator group of 2700 kV A, 5500 V, 1500 rpm

    International Nuclear Information System (INIS)

    Moustier, Marcel

    1978-01-01

    The herein reported work addressed the improvement of voltage regulation of synchronous groups (motor-alternator) which supply the electron linear accelerator (ALS) of the Saclay nuclear research centre. The design of this new regulation system is based on the experimental study of alternators. The author discusses the theoretical elements of the adjustment of a synchronous machine based on harmonic analysis, and reports the comprehensive calculation of a PID (proportional-integral-derivative) controller. After some generalities on semiconductors (power thyristors and transistors), the author reports the study of excitation currents for the group, and of the machine transmittance. He reports the determination of excitation amplifiers and transformers, the study of voltage regulation of the alternator, of the motor reactive power control, and of excitation transformers (the transformer for the motor and the transformer for the alternator). He finally reports and discusses results of tests and measurements when using either a thyristor-based or a transistor-based excitation for the controller [fr

  9. Synchronous-flux-generator (SFG)

    Energy Technology Data Exchange (ETDEWEB)

    Zweygbergk, S.V.; Ljungstroem, O. (ed.)

    1976-01-01

    The synchronous machine is the most common rotating electric machine for producing electric energy in a large scale, but it is also used for other purposes. One well known everyday example is its use as driving motor in the electric synchronous clock. One has in this connection made full use of one of the main qualities of this kind of machine--its rotating speed is bound to the frequency of the feeding voltage, either if it is working as a motor or as a generator. Characteristics are discussed.

  10. Online MTPA Control Approach for Synchronous Reluctance Motor Drives Based on Emotional Controller

    DEFF Research Database (Denmark)

    Daryabeigi, Ehsan; Zarchi, Hossein Abootorabi; Markadeh, G. R. Arab

    2015-01-01

    In this paper, speed and torque control modes (SCM and TCM) of synchronous reluctance motor (SynRM) drives are proposed based on emotional controllers and space vector modulation under an automatic search of the maximum-torque-per-ampere (MTPA) strategy. Furthermore, in order to achieve an MTPA...... strategy at any operating condition, after recognition of transient state by two new indicators, a search algorithm changes the stator flux magnitude automatically. The indicators operate based on slip effect generated at transient conditions in a SynRM with cage. The performance of the proposed controller...

  11. Students' Emotions for Achievement and Technology Use in Synchronous Hybrid Graduate Programmes: A Control-Value Approach

    Science.gov (United States)

    Butz, Nikolaus T.; Stupnisky, Robert H.; Pekrun, Reinhard

    2015-01-01

    Synchronous hybrid delivery (simultaneously teaching on-campus and online students using web conferencing) is becoming more common; however, little is known about how students experience emotions in this learning environment. Based on Pekrun's (2006) control-value theory of emotions, the dual purpose of this study was first to compare synchronous…

  12. Synchronous Control Method and Realization of Automated Pharmacy Elevator

    Science.gov (United States)

    Liu, Xiang-Quan

    Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.

  13. Reducing torque ripples in permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Rihab Abdelmoula

    2017-09-01

    Full Text Available Permanent magnet synchronous motors (PMSMs are exceptionally promising thanks to their many advantages compared with other types of electrical machines. Indeed, PMSMs are characterized by their important torque density, light weight, high air gap flux density, high acceleration, high efficiency and strong power-to-weight ratio. A surface-mounted PMSM (SPMSM is used in this work. The SPMSM is built using a 2D finite element method (FEM. Cogging torque, torque ripples and back-EMF are examined during the design process in order to obtain sinusoidal back-EMF and to minimise torque ripples which are one of the major problems with PMSMs. Two procedures are used to reduce the cogging torque of SPMSM: the effect of slot opening and the influence of skewing the stator laminations. Cogging torque factor tc and the torque ripples factor tr have been calculated to compare the two configurations (open slots and closed slots. Then, the configuration with closed slots is utilised with skewing the stator laminations for different angle 0°, 10° and 15°.

  14. Power-optimal force decoupling in a hybrid linear reluctance motor

    NARCIS (Netherlands)

    Overboom, T.T.; Smeets, J.P.C.; Jansen, J.W.; Lomonova, E.A.; Mavrudieva, D.

    2015-01-01

    This paper concerns the power-optimal decoupling of the propulsion and normal force created by a hybrid linear reluctance motor. The intrinsic limitations to the decoupling is addressed by the visualizing each force component with a quadric surface in the Euclidean space which is spanned by the

  15. Numerical assessment of efficiency and control stability of an HTS synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Xian Wei; Yuan Weijia; Coombs, T A, E-mail: wx210@cam.ac.u [Electronic, Power and Energy Conversion Group, Engineering Department, Cambridge University, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2010-06-01

    A high temperature superconducting (HTS) permanent magnet synchronous motor (PMSM) is designed and developed in Cambridge University. It is expected to become cost competitive with the conventional PMSM owing to its high efficiency, high power density, high torque density, etc. The structure and parameters of HTS PMSM are detailed. Both AC losses by transport current and applied filed in stator armature winding of HTS PMSM are also analyzed. Computed and simulated results of the characteristics of the HTS PMSM and conventional PMSM are compared. The improvement on stability of direct torque control (DTC) on the HTS PMSM is estimated, and proved by simulation on Matlab/Simulink.

  16. Design and Simulation of Control Technique for Permanent Magnet Synchronous Motor Using Space Vector Pulse Width Modulation

    Science.gov (United States)

    Khan, Mansoor; Yong, Wang; Mustafa, Ehtasham

    2017-07-01

    After the rapid advancement in the field of power electronics devices and drives for last few decades, there are different kinds of Pulse Width Modulation techniques which have been brought to the market. The applications ranging from industrial appliances to military equipment including the home appliances. The vey common application for the PWM is three phase voltage source inverter, which is used to convert DC to AC in the homes to supply the power to the house in case electricity failure, usually named as Un-interrupted Power Supply. In this paper Space Vector Pulse Width Modulation techniques is discussed and analysed under the control technique named as Field Oriented Control. The working and implementation of this technique has been studied by implementing on the three phase bridge inverter. The technique is used to control the Permanente Magnet Synchronous Motor. The drive system is successfully implemented in MATLAB/Simulink using the mathematical equation and algorithm to achieve the satisfactory results. PI type of controller is used to tuned ers of the motothe parametr i.e. torque and current.

  17. Synchronization control of Hodgkin-Huxley neurons exposed to ELF electric field

    International Nuclear Information System (INIS)

    Che Yanqiu; Wang Jiang; Zhou Sisi; Deng Bin

    2009-01-01

    This paper presents an adaptive neural network H ∞ control for unidirectional synchronization of modified Hodgkin-Huxley (HH) neurons exposed to extremely low frequency (ELF) electric field. The proposed modified HH neurons exhibit periodic and chaotic dynamics in response to sinusoidal electric field stimulation. Based on the Lyapunov stability theory, we derive the updated laws of neural network for approximating the nonlinear uncertain functions of the error dynamical system. The H ∞ design technique makes the controller robust to unmodeled dynamics, disturbances and approximate errors. The proposed controller not only ensures closed-loop stability, but also guarantees an H ∞ performance for the synchronization error system. The states of the controlled slave system exponentially synchronize with that of the master one after control. The simulation results demonstrate the validity of the proposed method.

  18. Development and Test of a Contactless Position and Angular Sensor Device for the Application in Synchronous Micro Motors

    Directory of Open Access Journals (Sweden)

    Andreas WALDSCHIK

    2009-09-01

    Full Text Available In this work, we present a contactless micro position and angular sensor system which consists of fixed commercial magnetic sensor elements, such as hall sensors and a movable part with integrated micro structured polymer magnets. This system serves particularly for linear and rotatory synchronous micro motors which we have developed and successfully tested. In order to achieve high precision and control of these motors an integration of the special micro position and angular sensors is pursued to increase the resolution and accuracy of the devices.

  19. Numerical Simulations of Flow and Fuel Regression Rate Coupling in Hybrid Rocket Motors

    Directory of Open Access Journals (Sweden)

    Marius STOIA-DJESKA

    2017-03-01

    Full Text Available The hybrid propulsion offers some remarkable advantages like high safety and high specific impulse and thus it is considered a promising technology for the next generation launchers and space systems. The purpose of this work is to validate a design tool for hybrid rocket motors (HRM through numerical simulations.

  20. Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing

    Directory of Open Access Journals (Sweden)

    Hao Zhu

    2017-04-01

    Full Text Available Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters. This paper presents a hybrid uncertainty-based design optimization (UDO method developed from probability theory and interval theory. Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory, while the others are defined as interval variables with interval theory. Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncertainty propagation from the design parameters to system responses. Three design optimization strategies, including deterministic design optimization (DDO, probabilistic UDO and hybrid UDO, are applied to the conceptual design of a hybrid rocket motor (HRM used as the ascent propulsion system in Apollo lunar module. By comparison, the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.

  1. Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing

    Institute of Scientific and Technical Information of China (English)

    Zhu Hao; Tian Hui; Cai Guobiao

    2017-01-01

    Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters. This paper presents a hybrid uncertainty-based design optimization (UDO) method developed from probability theory and interval theory. Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory, while the others are defined as interval variables with interval theory. Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncer-tainty propagation from the design parameters to system responses. Three design optimization strategies, including deterministic design optimization (DDO), probabilistic UDO and hybrid UDO, are applied to the conceptual design of a hybrid rocket motor (HRM) used as the ascent propulsion system in Apollo lunar module. By comparison, the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.

  2. ADAPTIVE FLUX OBSERVER FOR PERMANENT MAGNET SYNCHRONOUS MOTORS

    Directory of Open Access Journals (Sweden)

    A. A. Bobtsov

    2015-01-01

    Full Text Available The paper deals with the observer design problem for a flux in permanent magnet synchronous motors. It is assumed that some electrical parameters such as resistance and inductance are known numbers. But the flux, the angle and the speed of the rotor are unmeasurable. The new robust approach to design an adaptive flux observer is proposed that guarantees globally boundedness of all signals and, moreover, exponential convergence to zero of observer error between the true flux value and an estimate obtained from the adaptive observer. The problem of an adaptive flux observer design has been solved with using the trigonometrical properties and linear filtering which ensures cancellation of unknown terms arisen after mathematical calculations. The key idea is the new parameterization of the dynamical model containing unknown parameters and depending on measurable current and voltage in the motor. By applying the Pythagorean trigonometric identity the linear equation has found that does not contain any functions depending on angle or angular velocity of the rotor. Using dynamical first-order filters the standard regression model is obtained that consists of unknown constant parameters and measurable functions of time. Then the gradient-like estimator is designed to reconstruct unknown parameters, and it guarantees boundedness of all signals in the system. The proposition is proved that if the regressor satisfies the persistent excitation condition, meaning the “frequency-rich” signal, then all errors in observer exponentially converges to zero. It is shown that observer error for the flux explicitly depends on estimator errors. Exponential convergence of parameter estimation errors to zero yields exponential convergence of the flux observer error to zero. The numerical example is considered.

  3. Exploring Three-Phase Systems and Synchronous Motors: A Low-Voltage and Low-Cost Experiment at the Sophomore Level

    Science.gov (United States)

    Schubert, T. F., Jr.; Jacobitz, F. G.; Kim, E. M.

    2011-01-01

    In order to meet changing curricular and societal needs, a three-phase system and synchronous motor laboratory experience for sophomore-level students in a wide variety of engineering majors was designed, implemented, and assessed. The experiment is unusual in its early placement in the curriculum, and in that it focuses primarily on basic…

  4. Iron-YBCO heterostructures and their application for trapped field superconducting motor

    Energy Technology Data Exchange (ETDEWEB)

    Granados, X [Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus U.A. Barcelona, 08193 Bellaterra (Spain); Bartolome, E [Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus U.A. Barcelona, 08193 Bellaterra (Spain); Obradors, X [Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus U.A. Barcelona, 08193 Bellaterra (Spain); Tornes, M [ETSE-UAB, Barcelona (Spain); Rodrigues, L [UNL, Lisbon (Portugal); Gawalek, W [IPHT, Jena (Germany); McCulloch, M [Department Engineering Science, University of Oxford, Oxford (United Kingdom); Hughes, D Dew [Department Engineering Science, University of Oxford, Oxford (United Kingdom); Campbell, A [IRC-UCAM, Cambridge (United Kingdom); Coombs, T [IRC-UCAM, Cambridge (United Kingdom); Ausloos, M [SUPRATEC, Liege (Belgium); Cloots, R [SUPRATEC, Liege (Belgium)

    2006-06-01

    In this work we report on the magnetic behavior of the heterostructures formed by bulk based YBCO rings and ferromagnetic yoke. The magnetization cycle has been performed by an In-Field Hall Mapping technique. A video-like recording of the magnetization process makes it possible to obtain the magnetization of selected areas. The current flowing through the superconducting rings can be deduced from the magnetic field maps. The displacement of the peak of magnetization due to the flux reversal produced by the magnetization of the yoke is also considered. These hybrid heterostructures formed by ferromagnetic and superconducting material have been applied in the construction of the rotor for a brushless AC motor. The design and construction of this machine was carried out within the framework of the TMR Network SUPERMACHINES. The rotor has been designed in a quadrupolar configuration by cutting large YBCO 'window frames' from seeded melt-textured single domain YBCO pellets. This rotor has been coupled to a conventional stator of copper coils wound on an iron armature. The stator can be excited both in bipolar or quadrupolar mode. We report on the behaviour of the motor after a field cooling process when excited in quadrupolar mode.

  5. 78 FR 2797 - Federal Motor Vehicle Safety Standards; Minimum Sound Requirements for Hybrid and Electric Vehicles

    Science.gov (United States)

    2013-01-14

    ... Sound Requirements for Hybrid and Electric Vehicles; Draft Environmental Assessment for Rulemaking To Establish Minimum Sound Requirements for Hybrid and Electric Vehicles; Proposed Rules #0;#0;Federal Register...-0148] RIN 2127-AK93 Federal Motor Vehicle Safety Standards; Minimum Sound Requirements for Hybrid and...

  6. Adaptive Nonsingular Terminal Sliding Model Control and Its Application to Permanent Magnet Synchronous Motor Drive System

    OpenAIRE

    Liu Yue; Zhou Shuo

    2016-01-01

    To improve the dynamic performance of permanent magnet synchronous motor(PMSM) drive system, a adaptive nonsingular terminal sliding model control((NTSMC) strategy was proposed. The proposed control strategy presents an adaptive variable-rated exponential reaching law which the L1 norm of state variables is introduced. Exponential and constant approach speed can adaptively adjust according to the state variables’ distance to the equilibrium position.The proposed scheme can shorten the reachin...

  7. Fault tolerant control with torque limitation based on fault mode for ten-phase permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Guo Hong

    2015-10-01

    Full Text Available This paper proposes a novel fault tolerant control with torque limitation based on the fault mode for the ten-phase permanent magnet synchronous motor (PMSM under various open-circuit and short-circuit fault conditions, which includes the optimal torque control and the torque limitation control based on the fault mode. The optimal torque control is adopted to guarantee the ripple-free electromagnetic torque operation for the ten-phase motor system under the post-fault condition. Furthermore, we systematically analyze the load capacity of the ten-phase motor system under different fault modes. And a torque limitation control approach based on the fault mode is proposed, which was not available earlier. This approach is able to ensure the safety operation of the faulted motor system in long operating time without causing the overheat fault. The simulation result confirms that the proposed fault tolerant control for the ten-phase motor system is able to guarantee the ripple-free electromagnetic torque and the safety operation in long operating time under the normal and fault conditions.

  8. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  9. Minimization of torque ripple in ferrite-assisted synchronous reluctance motors by using asymmetric stator

    Science.gov (United States)

    Xu, Meimei; Liu, Guohai; Zhao, Wenxiang; Aamir, Nazir

    2018-05-01

    Torque ripple is one of the important issues for ferrite assisted synchronous reluctance motors (FASRMs). In this paper, an asymmetrical stator is proposed for the FASRM to reduce its torque ripple. In the proposed FASRM, an asymmetrical stator is designed by appropriately choosing the angle of the slot-opening shift. Meanwhile, its analytical torque expressions are derived. The results show that the proposed FASRM has an effective reduction in the cogging torque, reluctance torque ripple and total torque ripple. Moreover, it is easy to implement while the average torque is not sacrificed.

  10. Motor current signature analysis for gearbox condition monitoring under transient speeds using wavelet analysis and dual-level time synchronous averaging

    Science.gov (United States)

    Bravo-Imaz, Inaki; Davari Ardakani, Hossein; Liu, Zongchang; García-Arribas, Alfredo; Arnaiz, Aitor; Lee, Jay

    2017-09-01

    This paper focuses on analyzing motor current signature for fault diagnosis of gearboxes operating under transient speed regimes. Two different strategies are evaluated, extensively tested and compared to analyze the motor current signature in order to implement a condition monitoring system for gearboxes in industrial machinery. A specially designed test bench is used, thoroughly monitored to fully characterize the experiments, in which gears in different health status are tested. The measured signals are analyzed using discrete wavelet decomposition, in different decomposition levels using a range of mother wavelets. Moreover, a dual-level time synchronous averaging analysis is performed on the same signal to compare the performance of the two methods. From both analyses, the relevant features of the signals are extracted and cataloged using a self-organizing map, which allows for an easy detection and classification of the diverse health states of the gears. The results demonstrate the effectiveness of both methods for diagnosing gearbox faults. A slightly better performance was observed for dual-level time synchronous averaging method. Based on the obtained results, the proposed methods can used as effective and reliable condition monitoring procedures for gearbox condition monitoring using only motor current signature.

  11. Spontaneous group synchronization of movements and respiratory rhythms.

    Directory of Open Access Journals (Sweden)

    Erwan Codrons

    Full Text Available We tested whether pre-assigned arm movements performed in a group setting spontaneously synchronized and whether synchronization extended to heart and respiratory rhythms. We monitored arm movements, respiration and electrocardiogram at rest and during spontaneous, music and metronome-associated arm-swinging. No directions were given on whether or how the arm swinging were to be synchronized between participants or with the external cues. Synchronization within 3 groups of 10 participants studied collectively was compared with pseudo-synchronization of 3 groups of 10 participants that underwent an identical protocol but in an individual setting. Motor synchronization was found to be higher in the collective groups than in the individuals for the metronome-associated condition. On a repetition of the protocol on the following day, motor synchronization in the collective groups extended to the spontaneous, un-cued condition. Breathing was also more synchronized in the collective groups than in the individuals, particularly at rest and in the music-associated condition. Group synchronization occurs without explicit instructions, and involves both movements and respiratory control rhythms.

  12. A novel PM motor with hybrid PM excitation and asymmetric rotor structure for high torque performance

    Directory of Open Access Journals (Sweden)

    Gaohong Xu

    2017-05-01

    Full Text Available This paper proposes a novel permanent magnet (PM motor for high torque performance, in which hybrid PM material and asymmetric rotor design are applied. The hybrid PM material is adopted to reduce the consumption of rare-earth PM because ferrite PM is assisted to enhance the torque production. Meanwhile, the rotor structure is designed to be asymmetric by shifting the surface-insert PM (SPM, which is used to improve the torque performance, including average torque and torque ripple. Moreover, the reasons for improvement of the torque performance are explained by evaluation and analysis of the performances of the proposed motor. Compared with SPM motor and V-type motor, the merit of high utilization ratio of rare-earth PM is also confirmed, showing that the proposed motor can offer higher torque density and lower torque ripple simultaneously with less consumption of rare-earth PM.

  13. Application of CMAC Neural Network Coupled with Active Disturbance Rejection Control Strategy on Three-motor Synchronization Control System

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-04-01

    Full Text Available Three-motor synchronous coordination system is a MI-MO nonlinear and complex control system. And it often works in poor working condition. Advanced control strategies are required to improve the control performance of the system and to achieve the decoupling between main motor speed and tension. Cerebellar Model Articulation Controller coupled with Active Disturbance Rejection Control (CMAC-ADRC control strategy is proposed. The speed of the main motor and tensions between two motors is decoupled by extended state observer (ESO in ADRC. ESO in ADRC is used to compensate internal and external disturbances of the system online. And the anti interference of the system is improved by ESO. And the same time the control model is optimized. Feedforward control is implemented by the adoption of CMAC neural network controller. And control precision of the system is improved in reason of CMAC. The overshoot of the system can be reduced without affecting the dynamic response of the system by the use of CMAC-ADRC. The simulation results show that: the CMAC- ADRC control strategy is better than the traditional PID control strategy. And CMAC-ADRC control strategy can achieve the decoupling between speed and tension. The control system using CMAC-ADRC have strong anti-interference ability and small regulate time and small overshoot. The magnitude of the system response incited by the interference using CMAC-ADRC is smaller than the system using conventional PID control 6.43 %. And the recovery time of the system with CMAC-ADRC is shorter than the system with traditional PID control 0.18 seconds. And the triangular wave tracking error of the system with CMAC-ADRC is smaller than the system with conventional PID control 0.24 rad/min. Thus the CMAC-ADRC control strategy is a good control strategy and is able to fit three-motor synchronous coordinated control.

  14. A Transformerless Hybrid Active Filter Capable of Complying with Harmonic Guidelines for Medium-Voltage Motor Drives

    Science.gov (United States)

    Kondo, Ryota; Akagi, Hirofumi

    This paper presents a transformerless hybrid active filter that is integrated into medium-voltage adjustable-speed motor drives for fans, pumps, and compressors without regenerative braking. The authors have designed and constructed a three-phase experimental system rated at 400V and 15kW, which is a downscaled model from a feasible 6.6-kV 1-MW motor drive system. This system consists of the hybrid filter connecting a passive filter tuned to the 7th harmonic filter in series with an active filter that is based on a three-level diode-clamped PWM converter, as well as an adjustable-speed motor drive in which a diode rectifier is used as the front end. The hybrid filter is installed on the ac side of the diode rectifier with no line-frequency transformer. The downscaled system has been exclusively tested so as to confirm the overall compensating performance of the hybrid filter and the filtering performance of a switching-ripple filter for mitigating switching-ripple voltages produced by the active filter. Experimental results verify that the hybrid filter achieves harmonic compensation of the source current in all the operating regions from no-load to the rated-load conditions, and that the switching-ripple filter reduces the switching-ripple voltages as expected.

  15. Characteristics Analysis and Comparison of High-Speed 4/2 and Hybrid 4/4 Poles Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    Grace Firsta Lukman

    2018-01-01

    Full Text Available This paper presents a characteristics analysis and performance comparison of high-speed two-phase 4/2 and hybrid single-phase 4/4 switched reluctance motors (SRMs. Although the motors are advantageous as high-speed drives, both conventional structures have high torque ripple as a result of the presence of the torque dead zone. In this paper, solutions to the torque dead zone problem for each motor are discussed. For the 4/2 SRM, a wide-rotor stepper-type is adopted, while for the 4/4 SRM, the structure is changed to a hybrid by adding permanent magnets (PMs. Both motors have a non-uniform air gap to modify their inductance profile, which leads to the elimination of the torque dead zone. A finite-element method was used to analyze the characteristics of each motor. Then, the manufactured motors were tested through experiments, and lastly, their performance was compared.

  16. Synchronized control of spiral CT scan for security inspection device

    International Nuclear Information System (INIS)

    Wang Jue; Jiang Zenghui; Wang Fuquan

    2008-01-01

    In security inspection system of spiral CT, the synchronization between removing and rotating, and the scan synchronization between rotating and sampling influence quality of image reconstruction, so it is difficulty and important that how to realize synchronized scan. According to the controlling demand of multi-slice Spiral CT, the method to realize synchronized scan is given. a synchronized control system is designed, in which we use a industrial PC as the control computer, use magnetic grids as position detectors, use alternating current servo motor and roller motor as drivers respectively drive moving axis and rotating axis. This method can solve the problem of synchronized scan, and has a feasibility and value of use. (authors)

  17. Fault-tolerant clock synchronization in distributed systems

    Science.gov (United States)

    Ramanathan, Parameswaran; Shin, Kang G.; Butler, Ricky W.

    1990-01-01

    Existing fault-tolerant clock synchronization algorithms are compared and contrasted. These include the following: software synchronization algorithms, such as convergence-averaging, convergence-nonaveraging, and consistency algorithms, as well as probabilistic synchronization; hardware synchronization algorithms; and hybrid synchronization. The worst-case clock skews guaranteed by representative algorithms are compared, along with other important aspects such as time, message, and cost overhead imposed by the algorithms. More recent developments such as hardware-assisted software synchronization and algorithms for synchronizing large, partially connected distributed systems are especially emphasized.

  18. Hybrid mesons with auxiliary fields

    International Nuclear Information System (INIS)

    Buisseret, F.; Mathieu, V.

    2006-01-01

    Hybrid mesons are exotic mesons in which the color field is not in the ground state. Their understanding deserves interest from a theoretical point of view, because it is intimately related to nonperturbative aspects of QCD. Moreover, it seems that some recently detected particles, such as the π 1 (1600) and the Y(4260), are serious hybrid candidates. In this work, we investigate the description of such exotic hadrons by applying the auxiliary fields technique (also known as the einbein field method) to the widely used spinless Salpeter Hamiltonian with appropriate linear confinement. Instead of the usual numerical resolution, this technique allows to find simplified analytical mass spectra and wave functions of the Hamiltonian, which still lead to reliable qualitative predictions. We analyse and compare two different descriptions of hybrid mesons, namely a two-body q system with an excited flux tube, or a three-body qg system. We also compute the masses of the 1 -+ hybrids. Our results are shown to be in satisfactory agreement with lattice QCD and other effective models. (orig.)

  19. Investigation of a Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor Used for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yumeng Li

    2014-06-01

    Full Text Available This paper presents a novel five-phase permanent magnet synchronous motor (PMSM, which contains dual rotors and a single stator, equivalent to two five-phase motors working together. Thus, this kind of motor has the potential of good fault tolerant capability and high torque density, which makes it appropriate for use in electric vehicles. In view of the different connection types, the inside and outside stator windings can be driven in series or parallel, which results in the different performances of the magnetomotive force (MMF and torque under open-circuit fault conditions. By decomposing the MMF, the reason that torque ripple increases after open-circuit faults is explained, and the relationship between MMF and torque is revealed. Then, the current control strategy is applied to adjust the open-circuit faults, and the electromagnetic analysis and MMF harmonics analysis are performed to interpret the phenomenon that the torque ripple is still larger than in the normal situation. The investigations are verified by finite element analysis results.

  20. Random field Ising chain and neutral networks with synchronous dynamics

    International Nuclear Information System (INIS)

    Skantzos, N.S.; Coolen, A.C.C.

    2001-01-01

    We first present an exact solution of the one-dimensional random-field Ising model in which spin-updates are made fully synchronously, i.e. in parallel (in contrast to the more conventional Glauber-type sequential rules). We find transitions where the support of local observables turns from a continuous interval into a Cantor set and we show that synchronous and sequential random-field models lead asymptotically to the same physical states. We then proceed to an application of these techniques to recurrent neural networks where 1D short-range interactions are combined with infinite-range ones. Due to the competing interactions these models exhibit phase diagrams with first-order transitions and regions with multiple locally stable solutions for the macroscopic order parameters

  1. Initial position estimation method for permanent magnet synchronous motor based on improved pulse voltage injection

    DEFF Research Database (Denmark)

    Wang, Z.; Lu, K.; Ye, Y.

    2011-01-01

    According to saliency of permanent magnet synchronous motor (PMSM), the information of rotor position is implied in performance of stator inductances due to the magnetic saturation effect. Researches focused on the initial rotor position estimation of PMSM by injecting modulated pulse voltage...... vectors. The relationship between the inductance variations and voltage vector positions was studied. The inductance variation effect on estimation accuracy was studied as well. An improved five-pulses injection method was proposed, to improve the estimation accuracy by choosing optimaized voltage vectors...

  2. AIRGAP MAGNETIC INDUCTION DISTRIBUTION IN A COAXIALLY-LINEAR SYNCHRONOUS MOTOR WITH AXIAL AND RADIAL DIRECTION OF THE RUNNER PERMANENT MAGNETS MAGNETIZATION

    Directory of Open Access Journals (Sweden)

    Abbasian Mohsen

    2013-02-01

    Full Text Available Results of theoretical and experimental research on magnetic induction distribution in the air gap of a coaxially-linear synchronous motor with reciprocal motion within the pole pitch and axial and radial direction of the permanent magnets magnetization are presented.

  3. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Moral, A. del, E-mail: delmoral@unizar.es [Laboratorio de Magnetismo, Departamento de Física de Materia Condensada and Instituto de Ciencia de Materiales, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain); Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain); Azanza, María J., E-mail: mjazanza@unizar.es [Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain)

    2015-03-01

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca{sup 2+} Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B{sub 0}≅0.2–15 mT) AC-MF of frequency f{sub M}=50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca{sup 2+} Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons.

  4. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    International Nuclear Information System (INIS)

    Moral, A. del; Azanza, María J.

    2015-01-01

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca 2+ Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B 0 ≅0.2–15 mT) AC-MF of frequency f M =50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca 2+ Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons

  5. Sliding observer-based demagnetisation fault-tolerant control in permanent magnet synchronous motors

    Directory of Open Access Journals (Sweden)

    Changfan Zhang

    2017-04-01

    Full Text Available This study proposes a fault-tolerant control method for permanent magnet synchronous motors (PMSMs based on the active flux linkage concept, which addresses permanent magnet (PM demagnetisation faults in PMSMs. First, a mathematical model for a PMSM is established based on active flux linkage, and then the effect of PM demagnetisation on the PMSM is analysed. Second, the stator current in the static coordinate is set as the state variable, an observer is designed based on a sliding-mode variable structure, and an equation for active flux linkage is established for dynamic estimation based on the equivalent control principle of sliding-mode variable structure. Finally, the active flux linkage for the next moment is predicted according to the operating conditions of the motor and the observed values of the current active flux linkage. The deadbeat control strategy is applied to eliminate errors in the active flux linkage and realise the objective of fault-tolerant control. A timely and effective control for demagnetisation faults is achieved using the proposed method, which validity and feasibility are verified by the simulation and experiment results.

  6. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    Science.gov (United States)

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  7. Permanent magnet synchronous motor servo system control based on μC/OS

    Science.gov (United States)

    Shi, Chongyang; Chen, Kele; Chen, Xinglong

    2015-10-01

    When Opto-Electronic Tracking system operates in complex environments, every subsystem must operate efficiently and stably. As a important part of Opto-Electronic Tracking system, the performance of PMSM(Permanent Magnet Synchronous Motor) servo system affects the Opto-Electronic Tracking system's accuracy and speed greatly[1][2]. This paper applied embedded real-time operating system μC/OS to the control of PMSM servo system, implemented SVPWM(Space Vector Pulse Width Modulation) algorithm in PMSM servo system, optimized the stability of PMSM servo system. Pointing on the characteristics of the Opto-Electronic Tracking system, this paper expanded μC/OS with software redundancy processes, remote debugging and upgrading. As a result, the Opto- Electronic Tracking system performs efficiently and stably.

  8. A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM

    Directory of Open Access Journals (Sweden)

    Gilberto Herrera-Ruíz

    2013-03-01

    Full Text Available A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component’s harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

  9. A new adaptive self-tuning Fourier coefficients algorithm for periodic torque ripple minimization in permanent magnet synchronous motors (PMSM).

    Science.gov (United States)

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-03-19

    A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

  10. Research on Strategies and Methods Suppressing Permanent Magnet Demagnetization in Permanent Magnet Synchronous Motors Based on a Multi-Physical Field and Rotor Multi-Topology Structure

    Directory of Open Access Journals (Sweden)

    Lin Li

    2017-12-01

    Full Text Available In this paper, a permanent magnet synchronous motor (PMSM with sleeves on the rotor outer surface is investigated. The purpose of sleeves is to fix the permanent magnets and protect them from being destroyed by the large centrifugal force. However, the sleeve material characteristics have a great influence on the PMSM, and therewith, most of the rotor eddy-current losses are generated in the rotor sleeve, which could increase the device temperature and even cause thermal demagnetization of the magnets. Thus, a sleeve scheme design with low eddy-current losses is necessary, and a method suppressing the local temperature peak of permanent magnets is presented. The 3-D electromagnetic finite element model of a 12.5 kW, 2000 r/min PMSM with a segmented sleeve is established, and the electromagnetic field is calculated by using the finite element method. The results show the effectiveness of the presented method in reducing the eddy current losses in the rotor. Using the thermal method, it can be found that the maximum temperature position and zone of permanent magnet will change. Thus, some strategies are comparatively analyzed in order to obtain the change rule of the position and zone. The obtained conclusions may provide a useful reference for the design and research of PMSMs.

  11. Influence of Internal and External Noise on Spontaneous Visuomotor Synchronization.

    Science.gov (United States)

    Varlet, Manuel; Schmidt, R C; Richardson, Michael J

    2016-01-01

    Historically, movement noise or variability is considered to be an undesirable property of biological motor systems. In particular, noise is typically assumed to degrade the emergence and stability of rhythmic motor synchronization. Recently, however, it has been suggested that small levels of noise might actually improve the functioning of motor systems and facilitate their adaptation to environmental events. Here, the authors investigated whether noise can facilitate spontaneous rhythmic visuomotor synchronization. They examined the influence of internal noise in the rhythmic limb movements of participants and external noise in the movement of an oscillating visual stimulus on the occurrence of spontaneous synchronization. By indexing the natural frequency variability of participants and manipulating the frequency variability of the visual stimulus, the authors demonstrated that both internal and external noise degrade synchronization when the participants' and stimulus movement frequencies are similar, but can actually facilitate synchronization when the frequencies are different. Furthermore, the two kinds of noise interact with each other. Internal noise facilitates synchronization only when external noise is minimal and vice versa. Too much internal and external noise together degrades synchronization. These findings open new perspectives for better understanding the role of noise in human rhythmic coordination.

  12. An improved efficiency of fuzzy sliding mode control of permanent magnet synchronous motor for wind turbine generator pumping system

    International Nuclear Information System (INIS)

    Benchabane, F.; Titaouine, A.; Guettaf, A.; Yahia, K.; Taibi, D.; Bennis, O.

    2012-01-01

    This paper presents an analysis by which the dynamic performances of a permanent magnet synchronous motor (PMSM) motor is controlled through a hysteresis current loop and an outer speed loop with different controllers. The dynamics of the wind turbine pumping drive system with (PI) and a fuzzy sliding mode (FSM) speed controllers are presented. In order to optimize the overall system efficiency, a maximum power point tracker is also used. Simulation is carried out by formatting the mathematical model for wind turbine generator, motor and pump load. The results for such complicated and nonlinear system, with fuzzy sliding mode speed controller show improvement in transient response of the PMSM drive over conventional PI. The effectiveness of the FSM controller is also demonstrated. (author)

  13. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Clinton B McCracken

    Full Text Available High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS, is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP, the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD. We performed simultaneous multi-site local field potential (LFP recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective, low-frequency (LF, 15 Hz; ineffective and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR, ventroanterior thalamus (VA, primary motor cortex (M1, and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic

  14. Electron field emission characteristics of graphene/carbon nanotubes hybrid field emitter

    International Nuclear Information System (INIS)

    Chen, Leifeng; He, Hong; Yu, Hua; Cao, Yiqi; Lei, Da; Menggen, QiQiGe; Wu, Chaoxing; Hu, Liqin

    2014-01-01

    The graphene (GP) and multi-walled carbon nanotubes (MCNTs) hybrid nanostructure emitter was constructed by a larger scale electrophoretic deposition (EPD) method. The field emission (FE) performance of the hybrid emitter is greatly improved compared with that of only GP or MCNTs emitter. The low turn-on electric field (EF), the low threshold EF and the reliability FE properties are obtained from the hybrid emitter. The better FE properties result from the improved electrical properties. For further enhancement FE of hybrids, Ag Nanoparticles (NPs) were decorated on the hybrids and FE characteristics were also studied. These studies indicate that we can use the hybrid nanostructure to improve conductivity and contact resistance, which results in enhancement of the FE properties

  15. Synchronous Half-Wave Rectifier

    Science.gov (United States)

    Rippel, Wally E.

    1989-01-01

    Synchronous rectifying circuit behaves like diode having unusually low voltage drop during forward-voltage half cycles. Circuit particularly useful in power supplies with potentials of 5 Vdc or less, where normal forward-voltage drops in ordinary diodes unacceptably large. Fabricated as monolithic assembly or as hybrid. Synchronous half-wave rectifier includes active circuits to attain low forward voltage drop and high rectification efficiency.

  16. Dependence of synchronization transitions on mean field approach in two-way coupled neural system

    Science.gov (United States)

    Shi, J. C.; Luo, M.; Huang, C. S.

    2018-03-01

    This work investigates the synchronization transitions in two-way coupled neural system by mean field approach. Results show that, there exists a critical noise intensity for the synchronization transitions, i.e., above (or below) the critical noise intensity, the synchronization transitions are decreased (or hardly change) with increasing the noise intensity. Meanwhile, the heterogeneity effect plays a negative role for the synchronization transitions, and above critical coupling strength, the heterogeneity effect on synchronization transitions can be negligible. Furthermore, when an external signal is introduced into the coupled system, the novel frequency-induced and amplitude-induced synchronization transitions are found, and there exist an optimal frequency and an optimal amplitude of external signal which makes the system to display the best synchronization transitions. In particular, it is observed that the synchronization transitions can not be further affected above critical frequency of external signal.

  17. Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems

    International Nuclear Information System (INIS)

    Hu Manfeng; Xu Zhenyuan; Zhang Rong; Hu Aihua

    2007-01-01

    Based on the active control idea and the invariance principle of differential equations, a general scheme of adaptive full state hybrid projective synchronization (FSHPS) and parameters identification of a class of chaotic (hyper-chaotic) systems with linearly dependent uncertain parameters is proposed in this Letter. With this effective scheme parameters identification and FSHPS of chaotic and hyper-chaotic systems can be realized simultaneously. Numerical simulations on the chaotic Chen system and the hyper-chaotic Chen system are presented to verify the effectiveness of the proposed scheme

  18. Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle

    OpenAIRE

    Siavash Sadeghi; Mojtaba Mirsalim; Arash Hassanpour Isfahani

    2010-01-01

    Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicl...

  19. Analisa Penerapan Sistem Hybrid Pada Kapal KPC-28 Dengan Kombinasi Diesel Engine dan Motor Listrik Yang Disuplai Dengan Batterai

    Directory of Open Access Journals (Sweden)

    Tangguh Tangguh Bimantoro

    2014-03-01

    Full Text Available Teknologi Hybrid System Vessel akhir-akhir ini sedang menjadi bahasan yang sering dibicarakan di dunia pendidikan dan teknologi permesinan. Teknologi Hybrid System Vessel yang dimaksud adalah kapal yang berjalan dengan dua sumber tenaga, mesin yang bekerja dengan sumber tenaga bahan bakar dan motor listrik yang bekerja dengan sumber tenaga listrik. Oleh karena adanya permasalahan tersebut maka dikembangkanlah konsep system hybrid pada kapal.Hybrid ini mengacu teknologi pada mobil hybrid yang sudah dikembangkan sekarang, tujuan dari hybrid ini adalah sebagai penghematan BBM dan juga sebagai pereduksi emisi di system permesinan kapal.Penelitian ini menggunakan simulasi dengan software Maxsurf, kemudian dilakukan dengan metode perhitungan manual yang nantinya digunakan untuk menentukan jumlah batterai yang dibutuhkan pada penggerak motor induksi. Hasil dari penelitian ini berupa desain  Hybrid System kapal KPC – 28, serta hasil analisa Hybrid System di kapal apakah memberikan effisiensi bahan bakar yang cukup hemat dengan tanpa menggunakan Hybrid System pada mesin kapal tersebut.

  20. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  1. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.

    Science.gov (United States)

    Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike

    2015-01-01

    Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

  2. Electrotechnics - AC motors. Asynchronous and brush-less motors - Lecture and exercises with solutions; Electrotechnique - Moteurs a courant alternatif. Moteurs asynchrones et brushless - Cours et problemes resolus

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, D.

    2005-07-01

    This book proposes a presentation of AC electric motors essentially based on physics and technology. Its originality consists in avoiding to use mathematical formulations (like Park's transformation). The modeling retained, which only uses magnetic momentum, magnetic fields and reluctance concepts, leads simply and naturally to the vectorial control principle. The book develops some lecture elements which includes some topics rarely considered like the dimensioning of an asynchronous motor or of a single-phase brush-less motor. Experimental results illustrate the physical phenomena described and many original problems are resolved and commented at the end of each chapter. Content: signals and systems in electrotechnics, torque and rotating magnetic fields generation, asynchronous machine in permanent regime, speed variation of the asynchronous motor, special asynchronous motors, synchronous machine in permanent regime, brush-less motor, note about step motors, note about inverters, index. (J.S.)

  3. Presentation and Performance Evaluation of a Novel Stator-Permanent-Magnet Hybrid Stepping Motor

    Directory of Open Access Journals (Sweden)

    Binglin Lu

    2017-05-01

    Full Text Available In this paper, a new type of hybrid stepping motor (HSM with permanent magnets (PMs embedded in the stator, namely the stator-permanent-magnet hybrid stepping motor (SHSM, is presented. It has the same operation principles as the traditional HSM, with a 2-D distributed magnetic field nature and superiorities such as simpler rotor structure, easier PM cooling, higher torque and power density, and higher power grade. Its structural topology and operation principles are initially presented. Then an investigation on the performance comparison between the HSM and the SHSM, in terms of PM flux density, PM torque, detent torque, positional holding accuracy, stator core saturation issue, PM flux leakage, and PM utilization rate is carried out theoretically to make an assessment of the performance superiorities of the SHSM. A prototype of a 2-phase 8-pole 50-rotor-tooth SHSM is fabricated and experimentally compared with the HSM by using finite element analysis (FEA to verify the motor’s operational feasibility and the theoretical analysis. The FEA and experimental results show that the proposed SHSM has performance advantages such as higher torque density, higher power grade, and higher pull-out torque, holding torque, and torque-speed property, although it has performance defects such as higher torque ripple and relatively lower positional holding accuracy in the open-loop operation than the conventional HSM. Consequently, this novel SHSM is more suitable for electromechanical energy conversion applications rather than positioning mechanisms, especially taking into account the open-loop control advantage.

  4. Thermal Performance of Motor and Inverter in an Integrated Starter Generator System for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Sung Chul Kim

    2013-11-01

    Full Text Available If the integrated starter generator (ISG motor and inverter operate under continuously high loading conditions, the system’s performance and durability will decrease and the heat dissipation requirements will increase. Therefore, in this study, we developed two cooling designs for the ISG motor and inverter, and then carried out both a model analysis and an experiment on the fluid flow and thermal characteristics of the system under various operating conditions. As the outdoor temperature increased from 25 °C to 95 °C, the coil temperature of the air-cooled motor increased by about 82 °C. Under the harsh-air condition of 95 °C, the coil of the air-cooled motor increased to a maximum temperature of about 158.5 °C. We also determined that the temperature of the metal-oxide-semiconductor field-effect transistor (MOSFET chip in the liquid-cooled inverter increased to a maximum temperature of about 96.8 °C under a coolant flow rate of 4 L/min and a coolant temperature of 65 °C. The observed thermal performance of the ISG motor and inverter using the proposed cooling structures was found to be sufficient for heat loads under various real driving conditions for a hybrid electric vehicle (HEV.

  5. Research and simulation of the decoupling transformation in AC motor vector control

    Science.gov (United States)

    He, Jiaojiao; Zhao, Zhongjie; Liu, Ken; Zhang, Yongping; Yao, Tuozhong

    2018-04-01

    Permanent magnet synchronous motor (PMSM) is a nonlinear, strong coupling, multivariable complex object, and transformation decoupling can solve the coupling problem of permanent magnet synchronous motor. This paper gives a permanent magnet synchronous motor (PMSM) mathematical model, introduces the permanent magnet synchronous motor vector control coordinate transformation in the process of modal matrix inductance matrix transform through the matrix related knowledge of different coordinates of diagonalization, which makes the coupling between the independent, realize the control of motor current and excitation the torque current coupling separation, and derived the coordinate transformation matrix, the thought to solve the coupling problem of AC motor. Finally, in the Matlab/Simulink environment, through the establishment and combination between the PMSM ontology, coordinate conversion module, built the simulation model of permanent magnet synchronous motor vector control, introduces the model of each part, and analyzed the simulation results.

  6. FIVE PHASE PENTAGON HYBRID STEPPER MOTOR INTELLIGENT HALF/FULL DRIVER

    Directory of Open Access Journals (Sweden)

    Alexandru Morar

    2017-06-01

    Full Text Available Stepper motors are very well suited for positioning applications since they can achieve very good positional accuracy without complicated feedback loops associated with servo systems. In this paper, an intelligent five-phase stepper motor driver of business card size proposed. Constant current chopping technique was applied for the purposes of high torque, high velocity and high efficiency. The driver was designed to drive a middle-sized hybrid stepper motor with wire current rating from 0.4 to 1.5A. An up-to-dated translator of five-phase stepping motor was used to drive the gates of N- channel MOSFET array. The resolution in full/half mode is 0.72/0.36 degrees/step. Moreover, an automatic power down circuit was used to limit the power consuming as the motor stops. Additionally, a self-testing program embedded in a 80C31-CPU (PCL838 can self-test whether the driver is normal or not. This embedded program including linear acceleration and deceleration routines also can serve as a positioning controller. The dimension of this driver is approximate 70x65x35 millimeters, which is smaller than a business card. Experimental results demonstrate that the responses of the driver can reach 60 kilo pulses per second

  7. Trial manufacture of liquid nitrogen cooling High Temperature Superconductivity Motor

    International Nuclear Information System (INIS)

    Sugimoto, H; Nishikawa, T; Tsuda, T; Hondou, Y; Akita, Y; Takeda, T; Okazaki, T; Ohashi, S; Yoshida, Y

    2006-01-01

    We present a new high temperature superconductivity (HTS) synchronous motor using the liquid nitrogen as the refrigerant in this paper. This motor is designed to be used as the propulsion motor in ship. Because we use the liquid nitrogen as the refrigerant, it is possible to simplify the cooling equipments in the motor. And in our design, we apply the axial flux type of motor to simplify the cryostat of the HTS wires used to make the field coils. Here, the fields using the bismuth HTS wire for the HTS coils are fixed. Moreover, the cores used in the fields are separated from cryostat, and the armature applies the core-less structure. According to various the electromagnetic field analysis results, the new motor was designed and produced. The diameter of the motor is 650mm, and the width of the motor is 360mm. The motor's rated output is 8.8kW at 100rpm, while the overload output is 44kW, and the maximum efficiency is 97.7%. Also, in order to further miniaturize the motor, other magnetic field analysis have been done when the high-current-density type HTS wire was used and the permendur was used instead of magnetic steel plates. In this case, the motor's rated output is 12kW, and the overload output is 60kW

  8. Field errors in hybrid insertion devices

    International Nuclear Information System (INIS)

    Schlueter, R.D.

    1995-02-01

    Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed

  9. Field errors in hybrid insertion devices

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, R.D. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed.

  10. A bipedal DNA Brownian motor with coordinated legs.

    Science.gov (United States)

    Omabegho, Tosan; Sha, Ruojie; Seeman, Nadrian C

    2009-04-03

    A substantial challenge in engineering molecular motors is designing mechanisms to coordinate the motion between multiple domains of the motor so as to bias random thermal motion. For bipedal motors, this challenge takes the form of coordinating the movement of the biped's legs so that they can move in a synchronized fashion. To address this problem, we have constructed an autonomous DNA bipedal walker that coordinates the action of its two legs by cyclically catalyzing the hybridization of metastable DNA fuel strands. This process leads to a chemically ratcheted walk along a directionally polar DNA track. By covalently cross-linking aliquots of the walker to its track in successive walking states, we demonstrate that this Brownian motor can complete a full walking cycle on a track whose length could be extended for longer walks. We believe that this study helps to uncover principles behind the design of unidirectional devices that can function without intervention. This device should be able to fulfill roles that entail the performance of useful mechanical work on the nanometer scale.

  11. Control of chaos in permanent magnet synchronous motor by using optimal Lyapunov exponents placement

    Energy Technology Data Exchange (ETDEWEB)

    Ataei, Mohammad, E-mail: ataei@eng.ui.ac.i [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal Code 8174673441, Isfahan (Iran, Islamic Republic of); Kiyoumarsi, Arash, E-mail: kiyoumarsi@eng.ui.ac.i [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal Code 8174673441, Isfahan (Iran, Islamic Republic of); Ghorbani, Behzad, E-mail: behzad.ghorbani63@gmail.co [Department of Control Engineering, Najafabad Azad University, Najafabad, Isfahan (Iran, Islamic Republic of)

    2010-09-13

    Permanent Magnet Synchronous Motor (PMSM) experiences chaotic behavior for a certain range of its parameters. In this case, since the performance of the PMSM degrades, the chaos should be eliminated. In this Letter, the control of the undesirable chaos in PMSM using Lyapunov exponents (LEs) placement is proposed that is also improved by choosing optimal locations of the LEs in the sense of predefined cost function. Moreover, in order to provide the physical realization of the method, nonlinear parameter estimator for the system is suggested. Finally, to show the effectiveness of the proposed methodology, the simulation results for applying this control strategy are provided.

  12. Position Control of Linear Synchronous Motor Drives with Exploitation of Forced Dynamics Control Principles

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2004-01-01

    Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.

  13. Magnetic Decoupling Design and Experimental Validation of a Radial-Radial Flux Compound-Structure Permanent-Magnet Synchronous Machine for HEVs

    Directory of Open Access Journals (Sweden)

    Zhiyi Song

    2012-10-01

    Full Text Available The radial-radial flux compound-structure permanent-magnet synchronous machine (CS-PMSM, integrated by two concentrically arranged permanent-magnet electric machines, is an electromagnetic power-splitting device for hybrid electric vehicles (HEVs. As the two electric machines share a rotor as structural and magnetic common part, their magnetic paths are coupled, leading to possible mutual magnetic-field interference and complex control. In this paper, a design method to ensure magnetic decoupling with minimum yoke thickness of the common rotor is investigated. A prototype machine is designed based on the proposed method, and the feasibility of magnetic decoupling and independent control is validated by experimental tests of mutual influence. The CS-PMSM is tested by a designed driving cycle, and functions to act as starter motor, generator and to help the internal combustion engine (ICE operate at optimum efficiency are validated.

  14. A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2015-08-01

    Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.

  15. Investigation of Electromagnetic, Thermal and Mechanical Characteristics of a Five-Phase Dual-Rotor Permanent-Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-09-01

    Full Text Available This paper investigates of a kind of five-phase dual-rotor permanent-magnet synchronous motor (DRPMSM, which contains dual rotors and a single stator. This kind of motor has the potential advantages of high power density, high reliability and high efficiency, which make it more appropriate for using in electric vehicles (EVs. In order to evaluate the most suitable power level for this kind of structure, the electromagnetic, the thermal and the mechanical characteristics are investigated in this paper. The length to diameter ratio of motors is researched to obtain the highest power density and then the optimum ratio is obtained. Based on the optimum ratio, the thermal characteristics are researched under natural condition and forced-air cooling condition with different wind speeds. In addition, the mechanical characteristics are analyzed under no-load and different loads conditions, respectively. All of the results are analyzed by two-dimension (2-D and three-dimension (3-D finite element method (FEM simulation, which provide a good reference to select suitable power level for this kind of motor structure. Finally, a DRPMSM prototype is manufactured and tested. The experimental results effectively verify the FEM results.

  16. Professor: A motorized field-based phenotyping cart

    Science.gov (United States)

    An easy-to-customize, low-cost, low disturbance, motorized proximal sensing cart for field-based high-throughput phenotyping is described. General dimensions, motor specifications, and a remote operation application are given. The cart, named Professor, supports mounting multiple proximal sensors an...

  17. Parametric study and performance analysis of hybrid rocket motors with double-tube configuration

    Science.gov (United States)

    Yu, Nanjia; Zhao, Bo; Lorente, Arnau Pons; Wang, Jue

    2017-03-01

    The practical implementation of hybrid rocket motors has historically been hampered by the slow regression rate of the solid fuel. In recent years, the research on advanced injector designs has achieved notable results in the enhancement of the regression rate and combustion efficiency of hybrid rockets. Following this path, this work studies a new configuration called double-tube characterized by injecting the gaseous oxidizer through a head end injector and an inner tube with injector holes distributed along the motor longitudinal axis. This design has demonstrated a significant potential for improving the performance of hybrid rockets by means of a better mixing of the species achieved through a customized injection of the oxidizer. Indeed, the CFD analysis of the double-tube configuration has revealed that this design may increase the regression rate over 50% with respect to the same motor with a conventional axial showerhead injector. However, in order to fully exploit the advantages of the double-tube concept, it is necessary to acquire a deeper understanding of the influence of the different design parameters in the overall performance. In this way, a parametric study is carried out taking into account the variation of the oxidizer mass flux rate, the ratio of oxidizer mass flow rate injected through the inner tube to the total oxidizer mass flow rate, and injection angle. The data for the analysis have been gathered from a large series of three-dimensional numerical simulations that considered the changes in the design parameters. The propellant combination adopted consists of gaseous oxygen as oxidizer and high-density polyethylene as solid fuel. Furthermore, the numerical model comprises Navier-Stokes equations, k-ε turbulence model, eddy-dissipation combustion model and solid-fuel pyrolysis, which is computed through user-defined functions. This numerical model was previously validated by analyzing the computational and experimental results obtained for

  18. Adaptive PIF control for permanent magnet synchronous motors based on GPC.

    Science.gov (United States)

    Lu, Shaowu; Tang, Xiaoqi; Song, Bao

    2012-12-24

    To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results.

  19. Adaptive PIF Control for Permanent Magnet Synchronous Motors Based on GPC

    Directory of Open Access Journals (Sweden)

    Shaowu Lu

    2012-12-01

    Full Text Available To enhance the control performance of permanent magnet synchronous motors (PMSMs, a generalized predictive control (GPC-based proportional integral feedforward (PIF controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results.

  20. 75 FR 71648 - Federal Motor Vehicle Safety Standards, Child Restraint Systems; Hybrid III 10-Year-Old Child...

    Science.gov (United States)

    2010-11-24

    ... No. NHTSA-2010-0158 Regulation Identifier No. (RIN) 2127-AJ44 Federal Motor Vehicle Safety Standards, Child Restraint Systems; Hybrid III 10-Year-Old Child Test Dummy AGENCY: National Highway Traffic Safety... (SNPRM). SUMMARY: This document proposes to amend Federal Motor Vehicle Safety Standard (FMVSS) No. 213...

  1. Development of a field pole of 1 MW-class HTS motor

    International Nuclear Information System (INIS)

    Yuan, S; Kimura, Y; Miki, M; Felder, B; Tsuzuki, K; Izumi, M; Ida, T; Umemoto, K; Aizawa, K; Yokoyama, M

    2010-01-01

    We report a field-pole high-temperature superconductor (HTS) magnet designed for 1 MW-class motor for propulsion. The field pole is assembled to the rotor of the radial-type motor. Each field pole is composed of HTS-Bi2223 tape wound into coils which have been piled up as a double pancake coils. In the design concept of the motor, we employ field poles without iron core. We prepared the test field-pole coil, whose dimension is smaller than the designed one for 1 MW, and tested its performances after cooling under self-field and external magnetic field. We verified the operation with the minimum bend radius of the coils required in the motor design, while keeping an optimal current which is lower than the critical current of the field-pole coil. The test HTS field poles were successfully cooled down and operated under a magnetic field ranging up to 5 T. We report the results of the test field-pole coil and the manufacture of a practical racetrack coil with Bi2223 and discuss the adaptability to 1 MW-class motors.

  2. Development of a field pole of 1 MW-class HTS motor

    Science.gov (United States)

    Yuan, S.; Kimura, Y.; Miki, M.; Felder, B.; Tsuzuki, K.; Ida, T.; Izumi, M.; Umemoto, K.; Aizawa, K.; Yokoyama, M.

    2010-06-01

    We report a field-pole high-temperature superconductor (HTS) magnet designed for 1 MW-class motor for propulsion. The field pole is assembled to the rotor of the radial-type motor. Each field pole is composed of HTS-Bi2223 tape wound into coils which have been piled up as a double pancake coils. In the design concept of the motor, we employ field poles without iron core. We prepared the test field-pole coil, whose dimension is smaller than the designed one for 1 MW, and tested its performances after cooling under self-field and external magnetic field. We verified the operation with the minimum bend radius of the coils required in the motor design, while keeping an optimal current which is lower than the critical current of the field-pole coil. The test HTS field poles were successfully cooled down and operated under a magnetic field ranging up to 5 T. We report the results of the test field-pole coil and the manufacture of a practical racetrack coil with Bi2223 and discuss the adaptability to 1 MW-class motors.

  3. Design and Implementation of Recursive Model Predictive Control for Permanent Magnet Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Xuan Wu

    2015-01-01

    Full Text Available In order to control the permanent-magnet synchronous motor system (PMSM with different disturbances and nonlinearity, an improved current control algorithm for the PMSM systems using recursive model predictive control (RMPC is developed in this paper. As the conventional MPC has to be computed online, its iterative computational procedure needs long computing time. To enhance computational speed, a recursive method based on recursive Levenberg-Marquardt algorithm (RLMA and iterative learning control (ILC is introduced to solve the learning issue in MPC. RMPC is able to significantly decrease the computation cost of traditional MPC in the PMSM system. The effectiveness of the proposed algorithm has been verified by simulation and experimental results.

  4. Control system for several rotating mirror camera synchronization operation

    Science.gov (United States)

    Liu, Ningwen; Wu, Yunfeng; Tan, Xianxiang; Lai, Guoji

    1997-05-01

    This paper introduces a single chip microcomputer control system for synchronization operation of several rotating mirror high-speed cameras. The system consists of four parts: the microcomputer control unit (including the synchronization part and precise measurement part and the time delay part), the shutter control unit, the motor driving unit and the high voltage pulse generator unit. The control system has been used to control the synchronization working process of the GSI cameras (driven by a motor) and FJZ-250 rotating mirror cameras (driven by a gas driven turbine). We have obtained the films of the same objective from different directions in different speed or in same speed.

  5. On the equivalence of electromagnetic and clock-transport synchronization in noninertial frames and gravitational fields

    International Nuclear Information System (INIS)

    Rumpf, H.

    1984-01-01

    Synchronization by slow clock transport is shown to be equivalent so that by electromagnetic signals for clocks moving along the trajectories of a timelike Killing vector field, provided the gravitational redshift is corrected for and the synchronization paths are the same. (Author)

  6. Lifecycle Analysis of Different Motors from the Standpoint of Environmental Impact

    Directory of Open Access Journals (Sweden)

    Orlova S.

    2016-12-01

    Full Text Available Comparative analysis is performed for different motors from the standpoint of damage inflicted by them during their lifecycle. Three types of motors have been considered: the synchronous reluctance motor, the permanent magnet assisted synchronous reluctance motor and the induction motor. The assessment of lifecycle has been made in terms of its four stages: manufacturing, distribution, use and end of life. The results show that the production costs of synchronous reluctance motor are lower compared to that of permanent magnet assisted motors, but due to their low efficiency they exert the greatest environmental impact. The main conclusion is that the assessment made at the early designing stage for the related environmental impact enables its reduction.

  7. Structural Analysis of the Support System for a Large Compressor Driven by a Synchronous Electric Motor

    Science.gov (United States)

    Winter, J. R.

    1984-01-01

    For economic reasons, the steam drive for a large compressor was replaced by a large synchronous electric motor. Due to the resulting large increase in mass and because the unit was mounted on a steel frame approximately 18 feet above ground level, it was deemed necessary to determine if a steady state or transient vibration problem existed. There was a definite possibility that a resonant or near resonant condition could be encountered. The ensuing analysis, which led to some structural changes as the analysis proceeded, did not reveal any major steady state vibration problems. However, the analysis did indicate that the system would go through several natural frequencies of the support structure during start-up and shutdown. This led to the development of special start-up and shutdown procedures to minimize the possibility of exciting any of the major structural modes. A coast-down could result in significant support structure and/or equipment damage, especially under certain circumstances. In any event, dynamic field tests verified the major analytical results. The unit has now been operating for over three years without any major vibration problems.

  8. Chaos control and synchronization of two neurons exposed to ELF external electric field

    International Nuclear Information System (INIS)

    Wang Jiang; Zhang Ting; Che Yanqiu

    2007-01-01

    Chaos control and synchronization of two unidirectional coupled neurons exposed to ELF electrical field via nonlinear control technique is investigated. Based on results of space-time characteristics of trans-membrane voltage, the variation of cell trans-membrane voltage exposed to extremely low frequency (ELF) electric field is analyzed. The dynamical behaviors of the modified Hodgkin-Huxley (HH) model are identified under the periodic ELF electric field using both analytical and numerical analysis. Then, using the results of the analysis, a nonlinear feedback linearization control scheme and a modified adaptive control strategy are designed to synchronize the two unidirectional coupled neurons and stabilize the chaotic trajectory of the slave system to desired periodic orbit of the master system. The simulation results demonstrated the efficiency of the proposed algorithms

  9. Adaptive Sliding Mode Control of Chaos in Permanent Magnet Synchronous Motor via Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Tat-Bao-Thien Nguyen

    2014-01-01

    Full Text Available In this paper, based on fuzzy neural networks, we develop an adaptive sliding mode controller for chaos suppression and tracking control in a chaotic permanent magnet synchronous motor (PMSM drive system. The proposed controller consists of two parts. The first is an adaptive sliding mode controller which employs a fuzzy neural network to estimate the unknown nonlinear models for constructing the sliding mode controller. The second is a compensational controller which adaptively compensates estimation errors. For stability analysis, the Lyapunov synthesis approach is used to ensure the stability of controlled systems. Finally, simulation results are provided to verify the validity and superiority of the proposed method.

  10. A study on stable levitation of permanent magnet transportation system with coreless linear synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Hiwaki, H [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Watada, M [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Torii, S [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Ebihara, D [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan)

    1996-12-31

    In the permanent magnet levitation system, it is impossible to stabilize the motion of the vehicle in both levitation and guidance directions only by permanent magnet. Therefore, the authors proposed the combined system of permanent magnet for levitation and coreless linear synchronous motor (coreless LSM). To design the coreless coils for LSM, the method to calculate the spring coefficient between coreless coil and permanent magnet for LSM is shown. By using this method, the spring coefficients of the three coil arrangements are compared and coreless coil is designed. Furthermore, the authors showed the possibility of stabilizing the motion of the levitation system with coreless LSM. (orig.)

  11. On Position Sensorless Control for Permanent Magnet Synchronous Motor Based on a New Sliding Mode Observer

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2014-10-01

    Full Text Available For the problems of buffeting and phase delay in traditional rotor detection in sensorless vector control of permanent magnet synchronous motor (PMSM, the Sigmoid function is proposed to replace sign function and the approach of piecewise linearization is proposed to compensate phase delay. To the problem that the output of traditional low pass filter contains high- order harmonic, two-stage filter including traditional low-pass filter and Kalman filter is proposed in this paper. Based on the output of traditional first-order low-pass filter, the Kalman filter is used to get modified back-EMF. The phase-locked loop control of rotor position is adopted to estimate motor position and speed. A Matlab/Simulink simulation model of PMSM position servo control system is established. The simulation analysis of the new sliding mode observer’s back-EMF detection, position and speed estimation, load disturbance and dynamic process are carried out respectively. Simulation results verify feasibility of the new sliding mode observer algorithm.

  12. Electric motor handbook

    CERN Document Server

    Chalmers, B J

    2013-01-01

    Electric Motor Handbook aims to give practical knowledge in a wide range of capacities such as plant design, equipment specification, commissioning, operation and maintenance. The book covers topics such as the modeling of steady-state motor performance; polyphase induction, synchronous, and a.c. commutator motors; ambient conditions, enclosures, cooling and loss dissipation; and electrical supply systems and motor drives. Also covered are topics such as variable-speed drives and motor control; materials and motor components; insulation types, systems, and techniques; and the installation, sit

  13. Oral Communication Skills Assessment in a Synchronous Hybrid MBA Programme: Does Attending Face-to-Face Matter for US and International Students?

    Science.gov (United States)

    Butz, Nikolaus T.; Askim-Lovseth, Mary K.

    2015-01-01

    The ability to communicate effectively is an essential skill for graduates of Masters of Business Administration (MBA) programmes; however, as synchronous hybrid learning becomes more common, business schools may find it challenging to assess students' proficiency in this core area. An additional layer of complexity is added by the burgeoning…

  14. Modeling and Fault Diagnosis of Interturn Short Circuit for Five-Phase Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jian-wei Yang

    2015-01-01

    Full Text Available Taking advantage of the high reliability, multiphase permanent magnet synchronous motors (PMSMs, such as five-phase PMSM and six-phase PMSM, are widely used in fault-tolerant control applications. And one of the important fault-tolerant control problems is fault diagnosis. In most existing literatures, the fault diagnosis problem focuses on the three-phase PMSM. In this paper, compared to the most existing fault diagnosis approaches, a fault diagnosis method for Interturn short circuit (ITSC fault of five-phase PMSM based on the trust region algorithm is presented. This paper has two contributions. (1 Analyzing the physical parameters of the motor, such as resistances and inductances, a novel mathematic model for ITSC fault of five-phase PMSM is established. (2 Introducing an object function related to the Interturn short circuit ratio, the fault parameters identification problem is reformulated as the extreme seeking problem. A trust region algorithm based parameter estimation method is proposed for tracking the actual Interturn short circuit ratio. The simulation and experimental results have validated the effectiveness of the proposed parameter estimation method.

  15. Pinning impulsive synchronization of stochastic delayed coupled networks

    International Nuclear Information System (INIS)

    Tang Yang; Fang Jian-An; Wong W K; Miao Qing-Ying

    2011-01-01

    In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller, where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller, some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method. (general)

  16. Hybrid vehicle motor alignment

    Science.gov (United States)

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  17. CSEM-steel hybrid wiggler/undulator magnetic field studies

    International Nuclear Information System (INIS)

    Halbach, K.; Hoyer, E.; Marks, S.; Plate, D.; Shuman, D.

    1985-05-01

    Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 kOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in place of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields

  18. A Two-stage Kalman Filter for Sensorless Direct Torque Controlled PM Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Boyu Yi

    2013-01-01

    Full Text Available This paper presents an optimal two-stage extended Kalman filter (OTSEKF for closed-loop flux, torque, and speed estimation of a permanent magnet synchronous motor (PMSM to achieve sensorless DTC-SVPWM operation of drive system. The novel observer is obtained by using the same transformation as in a linear Kalman observer, which is proposed by C.-S. Hsieh and F.-C. Chen in 1999. The OTSEKF is an effective implementation of the extended Kalman filter (EKF and provides a recursive optimum state estimation for PMSMs using terminal signals that may be polluted by noise. Compared to a conventional EKF, the OTSEKF reduces the number of arithmetic operations. Simulation and experimental results verify the effectiveness of the proposed OTSEKF observer for DTC of PMSMs.

  19. The Impact of Emotions on Student Achievement in Synchronous Hybrid Business and Public Administration Programs: A Longitudinal Test of Control-Value Theory

    Science.gov (United States)

    Butz, Nikolaus T.; Stupnisky, Robert H.; Pekrun, Reinhard; Jensen, Jason L.; Harsell, Dana M.

    2016-01-01

    Synchronous hybrid delivery (simultaneously teaching on-campus and online students using Web conferencing) is becoming more common in higher education. However, little is known about students' emotions in these environments. Although often overlooked, emotions are fundamental antecedents of success. This study longitudinally examined the role of…

  20. Analysis and optimization of hybrid excitation permanent magnet synchronous generator for stand-alone power system

    Science.gov (United States)

    Wang, Huijun; Qu, Zheng; Tang, Shaofei; Pang, Mingqi; Zhang, Mingju

    2017-08-01

    In this paper, electromagnetic design and permanent magnet shape optimization for permanent magnet synchronous generator with hybrid excitation are investigated. Based on generator structure and principle, design outline is presented for obtaining high efficiency and low voltage fluctuation. In order to realize rapid design, equivalent magnetic circuits for permanent magnet and iron poles are developed. At the same time, finite element analysis is employed. Furthermore, by means of design of experiment (DOE) method, permanent magnet is optimized to reduce voltage waveform distortion. Finally, the validity of proposed design methods is validated by the analytical and experimental results.

  1. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system.

    Science.gov (United States)

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Bennett, N Robert; Pelc, Norbert; Fahrig, Rebecca

    2013-02-01

    Using hybrid x-ray∕MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also evaluated to determine

  2. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Lillaney, Prasheel; Pelc, Norbert [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States); Shin Mihye [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Hinshaw, Waldo; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Bennett, N. Robert [Department of Radiology, Stanford University, Stanford, California 94305 and Qualcomm MEMS Technologies, San Jose, California 95134 (United States)

    2013-02-15

    Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also

  3. A computational role for bistability and traveling waves in motor cortex

    Directory of Open Access Journals (Sweden)

    Stewart eHeitmann

    2012-09-01

    Full Text Available Adaptive changes in behavior require rapid changes in brain states yet the brain must also remain stable. We investigated two neural mechanisms for evoking rapid transitions between spatiotemporal synchronization patterns of beta oscillations (13--30Hz in motor cortex. Cortex was modeled as a sheet of neural oscillators that were spatially coupled using a center-surround connection topology. Manipulating the inhibitory surround was found to evoke reliable transitions between synchronous oscillation patterns and traveling waves. These transitions modulated the simulated local field potential in agreement with physiological observations in humans. Intermediate levels of surround inhibition were also found to produce bistable coupling topologies that supported both waves and synchrony. State-dependent perturbation between bistable states produced very rapid transitions but were less reliable. We surmise that motor cortex may thus employ state-dependent computation to achieve very rapid changes between bistable motor states when the demand for speed exceeds the demand for accuracy.

  4. The future of hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Vangraefschepe, F.; Menegazzi, P.

    2004-12-15

    This new demand from the U.S. market is being taken very seriously by key players in the field. GM and Daimler Chrysler have announced an alliance for the joint development of a hybrid vehicle scheduled to reach the market by 2007. Development projects of this type will require capital investment of several hundred million dollars over the period. Given that it is now imperative to cut greenhouse gas emissions, the hybrid vehicle offers a credible alternative. It is already on the market, despite the constraints inherent to a configuration combining an electric motor and an internal combustion engine, and despite the added cost. The technical choices are complex and varied, depending on the objectives: potential CO{sub 2} emissions gains range from a few percentage points to over 45%, depending on the engine/motor architecture. The gasoline hybrid vehicle is emerging as an alternative to the diesel engine, especially in Japan and the United States, but its growth will depend on the ability of the motor industry to reduce the added cost.

  5. Spin imaging in solids using synchronously rotating field gradients and samples

    International Nuclear Information System (INIS)

    Wind, R.A.; Yannoni, C.S.

    1983-01-01

    A method for spin-imaging in solids using nuclear magnetic resonance (NMR) spectroscopy is described. With this method, the spin density distribution of a two- or three-dimensional object such as a solid can be constructed resulting in an image of the sample. This method lends itself to computer control to map out an image of the object. This spin-imaging method involves the steps of placing a solid sample in the rf coil field and the external magnetic field of an NMR spectrometer. A magnetic field gradient is superimposed across the sample to provide a field gradient which results in a varying DC field that has different values over different parts of the sample. As a result, nuclei in different parts of the sample have different resonant NMR frequencies. The sample is rotated about an axis which makes a particular angle of 54.7 degrees with the static external magnetic field. The magnetic field gradient which has a spatial distribution related to the sample spinning axis is then rotated synchronously with the sample. Data is then collected while performing a solid state NMR line narrowing procedure. The next step is to change the phase relation between the sample rotation and the field gradient rotation. The data is again collected as before while the sample and field gradient are synchronously rotated. The phase relation is changed a number of times and data collected each time. The spin image of the solid sample is then reconstructed from the collected data

  6. State Estimation of Permanent Magnet Synchronous Motor Using Improved Square Root UKF

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2016-06-01

    Full Text Available This paper focuses on an improved square root unscented Kalman filter (SRUKF and its application for rotor speed and position estimation of permanent magnet synchronous motor (PMSM. The approach, which combines the SRUKF and strong tracking filter, uses the minimal skew simplex transformation to reduce the number of the sigma points, and utilizes the square root filtering to reduce computational errors. The time-varying fading factor and softening factor are introduced to self-adjust the gain matrices and the state forecast covariance square root matrix, which can realize the residuals orthogonality and force the SRUKF to track the real state rapidly. The theoretical analysis of the improved SRUKF and implementation details for PMSM state estimation are examined. The simulation results show that the improved SRUKF has higher nonlinear approximation accuracy, stronger numerical stability and computational efficiency, and it is an effective and powerful tool for PMSM state estimation under the conditions of step response or load disturbance.

  7. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shaohua [School of Automation, Chongqing University, Chongqing 400044, China and College of Mechanical Engineering, Hunan University of Arts and Science, Hunan 415000 (China)

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  8. Dynamic modeling and simulation of an induction motor with adaptive backstepping design of an input-output feedback linearization controller in series hybrid electric vehicle

    Directory of Open Access Journals (Sweden)

    Jalalifar Mehran

    2007-01-01

    Full Text Available In this paper using adaptive backstepping approach an adaptive rotor flux observer which provides stator and rotor resistances estimation simultaneously for induction motor used in series hybrid electric vehicle is proposed. The controller of induction motor (IM is designed based on input-output feedback linearization technique. Combining this controller with adaptive backstepping observer the system is robust against rotor and stator resistances uncertainties. In additional, mechanical components of a hybrid electric vehicle are called from the Advanced Vehicle Simulator Software Library and then linked with the electric motor. Finally, a typical series hybrid electric vehicle is modeled and investigated. Various tests, such as acceleration traversing ramp, and fuel consumption and emission are performed on the proposed model of a series hybrid vehicle. Computer simulation results obtained, confirm the validity and performance of the proposed IM control approach using for series hybrid electric vehicle.

  9. Three-phase AC synchronous motor with high-temperature superconductor (HTS) rotor windings and HTS bearings. Final report

    International Nuclear Information System (INIS)

    Neumueller, H.W.; Nick, W.; Frank, M.; Massek, P.; Hasselt, P. van; Thummes, G.; Haefner, H.U.; Kummeth, P.; Werfel, F.; Frauenhofer, J.; Senger, R.; Schmidt, W.

    2003-06-01

    The project involved the design, construction and testing of a 3000 kW converter-fed synchronous motor as a development prototype with - HTS rotor windings, - closed-circuit cooling system, - stator air-gap winding and - high-gradient HTS magnetic bearing. The project objective was to create the conditions necessary for the construction of an application-oriented model(∼2 MW) that would be suitable for field tests and provide a starting point for subsequent series expansion. The main focus was fixed on feasibility and function issues relating to the various components, particularly during operation of the overall system in the test bay. These ambitious targets were achieved within the scope of project-based cooperation. This has been demonstrated especially in test bed operation of the machine since spring 2001, in the course of which the motor produced a maximum continuous rating of 450 kW - significantly above the specified value - while the short-time rating could be increased up to 600 kW. Throughout testing the motor demonstrated excellent performance characteristics that are markedly indifferent to load fluctuations and indicative of important operating advantages to subsequent users of such HTS motors. Loss calculations showed that, in terms of efficiency, this prototype already represents an approximately 1% improvement over the conventional motors or generators currently available. The robustness of the cooling concept developed as part of the project was also convincingly demonstrated during the comprehensive test phase, which has been ongoing since spring 2001. The innovative pulse-tube coolers developed by our partner companies Leybold and TransMIT promise further advantages over current commercial GM-coolers. Despite considerable problems with materials the team successfully built and operated a contactless HTS magnet bearing (based on YBCO stator cylinders from partner company ATZ) that is currently one of the world's largest in terms of bearing

  10. Synchronized High-Speed Vision Sensor Network for Expansion of Field of View

    Directory of Open Access Journals (Sweden)

    Akihito Noda

    2018-04-01

    Full Text Available We propose a 500-frames-per-second high-speed vision (HSV sensor network that acquires frames at a timing that is precisely synchronized across the network. Multiple vision sensor nodes, individually comprising a camera and a PC, are connected via Ethernet for data transmission and for clock synchronization. A network of synchronized HSV sensors provides a significantly expanded field-of-view compared with that of each individual HSV sensor. In the proposed system, the shutter of each camera is controlled based on the clock of the PC locally provided inside the node, and the shutters are globally synchronized using the Precision Time Protocol (PTP over the network. A theoretical analysis and experiment results indicate that the shutter trigger skew among the nodes is a few tens of microseconds at most, which is significantly smaller than the frame interval of 1000-fps-class high-speed cameras. Experimental results obtained with the proposed system comprising four nodes demonstrated the ability to capture the propagation of a small displacement along a large-scale structure.

  11. Persistent current analysis of superconducting coils in a linear synchronous motor for maglev passenger transport system. Fujoshiki tetsudoyo linear doki motor ni okeru teijisoku mode chodendo coil denryu no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Azusawa, T [Toshiba Corp., Tokyo (Japan)

    1994-05-20

    The simple analysis method of persistent current induced in on-board superconducting coils was proposed for the vehicle of a superconducting magnetically-suspended train which is running in the magnetic field generated by armature coil current of a linear synchronous motor installed along a guideway, and the performance of the method is discussed through calculation based on typical models. As fluctuation of persistent current due to running was calculated with various parameter values under a normal running condition, fluctuation of persistent current induced was less then 1% of an initial magnetomotive force, having no adverse effect on the stability and reliability of superconducting magnets. Electromagnetic forces under a normal running condition could be predicted accurately enough by relatively easy-to-calculate constant current mode analysis. Double-layered armature coils were preferred to single-layered ones to enhance the stability of superconducting magnets by reducing fluctuation of persistent current. 10 refs., 8 figs., 1 tab.

  12. Measurements of crossed-field demagnetisation rate of trapped field magnets at high frequencies and below 77 K

    Science.gov (United States)

    Baskys, A.; Patel, A.; Glowacki, B. A.

    2018-06-01

    Design requirements of the next generation of electric aircraft place stringent requirements on the power density required from electric motors. A future prototype planned in the scope of the European project ‘Advanced Superconducting Motor Experimental Demonstrator’ (ASuMED) considers a permanent magnet synchronous motor, where the conventional ferromagnets are replaced with superconducting trapped field magnets, which promise higher flux densities and thus higher output power without adding weight. Previous work has indicated that stacks of tape show lower cross-field demagnetisation rates to bulk (RE)BCO whilst retaining similar performance for their size, however the crossed-field demagnetisation rate has not been studied in the temperature, the magnetic field and frequency range that are relevant for the operational prototype motor. This work investigates crossed-field demagnetisation in 2G high temperature superconducting stacks at temperatures below 77 K and a frequency range above 10 Hz. This information is crucial in developing designs and determining operational time before re-magnetisation could be required.

  13. Design of double DC motor control system based on DSP

    Directory of Open Access Journals (Sweden)

    Suo WANG

    2017-10-01

    Full Text Available Aiming at the problems of speed control, commutation and so on in the multi-motor synchronous control system, based on automatic control technology, a control system with PC as principal computer and DSP as slave computer is designed, which can change dual DC motor speed and steering, as well as select work drive motors. Related hardware and software design of the control system are given. Through serial communication between DSP and PC using PC serial port software, digital control command is sent to the slave computer for controlling dual DC motor to do a series of preset functions. PWM pulse width modulation is used for motor speed regulation, photoelectric encoder is used to measure motor speed by T method, and the motor speed is displayed by the actual waveform. Experimental results show that the system can not only realize the synchronization of dual DC motor speed and steering adjustment, but also select the motor and achieve the dual DC motors synchronization control effect. The control system has certain reliability and effectiveness.

  14. Parameter Estimation of Permanent Magnet Synchronous Motor Using Orthogonal Projection and Recursive Least Squares Combinatorial Algorithm

    Directory of Open Access Journals (Sweden)

    Iman Yousefi

    2015-01-01

    Full Text Available This paper presents parameter estimation of Permanent Magnet Synchronous Motor (PMSM using a combinatorial algorithm. Nonlinear fourth-order space state model of PMSM is selected. This model is rewritten to the linear regression form without linearization. Noise is imposed to the system in order to provide a real condition, and then combinatorial Orthogonal Projection Algorithm and Recursive Least Squares (OPA&RLS method is applied in the linear regression form to the system. Results of this method are compared to the Orthogonal Projection Algorithm (OPA and Recursive Least Squares (RLS methods to validate the feasibility of the proposed method. Simulation results validate the efficacy of the proposed algorithm.

  15. Powertrain Matching and Optimization of Dual-Motor Hybrid Driving System for Electric Vehicle Based on Quantum Genetic Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2014-01-01

    Full Text Available In order to increase the driving range and improve the overall performance of all-electric vehicles, a new dual-motor hybrid driving system with two power sources was proposed. This system achieved torque-speed coupling between the two power sources and greatly improved the high performance working range of the motors; at the same time, continuously variable transmission (CVT was achieved to efficiently increase the driving range. The power system parameters were determined using the “global optimization method”; thus, the vehicle’s dynamics and economy were used as the optimization indexes. Based on preliminary matches, quantum genetic algorithm was introduced to optimize the matching in the dual-motor hybrid power system. Backward simulation was performed on the combined simulation platform of Matlab/Simulink and AVL-Cruise to optimize, simulate, and verify the system parameters of the transmission system. Results showed that quantum genetic algorithms exhibited good global optimization capability and convergence in dealing with multiobjective and multiparameter optimization. The dual-motor hybrid-driving system for electric cars satisfied the dynamic performance and economy requirements of design, efficiently increasing the driving range of the car, having high performance, and reducing energy consumption of 15.6% compared with the conventional electric vehicle with single-speed reducers.

  16. Achieving a hybrid brain-computer interface with tactile selective attention and motor imagery

    Science.gov (United States)

    Ahn, Sangtae; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan

    2014-12-01

    Objective. We propose a new hybrid brain-computer interface (BCI) system that integrates two different EEG tasks: tactile selective attention (TSA) using a vibro-tactile stimulator on the left/right finger and motor imagery (MI) of left/right hand movement. Event-related desynchronization (ERD) from the MI task and steady-state somatosensory evoked potential (SSSEP) from the TSA task are retrieved and combined into two hybrid senses. Approach. One hybrid approach is to measure two tasks simultaneously; the features of each task are combined for testing. Another hybrid approach is to measure two tasks consecutively (TSA first and MI next) using only MI features. For comparison with the hybrid approaches, the TSA and MI tasks are measured independently. Main results. Using a total of 16 subject datasets, we analyzed the BCI classification performance for MI, TSA and two hybrid approaches in a comparative manner; we found that the consecutive hybrid approach outperformed the others, yielding about a 10% improvement in classification accuracy relative to MI alone. It is understood that TSA may play a crucial role as a prestimulus in that it helps to generate earlier ERD prior to MI and thus sustains ERD longer and to a stronger degree; this ERD may give more discriminative information than ERD in MI alone. Significance. Overall, our proposed consecutive hybrid approach is very promising for the development of advanced BCI systems.

  17. Conceptual design of stepper motor replacing servo motor for control rod controller

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat

    2010-01-01

    In PUSPATI TRIGA Reactor, current control rod controller are using servo motor to control the movement. Control rod is a very important safety element and measure in every nuclear reactor. So, precision is very important in measurement of security in the nuclear reactor. In this case, there are a few disadvantages when using the servo motor is measurement of the motor is not precise. One solution to overcome this is by shifting servo motor with stepper motor. A stepper motor (or step motor) is a brush less, synchronous electric motor that can divide a full rotation into a large number of steps. (author)

  18. Cerebellar Shaping of Motor Cortical Firing Is Correlated with Timing of Motor Actions

    Directory of Open Access Journals (Sweden)

    Abdulraheem Nashef

    2018-05-01

    Full Text Available Summary: In higher mammals, motor timing is considered to be dictated by cerebellar control of motor cortical activity, relayed through the cerebellar-thalamo-cortical (CTC system. Nonetheless, the way cerebellar information is integrated with motor cortical commands and affects their temporal properties remains unclear. To address this issue, we activated the CTC system in primates and found that it efficiently recruits motor cortical cells; however, the cortical response was dominated by prolonged inhibition that imposed a directional activation across the motor cortex. During task performance, cortical cells that integrated CTC information fired synchronous bursts at movement onset. These cells expressed a stronger correlation with reaction time than non-CTC cells. Thus, the excitation-inhibition interplay triggered by the CTC system facilitates transient recruitment of a cortical subnetwork at movement onset. The CTC system may shape neural firing to produce the required profile to initiate movements and thus plays a pivotal role in timing motor actions. : Nashef et al. identified a motor cortical subnetwork recruited by cerebellar volley that was transiently synchronized at movement onset. Cerebellar control of cortical firing was dominated by inhibition that shaped task-related firing of neurons and may dictate motor timing. Keywords: motor control, primates, cerebellar-thalamo-cortical, synchrony, noise correlation, reaction time

  19. Flux Concentration and Pole Shaping in a Single Phase Hybrid Switched Reluctance Motor Drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan

    2010-01-01

    The single phase hybrid switched reluctance motor (HSRM) may be a good candidate for low-cost drives used for pump applications. This paper presents a new design of the HSRM with improved starting torque achieved by stator pole shaping, and a better arrangement of the embedded stator permanent...

  20. Development of A Super High Speed Permanent Magnet Synchronous Motor (PMSM Controller and Analysis of The Experimental Results

    Directory of Open Access Journals (Sweden)

    Limei Zhao

    2005-02-01

    Full Text Available This paper presents the design and implementation of a DSP-based controller for a super high-speed (>80,000 rpm permanent magnet synchronous motor (PMSM. The PMSM is a key component of the centrifugal compressor drive of a reverse Brayton cryocooler that is currently under development for NASA and Florida Solar Energy Center. The design of the PMSM open-loop control is presented. Experimental results with open-loop control schemes are presented. System optimization and analysis are also illustrated. They verify the effectiveness of the controller design and the optimization scheme.

  1. Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement.

    Science.gov (United States)

    Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark

    2017-09-01

    Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also

  2. Interaction of synchronized dynamics in cortex and basal ganglia in Parkinson's disease.

    Science.gov (United States)

    Ahn, Sungwoo; Zauber, S Elizabeth; Worth, Robert M; Witt, Thomas; Rubchinsky, Leonid L

    2015-09-01

    Parkinson's disease pathophysiology is marked by increased oscillatory and synchronous activity in the beta frequency band in cortical and basal ganglia circuits. This study explores the functional connections between synchronized dynamics of cortical areas and synchronized dynamics of subcortical areas in Parkinson's disease. We simultaneously recorded neuronal units (spikes) and local field potentials (LFP) from subthalamic nucleus (STN) and electroencephalograms (EEGs) from the scalp in parkinsonian patients, and analysed the correlation between the time courses of the spike-LFP synchronization and inter-electrode EEG synchronization. We found the (non-invasively obtained) time course of the synchrony strength between EEG electrodes and the (invasively obtained) time course of the synchrony between spiking units and LFP in STN to be weakly, but significantly, correlated with each other. This correlation is largest for the bilateral motor EEG synchronization, followed by bilateral frontal EEG synchronization. Our observations suggest that there may be multiple functional modes by which the cortical and basal ganglia circuits interact with each other in Parkinson's disease: not only may synchronization be observed between some areas in cortex and the basal ganglia, but also synchronization within cortex and within basal ganglia may be related, suggesting potentially a more global functional interaction. More coherent dynamics in one brain region may modulate or activate the dynamics of another brain region in a more powerful way, causing correlations between changes in synchrony strength in the two regions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Nonlinear Decoupling of Torque and Field Amplitude in an Induction Motor

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1997-01-01

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor...... torque. The method is tested both by simulation and by experiments on a motor drive....

  4. Ultracapacitors for fuel saving in small size hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Solero, L.; Lidozzi, A.; Serrao, V. [University ROMA TRE, Dept. of Mechanical and Industrial Eng., Via della Vasca Navale, 79 - 00146 Roma (Italy); Martellucci, L. [University of Rome ' ' La Sapienza' ' , Dept. of Electrical Eng., Via Eudossiana, 18 - 00184 Roma (Italy); Rossi, E. [ENEA, Via Anguillarese, 301 - 00060 S. Maria Galeria, Roma (Italy)

    2011-01-01

    The main purpose of the paper is to describe a small size hybrid vehicle having ultracapacitors as on-board storage unit. The vehicle on-board main power supply is achieved by a genset being formed of a 250 cm{sup 3} internal combustion engine and a permanent magnet synchronous electric generator, whereas 4 16V-500F ultracapacitors modules are connected in series in order to supply as well as to store the power peaks during respectively acceleration and braking vehicle modes of operation. The traction power is provided by a permanent magnet synchronous electric motor, whereas a distributed power electronic interface is in charge of all the required electronic conversions as well of controlling the operating conditions for each power unit. The paper discusses the implemented control strategy and shows experimental results on the modes of operation of both generation unit and storage unit. (author)

  5. Numerical studies on the force characteristic of superconducting linear synchronous motor with HTS bulk magnet

    Science.gov (United States)

    Tang, Junjie; Li, Jing; Li, Xiang; Han, Le

    2018-03-01

    High temperature superconductor (HTS) bulks have significant potential use in linear motor application act as quasi-permanent magnet to replace traditional magnets. Force characteristic between HTS bulk magnet and traveling magnetic field was investigated with numerical simulation and experimental measurement in this paper. Influences of bulk height and number on the force characteristic were studied by the finite element model considering the nonlinear E-J relationship. Study was also made on addition of a back iron plate to the bulk magnet. Besides, force characteristic of bulk was compared with the permanent magnet results. The small initial decrease of the thrust could be explained by inside superconducting current redistribution. It was found that efficiency of linear motor did not increase by adding more bulk magnets. The bulk magnet will be remagnetized instead of erasing trapped field with the increase of the traveling magnetic field strength. The conclusions are helpful in prediction and design the linear motor with HTS bulk magnet.

  6. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton

    Directory of Open Access Journals (Sweden)

    Dingguo Zhang

    2017-12-01

    Full Text Available Functional electrical stimulation (FES and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton. Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization.

  7. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton.

    Science.gov (United States)

    Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong

    2017-01-01

    Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization.

  8. Transcranial static magnetic field stimulation of the human motor cortex

    Science.gov (United States)

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-01-01

    Abstract The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way. PMID:21807616

  9. Coupling of analytical and numerical methods for the analysis of line start permanent magnet synchronous motors; Kopplung numerischer und analytischer Verfahren zur Berechnung von permanenterregten Synchronmaschinen fuer Selbstanlauf

    Energy Technology Data Exchange (ETDEWEB)

    Brune, Eva; Stuebig, Cornelia; Tegeler, Sebastian; Wehner, Meike; Ponick, Bernd [Hannover Univ. (Germany). Inst. fuer Antriebssysteme und Leistungselektronik

    2011-07-01

    Due to stricter efficiency legislation for electrical machines, it becomes increasingly important to predict a motor's performance with regard to start and operational behaviour correctly. In consequence of the higher efficiency required for electrical machines, permanent magnet synchronous machines become an interesting alternative also for motors with direct on-line starting. This paper describes a method to calculate these motor's behaviour reliably and accurately based on a combined analytical and numerical approach developed at the Institute for Drive Systems and Power Electronics of Leibniz Universitaet Hannover. (orig.)

  10. Nonlinear decoupling of torque and field amplitude in an induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, H. [Aalborg University, Aalborg (Denmark); Vadstrup, P.; Boersting, H. [Grundfos A/S, Bjerringbro (Denmark)

    1997-12-31

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor torque. The method is tested both by simulation and by experiments on a motor drive. (orig.) 12 refs.

  11. Handbook on linear motor application

    International Nuclear Information System (INIS)

    1988-10-01

    This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.

  12. Development and Characterization of Fast Burning Solid Fuels/Propellants for Hybrid Rocket Motors with High Volumetric Efficiency

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposed work is to develop several fast burning solid fuels/fuel-rich solid propellants for hybrid rocket motor applications. In the...

  13. Upgrade of the synchronous data management system of the EAST poloidal field power supply

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lili; Huang, Liansheng, E-mail: huangls@ipp.ac.cn; Fu, Peng; Gao, Ge; He, Shiying

    2016-11-15

    Highlights: • The upgraded synchronous data management system of EAST poloidal field power supply supports long-pulse data storage. • Slice storage mechanism on MDSplus has been adopted for quasi real-time data storage. • The state machine has been adopted for managing the system sequencer. • IEEE-1588 protocol via Ethernet for the synchronization of clock signal was detailed described. - Abstract: Poloidal field (PF) power supply is an important subsystem of the Experimental Advanced Superconducting Tokamak (EAST). The upgrade of the PF control system of EAST is a great improvement over the original data management system which could not meet the requirements necessary for experiments on synchronization, modularity and sampling rate. In order to better analyze the power operation performance, the Synchronization Data Management System (SDMS) needs to be upgraded as well. This upgrade is based on distributed data acquisition and an MDSPLUS database. It consists of three data acquisition nodes synchronized by an reference clock from the EAST central timing system that also provides the start trigger of the EAST pulse. After being processed by a signal conditioning unit, experimental signals are digitized and written into the database in MDSPLUS format. Multi-channel, multi-tasking and continuous data storage have been achieved by using multi-threading technology on a Linux operation system. The SDMS has been used on the server in PF control system for the entire 2015 EAST campaign. The SDMS has had good performance during experiments and convenient human-machine interface to satisfy the requirements of all the experiments.

  14. Upgrade of the synchronous data management system of the EAST poloidal field power supply

    International Nuclear Information System (INIS)

    Zhu, Lili; Huang, Liansheng; Fu, Peng; Gao, Ge; He, Shiying

    2016-01-01

    Highlights: • The upgraded synchronous data management system of EAST poloidal field power supply supports long-pulse data storage. • Slice storage mechanism on MDSplus has been adopted for quasi real-time data storage. • The state machine has been adopted for managing the system sequencer. • IEEE-1588 protocol via Ethernet for the synchronization of clock signal was detailed described. - Abstract: Poloidal field (PF) power supply is an important subsystem of the Experimental Advanced Superconducting Tokamak (EAST). The upgrade of the PF control system of EAST is a great improvement over the original data management system which could not meet the requirements necessary for experiments on synchronization, modularity and sampling rate. In order to better analyze the power operation performance, the Synchronization Data Management System (SDMS) needs to be upgraded as well. This upgrade is based on distributed data acquisition and an MDSPLUS database. It consists of three data acquisition nodes synchronized by an reference clock from the EAST central timing system that also provides the start trigger of the EAST pulse. After being processed by a signal conditioning unit, experimental signals are digitized and written into the database in MDSPLUS format. Multi-channel, multi-tasking and continuous data storage have been achieved by using multi-threading technology on a Linux operation system. The SDMS has been used on the server in PF control system for the entire 2015 EAST campaign. The SDMS has had good performance during experiments and convenient human-machine interface to satisfy the requirements of all the experiments.

  15. Topology Optimization of a High-Temperature Superconducting Field Winding of a Synchronous Machine

    DEFF Research Database (Denmark)

    Pozzi, Matias; Mijatovic, Nenad; Jensen, Bogi Bech

    2013-01-01

    This paper presents topology optimization (TO) of the high-temperature superconductor (HTS) field winding of an HTS synchronous machine. The TO problem is defined in order to find the minimum HTS material usage for a given HTS synchronous machine design. Optimization is performed using a modified...... genetic algorithm with local optimization search based on on/off sensitivity analysis. The results show an optimal HTS coil distribution, achieving compact designs with a maximum of approximately 22% of the available space for the field winding occupied with HTS tape. In addition, this paper describes...... potential HTS savings, which could be achieved using multiple power supplies for the excitation of the machine. Using the TO approach combined with two excitation currents, an additional HTS saving of 9.1% can be achieved....

  16. Adaptive Nonsingular Terminal Sliding Model Control and Its Application to Permanent Magnet Synchronous Motor Drive System

    Directory of Open Access Journals (Sweden)

    Liu Yue

    2016-01-01

    Full Text Available To improve the dynamic performance of permanent magnet synchronous motor(PMSM drive system, a adaptive nonsingular terminal sliding model control((NTSMC strategy was proposed. The proposed control strategy presents an adaptive variable-rated exponential reaching law which the L1 norm of state variables is introduced. Exponential and constant approach speed can adaptively adjust according to the state variables’ distance to the equilibrium position.The proposed scheme can shorten the reaching time and weaken system chatting. The method was applied to the PMSM speed servo system, and compared with the traditional terminal-sliding-mode regulator and PI regulator. Simulation results show that the proposed control strategy can improve dynamic, steady performance and robustness.

  17. Approximation-Based Discrete-Time Adaptive Position Tracking Control for Interior Permanent Magnet Synchronous Motors.

    Science.gov (United States)

    Yu, Jinpeng; Shi, Peng; Yu, Haisheng; Chen, Bing; Lin, Chong

    2015-07-01

    This paper considers the problem of discrete-time adaptive position tracking control for a interior permanent magnet synchronous motor (IPMSM) based on fuzzy-approximation. Fuzzy logic systems are used to approximate the nonlinearities of the discrete-time IPMSM drive system which is derived by direct discretization using Euler method, and a discrete-time fuzzy position tracking controller is designed via backstepping approach. In contrast to existing results, the advantage of the scheme is that the number of the adjustable parameters is reduced to two only and the problem of coupling nonlinearity can be overcome. It is shown that the proposed discrete-time fuzzy controller can guarantee the tracking error converges to a small neighborhood of the origin and all the signals are bounded. Simulation results illustrate the effectiveness and the potentials of the theoretic results obtained.

  18. System Identification and Integration Design of an Air/Electric Motor

    Directory of Open Access Journals (Sweden)

    Shih-Yao Huang

    2013-02-01

    Full Text Available This paper presents an integration design and implementation of an air motor and a DC servo motor which utilizes a magnetic powder brake to integrate these two motors together. The dynamic model of the air/electric hybrid system will be derived and eventually leads to successful ECE-40 driving cycle tests with a FPGA-based speed controller. The testing results obtained by using the proposed experimental platform indicate that the total air consumption is about 256 L under air motor mode and the electric charge consumption is about 530 coulombs under DC servo motor mode. In a hybrid mode, the current reduction of the battery is about 18.5%, and then the service life of the battery can be improved. Furthermore, a prototype is built with a proportional-integral (PI speed controller based on a field-programmable gate array (FPGA in order to facilitate the entire analysis of the velocity switch experiment. Through the modular methodology of FPGA, the hybrid power platform can successfully operate under ECE-40 driving cycle with the PI speed controller. The experimental data shows that the chattering ranges of the air motor within ±1 km/h and ±0.2 km/h under DC servo motor drive. Therefore, the PI speed controller based on FPGA is successfully actualized.

  19. Test of piezo-ceramic motor technology in ITER relevant high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Chiara, E-mail: chiara.monti@enea.it [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Besi Vetrella, Ugo; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo; Viola, Rosario [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Dubus, Gregory; Damiani, Carlo [Fusion for Energy, c/ Josep Pla, 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2014-10-15

    In the framework of a Fusion for Energy (F4E) grant, a test campaign started in 2012 in order to assess the performance of the in-vessel viewing system (IVVS) probe concept and to verify its compatibility when exposed to ITER typical working conditions. ENEA laboratories went through with several tests simulating high magnetic fields, high temperature, high vacuum, gamma radiation and neutron radiation. A customized motor has been adopted to study the performances of ultrasonic piezo motors technology in high magnetic field conditions. This paper reports on the testing activity performed on the motor in a multi Tesla magnetic field. The job was carried out in a test facility of ENEA laboratories able to achieve 14 T. A maximum field of 10 T, fully compliant with ITER requirements (8 T), was applied. A specific mechanical assembly has been designed and manufactured to hold the motor in the region with high homogeneity of the field. Results obtained so far indicate that the motor is compatible with high magnetic fields, and are presented in the paper.

  20. PM Synchronous Motor Dynamic Modeling with Genetic Algorithm ...

    African Journals Online (AJOL)

    Adel

    This paper proposes dynamic modeling simulation for ac Surface Permanent Magnet Synchronous ... Simulations are implemented using MATLAB with its genetic algorithm toolbox. .... selection, the process that drives biological evolution.

  1. Multipole superconducting electric motors for ship propulsion

    International Nuclear Information System (INIS)

    Thullen, P.; Keim, T.A.; Minervini, J.V.

    1975-01-01

    While a great deal of attention has been paid to two-pole superconducting synchronous machines, very little analysis of low speed, multipole superconducting synchronous machines has been done. Such machines may prove desirable as drive motors in ship drive systems. Results are presented of an analysis which assumes a motor of sufficient size that the airgap may be considered to be flat. A power output expression is given which shows the effects of machine geometry and superconductor characteristics on machine size. Based on this expression, a 40,000 hp 120 rpm motor is sized, and the resulting machine is compared with a conventional ship drive motor. The comparison illustrates possible size reductions through the application of superconductivity

  2. Acceleration feedback of a current-following synchronized control algorithm for telescope elevation axis

    Science.gov (United States)

    Tang, Tao; Zhang, Tong; Du, Jun-Feng; Ren, Ge; Tian, Jing

    2016-11-01

    This paper proposes a dual-motor configuration to enhance closed-loop performance of a telescope control system. Two identical motors are mounted on each side of a U-type frame to drive the telescope elevation axis instead of a single motor drive, which is usually used in a classical design. This new configuration and mechanism can reduce the motor to half the size used in the former design, and it also provides some other advantages. A master-slave current control mode is employed to synchronize the two motors. Acceleration feedback control is utilized to further enhance the servo performance. Extensive experiments are used to validate the effectiveness of the proposed control algorithm in synchronization, disturbance attenuation and low-velocity tracking.

  3. Output Feedback Adaptive Dynamic Surface Control of Permanent Magnet Synchronous Motor with Uncertain Time Delays via RBFNN

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2014-01-01

    Full Text Available This paper focuses on an adaptive dynamic surface control based on the Radial Basis Function Neural Network for a fourth-order permanent magnet synchronous motor system wherein the unknown parameters, disturbances, chaos, and uncertain time delays are presented. Neural Network systems are used to approximate the nonlinearities and an adaptive law is employed to estimate accurate parameters. Then, a simple and effective controller has been obtained by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed control has been illustrated through simulation results.

  4. Beat Synchronization across the Lifespan: Intersection of Development and Musical Experience

    OpenAIRE

    Thompson, Elaine C.; White-Schwoch, Travis; Tierney, Adam; Kraus, Nina

    2015-01-01

    Rhythmic entrainment, or beat synchronization, provides an opportunity to understand how multiple systems operate together to integrate sensory-motor information. Also, synchronization is an essential component of musical performance that may be enhanced through musical training. Investigations of rhythmic entrainment have revealed a developmental trajectory across the lifespan, showing synchronization improves with age and musical experience. Here, we explore the development and maintenance ...

  5. Replacing the mechanical synchronism by electronic synchronism in metallography machines; Substituicao do sincronismo mecanico por sincronismo eletronico das maquinas de metalografia

    Energy Technology Data Exchange (ETDEWEB)

    Fusco, Miguel A.V.; Reis, Luiz O.M. dos [Universidade de Taubate (UNITAU), SP (Brazil)

    2009-07-01

    In the printing industry there is several segments and one of these segments is the printing in sheet metal, known how cans manufacturer (metallography). This segment consists in a preparation of the steel plates for the manufacturing industry for both cans household and industrial fields. Today most of the machines in this market segment is old and often driven by only one electric motor. The speed variation occurs through electromechanical and / or electromagnetic inverters or DC motors whose process timing and positioning of the sheet along the machine is via mechanical systems gears, gearboxes, belts and transmissions. The objective of this work is to suggest the replacement of the set of mechanical transmission by a completely electronic system through the use of AC motors, frequency inverters and programmable logic controller (PLC), that the synchronization system and position are done by encoders coupled to the PLC, ensuring the proper functioning of the whole machine. Using this system, the index of maintenance will be reduced and the machine speed will be increased from 5% to 10%, ensuring a higher production.

  6. 3000 Horsepower super conductive field acyclic motor

    International Nuclear Information System (INIS)

    Marshall, R.

    1983-01-01

    A 3000 hp acyclic motor was assembled and tested utilizing superconducting field coils. The magnet assembly is designed as a quadrupole magnet, utilizing a multifilamentary niobium titanium superconductor. Each magnet coil is 18 inches in diameter and 10 inches long, and operates at rated current of 200 amperes, providing 5.8 tesla in the bore of the coils in the motor configuration. The average winding current density is 10,600 A/cm 2 . The acyclic motor is of a drum-type design with liquid metal current collectors, and is designed to model full-scale machinery for ship propulsion applications. Laboratory test data verified the electrical and electromagnetic design to be within three percent of the calculated values

  7. Permanent magnet synchronous and brushless DC motor drives

    CERN Document Server

    Ramu, Krishnan

    2009-01-01

    Presents an introduction to machines, power devices, inverters, and control. This book covers pm synchronous machines, including modeling, implementation, control strategies, flux weakening operations, parameter sensitivity, sensorless control, and intelligent control applications.

  8. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    International Nuclear Information System (INIS)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao; Song, Yenan; Li, Zhenhua; Zhao, Pei; Shang, Xuefu

    2015-01-01

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm 2 , and field enhancement factor of ∼1.3 × 10 4 . The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport

  9. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Song, Yenan; Li, Zhenhua; Zhao, Pei, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027 (China); Shang, Xuefu [Department of Physics, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2015-09-15

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm{sup 2}, and field enhancement factor of ∼1.3 × 10{sup 4}. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  10. Scalar field dark matter in hybrid approach

    NARCIS (Netherlands)

    Friedrich, Pavel; Prokopec, Tomislav

    2017-01-01

    We develop a hybrid formalism suitable for modeling scalar field dark matter, in which the phase-space distribution associated to the real scalar field is modeled by statistical equal-time two-point functions and gravity is treated by two stochastic gravitational fields in the longitudinal gauge (in

  11. Note: A phase synchronization photography method for AC discharge

    Science.gov (United States)

    Wu, Zhicheng; Zhang, Qiaogen; Ma, Jingtan; Pang, Lei

    2018-05-01

    To research discharge physics under AC voltage, a phase synchronization photography method is presented. By using a permanent-magnet synchronous motor to drive a photography mask synchronized with a discharge power supply, discharge images in a specific phase window can be recorded. Some examples of discharges photographed by this method, including the corona discharge in SF6 and the corona discharge along the air/epoxy surface, demonstrate the feasibility of this method. Therefore, this method provides an effective tool for discharge physics researchers.

  12. Static Eccentricity Fault Recognition in Three-Phase Line Start Permanent Magnet Synchronous Motor Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Mahdi Karami

    2014-01-01

    Full Text Available This paper is dedicated to investigating static eccentricity in a three-phase LSPMSM. The modeling of LSPMSM with static eccentricity between stator and rotor is developed using finite element method (FEM. The analytical expression for the permeance and flux components of nonuniform air-gap due to static eccentricity fault is discussed. Various indexes for static eccentricity detection using stator current signal of IM and permanent magnet synchronous motor (PMSM are presented. Since LSPMSM is composed of a rotor which is a combination of these two motors, the ability of these features is evaluated for static eccentricity diagnosis in LSPMSM. The simulated stator current signal of LSPMSM in the presence of static eccentricity is analyzed in frequency domain using power spectral density (PSD. It is demonstrated that static eccentricity fault generates a series of low frequency harmonic components in the form of sidebands around the fundamental frequency. Moreover, the amplitudes of these components increase in proportion to the fault severity. According to the mentioned observations, an accurate frequency pattern is specified for static eccentricity detection in three-phase LSPMSM.

  13. Research on a six-phase permanent magnet synchronous motor system at dual-redundant and fault tolerant modes in aviation application

    Directory of Open Access Journals (Sweden)

    Xiaolin KUANG

    2017-08-01

    Full Text Available With the development of more/all electrical aircraft technology, an electro-mechanical actuator (EMA is more and more used in an aircraft actuation system. The motor system, as the crucial part of an EMA, usually adopts the redundancy technology or fault tolerance technology to improve the reliability. To compare the performances of these two motor systems, a 10-pole/12-slot six-phase permanent magnet synchronous motor (PMSM is designed with the concentrated single-layer winding, which is able to operate at dual-redundant and fault tolerant modes. Furthermore, the position servo performances of the six-phase PMSM at dual-redundant and fault tolerant modes are analyzed, including the normal and fault conditions. In addition, a variable structure proportional-integral-derivative (PID control strategy is proposed to solve the performance degradation problem caused by phase current saturation. Simulation and experimental results show that the fault tolerant PMSM has a better position servo performance than the dual-redundant PMSM, and the variable structure PID control strategy is able to improve the performance due to phase current saturation.

  14. Generating spatiotemporal joint torque patterns from dynamical synchronization of distributed pattern generators

    Directory of Open Access Journals (Sweden)

    Alex Pitti

    2009-10-01

    Full Text Available Pattern generators found in the spinal cords are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitute an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body’s dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment. Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cords, and for exploring the motor synergies in robots.

  15. Controller for computer control of brushless dc motors. [automobile engines

    Science.gov (United States)

    Hieda, L. S. (Inventor)

    1981-01-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  16. PET/MR synchronization by detection of switching gradients

    International Nuclear Information System (INIS)

    Weissler, Bjoern; Gebhardt, Pierre; Lerche, Christoph W; Soultanidis, Georgios; Wehner, Jakob; Heberling, Dirk; Schulz, Volkmar

    2014-01-01

    The full potential of simultaneous PET and MRI image acquisition, such as dynamic studies or motion compensation, can only be explored if the data of both modalities are temporally synchronized. These hybrid imaging systems are often realized as custom made PET inserts for commercially available MRI scanner. Unfortunately, the standard MRIs do not always offer easily programmable synchronization outputs, nor can they be modified.

  17. Disc-shaped LIM for levitation and traction force control powered by the source using the component synchronous with the motor speed

    Directory of Open Access Journals (Sweden)

    Morizane Toshimitsu

    2015-12-01

    Full Text Available It has been proposed that a novel maglev transport system uses both of the attractive force and thrust force of the Linear Induction Motor (LIM. In our proposal, these two forces will be controlled by two different frequency components. One of the frequency components is synchronous with the motor speed (fm. Another frequency component is drive frequency (fd. Our proposed system enables the independent and simultaneous control of the attractive and thrust force of LIM. Each value of the attractive and the thrust force generated by fm and fd must be identified in order to design that LIM control system. For these purpose, a disc-shaped LIM has been developed as an experimental equipment. The force profiles, especially around zero slip, have been analyzed under experimental conditions.

  18. Detection of Inter-turn Faults in Five-Phase Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    SAAVEDRA, H.

    2014-11-01

    Full Text Available Five-phase permanent magnet synchronous motors (PMSMs have inherent fault-tolerant capabilities. This paper analyzes the detection of inter-turn short circuit faults in five-phase PMSMs in their early stage, i.e. with only one turn in short circuit by means of the analysis of the stator currents and the zero-sequence voltage component (ZSVC spectra. For this purpose, a parametric model of five-phase PMSMs which accounts for the effects of inter-turn short circuits is developed to determine the most suitable harmonic frequencies to be analyzed to detect such faults. The amplitudes of these fault harmonic are analyzed in detail by means of finite-elements method (FEM simulations, which corroborate the predictions of the parametric model. A low-speed five-phase PMSM for in-wheel applications is studied and modeled. This paper shows that the ZSVC-based method provides better sensitivity to diagnose inter-turn faults in the analyzed low-speed application. Results presented under a wide speed range and different load levels show that it is feasible to diagnose such faults in their early stage, thus allowing applying a post-fault strategy to minimize their effects while ensuring a safe operation.

  19. Transient simulation of regression rate on thrust regulation process in hybrid rocket motor

    Directory of Open Access Journals (Sweden)

    Tian Hui

    2014-12-01

    Full Text Available The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas. Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB (hydroxyl-terminated polybutadiene hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.

  20. Selective control of vortex polarities by microwave field in two robustly synchronized spin-torque nano-oscillators

    Science.gov (United States)

    Li, Yi; de Milly, Xavier; Klein, Olivier; Cros, Vincent; Grollier, Julie; de Loubens, Grégoire

    2018-01-01

    Manipulating operation states of coupled spin-torque nano-oscillators (STNOs), including their synchronization, is essential for applications such as complex oscillator networks. In this work, we experimentally demonstrate selective control of two coupled vortex STNOs through microwave-assisted switching of their vortex core polarities. First, the two oscillators are shown to synchronize due to the dipolar interaction in a broad frequency range tuned by an external biasing field. Coherent output is demonstrated along with strong linewidth reduction. Then, we show individual vortex polarity control of each oscillator, which leads to synchronization/desynchronization due to accompanied frequency shift. Our methods can be easily extended to multiple-element coupled oscillator networks.

  1. Magnetic field effects in hybrid perovskite devices

    Science.gov (United States)

    Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.

    2015-05-01

    Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.

  2. Sensorless Control of Interior Permanent Magnet Synchronous Motor in Low-Speed Region Using Novel Adaptive Filter

    Directory of Open Access Journals (Sweden)

    Lisi Tian

    2016-12-01

    Full Text Available This paper presents a novel position and speed estimation method for low-speed sensorless control of interior permanent-magnet synchronous machines (IPMSMs. The parameter design of the position and speed estimator is based on the sampled current rather than the motor electrical parameters. The proposed method not only simplifies the parameter design, it enables the estimator to work normally even in the condition that the electrical parameters are uncertain or varied. The adaptive filters are adopted to extract the desired high frequency current. The structure and corresponding transfer function are analyzed. To address the shortage of insufficient stop-band attenuation, the structure of the adaptive filter is modified to provide suitable bandwidth and stop-band attenuation simultaneously. The effectiveness of the proposed sensorless control strategy has been verified by simulations and experiments.

  3. Magnetic Field and Torque Output of Packaged Hydraulic Torque Motor

    Directory of Open Access Journals (Sweden)

    Liang Yan

    2018-01-01

    Full Text Available Hydraulic torque motors are one key component in electro-hydraulic servo valves that convert the electrical signal into mechanical motions. The systematic characteristics analysis of the hydraulic torque motor has not been found in the previous research, including the distribution of the electromagnetic field and torque output, and particularly the relationship between them. In addition, conventional studies of hydraulic torque motors generally assume an evenly distributed magnetic flux field and ignore the influence of special mechanical geometry in the air gaps, which may compromise the accuracy of analyzing the result and the high-precision motion control performance. Therefore, the objective of this study is to conduct a detailed analysis of the distribution of the magnetic field and torque output; the influence of limiting holes in the air gaps is considered to improve the accuracy of both numerical computation and analytical modeling. The structure and working principle of the torque motor are presented first. The magnetic field distribution in the air gaps and the magnetic saturation in the iron blocks are analyzed by using a numerical approach. Subsequently, the torque generation with respect to the current input and assembly errors is analyzed in detail. This shows that the influence of limiting holes on the magnetic field is consistent with that on torque generation. Following this, a novel modified equivalent magnetic circuit is proposed to formulate the torque output of the hydraulic torque motor analytically. The comparison among the modified equivalent magnetic circuit, the conventional modeling approach and the numerical computation is conducted, and it is found that the proposed method helps to improve the modeling accuracy by taking into account the effect of special geometry inside the air gaps.

  4. Cyclic Parameter Refinement of 4S-10 Hybrid Flux-Switching Motor for Lightweight Electric Vehicle

    Science.gov (United States)

    Rani, J. Abd; Sulaiman, E.; Kumar, R.

    2017-08-01

    A great deal of attention has been given to the reduction of lighting the vehicle because the lighter the vehicle the energy consumption is comparatively low. Hence, the lightweight electric vehicle was introduced for lower carbon footprint and the sizing of the vehicle itself. One of the components to reduce the weight of the vehicle is the propulsion system which comprised of electric motor functioning as the source of torque to drive the propulsion system of the machine. This paper presents the refinement methodology for the optimized design of the 4S-10P E-Core hybrid excitation flux switching motor. The purpose of the refinement methodology is to improve the torque production of the optimized motor. The result of the successful improvement of the torque production is justifiable for a lightweight electric vehicle to drive the propulsion system.

  5. Research on Gear Shifting Process without Disengaging Clutch for a Parallel Hybrid Electric Vehicle Equipped with AMT

    Directory of Open Access Journals (Sweden)

    Hui-Long Yu

    2014-01-01

    Full Text Available Dynamic models of a single-shaft parallel hybrid electric vehicle (HEV equipped with automated mechanical transmission (AMT were described in different working stages during a gear shifting process without disengaging clutch. Parameters affecting the gear shifting time, components life, and gear shifting jerk in different transient states during a gear shifting process were deeply analyzed. The mathematical models considering the detailed synchronizer working process which can explain the gear shifting failure, long time gear shifting, and frequent synchronizer failure phenomenon in HEV were derived. Dynamic coordinated control strategy of the engine, motor, and actuators in different transient states considering the detailed working stages of synchronizer in a gear shifting process of a HEV is for the first time innovatively proposed according to the state of art references. Bench test and real road test results show that the proposed control strategy can improve the gear shifting quality in all its evaluation indexes significantly.

  6. Graphonomics and its contribution to the field of motor behavior: A position statement.

    Science.gov (United States)

    Van Gemmert, Arend W A; Contreras-Vidal, Jose L

    2015-10-01

    The term graphonomics was conceived in the early 1980s; it defined a multidisciplinary emerging field focused on handwriting and drawing movements. Researchers in the field of graphonomics have made important contribution to the field of motor behavior by developing models aimed to conceptualize the production of fine motor movements using graphical tools. Although skeptics have argued that recent technological advancements would reduce the impact of graphonomic research, a shift of focus within in the field of graphonomics into fine motor tasks in general proves the resilience of the field. Moreover, it has been suggested that the use of fine motor movements due to technological advances has increased in importance in everyday life. It is concluded that the International Graphonomics Society can have a leading role in fostering collaborative multidisciplinary efforts and can help with the dissemination of findings contributing to the field of human movement sciences to a larger public. Copyright © 2015. Published by Elsevier B.V.

  7. Cooperative effect of random and time-periodic coupling strength on synchronization transitions in one-way coupled neural system: mean field approach.

    Science.gov (United States)

    Jiancheng, Shi; Min, Luo; Chusheng, Huang

    2017-08-01

    The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.

  8. Synchronization of Two Asymmetric Exciters in a Vibrating System

    Directory of Open Access Journals (Sweden)

    Zhaohui Ren

    2011-01-01

    Full Text Available We investigate synchronization of two asymmetric exciters in a vibrating system. Using the modified average method of small parameters, we deduce the non-dimensional coupling differential equations of the two exciters (NDDETE. By using the condition of existence for the zero solutions of the NDDETE, the condition of implementing synchronization is deduced: the torque of frequency capture is equal to or greater than the difference in the output electromagnetic torque between the two motors. Using the Routh-Hurwitz criterion, we deduce the condition of stability of synchronization that the inertia coupling matrix of the two exciters is positive definite. A numeric result shows that the structural parameters can meet the need of synchronization stability.

  9. The roles of the olivocerebellar pathway in motor learning and motor control. A consensus paper

    Science.gov (United States)

    Lang, Eric J.; Apps, Richard; Bengtsson, Fredrik; Cerminara, Nadia L.; De Zeeuw, Chris I.; Ebner, Timothy J.; Heck, Detlef H.; Jaeger, Dieter; Jörntell, Henrik; Kawato, Mitsuo; Otis, Thomas S.; Ozyildirim, Ozgecan; Popa, Laurentiu S.; Reeves, Alexander M.B.; Schweighofer, Nicolas; Sugihara, Izumi; Xiao, Jianqiang

    2016-01-01

    For many decades the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum, and might also play a role in development. We then consider the potential problems and benefits of its having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, variable complex spike waveform) make it more or less suitable for one or the other of these functions, and why its having a dual role makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest it has the potential to act in both the motor learning and motor control functions of the cerebellum. PMID:27193702

  10. COOPERATIVE MODE OF ELECTRIC MOTOR AND INTERNAL COMBUSTION ENGINE OPERATION IN THE CONVERSION HYBRID CAR

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-12-01

    Full Text Available In the given article the authors proposed a method to control the car, which is converted into a hybrid one. The electric motor and combustion engine operate alternately in the car. They proposed a device for implementing this method and a circuit design for the device in question. They also calculated the dynamics of the vehicle under the joint acceleration.

  11. Core losses of a permanent magnet synchronous motor with an amorphous stator core under inverter and sinusoidal excitations

    Science.gov (United States)

    Yao, Atsushi; Sugimoto, Takaya; Odawara, Shunya; Fujisaki, Keisuke

    2018-05-01

    We report core loss properties of permanent magnet synchronous motors (PMSM) with amorphous magnetic materials (AMM) core under inverter and sinusoidal excitations. To discuss the core loss properties of AMM core, a comparison with non-oriented (NO) core is also performed. In addition, based on both experiments and numerical simulations, we estimate higher (time and space) harmonic components of the core losses under inverter and sinusoidal excitations. The core losses of PMSM are reduced by about 59% using AMM stator core instead of NO core under sinusoidal excitation. We show that the average decrease obtained by using AMM instead of NO in the stator core is about 94% in time harmonic components.

  12. Core losses of a permanent magnet synchronous motor with an amorphous stator core under inverter and sinusoidal excitations

    Directory of Open Access Journals (Sweden)

    Atsushi Yao

    2018-05-01

    Full Text Available We report core loss properties of permanent magnet synchronous motors (PMSM with amorphous magnetic materials (AMM core under inverter and sinusoidal excitations. To discuss the core loss properties of AMM core, a comparison with non-oriented (NO core is also performed. In addition, based on both experiments and numerical simulations, we estimate higher (time and space harmonic components of the core losses under inverter and sinusoidal excitations. The core losses of PMSM are reduced by about 59% using AMM stator core instead of NO core under sinusoidal excitation. We show that the average decrease obtained by using AMM instead of NO in the stator core is about 94% in time harmonic components.

  13. Core losses of an inverter-fed permanent magnet synchronous motor with an amorphous stator core under no-load

    Directory of Open Access Journals (Sweden)

    Nicolas Denis

    2016-05-01

    Full Text Available In this paper, an interior permanent magnet synchronous motor (IPMSM with a stator core made of amorphous magnetic material (AMM is presented. The IPMSM is driven by a voltage source three-phase inverter with classical pulse width modulation (PWM control. The core losses under no-load condition are measured by experiment and compared to an equivalent IPMSM with a stator core made of NO steel. Under these conditions, the core losses are influenced by the stator, rotor and magnet shapes but also by the PWM carrier signal that implies a high frequency harmonic in the magnetic flux density. It is demonstrated that the AMM can reduce the core losses by about 56 %.

  14. Motor of the future - superconducting

    International Nuclear Information System (INIS)

    Moen, Odd

    2001-01-01

    High-temperature superconductors count as the most innovative and future-oriented technology for electric motors. When these materials are used, the engine rating can be doubled and at the same time the losses halved while retaining the same size of construction. Siemens have recently developed a synchronous motor based on a high-temperature superconducting excitation winding. The rated power of the motor is 380 kW. The high-temperature superconductor that is used in this motor requires considerably less cooling outfit than low-temperature superconductors

  15. Design of an HTS motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y; Pei, R; Hong, Z; Jiang, Q; Coombs, T A [Cambridge University engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)], E-mail: yj222@cam.ac.uk

    2008-02-01

    This paper gives a detailed description of the design of a high temperature superconducting (HTS) motor. The stator of the motor consists of six air cored HTS racetrack windings, together with an iron shield. The rotor is made of 80 superconducting YBCO pucks, which can be magnetized and equates to a four-pole permanent magnet. The whole HTS motor is cooled by liquid nitrogen to 77K, and acts as a permanent magnet synchronous motor with the power rate of 15.7 kW.

  16. Superconducting and hybrid systems for magnetic field shielding

    International Nuclear Information System (INIS)

    Gozzelino, L; Gerbaldo, R; Ghigo, G; Laviano, F; Truccato, M; Agostino, A

    2016-01-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB 2 ) and in a hybrid configuration (MgB 2 /Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one. (paper)

  17. Hybrid rocket engine, theoretical model and experiment

    Science.gov (United States)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  18. Permanent-magnet motor with two-part rotor for wide speed range

    International Nuclear Information System (INIS)

    Baines, G.D.; Chalmers, B.J.; Akmese, R.

    1998-01-01

    The paper describes a synchronous motor with a two-part rotor comprising a surface-magnet part and a reluctance part mounted adjacent to each other on the same axis. Machine parameters and physical design details are selected in order to obtain constant-power characteristics over a 3:1 speed range by field-weakening. Test results demonstrate the achievement of the desired characteristics, in good agreement with computed predictions. (orig.)

  19. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    Energy Technology Data Exchange (ETDEWEB)

    Fezzler, Raymond [BIZTEK Consulting, Inc.

    2011-03-01

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to

  20. Effect of hybrid, storage conditions and seed protection on sunflower field emergence

    Directory of Open Access Journals (Sweden)

    Mrđa Jelena

    2010-01-01

    Full Text Available Seed emergence under field conditions decisively and directly determines the number of plants per hectare, which is one of three basic components of yield in the plant world. Influence of chemical treatment on field emergence of three commercial sunflower hybrids stored in different conditions was tested in 2007 and 2008 on experimental field of Institute of Field and Vegetable Crops in Novi Sad. On average, hybrid H1 had the highest value of field emergence (88.79% and for chemical treatment fl udioxonil + metalaxyl + imidacloprid (87.71%. Seed kept in common storage had the highest emergence value in fi eld (87.92%. Seed treated with fl udioxonil + metalaxyl + imidacloprid and stored for one year in common storage had the highest field emergence (90.18%. Considering interaction between storage conditions and genotype, hybrid H1 seed sown after chemical treatment had the highest field emergence (91.82% and seed kept in common storage (90.48%. Hybrid H1 seed compared with other two had the highest field emergence treated with fludioxonil + metalaxyl + imidacloprid (91.84%.

  1. Demagnetization fault diagnosis in permanent magnet synchronous motors: A review of the state-of-the-art

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi, S.S., E-mail: anchepoli@gmail.com [University of Technology Belfort Montbeliard (UTBM), Laboratory of IRTES-SET, Belfort (France); Engineering Department, Amol University of Special Modern Technology, Amol (Iran, Islamic Republic of); Djerdir, A. [University of Technology Belfort Montbeliard (UTBM), Laboratory of IRTES-SET, Belfort (France); Amirat, Y.Ait. [Laboratory of Femto-ST, University of Franche-Comte (France); Khaburi, D.A. [Center of Excellence for Power System Automation and Operation, Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of)

    2015-10-01

    There are a lot of research activities on developing techniques to detect permanent magnet (PM) demagnetization faults (DF). These faults decrease the performance, the reliability and the efficiency of permanent magnet synchronous motor (PMSM) drive systems. In this work, we draw a broad perspective on the status of these studies. The advantages, disadvantages of each method, a deeper view investigated and a comprehensive list of references are reported. - Highlights: • A review of state of the art on demagnetization fault diagnosis was studied deeply. • Critical points in fault diagnosis are discussed aiming to safety and cost management. • Critical comparison on all existent demagnetization diagnosis methods was done. • It is proved that DE and UL have the same signature frequencies as partial demagnetization. • MCSA have some limitations in frequency component under uniform demagnetization.

  2. Demagnetization fault diagnosis in permanent magnet synchronous motors: A review of the state-of-the-art

    International Nuclear Information System (INIS)

    Moosavi, S.S.; Djerdir, A.; Amirat, Y.Ait.; Khaburi, D.A.

    2015-01-01

    There are a lot of research activities on developing techniques to detect permanent magnet (PM) demagnetization faults (DF). These faults decrease the performance, the reliability and the efficiency of permanent magnet synchronous motor (PMSM) drive systems. In this work, we draw a broad perspective on the status of these studies. The advantages, disadvantages of each method, a deeper view investigated and a comprehensive list of references are reported. - Highlights: • A review of state of the art on demagnetization fault diagnosis was studied deeply. • Critical points in fault diagnosis are discussed aiming to safety and cost management. • Critical comparison on all existent demagnetization diagnosis methods was done. • It is proved that DE and UL have the same signature frequencies as partial demagnetization. • MCSA have some limitations in frequency component under uniform demagnetization

  3. Temporal prediction abilities are mediated by motor effector and rhythmic expertise.

    Science.gov (United States)

    Manning, Fiona C; Harris, Jennifer; Schutz, Michael

    2017-03-01

    Motor synchronization is a critical part of musical performance and listening. Recently, motor control research has described how movements that contain more available degrees of freedom are more accurately timed. Previously, we demonstrated that stick tapping improves perception in a timing detection task, where percussionists greatly outperformed non-percussionists only when tapping along. Since most synchronization studies implement finger tapping to examine simple motor synchronization, here we completed a similar task where percussionists and non-percussionists synchronized using finger tapping; movement with fewer degrees of freedom than stick tapping. Percussionists and non-percussionists listened to an isochronous beat sequence and identified the timing of a probe tone. On half of the trials, they tapped along with their index finger, and on the other half of the trials, they listened without moving prior to making timing judgments. We found that both groups benefited from tapping overall. Interestingly, percussionists performed only marginally better than did non-percussionists when finger tapping and no different when listening alone, differing from past studies reporting highly superior timing abilities in percussionists. Additionally, we found that percussionist finger tapping was less variable and less asynchronous than was non-percussionist tapping. Moreover, in both groups finger tapping was more variable and more asynchronous than stick tapping in our previous study. This study demonstrates that the motor effector implemented in tapping studies affects not only synchronization abilities, but also subsequent prediction abilities. We discuss these findings in light of effector-specific training and degrees of freedom in motor timing, both of which impact timing abilities to different extents.

  4. A hybrid polarization-selective atomic sensor for radio-frequency field detection with a passive resonant-cavity field amplifier

    OpenAIRE

    Anderson, David A.; Paradis, Eric G.; Raithel, Georg

    2018-01-01

    We present a hybrid atomic sensor that realizes radio-frequency electric field detection with intrinsic field amplification and polarization selectivity for robust high-sensitivity field measurement. The hybrid sensor incorporates a passive resonator element integrated with an atomic vapor cell that provides amplification and polarization selectivity for detection of incident radio-frequency fields. The amplified intra-cavity radio-frequency field is measured by atoms using a quantum-optical ...

  5. Direct-phase-variable model of a synchronous reluctance motor including all slot and winding harmonics

    International Nuclear Information System (INIS)

    Obe, Emeka S.; Binder, A.

    2011-01-01

    A detailed model in direct-phase variables of a synchronous reluctance motor operating at mains voltage and frequency is presented. The model includes the stator and rotor slot openings, the actual winding layout and the reluctance rotor geometry. Hence, all mmf and permeance harmonics are taken into account. It is seen that non-negligible harmonics introduced by slots are present in the inductances computed by the winding function procedure. These harmonics are usually ignored in d-q models. The machine performance is simulated in the stator reference frame to depict the difference between this new direct-phase model including all harmonics and the conventional rotor reference frame d-q model. Saturation is included by using a polynomial fitting the variation of d-axis inductance with stator current obtained by finite-element software FEMAG DC (registered) . The detailed phase-variable model can yield torque pulsations comparable to those obtained from finite elements while the d-q model cannot.

  6. Sensorless control of ship propulsion interior permanent magnet synchronous motor based on a new sliding mode observer.

    Science.gov (United States)

    Ren, Jun-Jie; Liu, Yan-Cheng; Wang, Ning; Liu, Si-Yuan

    2015-01-01

    This paper proposes a sensorless speed control strategy for ship propulsion interior permanent magnet synchronous motor (IPMSM) based on a new sliding-mode observer (SMO). In the SMO the low-pass filter and the method of arc-tangent calculation of extended electromotive force (EMF) or phase-locked loop (PLL) technique are not used. The calculation of the rotor speed is deduced from the Lyapunov function stability analysis. In order to reduce system chattering, sigmoid functions with switching gains being adaptively updated by fuzzy logic systems are innovatively incorporated into the SMO. Finally, simulation results for a 4.088 MW ship propulsion IPMSM and experimental results from a 7.5 kW IPMSM drive are provided to verify the effectiveness of the proposed SMO method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Design elements and quantitative results of synchronous longstator linear motors for high-speed magnetic trains taking the TRANSRAPID test facility in Emsland as an example

    Energy Technology Data Exchange (ETDEWEB)

    Fuerst, R [Industrieanlagen-Betriebsgesellschaft mbH, Magnetbahn-Versuchsanlage, Lathen/Ems (Germany)

    1996-12-31

    In German high-speed magnetic train technology, iron-clad synchronous long-stator linear motors of levitation stator design are used to propel and brake the vehicles. This paper uses the propulsion design of the Transrapid test facility in Emsland (TVE) to illustrate in practical terms the dimensioning parameters for thrust calculations and their interdependencies. The paper is based on description conventions common for rotating electrical machines and rail technology. (orig.)

  8. Control and Performance Evaluation of Multiphase FSPM Motor in Low-Speed Region for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Feng Yu

    2015-09-01

    Full Text Available The flux-switching permanent-magnet (FSPM motor has been viewed as a highly reliable machine with both armature windings and magnets on the stator. Owing to the high torque-production capability with low torque ripple, FSPM motors with a higher number of phases are potential candidates for traction applications in hybrid electric vehicles (HEVs. However, existing research has mostly focused on the principles and static performance of multiphase FSPM motors, and little attention has been paid to advanced control strategies. In this paper, the fully decoupled current control of a 36/34-pole nine-phase FSPM (NP-FSPM motor is developed and the performance under different operating conditions is investigated. The aim of the design is to alleviate cross coupling effects and unwanted low-order stator harmonic currents, to guarantee fast transient response and small steady-state error. In addition, its fault-tolerance is further elaborated. These features are very important in automotive applications where low torque pulsation, high fault-tolerant capability and high dynamic performance are of major importance. Firstly, the research status of multiphase FSPM motors is briefly reviewed. Secondly, the mathematical model in the dq reference frames and control strategies are presented. Then, the control and performance of the NP-FSPM motor are evaluated by using MATLAB/Simulink. Finally, experiments on an NP-FSPM motor prototype are carried out to validate the study.

  9. Control system for a hybrid powertrain system

    Science.gov (United States)

    Naqvi, Ali K.; Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.

    2014-09-09

    A vehicle includes a powertrain with an engine, first and second torque machines, and a hybrid transmission. A method for operating the vehicle includes operating the engine in an unfueled state, releasing an off-going clutch which when engaged effects operation of the hybrid transmission in a first continuously variable mode, and applying a friction braking torque to a wheel of the vehicle to compensate for an increase in an output torque of the hybrid transmission resulting from releasing the off-going clutch. Subsequent to releasing the off-going clutch, an oncoming clutch which when engaged effects operation of the hybrid transmission in a second continuously variable mode is synchronized. Subsequent to synchronization of the oncoming clutch, the oncoming clutch is engaged.

  10. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhen, E-mail: zhen.huang@sjtu.edu.cn [Academy of Information Technology and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ruiz, H.S., E-mail: dr.harold.ruiz@le.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Coombs, T.A., E-mail: tac1000@cam.ac.uk [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2017-03-15

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  11. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    International Nuclear Information System (INIS)

    Huang, Zhen; Ruiz, H.S.; Coombs, T.A.

    2017-01-01

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  12. Sensorless control for permanent magnet synchronous motor using a neural network based adaptive estimator

    Science.gov (United States)

    Kwon, Chung-Jin; Kim, Sung-Joong; Han, Woo-Young; Min, Won-Kyoung

    2005-12-01

    The rotor position and speed estimation of permanent-magnet synchronous motor(PMSM) was dealt with. By measuring the phase voltages and currents of the PMSM drive, two diagonally recurrent neural network(DRNN) based observers, a neural current observer and a neural velocity observer were developed. DRNN which has self-feedback of the hidden neurons ensures that the outputs of DRNN contain the whole past information of the system even if the inputs of DRNN are only the present states and inputs of the system. Thus the structure of DRNN may be simpler than that of feedforward and fully recurrent neural networks. If the backpropagation method was used for the training of the DRNN the problem of slow convergence arise. In order to reduce this problem, recursive prediction error(RPE) based learning method for the DRNN was presented. The simulation results show that the proposed approach gives a good estimation of rotor speed and position, and RPE based training has requires a shorter computation time compared to backpropagation based training.

  13. Synchronous motion of a relativistic particles in the wave propagating at the angle to a magnetic field

    International Nuclear Information System (INIS)

    Milant'ev, V.P.

    1996-01-01

    It is shown that within the transverse or the longitudinal wave propagating at the angle to the magnetic field there is a specific mode of motion of relativistic particle called as a synchronous one where the condition of a particle resonance with the wave is realized with increasing accuracy with increase of particle energy. A trend to the unlimited acceleration is detected in a synchronous mode of the Cherenkov resonance. 21 refs

  14. Synchronous and Cogged Fan Belt Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Acosta, Jason [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.

  15. A decentralized scheduling algorithm for time synchronized channel hopping

    Directory of Open Access Journals (Sweden)

    Andrew Tinka

    2011-09-01

    Full Text Available Time Synchronized Channel Hopping (TSCH is an existing Medium Access Control scheme which enables robust communication through channel hopping and high data rates through synchronization. It is based on a time-slotted architecture, and its correct functioning depends on a schedule which is typically computed by a central node. This paper presents, to our knowledge, the first scheduling algorithm for TSCH networks which both is distributed and which copes with mobile nodes. Two variations on scheduling algorithms are presented. Aloha-based scheduling allocates one channel for broadcasting advertisements for new neighbors. Reservation- based scheduling augments Aloha-based scheduling with a dedicated timeslot for targeted advertisements based on gossip information. A mobile ad hoc motorized sensor network with frequent connectivity changes is studied, and the performance of the two proposed algorithms is assessed. This performance analysis uses both simulation results and the results of a field deployment of floating wireless sensors in an estuarial canal environment. Reservation-based scheduling performs significantly better than Aloha-based scheduling, suggesting that the improved network reactivity is worth the increased algorithmic complexity and resource consumption.

  16. Subdividing the beat: auditory and motor contributions to synchronization

    NARCIS (Netherlands)

    Loehr, J.D.; Palmer, C.

    2009-01-01

    THE CURRENT STUDY EXAMINED HOW AUDITORY AND kinematic information influenced pianists' ability to synchronize musical sequences with a metronome. Pianists performed melodies in which quarter-note beats were subdivided by intervening eighth notes that resulted from auditory information (heard tones),

  17. Unstable patterns and robust synchronization in a model of motor pathway in birdsong

    International Nuclear Information System (INIS)

    Moukam Kakmeni, F.M.; Bowong, S.; Nana, L.; Kofane, T.C.

    2006-10-01

    This paper investigates the fundamental dynamical mechanism responsible for transition to chaos in periodically modulated Duffing-Van der Pol oscillator. It is shown that a modulationally unstable pattern appears into an initially stable motionless state. A further spatiotemporal transition occurs with a sharp interface from the selected stable pattern to a stabilized pattern or chaotic state. Also, the synchronization of the chaotic state of the model is investigated. The results are discussed in the context of generalized synchronization. The main idea is to construct an augmented dynamical system from the synchronization error system, which is itself uncertain. The advantage of this method over existing results is that the synchronization time is explicitly computed. Numerical simulations are provided to verify the operation of the proposed algorithm. (author)

  18. Immersive second-screen experiences using hybrid media synchronization

    NARCIS (Netherlands)

    Brandenburg, R. van; Veenhuizen, A.T.

    2013-01-01

    Most second-screen services have so far been relying on watermarking and fingerprinting for providing synchronisation with the main TV screen. In the EU FP7 HBB-Next project, a new timestamp-based inter-device synchronization system has been developed, allowing for frame-accurate synchronisation

  19. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops.

    Science.gov (United States)

    Bohra, Abhishek; Jha, Uday C; Adhimoolam, Premkumar; Bisht, Deepak; Singh, Narendra P

    2016-05-01

    A comprehensive understanding of CMS/Rf system enabled by modern omics tools and technologies considerably improves our ability to harness hybrid technology for enhancing the productivity of field crops. Harnessing hybrid vigor or heterosis is a promising approach to tackle the current challenge of sustaining enhanced yield gains of field crops. In the context, cytoplasmic male sterility (CMS) owing to its heritable nature to manifest non-functional male gametophyte remains a cost-effective system to promote efficient hybrid seed production. The phenomenon of CMS stems from a complex interplay between maternally-inherited (mitochondrion) and bi-parental (nucleus) genomic elements. In recent years, attempts aimed to comprehend the sterility-inducing factors (orfs) and corresponding fertility determinants (Rf) in plants have greatly increased our access to candidate genomic segments and the cloned genes. To this end, novel insights obtained by applying state-of-the-art omics platforms have substantially enriched our understanding of cytoplasmic-nuclear communication. Concomitantly, molecular tools including DNA markers have been implicated in crop hybrid breeding in order to greatly expedite the progress. Here, we review the status of diverse sterility-inducing cytoplasms and associated Rf factors reported across different field crops along with exploring opportunities for integrating modern omics tools with CMS-based hybrid breeding.

  20. Development and Performance of the 10 kN Hybrid Rocket Motor for the Stratos II Sounding Rocket

    NARCIS (Netherlands)

    Werner, R.M.; Knop, T.R.; Wink, J; Ehlen, J; Huijsman, R; Powell, S; Florea, R.; Wieling, W; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper presents the development work of the 10 kN hybrid rocket motor DHX-200 Aurora. The DHX-200 Aurora was developed by Delft Aerospace Rocket Engineering (DARE) to power the Stratos II and Stratos II+ sounding rocket, with the later one being launched in October 2015. Stratos II and Stratos