WorldWideScience

Sample records for hybrid wind-diesel-compressed air

  1. Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas

    International Nuclear Information System (INIS)

    Ibrahim, H.; Younes, R.; Ilinca, A.; Dimitrova, M.; Perron, J.

    2010-01-01

    Remote areas around the world predominantly rely on diesel-powered generators for their electricity supply, a relatively expensive and inefficient technology that is responsible for the emission of 1.2 million tons of greenhouse gas (GHG) annually, only in Canada . Wind-diesel hybrid systems (WDS) with various penetration rates have been experimented to reduce diesel consumption of the generators. After having experimented wind-diesel hybrid systems (WDS) that used various penetration rates, we turned our focus to that the re-engineering of existing diesel power plants can be achieved most efficiently, in terms of cost and diesel consumption, through the introduction of high penetration wind systems combined with compressed air energy storage (CAES). This article compares the available technical alternatives to supercharge the diesel that was used in this high penetration wind-diesel system with compressed air storage (WDCAS), in order to identify the one that optimizes its cost and performances. The technical characteristics and performances of the best candidate technology are subsequently assessed at different working regimes in order to evaluate the varying effects on the system. Finally, a specific WDCAS system with diesel engine downsizing is explored. This proposed design, that requires the repowering of existing facilities, leads to heightened diesel power output, increased engine lifetime and efficiency and to the reduction of fuel consumption and GHG emissions, in addition to savings on maintenance and replacement cost.

  2. Study and design of a hybrid wind-diesel-compressed air system for providing electricity to a remote telecommunication station; Etudes et conception d'un systeme hybride eolien-diesel-air comprime pour l'electrification d'une station de telecommunications isolee

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, H.; Dimitrova, M. [TechnoCentre eolien Gaspesie-les Iles, Gaspe, PQ (Canada); Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada); Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada)

    2010-07-01

    This poster reported on a study that examined the feasibility of using a hybrid wind-diesel-compressed air system to produce electricity at remote telecommunication stations. Low and high penetration wind-diesel hybrid systems were studied in order to reduce the diesel consumption. The use of a high penetration wind-diesel system together with compressed air energy storage (CAES) was shown to be a viable alternative to improve the overall percentage of renewable energy and reduce the cost of electricity in remote areas where a good wind resource is available. Different technical solutions for the CAES system were compared. refs., figs.

  3. Optimization of diesel engine performances for a hybrid wind-diesel system with compressed air energy storage

    International Nuclear Information System (INIS)

    Ibrahim, H.; Younes, R.; Basbous, T.; Ilinca, A.; Dimitrova, M.

    2011-01-01

    Electricity supply in remote areas around the world is mostly guaranteed by diesel generators. This relatively inefficient and expensive method is responsible for 1.2 million tons of greenhouse gas (GHG) emission in Canada annually. Some low- and high-penetration wind-diesel hybrid systems (WDS) have been experimented in order to reduce the diesel consumption. We explore the re-engineering of current diesel power plants with the introduction of high-penetration wind systems together with compressed air energy storage (CAES). This is a viable alternative to major the overall percentage of renewable energy and reduce the cost of electricity. In this paper, we present the operative principle of this hybrid system, its economic benefits and advantages and we finally propose a numerical model of each of its components. Moreover, we are demonstrating the energy efficiency of the system, particularly in terms of the increase of the engine performance and the reduction of its fuel consumption illustrated and supported by a village in northern Quebec. -- Highlights: → The Wind-Diesel-Compressed Air Storage System (WDCAS) has a very important commercial potential for remote areas. → The WDCAS is conceived like the adaptation of the existing engines at the level of the intake system. → A wind turbine and an air compression and storage system are added on the diesel plant. → This study demonstrates the potential of WDCAS to reduce fuel consumption and increase the efficiency of the diesel engine. → This study demonstrates that we can expect savings which can reach 50%.

  4. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  5. A hybrid air conditioner driven by a hybrid solar collector

    Science.gov (United States)

    Al-Alili, Ali

    The objective of this thesis is to search for an efficient way of utilizing solar energy in air conditioning applications. The current solar Air Conditioners (A/C)s suffer from low Coefficient of Performance (COP) and performance degradation in hot and humid climates. By investigating the possible ways of utilizing solar energy in air conditioning applications, the bottlenecks in these approaches were identified. That resulted in proposing a novel system whose subsystem synergy led to a COP higher than unity. The proposed system was found to maintain indoor comfort at a higher COP compared to the most common solar A/Cs, especially under very hot and humid climate conditions. The novelty of the proposed A/C is to use a concentrating photovoltaic/thermal collector, which outputs thermal and electrical energy simultaneously, to drive a hybrid A/C. The performance of the hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), was investigated experimentally. This work also explored the use of a new type of desiccant material, which can be regenerated with a low temperature heat source. The experimental results showed that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. Using the experimental data, the COP of the hybrid A/C driven by a hybrid solar collector was found to be at least double that of the current solar A/Cs. The innovative integration of its subsystems allows each subsystem to do what it can do best. That leads to lower energy consumption which helps reduce the peak electrical loads on electric utilities and reduces the consumer operating cost since less energy is purchased during the on peak periods and less solar collector area is needed. In order for the proposed A/C to become a real alternative to conventional systems, its performance and total cost were optimized using the experimentally validated model. The results showed that for an

  6. Experimental studies of the air hybrid engine charging operation

    OpenAIRE

    Zhao, H; Ma, T; Lee, CY

    2014-01-01

    Over the last few years, theoretical and modelling studies have been carried out on the feasibility and potential of novel mild air hybrid engine concepts based on production components. These mild air hybrid concepts are able to convert vehicle brake energy into pneumatic energy in the form of compressed air stored in the air tank. The compressed air can then be used to crank-start the engine by either injecting and expanding in the cylinder or driving a production air starter. Thus, the reg...

  7. A Low Cost Air Hybrid Concept Un concept hybride à air et à bas prix

    Directory of Open Access Journals (Sweden)

    Lee C. Y.

    2010-02-01

    Full Text Available The air hybrid engine absorbs the vehicle kinetic energy during braking, stores it in an air tank in the form of compressed air, and reuses it to propel a vehicle during cruising and acceleration. Capturing, storing and reusing this braking energy to give additional power can therefore improve fuel economy, particularly in cities and urban areas where the traffic conditions involve many stops and starts. In order to reuse the residual kinetic energy, the vehicle operation consists of 3 basic modes, i.e. Compression Mode (CM, Expander Mode (EM and normal firing mode. Unlike previous works, a low cost air hybrid engine has been proposed and studied. The hybrid engine operation can be realized by means of production technologies, such as VVT and valve deactivation. In this work, systematic investigation has been carried out on the performance of the hybrid engine concept through detailed gas dynamic modelling using Ricardo WAVE software. Valve timing optimization has been done for the more efficient operation of air hybrid operation and obtaining higher braking and motoring mean effective pressure for CM and EM respectively. Le moteur hybride à air absorbe l’énergie cinétique du véhicule en cas de freinage, la stocke sous forme d’air comprimé, puis la réutilise pour faire avancer le véhicule en circulation ou en accélération. Capter, stocker et réutiliser cette énergie et créer ainsi une puissance plus importante peut donc permettre de plus grandes économies de carburant, surtout en ville et zone urbaine, lorsque les conditions de circulation imposent de nombreux arrêts et démarrages. Pour pouvoir réutiliser l’énergie cinétique, on distingue trois modes de base d’utilisation du véhicule : les modes compression (MC, expansion (ME et standard. Un moteur hybride à air et à bas prix a été proposé et étudié. Un tel moteur peut être opéré par le biais de technologies de production, comme le VVT et la d

  8. Investigation of a hybrid PVT air collector system

    Science.gov (United States)

    Haddad, S.; Touafek, K.; Mordjaoui, M.; Khelifa, A.; Tabet, I.

    2017-02-01

    The photovoltaic thermal hybrid (PVT) collectors, which simultaneously produce electricity and heat, are an alternative to photovoltaic modules and thermal collectors installed separately. Indeed, the heat extracted from the solar cell is used to heat water or air, thereby cooling the cell, and thus increasing its energy efficiency. This paper deals with a hybrid PVT air collector in which a new design has been proposed and tested. Its principle is based on the return of the preheating air to a second heating. The air thus passes twice under the solar cells before being evacuated to the outside of the collector (for space heating). The system is modular and expandable to cover large spaces to be heated. The experimental results of this novel design are presented and discussed under both normal and forced circulation. This technique of air return shows favorable results in terms of the quality of the heated air and electric power generation.

  9. Optimal Control of Hybrid Systems in Air Traffic Applications

    Science.gov (United States)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  10. Analysis on a hybrid desiccant air-conditioning system

    International Nuclear Information System (INIS)

    Jia, C.X.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2006-01-01

    Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 o C, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 o C)

  11. Performance analysis of a hybrid photovoltaic thermal solar air heater

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    A photovoltaic (PV/T) air heater is a collector that combines thermal and photovoltaic systems in one single hybrid generating unit. It generators both thermal and electrical energies simultaneously. A new design of a double-pass photovoltaic-thermal solar air collector with CPC and fins was successfully developed and fabricated at Universiti Kebangsaam Malaysia. This collector tested under actual environmental conditions to study its performance over a range of operating conditions. The test set-up, instrumentation and measurement are described further. It was found that the performance of the collector was in agreement with the theoretical prediction. Results of the outdoors test are presented and discussed(Author)

  12. Overall energy, exergy and carbon credit analysis by different type of hybrid photovoltaic thermal air collectors

    International Nuclear Information System (INIS)

    Agrawal, Sanjay; Tiwari, G.N.

    2013-01-01

    Highlights: ► Comparative study of PVT air collectors. ► CO 2 analysis of all type of PVT air collectors. ► Study of thermal energy, exergy gain and exergy efficiency. ► Exergy efficiency of unglazed hybrid PVT tiles air collector is most efficient. - Abstract: In this paper, comparative analysis of different type of photovoltaic thermal (PVT) air collector namely: (i) unglazed hybrid PVT tiles, (ii) glazed hybrid PVT tiles and (iii) conventional hybrid PVT air collectors have been carried out for the composite climate of Srinagar (India). The comparative study has been carried out in terms of overall thermal energy and exergy gain, exergy efficiency and carbon credit earned by different type of hybrid PVT air collectors. It has been observed that overall annual thermal energy and exergy gain of unglazed hybrid PVT tiles air collector is higher by 27% and 29.3% respectively as compared to glazed hybrid PVT tiles air collector and by 61% and 59.8% respectively as compared to conventional hybrid PVT air collector. It has also been observed that overall annual exergy efficiency of unglazed and glazed hybrid PVT tiles air collector is higher by 9.6% and 53.8% respectively as compared to conventional hybrid PVT air collector. On the basis of comparative study, it has been concluded that CO 2 emission reduction per annum on the basis of overall thermal energy gain of unglazed and glazed hybrid PVT tiles air collector is higher by 62.3% and 27.7% respectively as compared to conventional hybrid PVT air collector and on the basis of overall exergy gain it is 59.7% and 22.7%.

  13. Hybrid membrane contactor system for creating semi-breathing air

    Science.gov (United States)

    Timofeev, D. V.

    2012-02-01

    Typically, the equipment to create an artificial climate does not involve changing the composition of the respiratory air. In particular in medical institutions assumes the existence of plant of artificial climate and disinfection in operating rooms and intensive care wards. The use of a hybrid membrane-absorption systems for the generation of artificial atmospheres are improving the respiratory system, blood is enriched or depleted of various gases, resulting in increased stamina, there is a better, faster or slower metabolism, improves concentration and memory. Application of the system contributes to easy and rapid recovery after the operation. By adding a special component, with drug activity, air ionization, and adjust its composition, you can create a special, more favorable for patients with the atmosphere. These factors allow for the treatment and rehabilitation of patients and reduce mortality of heavy patients.

  14. Optimizing the efficiency of a diesel engine for a hybrid wind-diesel experimental validation; Optimisation de l'efficacite du moteur diesel pour un systeme hybride eolien-diesel-validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, H.; Dimitrova, M. [TechnoCentre Eolien, Murdochville, PQ (Canada); Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada); Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada)

    2010-07-01

    This study examined the feasibility of using a wind-diesel compressed air storage system in large-scale gas turbines at remote sites where a good wind resource is available. Studies have shown that the system can increase the wind energy penetration rate, particularly when combined with a turbo diesel engine. The system increases the power and performance of the diesel engine and reduces fuel consumption and emissions of greenhouse gases greenhouse gases (GHG). This study included a comparison of different technical solutions for the compressed air energy storage system, and described the one that optimized the performance and cost of the overall system. The optimal solution allowed the turbocharger to operate independently of the engine due to the energy provided by the compressed air in the air turbine. Optimization required maximizing the compressor power as an objective function. The energy balance of the engine itself had to be taken into account, along with the turbo charging system. 12 refs., 2 tabs., 16 figs.

  15. Energy savings potential of a hybrid desiccant dehumidification air conditioning system in Beirut

    International Nuclear Information System (INIS)

    Ghali, Kamel

    2008-01-01

    In this work, the transient performance of a hybrid desiccant vapor compression air conditioning system is numerically simulated for the ambient conditions of Beirut. The main feature of this hybrid system is that the regenerative heat needed by the desiccant wheel is partly supplied by the condenser dissipated heat while the rest is supplied by an auxiliary gas heater. The hybrid air conditioning system of the present study replaces a 23 kW vapor compression unit for a typical office in Beirut characterized by a high latent load. The vapor compression subsystem size in the hybrid air conditioning system is reduced to 15 kW at the peak load when the regeneration temperature was fixed at 75 deg. C. Also the sensible heat ratio of the combined hybrid system increased from 0.47 to 0.73. Based on hour by hour simulation studies for a wide range of recorded ambient conditions of Beirut city, this paper predicts the annual energy consumption of the hybrid system in comparison with the conventional vapor compression system for the entire cooling season. The annual running costs savings for the hybrid system is 418.39 USD for a gas cost price of 0.141 USD/kg. The pay back period of the hybrid system is less than five years when the initial cost of the hybrid air conditioning system priced an additional 1712.00 USD. Hence, for a 20-year life cycle, the life cycle savings of the hybrid air conditioning system are 4295.19 USD

  16. Daily air quality index forecasting with hybrid models: A case in China

    International Nuclear Information System (INIS)

    Zhu, Suling; Lian, Xiuyuan; Liu, Haixia; Hu, Jianming; Wang, Yuanyuan; Che, Jinxing

    2017-01-01

    Air quality is closely related to quality of life. Air pollution forecasting plays a vital role in air pollution warnings and controlling. However, it is difficult to attain accurate forecasts for air pollution indexes because the original data are non-stationary and chaotic. The existing forecasting methods, such as multiple linear models, autoregressive integrated moving average (ARIMA) and support vector regression (SVR), cannot fully capture the information from series of pollution indexes. Therefore, new effective techniques need to be proposed to forecast air pollution indexes. The main purpose of this research is to develop effective forecasting models for regional air quality indexes (AQI) to address the problems above and enhance forecasting accuracy. Therefore, two hybrid models (EMD-SVR-Hybrid and EMD-IMFs-Hybrid) are proposed to forecast AQI data. The main steps of the EMD-SVR-Hybrid model are as follows: the data preprocessing technique EMD (empirical mode decomposition) is utilized to sift the original AQI data to obtain one group of smoother IMFs (intrinsic mode functions) and a noise series, where the IMFs contain the important information (level, fluctuations and others) from the original AQI series. LS-SVR is applied to forecast the sum of the IMFs, and then, S-ARIMA (seasonal ARIMA) is employed to forecast the residual sequence of LS-SVR. In addition, EMD-IMFs-Hybrid first separately forecasts the IMFs via statistical models and sums the forecasting results of the IMFs as EMD-IMFs. Then, S-ARIMA is employed to forecast the residuals of EMD-IMFs. To certify the proposed hybrid model, AQI data from June 2014 to August 2015 collected from Xingtai in China are utilized as a test case to investigate the empirical research. In terms of some of the forecasting assessment measures, the AQI forecasting results of Xingtai show that the two proposed hybrid models are superior to ARIMA, SVR, GRNN, EMD-GRNN, Wavelet-GRNN and Wavelet-SVR. Therefore, the

  17. Hybrid Air Quality Modeling Approach for use in the Hear-road Exposures to Urban air pollutant Study(NEXUS)

    Science.gov (United States)

    The paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associa...

  18. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  19. 4D Trajectory Estimation for Air Traffic Control Automation System Based on Hybrid System Theory

    Directory of Open Access Journals (Sweden)

    Xin-Min Tang

    2012-03-01

    Full Text Available To resolve the problem of future airspace management under great traffic flow and high density condition, 4D trajectory estimation has become one of the core technologies of the next new generation air traffic control automation system. According to the flight profile and the dynamics models of different aircraft types under different flight conditions, a hybrid system model that switches the aircraft from one flight stage to another with aircraft state changing continuously in one state is constructed. Additionally, air temperature and wind speed are used to modify aircraft true airspeed as well as ground speed, and the hybrid system evolution simulation is used to estimate aircraft 4D trajectory. The case study proves that 4D trajectory estimated through hybrid system model can image the flight dynamic states of aircraft and satisfy the needs of the planned flight altitude profile.KEY WORDSair traffic management, 4D trajectory estimation, hybrid system model, aircraft dynamic model

  20. Experimental investigations on performance of liquid desiccant-vapor compression hybrid air conditioner

    International Nuclear Information System (INIS)

    Mohan, B. Shaji; Tiwari, Shaligram; Maiya, M.P.

    2015-01-01

    A coupled desiccant column is integrated with a conventional room air conditioner (AC) to enhance dehumidification of the room air. One desiccant column (absorber) is placed after the evaporator the other (regenerator) after the condenser of the AC unit. Such a novel liquid desiccant vapour compression hybrid air conditioning system has been fabricated and tested in a balanced ambient room type calorimeter for very low flow rates of liquid desiccant (lithium bromide solution). The moisture from the cold supply air is transferred to the hot condenser air by the desiccant flowing in the loop, thereby complimenting the dehumidification of the room air at the evaporator. The supply air is also sensibly heated during the dehumidification process by liquid desiccant in the absorber, which together enables the hybrid system to maintain low humidity in the room. Whereas the liquid desiccant is regenerated by the condenser waste heat, the entire cooling is derived only by the AC unit. The experimental results show that an increase of room temperature reduces both dehumidification of process air and regeneration of liquid desiccant, whereas an increase of room specific humidity enhances both these for the flow rate of the liquid desiccant in the range of 0.2–1.6% of the air flow rate through the absorber. - Highlights: • A liquid desiccant vapor compression hybrid system is fabricated and tested. • The liquid desiccant reduces latent load but equally increases sensible load. • Hybrid system performance is studied for varying room temperature and humidity. • Higher room temperature lowers air dehumidification and desiccant regeneration. • Increase of room specific humidity enhances dehumidification and also regeneration

  1. Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.

    Science.gov (United States)

    Li, Chenwei; Qiu, Ling; Zhang, Baoqing; Li, Dan; Liu, Chen-Yang

    2016-02-17

    New graphene aerogels can be fabricated by vacuum/air drying, and because of the mechanical robustness of the graphene aerogels, shape-memory polymer/graphene hybrid foams can be fabricated by a simple infiltration-air-drying-crosslinking method. Due to the superelasticity, high strength, and good electrical conductivity of the as-prepared graphene aerogels, the shape-memory hybrid foams exhibit excellent thermotropical and electrical shape-memory properties, outperforming previously reported shape-memory polymer foams. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Impact of the use of a hybrid turbine inlet air cooling system in arid climates

    International Nuclear Information System (INIS)

    Al-Ansary, Hany A.; Orfi, Jamel A.; Ali, Mohamed E.

    2013-01-01

    Graphical abstract: Cooling the air entering the compressor section of a gas turbine is a proven method of increasing turbine power output, especially during peak summer demand, and it is increasingly being used in powerplants worldwide. Two turbine inlet air cooling (TIAC) systems are widely used: evaporative cooling and mechanical chilling. In this work, the prospects of using a hybrid turbine inlet air cooling (TIAC) system are investigated. The hybrid system consists of mechanical chilling followed by evaporative cooling. Such a system is capable of achieving a significant reduction in inlet air temperature that satisfies desired power output levels, while consuming less power than conventional mechanical chilling and less water than conventional evaporative cooling, thus combining the benefits of both approaches. Two hybrid system configurations are studied. In the first configuration, the first stage of the system uses water-cooled chillers that are coupled with dry coolers such that the condenser cooling water remains in a closed loop. In the second configuration, the first stage of the system uses water-cooled chillers but with conventional cooling towers. An assessment of the performance and economics of those two configurations is made by comparing them to conventional mechanical chilling and using realistic data. It was found that the TIAC systems are capable of boosting the power output of the gas turbine by 10% or more (of the power output of the ISO conditions). The cost operation analysis shows clearly the hybrid TIAC method with wet cooling has the advantage over the other methods and It would be profitable to install it in the new gas turbine power plants. The figure below shows a comparison of the water consumption for the three different cases. - Highlights: • New hybrid system for the turbine inlet air cooling is studied. • Hybrid system of mechanical chilling followed by evaporative cooling is used. • Hybrid turbine inlet air cooling

  3. Air-steam hybrid engine : an alternative to internal combustion.

    Science.gov (United States)

    2011-03-01

    In this Small Business Innovation Research (SBIR) Phase 1 project, an energy-efficient air-steam propulsion system has been developed and patented, and key performance attributes have been demonstrated to be superior to those of internal combustion e...

  4. Severe Slugging in Air-Water Hybrid Riser System

    Directory of Open Access Journals (Sweden)

    Jing Gong

    2014-11-01

    Full Text Available In the subsea pipeline gathering system, severe slugging flow is prone to occur. Severe slugging flow brings major threat to production and flow assurance in oil and gas industry due to periodical pressure oscillation and large liquid volume. Currently many researchers pay much more attention on L-shaped riser, catenaries, and S-shaped riser; little research has been made on hybrid riser, which is applied in the Africa West and Gulf of Mexico oil fields. Flow characteristics simulation for hybrid riser is made in this paper, using the one-dimensional and quasi-equilibrium model to simulate not only the riser-base pressure, severe slugging period, and the liquid slug length of the whole system but also base-pressure in the flexible pipe section. The calculated results match well with the experiment data. Besides, the influence of flexible pipe to the severe slugging characteristics of hybrid riser system is analyzed, which are significant for the determination of riser structure.

  5. A Novel Hybrid-Fuel Storage System of Compressed Air Energy for China

    Directory of Open Access Journals (Sweden)

    Wenyi Liu

    2014-08-01

    Full Text Available Compressed air energy storage (CAES is a large-scale technology that provides long-duration energy storage. It is promising for balancing the large-scale penetration of intermittent and dispersed sources of power, such as wind and solar power, into electric grids. The existing CAES plants utilize natural gas (NG as fuel. However, China is rich in coal but is deficient in NG; therefore, a hybrid-fuel CAES is proposed and analyzed in this study. Based on the existing CAES plants, the hybrid-fuel CAES incorporates an external combustion heater into the power generation subsystem to heat the air from the recuperator and the air from the high-pressure air turbine. Coal is the fuel for the external combustion heater. The overall efficiency and exergy efficiency of the hybrid-fuel CAES are 61.18% and 59.84%, respectively. Given the same parameters, the cost of electricity (COE of the hybrid-fuel CAES, which requires less NG, is $5.48/MW∙h less than that of the gas-fuel CAES. Although the proposed CAES requires a relatively high investment in the current electricity system in North China, the proposed CAES will be likely to become competitive in the market, provided that the energy supplies are improved and the large scale grid-connection of wind power is realized.

  6. Cast Hybrid Composites Designated for Air Compressor Pistons

    Directory of Open Access Journals (Sweden)

    Dolata A. J.

    2016-06-01

    Full Text Available The main purpose of the investigations was to develop the phase composition of the composite assuming that the component selection criterion will be the formability of piston work surfaces during the machining. Wear resistance under the friction conditions was assumed as the additional parameter for the assessment of composite material. In the study were used AlSi7Mg/SiC+Cg and AlSi7Mg/SiC+GR hybrid composites prepared by the stir casting method.

  7. Pneumatic hybridization of a diesel engine using compressed air storage for wind-diesel energy generation

    International Nuclear Information System (INIS)

    Basbous, Tammam; Younes, Rafic; Ilinca, Adrian; Perron, Jean

    2012-01-01

    In this paper, we are studying an innovative solution to reduce fuel consumption and production cost for electricity production by Diesel generators. The solution is particularly suitable for remote areas where the cost of energy is very high not only because of inherent cost of technology but also due to transportation costs. It has significant environmental benefits as the use of fossil fuels for electricity generation is a significant source of GHG (Greenhouse Gas) emissions. The use of hybrid systems that combine renewable sources, especially wind, and Diesel generators, reduces fuel consumption and operation cost and has environmental benefits. Adding a storage element to the hybrid system increases the penetration level of the renewable sources, that is the percentage of renewable energy in the overall production, and further improves fuel savings. In a previous work, we demonstrated that CAES (Compressed Air Energy Storage) has numerous advantages for hybrid wind-diesel systems due to its low cost, high power density and reliability. The pneumatic hybridization of the Diesel engine consists to introduce the CAES through the admission valve. We have proven that we can improve the combustion efficiency and therefore the fuel consumption by optimizing Air/Fuel ratio thanks to the CAES assistance. As a continuation of these previous analyses, we studied the effect of the intake pressure and temperature and the exhaust pressure on the thermodynamic cycle of the diesel engine and determined the values of these parameters that will optimize fuel consumption. -- Highlights: ► Fuel economy analysis of a simple pneumatic hybridization of the Diesel engine using stored compressed air. ► Thermodynamic analysis of the pneumatic hybridization of diesel engines for hybrid wind-diesel energy systems. ► Analysis of intake pressure and temperature of compressed air and exhaust pressure on pressure/temperature during Diesel thermodynamic cycle. ► Direct admission of

  8. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  9. Air cooling of refrigerating loops: 'dry-hybrid' systems; Refroidissement par air des circuits frigorifiques: les systemes ''secs hybrides''

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W. [Societe Jaggi-Gunter (Switzerland)

    2003-02-01

    Different type of cooling systems can be implemented on coldness production plants. The choice very often depends on the initial investment, but from a technical and economical point of view, this choice is not necessary the best solution. Thus, it can be useful to know the different existing systems and their exploitation costs with respect to the expected needs. A particular solution which uses a 'dry-hybrid' cooler is presented in this study: 1 - open-loop evaporative cooler; 2 - open-loop evaporative cooler with intermediate exchanger; 3 - close-loop evaporative cooler; 4 - dry-cooler; 5 - dry cooler with spraying in the air flow way; 6 - dry cooler with counterflow spraying; 7 - hybrid dry cooler; 8 - example of a realization in Germany: technical and economical value of the project, description of compared solutions and hypotheses, interpretation of results. (J.S.)

  10. Preliminary engineering design and cost of Advanced Compressed-Air Storage (ACAS) A-5 hybrid

    Science.gov (United States)

    Sosnowicz, E. J.; Blackman, J.; Woodhull, A. S.; Zaugg, P.

    1981-08-01

    The advanced compressed air energy (ACAS) plant investiated operates on a partial adiabatic, partial fuel fired cycle. Only a limited advancement in state-of-the-art technology is projected for this hybrid arrangement. The A-5 hybrid systems stores the heat of compression from the low pressure and intermediate pressure compressors in a thermal energy store (TES). The heat collected in the TES is available for preheating the air from the storage cavern prior to its entering the low pressure turbine combustor. This reduces the amount of fuel consumed during power generation. The fuel heat rate for the hybrid cycle is 2660 Btu/kWh as compared to approximately 4000 Btu/kWh for a conventional CAES plant. A virtual stand-off between the hybrid plant and a conventional CAES plant at 235 mills/kWh in 1990 dollars is shown. With a lower cost and increased fuel cost projections, the hybrid system operating cost is less than that for a conventional CAES plant.

  11. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  12. Human-model hybrid Korean air quality forecasting system.

    Science.gov (United States)

    Chang, Lim-Seok; Cho, Ara; Park, Hyunju; Nam, Kipyo; Kim, Deokrae; Hong, Ji-Hyoung; Song, Chang-Keun

    2016-09-01

    The Korean national air quality forecasting system, consisting of the Weather Research and Forecasting, the Sparse Matrix Operator Kernel Emissions, and the Community Modeling and Analysis (CMAQ), commenced from August 31, 2013 with target pollutants of particulate matters (PM) and ozone. Factors contributing to PM forecasting accuracy include CMAQ inputs of meteorological field and emissions, forecasters' capacity, and inherent CMAQ limit. Four numerical experiments were conducted including two global meteorological inputs from the Global Forecast System (GFS) and the Unified Model (UM), two emissions from the Model Intercomparison Study Asia (MICS-Asia) and the Intercontinental Chemical Transport Experiment (INTEX-B) for the Northeast Asia with Clear Air Policy Support System (CAPSS) for South Korea, and data assimilation of the Monitoring Atmospheric Composition and Climate (MACC). Significant PM underpredictions by using both emissions were found for PM mass and major components (sulfate and organic carbon). CMAQ predicts PM2.5 much better than PM10 (NMB of PM2.5: -20~-25%, PM10: -43~-47%). Forecasters' error usually occurred at the next day of high PM event. Once CMAQ fails to predict high PM event the day before, forecasters are likely to dismiss the model predictions on the next day which turns out to be true. The best combination of CMAQ inputs is the set of UM global meteorological field, MICS-Asia and CAPSS 2010 emissions with the NMB of -12.3%, the RMSE of 16.6μ/m(3) and the R(2) of 0.68. By using MACC data as an initial and boundary condition, the performance skill of CMAQ would be improved, especially in the case of undefined coarse emission. A variety of methods such as ensemble and data assimilation are considered to improve further the accuracy of air quality forecasting, especially for high PM events to be comparable to for all cases. The growing utilization of the air quality forecast induced the public strongly to demand that the accuracy of the

  13. Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator

    Science.gov (United States)

    Feng, Li-shuang; Wang, Kai; Jiao, Hong-chen; Wang, Jun-jie; Liu, Dan-ni; Yang, Zhao-hua

    2018-01-01

    A novel hybrid air-core photonic band-gap fiber (PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coefficient of air-core PBF and Panda fiber. Experimental results show that the relative temperature dependent birefringence coefficient of air-core PBF is 1.42×10-8/°C, which is typically 16 times less than that of Panda fiber. Then, we extract the geometry profile of air-core PBF from scanning electron microscope (SEM) images. Numerical modal is built to distinguish the fast axis and slow axis in the fiber. By precisely setting the length difference in air-core PBF and Panda fiber between two 90° polarization-axis rotated splicing points, the hybrid air-core PBF ring resonator is constructed, and the finesse of the resonator is 8.4. Environmental birefringence variation induced by temperature change can be well compensated, and experimental results show an 18-fold reduction in thermal sensitivity, compared with resonator with twin 0° polarization-axis rotated splices.

  14. Dynamic performance of self-operated three-way valve used in a hybrid air conditioner

    International Nuclear Information System (INIS)

    Zhang, Penglei; Zhou, Dehai; Shi, Wenxing; Li, Xianting; Wang, Baolong

    2014-01-01

    A hybrid air conditioner combining a thermosyphon cycle with a vapor compression refrigeration cycle has a large energy saving potential compared with a common air conditioner for spaces requiring year-round cooling. The performance of the switch between the vapor compression mode and the thermosyphon mode largely impacts the safety and reliability of hybrid air conditioners. Therefore, a self-operated three-way valve is proposed. A thermodynamic model and a kinetic model are developed in this paper to evaluate the dynamic performance of the switch valve. The effects of the spring force constant, compressor discharging volume, fit clearance and piston length on the dynamic performance of the switch valve are analyzed. In conclusion, the proposed self-operated three-way valve can realize the switch operation accurately. - Highlights: •A self-operated three-way valve is proposed for hybrid air conditioners. •The thermodynamic model and kinetic model of the self-operated three-way valve are developed. •The validity of models is verified by experiments. •Effects of four main design parameters on the operating performance of the valve are researched

  15. Hybrid membrane--PSA system for separating oxygen from air

    Science.gov (United States)

    Staiger, Chad L [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM; Miller, A Keith [Albuquerque, NM; Cornelius, Christopher J [Blackburg, VA

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  16. Feasibility study of a hybrid wind turbine system – Integration with compressed air energy storage

    International Nuclear Information System (INIS)

    Sun, Hao; Luo, Xing; Wang, Jihong

    2015-01-01

    Highlights: • A new hybrid wind turbine system is proposed and feasibility study if conducted. • A complete mathematical model is developed and implemented in a software environment. • Multi-mode control strategy is investigated to ensure the system work smoothly and efficiently. • A prototype for implementing the proposed mechanism is built and tested as proof of the concept. • The proposed system is proved to be technically feasible with energy efficiency around 50%. - Abstract: Wind has been recognized as one of major realistic clean energy sources for power generation to meet the continuously increased energy demand and to achieve the carbon emission reduction targets. However, the utilisation of wind energy encounters an inevitable challenge resulting from the nature of wind intermittency. To address this, the paper presents the recent research work at Warwick on the feasibility study of a new hybrid system by integrating a wind turbine with compressed air energy storage. A mechanical transmission mechanism is designed and implemented for power integration within the hybrid system. A scroll expander is adopted to serve as an “air-machinery energy converter”, which can transmit additional driving power generalized from the stored compressed air to the turbine shaft for smoothing the wind power fluctuation. A mathematical model for the complete hybrid process is developed and the control strategy is investigated for corresponding cooperative operations. A prototype test rig for implementing the proposed mechanism is built for proof of the concept. From the simulated and experimental studies, the energy conversion efficiency analysis is conducted while the system experiences different operation conditions and modes. It is proved that the proposed hybrid wind turbine system is feasible technically

  17. Development of Hybrid Type Flexible Pneumatic Cylinder for Considering Less Air Consumption

    Directory of Open Access Journals (Sweden)

    Tamaki Hiroaki

    2016-01-01

    Full Text Available Inexpensive rehabilitation devices that can be used at home are required because of a lack of PT and welfare workers. In the previous study, the low-cost portable rehabilitation device using a flexible spherical actuator that consists of flexible pneumatic cylinder was proposed and tested. However, a compact and high power compressor that supplies air pressure to pneumatic actuator has not been developed yet. In particular, the heat generated by compressing air prevents to miniaturize it. To realize a home rehabilitation, the small-sized compressors or less air consuming flexible actuators are required. In this study, a hybrid type flexible pneumatic cylinder driven by electric motors and air pressure is proposed and tested. The concept, the construction and the operating principle of the proposed actuator were described. The position control using the tested actuator is also carried out.

  18. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    Science.gov (United States)

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  19. Simulation of Evacuated Tube Collector and Storage of Hybrid Air-conditioning System

    Directory of Open Access Journals (Sweden)

    Mustafa Ahmed Abdulhussain

    2018-02-01

    Full Text Available The CFD transient simulation of superheating the refrigerant R410 through the heat exchange with the evacuated tube water heating system of the hybrid split air conditioner that is subjected to solar radiation of constant intensity with the contribution of fan accelerated air is performed by the ANSYS-CFX code. The comparison with experimental work showed a minimum percentage error 8% of the predicted refrigerant evaporative heat transfer with storage tank horizontal tubing. In addition, the results denoted high absorption rate for the evacuated tubes, reducing highly reversed heat transmission for the circulated water. 

  20. Design and simulation of a hybrid ventilation system with earth-air heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Athienitis, A.K.; Zhao, M. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Roy, M. [Martin Roy and Associes Group Conseil Inc., Montreal, PQ (Canada)

    2005-07-01

    A simulation study was conducted during the design phase of a new circus building in Montreal which includes a hybrid ventilation system through which fresh air is supplied from an earth-air heat exchanger (EAHE). The EAHE has the potential to satisfy the cooling needs of the building and can also be used to preheat fresh air, thereby satisfying one-third or more of the building's heating needs. Another feature of the building is that it uses displacement ventilation by which the air is supplied at low velocities through large diffusers behind the top level seats or under the seats. In this study, computational fluid dynamics (CFD) simulations were carried out to help size the supply and return units of the heating, ventilating and air conditioning (HVAC) system, as well as the exhaust chimney. The primary objective of the CFD simulation was to determine the maximum velocity and temperature in the seated area to ensure thermal comfort. CFD simulation predictions were found to be in good agreement with preliminary measurements taken in the building. In order to monitor the operation of the system over the next year, the underground ducts were equipped with temperature sensors at several depths into the soil. The energy efficiency of the hybrid HVAC system will be assessed and the velocity and temperature distribution in the theatre will be examined under various operating and energy load conditions. 8 refs., 6 figs.

  1. Modelling and experimentation on air hybrid engine concepts for automotive applications

    OpenAIRE

    Psanis, Christodoulos

    2007-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Hybrid powertrains that use compressed air to help power a vehicle could dramatically improve the fuel economy, particularly in cities and urban areas where the traffic conditions involve a lot of starts and stops. In such conditions, a large amount of fuel is needed to accelerate the vehicle, and much of this is converted to heat in brake friction during decelerations. Capturing, storing and...

  2. Performance evaluation of a solar energy assisted hybrid desiccant air conditioner integrated with HDH desalination system

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Abdelgaied, Mohamed; Zakaria, Yehya

    2017-01-01

    Highlights: • The performance of a solar hybrid air conditioner integrated with HDH desalination system is numerically investigated. • For increase the regeneration air from 70 to 130 m 3 /h, the distillate water productivity increases from 2.988 to 4.78 L/h. • For increase the regeneration air from 70 to 130 m 3 /h, COP overall daily decreases from 4.66 to 3.386. • For increases the regeneration air temperature from 75 to 95 °C, the distillate water increases from 3.1752 to 5.011 L/h. • For increases the regeneration air temperature from 75 to 95 °C, COP overall daily decreases from 4.392 to 3.636. - Abstract: In this study, the performances of a solar energy assisted hybrid desiccant air conditioning system integrated with humidification–dehumidification (HDH) desalination system are numerically investigated. The aim of this study is to benefit from the temperature rise of the regeneration air outside of the desiccant conditioning system as well as the water vapor content in this regeneration air by feeding it to the humidification-dehumidification water desalination unit to produce distillate water. The distillate water productivity, human thermal comfort issues, and energy saving represent the main objective of the present numerical study. The simulated results developed for subsystems are validated with the published experimental results. The effects of regeneration air temperature and flow rate on supply cooled air temperature, distillate water productivity, the cooling coefficient of performance and overall daily coefficient of performance of the proposed system are investigated. The results show that (i) the distillate water productivity increases from 3.175 to 5.011 L/h and overall daily coefficient of performance decreases from 4.392 to 3.636 with increasing the regeneration air temperature from 75 to 95 as (ii) the increase in the regeneration air flow rate from 70 to 130 m 3 /h, increases the distillate water productivity from 2.988 to 4

  3. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2015-01-01

    Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.

  4. Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices

    Science.gov (United States)

    Miraei Ashtiani, Seyed-Hassan; Sturm, Barbara; Nasirahmadi, Abozar

    2018-04-01

    Drying and physicochemical characteristics of nectarine slices were investigated using hot-air and hybrid hot air-microwave drying methods under fixed air temperature and air speed (50 °C and 0.5 m/s, respectively). Microwave power levels for the combined hot air-microwave method were 80, 160, 240, and 320 W. Drying kinetics were analyzed and compared using six mathematical models. For both drying methods the model with the best fitness in explaining the drying behavior was the Midilli-Kucuk model. The coefficient of determination ( R 2), root mean square error (RMSE) and reduced chi square ( χ 2) for this model have been obtained greater than 0.999 and less than 0.006 and 0.0001 for hybrid hot air-microwave drying while those values for hot-air drying were more than 0.999 and less than 0.003 and 0.0001, respectively. Results showed that the hybrid method reduced the drying time considerably and produced products with higher quality. The range of effective moisture diffusivity ( D eff ) of hybrid and hot-air drying was between 8.15 × 10-8 and 2.83 × 10-7 m2/s and 1.27 × 10-8 m2/s, respectively. The total color difference (ΔE) has also been obtained from 36.68 to 44.27 for hybrid method; however this value for hot-air drying was found 49.64. Although reduced microwave power output led to a lower drying rate, it reduced changes in product parameters i.e. total color change, surface roughness, shrinkage and microstructural change and increased hardness and water uptake.

  5. Experimental study of hybrid interface cooling system using air ventilation and nanofluid

    Science.gov (United States)

    Rani, M. F. H.; Razlan, Z. M.; Bakar, S. A.; Desa, H.; Wan, W. K.; Ibrahim, I.; Kamarrudin, N. S.; Bin-Abdun, Nazih A.

    2017-09-01

    The hybrid interface cooling system needs to be established to chill the battery compartment of electric car and maintained its ambient temperature inside the compartment between 25°C to 35°C. The air cooling experiment has been conducted to verify the cooling capacity, compressor displacement volume, dehumidifying value and mass flow rate of refrigerant (R-410A). At the same time, liquid cooling system is analysed theoretically by comparing the performance of two types of nanofluid, i.e., CuO + Water and Al2O3 + Water, based on the heat load generated inside the compartment. In order for the result obtained to be valid and reliable, several assumptions are considered during the experimental and theoretical analysis. Results show that the efficiency of the hybrid interface cooling system is improved as compared to the individual cooling system.

  6. Experimental temperature analysis of simple & hybrid earth air tunnel heat exchanger in series connection at Bikaner Rajasthan India

    Science.gov (United States)

    Jakhar, O. P.; Sharma, Chandra Shekhar; Kukana, Rajendra

    2018-05-01

    The Earth Air Tunnel Heat Exchanger System is a passive air-conditioning system which has no side effect on earth climate and produces better cooling effect and heating effect comfortable to human body. It produces heating effect in winter and cooling effect in summer with the minimum power consumption of energy as compare to other air-conditioning devices. In this research paper Temperature Analysis was done on the two systems of Earth Air Tunnel Heat Exchanger experimentally for summer cooling purpose. Both the system was installed at Mechanical Engineering Department Government Engineering College Bikaner Rajasthan India. Experimental results concludes that the Average Air Temperature Difference was found as 11.00° C and 16.27° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively. The Maximum Air Temperature Difference was found as 18.10° C and 23.70° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively. The Minimum Air Temperature Difference was found as 5.20° C and 11.70° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively.

  7. Performance of Hybrid Steel Fibers Reinforced Concrete Subjected to Air Blast Loading

    Directory of Open Access Journals (Sweden)

    Mohammed Alias Yusof

    2013-01-01

    Full Text Available This paper presents the results of the experimental data and simulation on the performance of hybrid steel fiber reinforced concrete (HSFRC and also normal reinforced concrete (NRC subjected to air blast loading. HSFRC concrete mix consists of a combination of 70% long steel hook end fibre and also 30% of short steel hook end fibre with a volume fraction of 1.5% mix. A total of six concrete panels were subjected to air blast using plastic explosive (PE4 weighing 1 kg each at standoff distance of 0.3 meter. The parameters measured are mode of failure under static and blast loading and also peak overpressure that resulted from detonation using high speed data acquisition system. In addition to this simulation work using AUTODYN was carried out and validated using experimental data. The experimental results indicate that hybrid steel fiber reinforced concrete panel (HSFRC possesses excellent resistance to air blast loading as compared to normal reinforced concrete (NRC panel. The simulation results were also found to be close with experimental data. Therefore the results have been validated using experimental data.

  8. A low-cost hybrid drivetrain concept based on compressed air energy storage

    International Nuclear Information System (INIS)

    Brown, T.L.; Atluri, V.P.; Schmiedeler, J.P.

    2014-01-01

    Highlights: • A new pneumatic hybrid concept is introduced. • A proof-of-concept prototype system is built and tested. • The experimental system has a round-trip efficiency of just under 10%. • A thermodynamics model is used to predict the performance of modified designs. • An efficiency of nearly 50% is possible with reasonable design changes. - Abstract: This paper introduces a new low-cost hybrid drivetrain concept based on compressed air energy storage. In contrast to most contemporary approaches to pneumatic hybridization, which require modification to the primary power plant, this concept is based on a stand-alone pneumatic system that could be readily integrated with existing vehicles. The pneumatic system consists of an air tank and a compressor–expander that is coupled to the rest of the drivetrain via an infinitely variable transmission. Rather than incorporating more expensive technologies such as variable valve timing or a variable compression ratio compressor, a fixed valve system consisting of a rotary valve and passive check valves is optimized to operate efficiently over a range of tank pressures. The feasibility of this approach is established by thermodynamic modeling and the construction of a proof-of-concept prototype, which is also used to fine tune model parameters. While the proof-of-concept system shows a round trip efficiency of just under 10%, modeling shows that a round trip efficiency of 26% is possible with a revised design. If waste heat from the engine is used to maintain an elevated tank temperature, efficiencies of nearly 50% may be possible, indicating that the concept could be effective for practical hybridization of passenger vehicles

  9. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration

    Science.gov (United States)

    Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Chun-yu

    2017-10-01

    A hybrid isolator consisting of maglev actuator and air spring is proposed and developed for application in active-passive vibration isolation system of ship machinery. The dynamic characteristics of this hybrid isolator are analyzed and tested. The stability and adaptability of this hybrid isolator to shock and swing in the marine environment are improved by a compliant gap protection technique and a disengageable suspended structure. The functions of these new engineering designs are proved by analytical verification and experimental validation of the designed stiffness of such a hybrid isolator, and also by shock adaptability testing of the hybrid isolator. Finally, such hybrid isolators are installed in an engineering mounting loaded with a 200-kW ship diesel generator, and the broadband and low-frequency sinusoidal isolation performance is tested.

  10. A review on the recent development of solar absorption and vapour compression based hybrid air conditioning with low temperature storage

    Directory of Open Access Journals (Sweden)

    Noor D. N.

    2016-01-01

    Full Text Available Conventional air conditioners or vapour compression systems are main contributors to energy consumption in modern buildings. There are common environmental issues emanating from vapour compression system such as greenhouse gas emission and heat wastage. These problems can be reduced by adaptation of solar energy components to vapour compression system. However, intermittence input of daily solar radiation was the main issue of solar energy system. This paper presents the recent studies on hybrid air conditioning system. In addition, the basic vapour compression system and components involved in the solar air conditioning system are discussed. Introduction of low temperature storage can be an interactive solution and improved economically which portray different modes of operating strategies. Yet, very few studies have examined on optimal operating strategies of the hybrid system. Finally, the findings of this review will help suggest optimization of solar absorption and vapour compression based hybrid air conditioning system for future work while considering both economic and environmental factors.

  11. Hybrid utilization of solar energy. Part 2. Performance analyses of heating system with air hybrid collector; Taiyo energy no hybrid riyo ni kansuru kenkyu. 2. Kuki shunetsu hybrid collector wo mochiita danbo system no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, M; Okumiya, M [Nagoya University, Nagoya (Japan)

    1996-10-27

    For the effective utilization of solar energy at houses, a heating system using an air hybrid collector (capable of simultaneously performing heat collection and photovoltaic power generation). As the specimen house, a wooden house of a total floor area of 120m{sup 2} was simulated. Collected air is fanned into a crushed stone heat accumulator (capable of storing one day`s collection) or into a living room. The output of solar cell arrays is put into a heat pump (capable of handling a maximum hourly load of 36,327kJ/h) via an inverter so as to drive the fan (corresponding to average insolation on the heat collecting plate of 10.7MJ/hm{sup 2} and heat collecting efficiency of 40%), and shortage in power if any is supplied from the system interconnection. A hybrid collector, as compared with the conventional air collector, is lower in thermal efficiency but the merit that it exhibits with respect to power generation is far greater than what is needed to counterbalance the demerit. When the hybrid system is in heating operation, there is an ideal heat cycle of collection, accumulation, and radiation when the load is light, but the balance between accumulation and radiation is disturbed when the load is heavy. 4 refs., 8 figs., 3 tabs.

  12. Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems

    International Nuclear Information System (INIS)

    Briola, Stefano; Di Marco, Paolo; Gabbrielli, Roberto; Riccardi, Juri

    2017-01-01

    Highlights: •A sensitivity analysis and DOE of the complete hybrid CAES are carried out. •The influence of the storage site volume on performance indicators is negligible. •The performances increase with the decrease of the compressor outlet pressure. •The performances are correlated for each temperature increase in combustion chamber. •Hybridization of Huntorf implies a significant increase of its first law efficiency. -- Abstract: A detailed mathematical model was developed for the complete Hybrid Compressed Air Energy Storage (H-CAES) configuration with underground storage site and liquid thermal energy storage, operating with a sequence of processes (charging, holding and discharging with respective duration) in arbitrary order. A sensitivity analysis was carried out in order to calculate several performance indicators of the complete H-CAES configuration, in relation to the simultaneous change of several process parameters. The methodology “Design of Experiments” was applied to the results of the sensitivity analysis in order to calculate the main effects of each process parameter on each performance indicator. The influence of the storage site volume on each performance indicator is negligible. The reduction of the compressor group outlet pressure and of the turbine group power allows a more effective thermodynamic utilization both of the energy stored by the compressors and of the overall energy supplied to the plant. Furthermore, the former utilization is more effective by an increase of the gas temperature in the combustion chambers, whereas the latter utilization is worsened. Moreover, as case study, the existing diabatic CAES plant of Huntorf was modified by introducing a diathermic oil thermal storage. This plant is suitable to operate according to a partial hybrid configuration by the deactivation of the heat exchanger located upstream of the low pressure turbine. The thermodynamic utilization of the overall energy supplied to the plant

  13. Air traffic surveillance and control using hybrid estimation and protocol-based conflict resolution

    Science.gov (United States)

    Hwang, Inseok

    The continued growth of air travel and recent advances in new technologies for navigation, surveillance, and communication have led to proposals by the Federal Aviation Administration (FAA) to provide reliable and efficient tools to aid Air Traffic Control (ATC) in performing their tasks. In this dissertation, we address four problems frequently encountered in air traffic surveillance and control; multiple target tracking and identity management, conflict detection, conflict resolution, and safety verification. We develop a set of algorithms and tools to aid ATC; These algorithms have the provable properties of safety, computational efficiency, and convergence. Firstly, we develop a multiple-maneuvering-target tracking and identity management algorithm which can keep track of maneuvering aircraft in noisy environments and of their identities. Secondly, we propose a hybrid probabilistic conflict detection algorithm between multiple aircraft which uses flight mode estimates as well as aircraft current state estimates. Our algorithm is based on hybrid models of aircraft, which incorporate both continuous dynamics and discrete mode switching. Thirdly, we develop an algorithm for multiple (greater than two) aircraft conflict avoidance that is based on a closed-form analytic solution and thus provides guarantees of safety. Finally, we consider the problem of safety verification of control laws for safety critical systems, with application to air traffic control systems. We approach safety verification through reachability analysis, which is a computationally expensive problem. We develop an over-approximate method for reachable set computation using polytopic approximation methods and dynamic optimization. These algorithms may be used either in a fully autonomous way, or as supporting tools to increase controllers' situational awareness and to reduce their work load.

  14. Hybrid design method for air-core solenoid with axial homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Choi, Suk Jin [Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-03-15

    In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million)

  15. Enhancements to the hybrid pressurized air receiver (HPAR) concept in the SUNDISC cycle

    Science.gov (United States)

    Heller, Lukas; Hoffmann, Jaap

    2017-06-01

    A dual-pressure air receiver has previously been proposed as part of a hybrid receiver system preheating pressurized air in a solarized gas turbine and providing hot non-pressurized air to power the bottoming cycle of a combined cycle CSP plant. The receiver, based on a bundle of metallic tubular absorbers, was found to not be able to provide the non-pressurized air at the required temperature. Three enhancements to the basic design are presented and thermally modeled: (a) Finned absorber tubes to increase the convective heat transfer, (b) quartz glass elements to alleviate convective losses and improve the flow inside the tube bundle as well as (c) additional absorber elements behind the tube bundle. It could be shown that finned absorber tubes as well as the additional absorber elements have potential to improve the thermal performance of the receiver while a quartz glass window and flow-enhancing quartz elements could be indispensable additions to either of the other enhancements.

  16. Fγ: A new observable for photon-hadron discrimination in hybrid air shower events

    Science.gov (United States)

    Niechciol, M.; Risse, M.; Ruehl, P.; Settimo, M.; Younk, P. W.; Yushkov, A.

    2018-01-01

    To search for ultra-high-energy photons in primary cosmic rays, air shower observables are needed that allow a good separation between primary photons and primary hadrons. We present a new observable, Fγ, which can be extracted from ground-array data in hybrid events, where simultaneous measurements of the longitudinal and the lateral shower profile are performed. The observable is based on a template fit to the lateral distribution measured by the ground array with the template taking into account the complementary information from the measurement of the longitudinal profile, i.e. the primary energy and the geometry of the shower. Fγ shows a very good photon-hadron separation, which is even superior to the separation given by the well-known Xmax observable (the atmospheric depth of the shower maximum). At energies around 1 EeV (10 EeV), Fγ provides a background rejection better than 97.8 % (99.9 %) at a signal efficiency of 50 %. Advantages of the observable Fγ are its technical stability with respect to irregularities in the ground array (i.e. missing or temporarily non-operating stations) and that it can be applied over the full energy range accessible to the air shower detector, down to its threshold energy. Furthermore, Fγ complements nicely to Xmax such that both observables can well be combined to achieve an even better discrimination power, exploiting the rich information available in hybrid events.

  17. Investigations on the performance of a double pass, hybrid - type (PV/T) solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, M.; Jayaraj, S. [Department of Mechanical Engineering, National Institute of Technology, Calicut-673601 (India)

    2013-07-01

    A solar hybrid energy system having photovoltaic and thermal (PV/T) devices, which produces both thermal and electrical energies simultaneously is considered for analysis. A double pass hybrid solar air (PV/T) heater with slats is designed and fabricated to study its thermal and electrical performance. Air as a heat removing fluid is made to flow through upper and lower channels of the collector. The collector is designed in such a way that the absorber plate is partially covered by solar cells. The raise in temperature of the solar cell is expected to decrease its electrical performance. Thin metallic strips called slats are attached longitudinally at the bottom side of the absorber plate to improve the system performance by increasing the cooling rate of the absorber plate. Thermal and electrical performances of the whole system at varying cooling conditions are presented. An artificial neural network model is used for forecasting the system performance at any desired conditions. The proposed model can be successfully used for evaluating the effect of different operating parameters under different ambient conditions for predicting the overall performance of the system.

  18. Thermodynamic analysis of a novel hybrid wind-solar-compressed air energy storage system

    International Nuclear Information System (INIS)

    Ji, Wei; Zhou, Yuan; Sun, Yu; Zhang, Wu; An, Baolin; Wang, Junjie

    2017-01-01

    Highlights: • We present a novel hybrid wind-solar-compressed air energy storage system. • Wind and solar power are transformed into stable electric energy and hot water. • The system output electric power is 8053 kWh with an exergy efficiency of 65.4%. • Parametric sensitivity analysis is presented to optimize system performance. - Abstract: Wind and solar power have embraced a strong development in recent years due to the energy crisis in China. However, owing to their nature of fluctuation and intermittency, some power grid management problems can be caused. Therefore a novel hybrid wind-solar-compressed air energy storage (WS-CAES) system was proposed to solve the problems. The WS-CAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Also, combined with organic Rankin cycle (ORC), the cascade utilization of energy with different qualities was achieved in the WS-CAES system. Aiming to obtain the optimum performance, the analysis of energy, exergy and parametric sensitivity were all conducted for this system. Furthermore, exergy destruction ratio of each component in the WS-CAES system was presented. The results show that the electric energy storage efficiency, round trip efficiency and exergy efficiency can reach 87.7%, 61.2% and 65.4%, respectively. Meanwhile, the parameters analysis demonstrates that the increase of ambient temperature has a negative effect on the system performance, while the increase of turbine inlet temperature has a positive effect. However, when the air turbine inlet pressure varies, there is a tradeoff between the system performance and the energy storage density.

  19. Evaluation of Cathode Air Flow Transients in a SOFC/GT Hybrid System Using Hardware in the Loop Simulation.

    Science.gov (United States)

    Zhou, Nana; Yang, Chen; Tucker, David

    2015-02-01

    Thermal management in the fuel cell component of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid power system can be improved by effective management and control of the cathode airflow. The disturbances of the cathode airflow were accomplished by diverting air around the fuel cell system through the manipulation of a hot-air bypass valve in open loop experiments, using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). The dynamic responses of the fuel cell component and hardware component of the hybrid system were studied in this paper.

  20. A hybridized membrane-botanical biofilter for improving air quality in occupied spaces

    Science.gov (United States)

    Llewellyn, David; Darlington, Alan; van Ras, Niels; Kraakman, Bart; Dixon, Mike

    Botanical biofilters have been shown to be effective in improving indoor air quality through the removal of complex mixtures of gaseous contaminants typically found in human-occupied environments. Traditional, botanical biofilters have been comprised of plants rooted into a thin and highly porous synthetic medium that is hung on vertical surfaces. Water flows from the top of the biofilter and air is drawn horizontally through the rooting medium. These botanical biofilters have been successfully marketed in office and institutional settings. They operate efficiently, with adequate contaminant removal and little maintenance for many years. Depending on climate and outdoor air quality, botanical biofiltration can substantially reduce costs associated with ventilation of stale indoor air. However, there are several limitations that continue to inhibit widespread acceptance: 1. Current designs are architecturally limiting and inefficient at capturing ambient light 2. These biofilters can add significant amounts of humidity to an indoor space. This water loss also leads to a rapid accumulation of dissolved salts; reducing biofilter health and performance 3. There is the perception of potentially actively introducing harmful bioaerosols into the air stream 4. Design and practical limitations inhibit the entrance of this technology into the lucrative residential marketplace This paper describes the hybridization of membrane and botanical biofiltration technologies by incorporating a membrane array into the rootzone of a conventional interior planting. This technology has the potential for addressing all of the above limitations, expanding the range of indoor settings where botanical biofiltration can be applied. This technology was developed as the CSA-funded Canadian component an ESA-MAP project entitled: "Biological airfilter for air quality control of life support systems in manned space craft and other closed environments", A0-99-LSS-019. While the project addressed a

  1. Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air.

    Science.gov (United States)

    Caucheteur, Christophe; Debliquy, Marc; Lahem, Driss; Megret, Patrice

    2008-10-13

    Using hydrogen as fuel presents a potential risk of explosion and requires low cost and efficient leak sensors. We present here a hybrid sensor configuration consisting of a long period fiber grating (LPFG) and a superimposed uniform fiber Bragg grating (FBG). Both gratings are covered with a sensitive layer made of WO(3) doped with Pt on which H(2) undergoes an exothermic reaction. The released heat increases the temperature around the gratings. In this configuration, the LPFG favors the exothermic reaction thanks to a light coupling to the sensitive layer while the FBG reflects the temperature change linked to the hydrogen concentration. Our sensor is very fast and suitable to detect low hydrogen concentrations in air whatever the relative humidity level and for temperatures down to -50 degrees C, which is without equivalent for other hydrogen optical sensors reported so far.

  2. Analysis of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer.

    Science.gov (United States)

    Ma, Peter; Esclape, Lucas; Buschhagen, Timo; Naik, Sameer; Gore, Jay; Lucht, Robert; Ihme, Matthias

    2015-11-01

    Fuel injection and atomization are of direct importance to the design of injector systems in aviation gas turbine engines. Primary and secondary breakup processes have significant influence on the drop-size distribution, fuel deposition, and flame stabilization, thereby directly affecting fuel conversion, combustion stability, and emission formation. The lack of predictive modeling capabilities for the reliable characterization of primary and secondary breakup mechanisms is still one of the main issues in improving injector systems. In this study, an unstructured Volume-of-Fluid method was used in conjunction with a Lagrangian-spray framework to conduct high-fidelity simulations of the breakup and atomization processes in a realistic gas turbine hybrid air blast atomizer. Results for injection with JP-8 aviation fuel are presented and compared to available experimental data. Financial support through the FAA National Jet Fuel Combustion Program is gratefully acknowledged.

  3. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.

    2013-01-01

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  4. Performance improvement of a hybrid air conditioning system using the indirect evaporative cooler with internal baffles as a pre-cooling unit

    Directory of Open Access Journals (Sweden)

    A.E. Kabeel

    2017-12-01

    Full Text Available In the present paper, the effects of the indirect evaporative cooler with internal baffle on the performance of the hybrid air conditioning system are numerically investigated. The hybrid air conditioning system contains two indirect evaporative coolers with internal baffle, one is utilized to pre-cool the air inlet to the desiccant wheel and the other is utilized to pre-cool the supply air inlet to the room. The effects of the inlet conditions of the process and reactivation air and working air ratio on the thermal performance of the hybrid air conditioning system have been analyzed. The results of this study show that in the hybrid air conditioning system for using the indirect evaporative cooler with internal baffle as a pre-cooling unit, the supply air temperature reduced by 21% and the coefficient of performance improved by 71% as compared to previous designs of the hybrid air conditioning system at the same inlet conditions. For increasing process air inlet temperature from 25 °C to 45 °C, supply air temperature increases from 12.7 °C to 14.2 °C, thermal COP increases from 1.87 to 2.84, and supply air relative humidity increases from 76.7% to 77.4%. Also, for increasing the reactivation air inlet temperature from 70 °C to 110 °C, supply air temperature dropped from 15.9 °C to 10.9 °C, supply air relative humidity dropped from 82.7% to 71.8%, and thermal COP dropped from 4.5 to 1.7. The recommended optimal air working ratio in the indirect evaporative cooler with internal baffle should be 0.15. Keywords: Desiccant material, Solar air collector, Evaporative cooler, Internal baffles, Air conditioning

  5. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    Science.gov (United States)

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Determination of phenolic compounds in air by using cyclodextrin-silica hybrid microporous composite samplers.

    Science.gov (United States)

    Mauri-Aucejo, Adela R; Ponce-Català, Patricia; Belenguer-Sapiña, Carolina; Amorós, Pedro

    2015-03-01

    An analytical method for the determination of phenolic compounds in air samples based on the use of cyclodextrin-silica hybrid microporous composite samplers is proposed. The method allows the determination of phenol, guaiacol, cresol isomers, eugenol, 4-ethylphenol and 4-ethylguaiacol in workplaces according to the Norm UNE-EN 1076:2009 for active sampling. Therefore, the proposed method offers an alternative for the assessment of the occupational exposure to phenol and cresol isomers. The detection limits of the proposed method are lower than those for the NIOSH Method 2546. Storage time of samples almost reaches 44 days. Recovery values for phenol, guaiacol, o-cresol, m-cresol, p-cresol, 4-ethylguaiacol, eugenol and 4-ethylphenol are 109%, 99%, 102%, 94%, 94%, 91%, 95% and 102%, respectively with a coefficient of variation below 6%. The method has been applied to the assessment of exposure in different areas of a farm and regarding the quantification of these compounds in the vapors generated by burning incense sticks and an essential oil marketed as air fresheners. The acquired results are comparable with those provided from a reference method for a 95% of confidence level. The possible use of these samplers for the sampling of other toxic compounds such as phthalates is evaluated by qualitative analysis of extracts from incense sticks and essential oil samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

    Science.gov (United States)

    Spurrier, Zachary S.

    Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

  8. Hybrid Power Forecasting Model for Photovoltaic Plants Based on Neural Network with Air Quality Index

    Directory of Open Access Journals (Sweden)

    Idris Khan

    2017-01-01

    Full Text Available High concentration of greenhouse gases in the atmosphere has increased dependency on photovoltaic (PV power, but its random nature poses a challenge for system operators to precisely predict and forecast PV power. The conventional forecasting methods were accurate for clean weather. But when the PV plants worked under heavy haze, the radiation is negatively impacted and thus reducing PV power; therefore, to deal with haze weather, Air Quality Index (AQI is introduced as a parameter to predict PV power. AQI, which is an indication of how polluted the air is, has been known to have a strong correlation with power generated by the PV panels. In this paper, a hybrid method based on the model of conventional back propagation (BP neural network for clear weather and BP AQI model for haze weather is used to forecast PV power with conventional parameters like temperature, wind speed, humidity, solar radiation, and an extra parameter of AQI as input. The results show that the proposed method has less error under haze condition as compared to conventional model of neural network.

  9. Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model

    Science.gov (United States)

    Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long

    2017-09-01

    This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.

  10. Air drying modelling of Mastocarpus stellatus seaweed a source of hybrid carrageenan

    Science.gov (United States)

    Arufe, Santiago; Torres, Maria D.; Chenlo, Francisco; Moreira, Ramon

    2018-01-01

    Water sorption isotherms from 5 up to 65 °C and air drying kinetics at 35, 45 and 55 °C of Mastocarpus stellatus seaweed were determined. Experimental sorption data were modelled using BET and Oswin models. A four-parameter model, based on Oswin model, was proposed to estimate equilibrium moisture content as function of water activity and temperature simultaneously. Drying experiments showed that water removal rate increased significantly with temperature from 35 to 45 °C, but at higher temperatures drying rate remained constant. Some chemical modifications of the hybrid carrageenans present in the seaweed can be responsible of this unexpected thermal trend. Experimental drying data were modelled using two-parameter Page model (n, k). Page parameter n was constant (1.31 ± 0.10) at tested temperatures, but k varied significantly with drying temperature (from 18.5 ± 0.2 10-3 min-n at 35 °C up to 28.4 ± 0.8 10-3 min-n at 45 and 55 °C). Drying experiments allowed the determination of the critical moisture content of seaweed (0.87 ± 0.06 kg water (kg d.b.)-1). A diffusional model considering slab geometry was employed to determine the effective diffusion coefficient of water during the falling rate period at different temperatures.

  11. Experimental study on split air conditioner with new hybrid equipment of energy storage and water heater all year round

    International Nuclear Information System (INIS)

    Wang Shaowei; Liu Zhenyan; Li Yuan; Zhao Keke; Wang Zhigang

    2005-01-01

    This paper presents a split air conditioner with a new hybrid equipment of energy storage and water heater all year round (ACWES). The authors made a special design on the storage tank to adjust the refrigerant capacity in the storage coils under different functions, instead of adding an accumulator to the system. An ACWES prototype, rebuilt from an original split air conditioner, has been finished, and experimental study of the operation processes of the prototype was done from which some important conclusions and suggestions have been made, which were helpful in the primary design and improvement of an ACWES system for potential users

  12. Experimental study of the behavior of a hybrid ejector-based air-conditioning system with R134a

    International Nuclear Information System (INIS)

    Wang, Hao; Cai, Wenjian; Wang, Youyi; Yan, Jia; Wang, Lei

    2016-01-01

    Highlights: • We conduct experiment on two working mode of system and compare their performance. • We examine the influence of different pressure on system performance. • We examine the area ratio effect on ejector performance. • The system is sensitive to evaporating and generating pressure. • The COP improvement is around 34% under hybrid mode. - Abstract: A hybrid ejector-based air-conditioning system which combines a vapor compression cycle and a ejector refrigeration cycle was developed. The waste heat energy from automobile is applied as driven source towards ejector refrigeration cycle. Two ejectors with different mixing chamber diameters are applied separately for performance test and the system is operated under different working modes. The effect of generating, condensing and evaporating pressure on system performance are studied experimentally. The effect of ejector geometry parameters on ejector performance is also investigated. The performance comparison between two working modes is made and the results indicate that (1) the performance of proposed system is sensitive to the three pressures; (2) the coefficient of performance (COP) of hybrid ejector-based air-conditioning system is around 34% higher than that of conventional compressor based system which implies a potential energy saving ability of proposed hybrid system.

  13. The risk of an air accident as a result of a serious incident of the hybrid type

    International Nuclear Information System (INIS)

    Skorupski, Jacek

    2015-01-01

    Safety in air traffic is a multilayered concept and consists of many safety barriers. The practical side of increasing safety is mainly based on analysing the causes of accidents and incidents. This analysis leads to finding gaps in the safety structure and to developing corrective recommendations in order to eliminate them. In this paper we indicate that this practice is insufficient. Most incidents could transform into accidents with fatalities. The standard method of investigating incidents does not answer the question as to whether safety barrier is permanent or whether it was activated accidentally. This paper proposes a new method for analysing incidents aimed at finding their consequences rather than their causes. This makes it possible to find areas that need improvement. Stochastic, timed, coloured Petri nets were used for the analysis. There are three types of air traffic incidents, distinguished according to events that lead to a transformation of an incident into an accident: causal and temporal. The hybrid case, in which both types are important, has been discussed in detail. The method is useful in evaluating the current level of safety in air traffic. Applicability of this method has been shown on the example of the runway incursion problem. - Highlights: • Current accident investigation procedure is not sufficient. • New method aimed to study incident’s conversion into accident was proposed. • The Petri net model of air traffic accident was developed. • Method allows calculating accident probability. • The hybrid case in which both causal and temporal events are important is discussed

  14. Hybrid Air Quality Modeling Approach For Use in the Near-Road Exposures to Urban Air Pollutant Study (NEXUS)

    Science.gov (United States)

    The Near-road EXposures to Urban air pollutant Study (NEXUS) investigated whether children with asthma living in close proximity to major roadways in Detroit, MI, (particularly near roadways with high diesel traffic) have greater health impacts associated with exposure to air pol...

  15. Effects of air jet duration and timing on the combustion characteristics of high-pressure air jet controlled compression ignition combustion mode in a hybrid pneumatic engine

    International Nuclear Information System (INIS)

    Long, Wuqiang; Meng, Xiangyu; Tian, Jiangping; Tian, Hua; Cui, Jingchen; Feng, Liyan

    2016-01-01

    Highlights: • A 3-D CFD model of the power cylinder in HPE was developed. • High-pressure air JCCI combustion mode includes two-stage high-temperature reaction. • The combustion phasing of the pre-mixture is controllable via the SOJ timing. • There exists an optimum SOJ timing for obtaining the highest combustion efficiency and shortest burning duration. - Abstract: The high-pressure air jet controlled compression ignition (JCCI) combustion mode was employed to control the premixed diesel compression ignition combustion phasing by using the compound thermodynamic cycle under all operating conditions, which is accomplished in a hybrid pneumatic engine (HPE). A three-dimensional computational fluid dynamics (CFD) numerical simulation coupled with reduced n-heptane chemical kinetics mechanism has been applied to investigate the effects of high-pressure air jet duration and the start of jet (SOJ) timing on the combustion characteristics in the power cylinder of HPE. By sweeping the high-pressure air jet durations from 6 to 14 °CA and SOJ timings from −12 °CA ATDC to the top dead center (TDC) under the air jet temperatures of 400 and 500 K, respectively, the low- and high-temperature reactions, combustion efficiency, as well as the combustion phasing and burning duration have been analyzed in detail. The results illustrated that a longer air jet duration results in a higher peak in the first-stage high-temperature reaction, and the short air jet duration of 6 °CA can lead to a higher combustion efficiency. The SOJ timing sweep results showed that there exists an optimum timing for obtaining the highest combustion efficiency and shortest burning duration.

  16. Hybrid system: Heat pump-solar air dryer for grains; Sistema hibrido: bomba de calor - calentador solar de aire para el secado de productos agricolas

    Energy Technology Data Exchange (ETDEWEB)

    Soto Gomez, Willfredo [Instituto Tecnologico de Tijuana, Tijuana (Mexico); Ortega Herrera, Jose Angel [Instituto Politecnico Nacional, Mexico, D.F. (Mexico)

    2000-07-01

    Design, building, operation and evaluation energy wise of a hybrid experimental type, with heat pump, that uses no chloride, does not destroy the ozone layer. It is solar air dryer for grains. In this research we dry rice. It has tree systems: 1.- A mechanical compression heat pump, 2.- An air solar heater, and 3.- An agriculture products dryer. The drying capacity is 20 pounds of grain /day, with a median daily solar radiation. The costs is approximately U.S. $ 6 000.00. The heat pump used 22 refrigerant first, and now works with refrigerant SUVA 9000. This refrigerant will be available this year in the I.S., it is one of the ecological class that substitutes the chlorofluorocarbonates. [Spanish] Se disena, construye, opera, y evalua energeticamente, un sistema hibrido tipo experimental, con bomba de calor que utiliza refrigerante que no contiene cloro, y no destruye la capa de ozono y un calentador solar de aire, para secar granos. En este trabajo secamos arroz. Se compone de tres sistemas: 1.- Bomba de calor por compresion mecanica, 2.- Calentador solar de aire, 3.- Secador de productos agricolas. La capacidad de secado es de 10 Kilos de granos/dia promedio. Tiene un costo aproximado de $ 60 000. La bomba de calor utiliza refrigerante 22 en una primera generacion, y actualmente opera con un refrigerante SUVA 9000, en una segunda generacion, este refrigerante se comercializara en este ano, en la Union Americana, pertenece a la familia de los llamados refrigerantes ecologicos, sustitutos de los clorofluorocarbonados.

  17. Transient Lift-Off Test Results for an Experimental Hybrid Bearing in Air

    Science.gov (United States)

    2009-12-01

    bearings. The electric motor designed to drive the rotor is a high speed integral motorized spindle unit manufactured by SKF Precision Technologies and...create pressure that supports the rotor ( shaft ) without rotation. The pressure generated by the flow through an orifice gives the hybrid bearing a...Kettering University; Chair of Advisory Committee: Dr. Dara Childs A hybrid bearing designed for use in a next generation turbo-pump is

  18. Perspective use of direct human blood as an energy source in air-breathing hybrid microfluidic fuel cells

    Science.gov (United States)

    Dector, A.; Escalona-Villalpando, R. A.; Dector, D.; Vallejo-Becerra, V.; Chávez-Ramírez, A. U.; Arriaga, L. G.; Ledesma-García, J.

    2015-08-01

    This work presents a flexible and light air-breathing hybrid microfluidic fuel cell (HμFC) operated under biological conditions. A mixture of glucose oxidase, glutaraldehyde, multi-walled carbon nanotubes and vulcan carbon (GOx/VC-MWCNT-GA) was used as the bioanode. Meanwhile, integrating an air-exposed electrode (Pt/C) as the cathode enabled direct oxygen delivery from air. The microfluidic fuel cell performance was evaluated using glucose obtained from three different sources as the fuel: 5 mM glucose in phosphate buffer, human serum and human blood. For the last fuel, an open circuit voltage and maximum power density of 0.52 V and 0.20 mW cm-2 (at 0.38 V) were obtained respectively; meanwhile the maximum current density was 1.1 mA cm-2. Furthermore, the stability of the device was measured in terms of recovery after several polarization curves, showing excellent results. Although this air-breathing HμFC requires technological improvements before being tested in a biomedical device, it represents the best performance to date for a microfluidic fuel cell using human blood as glucose source.

  19. A Method for Estimating Urban Background Concentrations in Support of Hybrid Air Pollution Modeling for Environmental Health Studies

    Directory of Open Access Journals (Sweden)

    Saravanan Arunachalam

    2014-10-01

    Full Text Available Exposure studies rely on detailed characterization of air quality, either from sparsely located routine ambient monitors or from central monitoring sites that may lack spatial representativeness. Alternatively, some studies use models of various complexities to characterize local-scale air quality, but often with poor representation of background concentrations. A hybrid approach that addresses this drawback combines a regional-scale model to provide background concentrations and a local-scale model to assess impacts of local sources. However, this approach may double-count sources in the study regions. To address these limitations, we carefully define the background concentration as the concentration that would be measured if local sources were not present, and to estimate these background concentrations we developed a novel technique that combines space-time ordinary kriging (STOK of observations with outputs from a detailed chemistry-transport model with local sources zeroed out. We applied this technique to support an exposure study in Detroit, Michigan, for several pollutants (including NOx and PM2.5, and evaluated the estimated hybrid concentrations (calculated by combining the background estimates that addresses this issue of double counting with local-scale dispersion model estimates using observations. Our results demonstrate the strength of this approach specifically by eliminating the problem of double-counting reported in previous hybrid modeling approaches leading to improved estimates of background concentrations, and further highlight the relative importance of NOx vs. PM2.5 in their relative contributions to total concentrations. While a key limitation of this approach is the requirement for another detailed model simulation to avoid double-counting, STOK improves the overall characterization of background concentrations at very fine spatial scales.

  20. Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage

    International Nuclear Information System (INIS)

    Zhang, Yuan; Yang, Ke; Li, Xuemei; Xu, Jianzhong

    2014-01-01

    A simulation model consisting of wind speed, wind turbine and AA-CAES (advanced adiabatic compressed air energy storage) system is developed in this paper, and thermodynamic analysis on energy conversion and transfer in hybrid system is carried out. The impacts of stable wind speed and unstable wind speed on the hybrid system are analyzed and compared from the viewpoint of energy conversion and system efficiency. Besides, energy conversion relationship between wind turbine and AA-CAES system is investigated on the basis of process analysis. The results show that there are several different forms of energy in hybrid system, which have distinct conversion relationship. As to wind turbine, power coefficient determines wind energy utilization efficiency, and in AA-CAES system, it is compressor efficiency that mainly affects energy conversion efficiencies of other components. The strength and fluctuation of wind speed have a direct impact on energy conversion efficiencies of components of hybrid system, and within proper wind speed scope, the maximum of system efficiency could be expected. - Highlights: • A hybrid system consisting of wind, wind turbine and AA-CAES system is established. • Energy conversion in hybrid system with stable and unstable wind speed is analyzed. • Maximum efficiency of hybrid system can be reached within proper wind speed scope. • Thermal energy change in hybrid system is more sensitive to wind speed change. • Compressor efficiency can affect other efficiencies in AA-CAES system

  1. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  2. Effect of inter-cooling on the performance and economics of a solar energy assisted hybrid air conditioning system with six stages one-rotor desiccant wheel

    International Nuclear Information System (INIS)

    Elzahzby, Ali M.; Kabeel, A.E.; Bassuoni, M.M.; Abdelgaied, Mohamed

    2014-01-01

    Highlights: • Development of a mathematical model for predicting the performance of solar energy assisted hybrid air conditioning system. • The model uses a one-rotor six-stage rotary silica gel desiccant wheel. • Theoretical model results are in good agreement with experimental data. • The influences of main operating parameters on optimal rotational speed are discussed. • A life cycle cost analysis of the proposed system has been investigated. - Abstract: In this study, a mathematical model for predicting the performance of solar energy assisted hybrid air conditioning system (SEAHACS) was considered. The desiccant wheels used honeycombed silica gel–haloids composite material. This one-rotor desiccant wheel is divided into six stages, in which two-stage dehumidification process, two-stage pre-cooling process and two-stage regeneration process are realized. Three air streams are involved in the present system. The mathematical model has been validated with the experimental data. As the key operating and design parameter, the range of process air inlet temperature from 27.5 to 45 °C, range of humidity ratio of the inlet process air from 9 to 21 g/kg, process air inlet velocity from 1.5 to 5.5 m/s have been examined for a range of rotation speed from 6 to 20 rev/h. the optimization of this parameters is conducted based on the moisture removal capacity D, relative moisture removal capacity, dehumidification coefficient of performance, thermal coefficient of performance, and supply air temperature and humidity ratio. At last, the influences of these main parameters on optimal rotational speed are discussed. Eventually, the life cycle cost analysis of the solar energy assisted hybrid air conditioning system has been investigated

  3. Hybrid ground-source heat pump system with active air source regeneration

    International Nuclear Information System (INIS)

    Allaerts, K.; Coomans, M.; Salenbien, R.

    2015-01-01

    Highlights: • A hybrid ground source heat pump system with two separate borefields is modelled. • The maximum underground storage temperature depends on the size of the drycooler. • Drycooler selection curves are given as function of underground storage temperature. • The size of the cold storage is reduced with 47% in the cost optimal configuration. • The cooling seasonal performance factor decreases with reduced storage capacity. - Abstract: Ground-source heat pump systems (GSHP) offer great advantages over traditional heating and cooling installations. However, their applications are limited due to the high initial costs of borehole drilling. One way to avoid these costs is by reducing the size of the borefield, e.g. by combining the system with other renewable energy sources or by using active regeneration to increase the system efficiency. In this paper a hybrid ground-source heat pump system (HGSHP) is analyzed. The borefield is split into a warm part and a cold part, which allows for seasonal thermal-energy storage. Additionally, supplementary drycoolers capture heat during summer and cold during winter. The relationship between the underground storage size and temperature and the drycooler capacity is described, using an office building in Flanders (Belgium) as reference case. Results show that with a HGSHP system a significant borefield size reduction can be achieved without compromising system performance; i.e. for the reference case a reduction of 47% was achieved in the cost-optimal configuration. It is also shown that the cooling seasonal performance factor decreases significantly with underground storage capacity. In addition, the HGSHP can be used to maintain or restore thermal balance in the geothermal source when heating and cooling loads do not match

  4. Stall/surge dynamics of a multi-stage air compressor in response to a load transient of a hybrid solid oxide fuel cell-gas turbine system

    Science.gov (United States)

    Azizi, Mohammad Ali; Brouwer, Jacob

    2017-10-01

    A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.

  5. Some factors affecting the use of lighter than air systems. [economic and performance estimates for dirigibles and semi-buoyant hybrid vehicles

    Science.gov (United States)

    Havill, C. D.

    1974-01-01

    The uses of lighter-than-air vehicles are examined in the present day transportation environment. Conventional dirigibles were found to indicate an undesirable economic risk due to their low speeds and to uncertainties concerning their operational use. Semi-buoyant hybrid vehicles are suggested as an alternative which does not have many of the inferior characteristics of conventional dirigibles. Economic and performance estimates for hybrid vehicles indicate that they are competitive with other transportation systems in many applications, and unique in their ability to perform some highly desirable emergency missions.

  6. Influence of brick air scrubber by-product on growth and development of corn and hybrid poplar.

    Science.gov (United States)

    Thomas, Carla N; Bauerle, William L; Owino, Tom O; Chastain, John P; Klaine, Stephen J

    2007-03-01

    Studies were conducted to determine the effects of spent reagent from air pollution control scrubbers used at a brick manufacturing facility on emergence, growth, and physiological responses of corn and hybrid poplar plants. Scrubber by-product was obtained from General Shale Brick, Louisville, KY. Potting substrate was weighed and quantities of scrubber by-product were added to the substrate to obtain treatments of 0%, 6.25%, 12.5%, 25%, 50%, 75%, and 100% scrubber by-product (w:w) for the corn study. Each treatment mix was potted into nine replicate polyethylene pots and four corn seeds were sown per pot. The pots were randomized in a greenhouse at Clemson University and the number of seedlings emerging from each treatment, dark-adapted leaf chlorophyll a fluorescence, and shoot heights were measured at the end of a 21-day growth period. Then, dry shoot biomass was determined for plants from each treatment and plant tissues were analyzed for selected constituents. For the poplar study, nine-inch cuttings of hybrid poplar clone 15-29 (Populus trichocarpa x P. deltoides) and clone OP367 (P. deltoides x P. nigra) were planted in treatments of scrubber by-product-potting soil mixes of 0% , 5% , 10% , and 25% w:w. Leaf chlorophyll a fluorescence was measured over six weeks and cumulative leaf area, dry biomass, and nutrient content of tissues were determined upon harvest. Results of these studies indicate that percent seedling emergence for corn plants decreased with increasing scrubber by-product application rates. Application rates up to 12.5% scrubber by-product w:w had no adverse effect on corn seedling emergence. Shoot elongation, biomass production, and the status of the photosynthetic apparatus of the seedlings were also not severely impaired at applications below this level. A critical value of 58.2% w:w scrubber by-product was estimated to cause 25% inhibition of seedling emergence. Biomass production, cumulative leaf area, and chlorophyll a fluorescence of

  7. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Kurucz, Ildikó; Bahria, Sofiane; Hamidat, Abderrahmane; Chaouch, Wafa Braham

    2017-01-01

    Highlights: • A detailed thermal and electrical model for PV and PV/T systems has been presented. • The developed numerical model was validated successfully with previously published experimental results. • A comparative study between four solar devices (PV and PV/T systems) was carried out. • The experimental weather conditions of Algiers site are used in the numerical model. • The glazed double-pass photovoltaic/thermal air collector shows the best overall energy efficiency. - Abstract: The thermal photovoltaic hybrid collector is a genuine cogeneration technology; it can produce electricity and heat simultaneously. In this paper, a comparative study is presented between four solar device configurations: photovoltaic module (PV-I), conventional hybrid solar air collector (PV/T-II), glazed hybrid solar air collector (PV/T-III) and glazed double-pass hybrid solar air collector (PV/T-IV). A numerical model is developed and validated through experimental results indicated in the previous literature. The numerical model takes the heat balance equations and different thermal and electrical parameters into account for each configuration included in this study, the energy performances are evaluated with a sample weather data of Algiers site. The numerical results show that the daily average of overall energy efficiency reaches: 29.63%, 51.02%, 69.47% and 74% for the first (PV-I), the second (PV/T-II), the third (PV/T-III) and the fourth (PV/T-IV) configurations respectively. These values are obtained with an air flow of 0.023 kg/s and introducing a sample of experimental weather data collected in Algiers site for a sunny day in summer.

  8. Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios

    International Nuclear Information System (INIS)

    Thompson, Tammy M; King, Carey W; Webber, Michael E; Allen, David T

    2011-01-01

    The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NO x emissions from EGUs during times of day when the vehicle is charging, and a decrease in NO x from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NO x emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.

  9. Performance and Economics of a Wind-Diesel Hybrid Energy System: Naval Air Landing Field, San Clemente Island, California; TOPICAL

    International Nuclear Information System (INIS)

    McKenna, Ed; Olsen, Timothy

    1999-01-01

    This report provides an overview of the wind resource, economics and operation of the recently installed wind turbines in conjunction with diesel power for the Naval Air Landing Field (NALF), San Clemente Island (SCI), California Project. The primary goal of the SCI wind power system is to operate with the existing diesel power plant and provide equivalent or better power quality and system reliability than the existing diesel system. The wind system is also intended to reduce, as far as possible, the use of diesel fuel and the inherent generation of nitrogen-oxide emissions and other pollutants. The first two NM 225/30 225kW wind turbines were installed and started shake-down operations on February 5, 1998. This report describes the initial operational data gathered from February 1998 through January 1999, as well as the SCI wind resource and initial cost of energy provided by the wind turbines on SCI. In support of this objective, several years of data on the wind resources of San Clemente Island were collected and compared to historical data. The wind resource data were used as input to economic and feasibility studies for a wind-diesel hybrid installation for SCI

  10. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    Science.gov (United States)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  11. Estimating daily minimum, maximum, and mean near surface air temperature using hybrid satellite models across Israel.

    Science.gov (United States)

    Rosenfeld, Adar; Dorman, Michael; Schwartz, Joel; Novack, Victor; Just, Allan C; Kloog, Itai

    2017-11-01

    Meteorological stations measure air temperature (Ta) accurately with high temporal resolution, but usually suffer from limited spatial resolution due to their sparse distribution across rural, undeveloped or less populated areas. Remote sensing satellite-based measurements provide daily surface temperature (Ts) data in high spatial and temporal resolution and can improve the estimation of daily Ta. In this study we developed spatiotemporally resolved models which allow us to predict three daily parameters: Ta Max (day time), 24h mean, and Ta Min (night time) on a fine 1km grid across the state of Israel. We used and compared both the Aqua and Terra MODIS satellites. We used linear mixed effect models, IDW (inverse distance weighted) interpolations and thin plate splines (using a smooth nonparametric function of longitude and latitude) to first calibrate between Ts and Ta in those locations where we have available data for both and used that calibration to fill in neighboring cells without surface monitors or missing Ts. Out-of-sample ten-fold cross validation (CV) was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with and without available Ts observations for both Aqua and Terra (CV Aqua R 2 results for min 0.966, mean 0.986, and max 0.967; CV Terra R 2 results for min 0.965, mean 0.987, and max 0.968). Our research shows that daily min, mean and max Ta can be reliably predicted using daily MODIS Ts data even across Israel, with high accuracy even for days without Ta or Ts data. These predictions can be used as three separate Ta exposures in epidemiology studies for better diurnal exposure assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    OpenAIRE

    Abbasi, Yasser; Baniasadi, Ehsan; Ahmadikia, Hossein

    2016-01-01

    This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground sour...

  13. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    Science.gov (United States)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  14. Enhancement of Nutrient Removal in a Hybrid Constructed Wetland Utilizing an Electric Fan Air Blower with Renewable Energy of Solar and Wind Power

    Directory of Open Access Journals (Sweden)

    Dong Jin Lee

    2015-01-01

    Full Text Available The sewage treatment efficiency of hybrid constructed wetlands (CWs was evaluated under different ventilation methods. The removal efficiencies of biochemical oxygen demand (BOD, total nitrogen (TN, and total phosphorus (TP in the vertical flow- (VF- horizontal flow (HF CWs using an electric fan air blower by the renewable energy of solar and wind power were higher than those by natural ventilation, excluding only suspended solids (SS. The TN treatment efficiency in the CW using the air blower especially increased rapidly by 16.6% in comparison with the CW employing natural ventilation, since the VF bed provided suitable conditions (aerobic for nitrification to occur. The average removal efficiencies of BOD, SS, TN, and TP in the effluent were 98.8, 97.4, 58.0, and 48.3% in the CW using an electric fan air blower, respectively. The treatment performance of the CWs under different ventilation methods was assessed, showing TN in the CW using an electric fan air blower to be reduced by 57.5~58.6% for inlet TN loading, whereas reduction by 19.0~53.3% was observed in the CW with natural ventilation. Therefore, to increase the removal of nutrients in CWs, an improved ventilation system, providing ventilation via an electric fan air blower with the renewable energy, is recommended.

  15. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    Directory of Open Access Journals (Sweden)

    Yasser Abbasi

    2016-01-01

    Full Text Available This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2 emissions by almost 70 tons per year.

  16. Air

    International Nuclear Information System (INIS)

    Gugele, B.; Scheider, J.; Spangl, W.

    2001-01-01

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  17. Non-uniform binding of single-stranded DNA binding proteins to hybrids of single-stranded DNA and single-walled carbon nanotubes observed by atomic force microscopy in air and in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Umemura, Kazuo, E-mail: meicun2006@163.com; Ishizaka, Kei; Nii, Daisuke; Izumi, Katsuki

    2016-12-01

    Highlights: • Conjugates of protein, DNA, and SWNTs were observed by AFM in liquid. • Non-uniform binding of proteins was visualized in liquid. • Thickness of DNA molecules on SWNT surfaces was well characterized in liquid. - Abstract: Using atomic force spectroscopy (AFM), we observed hybrids of single-stranded DNA (ssDNA) and single-walled carbon nanotubes (SWNTs) with or without protein molecules in air and in an aqueous solution. This is the first report of ssDNA–SWNT hybrids with proteins in solution analyzed by AFM. In the absence of protein, the height of the ssDNA–SWNT hybrids was 1.1 ± 0.3 nm and 2.4 ± 0.6 nm in air and liquid, respectively, suggesting that the ssDNA molecules adopted a flexible structure on the SWNT surface. In the presence of single-stranded DNA binding (SSB) proteins, the heights of the hybrids in air and liquid increased to 6.4 ± 3.1 nm and 10.0 ± 4.5 nm, respectively. The AFM images clearly showed binding of the SSB proteins to the ssDNA–SWNT hybrids. The morphology of the SSB–ssDNA–SWNT hybrids was non-uniform, particularly in aqueous solution. The variance of hybrid height was quantitatively estimated by cross-section analysis along the long-axis of each hybrid. The SSB–ssDNA–SWNT hybrids showed much larger variance than the ssDNA–SWNT hybrids.

  18. Investigations on an energy efficient air conditioning of hybrid vehicles and electric-powered vehicles; Untersuchungen zur energieeffizienten Klimatisierung von Hybrid- und Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Aurich, Joerg; Baumgart, Rico; Danzer, Christoph; Unwerth, Thomas von [Technische Univ. Chemnitz (Germany). Professur Alternative Fahrzeugantriebe

    2012-11-01

    The energy-efficient air conditioning of passenger cells is an ever-increasing challenge in the development of electric vehicles because the electric heating in particular reduces the cruising range significantly. For this reason, a simulation model has been developed at Chemnitz University of Technology, which simulates the whole air conditioning system including the passenger cell and the complete powertrain in electric cars. Using this model, different optimization approaches have been analyzed and evaluated concerning the cruising range. This paper first illustrates how much the cruising range of an exemplary electric vehicle is reduced by using the electric heating under different wintery weather conditions. Afterwards, the exploitation of the waste heat produced by the powertrain components (electric motor and power electronics) will be explained. Finally, it shall be described to what extent this exploitation increases the cruising range. (orig.)

  19. Hybridization of two biotypes of Lilioceris cheni will not hinder biological control of air potato, Dioscorea bulbifera

    Science.gov (United States)

    Dioscorea bulbifera L. (Dioscoreales: Dioscoreaceae), air potato, is a perennial vine native to Asia and Africa that is invasive in Florida and other parts of the southeastern United States. Air potato vines can grow more than 20 meters long and outcompete native vegetation in a variety of habitats....

  20. A comparative thermodynamic, economic and risk analysis concerning implementation of oxy-combustion power plants integrated with cryogenic and hybrid air separation units

    International Nuclear Information System (INIS)

    Skorek-Osikowska, Anna; Bartela, Łukasz; Kotowicz, Janusz

    2015-01-01

    Highlights: • Mathematical model of an integrated oxy-combustion power plant. • Comparison of a hybrid membrane–cryogenic oxygen generation plant with a cryogenic plant. • Thermodynamic analysis of the modeled cases of the plant. • Comparative economic analysis of the power plant with cryogenic and hybrid ASU. • Comparative risk analysis using a Monte Carlo method and sensitivity analysis. - Abstract: This paper presents a comparison of two types of oxy-combustion power plant that differ from each other in terms of the method of oxygen separation. For the purpose of the analysis, detailed thermodynamic models of oxy-fuel power plants with gross power of approximately 460 MW were built. In the first variant (Case 1), the plant is integrated with a cryogenic air separation unit (ASU). In the second variant (Case 2), the plant is integrated with a hybrid membrane–cryogenic installation. The models were built and optimized using the GateCycle, Aspen Plus and Aspen Custom Modeller software packages and with the use of our own computational codes. The results of the thermodynamic evaluation of the systems, which primarily uses indicators such as the auxiliary power and efficiencies of the whole system and of the individual components that constitute the unit, are presented. Better plant performance is observed for Case 2, which has a net efficiency of electricity generation that is 1.1 percentage points greater than that of Case 1. For the selected structure of the system, an economic analysis of the solutions was made. This analysis accounts for different scenarios of the functioning of the Emission Trading Scheme and includes detailed estimates of the investment costs in both cases. As an indicator of profitability, the break-even price of electricity was used primarily. The results of the analysis for the assumptions made are presented in this paper. A system with a hybrid air separation unit has slightly better economic performance. The break-even price

  1. Meso-pores carbon nano-tubes (CNTs) tissues-perfluorocarbons (PFCs) hybrid air-electrodes for Li-O2 battery

    Science.gov (United States)

    Balaish, Moran; Ein-Eli, Yair

    2018-03-01

    Adding immiscible perfluorocarbons (PFCs), possessing superior oxygen solubility and diffusivity, to a free-standing (metal-free and binder-free) CNTs air-electrode tissues with a meso-pore structure, fully maximized the advantages of PFCs as oxygenated-species' channels-providers. The discharge behavior of hybrid PFCs-CNT Li-O2 systems demonstrated a drastic increase in cell capacity at high current density (0.2 mA cm-2), where oxygen transport limitations are best illustrated. The results of this research revealed several key factors affecting PFCs-Li-O2 systems. The incorporation of PFCs with higher superoxide solubility and oxygen diffusivity, but more importantly higher PFCs/electrolyte miscibility, in a meso-pore air-electrode enabled better exploitation of PFCs potential. Consequently, the utilization of the air-electrode' surface area was enhanced via the formation of artificial three phase reaction zones with additional oxygen transportation routes, leading to uniform and intimate Li2O2 deposit at areas further away from the oxygen reservoir. Associated mechanisms are discussed along with insights into an improved Li-O2 battery system.

  2. Modeling and Implementation of a 1 kW, Air Cooled HTPEM Fuel Cell in a Hybrid Electrical Vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael

    2008-01-01

    This work is a preliminary study of using the PBI-based, HTPEM fuel cell technology in automotive applications. This issue was investigated through computational modeling and an experimental investigation. A hybrid fuel cell system, consisting of a 1 kW stack and lead acid batteries, was implemen......This work is a preliminary study of using the PBI-based, HTPEM fuel cell technology in automotive applications. This issue was investigated through computational modeling and an experimental investigation. A hybrid fuel cell system, consisting of a 1 kW stack and lead acid batteries......, was implemented in a small electrical vehicle. A dynamic model was developed using Matlab-Simulink to describe the system characteristics, select operating conditions and to size system components. Preheating of the fuel cell stack with electrical resistors was investigated and found to be an unrealistic approach...

  3. Removal of traces of toluene and p-xylene in indoor air using biofiltration and a hybrid system (biofiltration + adsorption).

    Science.gov (United States)

    Luengas, Angela Tatiana; Hort, Cécile; Platel, Vincent; Elias, Ana; Barona, Astrid; Moynault, Laurent

    2017-04-01

    Biofiltration technology and the hybrid system combining biofiltration and adsorption (onto activated carbon) were compared as possible methods to toluene and p-xylene at parts per million concentration levels (2-45 and 1-33 ppb, respectively). An organic material was used as packing material for the biofiltration process. Even at low empty bed residence times (EBRTs) and concentrations, toluene removal efficiency reached 100% and p-xylene showed an increasing trend on their removal efficiency over the time using biofiltration. The assessment of by-products and particle generation by the biofilter and the hybrid system were taken into account. Acetone and acetic acid were identified as by-products of the biofilter. Particle emissions in the range of 0.03 to 10 μm were recorded for both systems.

  4. A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine.

    Science.gov (United States)

    Wang, Deyun; Wei, Shuai; Luo, Hongyuan; Yue, Chenqiang; Grunder, Olivier

    2017-02-15

    The randomness, non-stationarity and irregularity of air quality index (AQI) series bring the difficulty of AQI forecasting. To enhance forecast accuracy, a novel hybrid forecasting model combining two-phase decomposition technique and extreme learning machine (ELM) optimized by differential evolution (DE) algorithm is developed for AQI forecasting in this paper. In phase I, the complementary ensemble empirical mode decomposition (CEEMD) is utilized to decompose the AQI series into a set of intrinsic mode functions (IMFs) with different frequencies; in phase II, in order to further handle the high frequency IMFs which will increase the forecast difficulty, variational mode decomposition (VMD) is employed to decompose the high frequency IMFs into a number of variational modes (VMs). Then, the ELM model optimized by DE algorithm is applied to forecast all the IMFs and VMs. Finally, the forecast value of each high frequency IMF is obtained through adding up the forecast results of all corresponding VMs, and the forecast series of AQI is obtained by aggregating the forecast results of all IMFs. To verify and validate the proposed model, two daily AQI series from July 1, 2014 to June 30, 2016 collected from Beijing and Shanghai located in China are taken as the test cases to conduct the empirical study. The experimental results show that the proposed hybrid model based on two-phase decomposition technique is remarkably superior to all other considered models for its higher forecast accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Over-the-air in-band full-duplex system with hybrid RF optical and baseband digital self-interference cancellation

    Science.gov (United States)

    Zhang, Yunhao; Li, Longsheng; Bi, Meihua; Xiao, Shilin

    2017-12-01

    In this paper, we propose a hybrid analog optical self-interference cancellation (OSIC) and baseband digital SIC (DSIC) system for over-the-air in-band full-duplex (IBFD) wireless communication. Analog OSIC system is based on optical delay line, electro-absorption modulation lasers (EMLs) and balanced photodetector (BPD), which has the properties of high adjusting precision and broad processing bandwidth. With the help of baseband DSIC, the cancellation depth limitation of OSIC can be mitigated so as to achieve deeper total SIC depth. Experimental results show about 20-dB depth by OSIC and 10-dB more depth by DSIC over 1GHz broad baseband, so that the signal of interest (SOI) overlapped by wideband self-interference (SI) signal is better recovered compared to the IBFD system with OSIC or DSIC only. The hybrid of OSIC and DSIC takes advantages of the merits of optical devices and digital processors to achieve deep cancellation depth over broad bandwidth.

  6. Hybrid Shipboard Microgrids

    DEFF Research Database (Denmark)

    Othman @ Marzuki, Muzaidi Bin; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    Strict regulation on emissions of air pollutants imposed by the maritime authorities has led to the introduction of hybrid microgrids to the shipboard power systems (SPSs) which acts toward energy efficient ships with less pollution. A hybrid energy system can include different means of generation...

  7. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Hongxing; Wang, Jinggang

    2010-01-01

    The ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions due to its high energy efficiency and reliable operation capability. However, when the technology is used in buildings where there is only cooling load in hot-weather areas like Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE). This heat accumulation will result in degradation of system performance and increment of system operating costs. This problem can be resolved by using the hybrid ground-coupled heat pump (HGCHP) system, which uses supplemental heat rejecters to reject the accumulated heat. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer process of the system's main components. The computer program based on this hourly simulation model can be used to calculate the hour-by-hour operation data of the HGCHP system. As a case study, both a HGCHP system and a traditional GCHP system are designed for a hypothetic private residential building located in Hong Kong, and the economic comparisons are conducted between these two types of systems. The simulation results show that the HGCHP system can effectively solve the heat accumulation problem and reduce both the initial costs and operating costs of the air-conditioning system in the building.

  8. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Man, Yi; Yang, Hongxing [Renewable Energy Research Group, Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Wang, Jinggang [Hebei University of Engineering, Handan (China)

    2010-09-15

    The ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions due to its high energy efficiency and reliable operation capability. However, when the technology is used in buildings where there is only cooling load in hot-weather areas like Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE). This heat accumulation will result in degradation of system performance and increment of system operating costs. This problem can be resolved by using the hybrid ground-coupled heat pump (HGCHP) system, which uses supplemental heat rejecters to reject the accumulated heat. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer process of the system's main components. The computer program based on this hourly simulation model can be used to calculate the hour-by-hour operation data of the HGCHP system. As a case study, both a HGCHP system and a traditional GCHP system are designed for a hypothetic private residential building located in Hong Kong, and the economic comparisons are conducted between these two types of systems. The simulation results show that the HGCHP system can effectively solve the heat accumulation problem and reduce both the initial costs and operating costs of the air-conditioning system in the building. (author)

  9. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Man, Y.; Yang, H.X. [Hong Kong Polytechnic Univ., Renewable Energy Research Group, Hung Hom, Kowloon, (Hong Kong). Dept. of Building Services Engineering

    2008-07-01

    Due to its high energy efficiency and reliable operation capability, the ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions. However, when the technology is used in buildings where there is only cooling load in hot-weather areas such as Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE), resulting in degradation of system performance and increased system operating costs. This problem can be resolved by using a hybrid ground-coupled heat pump (HGCHP) system, as it uses supplemental heat rejecters to reject the accumulated heat. By modeling the heat transfer process of the system's main components, this paper presented a practical hourly simulation model of the HGCHP system. Based on this hourly simulation model, the computer program could be used to calculate the hour-by-hour operation data of the HGCHP system according to the cooling and hot water heating loads of a building. The paper discussed a case study that involved a design of both a HGCHP system and a traditional GCHP system for a hypothetical private residential building located in Hong Kong. The economic comparisons were performed between these two types of systems. It was concluded through the simulations that the HGCHP system could effectively solve the heat accumulation problem and reduce both the initial cost and operating cost of the air-conditioning system in the building. 19 refs., 1 tab., 13 figs.

  10. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gentil, Solène [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR5249, CEA, 38000 Grenoble France; Lalaoui, Noémie [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Dutta, Arnab [Pacific Northwest National Laboratory, Richland WA 99532 USA; Current address: Chemistry Department, IIT Gandhinagar, Gujarat 382355 India; Nedellec, Yannig [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Cosnier, Serge [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France; Shaw, Wendy J. [Pacific Northwest National Laboratory, Richland WA 99532 USA; Artero, Vincent [Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR5249, CEA, 38000 Grenoble France; Le Goff, Alan [Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble France

    2017-01-12

    A biomimetic nickel bis-diphosphine complex incorporating the amino-acid arginine in the outer coordination sphere, was immobilized on modified single-wall carbon nanotubes (SWCNTs) through electrostatic interactions. The sur-face-confined catalyst is characterized by a reversible 2-electron/2-proton redox process at potentials close to the equibrium potential of the H+/H2 couple. Consequently, the functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2/2H+ interconversion over a broad range of pH. This system exhibits catalytic bias, analogous to hydrogenases, resulting in high turnover frequencies at low overpotentials for electrocatalytic H2 oxida-tion between pH 0 and 7. This allowed integrating such bio-inspired nanomaterial together with a multicopper oxi-dase at the cathode side in a hybrid bioinspired/enzymatic hydrogen fuel cell. This device delivers ~2 mW cm–2 with an open-circuit voltage of 1.0 V at room temperature and pH 5, which sets a new efficiency record for a bio-related hydrogen fuel cell with base metal catalysts.

  11. Development of hybrid genetic-algorithm-based neural networks using regression trees for modeling air quality inside a public transportation bus.

    Science.gov (United States)

    Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok

    2013-02-01

    The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic

  12. Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery.

    Science.gov (United States)

    Xu, Nengneng; Liu, Yuyu; Zhang, Xia; Li, Xuemei; Li, Aijun; Qiao, Jinli; Zhang, Jiujun

    2016-09-20

    α-MnO2 nanotubes-supported Co3O4 (Co3O4/MnO2) and its carbon nanotubes (CNTs)-hybrids (Co3O4/MnO2-CNTs) have been successfully developed through a facile two-pot precipitation reaction and hydrothermal process, which exhibit the superior bi-functional catalytic activity for both ORR and OER. The high performance is believed to be induced by the hybrid effect among MnO2 nanotubes, hollow Co3O4 and CNTs, which can produce a synergetic enhancement. When integrated into the practical primary and electrochemically rechargeable Zn-air batteries, such a hybrid catalyst can give a discharge peak power density as high as 450 mW cm(-2). At 1.0 V of cell voltage, a current density of 324 mA cm(-2) is achieved. This performance is superior to all reported non-precious metal catalysts in literature for zinc-air batteries and significantly outperforms the state-of-the-art platinum-based catalyst. Particularly, the rechargeable Zn-air battery can be fabricated into all-solid-state one through a simple solid-state approach, which exhibits an excellent peak power density of 62 mW cm(-2), and the charge and discharge potentials remain virtually unchanged during the overall cycles, which is comparable to the one with liquid electrolyte.

  13. Toronto hybrid taxi pilot

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, M. [CrossChasm Technologies, Cambridge, ON (Canada); Marans, B. [Toronto Atmospheric Fund, ON (Canada)

    2009-10-15

    This paper provided details of a hybrid taxi pilot program conducted to compare the on-road performance of Toyota Camry hybrid vehicles against conventional vehicles over a 1-year period in order to determine the business case and air emission reductions associated with the use of hybrid taxi cabs. Over 750,000 km worth of fuel consumption was captured from 10 Toyota Camry hybrids, a Toyota Prius, and 5 non-hybrid Camry vehicles over an 18-month period. The average real world fuel consumption for the taxis demonstrated that the Toyota Prius has the lowest cost of ownership, while the non-hybrid Camry has the highest cost of ownership. Carbon dioxide (CO{sub 2}) reductions associated with the 10 Camry hybrid taxis were calculated at 236 tonnes over a 7-year taxi service life. Results suggested that the conversion of Toronto's 5680 taxis would yield annual CO{sub 2} emission reductions of over 19,000 tonnes. All hybrid purchasers identified themselves as highly likely to purchase a hybrid again. 5 tabs., 9 figs.

  14. Toronto hybrid taxi pilot

    International Nuclear Information System (INIS)

    Stevens, M.; Marans, B.

    2009-10-01

    This paper provided details of a hybrid taxi pilot program conducted to compare the on-road performance of Toyota Camry hybrid vehicles against conventional vehicles over a 1-year period in order to determine the business case and air emission reductions associated with the use of hybrid taxi cabs. Over 750,000 km worth of fuel consumption was captured from 10 Toyota Camry hybrids, a Toyota Prius, and 5 non-hybrid Camry vehicles over an 18-month period. The average real world fuel consumption for the taxis demonstrated that the Toyota Prius has the lowest cost of ownership, while the non-hybrid Camry has the highest cost of ownership. Carbon dioxide (CO 2 ) reductions associated with the 10 Camry hybrid taxis were calculated at 236 tonnes over a 7-year taxi service life. Results suggested that the conversion of Toronto's 5680 taxis would yield annual CO 2 emission reductions of over 19,000 tonnes. All hybrid purchasers identified themselves as highly likely to purchase a hybrid again. 5 tabs., 9 figs.

  15. Performance evaluation of a hybrid system for efficient palm oil mill effluent treatment via an air-cathode, tubular upflow microbial fuel cell coupled with a granular activated carbon adsorption.

    Science.gov (United States)

    Tee, Pei-Fang; Abdullah, Mohammad Omar; Tan, Ivy Ai Wei; Mohamed Amin, Mohamed Afizal; Nolasco-Hipolito, Cirilo; Bujang, Kopli

    2016-09-01

    An air-cathode MFC-adsorption hybrid system, made from earthen pot was designed and tested for simultaneous wastewater treatment and energy recovery. Such design had demonstrated superior characteristics of low internal resistance (29.3Ω) and favor to low-cost, efficient wastewater treatment and power generation (55mW/m(3)) with average current of 2.13±0.4mA. The performance between MFC-adsorption hybrid system was compared to the standalone adsorption system and results had demonstrated great pollutants removals of the integrated system especially for chemical oxygen demand (COD), biochemical oxygen demand (BOD3), total organic carbon (TOC), total volatile solids (TVS), ammoniacal nitrogen (NH3-N) and total nitrogen (TN) because such system combines the advantages of each individual unit. Besides the typical biological and electrochemical processes that happened in an MFC system, an additional physicochemical process from the activated carbon took place simultaneously in the MFC-adsorption hybrid system which would further improved on the wastewater quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Depth of Ultra High Energy Cosmic Ray Induced Air Shower Maxima Measured by the Telescope Array Black Rock and Long Ridge FADC Fluorescence Detectors and Surface Array in Hybrid Mode

    Science.gov (United States)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; di Matteo, A.; Fujii, T.; Fujita, K.; Fukushima, M.; Furlich, G.; Goto, T.; Hanlon, W.; Hayashi, M.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jeong, H. M.; Jeong, S. M.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kuznetsov, M.; Kwon, Y. J.; Lee, K. H.; Lubsandorzhiev, B.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuyama, T.; Matthews, J. N.; Mayta, R.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, R.; Nakamura, T.; Nonaka, T.; Oda, H.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Okuda, T.; Omura, Y.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sahara, R.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Scott, L. M.; Seki, T.; Sekino, K.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takagi, Y.; Takahashi, Y.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Wong, T.; Yamamoto, M.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhezher, Y.; Zundel, Z.; Telescope Array Collaboration

    2018-05-01

    The Telescope Array (TA) observatory utilizes fluorescence detectors and surface detectors (SDs) to observe air showers produced by ultra high energy cosmic rays in Earth’s atmosphere. Cosmic-ray events observed in this way are termed hybrid data. The depth of air shower maximum is related to the mass of the primary particle that generates the shower. This paper reports on shower maxima data collected over 8.5 yr using the Black Rock Mesa and Long Ridge fluorescence detectors in conjunction with the array of SDs. We compare the means and standard deviations of the observed {X}\\max distributions with Monte Carlo {X}\\max distributions of unmixed protons, helium, nitrogen, and iron, all generated using the QGSJet II-04 hadronic model. We also perform an unbinned maximum likelihood test of the observed data, which is subjected to variable systematic shifting of the data {X}\\max distributions to allow us to test the full distributions, and compare them to the Monte Carlo to see which elements are not compatible with the observed data. For all energy bins, QGSJet II-04 protons are found to be compatible with TA hybrid data at the 95% confidence level after some systematic {X}\\max shifting of the data. Three other QGSJet II-04 elements are found to be compatible using the same test procedure in an energy range limited to the highest energies where data statistics are sparse.

  17. Performance analysis of proposed hybrid air conditioning and humidification–dehumidification systems for energy saving and water production in hot and dry climatic regions

    International Nuclear Information System (INIS)

    Nada, S.A.; Elattar, H.F.; Fouda, A.

    2015-01-01

    Highlights: • Integrative air-conditioning (A/C) and humidification–dehumidification desalination systems are proposed. • Effects of operating parameters on the proposed systems are investigated. • System configurations that have the highest fresh water production rate, power saving and total cost saving are identified. - Abstract: Performance of integrative air-conditioning (A/C) and humidification–dehumidification desalination systems proposed for hot and dry climatic regions is theoretically investigated. The proposed systems aim to energy saving and systems utilization in fresh water production. Four systems with evaporative cooler and heat recovery units located at different locations are proposed, analyzed and evaluated at different operating parameters (fresh air ratio, supply air temperature and outside air wet bulb temperature). Other two basic systems are used as reference systems in proposed systems assessment. Fresh water production rate, A/C cooling capacity, A/C electrical power consumption, saving in power consumptions and total cost saving (TCS) parameters are used for systems evaluations and comparisons. The results show that (i) the fresh water production rates of the proposed systems increase with increasing fresh air ratio, supply air temperature and outdoor wet bulb temperature, (ii) powers saving of the proposed systems increase with increasing fresh air ratio and supply air temperature and decreasing of the outdoor air wet bulb temperature, (iii) locating the evaporative cooling after the fresh air mixing remarkably increases water production rate, and (vi) incorporating heat recovery in the air conditioning systems with evaporative cooling may adversely affect both of the water production rate and the total cost saving of the system. Comparison study has been presented to identify systems configurations that have the highest fresh water production rate, highest power saving and highest total cost saving. Numerical correlations for

  18. Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application

    International Nuclear Information System (INIS)

    Zhao, Pan; Dai, Yiping; Wang, Jiangfeng

    2014-01-01

    Electricity generated from renewable wind sources is highly erratic due to the intermittent nature of wind. This uncertainty of wind power can lead to challenges regarding power system operation and dispatch. Energy storage system in conjunction with wind energy system can offset these effects, making the wind power controllable. Moreover, the power spectrum of wind power exhibits that the fluctuations of wind power include various components with different frequencies and amplitudes. Thus, the hybrid energy storage system is more suitable for smoothing out the wind power fluctuations effectively rather than the independent energy storage system. A hybrid energy storage system consisting of adiabatic compressed air energy storage (A-CAES) system and flywheel energy storage system (FESS) is proposed for wind energy application. The design of the proposed system is laid out firstly. The A-CAES system operates in variable cavern pressure, constant turbine inlet pressure mode, whereas the FESS is controlled by constant power strategy. Then, the off-design analysis of the proposed system is carried out. Meanwhile, a parametric analysis is also performed to investigate the effects of several parameters on the system performance, including the ambient conditions, inlet temperature of compressor, storage cavern temperature, maximum and minimum pressures of storage cavern. - Highlights: • A wind-hybrid energy storage system composed of A-CAES and FESS is proposed. • The design of the proposed hybrid energy storage system is laid out. • The off-design analysis of the proposed system is carried out. • A parametric analysis is conducted to examine the system performance

  19. Cu2+ Dual-Doped Layer-Tunnel Hybrid Na0.6Mn1- xCu xO2 as a Cathode of Sodium-Ion Battery with Enhanced Structure Stability, Electrochemical Property, and Air Stability.

    Science.gov (United States)

    Chen, Ting-Ru; Sheng, Tian; Wu, Zhen-Guo; Li, Jun-Tao; Wang, En-Hui; Wu, Chun-Jin; Li, Hong-Tai; Guo, Xiao-Dong; Zhong, Ben-He; Huang, Ling; Sun, Shi-Gang

    2018-03-28

    Sodium-ion batteries (SIBs) have been regarded as a promising candidate for large-scale renewable energy storage system. Layered manganese oxide cathode possesses the advantages of high energy density, low cost and natural abundance while suffering from limited cycling life and poor rate capacity. To overcome these weaknesses, layer-tunnel hybrid material was developed and served as the cathode of SIB, which integrated high capacity, superior cycle ability, and rate performance. In the current work, the doping of copper was adopted to suppress the Jahn-Teller effect of Mn 3+ and to affect relevant structural parameters. Multifunctions of the Cu 2+ doping were carefully investigated. It was found that the structure component ratio is varied with the Cu 2+ doping amount. Results demonstrated that Na + /vacancy rearrangement and phase transitions were suppressed during cycling without sacrificing the reversible capacity and enhanced electrochemical performances evidenced with 96 mA h g -1 retained after 250 cycles at 4 C and 85 mA h g -1 at 8 C. Furthermore, ex situ X-ray diffraction has demonstrated high reversibility of the Na 0.6 Mn 0.9 Cu 0.1 O 2 cathode during Na + extraction/insertion processes and superior air stability that results in better storage properties. This study reveals that the Cu 2+ doping could be an effective strategy to tune the properties and related performances of Mn-based layer-tunnel hybrid cathode.

  20. Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China.

    Science.gov (United States)

    Xu, Yunzhen; Du, Pei; Wang, Jianzhou

    2017-04-01

    As the atmospheric environment pollution has been becoming more and more serious in China, it is highly desirable to develop a scientific and effective early warning system that plays a great significant role in analyzing and monitoring air quality. However, establishing a robust early warning system for warning the public in advance and ameliorating air quality is not only an extremely challenging task but also a public concerned problem for human health. Most previous studies are focused on improving the prediction accuracy, which usually ignore the significance of uncertainty information and comprehensive evaluation concerning air pollutants. Therefore, in this paper a novel robust early warning system was successfully developed, which consists of three modules: evaluation module, forecasting module and characteristics estimating module. In this system, a new dynamic fuzzy synthetic evaluation is proposed and applied to determine air quality levels and primary pollutants, which can be regarded as the research objectives; Moreover, to further mine and analyze the characteristics of air pollutants, four different distribution functions and interval forecasting method are also employed that can not only provide predictive range, confidence level and the other uncertain information of the pollutants future values, but also assist decision-makers in reducing and controlling the emissions of atmospheric pollutants. Case studies utilizing hourly PM 2.5 , PM 10 and SO 2 data collected from Tianjin and Shanghai in China are applied as illustrative examples to estimate the effectiveness and efficiency of the proposed system. Experimental results obviously indicated that the developed novel early warning system is much suitable for analyzing and monitoring air pollution, which can also add a novel viable option for decision-makers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Inner-city driving - with battery-powered or hybrid cars only? - A comparison from the viewpoint of air pollution control

    International Nuclear Information System (INIS)

    Bluemel, H.

    1992-01-01

    The California Air Resources Board (CARB) saw 'the need for introducing a major number of Zero-emission Vehicles (ZEV) in severe non-attainment areas, e.g. the South Coast region, to achieve sound air quality'. This involved the low-emission vehicle program to stipulate a 2% permit rate for ZEV's for the model year 1998 to rise to 10% by the model year 2003. The eight NESCAUM states in the North East of the USA discuss comparable measures. (orig./HW) [de

  2. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  3. Photosystem Inspired Peptide Hybrid Catalysts

    Science.gov (United States)

    2017-06-07

    materials defined at the molecular level. We propose a novel way to make hybrid catalyst composed of inorganic nanomaterials and peptides. The...Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOA Arlington, Virginia 22203 Air Force Research Laboratory Air...ORGANIZATION NAME(S) AND ADDRESS(ES) SEOUL NATIONAL UNIVERSITY SNUR&DB FOUNDATION RESEARCH PARK CENTER SEOUL, 151742 KR 8. PERFORMING ORGANIZATION REPORT

  4. Hybrid winding concept for toroids

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold

    2013-01-01

    and placement machinery. This opens up the possibility for both an automated manufacturing process and an automated production process of toroidal magnetics such as power inductors, filtering inductors, air core inductors, transformers etc. Both the proposed hybrid and the common wire wound winding...

  5. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites was investigated by Kalaprasad et al [25].Chemical surface modifications such as alkali, acetic anhydride, stearic acid, permanganate, maleic anhydride, silane...

  6. Development and performance assessment of a luminex xMAP® direct hybridization assay for the detection and identification of indoor air fungal contamination.

    Science.gov (United States)

    Libert, Xavier; Packeu, Ann; Bureau, Fabrice; Roosens, Nancy H; De Keersmaecker, Sigrid C J

    2017-01-01

    Considered as a public health problem, indoor fungal contamination is generally monitored using classical protocols based on culturing. However, this culture dependency could influence the representativeness of the fungal population detected in an analyzed sample as this includes the dead and uncultivable fraction. Moreover, culture-based protocols are often time-consuming. In this context, molecular tools are a powerful alternative, especially those allowing multiplexing. In this study a Luminex xMAP® assay was developed for the simultaneous detection of 10 fungal species which are most frequently in indoor air and that may cause health problems. This xMAP® assay was found to be sensitive, i.e. its limit of detection is ranging between 0.05 and 0.01 ng of gDNA. The assay was subsequently tested with environmental air samples which were also analyzed with a classical protocol. All the species identified with the classical method were also detected with the xMAP® assay, however in a shorter time frame. These results demonstrate that the Luminex xMAP® fungal assay developed in this study could contribute to the improvement of public health and specifically to the indoor fungal contamination treatment.

  7. Development and performance assessment of a luminex xMAP® direct hybridization assay for the detection and identification of indoor air fungal contamination.

    Directory of Open Access Journals (Sweden)

    Xavier Libert

    Full Text Available Considered as a public health problem, indoor fungal contamination is generally monitored using classical protocols based on culturing. However, this culture dependency could influence the representativeness of the fungal population detected in an analyzed sample as this includes the dead and uncultivable fraction. Moreover, culture-based protocols are often time-consuming. In this context, molecular tools are a powerful alternative, especially those allowing multiplexing. In this study a Luminex xMAP® assay was developed for the simultaneous detection of 10 fungal species which are most frequently in indoor air and that may cause health problems. This xMAP® assay was found to be sensitive, i.e. its limit of detection is ranging between 0.05 and 0.01 ng of gDNA. The assay was subsequently tested with environmental air samples which were also analyzed with a classical protocol. All the species identified with the classical method were also detected with the xMAP® assay, however in a shorter time frame. These results demonstrate that the Luminex xMAP® fungal assay developed in this study could contribute to the improvement of public health and specifically to the indoor fungal contamination treatment.

  8. Hybrid intermediaries

    OpenAIRE

    Cetorelli, Nicola

    2014-01-01

    I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...

  9. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  10. Impact of Vehicle Hybridization on Fuel Consumption Economy

    OpenAIRE

    Rezaei, Javad

    2018-01-01

    Air pollution, limited number of knownpetroleum resources and increasing of greenhouse gases have led the governmentsand researchers to have more investigation on Hybrid Electric Vehicles.Considering technical availability and manufacturing facilities with regardingto the final vehicle price, hybridization of conventional vehicles could be abetter choice than designing and manufacturing a new hybrid electric car.Parallel-Series hybrid electric vehicles(power-split) which is used in this study...

  11. Principle, function, experiences, hybrid chilled ceilings; Prinzip, Funktion, Erfahrungen. Hybrid-Kuehldecken

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Uwe W. [Hochschule Luzern (Switzerland). Technik und Architektur

    2010-12-15

    Hybrid chilled ceilings combine a radiation chilled ceiling with thermal activations of a concrete ceiling. The activation permits the utilization of alternative and/or small cold generators for the efficient night cooling. The traditional chilled ceiling grants a speedy reaction to load variations as well as a reduction of the reverberation periods. In addition, the combination supplies a draught-free insertion of air. Beside established solutions, MWH Barcol-Air (Staefa, Switzerland) also offers project-specific hybrid chilled ceilings.

  12. Hybrid Solar-Geothermal Energy Absorption Air-Conditioning System Operating with NaOH-H2O—Las Tres Vírgenes (Baja California Sur, “La Reforma” Case

    Directory of Open Access Journals (Sweden)

    Yuridiana Rocio Galindo-Luna

    2018-05-01

    Full Text Available Solar and geothermal energies are considered cleaner and more useful energy sources that can be used to avoid the negative environmental impacts caused by burning fossil fuels. Several works have reported air-conditioning systems that use solar energy coupled to geothermal renewable energy as a thermal source. In this study, an Absorption Air-Conditioning System (AACS used sodium hydroxide-water (NaOH-H2O instead of lithium bromide-water to reduce the cost. Low enthalpy geothermal heat was derived from two shallow wells, 50 and 55 m deep. These wells are of interest due to the thermal recovery (temperature vs. time of 56.2 °C that was possible at the maximum depth, which can be used for the first stage of the process. These wells were coupled with solar energy as a geothermal energy application for direct uses such as air-conditioning systems. We studied the performance of an absorption cooling system operating with a NaOH-H2O mixture and using a parabolic trough plant coupled with a low enthalpy geothermal heat system as a hybrid heat source, as an alternative process that can help reduce operating costs and carbon dioxide emissions. The numerical heat transfer results showed the maximum convective heat transfer coefficient, as function of fluid velocity, and maximum temperature for a depth higher than 40 m. The results showed that the highest temperatures occur at low fluid velocities of less than or equal to 5.0 m/s. Under these conditions, reaching temperatures between 51.0 and 56.2 °C in the well was possible, which is required of the geothermal energy for the solar energy process. A water stream was used as the working fluid in the parabolic trough collector field. During the evaluation stage, the average experimental storage tank temperature achieved by the parabolic trough plant was 93.8 °C on October 23 and 92.9 °C on October 25, 2017. The numerical simulation used to evaluate the performance of the absorption cycle used a generator

  13. Análisis energético de un sistema híbrido de producción de frío; Energy analysis of a hybrid air conditioning system

    Directory of Open Access Journals (Sweden)

    Yamile Díaz Torres

    2015-04-01

    Full Text Available El artículo presenta los resultados del análisis energético de un sistema híbrido de climatización en los hoteles cubanos. Se efectuó el cálculo de una instalación de climatización por absorción asistido con energía solar, interconectada en serie con un sistema de compresión de vapor existente. El procedimiento de cálculo se desarrolló bajo los principios termodinámicos que rigen esta tecnología y con la ayuda de herramientas matemáticas. Se emplearon metodologías de cálculo como el método de las curvas f-chart para la contribución solar. Se utilizó información estadística de datos meteorológicos y energéticos de un caso de estudio en el Hotel Gran Caribe Jagua de la provincia de Cienfuegos, Cuba. Los resultados demuestran que la utilización de estos sistemas, complementando el sistema centralizado de climatización por agua helada (chiller, constituye una alternativa para reducir el consumo de energía eléctrica y el posible impacto ambiental directo e indirecto. The article presents the results of the energy analysis of a hybrid air conditioning system in Cuban hotels. Calculating an air conditioning system for solar assisted interconnected in series with a compression system under existing steam thermodynamic principles’ governing this technology and the help of mathematical tools absorption was made. Calculation methodologies as the method of curves f -chart for solar contribution were employed, using statistical weather data and energy data of the case study Gran Caribe Jagua of Cienfuegos, Cuba. The results demonstrate that the use of these systems, complementing the central chilled water for air conditioning (chiller system is an alternative to reduce energy consumption and the potential direct and indirect environmental impact.

  14. Hybrid Magnetics and Power Applications

    DEFF Research Database (Denmark)

    Mo, Wai Keung; Paasch, Kasper

    2017-01-01

    A hybrid magnetic approach, merging two different magnetic core properites such as ferrite and iron powder cores, is an effective solution for power converter applications. It can offer similar magnetic properties to that of magnetic powder cores but showing less copper loss than powder cores....... In order to prevent ferrite core saturation, placing an effective air gap within the ferrite core is a key method to obtain optimum hybrid magnetic performance. Furthermore, a relatively large inductance at low loading current is an excellent way to minimze power loss in order to achieve high efficiency...

  15. Hybrid stars

    Indian Academy of Sciences (India)

    Hybrid stars. AsHOK GOYAL. Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. Abstract. Recently there have been important developments in the determination of neutron ... number and the electric charge. ... available to the system to rearrange concentration of charges for a given fraction of.

  16. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  17. Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization

    OpenAIRE

    Dimitrova, Zlatina; Maréchal, François

    2015-01-01

    The largest applied convertors in passenger cars are the internal combustion engines – gasoline, diesel, adapted also for operating on alternative fuels and hybrid modes. The number of components that are necessary to realize modern future propulsion system is inexorably increasing. The need for efficiency improvement of the vehicle energy system induces the search for an innovative methodology during the design process. In this article the compressed air is investigated as an innovative solu...

  18. Active and Passive Hybrid Sensor

    Science.gov (United States)

    Carswell, James R.

    2010-01-01

    A hybrid ocean wind sensor (HOWS) can map ocean vector wind in low to hurricane-level winds, and non-precipitating and precipitating conditions. It can acquire active and passive measurements through a single aperture at two wavelengths, two polarizations, and multiple incidence angles. Its low profile, compact geometry, and low power consumption permits installation on air craft platforms, including high-altitude unmanned aerial vehicles (UAVs).

  19. Air Research

    Science.gov (United States)

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  20. Hybrid Qualifications

    DEFF Research Database (Denmark)

    Against the background of increasing qualification needs there is a growing awareness of the challenge to widen participation in processes of skill formation and competence development. At the same time, the issue of permeability between vocational education and training (VET) and general education...... has turned out as a major focus of European education and training policies and certainly is a crucial principle underlying the European Qualifications Framework (EQF). In this context, «hybrid qualifications» (HQ) may be seen as an interesting approach to tackle these challenges as they serve «two...

  1. Hybrid Gear

    Science.gov (United States)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  2. U.S. Army Hybrid Propulsion System R&D Overview ATA/Technology & Maintenance Council 2011 Fall Meeting, Hybrid Powertrain Task Force Session

    Science.gov (United States)

    2011-09-19

    and CVTS – HHO Technology – Start-Stop & Idle Stop Accessories – Pulse Jet Air Cleaner Ultra – Hybrid Energy Module (HEM) for Electric and Hybrid...The engine will meet 2010 EPA emission requirements – Hybrid drive powertrain; a 160 Horsepower (Hp) electric machine used for propulsion and

  3. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  4. Hybrid Nanocomposites for Efficient Aerospace Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Advanced Air Vehicles program seeks to improve safety and efficiency through exploration of the value of hybrid composites, guiding utilization of the...

  5. Hybrid Cooling System for Industrial Application | Ezekwe | Nigerian ...

    African Journals Online (AJOL)

    Hybrid Cooling System for Industrial Application. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... more than five times over that achieved by using the gas (air) phase alone. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  6. Performance evaluation of hybrid modified micro-channel solar cell ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology ... of hybrid PVT solar air heater had been proposed in the past. ...... president of Bag Energy Research Society (BERS:www.bers.in) which is responsible for energy education in ...

  7. Hybridized Tetraquarks

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    We propose a new interpretation of the neutral and charged X, Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules. The latter would require a negative or zero binding energy whose counterpart in h-tetraquarks is a positive quantity. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs pi+- channel by the D0 collaboration and the negative result presented subsequently by the LHCb collaboration are understood in this scheme, together with a considerable portion of available data on X, Z particles. Considerations on a state with the same quantum numbers as the X(5568) are also made.

  8. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  9. Continuity controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation

  10. Continuity Controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  11. Continuity controlled hybrid automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  12. Continuity controlled hybrid automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2006-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  13. Corporate Hybrid Bonds

    OpenAIRE

    Ahlberg, Johan; Jansson, Anton

    2016-01-01

    Hybrid securities do not constitute a new phenomenon in the Swedish capital markets. Most commonly, hybrids issued by Swedish real estate companies in recent years are preference shares. Corporate hybrid bonds on the other hand may be considered as somewhat of a new-born child in the family of hybrid instruments. These do, as all other hybrid securities, share some equity-like and some debt-like characteristics. Nevertheless, since 2013 the interest for the instrument has grown rapidly and ha...

  14. A hybrid energy efficient building ventilation system

    International Nuclear Information System (INIS)

    Calay, Rajnish Kaur; Wang, Wen Chung

    2013-01-01

    The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO 2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

  15. Hybrid XRF

    International Nuclear Information System (INIS)

    Heckel, J.

    2002-01-01

    Full text: In the last 10 years significant innovations of EDXRF, e.g. total reflection XRF or polarized beam XRF, were utilized in different industrial applications. The decrease of background within the spectra was the goal of these developments. Excellent detection limits and sensitivities demonstrate the success of these new techniques. Nevertheless, further improvements are possible by using Si drift detectors. These detectors allow the processing of input count rates up to 10 6 cps in comparison to 10 5 of Si(Li) detectors. New excitation optics are necessary to produce such count rates. One possibility is the use of doubly curved crystals between tube and sample. These crystals enable the reflection of the primary beam within the given solid angle (0.4π) of an end window tube to the sample. Using such brightness optics excellent sensitivities mainly for light elements are achievable. The combination of a BRAGG crystal as a wavelength dispersive component and a solid state detector as an energy dispersive component creates a new technique: hybrid XRF. Copyright (2002) Australian X-ray Analytical Association Inc. Copyright (2002) Australian X-ray Analytical Association Inc

  16. Hybrid mimics and hybrid vigor in Arabidopsis

    Science.gov (United States)

    Wang, Li; Greaves, Ian K.; Groszmann, Michael; Wu, Li Min; Dennis, Elizabeth S.; Peacock, W. James

    2015-01-01

    F1 hybrids can outperform their parents in yield and vegetative biomass, features of hybrid vigor that form the basis of the hybrid seed industry. The yield advantage of the F1 is lost in the F2 and subsequent generations. In Arabidopsis, from F2 plants that have a F1-like phenotype, we have by recurrent selection produced pure breeding F5/F6 lines, hybrid mimics, in which the characteristics of the F1 hybrid are stabilized. These hybrid mimic lines, like the F1 hybrid, have larger leaves than the parent plant, and the leaves have increased photosynthetic cell numbers, and in some lines, increased size of cells, suggesting an increased supply of photosynthate. A comparison of the differentially expressed genes in the F1 hybrid with those of eight hybrid mimic lines identified metabolic pathways altered in both; these pathways include down-regulation of defense response pathways and altered abiotic response pathways. F6 hybrid mimic lines are mostly homozygous at each locus in the genome and yet retain the large F1-like phenotype. Many alleles in the F6 plants, when they are homozygous, have expression levels different to the level in the parent. We consider this altered expression to be a consequence of transregulation of genes from one parent by genes from the other parent. Transregulation could also arise from epigenetic modifications in the F1. The pure breeding hybrid mimics have been valuable in probing the mechanisms of hybrid vigor and may also prove to be useful hybrid vigor equivalents in agriculture. PMID:26283378

  17. Air Abrasion

    Science.gov (United States)

    ... Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air ... will perform any procedures that use air-abrasion technology. Ask your dentist if he or she uses ...

  18. Hybrid Management in Hospitals

    DEFF Research Database (Denmark)

    Byrkjeflot, Haldor; Jespersen, Peter Kragh

    2010-01-01

    Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer......Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer...

  19. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  20. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  1. Hybrid solar central receiver for combined cycle power plant

    Science.gov (United States)

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  2. Hybrid quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  3. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  4. Hybrid Solar-Geothermal Energy Absorption Air-Conditioning System Operating with NaOH-H2O—Las Tres Vírgenes (Baja California Sur), “La Reforma” Case

    OpenAIRE

    Yuridiana Rocio Galindo-Luna; Efraín Gómez-Arias; Rosenberg J. Romero; Eduardo Venegas-Reyes; Moisés Montiel-González; Helene Emmi Karin Unland-Weiss; Pedro Pacheco-Hernández; Antonio González-Fernández; Jorge Díaz-Salgado

    2018-01-01

    Solar and geothermal energies are considered cleaner and more useful energy sources that can be used to avoid the negative environmental impacts caused by burning fossil fuels. Several works have reported air-conditioning systems that use solar energy coupled to geothermal renewable energy as a thermal source. In this study, an Absorption Air-Conditioning System (AACS) used sodium hydroxide-water (NaOH-H2O) instead of lithium bromide-water to reduce the cost. Low enthalpy geothermal heat was ...

  5. Cytogenetic effects in children and mothers exposed to air pollution assessed by the frequency of micronuclei and fluorescence in situ hybridization (FISH). A family pilot study in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Pedersen, M.; Vinzents, P.; Petersen, J.H.; Kleinjans, J.C.S.; Plas, G.; Kirsch-Volders, M.; Dostál, Miroslav; Rössner st., Pavel; Beskid, Olena; Šrám, Radim; Merlo, D.F.; Knudsen, L. E.

    2006-01-01

    Roč. 608, - (2006), s. 112-120 ISSN 1383-5718 Institutional research plan: CEZ:AV0Z50390512 Keywords : biomonitoring * Air pollution Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.122, year: 2006

  6. Brazilian hybrid electric fuel cell bus

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P.E.V.; Carreira, E.S. [Coppe-Federal Univ. of Rio de Janeiro (Brazil). Hydrogen Lab.

    2010-07-01

    The first prototype of a hybrid electric fuel cell bus developed with Brazilian technology is unveiled. It is a 12 m urban-type, low-floor, air-conditioned bus that possesses three doors, air suspension, 29 seats and reversible wheelchair site. The bus body was built based on a double-deck type monoblock vehicle that is able to sustain important load on its roof. This allowed positioning of the type 3 hydrogen tanks and the low weight traction batteries on the roof of the vehicles without dynamic stabilization problems. A novel hybrid energy configuration was designed in such a way that the low-power (77 kWe) fuel cell works on steady-state operation mode, not responding directly to the traction motor load demand. The rate of kinetic energy regeneration upon breaking was optimized by the use of an electric hybrid system with predominance of batteries and also by utilizing supercapacitors. The electric-electronic devices and the security control softwares for the auxiliary and traction systems were developed in-house. The innovative hybrid-electric traction system configuration led to the possibility to decrease the fuel cell power, with positive impact on weight and system volume reduction, as well as to significantly decrease the hydrogen consumption. (orig.)

  7. Hybrid energy harvesting using active thermal backplane

    Science.gov (United States)

    Kim, Hyun-Wook; Lee, Dong-Gun

    2016-04-01

    In this study, we demonstrate the concept of a new hybrid energy harvesting system by combing solar cells with magneto-thermoelectric generator (MTG, i.e., thermal energy harvesting). The silicon solar cell can easily reach high temperature under normal operating conditions. Thus the heated solar cell becomes rapidly less efficient as the temperature of solar cell rises. To increase the efficiency of the solar cell, air or water-based cooling system is used. To surpass conventional cooling devices requiring additional power as well as large working space for air/water collectors, we develop a new technology of pairing an active thermal backplane (ATB) to solar cell. The ATB design is based on MTG technology utilizing the physics of the 2nd order phase transition of active ferromagnetic materials. The MTG is cost-effective conversion of thermal energy to electrical energy and is fundamentally different from Seebeck TEG devices. The ATB (MTG) is in addition to being an energy conversion system, a very good conveyor of heat through both conduction and convection. Therefore, the ATB can provide dual-mode for the proposed hybrid energy harvesting. One is active convective and conductive cooling for heated solar cell. Another is active thermal energy harvesting from heat of solar cell. These novel hybrid energy harvesting device have potentially simultaneous energy conversion capability of solar and thermal energy into electricity. The results presented can be used for better understanding of hybrid energy harvesting system that can be integrated into commercial applications.

  8. ROOT YIELD AND QUALITY OF SUGAR BEET INVESTIGATED HYBRIDS

    Directory of Open Access Journals (Sweden)

    Andrija Kristek

    2013-06-01

    Full Text Available The research of the production values of 10 sugar beet hybrids was conducted at the location Dalj from 2009-2012. Hybrids included in the experiment are owned by four selection houses and represented in wide production. Weather conditions in the years of investigation differed greatly. One was an average, one with increased, and two with small amounts of rainfall in relation to long-term average. Monthly air temperatures during the vegetation were increased in all four years. Root yield and quality of sugar beet varied considerably depending on the year and the hybrid. The best hybrid on the average of the investigation, by the highest root, was Severina (86.66 t ha-1. Three more hybrids: Coyote, Boomerang and Predator are in the same range. There are no significant differences in this indicator. Hybrid Colonia KWS (15.40% had the highest content of sugar in the root and Asketa, Gazeta, Severina and Protecta with no significant differences. Hybrid Colonia KWS was known for the low content of AmN and Na. Sugar yield, significantly higher than other hybrids in the study, has been realized with hybrids Severina (11.05 t ha-1 and Colonia KWS (10.78 t ha-1.

  9. Data Collection, Testing, and Analysis of Hybrid Electric Trucks and Buses Operating in California Fleets. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Matthew [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Duran, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ragatz, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cosgrove, Jon [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sindler, Petr [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Russell, Robert [Univ. of California, Riverside, CA (United States); Johnson, Kent [Univ. of California, Riverside, CA (United States)

    2015-06-12

    The objective of this project was to evaluate and quantify the emission impacts of commercially available hybrid medium- and heavy-duty vehicles relative to their non-hybrid counterparts. This effort will allow the California Air Resources Board (CARB) and other agencies to more effectively encourage development and commercial deployment of the most efficient, lowest emitting hybrid technologies needed to meet air quality and climate goals.

  10. Henkin and Hybrid Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria

    2014-01-01

    Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...... Henkin’s techniques are so important in hybrid logic. We do so by proving a completeness result for a hybrid type theory called HTT, probably the strongest hybrid logic that has yet been explored. Our completeness result builds on earlier work with a system called BHTT, or basic hybrid type theory...... is due to the first-order perspective, which lies at the heart of Henin’s best known work and hybrid logic....

  11. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  12. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.; Moganty, Surya S.; Archer, Lynden A.

    2010-01-01

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  15. Hybrid III-V/SOI resonant cavity enhanced photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-01-01

    A hybrid III–V/SOI resonant-cavity-enhanced photodetector (RCE-PD) structure comprising a high-contrast grating (HCG) reflector, a hybrid grating (HG) reflector, and an air cavity between them, has been proposed and investigated. In the proposed structure, a light absorbing material is integrated...... as part of the HG reflector, enabling a very compact vertical cavity. Numerical investigations show that a quantum efficiency close to 100 % and a detection linewidth of about 1 nm can be achieved, which are desirable for wavelength division multiplexing applications. Based on these results, a hybrid RCE...

  16. Managing hybrid marketing systems.

    Science.gov (United States)

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  17. Hybrid FOSS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers are continuing their efforts to further develop FOSS technologies. A hybrid FOSS technique (HyFOSS) employs conventional continuous grating...

  18. Cytogenetic effects in children and mothers exposed to air pollution assessed by the frequency of micronuclei and fluorescence in situ hybridization (FISH): a family pilot study in the Czech Republic

    DEFF Research Database (Denmark)

    Pedersen, Marie; Vinzents, Peter; Petersen, Joergen Holm

    2006-01-01

    A family pilot study was conducted in the Czech Republic to test the hypothesis that exposure to air pollution with particulate matter (PM) in children results in detectable effects indicated by a number of biomarkers of exposure and early effects. The frequency of micronuclei (MN) in peripheral...... with elevated carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) concentration of the PM(2.5) measured in the ambient Teplice air, but other factors like genotoxic compounds from the diet or protective effect of micronutrients, which was not addressed in this pilot study, may also differ between the two...... exchanges (F(G)/100) were found in children or parents from the Teplice area in comparison with those from the Prachatice area. The family pilot study indicates that MN is a valuable and sensitive biomarker for early biological effect in children and adults living in two different areas characterised...

  19. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2014-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  20. Hybridization in geese

    NARCIS (Netherlands)

    Ottenburghs, Jente; Hooft, van Pim; Wieren, van Sipke E.; Ydenberg, Ronald C.; Prins, Herbert H.T.

    2016-01-01

    The high incidence of hybridization in waterfowl (ducks, geese and swans) makes this bird group an excellent study system to answer questions related to the evolution and maintenance of species boundaries. However, knowledge on waterfowl hybridization is biased towards ducks, with a large

  1. Mirror hybrid reactor studies

    International Nuclear Information System (INIS)

    Bender, D.J.

    1978-01-01

    The hybrid reactor studies are reviewed. The optimization of the point design and work on a reference design are described. The status of the nuclear analysis of fast spectrum blankets, systems studies for fissile fuel producing hybrid reactor, and the mechanical design of the machine are reviewed

  2. Hybrid Universities in Malaysia

    Science.gov (United States)

    Lee, Molly; Wan, Chang Da; Sirat, Morshidi

    2017-01-01

    Are Asian universities different from those in Western countries? Premised on the hypothesis that Asian universities are different because of hybridization between Western academic models and local traditional cultures, this paper investigates the hybrid characteristics in Malaysian universities resulting from interaction between contemporary…

  3. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  4. Hybrid job shop scheduling

    NARCIS (Netherlands)

    Schutten, Johannes M.J.

    1995-01-01

    We consider the problem of scheduling jobs in a hybrid job shop. We use the term 'hybrid' to indicate that we consider a lot of extensions of the classic job shop, such as transportation times, multiple resources, and setup times. The Shifting Bottleneck procedure can be generalized to deal with

  5. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  6. Editorial: Hybrid Systems

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter

    2007-01-01

    An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....

  7. Course on hybrid calculation

    International Nuclear Information System (INIS)

    Weill, J.; Tellier; Bonnemay; Craigne; Chareton; Di Falco

    1969-02-01

    After a definition of hybrid calculation (combination of analogue and digital calculation) with a distinction between series and parallel hybrid computing, and a description of a hybrid computer structure and of task sharing between computers, this course proposes a description of hybrid hardware used in Saclay and Cadarache computing centres, and of operations performed by these systems. The next part addresses issues related to programming languages and software. The fourth part describes how a problem is organised for its processing on these computers. Methods of hybrid analysis are then addressed: resolution of optimisation problems, of partial differential equations, and of integral equations by means of different methods (gradient, maximum principle, characteristics, functional approximation, time slicing, Monte Carlo, Neumann iteration, Fischer iteration)

  8. Hybrid functional pseudopotentials

    Science.gov (United States)

    Yang, Jing; Tan, Liang Z.; Rappe, Andrew M.

    2018-02-01

    The consistency between the exchange-correlation functional used in pseudopotential construction and in the actual density functional theory calculation is essential for the accurate prediction of fundamental properties of materials. However, routine hybrid density functional calculations at present still rely on generalized gradient approximation pseudopotentials due to the lack of hybrid functional pseudopotentials. Here, we present a scheme for generating hybrid functional pseudopotentials, and we analyze the importance of pseudopotential density functional consistency for hybrid functionals. For the PBE0 hybrid functional, we benchmark our pseudopotentials for structural parameters and fundamental electronic gaps of the Gaussian-2 (G2) molecular dataset and some simple solids. Our results show that using our PBE0 pseudopotentials in PBE0 calculations improves agreement with respect to all-electron calculations.

  9. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.

    Science.gov (United States)

    Yang, Zhongshan; Wang, Jian

    2017-10-01

    Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Air pollution

    OpenAIRE

    MacKenbach, JP; Henschel, S; Goodman, P; McKee, M

    2013-01-01

    The human costs of air pollution are considerable in Jordan. According to a report published in 2000 by the World Bank under the Mediterranean Environmental Technical Assistance Program (METAP), approximately 600 people die prematurely each year in Jordan because of urban pollution. 50-90% of air pollution in Jordanian towns is caused by road traffic. Readings taken in 2007 by Jordanian researchers showed that levels of black carbon particles in the air were higher in urban areas (caused by v...

  11. Air Pollution Forecasts: An Overview

    Science.gov (United States)

    Bai, Lu; Wang, Jianzhou; Lu, Haiyan

    2018-01-01

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies. PMID:29673227

  12. Air Pollution Forecasts: An Overview.

    Science.gov (United States)

    Bai, Lu; Wang, Jianzhou; Ma, Xuejiao; Lu, Haiyan

    2018-04-17

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  13. Air Pollution Forecasts: An Overview

    Directory of Open Access Journals (Sweden)

    Lu Bai

    2018-04-01

    Full Text Available Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  14. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  15. Hybrid systems with constraints

    CERN Document Server

    Daafouz, Jamal; Sigalotti, Mario

    2013-01-01

    Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to

  16. Towers of hybrid mesons

    International Nuclear Information System (INIS)

    Semay, Claude; Buisseret, Fabien; Silvestre-Brac, Bernard

    2009-01-01

    A hybrid meson is a quark-antiquark pair in which, contrary to ordinary mesons, the gluon field is in an excited state. In the framework of constituent models, the interaction potential is assumed to be the energy of an excited string. An approximate, but accurate, analytical solution of the Schroedinger equation with such a potential is presented. When applied to hybrid charmonia and bottomonia, towers of states are predicted in which the masses are a linear function of a harmonic oscillator band number for the quark-antiquark pair. Such a formula could be a reliable guide for the experimental detection of heavy hybrid mesons.

  17. Hybrid Bloch brane

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Lima, Elisama E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2017-02-15

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios. (orig.)

  18. Analysis and design of permanent magnet biased magnetic bearing based on hybrid factor

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2016-03-01

    Full Text Available In this article, hybrid factor is proposed for hybrid magnetic bearing. The hybrid factor is defined as the ratio of the force produced by the permanent magnet and the forces produced by the permanent magnet and current in hybrid magnetic bearing. It is deduced from a certain radial hybrid magnetic bearing using its important parameters such as the current stiffness and displacement stiffness at first and then the dynamic model of magnetically suspended rotor system is established. The relationship between structural parameters and control system parameters is analyzed based on the hybrid factor. Some influencing factors of hybrid factor in hybrid magnetic bearing, such as the size of the permanent magnet, length of air gap, and area of the stator poles, are analyzed in this article. It can be concluded that larger hybrid factor can be caused by the smaller power loss according to the definition of hybrid factor mentioned above. Meanwhile, the hybrid factor has a maximum value, which is related to control system parameters such as proportional factor expect for structural parameters. Finally, the design steps of parameters of hybrid magnetic bearing can be concluded.

  19. Air lock

    International Nuclear Information System (INIS)

    Palkovich, P.; Gruber, J.; Madlener, W.

    1974-01-01

    The patent refers to an air lock system preferably for nuclear stations for the transport of heavy loads by means of a trolley on rails. For opening and closing of the air lock parts of the rails are removed, e.g. by a second rail system perpendicular to the main rails. (P.K.)

  20. First observation of Cherenkov ring images using hybrid photon detectors

    International Nuclear Information System (INIS)

    Albrecht, E.; Wilkinson, G.; Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N.; Brook, N.H.; Halley, A.W.; O'Shea, V.; French, M.; Gibson, V.; Wotton, S.A.; Schomaker, R.

    1998-01-01

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C 4 F 10 gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  1. First observation of Cherenkov ring images using hybrid photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E.; Wilkinson, G. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Barber, G.; Duane, A.; John, M.; Miller, D.G.; Websdale, D. [Imperial College of Science Technology and Medicine, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N. [University of Oxford, Department of Nuclear Physics, Keble Road, Oxford OX1 3RH (United Kingdom); Brook, N.H.; Halley, A.W.; O`Shea, V. [University of Glasgow, Department of Physics, Glasgow G12 8QQ (United Kingdom); French, M. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Gibson, V.; Wotton, S.A. [University of Cambridge, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom); Schomaker, R. [Delft Electronic Products BV, 9300 AB Roden (Netherlands)

    1998-07-11

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C{sub 4}F{sub 10} gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  2. Analysis and design of hybrid electric regional turboprop aircraft

    NARCIS (Netherlands)

    Voskuijl, M.; van Bogaert, J.; Gangoli Rao, A.

    2017-01-01

    The potential environmental benefits of hybrid electric regional turboprop aircraft in terms of fuel consumption are investigated. Lithium–air batteries are used as energy source in combination with conventional fuel. A validated design and analysis framework is extended with sizing and analysis

  3. Formula hybrid SAE.

    Science.gov (United States)

    2013-09-01

    User-friendly tools are needed for undergraduates to learn about component sizing, powertrain integration, and control : strategies for student competitions involving hybrid vehicles. A TK Solver tool was developed at the University of Idaho for : th...

  4. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  5. Hybrid plasmachemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lelevkin, V. M., E-mail: lelevkin44@mail.ru; Smirnova, Yu. G.; Tokarev, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  6. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-01-01

    for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations

  7. A hybrid multibreath wash-in wash-out lung function quantification scheme in human subjects using hyperpolarized 3 He MRI for simultaneous assessment of specific ventilation, alveolar oxygen tension, oxygen uptake, and air trapping.

    Science.gov (United States)

    Hamedani, Hooman; Kadlecek, Stephen; Xin, Yi; Siddiqui, Sarmad; Gatens, Heather; Naji, Joseph; Ishii, Masaru; Cereda, Maurizio; Rossman, Milton; Rizi, Rahim

    2017-08-01

    To present a method for simultaneous acquisition of alveolar oxygen tension (P A O 2 ), specific ventilation (SV), and apparent diffusion coefficient (ADC) of hyperpolarized (HP) gas in the human lung, allowing reinterpretation of the P A O 2 and SV maps to produce a map of oxygen uptake (R). An imaging scheme was designed with a series of identical normoxic HP gas wash-in breaths to measure ADC, SV, P A O 2 , and R in less than 2 min. Signal dynamics were fit to an iterative recursive model that regionally solved for these parameters. This measurement was successfully performed in 12 subjects classified in three healthy, smoker, and chronic obstructive pulmonary disease (COPD) cohorts. The overall whole lung ADC, SV, P A O 2 , and R in healthy, smoker, and COPD subjects was 0.20 ± 0.03 cm 2 /s, 0.39 ± 0.06,113 ± 2 Torr, and 1.55 ± 0.35 Torr/s, respectively, in healthy subjects; 0.21 ± 0.03 cm 2 /s, 0.33 ± 0.06, 115.9 ± 4 Torr, and 0.97 ± 0.2 Torr/s, respectively, in smokers; and 0.25 ± 0.06 cm 2 /s, 0.23 ± 0.08, 114.8 ± 6.0Torr, and 0.94 ± 0.12 Torr/s, respectively, in subjects with COPD. Hetrogeneity of SV, P A O 2 , and R were indicators of both smoking-related changes and disease, and the severity of the disease correlated with the degree of this heterogeneity. Subjects with symptoms showed reduced oxygen uptake and specific ventilation. High-resolution, nearly coregistered and quantitative measures of lung function and structure were obtained with less than 1 L of HP gas. This hybrid multibreath technique produced measures of lung function that revealed clear differences among the cohorts and subjects and were confirmed by correlations with global lung measurements. Magn Reson Med 78:611-624, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  9. Human hybrid hybridoma

    Energy Technology Data Exchange (ETDEWEB)

    Tiebout, R.F.; van Boxtel-Oosterhof, F.; Stricker, E.A.M.; Zeijlemaker, W.P.

    1987-11-15

    Hybrid hybridomas are obtained by fusion of two cells, each producing its own antibody. Several authors have reported the construction of murine hybrid hybridomas with the aim to obtain bispecific monoclonal antibodies. The authors have investigated, in a model system, the feasibility of constructing a human hybrid hybridoma. They fused two monoclonal cell lines: an ouabain-sensitive and azaserine/hypoxanthine-resistant Epstein-Barr virus-transformed human cell line that produces an IgG1kappa antibody directed against tetanus toxiod and an azaserine/hypoxanthine-sensitive and ouabain-resistant human-mouse xenohybrid cell line that produces a human IgG1lambda antibody directed against hepatitis-B surface antigen. Hybrid hybridoma cells were selected in culture medium containing azaserine/hypoxanthine and ouabain. The hybrid nature of the secreted antibodies was analyzed by means of two antigen-specific immunoassay. The results show that it is possible, with the combined use of transformation and xenohybridization techniques, to construct human hybrid hybridomas that produce bispecific antibodies. Bispecific antibodies activity was measured by means of two radioimmunoassays.

  10. Systems for hybrid cars

    Science.gov (United States)

    Bitsche, Otmar; Gutmann, Guenter

    Not only sharp competition but also legislation are pushing development of hybrid drive trains. Based on conventional internal combustion engine (ICE) vehicles, these drive trains offer a wide range of benefits from reduced fuel consumption and emission to multifaceted performance improvements. Hybrid electric drive trains may also facilitate the introduction of fuel cells (FC). The battery is the key component for all hybrid drive trains, as it dominates cost and performance issues. The selection of the right battery technology for the specific automotive application is an important task with an impact on costs of development and use. Safety, power, and high cycle life are a must for all hybrid applications. The greatest pressure to reduce cost is in soft hybrids, where lead-acid embedded in a considerate management presents the cheapest solution, with a considerable improvement in performance needed. From mild to full hybridization, an improvement in specific power makes higher costs more acceptable, provided that the battery's service life is equivalent to the vehicle's lifetime. Today, this is proven for the nickel-metal hydride system. Lithium ion batteries, which make use of a multiple safety concept, and with some development anticipated, provide even better prospects in terms of performance and costs. Also, their scalability permits their application in battery electric vehicles—the basis for better performance and enhanced user acceptance. Development targets for the batteries are discussed with a focus on system aspects such as electrical and thermal management and safety.

  11. Hybrid Electric Propulsion Technologies for Commercial Transports

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  12. Air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, W; Mainwaring, S J

    1984-01-01

    This book deals with the nature of air pollution. The numerous sources of unwanted gases and dust particles in the air are discussed. Details are presented of the effects of pollutants on man, animals, vegetation and on inanimate materials. Methods used to measure, monitor and control air pollution are presented. The authors include information on the socio-economic factors which impinge on pollution control and on the problems the future will bring as methods of generating energy change and industries provide new sources of pollutants.

  13. Hybrid surface design for robust superhydrophobicity.

    Science.gov (United States)

    Dash, Susmita; Alt, Marie T; Garimella, Suresh V

    2012-06-26

    Surfaces may be rendered superhydrophobic by engineering the surface morphology to control the extent of the liquid-air interface and by the use of low-surface-energy coatings. The droplet state on a superhydrophobic surface under static and dynamic conditions may be explained in terms of the relative magnitudes of the wetting and antiwetting pressures acting at the liquid-air interface on the substrate. In this paper, we discuss the design and fabrication of hollow hybrid superhydrophobic surfaces which incorporate both communicating and noncommunicating air gaps. The surface design is analytically shown to exhibit higher capillary (or nonwetting) pressure compared to solid pillars with only communicating air gaps. Six hybrid surfaces are fabricated with different surface parameters selected such that the Cassie state of a droplet is energetically favorable. The robustness of the surfaces is tested under dynamic impingement conditions, and droplet dynamics are explained using pressure-based transitions between Cassie and Wenzel states. During droplet impingement, the effective water hammer pressure acting due to the sudden change in the velocity of the droplet is determined experimentally and is found to be at least 2 orders of magnitude less than values reported in the literature. The experiments show that the water hammer pressure depends on the surface morphology and capillary pressure of the surface. We propose that the observed reduction in shock pressure may be attributed to the presence of air gaps in the substrate. This feature allows liquid deformation and hence avoids the sudden stoppage of the droplet motion as opposed to droplet behavior on smooth surfaces.

  14. Air lasing

    CERN Document Server

    Cheng, Ya

    2018-01-01

    This book presents the first comprehensive, interdisciplinary review of the rapidly developing field of air lasing. In most applications of lasers, such as cutting and engraving, the laser source is brought to the point of service where the laser beam is needed to perform its function. However, in some important applications such as remote atmospheric sensing, placing the laser at a convenient location is not an option. Current sensing schemes rely on the detection of weak backscattering of ground-based, forward-propagating optical probes, and possess limited sensitivity. The concept of air lasing (or atmospheric lasing) relies on the idea that the constituents of the air itself can be used as an active laser medium, creating a backward-propagating, impulsive, laser-like radiation emanating from a remote location in the atmosphere. This book provides important insights into the current state of development of air lasing and its applications.

  15. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    Science.gov (United States)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  16. Air Warfare

    Science.gov (United States)

    2002-03-01

    genus as its predecessor of pre-war days. It would, however, be erroneous to conclude from this that the military value of each new development was...the paucity of communications, its conduct, when acting alone, has of necessity to be somewhat stereotyped in nature, and to con- form to a pre...the air, the attack commander, provided his command be equipped with defensive air power, has a rôle to perform which is simple and stereotyped in

  17. Air conditioner

    International Nuclear Information System (INIS)

    Sato, Masaaki

    1993-01-01

    The present invention provides an air conditioner which can prevent an undesirable effects on a human body due to radon daughter nuclides in a closed space. That is, the concentration of the radon daughter nuclides in the air in the closed space is continuously measured. A necessary amount of ventilation air is determined based on the measured concentration to generate control signals. External air is introduced into the closed space by the generated control signals. With such procedures, necessary amount of external air is taken from the atmospheric air which can be regarded to have the radon daughter nuclide concentration substantially at zero, thereby enabling to reduce the concentration of the radon daughter nuclides in the closed space. As a result, undesired effects on the human body due to the radon daughter nuclides staying in the closed space can be prevented. According to simulation, the radon daughter nuclides are rapidly decreased only by ventilation only for three times or so in one hour. Accordingly, ventilation is extremely effective and convenient means as a countermeasure for the radon daughter nuclides. (I.S.)

  18. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  19. Comparison of Flux Regulation Ability of the Hybrid Excitation Doubly Salient Machines

    DEFF Research Database (Denmark)

    Chen, ZhiHui; Wang, Bo; Chen, Zhe

    2014-01-01

    A hybrid excitation doubly salient machine (DSM) (HEDSM) can adjust the air gap flux with the limited field exciting ampere-turns. There are a few studied structures with different air gap flux regulation abilities. In this paper, several HEDSMs with different structures are analyzed by using an ...

  20. Measure Guideline. Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a “partial drainage” detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  1. Measure Guideline: Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  2. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  3. New hybrid systems

    International Nuclear Information System (INIS)

    Bernardin, B.

    2001-01-01

    New hybrid systems are made up of a subcritical core, a spallation target and a proton accelerator. The neutrons that are produced in the target by the flux of protons are necessary to maintain the chain reaction of fission. Some parameters that are important for a classical nuclear reactor like doppler coefficient or delayed neutron fraction do not matter in a hybrid system. In a PWR-type reactor or in a fast reactor the concentration of actinides has a bad impact on these 2 parameters, so it is justified to study hybrid systems as actinide transmuters. The hybrid system, because of its external source of neutrons can put aside an important reactivity margin. This reactivity margin can be used to design safer nuclear reactors (particularly in some situations of reactivity accidents) or to irradiate fuel elements containing high concentrations of minor actinides that could not be allowed in a classical reactor. This article reviews various ways of integrating hybrid systems in a population of already existing nuclear reactors in order to manage quantities of plutonium, of minor actinides or of long-life fission products. (A.C.)

  4. The Hybrid Museum: Hybrid Economies of Meaning

    DEFF Research Database (Denmark)

    Vestergaard, Vitus

    2013-01-01

    Social media has created new ways of communicating and has brought about a new distinctive ethos. New literacies are not simply about new technology but also about this new ethos. Many museums are embracing this ethos by what is often called participatory practices. From a sociocultural perspective...... this article shows that there are two different museum mindsets where the second mindset leans towards participatory practices. It is shown how a museum can support a hybrid economy of meaning that builds on both a user generated economy of meaning and an institutional economy of meaning and adds value to both...

  5. Hybrid system concepts

    International Nuclear Information System (INIS)

    Landeyro, P.A.

    1995-01-01

    Hybrid systems studied for fissile material production, were reconsidered for minor actinide and long-lived fission product destruction as alternative to the traditional final disposal of nuclear waste. Now there are attempts to extend the use of the concepts developed for minor actinide incineration to plutonium burning. The most promising hybrid system concept considers fuel and target both as liquids. From the results obtained, the possibility to adopt composite targets seems the most promising solution, but still there remains the problem of Pu production, not acceptable in a burning system. This kind of targets can be mainly used for fissile material production, while for accelerator driven burners it is most convenient to use a liquid lead target. The most suitable solvent is heavy water for minor actinide annihilation in the blanket of a hybrid system. Due to the criticality conditions and the necessity of electric energy production, the blanket using plutonium dissolved in molten salts is the most convenient one. (author)

  6. Hybrid strategies in nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Hector M; Mullen, Thomas J; Zhang Pengpeng; Dewey, Daniel C; Claridge, Shelley A; Weiss, Paul S [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States)], E-mail: psw@cnsi.ucla.edu

    2010-03-15

    Hybrid nanoscale patterning strategies combine the registration and addressability of conventional lithographic techniques with the chemical and physical functionality enabled by intermolecular, electrostatic and/or biological interactions. This review aims to highlight and to provide a comprehensive description of recent developments in hybrid nanoscale patterning strategies that enhance existing lithographic techniques or can be used to fabricate functional chemical patterns that interact with their environment. These functional structures create new capabilities, such as the fabrication of physicochemical surfaces that can recognize and capture analytes from complex liquid or gaseous mixtures. The nanolithographic techniques we describe can be classified into three general areas: traditional lithography, soft lithography and scanning-probe lithography. The strengths and limitations of each hybrid patterning technique will be discussed, along with the current and potential applications of the resulting patterned, functional surfaces.

  7. The tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.; Rose, R.P.

    1981-01-01

    At a time when the potential benefits of various energy options are being seriously evaluated in many countries through-out the world, it is both timely and important to evaluate the practical application of fusion reactors for their economical production of nuclear fissile fuels from fertile fuels. The fusion hybrid reactor represents a concept that could assure the availability of adequate fuel supplies for a proven nuclear technology and have the potential of being an electrical energy source as opposed to an energy consumer as are the present fuel enrichment processes. Westinghouse Fusion Power Systems Department, under Contract No. EG-77-C-02-4544 with the Department of Energy, Office of Fusion Energy, has developed a preliminary conceptual design for an early twenty-first century fusion hybrid reactor called the commercial Tokamak Hybrid Reactor (CTHR). This design was developed as a first generation commercial plant producing fissile fuel to support a significant number of client Light Water Reactor (LWR) Plants. To the depth this study has been performed, no insurmountable technical problems have been identified. The study has provided a basis for reasonable cost estimates of the hybrid plants as well as the hybrid/LWR system busbar electricity costs. This energy system can be optimized to have a net cost of busbar electricity that is equivalent to the conventional LWR plant, yet is not dependent on uranium ore prices or standard enrichment costs, since the fusion hybrid can be fueled by numerous fertile fuel resources. A nearer-term concept is also defined using a beam driven fusion driver in lieu of the longer term ignited operating mode. (orig.)

  8. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  9. Hybride textuelle Strukturen und hybride textuelle Einheiten. Ein ...

    African Journals Online (AJOL)

    carrying set of all hybrid hierarchical structures are element-heterogeneous whilst the structure- carrying set of all ... grams of hierarchical hybrid article structures, the nodes for those text segments that establish the hybrid status of .... der; d ∈ ArtA ⊣ G|WAr (= Artikelangabe, anhand derer das Genus (= G) und zugleich die ...

  10. Hydraulic Hybrid Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    Hydraulic Hybrid Vehicle Publications Hydraulic Hybrid Vehicle Publications The following technical papers and fact sheets provide information about NREL's hydraulic hybrid fleet vehicle evaluations . Refuse Trucks Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles. Bob

  11. Doubts about hybrids

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The natural draught wet cooling tower with a height of 160 m is considerably taller than the 80 m high hybrid cooling tower, but the latter has a considerably larger diameter. Spray losses for both types are about 4.5 kg/sec for a thermal output of 2500 MW. Apart from the pump load, the natural cooling tower requires no power. Apart from higher pump loads, the hybrid cooling tower requires power for the fans. The energy demand for this purpose is 1.5 to 3% of the nett powerstation output. For the Isar 2 nuclear powerstation this would mean a reduction in puput of about 35 MW. (orig.) [de

  12. Analog and hybrid computing

    CERN Document Server

    Hyndman, D E

    2013-01-01

    Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl

  13. Toyota hybrid synergy drive

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, H.

    2008-07-01

    This presentation made at the Swiss 2008 research conference on traffic by Hannes Gautschi, director of service and training at the Toyota company in Switzerland, takes a look at Toyota's hybrid drive vehicles. The construction of the vehicles and their combined combustion engines and electric generators and drives is presented and the combined operation of these components is described. Braking and energy recovery are discussed. Figures on the performance, fuel consumption and CO{sub 2} output of the hybrid vehicles are compared with those of conventional vehicles.

  14. Air surveillance

    International Nuclear Information System (INIS)

    Patton, G.W.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995)

  15. Air surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  16. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  17. Air pollution

    International Nuclear Information System (INIS)

    Feugier, A.

    1996-01-01

    The air pollution results from the combustion of petroleum products, natural gas, coal, wastes and transports. Some compounds are considered as particularly pollutants: the carbon monoxide, the nitrogen oxides, the tropospheric ozone and the sulfur dioxides. Their environmental and biological effects are described. The present political guide lines concerns the combustion plants, the ozone, the wastes incineration and the vehicles emissions. The aim is at some future date to control the air quality, to reduce the volatile organic compounds emissions and to limit the sulfur rate of some petroleum products. (O.L.)

  18. Security in hybrid cloud computing

    OpenAIRE

    Koudelka, Ondřej

    2016-01-01

    This bachelor thesis deals with the area of hybrid cloud computing, specifically with its security. The major aim of the thesis is to analyze and compare the chosen hybrid cloud providers. For the minor aim this thesis compares the security challenges of hybrid cloud as opponent to other deployment models. In order to accomplish said aims, this thesis defines the terms cloud computing and hybrid cloud computing in its theoretical part. Furthermore the security challenges for cloud computing a...

  19. Metal-air batteries with high energy density: Li-air versus Zn-air

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang-Soo; Sun, Tai Kim; Cao, Ruiguo; Choi, Nam-Soon; Lee, Kyu Tae; Cho, Jaephil [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of); Liu, Meilin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2011-01-01

    In the past decade, there have been exciting developments in the field of lithium ion batteries as energy storage devices, resulting in the application of lithium ion batteries in areas ranging from small portable electric devices to large power systems such as hybrid electric vehicles. However, the maximum energy density of current lithium ion batteries having topatactic chemistry is not sufficient to meet the demands of new markets in such areas as electric vehicles. Therefore, new electrochemical systems with higher energy densities are being sought, and metal-air batteries with conversion chemistry are considered a promising candidate. More recently, promising electrochemical performance has driven much research interest in Li-air and Zn-air batteries. This review provides an overview of the fundamentals and recent progress in the area of Li-air and Zn-air batteries, with the aim of providing a better understanding of the new electrochemical systems. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. TRNSYS HYBRID wind diesel PV simulator

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  1. The estimation of energy efficiency for hybrid refrigeration system

    International Nuclear Information System (INIS)

    Gazda, Wiesław; Kozioł, Joachim

    2013-01-01

    Highlights: ► We present the experimental setup and the model of the hybrid cooling system. ► We examine impact of the operating parameters of the hybrid cooling system on the energy efficiency indicators. ► A comparison of the final and the primary energy use for a combination of the cooling systems is carried out. ► We explain the relationship between the COP and PER values for the analysed cooling systems. -- Abstract: The concept of the air blast-cryogenic freezing method (ABCF) is based on an innovative hybrid refrigeration system with one common cooling space. The hybrid cooling system consists of a vapor compression refrigeration system and a cryogenic refrigeration system. The prototype experimental setup for this method on the laboratory scale is discussed. The application of the results of experimental investigations and the theoretical–empirical model makes it possible to calculate the cooling capacity as well as the final and primary energy use in the hybrid system. The energetic analysis has been carried out for the operating modes of the refrigerating systems for the required temperatures inside the cooling chamber of −5 °C, −10 °C and −15 °C. For the estimation of the energy efficiency the coefficient of performance COP and the primary energy ratio PER for the hybrid refrigeration system are proposed. A comparison of these coefficients for the vapor compression refrigeration and the cryogenic refrigeration system has also been presented.

  2. Teelt van hybride wintertarwerassen

    NARCIS (Netherlands)

    Timmer, R.D.; Paauw, J.G.M.

    2003-01-01

    Om de mogelijkheden van de teelt van hybride wintertarwerassen onder Nederlandse omstandigheden in beeld te brengen zijn er van 2000-2002 proeven uitgevoerd op het PPO-proefbedrijf te Lelystad. In deze proeven zijn een 4-tal hybriderassen (Hybnos, Hyno-braba, Hyno-esta, Mercury) vergeleken met een

  3. Hybrid FSAE Vehicle Realization

    Science.gov (United States)

    2010-12-01

    The goal of this multi-year project is to create a fully functional University of Idaho entry in the hybrid FSAE competition. Vehicle integration is underway as part of a variety of 2010-11 senior design projects. This leverages a variety of analytic...

  4. Electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.

  5. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  6. Hybridization of biomedical circuitry

    Science.gov (United States)

    Rinard, G. A.

    1978-01-01

    The design and fabrication of low power hybrid circuits to perform vital signs monitoring are reported. The circuits consist of: (1) clock; (2) ECG amplifier and cardiotachometer signal conditioner; (3) impedance pneumobraph and respiration rate processor; (4) hear/breath rate processor; (5) temperature monitor; and (6) LCD display.

  7. Glueballs, Hybrids and Exotics

    Science.gov (United States)

    Reyes, M. A.; Moreno, G.

    2006-09-01

    We comment on the physics analysis carried out by the Experimental High Energy Physics (EHEP) group of the Instituto de Fisica of the University of Guanajuato (IFUG), Mexico. In particular, this group has been involved in analysis carried out to search for glueball, hybrid and exotic candidates.

  8. Hybrid wars’ information component

    Directory of Open Access Journals (Sweden)

    T. A. Nevskaya

    2015-01-01

    Full Text Available The war of the new generation - hybrid war, the information component which is directed not so much on the direct destruction of the enemy, how to achieve the goals without warfare. Fighting in the information field is no less important than immediate military action.

  9. Glueballs, Hybrids and Exotics

    International Nuclear Information System (INIS)

    Reyes, M. A.; Moreno, G.

    2006-01-01

    We comment on the physics analysis carried out by the Experimental High Energy Physics (EHEP) group of the Instituto de Fisica of the University of Guanajuato (IFUG), Mexico. In particular, this group has been involved in analysis carried out to search for glueball, hybrid and exotic candidates

  10. Hybrid quantum computation

    International Nuclear Information System (INIS)

    Sehrawat, Arun; Englert, Berthold-Georg; Zemann, Daniel

    2011-01-01

    We present a hybrid model of the unitary-evolution-based quantum computation model and the measurement-based quantum computation model. In the hybrid model, part of a quantum circuit is simulated by unitary evolution and the rest by measurements on star graph states, thereby combining the advantages of the two standard quantum computation models. In the hybrid model, a complicated unitary gate under simulation is decomposed in terms of a sequence of single-qubit operations, the controlled-z gates, and multiqubit rotations around the z axis. Every single-qubit and the controlled-z gate are realized by a respective unitary evolution, and every multiqubit rotation is executed by a single measurement on a required star graph state. The classical information processing in our model requires only an information flow vector and propagation matrices. We provide the implementation of multicontrol gates in the hybrid model. They are very useful for implementing Grover's search algorithm, which is studied as an illustrative example.

  11. Air pollution

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Air pollution has accompanied and developed with the industrial age, since its beginnings. This very complete review furnishes the toxicological data available for the principal pollutants and assesses the epidemiologic studies thus far conducted. It also describes European regulations and international commitments for the reduction of emissions. (author)

  12. Air quality

    International Nuclear Information System (INIS)

    1995-01-01

    This chapter of the 'Assessment of the state of the environment in Lebanon' describes the air quality and identifies the most important air quality issues. Baseline information about the factors affecting dispersion and the climate of Lebanon presents as well and overall estimation of total emissions in Lebanon. Emissions from vehicles, electricity and power plants generation are described. Industrial emitters of air pollutants are described for each kind of industry i.e.cement plants, Selaata fertilizer factory, sugar-beet factory, refineries and for those derived from the use of leaded fuel . Impact of economic and human activities on air quality in Lebanon (especially in Beirut and Tripoli) are quantified by quantities of CO 2 , SO 2 , NO x , total suspended particulates(TSP), deposition and their environmental effects on health. In abscence of emissions monitoring, data available are expressed in terms of fuel use, output and appropriate empirical factors, national output and workfores sizes. Finally key issues and some potential mitigation /management approaches are presented

  13. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    International Nuclear Information System (INIS)

    Sun Jinji; Fang Jiancheng

    2011-01-01

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  14. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jinji, E-mail: sunjinji@aspe.buaa.edu.c [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China); Fang Jiancheng [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China)

    2011-01-15

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  15. Hybrid keyword search auctions

    KAUST Repository

    Goel, Ashish; Munagala, Kamesh

    2009-01-01

    Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. We then show that this auction is superior to the existing per-click auction in multiple ways: 1. We show that risk-seeking advertisers will choose only a per-impression bid whereas risk-averse advertisers will choose only a per-click bid, and argue that both kind of advertisers arise naturally. Hence, the ability to bid in a hybrid fashion is important to account for the risk characteristics of the advertisers. 2. For obscure keywords, the auctioneer is unlikely to have a very sharp prior on the click-probabilities. In such situations, we show that having the extra information from the advertisers in the form of a per-impression bid can result in significantly higher revenue. 3. An advertiser who believes that its click-probability is much higher than the auctioneer's estimate can use per-impression bids to correct the auctioneer's prior without incurring any extra cost. 4. The hybrid auction can allow the advertiser and auctioneer to implement complex dynamic programming strategies to deal with the uncertainty in the click-probability using the same basic auction. The per-click and per-impression bidding schemes can only be used to implement two extreme cases of these strategies. As Internet commerce matures, we need more sophisticated pricing models to exploit all the information held by each of the participants. We believe that hybrid auctions could be an important step in this direction. The hybrid

  16. Hybrid keyword search auctions

    KAUST Repository

    Goel, Ashish

    2009-01-01

    Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per-click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. We then show that this auction is superior to the existing per-click auction in multiple ways: 1. We show that risk-seeking advertisers will choose only a per-impression bid whereas risk-averse advertisers will choose only a per-click bid, and argue that both kind of advertisers arise naturally. Hence, the ability to bid in a hybrid fashion is important to account for the risk characteristics of the advertisers. 2. For obscure keywords, the auctioneer is unlikely to have a very sharp prior on the click-probabilities. In such situations, we show that having the extra information from the advertisers in the form of a per-impression bid can result in significantly higher revenue. 3. An advertiser who believes that its click-probability is much higher than the auctioneer\\'s estimate can use per-impression bids to correct the auctioneer\\'s prior without incurring any extra cost. 4. The hybrid auction can allow the advertiser and auctioneer to implement complex dynamic programming strategies to deal with the uncertainty in the click-probability using the same basic auction. The per-click and per-impression bidding schemes can only be used to implement two extreme cases of these strategies. As Internet commerce matures, we need more sophisticated pricing models to exploit all the information held by each of the participants. We believe that hybrid auctions could be an important step in this direction. The

  17. Royal Danish Air Force. Air Operations Doctrine

    DEFF Research Database (Denmark)

    Nørby, Søren

    This brief examines the development of the first Danish Air Force Air Operations Doctrine, which was officially commissioned in October 1997 and remained in effect until 2010. The development of a Danish air power doctrine was heavily influenced by the work of Colonel John Warden (USAF), both...... through his book ”The Air Campaign” and his subsequent planning of the air campaign against Iraq in 1990-1991. Warden’s ideas came to Denmark and the Danish Air Force by way of Danish Air Force students attending the United States Air Force Air University in Alabama, USA. Back in Denmark, graduates from...... the Air University inspired a small number of passionate airmen, who then wrote the Danish Air Operations Doctrine. The process was supported by the Air Force Tactical Command, which found that the work dovetailed perfectly with the transformation process that the Danish Air Force was in the midst...

  18. THE USE OF AIR LAYERS IN BUILDING ENVELOPES FOR ENERGY SAVING DURING AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2017-01-01

    Full Text Available Since there are no large natural energy resources in Belarus, energy savings ought to be a point of the special attention. With this regard it is important to develop modern ways of savings during the process of air conditioning inside new buildings with an air layer in the enclosure, especially in translucent ones. The system of ventilation of air layers in the enclosure of a building has been introduced in which air movement is caused by the gravitational and aerodynamic forces. It makes it possible to arrange further ventilation – a natural, forced or a hybrid one. With the purpose of increasing and streamlining natural draught the partitions are used separating the different parts of air layers. For natural ventilation with the use of gravitational forces the holes in the upper and lower parts of the partitions between adjacent air layers are applied. Natural ventilation in the holes of the partitions is regulated by movable shutters, blinds or other adjusting devices. For combined or forced air exchange between adjacent zones of air layers fans are used pumping air from the air layer zones with a higher temperature to zones of air layers with lower temperature and vice versa. When air exchange is forced, in order to intensify the infiltration of air into zones of air layers jets are laid on a hard surface. In order to cool a multi-layered enclosure of a building, where the movement of air between the air layers (that have been formed by internal partitions is being fulfilled by a natural, forced or combined mode, a part of the air or the total air processed inside the building (i.e. conditioned or non-conditioned air cooler as compared with the outside one is being sent to these strata. Combined or forced flow of the air processed inside the building into the air layers is done through the ducts associated with the output channels of the air conditioners. The internal partitions are equipped with the air valve hole.

  19. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy

  20. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  1. Epitaxial growth of hybrid nanostructures

    Science.gov (United States)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  2. Mirror hybrid reactor optimization studies

    International Nuclear Information System (INIS)

    Bender, D.J.

    1976-01-01

    A system model of the mirror hybrid reactor has been developed. The major components of the model include (1) the reactor description, (2) a capital cost analysis, (3) various fuel management schemes, and (4) an economic analysis that includes the hybrid plus its associated fission burner reactors. The results presented describe the optimization of the mirror hybrid reactor, the objective being to minimize the cost of electricity from the hybrid fission-burner reactor complex. We have examined hybrid reactors with two types of blankets, one containing natural uranium, the other thorium. The major difference between the two optimized reactors is that the uranium hybrid is a significant net electrical power producer, whereas the thorium hybrid just about breaks even on electrical power. Our projected costs for fissile fuel production are approximately 50 $/g for 239 Pu and approximately 125 $/g for 233 U

  3. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  4. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J. J.; Matthews, A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration, [No Value

    2015-01-01

    We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence

  5. Air quality

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The anthropic pollution sources are essentially industrial or bound to transport. A phenomenon of these last twenty years is the decreasing of the industrial pollution and the increasing of pollution coming from automobiles. Emissions of furans and dioxines coming from municipal wastes are measured. A special attention is mentioned for polycyclic aromatic hydrocarbons coming from incomplete combustions. A last aspect of air pollution is studied with the effect on man, ecosystems and materials, by modeling or direct measurements. (N.C.)

  6. Air pollution

    International Nuclear Information System (INIS)

    Nelson, P.

    2000-01-01

    Australian cites experience a number of current and emerging air pollution problems. Concentrations of traditional primary pollutants such as CO, lead and dust have fallen in recent years as a consequence of air pollutant control measures, and the widespread introduction of lead-free petrol. However, recommended guidelines for ozone, the principal component of photochemical smog, are regularly exceeded in major capital cities in the summer months. In addition, it is predicted that extensive urban expansion will lead to much greater dependence on the motor vehicle as the primary means of transportation. Effects of air pollution are felt at a variety of scales. Traditionally, concerns about gaseous and particulate emissions from industrial and vehicular sources were focused on local impacts due to exposure to toxic species such as CO and lead. As noted above, concentrations of these pollutants have been reduced by a variety of control measures. Pollutants which have effects at a regional scale, such as photochemically-produced ozone, and acidic gases and particles have proved more difficult to reduce. In general, these pollutants arc not the result of direct emissions to atmosphere, but result from complex secondary processes driven by photochemical reactions of species such as NO 2 and aldehydes. In addition, global effects of gaseous and particulate emissions to the atmosphere have received significant recent attention, concentrations of atmospheric CO 2 with predicted impacts on global climate, and ozone depletion due to anthropogenic emissions of chlorine-containing chemicals are the two major examples. Combustion processes from petrol- and diesel-fuelled vehicles, make major contributions to air pollution, and the magnitude of this contribution is discussed in this article

  7. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  8. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  9. High-energy metal air batteries

    Science.gov (United States)

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  10. Selective detection of labeled DNA using an air-clad photonic crystal fiber

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Hoiby, P.E.; Pedersen, L.H.

    2004-01-01

    Demonstration of selective detection of fluorophore labeled DNA by hybridization inside the air holes of a photonic crystal fiber A laser exposes the fiber from the side and the emitted fluorescence tunnels into the core.......Demonstration of selective detection of fluorophore labeled DNA by hybridization inside the air holes of a photonic crystal fiber A laser exposes the fiber from the side and the emitted fluorescence tunnels into the core....

  11. Sneutrino Hybrid Inflation

    International Nuclear Information System (INIS)

    Antusch, Stefan

    2006-01-01

    We review the scenario of sneutrino hybrid inflation, where one of the singlet sneutrinos, the superpartners of the right-handed neutrinos, plays the role of the inflaton. In a minimal model of sneutrino hybrid inflation, the spectral index is given by ns ≅ 1 + 2γ. With γ = 0.025 ± 0.01 constrained by WMAP, a running spectral index vertical bar dns/dlnk vertical bar << vertical barγvertical bar and a tensor-to-scalar ratio r << γ2 are predicted. Small neutrino masses arise from the seesaw mechanism, with heavy masses for the singlet (s)neutrinos generated by the vacuum expectation value of the waterfall field after inflation. The baryon asymmetry of the universe can be explained by non-thermal leptogenesis via sneutrino inflaton decay, with low reheat temperature TRH ≅ 106 GeV

  12. Hybrid-secure MPC 

    DEFF Research Database (Denmark)

    Lucas, Christoph; Raub, Dominik; Maurer, Ueli

    2010-01-01

    of the adversary, without being aware of the actual adversarial setting. Thus, hybrid-secure MPC protocols allow for graceful degradation of security. We present a hybrid-secure MPC protocol that provides an optimal trade-off between IT robustness and computational privacy: For any robustness parameter ρ ... obtain one MPC protocol that is simultaneously IT secure with robustness for up to t ≤ ρ actively corrupted parties, IT secure with fairness (no robustness) for up to t ... in the universal composability (UC) framework (based on a network of secure channels, a broadcast channel, and a common reference string). It achieves the bound on the trade-off between robustness and privacy shown by Ishai et al. [CRYPTO'06] and Katz [STOC'07], the bound on fairness shown by Cleve [STOC'86...

  13. Hybrid superconducting magnetic suspensions

    International Nuclear Information System (INIS)

    Tixador, P.; Hiebel, P.; Brunet, Y.; Chaud, X.; Gautier-Picard, P.

    1996-01-01

    Superconductors, especially high T c ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO

  14. The Power of Hybridization

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    Programming languages always seem to do some things well but not others: Python punts when it comes to user interfaces, Java’s artificial complexity prevents rapid development and produces tangles, and it will be awhile before we see benefits from C++ concurrency work. The cognitive load of languages and their blind spots increases the cost of experimentation, impeding your ability to fail fast and iterate. If you use a single language to solve your problem, you are binding yourself to the worldview limitations and the mistakes made by the creator of that language. Consider increasing your wiggle room by crossing language boundaries, complementing a language that is powerful in one area with a different language powerful in another. Language hybridization can speed development to quickly discover your real problems, giving you more time to fix them. After making a case for hybridizing your thinking in general, I will present a number of simple examples; first showing the benefits of using other languages...

  15. Tokamak hybrid study

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1976-09-01

    A report on one year of study of a tokamak hybrid reactor is presented. The plasma is maintained by both D and T beams. To obtain long burn times a poloidal field divertor is required. Both the single null and the double null style of divertor are considered. The blanket consists of a neutron multiplier region containing natural uranium followed by burner regions of molten salt (flibe) loaded with PuF 3 to enhance the energy multiplication. Economic analysis has been applied only recently to a variety of reactor sizes and plasma conditions. Early indications suggest that the most attractive hybrids will have large plasmas of major radius in excess of 8 meters

  16. Tokamak hybrid study

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1976-01-01

    A report on one year of study of a tokamak hybrid reactor is given. The plasma is maintained by both D and T beams. To obtain long burn times a poloidal field divertor is required. Both the single null and the double null style of divertor are considered. The blanket consists of a neutron multiplier region containing natural uranium followed by burner regions of molten salt (flibe) loaded with PuF 3 to enhance the energy multiplication. Economic analysis has been applied only recently to a variety of reactor sizes and plasma conditions. Early indications suggest that the most attractive hybrids will have large plasmas of major radius in excess of 8 meters

  17. Tailoring nonlinearity and dispersion of photonic crystal fibers using hybrid cladding

    International Nuclear Information System (INIS)

    Zhao-lun, Liu; Lan-tian, Hou; Wei, Wang

    2009-01-01

    We present a hybrid cladding photonic crystal fiber for shaping high nonlinear and flattened dispersion in a wide range of wavelengths. The new structure adopts hybrid cladding with different pitches, air-holes diameters and air-holes arrayed fashions. The full-vector finite element method with perfectly matched layer is used to investigate the characteristics of the hybrid cladding photonic crystal fiber such as nonlinearity and dispersion properties. The influence of the cladding structure parameters on the nonlinear coefficient and geometric dispersion is analyzed. High nonlinear coefficient and the dispersion properties of fibers are tailored by adjusting the cladding structure parameters. A novel hybrid cladding photonic crystal fiber with high nonlinear coefficient and dispersion flattened which is suited for super continuum generation is designed. (author)

  18. Hybrid undulator numerical optimization

    Energy Technology Data Exchange (ETDEWEB)

    Hairetdinov, A.H. [Kurchatov Institute, Moscow (Russian Federation); Zukov, A.A. [Solid State Physics Institute, Chernogolovka (Russian Federation)

    1995-12-31

    3D properties of the hybrid undulator scheme arc studied numerically using PANDIRA code. It is shown that there exist two well defined sets of undulator parameters which provide either maximum on-axis field amplitude or minimal higher harmonics amplitude of the basic undulator field. Thus the alternative between higher field amplitude or pure sinusoidal field exists. The behavior of the undulator field amplitude and harmonics structure for a large set of (undulator gap)/(undulator wavelength) values is demonstrated.

  19. Hybrid electroluminescent devices

    Science.gov (United States)

    Shiang, Joseph John; Duggal, Anil Raj; Michael, Joseph Darryl

    2010-08-03

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  20. Mirror hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    The fusion-fission hybrid is a combination of the fusion and fission processes, having features which are complementary. Fission energy is running out of readily available fuel, and fusion has extra neutrons which can be used to breed that fission fuel. Fusion would have to take on an extra burden of radioactivity, but this early application would give fusion, which does not work well enough now to make power, practical experience which may accelerate development of pure fusion

  1. The challenge of hybridization

    CERN Document Server

    Caccia, Massimo

    2000-01-01

    Hybridization of pixel detector systems has to satisfy tight requirements: high yield, long term reliability, mechanical stability, thermal compliance and robustness have to go together with low passive mass added to the system, radiation hardness, flexibility in the technology end eventually low cost. The current technologies for the interconnection of the front-end chips and the sensor are reviewed and compared, together with the solutions for the interface to the far-end electronics.

  2. Asymmetric Hybrid Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chumanov, George [Clemson Univ., SC (United States)

    2015-11-05

    Hybrid Nanoparticles (AHNs) are rationally-designed multifunctional nanostructures and novel building blocks for the next generation of advanced materials and devices. Nanoscale materials attract considerable interest because of their unusual properties and potential for practical applications. Most of the activity in this field is focused on the synthesis of homogeneous nanoparticles from metals, metal oxides, semiconductors, and polymers. It is well recognized that properties of nanoparticles can be further enhanced if they are made as hybrid structures. This program is concerned with the synthesis, characterization, and application of such hybrid structures termed AHNs. AHNs are composed of a homogeneous core and several caps of different materials deposited on its surface (Fig. 1). Combined properties of the core and the caps as well as new properties that arise from core-cap and cap-cap interactions render AHNs multifunctional. In addition, specific chemical reactivity of the caps enables directional self-assembly of AHNs into complex architectures that are not possible with only spherical nanoparticles.

  3. Hybrid Power: Mobility Air Forces and Foreign Policy

    Science.gov (United States)

    2010-05-21

    over, the leaflet shows the Afghan tearing open the packet. The word " Halal " is at the upper right of the reverse side to show that the food was...aid of that country through food distribution, water purification technology and medical aid. Since time is of the essence, a large USAF strategic... food , shelter, and sanitation. The American tsunami relief effort was called Operation UNIFIED ASSISTANCE. By the time the operation was declared

  4. Durability of a Hybrid Air-Land Vehicle

    Science.gov (United States)

    2008-12-01

    system are described, along with two improvements to the fuselage design. Results of wing aerodynamic studies are also presented. 2... winglets , and 5) curvature of the leading edge. Two airfoil shapes were investigated: a) the custom profile (UF) implemented on the original prototype...constructed with and without winglets . Finally, the curvature of the leading edge was investigated – the carbon fiber fabrication process typically

  5. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  6. Using magnetorheological fluids in an innovative hybrid bicycle damper

    International Nuclear Information System (INIS)

    Shiao, Y J; Nguyen, T S

    2015-01-01

    Magnetorheological fluids are capable of changing their viscosity quickly. This can provide good controllability and fast dynamic response. A conventional passive suspension system with air spring or hydraulic damper has simple design and financial benefit for bicycles, but its operation is uncontrollable and non-adaptive. This paper presented a semi-active hybrid bicycle suspension system which combines conventional air spring and a new magnetorheological damping brake together to reduce vibration of a bicycle. A multi-layer magnetorheological brake and linkage mechanism are connected to bike fork to form the adaptive damping part of the innovative hybrid suspension system. The simulation results proved that the semi-active suspension system can reduce bike vibration effectively. (paper)

  7. Hazardous Air Pollutants

    Science.gov (United States)

    ... Search Main menu Environmental Topics Air Bed Bugs Chemicals and Toxics Environmental Information by Location Greener Living Health Land, ... regulate toxic air pollutants, also known as air toxics, from categories of industrial facilities in two phases . About Hazardous Air Pollutants ...

  8. Air Quality System (AQS)

    Science.gov (United States)

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  9. AirData

    Data.gov (United States)

    U.S. Environmental Protection Agency — The AirData site provides access to yearly summaries of United States air pollution data, taken from EPA's air pollution databases. AirData has information about...

  10. Electric and hybrid vehicle environmental control subsystem study

    Science.gov (United States)

    Heitner, K. L.

    1980-01-01

    An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.

  11. On The Modelling Of Hybrid Aerostatic - Gas Journal Bearings

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2011-01-01

    modeling for hybrid lubrication of a compressible fluid film journal bearing. Additional forces are generated by injecting pressurized air into the bearing gap through orifices located on the bearing walls. A modified form of the compressible Reynolds equation for active lubrication is derived. By solving......Gas journal bearing have been increasingly adopted in modern turbo-machinery applications, as they meet the demands of operation at higher rotational speeds, in clean environment and great efficiency. Due to the fact that gaseous lubricants, typically air, have much lower viscosity than more...

  12. The exposure of the hybrid detector of the Pierre Auger Observatory

    OpenAIRE

    The Pierre Auger Collaboration

    2010-01-01

    Abstract The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The ?hybrid? detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one w...

  13. REDUCING ENERGY CONSUMPTION BY PASSENGER CAR WITH USING OF NON-ELECTRICAL HYBRID DRIVE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Tomas Skrucany

    2017-03-01

    Full Text Available Not only electrical hybrid technology is used for drivetrain of passenger cars. Also other systems using non-electrical principles (hydraulic or air pressure, mechanical energy storage can be found in current vehicles. There is a quantification of the spared energy by using a hybrid vehicle in the paper. Driving cy-cle ECE 15 was chosen as a platform for simulation of driving resistances.

  14. Direction and Policies Needed to Support Hybrid Electric Car Research

    OpenAIRE

    Subekti, Ridwan Arief; Hartanto, Agus; Susanti, Vita

    2012-01-01

    The rising number of vehicles over the years has driven the increase of air pollution and fuel consumption. One of the solutions to overcome this problem is using hybrid electric car because it is environmentally friendly and efficient in fuel consumption. LIPI has conducted electric car research since 1997, but there were so many problems in its development that electric car can not be developed into a national industry scale. Therefore, it is important to conduct a study that maps the probl...

  15. Hybrid Airships in Joint Logistics Over the Shore (JLOTS)

    Science.gov (United States)

    2013-06-13

    developing, constructing, testing, operating, and maintaining and an unmanned, un- tethered Hybrid Airship to be used in high altitude surveillance...concept that combined balloon and helicopter technology.37 It was basically a spherical balloon with four wings tipped with propellers 30 oriented...lift helicopters and lighter-than-air balloons used in logging operations. These tests proved entertaining and novel but were not very effective in

  16. First-Order Hybrid Logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Hybrid logic is an extension of modal logic which allows us to refer explicitly to points of the model in the syntax of formulas. It is easy to justify interest in hybrid logic on applied grounds, with the usefulness of the additional expressive power. For example, when reasoning about time one...... often wants to build up a series of assertions about what happens at a particular instant, and standard modal formalisms do not allow this. What is less obvious is that the route hybrid logic takes to overcome this problem often actually improves the behaviour of the underlying modal formalism....... For example, it becomes far simpler to formulate proof-systems for hybrid logic, and completeness results can be proved of a generality that is simply not available in modal logic. That is, hybridization is a systematic way of remedying a number of known deficiencies of modal logic. First-order hybrid logic...

  17. Economic and environmental evaluation of compressed-air cars

    International Nuclear Information System (INIS)

    Creutzig, Felix; Kammen, Daniel M; Papson, Andrew; Schipper, Lee

    2009-01-01

    Climate change and energy security require a reduction in travel demand, a modal shift, and technological innovation in the transport sector. Through a series of press releases and demonstrations, a car using energy stored in compressed air produced by a compressor has been suggested as an environmentally friendly vehicle of the future. We analyze the thermodynamic efficiency of a compressed-air car powered by a pneumatic engine and consider the merits of compressed air versus chemical storage of potential energy. Even under highly optimistic assumptions the compressed-air car is significantly less efficient than a battery electric vehicle and produces more greenhouse gas emissions than a conventional gas-powered car with a coal intensive power mix. However, a pneumatic-combustion hybrid is technologically feasible, inexpensive and could eventually compete with hybrid electric vehicles.

  18. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  19. Completeness in Hybrid Type Theory

    DEFF Research Database (Denmark)

    Areces, Carlos; Blackburn, Patrick Rowan; Huertas, Antonia

    2014-01-01

    We show that basic hybridization (adding nominals and @ operators) makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types th......-style intensional models; we build, as simply as we can, hybrid logicover Henkin’s logic...

  20. Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries

    Science.gov (United States)

    Pan, Jing; Xu, Yang Yang; Yang, Huan; Dong, Zehua; Liu, Hongfang

    2018-01-01

    Abstract Zn–air batteries are becoming the promising power sources for portable and wearable electronic devices and hybrid/electric vehicles because of their high specific energy density and the low cost for next‐generation green and sustainable energy technologies. An air electrode integrated with an oxygen electrocatalyst is the most important component and inevitably determines the performance and cost of a Zn–air battery. This article presents exciting advances and challenges related to air electrodes and their relatives. After a brief introduction of the Zn–air battery, the architectures and oxygen electrocatalysts of air electrodes and relevant electrolytes are highlighted in primary and rechargeable types with different configurations, respectively. Moreover, the individual components and major issues of flexible Zn–air batteries are also highlighted, along with the strategies to enhance the battery performance. Finally, a perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn–air batteries with high performance. PMID:29721418

  1. Direction and Policies Needed to Support Hybrid Electric Car Research

    Directory of Open Access Journals (Sweden)

    Ridwan Arief Subekti

    2012-07-01

    Full Text Available The rising number of vehicles over the years has driven the increase of air pollution and fuel consumption. One of the solutions to overcome this problem is using hybrid electric car because it is environmentally friendly and efficient in fuel consumption. LIPI has conducted electric car research since 1997, but there were so many problems in its development that electric car can not be developed into a national industry scale. Therefore, it is important to conduct a study that maps the problems and finds the solutions to prevent the same failure of electric car commercialization process from happening to hybrid electric car . This study was done by collecting and analyzing the primary and secondary data through interviews, discussing electric hybrid car with stakeholders, and examining earlier study results and regulations. Based on this study, several policies to support sustainability research of hybrid electric car were proposed. Some recommendations were the making of national roadmap and regulation for the usage of hybrid electric car on the road. For policy makers at LIPI, a research focus, research coordination, and pre-commercialization program were recommended.

  2. A hybrid reconfigurable solar and wind energy system

    Science.gov (United States)

    Gadkari, Sagar A.

    We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.

  3. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  4. Performance of desiccant air conditioning system with geothermal energy under different climatic conditions

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; Kabeel, A.E.

    2014-01-01

    Highlights: • The performance of the hybrid air conditioning system is studied. • The influence of important operating parameters are estimated. • The ventilation, makeup and mix cycles are investigated at different climate. • The highest COP of the hybrid air conditioning system is 1.03. • The hybrid system provides a human thermal comfort at different climates. - Abstract: Energy saving still and continue a major seek in our life, due to the continuous increase in energy consumptions. So, a desiccant air conditioning system with geothermal energy is conducted in the current study. The thermal analysis of air conditioning system with its different components desiccant wheel, solar collector, heat exchanger, ground heat exchanger and water spray evaporative cooler is presented. Three different air conditioning cycles are simulated in the current study for different zones like: hot-dry zone, warm-dry zone, hot-humid zone and the warm-humid zone. The results show that the desiccant air conditioning system successfully provides a better thermal comfort condition in different climates. This hybrid system significantly decreases the supplied air temperature from 12.7 to 21.7 °C at different climate zones. When ω in , air and T Reg increasing, COP decreases and the ventilation cycle provides the better COP. The highest COP value of the desiccant air conditioning system is about 1.03 while the lowest value is about 0.15. The SHR of makeup cycle is higher than that ventilation cycle at warm and hot-humid zone and vice versa at warm and hot-dry zone. The highest SHR value of the desiccant air conditioning system is about 0.99 while the lowest value is about 0.2. The T sup,air , ω sup,air , COP and SHR isolines may easily be used for pre-evaluating of various cooling cycles in different climates. The hybrid system provides a human thermal comfort at different climates

  5. Glueballs, hybrids, multiquarks

    Energy Technology Data Exchange (ETDEWEB)

    Klempt, Eberhard [Helmholtz-Institut fuer Strahlen-und Kernphysik der Rheinischen Friedrich-Wilhelms Universitaet, Nussallee 14-16, D-53115 Bonn (Germany)], E-mail: klempt@hiskp.uni-bonn.de; Zaitsev, Alexander [Institute for High-Energy Physics, Moscow Region, RU-142284 Protvino (Russian Federation)

    2007-12-15

    Glueballs, hybrids and multiquark states are predicted as bound states in models guided by quantum chromo dynamics (QCD), by QCD sum rules or QCD on a lattice. Estimates for the (scalar) glueball ground state are in the mass range from 1000 to 1800 MeV, followed by a tensor and a pseudoscalar glueball at higher mass. Experiments have reported evidence for an abundance of meson resonances with 0{sup -+},0{sup ++} and 2{sup ++} quantum numbers. In particular, the sector of scalar mesons is full of surprises starting from the elusive {sigma} and {kappa} mesons. The a{sub 0}(980) and f{sub 0}(980), discussed extensively in the literature, are reviewed with emphasis on their Janus-like appearance as KK-bar molecules, tetraquark states or qq-bar mesons. Most exciting is the possibility that the three mesons f{sub 0}(1370), f{sub 0}(1500), and f{sub 0}(1710) might reflect the appearance of a scalar glueball in the world of quarkonia. However, the existence of f{sub 0}(1370) is not beyond doubt and there is evidence that both f{sub 0}(1500) and f{sub 0}(1710) are flavour octet states, possibly in a tetraquark composition. We suggest a scheme in which the scalar glueball is dissolved into the wide background into which all scalar flavour-singlet mesons collapse. There is an abundance of meson resonances with the quantum numbers of the {eta}. Three states are reported below 1.5GeV/c{sup 2} whereas quark models expect only one, perhaps two. One of these states, {iota}(1440), was the prime glueball candidate for a long time. We show that {iota}(1440) is the first radial excitation of the {eta} meson. Hybrids may have exotic quantum numbers which are not accessible by qq-bar mesons. There are several claims for J{sup PC}=1{sup -+} exotics, some of them with properties as predicted from the flux tube model interpreting the quark-antiquark binding by a gluon string. The evidence for these states depends partly on the assumption that meson-meson interactions are dominated by s

  6. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  7. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  8. Hybrid Maritime Warfare

    DEFF Research Database (Denmark)

    Schaub Jr, Gary John; Murphy, Martin; Hoffman, Frank

    2017-01-01

    Russia’s use of hybrid warfare techniques has raised concerns about the security of the Baltic States. Gary Schaub, Jr, Martin Murphy and Frank G Hoffman recommend a series of measures to augment NATO’s Readiness Action Plan in the Baltic region, including increasing the breadth and depth of naval...... exercises, and improving maritime domain awareness through cooperative programmes. They also suggest unilateral and cooperative measures to develop a sound strategic communications strategy to counter Moscow’s information operations, reduce dependence on Russian energy supplies and build the resilience...

  9. Indexical Hybrid Tense Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Jørgensen, Klaus Frovin

    2012-01-01

    In this paper we explore the logic of now, yesterday, today and tomorrow by combining the semantic approach to indexicality pioneered by Hans Kamp [9] and refined by David Kaplan [10] with hybrid tense logic. We first introduce a special now nominal (our @now corresponds to Kamp’s original now...... operator N) and prove completeness results for both logical and contextual validity. We then add propositional constants to handle yesterday, today and tomorrow; our system correctly treats sentences like “Niels will die yesterday” as contextually unsatisfiable. Building on our completeness results for now......, we prove completeness for the richer language, again for both logical and contextual validity....

  10. Hybrid Dark Matter

    OpenAIRE

    Chao, Wei

    2018-01-01

    Dark matter can be produced in the early universe via the freeze-in or freeze-out mechanisms. Both scenarios were investigated in references, but the production of dark matters via the combination of these two mechanisms are not addressed. In this paper we propose a hybrid dark matter model where dark matters have two components with one component produced thermally and the other one produced non-thermally. We present for the first time the analytical calculation for the relic abundance of th...

  11. Reflections on Intellectual Hybridity

    Directory of Open Access Journals (Sweden)

    Kimala Price

    2012-05-01

    Full Text Available Drawing from the growing literature on interdisciplinarity and my own experiences as an intellectual hybrid, I discuss the personal and institutional challenges inherent in crossing disciplinary boundaries in the academy. I argue that boundary crossing is a natural occurrence and that the issue of (interdisciplinarity is a matter of degree and of determining who gets to define the boundaries. Defining boundaries is not merely an intellectual enterprise, but also a political act that delineates what is, or is not, legitimate scholarship. This issue is especially salient to women's and gender studies during times of economic distress and educational budget cuts.

  12. The Hybrid Advantage: Graduate Student Perspectives of Hybrid Education Courses

    Science.gov (United States)

    Hall, Sarah; Villareal, Donna

    2015-01-01

    Hybrid courses combine online and face-to-face learning environments. To organize and teach hybrid courses, instructors must understand the uses of multiple online learning tools and face-toface classroom activities to promote and monitor the progress of students. The purpose of this phenomenological study was to explore the perspectives of…

  13. Hybrid vehicle potential assessment. Volume 7: Hybrid vehicle review

    Science.gov (United States)

    Leschly, K. O.

    1979-01-01

    Review of hybrid vehicles built during the past ten years or planned to be built in the near future is presented. An attempt is made to classify and analyze these vehicles to get an overall picture of their key characteristics. The review includes onroad hybrid passenger cars, trucks, vans, and buses.

  14. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  15. Air Land Sea Bulletin

    Science.gov (United States)

    2014-11-01

    Unidentified Royal Air Force Regiment forward air controllers from the Air Land Integration Cell , Based at Royal Air Force Honington, Suffolk (United...heavy as an actual weapon.4 Ideally, this practice imbued a soldier with more energy and stamina during real combat, given the feel of the genuine but...through tactical forces, to individual training. Unidentified Royal Air Force Regiment forward air controllers from the Air Land Integration Cell , Based

  16. A hybrid modeling with data assimilation to evaluate human exposure level

    Science.gov (United States)

    Koo, Y. S.; Cheong, H. K.; Choi, D.; Kim, A. L.; Yun, H. Y.

    2015-12-01

    Exposure models are designed to better represent human contact with PM (Particulate Matter) and other air pollutants such as CO, SO2, O3, and NO2. The exposure concentrations of the air pollutants to human are determined by global and regional long range transport of global and regional scales from Europe and China as well as local emissions from urban and road vehicle sources. To assess the exposure level in detail, the multiple scale influence from background to local sources should be considered. A hybrid air quality modeling methodology combing a grid-based chemical transport model with a local plume dispersion model was used to provide spatially and temporally resolved air quality concentration for human exposure levels in Korea. In the hybrid modeling approach, concentrations from a grid-based chemical transport model and a local plume dispersion model are added to provide contributions from photochemical interactions, long-range (regional) transport and local-scale dispersion. The CAMx (Comprehensive Air quality Model with Extensions was used for the background concentrations from anthropogenic and natural emissions in East Asia including Korea while the road dispersion by vehicle emission was calculated by CALPUFF model. The total exposure level of the pollutants was finally assessed by summing the background and road contributions. In the hybrid modeling, the data assimilation method based on the optimal interpolation was applied to overcome the discrepancies between the model predicted concentrations and observations. The air quality data from the air quality monitoring stations in Korea. The spatial resolution of the hybrid model was 50m for the Seoul Metropolitan Ares. This example clearly demonstrates that the exposure level could be estimated to the fine scale for the exposure assessment by using the hybrid modeling approach with data assimilation.

  17. Hybrid coolers allow important water saving; Les refroidisseurs ''hybrides'' permettent des economies d'eau importantes

    Energy Technology Data Exchange (ETDEWEB)

    Bitsch, V. [Societe Jaeggi-France (France)

    2005-03-01

    Air cooling systems used with refrigerating machineries are in general highly water and electricity consuming. The use of 'hybrid' systems having the characteristics of both close-cycle evaporative systems and dry coolers allow important water saving. This article presents the operation principle and characteristics of such cooling systems. (J.S.)

  18. Nonminimally coupled hybrid inflation

    International Nuclear Information System (INIS)

    Koh, Seoktae; Minamitsuji, Masato

    2011-01-01

    We discuss the hybrid inflation model where the inflaton field is nonminimally coupled to gravity. In the Jordan frame, the potential contains φ 4 term as well as terms in the original hybrid inflation model. In our model, inflation can be classified into the type (I) and the type (II). In the type (I), inflation is terminated by the tachyonic instability of the waterfall field, while in the type (II) by the violation of slow-roll conditions. In our model, the reheating takes place only at the true minimum and even in the case (II) finally the tachyonic instability occurs after the termination of inflation. For a negative nonminimal coupling, inflation takes place in the vacuum-dominated region, in the large field region, or near the local minimum/maximum. Inflation in the vacuum-dominated region becomes either the type (I) or (II), resulting in a blue or red spectrum of the curvature perturbations, respectively. Inflation around the local maximum can be either the type (I) or the type (II), which results in the red spectrum of the curvature perturbations, while around the local minimum it must be the type (I), which results in the blue spectrum. In the large field region, to terminate inflation, potential in the Einstein frame must be positively tilted, always resulting in the red spectrum. We then numerically solve the equations of motion to investigate the whole dynamics of inflaton and confirm that the spectrum of curvature perturbations changes from red to blue ones as scales become smaller.

  19. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  20. Mode conversion in hybrid optical fiber coupler

    Science.gov (United States)

    Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.

    2012-04-01

    Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.

  1. Stakeholder acceptance analysis: Tunable hybrid plasma

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, T.

    1995-12-01

    This report resents evaluations, recommendations, and requirements concerning Tunable Hybrid Plasma (THP) derived from a three-year program of stake holder involvement. THP destroys volatile organic compounds by directing a moderate energy electron beam into a flow of air containing organic contaminants. This report is for technology developers and for those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders` perspectives help those responsible for technology deployment make good decisions concerning the acceptability and applicability of THP to the remediation problems the face. In addition, this report presents data requirements for the technology`s field demonstration defined by stakeholders associated with the Hanford site in Washington State, as well as detailed comments on THP from stakeholders from four other sites throughout the western United States.

  2. Stakeholder acceptance analysis: Tunable hybrid plasma

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This report resents evaluations, recommendations, and requirements concerning Tunable Hybrid Plasma (THP) derived from a three-year program of stake holder involvement. THP destroys volatile organic compounds by directing a moderate energy electron beam into a flow of air containing organic contaminants. This report is for technology developers and for those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment make good decisions concerning the acceptability and applicability of THP to the remediation problems the face. In addition, this report presents data requirements for the technology's field demonstration defined by stakeholders associated with the Hanford site in Washington State, as well as detailed comments on THP from stakeholders from four other sites throughout the western United States

  3. Hybrid spread spectrum radio system

    Science.gov (United States)

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  4. The governance of hybrid organisations

    DEFF Research Database (Denmark)

    Spear, Roger; Cornforth, Chris

    2010-01-01

    The focus of this chapter is on the governance of third sector organizations (TSOs) and the challenges that are raised by hybridity. In particular it will focus on the question how does hybridity affect governance structures and processes and the challenges that governing bodies face?...

  5. Electric/Hybrid Vehicle Simulation

    Science.gov (United States)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  6. Electric-hybrid-vehicle simulation

    Science.gov (United States)

    Pasma, D. C.

    The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.

  7. Design Principles for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system -Hybrid Ventilation. ....... The hybrid ventilation concepts, design challenges and - principles are discussed and illustrated by four building examples....

  8. Conceptual innovations in hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Miley, G.H.

    1980-01-01

    A number of innovations in the conception of fusion-fission hybrid reactors, including the blanket, the fusion driver, the coupling of the fusion and the fission components as well as the application of hybrid reactors are described, and their feasibility assessed

  9. Comparison of indoor air pollutants concentration in two Romanian classrooms

    Science.gov (United States)

    Vasile, Vasilica; Dima, Alina; Zorila, Elena; Istrate, Andrei; Catalina, Tiberiu

    2018-02-01

    This paper investigates the air pollutions in space ventilated in two High School classrooms. The analysis consists of comparison of one classroom with hybrid ventilation system and another one stander-by classroom with natural ventilation. Several studies regarding indoor air quality during the experimental campaign have been done for VOC, CO2, CO, other pollutants, keeping monitored for humidity and temperature. The experimental demonstrated that the highest value for CO2 in stander-by classroom is 2691 ppm and in classroom with hybrid ventilation is 1897 ppm, while values for CO are 1.1 / 1.1 ppm and VOC 0.14 / 0.06 ppm, better use hybrid ventilation.

  10. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  11. Laser driven fusion fission hybrids

    International Nuclear Information System (INIS)

    Hansen, L.F.; Maniscalco, J.A.

    1977-11-01

    The role of the fusion-fission hybrid reactor (FFHR) as a fissile fuel and/or power producer is discussed. As long range options to supply the world energy needs, hybrid-fueled thermal-burner reactors are compared to liquid metal fast breeder reactors (LMFBR). A discussion of different fuel cycles (thorium, depleted uranium, and spent fuel) is presented in order to compare the energy multiplication, the production of fissile fuel, the laser efficiency and pellet gain requirements of the hybrid reactor. Lawrence Livermore Laboratory (LLL) has collaborated with Bechtel Corporation and with Westinghouse in two engineering design studies of laser fusion driven hybrid power plants. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering operational parameters, such as energy multiplication, power density, burn-up and plutonium production as a function time

  12. Hybrid Hydrogen and Mechanical Distributed Energy Storage

    Directory of Open Access Journals (Sweden)

    Stefano Ubertini

    2017-12-01

    Full Text Available Effective energy storage technologies represent one of the key elements to solving the growing challenges of electrical energy supply of the 21st century. Several energy storage systems are available, from ones that are technologically mature to others still at a research stage. Each technology has its inherent limitations that make its use economically or practically feasible only for specific applications. The present paper aims at integrating hydrogen generation into compressed air energy storage systems to avoid natural gas combustion or thermal energy storage. A proper design of such a hybrid storage system could provide high roundtrip efficiencies together with enhanced flexibility thanks to the possibility of providing additional energy outputs (heat, cooling, and hydrogen as a fuel, in a distributed energy storage framework. Such a system could be directly connected to the power grid at the distribution level to reduce power and energy intermittence problems related to renewable energy generation. Similarly, it could be located close to the user (e.g., office buildings, commercial centers, industrial plants, hospitals, etc.. Finally, it could be integrated in decentralized energy generation systems to reduce the peak electricity demand charges and energy costs, to increase power generation efficiency, to enhance the security of electrical energy supply, and to facilitate the market penetration of small renewable energy systems. Different configurations have been investigated (simple hybrid storage system, regenerate system, multistage system demonstrating the compressed air and hydrogen storage systems effectiveness in improving energy source flexibility and efficiency, and possibly in reducing the costs of energy supply. Round-trip efficiency up to 65% can be easily reached. The analysis is conducted through a mixed theoretical-numerical approach, which allows the definition of the most relevant physical parameters affecting the system

  13. 12th Air Force > Home

    Science.gov (United States)

    Force AOR Travel Info News prevnext Slide show 76,410 pounds of food delivered to Haiti 12th Air Force the French Air Force, Colombian Air Force, Pakistan Air Force, Belgian Air Force, Brazilian Air Force

  14. Hybrid Natural Inflation

    Science.gov (United States)

    Ross, Graham G.; Germán, Gabriel; Vázquez, J. Alberto

    2016-05-01

    We construct two simple effective field theory versions of Hybrid Natural Inflation (HNI) that illustrate the range of its phenomenological implications. The resulting inflationary sector potential, V = Δ4(1 + acos( ϕ/f)), arises naturally, with the inflaton field a pseudo-Nambu-Goldstone boson. The end of inflation is triggered by a waterfall field and the conditions for this to happen are determined. Also of interest is the fact that the slow-roll parameter ɛ (and hence the tensor r) is a non-monotonic function of the field with a maximum where observables take universal values that determines the maximum possible tensor to scalar ratio r. In one of the models the inflationary scale can be as low as the electroweak scale. We explore in detail the associated HNI phenomenology, taking account of the constraints from Black Hole production, and perform a detailed fit to the Planck 2015 temperature and polarisation data.

  15. Hybrid Natural Inflation

    International Nuclear Information System (INIS)

    Ross, Graham G.; Germán, Gabriel; Vázquez, J. Alberto

    2016-01-01

    We construct two simple effective field theory versions of Hybrid Natural Inflation (HNI) that illustrate the range of its phenomenological implications. The resulting inflationary sector potential, V=Δ"4(1+acos (ϕ/f)), arises naturally, with the inflaton field a pseudo-Nambu-Goldstone boson. The end of inflation is triggered by a waterfall field and the conditions for this to happen are determined. Also of interest is the fact that the slow-roll parameter ϵ (and hence the tensor r) is a non-monotonic function of the field with a maximum where observables take universal values that determines the maximum possible tensor to scalar ratio r. In one of the models the inflationary scale can be as low as the electroweak scale. We explore in detail the associated HNI phenomenology, taking account of the constraints from Black Hole production, and perform a detailed fit to the Planck 2015 temperature and polarisation data.

  16. Hybrid powertrain system

    Science.gov (United States)

    Grillo, Ricardo C.; O'Neil, Walter K.; Preston, David M.

    2005-09-20

    A hybrid powertrain system is provided that includes a first prime mover having a rotational output, a second prime mover having a rotational output, and a transmission having a main shaft supporting at least two main shaft gears thereon. The transmission includes a first independent countershaft drivingly connected to the first prime mover and including at least one ratio gear supported thereon that meshes with a respective main shaft gear. A second independent countershaft is drivingly connected to the second prime mover and includes at least one ratio gear supported thereon that meshes with a respective main shaft gear. The ratio gears on the first and second countershafts cooperate with the main shaft gears to provide at least one gear ratio between the first and second countershafts and the main shaft. A shift control mechanism selectively engages and disengages the first and second countershafts for rotation with the main shaft.

  17. Hybrid vehicle control

    Science.gov (United States)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  18. Hyper- and hybrid nonlocality

    Science.gov (United States)

    Li, Yanna; Gessner, Manuel; Li, Weidong; Smerzi, Augusto

    2018-02-01

    The controlled generation and identification of quantum correlations, usually encoded in either qubits or continuous degrees of freedom, builds the foundation of quantum information science. Recently, more sophisticated approaches, involving a combination of two distinct degrees of freedom, have been proposed to improve on the traditional strategies. Hyperentanglement describes simultaneous entanglement in more than one distinct degree of freedom, whereas hybrid entanglement refers to entanglement shared between a discrete and a continuous degree of freedom. In this work we propose a scheme that allows us to combine the two approaches, and to extend them to the strongest form of quantum correlations. Specifically, we show how two identical, initially separated particles can be manipulated to produce Bell nonlocality among their spins, among their momenta, as well as across their spins and momenta. We discuss possible experimental realizations with atomic and photonic systems.

  19. Hybrid Electric Transit Bus

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    A government, industry, and university cooperative is developing an advanced hybrid electric city transit bus. Goals of this effort include doubling the fuel economy compared to current buses and reducing emissions to one-tenth of current EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors as an energy storage system, and a planned natural gas fueled turbogenerator developed from a small jet engine. Power from both the generator and energy storage system is provided to a variable speed electric motor attached to the rear axle. At over 15000 kg gross weight, this is the largest vehicle of its kind ever built using ultra-capacitor energy storage. This paper describes the overall power system architecture, the evolution of the control strategy, and its performance over industry standard drive cycles.

  20. Hybrid Magnetic Shielding

    Science.gov (United States)

    Royal, Kevin; Crawford, Christopher; Mullins, Andrew; Porter, Greg; Blanton, Hunter; Johnstone, Connor; Kistler, Ben; Olivera, Daniela

    2017-09-01

    The search for the electric dipole moment of the neutron requires the ambient magnetic field to be on the pT scale which is accomplished with large magnetic shielding rooms. These rooms are fitted with large mu-metal sheets to allow for passive cancellation of background magnetic fields. Active shielding technology cannot uniformly cancel background magnetic fields. These issues can be remedied by combining the methods into a hybrid system. The design used is composed of panels that have an active layer of cancellation between two sheets of mu-metal. The panels form a cube and draw in magnetic fields perpendicular to the surface which can then be reduced using active shielding. This work is supported by the Department of Energy under Contract DE-SC0008107.

  1. A Hybrid Imagination

    DEFF Research Database (Denmark)

    Jamison, Andrew; Christensen, Steen Hyldgaard; Botin, Lars

    “hubris” that is so much taken for granted in contemporary science and engineering discourses and practices with a sense of cooperation and social responsibility. The book portrays the history of science and technology as an underlying tension between hubris – literally the ambition to “play god...... an alternative approach, devoting special attention to the role played by social and cultural movements in the making of science and technology. They show how social and cultural movements, from the Renaissance of the late 15th century to the environmental and global justice movements of our time, have provided......” on the part of many a scientist and engineer and neglect the consequences - and a hybrid imagination, connecting scientific “facts” and technological “artifacts” with cultural understanding. The book concludes with chapters on the recent transformations in the modes of scientific and technological production...

  2. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Rönnkö, M.; Ravn, Anders Peter; Sere, K.

    2003-01-01

    In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time......-derivatives in modelling continuous-time dynamics. The generalized differential action has an intuitively appealing predicate transformer semantics, which we show to be both conjunctive and monotonic. In addition, we show that differential actions blend smoothly with conventional actions in action systems, even under...... parallel composition. Moreover, as the strength of the action system formalism is the support for stepwise development by refinement, we investigate refinement involving a differential action. We show that, due to the predicate transformer semantics, standard action refinement techniques apply also...

  3. Nanoporous hybrid electrolytes

    KAUST Repository

    Schaefer, Jennifer L.

    2011-01-01

    Oligomer-suspended SiO2-polyethylene glycol nanoparticles are studied as porous media electrolytes. At SiO2 volume fractions, , bracketing a critical value y ≈ 0.29, the suspensions jam and their mechanical modulus increase by more than seven orders. For >y, the mean pore diameter is close to the anion size, yet the ionic conductivity remains surprisingly high and can be understood, at all , using a simple effective medium model proposed by Maxwell. SiO 2-polyethylene glycol hybrid electrolytes are also reported to manifest attractive electrochemical stability windows (0.3-6.3 V) and to reach a steady-state interfacial impedance when in contact with metallic lithium. © 2010 The Royal Society of Chemistry.

  4. Wisconsin Air Cargo Study

    Science.gov (United States)

    2011-04-01

    Air cargo is a key economic lifeline for the communities that have airports. Manufacturers, businesses, hospitals and : other community cornerstone employers depend on air cargo to successfully operate. While there is no doubt that air : cargo repres...

  5. HEPA air filter (image)

    Science.gov (United States)

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  6. Air Sensor Toolbox

    Science.gov (United States)

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  7. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devicesThe Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  8. Indoor Air Quality

    Science.gov (United States)

    ... protect yourself and your family. Learn more Air Quality at Work Workers should breathe easy while on the job, but worksites with poor air quality put employees at risk. Healthy air is essential ...

  9. Air Pollution Monitoring | Air Quality Planning & Standards ...

    Science.gov (United States)

    2016-06-08

    The basic mission of the Office of Air Quality Planning and Standards is to preserve and improve the quality of our nation's air. To accomplish this, OAQPS must be able to evaluate the status of the atmosphere as compared to clean air standards and historical information.

  10. AirPEx: Air Pollution Exposure Model

    NARCIS (Netherlands)

    Freijer JI; Bloemen HJTh; Loos S de; Marra M; Rombout PJA; Steentjes GM; Veen MP van; LBO

    1997-01-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The

  11. Hybrid computing - Generalities and bibliography

    International Nuclear Information System (INIS)

    Neel, Daniele

    1970-01-01

    This note presents the content of a research thesis. It describes the evolution of hybrid computing systems, discusses the benefits and shortcomings of analogue or hybrid systems, discusses the building up of an hybrid system (requires properties), comments different possible uses, addresses the issues of language and programming, discusses analysis methods and scopes of application. An appendix proposes a bibliography on these issues and notably the different scopes of application (simulation, fluid dynamics, biology, chemistry, electronics, energy, errors, space, programming languages, hardware, mechanics, and optimisation of equations or processes, physics) [fr

  12. Research of a hybrid undulator

    International Nuclear Information System (INIS)

    Ma Youwu; Wu Bing; Liu Bo

    1995-12-01

    A 1.5 m tapered hybrid undulator has been designed and built for mid-infrared free electron laser experiments at CIAE. The undulator utilizes the REC-steel hybrid configuration. The magnetic gap and magnetic field taper can be continuously adjusted. The rms error of the peak field is less than 0.53%. The electron trajectory deviation is around 0.03 mm. The design of undulator, sorting of magnets in hybrid undulator using simulated annealing technique, the motion of electron beam in the ideal and measured magnetic field, magnetic field measurement technique and magnetic field adjustment are described. (6 refs., 10 figs., 1 tab)

  13. Interspecific Hybridization within Ornamental Plants

    DEFF Research Database (Denmark)

    Kuligowska, Katarzyna

    commercially important genera of ornamental plants: Kalanchoë and Hibiscus. The nature of hybridization barriers hampering hybrid production was investigated during pre- and post-fertilization stages. For each genus the interspecific crosses of Kalanchoë species and Hibiscus species, abnormal germination...... and growth of pollen tubes, as well as lower frequencies of pollen tubes were observed in specific cross-combinations. Post-fertilization barriers related to endosperm development and hybrid incompatibility were also observed in Kalanchoë and Hibiscus genus, respectively. Qualitative and quantitative...

  14. Triplex in-situ hybridization

    Science.gov (United States)

    Fresco, Jacques R.; Johnson, Marion D.

    2002-01-01

    Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

  15. Evolution of hybrid defect networks

    International Nuclear Information System (INIS)

    Martins, C. J. A. P.

    2009-01-01

    We apply a recently developed analytic model for the evolution of monopole networks to the case of monopoles attached to one string, usually known as hybrid networks. We discuss scaling solutions for both local and global hybrid networks, and also find an interesting application for the case of vortons. Our quantitative results agree with previous estimates in indicating that the hybrid networks will usually annihilate soon after the string-forming phase transition. However, we also show that in some specific circumstances these networks can survive considerably more than a Hubble time.

  16. Program Hybrid/GDH. Revision

    International Nuclear Information System (INIS)

    Blann, M.; Bisplinghoff, J.

    1975-10-01

    This code is the most recent in a series of codes for doing a-priori pre-equilibrium decay calculations. It has been written to permit the user to exercise many options at time of execution. It will, for example, permit calculation with either Hybrid model or the geometry dependent Hybrid model (GDH). Intranuclear transition rates can be calculated using either a nucleon-nucleon scattering approach (improved over earlier results) or based on the imaginary optical potential. Transition rates based on exciton lifetimes can be selected (as suggested in the Hybrid model formulation) or an average lifetime for each n-exciton configuration may be selected

  17. Dish/stirling hybrid-receiver

    Science.gov (United States)

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2002-01-01

    A hybrid high-temperature solar receiver is provided which comprises a solar heat-pipe-receiver including a front dome having a solar absorber surface for receiving concentrated solar energy, a heat pipe wick, a rear dome, a sidewall joining the front and the rear dome, and a vapor and a return liquid tube connecting to an engine, and a fossil fuel fired combustion system in radial integration with the sidewall for simultaneous operation with the solar heat pipe receiver, the combustion system comprising an air and fuel pre-mixer, an outer cooling jacket for tangentially introducing and cooling the mixture, a recuperator for preheating the mixture, a burner plenum having an inner and an outer wall, a porous cylindrical metal matrix burner firing radially inward facing a sodium vapor sink, the mixture ignited downstream of the matrix forming combustion products, an exhaust plenum, a fossil-fuel heat-input surface having an outer surface covered with a pin-fin array, the combustion products flowing through the array to give up additional heat to the receiver, and an inner surface covered with an extension of the heat-pipe wick, a pin-fin shroud sealed to the burner and exhaust plenums, an end seal, a flue-gas diversion tube and a flue-gas valve for use at off-design conditions to limit the temperature of the pre-heated air and fuel mixture, preventing pre-ignition.

  18. Compositional Modelling of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Strubbe, S.N.

    2005-01-01

    In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete

  19. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Science.gov (United States)

    . A wide variety of hybrid electric vehicle models is currently available. Although HEVs are often -go traffic), further improving fuel economy. Mild hybrid systems cannot power the vehicle using Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric

  20. Hybrid Electric Vehicle Testing | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Evaluations Hybrid Electric Vehicle Evaluations How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an is used to propel the vehicle during normal drive cycles. The batteries supply additional power for

  1. Hybrid Electric Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Publications Hybrid Electric Vehicle Publications The following technical papers, conference papers, and fact sheets provide information about NREL's hybrid electric fleet vehicle Class 8 Hybrid Electric Delivery Trucks. Mike Lammert. (2011) FedEx Delivery Trucks In-Use and Vehicle

  2. Hybridization and management of oak populations

    Science.gov (United States)

    Oliver Gailing

    2017-01-01

    Hybridization can result in the transfer of adaptations among species and may contribute to speciation processes. On the other hand, hybridization can also result in a loss of species diversity due to asymmetric gene flow between species (genetic swamping) and in low hybrid fitness. An understanding of the outcomes of interspecific hybridization is crucial for the...

  3. Hybrid Engine Powered City Car: Fuzzy Controlled Approach

    Science.gov (United States)

    Rahman, Ataur; Mohiuddin, AKM; Hawlader, MNA; Ihsan, Sany

    2017-03-01

    This study describes a fuzzy controlled hybrid engine powered car. The car is powered by the lithium ion battery capacity of 1000 Wh is charged by the 50 cc hybrid engine and power regenerative mode. The engine is operated with lean mixture at 3000 rpm to charge the battery. The regenerative mode that connects with the engine generates electrical power of 500-600 W for the deceleration of car from 90 km/h to 20 km/h. The regenerated electrical power has been used to power the air-conditioning system and to meet the other electrical power. The battery power only used to propel the car. The regenerative power also found charging the battery for longer operation about 40 minutes and more. The design flexibility of this vehicle starts with whole-vehicle integration based on radical light weighting, drag reduction, and accessory efficiency. The energy efficient hybrid engine cut carbon dioxide (CO2) and nitrogen oxides (N2O) emission about 70-80% as the loads on the crankshaft such as cam-follower and its associated rotating components are replaced by electromagnetic systems, and the flywheel, alternator and starter motor are replaced by a motor generator. The vehicle was tested and found that it was able to travel 70 km/litre with the power of hybrid engine.

  4. Estimation and Control of Nonlinear and Hybrid Systems with Applications to Air-to-Air Guidance

    Science.gov (United States)

    1989-03-31

    Francisco, pp. 1-11, 1974. [30] E. A. Coddington, and N. Levinson, Theory of Ordinary Differential Equations. Mc Graw - [16] Y. Sun, "Networks containing...Thus, Bandpass Transformations the 31 car, be found as N STEPHEN A. DYER 1" Z a. c., k - 0, 1, - -, ,. (8)n..0 An algorithm is presented for computing

  5. HYBRIDIZATION AND CHAMELEONIC JOURNALISM

    Directory of Open Access Journals (Sweden)

    Adriana Schryver Kurtz

    2016-12-01

    Full Text Available O texto aborda a crescente hibridização entre o Jornalismo e demais formatos midiáticos como resultado natural de um processo que já está na própria raiz da comunicação enquanto atividade histórica. A lógica interna e as potencialidades estéticas e discursivas do fenômeno são analisadas a partir das convergências entre jornalismo e cinema. Para tanto, utiliza o falso documentário Zelig (1983, texto fílmico de Woody Allen, híbrido por natureza, postulado como um microcosmo rico em pistas e sugestões para refletir sobre a fusão entre conteúdos informativos e não informativos.   PALAVRAS-CHAVE: Hibridização; Jornalismo; Cinema; Zelig.       ABSTRACT The text discusses the growing hybridization between journalism and other media formats as a natural result of a process that is already in the very root of communication while historical activity. The internal logic and the aesthetic and discursive potential of the phenomenon are analyzed through the convergences between journalism and cinema. Therefore, uses the mockumentary Zelig (1983, filmic text of Woody Allen, hybrid by nature, postulated as a microcosm rich in clues and suggestions to reflect about the merger between informative and uninformative content.      KEYWORDS: Hybridization; Journalism; Cinema; Zelig.     RESUMEN El texto aborda la creciente hibridación entre el periodismo y otros formatos de medios como um resultado natural de un proceso que ya está en la raíz misma de la comunicación mientras actividad histórica. Se analizan la lógica interna y el potencial estético y discursivo del fenómeno a través de las convergencias entre el periodismo y el cine. Para ello, utiliza el falso documental Zelig (1983, texto fílmico de Woody Allen, híbrido en su naturaleza, postulado como un microcosmos rico en pistas y sugerencias para reflexionar sobre la fusión entre contenidos informativos y no informativos.      PALABRAS CLAVE: Hibridaci

  6. A Prototype RICH Detector Using Multi-Anode Photo Multiplier Tubes and Hybrid Photo-Diodes

    CERN Document Server

    Albrecht, E; Bibby, J H; Brook, N H; Doucas, G; Duane, A; Easo, S; Eklund, L; French, M; Gibson, V; Gys, Thierry; Halley, A W; Harnew, N; John, M; Piedigrossi, D; Rademacker, J; Simmons, B; Smale, N J; Teixeira-Dias, P; Toudup, L W; Websdale, David M; Wilkinson, G R; Wotton, S A

    2001-01-01

    The performance of a prototype Ring Imaging Cherenkov Detector is studied using a charged particle beam. The detector performance, using CF4 and air as radiators, is described. Cherenkov angle precision and photoelectron yield using hybrid photo-diodes and multi-anode PMTs agree with simulations and are assessed in terms of the requirements of the LHCb experiment.

  7. Hybrid TiO2: polymer photovoltaic cells made from a titanium oxide precursor

    NARCIS (Netherlands)

    Slooff, L.H.; Wienk, M.M.; Kroon, J.M.

    2004-01-01

    Hybrid TiO2:polymer photovoltaic cells were made from mixtures of titanium(IV) isopropoxide and poly[2-methoxy-5-(3',7'-dimethyloctyl)-p-phenylene vinylene] (MDMO-PPV) or poly(3-octyl thiophene) (P3OT) via hydrolysis in air. Cells were made with varying titanium(IV) isopropoxide:polymer ratios.

  8. Oxygen requirements of separated hybrid catfish female Ictalurus punctatus male I. furcatus eggs

    Science.gov (United States)

    Channel catfish Ictalurus punctatus egg masses require ambient water with over 95% air saturation to maintain maximum oxygen consumption as they near hatch. Since hybrid catfish eggs (channel catfish ' X blue catfish I. furcatus ') are often kept separated after fertilization by the addition of full...

  9. Optical Properties of Hybrid Nanomaterials

    Indian Academy of Sciences (India)

    owner

    K. George Thomas. Photosciences & Photonics Group. National Institute for Interdisciplinary. Science and Technology (NIIST), CSIR,. Trivandrum- 695 019, INDIA. (kgt@vsnl.com). Optical Properties of Hybrid. Nanomaterials ...

  10. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  11. MTU hybrid powerpack for railcars

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Ingo; Schmalzing, Claus-Oliver [MTU Friedrichshafen GmbH (Germany); Werner, Claus [DB RegioNetz Verkehrs GmbH (Germany); Bold, Uwe [DB Systemtechnik Engineering Kassel (Germany)

    2011-11-15

    Up to 25 percent lower fuel consumption and emission-free train movements in station areas are possible with the MTU hybrid drive system. First field tests on tracks of the Deutsche Bahn started in autumn 2011. (orig.)

  12. Design Procedure for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Tjelflaat, Per Olaf

    Mechanical and natural ventilation systems have developed separately during many years. The natural next step in this development is development of ventilation concepts that utilises and combines the best features from each system into a new type of ventilation system - Hybrid Ventilation....... Buildings with hybrid ventilation often include other sustainable technologies and an energy optimisation requires an integrated approach in the design of the building and its mechanical systems. Therefore, the hybrid ventilation design procedure differs from the design procedure for conventional HVAC....... The first ideas on a design procedure for hybrid ventilation is presented and the different types of design methods, that is needed in different phases of the design process, is discussed....

  13. Epigenomics: dissecting hybridization and polyploidization.

    Science.gov (United States)

    Jackson, Scott A

    2017-06-19

    Epigenetic profiling in diploid, allopolyploid, and domesticated cotton shows that despite most DNA methylation being conserved and stably inherited, alterations likely due to hybridization and domestication affect gene expression.

  14. Real and Hybrid Atomic Orbitals.

    Science.gov (United States)

    Cook, D. B.; Fowler, P. W.

    1981-01-01

    Demonstrates that the Schrodinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. (Author/SK)

  15. Optimizing hybrid spreading in metapopulations.

    Science.gov (United States)

    Zhang, Changwang; Zhou, Shi; Miller, Joel C; Cox, Ingemar J; Chain, Benjamin M

    2015-04-29

    Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemics, and examine the optimum balance between spreading mechanisms in terms of achieving the maximum outbreak size. We show the existence of critically hybrid epidemics where neither spreading mechanism alone can cause a noticeable spread but a combination of the two spreading mechanisms would produce an enormous outbreak. Our results provide new strategies for maximising beneficial epidemics and estimating the worst outcome of damaging hybrid epidemics.

  16. Hybrid mask for deep etching

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-01-01

    Deep reactive ion etching is essential for creating high aspect ratio micro-structures for microelectromechanical systems, sensors and actuators, and emerging flexible electronics. A novel hybrid dual soft/hard mask bilayer may be deposited during

  17. Hybrid Fuel Cell Technology Overview

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  18. Nitrous Paraffin Hybrid, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nitrous Oxide Paraffin Hybrid engine (N2OP) is a proposed technology designed to provide small launch vehicles with high specific impulse, indefinitely storable...

  19. Hybrid Materials for Molecular Sieves

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Klein, Lisa; Aparicio, Mario; Jitianu, Andrei

    2016-01-01

    Hybrid microporous organosilica membranes for molecular separations made by acid-catalyzed solgel synthesis from bridged silsesquioxane precursors have demonstrated good performance in terms of flux and selectivity and remarkable hydrothermal stability in various pervaporation and gas separation

  20. Indoor Air Pollution (Environmental Health Student Portal)

    Science.gov (United States)

    ... Students to Environmental Health Information Menu Home Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ... Pollution Indoor Air Pollution Print this Page Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ...

  1. Kajian Analitik Perencanaan Pintu Air Pembangkit Listrik Tenaga Air

    OpenAIRE

    Pradoto, Pradoto

    1993-01-01

    Pada pintu air pembangkit listrik tenaga air umumnya dipasang pengauat-penguat (girder). Tujuannya agar pintu air kuat dalam menahan tekanan air. Tekanan air yang diderita oleh pintu air cukup besar karena dipasang pada kedalaman + 50 meter di bawah permukaan air. Permasalahan yang timbul adalah menentukan posisi atau letak girder pada pintu air.

  2. Hybrid quantum-classical master equations

    International Nuclear Information System (INIS)

    Diósi, Lajos

    2014-01-01

    We discuss hybrid master equations of composite systems, which are hybrids of classical and quantum subsystems. A fairly general form of hybrid master equations is suggested. Its consistency is derived from the consistency of Lindblad quantum master equations. We emphasize that quantum measurement is a natural example of exact hybrid systems. We derive a heuristic hybrid master equation of time-continuous position measurement (monitoring). (paper)

  3. Hybrid particles and associated methods

    Science.gov (United States)

    Fox, Robert V; Rodriguez, Rene; Pak, Joshua J; Sun, Chivin

    2015-02-10

    Hybrid particles that comprise a coating surrounding a chalcopyrite material, the coating comprising a metal, a semiconductive material, or a polymer; a core comprising a chalcopyrite material and a shell comprising a functionalized chalcopyrite material, the shell enveloping the core; or a reaction product of a chalcopyrite material and at least one of a reagent, heat, and radiation. Methods of forming the hybrid particles are also disclosed.

  4. Hybrid spacecraft attitude control system

    OpenAIRE

    Renuganth Varatharajoo; Ramly Ajir; Tamizi Ahmad

    2016-01-01

    The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS) consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl...

  5. Optimizing Hybrid Spreading in Metapopulations.

    OpenAIRE

    Zhang, C.; Zhou, S.; Miller, J. C.; Cox, I. J.; Chain, B. M.

    2015-01-01

    Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemic...

  6. Optimizing Hybrid Spreading in Metapopulations

    OpenAIRE

    Zhang, Changwang; Zhou, Shi; Miller, Joel C.; Cox, Ingemar J.; Chain, Benjamin M.

    2014-01-01

    Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemic...

  7. Simulation comparison between natural and hybrid ventilation by fans at night time for severe hot climate (Aswan, Egypt)

    Energy Technology Data Exchange (ETDEWEB)

    Rizk, A. [Department of Architectural Engineering, Faculty of Engineering, Tanta University, Tanta (Egypt); El-Deberky, A. [Department of Architecture, Faculty of Fine Arts, Minya University, Minya (Egypt); Guirguis, N. M. [Housing and Building Research Center, Cairo (Egypt)

    2010-07-01

    During the summer in Aswan, Egypt, indoor temperatures rise to a level exceeding thermal comfort. Due to the lag time of the building's envelope, temperature at night is higher inside than outside during the overheated period. The aim of this paper is to assess the effectiveness of ceiling and wall falls in lowering indoor air temperature at night. Computer simulations were carried out with ANSYS FLOTRAN computational fluid dynamic on a single room; 3 models were studied: natural ventilation, hybrid ventilation with a wall fan and hybrid ventilation with a ceiling fan. Results showed that hybrid ventilation fan is more effective in decreasing the temperature than natural cross ventilation alone and it was found that a wall fan is better than a ceiling fan. This study demonstrated that using hybrid ventilation with a side fan is the best option to reduce the air temperature in a room in Aswan, Egypt.

  8. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  9. Properties of CF/PA6 friction spun hybrid yarns for textile reinforced thermoplastic composites

    Science.gov (United States)

    Hasan, MMB; Nitsche, S.; Abdkader, A.; Cherif, Ch

    2017-10-01

    Due to their excellent strength, rigidity and damping properties as well as low weight, carbon fibre reinforced composites (CFRC) are widely being used for load bearing structures. On the other hand, with an increased demand und usage of CFRCs, effective methods to re-use waste carbon fibre (CF) materials, which are recoverable either from the process scraps or from the end-of-life components are attracting increased attention. In this paper, hybrid yarns consisting of staple CF and polyamide 6 (PA 6) are manufactured on a DREF-3000 friction spinning machine with various machine parameters such as spinning drum speed and suction air pressure. The relationship between different textile physical properties of the hybrid yarns, such as tensile strength and elongation with different spinning parameters and CF content of hybrid yarn is investigated. Furthermore, the tensile properties of uni-directional (UD) composites manufactured from the developed hybrid yarn shows 80% of the UD composite strength made from CF filament yarn.

  10. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  11. Optimal control of hybrid vehicles

    CERN Document Server

    Jager, Bram; Kessels, John

    2013-01-01

    Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on Pontryagin’s maximum principle.   Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Two case studies are included in the book: ·        a control strategy for a micro-hybrid power train; and ·        experimental results obtained with a real-time strategy implemented in...

  12. Hybrid power source

    Science.gov (United States)

    Singh, Harmohan N.

    2012-06-05

    A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

  13. Protaper--hybrid technique.

    Science.gov (United States)

    Simon, Stephane; Lumley, Philip; Tomson, Phillip; Pertot, Wilhelm-Joseph; Machtou, Pierre

    2008-03-01

    Crown down preparation is the most known and described technique since the introduction of Nickel Titanium (NiTi) rotary instruments in endodontics. This technique gives good results but has limitations, such as not addressing the initial anatomy of oval or dumb-bell shaped canals. The specific design of the Protaper instruments allows use of them with a different technique and, specifically, with a brushing motion in the body of the canal. The recent introduction of hand Protaper files has expanded the range of application of this system, especially in curved canals. The 'hybrid technique', using rotary and hand files, and the advantages of the combination of both instruments, are clearly described in this article. Used with this technique, the Protaper is a very safe system to use, and more controllable, for both inexperienced and experienced practitioners alike, than other systems. To understand the precautions needed with rotary files, and how to use them to preserve the anatomy of the canal and get a tapered shaping, even in severely curved canals.

  14. Comparative genomic hybridization.

    Science.gov (United States)

    Pinkel, Daniel; Albertson, Donna G

    2005-01-01

    Altering DNA copy number is one of the many ways that gene expression and function may be modified. Some variations are found among normal individuals ( 14, 35, 103 ), others occur in the course of normal processes in some species ( 33 ), and still others participate in causing various disease states. For example, many defects in human development are due to gains and losses of chromosomes and chromosomal segments that occur prior to or shortly after fertilization, whereas DNA dosage alterations that occur in somatic cells are frequent contributors to cancer. Detecting these aberrations, and interpreting them within the context of broader knowledge, facilitates identification of critical genes and pathways involved in biological processes and diseases, and provides clinically relevant information. Over the past several years array comparative genomic hybridization (array CGH) has demonstrated its value for analyzing DNA copy number variations. In this review we discuss the state of the art of array CGH and its applications in medical genetics and cancer, emphasizing general concepts rather than specific results.

  15. Hybrid cooling tower Neckarwestheim 2 cooling function, emission, plume dispersion

    International Nuclear Information System (INIS)

    Braeuning, G.; Ernst, G.; Maeule, R.; Necker, P.

    1990-01-01

    The fan-assisted hybrid cooling tower of the 1300 MW power plant Gemeinschafts-Kernkraftwerk Neckarwestheim 2 was designed and constructed based on results from theoretical and experimental studies and experiences from a smaller prototype. The wet part acts in counterflow. The dry part is arranged above the wet part. Each part contains 44 fans. Special attention was payed to the ducts which mix the dry into the wet plume. The cooling function and state, mass flow and contents of the emission were measured. The dispersion of the plume in the atmosphere was observed. The central results are presented in this paper. The cooling function corresponds to the predictions. The content of drifted cooling water in the plume is extremely low. The high velocity of the plume in the exit causes an undisturbed flow into the atmosphere. The hybrid operation reduces visible plumes strongly, especially in warmer and drier ambient air

  16. AirPEx. Air Pollution Exposure Model

    Energy Technology Data Exchange (ETDEWEB)

    Freijer, J.I.; Bloemen, H.J.Th.; De Loos, S.; Marra, M.; Rombout, P.J.A.; Steentjes, G.M.; Van Veen, M.P.

    1997-12-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The principal grounds for studying the inhalatory exposure of humans to air pollutants are formed by the need for realistic exposure/dose estimates to evaluate the health effects of these pollutants. The AirPEx (Air Pollution Exposure) model, developed to assess the time- and space-dependence of inhalatory exposure of humans to air pollution, has been implemented for use as a Windows 3.1 computer program. The program is suited to estimating various exposure and dose quantities for individuals, as well as for populations and subpopulations. This report describes the fundamentals of the AirPEx model and provides a user manual for the computer program. Several examples included in the report illustrate the possibilities of the AirPEx model in exposure assessment. The model will be used at the National Institute of Public Health and the Environment as a tool in analysing the current exposure of the Dutch population to air pollutants. 57 refs.

  17. Lifecycle performance. Special issue on management and maintenance, hybrid ventilation concepts, installation-low buildings; Lifecycle performance. Themanummer over beheer en onderhoud, hybride ventilatieconcepten, installatie-arme gebouwen

    Energy Technology Data Exchange (ETDEWEB)

    Thierauf, I. [Universiteit Utrecht, Utrecht (Netherlands); Kurvers, S.R.; Van den Ham, E.R.; Leijten, J.L. [Sectie Climate Design and Sustainability, Afdeling Architectural Engineering and Technology, Faculteit Bouwkunde, Technische Universiteit Delft TUD, Delft (Netherlands); Juricic, S. [Ecole National des Travaux Publics de l' Etat, Lyon (France); Jacobs, P. [Afdeling Energy and Comfort Systems, TNO, Delft (Netherlands); Versteeg, H. [LBP Sight, Nieuwegein (Netherlands); Van Loon, P.P.M. [Stichting Scholen van Morgen, Rotterdam (Netherlands); Hoek, H.C.; Van Eeden, H.; Nibbelink, J. [Collectief C-on, Haarlem (Netherlands); Veerman, J.; Maassen, W.H. [Royal Haskoning DHV, Nijmegen (Netherlands); Derksen, A.H.P. [ISSO, Rotterdam (Netherlands); Morren, K. [Universiteit Twente, Enschede (Netherlands)

    2012-12-15

    In 9 articles various aspects regarding the title topic are discussed: energy efficiency and user comfort, ventilation in new houses with balanced ventilation, the revised assessment for ventilation performance, air quality in school buildings, buildings with only a few installations, hybrid ventilation, the management and maintenance process, and future performance requirements [Dutch] In 9 artikelen wordt aandacht besteed aan diverse aspecten m.b.t. het titelonderwerp: energie-efficientie en gebruikerscomfort, ventilatie in nieuwbouwwoningen met balansventilatie, de herziene beoordelingsrichtlijn ventilatie prestatie, luchtkwaliteit in schoolgebouwen, installatie-arme gebouwen, hybride ventilatie, het beheer- en onderhoudsproces, en de toekomstige prestatie-eisen.

  18. The Fuel Economy of Hybrid Buses: The Role of Ancillaries in Real Urban Driving

    Directory of Open Access Journals (Sweden)

    Francesco Bottiglione

    2014-07-01

    Full Text Available In the present context of the global economic crisis and environmental emergency, transport science is asked to find innovative solutions to turn traditional vehicles into fuel-saving and eco-friendly devices. In the last few years, hybrid vehicles have been shown to have potential benefits in this sense. In this paper, the fuel economy of series hybrid-electric and hybrid-mechanical buses is simulated in two real driving situations: cold and hot weather driving in the city of Taranto, in Southern Italy. The numerical analysis is carried out by an inverse dynamic approach, where the bus speed is given as a velocity pattern measured in the field tests performed on one of the city bus routes. The city of Taranto drive schedule is simulated in a typical tempered climate condition and with a hot temperature, when the air conditioning system must be switched on for passenger comfort. The fuel consumptions of hybrid-electric and hybrid-mechanical buses are compared to each other and with a traditional bus powered by a diesel engine. It is shown that the series hybrid-electric vehicle outperforms both the traditional and the mechanical hybrid vehicles in the cold weather driving simulation, reducing the fuel consumption by about 35% with respect to the traditional diesel bus. However, it is also shown that the performance of the hybrid-electric bus gets dramatically worse when the air-cooling system is continuously turned on. In this situation, the fuel consumption of the three different technologies for city buses under investigation is comparable.

  19. Hybrid Arrays for Chemical Sensing

    Science.gov (United States)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial

  20. IMPORTANCE OF STORAGE CONDITIONS AND SEED TREATMENT FOR SUNFLOWER HYBRIDS SEEDS GERMINATION

    Directory of Open Access Journals (Sweden)

    Goran Krizmanić

    2014-12-01

    Full Text Available In this research we have determined germination energy and germination of seeds of sunflower hybrids ‘Luka’ and ‘Apolon’, at the beginning of storage and 6, 12 and 18 months after of storage period (2011-2012 in the floor concrete storage at two different air temperatures and humidity (S-1: air temperature 15-18°C and relative air humidity 65-70% as well as in climate chamber (S-2: air temperature 10-12°C and relative air humidity 60-65%, stored in four treatments (Control: processed-untreated seed; T-1: treated with A.I. metalaxyl-M; T-2: treated with A.I. metalaxyl-M + A.I. imidacloprid and T-3: treated with A.I. metalaxyl-M + A.I. clothianidin. Based on the obtained results we have determined that sunflower hybrid ‘Luka’, compared to hybrid ‘Apolon’, in the given storage conditions and with the same seed treatment has 5-8% higher germination energy and seed germination and that in climate chamber both hybrids have 5-7% higher germination energy. Seed treatment of both sunflower hybrids with A.I. imidacloprid maximally reduced initial germination energy and seed germination in all tested periods and conditions of storage. On the average, natural seed, after 18 months of storage did not have better seed quality compared to seed treated with A.I. metalaxyl-M while other treatments had more significant influence on reduction of germination energy and seed germination, 6-15%. On the average, compared to other variants, seeds treated with A.I. metalaxyl-M after 18 months of storage in both storage conditions had higher germination energy by 4-15%, and seed germination by 2-12%.

  1. Mushroom dehydration in a hybrid-solar dryer

    International Nuclear Information System (INIS)

    Reyes, Alejandro; Mahn, Andrea; Cubillos, Francisco; Huenulaf, Pedro

    2013-01-01

    Highlights: ► Mushrooms (Paris variety) were dehydrated in a hybrid solar dryer. ► Effective diffusivity was estimated by the Constant Diffusivity Model. ► Drying kinetics were adjusted by a semi-theoretical and the empirical Page model. ► Temperature, thickness and air recycle significantly affected critical moisture. ► The input of solar energy resulted in 3.5–12.5% electrical energy saving. - Abstract: Mushrooms (Paris variety) were dehydrated in a hybrid solar dryer (HSD) provided with a 3 m 2 solar panel and electric resistances. Mushrooms were cut in 8 mm or 4 mm thickness slices. At the outlet of the tray dryer 80–90% air was recycled and the air temperature was adjusted to the pre-defined levels (50 or 60 °C). At the outlet of the solar panel the air temperature raised between 2 and 20 °C above the ambient temperature, depending mainly of solar radiation level. Temperature, slices thickness and air recycle level had statistically significant effects on critical moisture content (X c ), as well as on the time necessary to reach a moisture content of 0.1 (wb). The color parameters of dehydrated mushroom indicate a notorious darkening, in all runs. Rehydration assays at 35 °C showed that in less than 30 min rehydrated mushrooms reached a moisture content of 0.8 (wb). Effective diffusivity (D eff ) was estimated by the Simplified Constant Diffusivity Model (SCDM), and it ranged between 6E−10 and 40E−10 m 2 /s, with R 2 higher than 0.98, agreeing with literature. The adjustment of experimental drying kinetics with the empirical Page’s model resulted in R 2 higher than 0.997. Finally, the input of solar energy resulted in 3.5–12.5% energy saving. These values could even be improved by increasing the agro-product load in the HSD

  2. Hybrid platform. Economical hybrid drive for commercial vehicles; Hybrid Plattform. Wirtschaftlicher Hybridantrieb fuer Nutzfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, S.; Lamke, M.; Mohr, M.; Sedlacek, M.; Speck, F.D. [ZF Friedrichshafen AG, Friedrichshafen (Germany)

    2011-07-01

    Up to now, hybrid systems have been adapted to their specific requirements in the various applications for trucks, buses as well as mobile and building machines. From a technical point of view, this does indeed result in optimized hybrid drives for each single vehicle application, but due to small volumes, such single developments are critical from a business point of view. ZF Friedrichshafen AG is providing a solution to the technical and economical requirements of the cost-sensitive CV segment in the form of a modular CV parallel hybrid platform composed of a hybrid module system, an inverter, a battery system, and a hybrid software integrated into the overall vehicle. Thanks to the intelligent combination of assemblies and the use of as many identical parts as possible, platforms are realized which cover power ranges between 60 and 120 kW, voltage ranges between 350 and 650 V, and battery capacities between 2 and 4 kWh. The dimensions of the platform elements are such that integration into the diverse commercial vehicle applications is made easy. The hybrid software required for the vehicle-specific functions is also configurable for the mentioned CV applications. (orig.)

  3. Air pollution and the school air environment

    OpenAIRE

    Fsadni, Peter; Montefort, Stephen

    2015-01-01

    There is growing concern about the association of school indoor air quality (SIAQ) with asthma, rhinitis, and rhinoconjunctivitis. Students and school staff deserve the highest standards of school air quality to ensure a safe and productive environment for our children’s education. Existing studies highlight the presence of several air pollutants present within school classrooms that have a direct association with poor health and poor student performance. Very little data exist ab...

  4. Fabrication and evaluation of hybrid materials from A-zeolite and ground glass powders for vitrified radioactive waste

    International Nuclear Information System (INIS)

    Kamitani, Masataka; Kondo, Mitsunori; Hiki, Tomonori; Tagami, Toru; Nakahira, Atsushi; Wakihara, Toru

    2014-01-01

    The samples from A-type zeolite and ground soda-lime glass powders were solidified by calcinations at 600 to 800°C in air atmosphere. These hybrid zeolite/glass samples at 700°C were in part insufficiently densified and hybrid samples were fully densified at 800°C, although the densification was not generated at 600°C. A-zeolites were still stable in glass melt at 800°C for hybrid zeolite/glass samples. These hybrid zeolite/glass samples had the ion exchange ability of 20% against Sr 2+ and the high ability over 80% against Cs + as well as A-zeolite. Microstructures of obtained hybrid zeolite/glass samples were evaluated. (author)

  5. Hybrid Modeling Improves Health and Performance Monitoring

    Science.gov (United States)

    2007-01-01

    Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.

  6. Electro-optical hybrid slip ring

    Science.gov (United States)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility

  7. Fluid and hybrid models for streamers

    Science.gov (United States)

    Bonaventura, Zdeněk

    2016-09-01

    Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.

  8. Hybrid plasma-catalytic reforming of ethanol aerosol

    International Nuclear Information System (INIS)

    Solomenko, O.V.; Nedybaliuk, O.A.; Chernyak, V.Ya.; Iukhymenko, V.V.; Veremii, Iu.P.; Iukhymenko, K.V.; Martysh, E.V.; Fedirchyk, I.I.; Demchina, V.P.; Levko, D.S.; Tsymbalyuk, O.M.; Liptuga, A.I.; Dragnev, S.V.

    2015-01-01

    Hybrid plasma-catalytic reforming of the ethanol aerosol with plasma activation of only the oxidant (air) was studied. Part of the oxidant (∼20%) was activated by means of rotational gliding arc with solid electrodes and injected into the reaction (pyrolytic) chamber as a plasma torch. This part of the oxidant interacted with a mixture of hydrocarbons and the rest of the oxidant (∼80%) in the reaction chamber. Temperature changes in the reaction chamber, the composition of the synthesis-gas and the products of synthesis-gas combustion were analyzed

  9. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

    DEFF Research Database (Denmark)

    Markos, Christos; Kubat, Irnis; Bang, Ole

    2014-01-01

    The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass...... nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The integrated high refractive index glass films introduce distinct antiresonant transmission bands in the 480-900 nm wavelength region. We demonstrate that the ultra-high Kerr nonlinearity of the chalcogenide glass...

  10. Energy-Efficient Underwater Surveillance by Means of Hybrid Aquacopters

    Science.gov (United States)

    2014-12-01

    method,” Acta Physica Polonica A , vol. 123, no. 6, 2013, pp. 1090–1093. [11] E. Dahlberg, A . Lauberts, R. K. Lennartsson, M. J. Levonen and L. Persson...those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Govemment. IRB protocol mnnber __ N/ A ...DISTRIBUTION CODE A This thesis develops algorithms in support of a prototype hybrid air-water quadcopter platform: the "AquaQuad." We consider the

  11. Mechanical and thermal design of hybrid blankets

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1978-01-01

    The thermal and mechanical aspects of hybrid reactor blanket design considerations are discussed. This paper is intended as a companion to that of J. D. Lee of Lawrence Livermore Laboratory on the nuclear aspects of hybrid reactor blanket design. The major design characteristics of hybrid reactor blankets are discussed with emphasis on the areas of difference between hybrid reactors and standard fusion or fission reactors. Specific examples are used to illustrate the design tradeoffs and choices that must be made in hybrid reactor design. These examples are drawn from the work on the Mirror Hybrid Reactor

  12. Hybrid pine for tough sites

    International Nuclear Information System (INIS)

    Davidson, W.H.

    1994-01-01

    A test planting of 30 first- and second-generation pitch x loblolly pine (pinus rigida x P. taeda) hybrids was established on a West Virginia minesoil in 1985. The site was considered orphaned because earlier attempts at revegetation were unsuccessful. The soil was acid (pH 4.6), lacking in nutrients, and compacted. Vegetation present at the time of planting consisted of a sparse cover of tall fescue (Festuca arundinacea) and poverty grass (Danthonia spicata) and a few sourwood (Oxydendrum arboreum) and mountain laurel (Kalmia latifolia) seedlings. In the planting trial, 30 different hybrids were set out in 4 tree linear plots replicated 5 times. The seedlings had been grown in containers for 1 yr before outplanting. Evaluations made after 6 growing seasons showed overall plantation survival was 93%; six hybrids and one open-pollinated cross survived 100%. Individual tree heights ranged from 50 to 425 cm with a plantation average of 235 cm (7.7 ft). Eleven of the hybrids had average heights that exceeded the plantation average. Another test planting of tree and shrub species on this site has very poor survival. Therefore, pitch x loblolly hybrid pine can be recommended for reclaiming this and similar sites

  13. Case for the fusion hybrid

    International Nuclear Information System (INIS)

    Rose, R.P.

    1981-01-01

    The use of nuclear fusion to produce fuel for nuclear fission power stations is discussed in the context of a crucial need for future energy options. The fusion hybrid is first considered as an element in the future of nuclear fission power to provide long term assurance of adequate fuel supplies for both breeder and convertor reactors. Generic differences in neutronic characteristics lead to a fuel production potential of fusion-fission hybrid systems which is significantly greater than that obtainable with fission systems alone. Furthermore, cost benefit studies show a variety of scenarios in which the hybrid offers sufficient potential to justify development costs ranging in the tens of billions of dollars. The hybrid is then considered as an element in the ultimate development of fusion electric power. The hybrid offers a near term application of fusion where experience with the requisite technologies can be derived as a vital step in mapping a credible route to eventual commercial feasibility of pure fusion systems. Finally, the criteria for assessment of future energy options are discussed with prime emphasis on the need for rational comparision of alternatives

  14. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    Science.gov (United States)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  15. Experimental and simulation analysis of the W-band SC-FDMA hybrid optical-wireless transmission

    DEFF Research Database (Denmark)

    Dogadaev, Anton Konstantinovich; Pang, Xiaodan; Deng, Lei

    2014-01-01

    We report on the experimental demonstration of the W-band hybrid optical-wireless SC-FDMA with 1.49 Gbit/s transmission over up to 2.3 m of air propagation. Provided simulation performance analysis proves a potential to reach 12.1 Gbit/s.......We report on the experimental demonstration of the W-band hybrid optical-wireless SC-FDMA with 1.49 Gbit/s transmission over up to 2.3 m of air propagation. Provided simulation performance analysis proves a potential to reach 12.1 Gbit/s....

  16. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  17. Air conditioning systems to clean radioactive air

    International Nuclear Information System (INIS)

    Ganz, G.

    1987-01-01

    The author reports a study by the Institutes fuer Klimatechnik and Umweltschutz Giessen that shows that air conditioning systems not only make the atmosphere more comfortable, they also extract dust particles. This cleaning action is also valid for radioactively contaminated air. (G.T.H./Auth.)

  18. Air movement and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2012-01-01

    The impact of air movement on perceived air quality (PAQ) and sick building syndrome (SBS) symptoms was studied. In total, 124 human subjects participated in four series of experiments performed in climate chambers at different combinations of room air temperature (20, 23, 26 and 28 °C), relative...... and the humidity of the room air. At a low humidity level of 30% an increased velocity could compensate for the decrease in perceived air quality due to an elevated temperature ranging from 20 °C to 26 °C. In a room with 26 °C, increased air movement was also able to compensate for an increase in humidity from 30...... humidity (30, 40 and 70%) and pollution level (low and high). Most of the experiments were performed with and without facially applied airflow at elevated velocity. The importance of the use of recirculated room air and clean, cool and dry outdoor air was studied. The exposures ranged from 60. min to 235...

  19. Simple air collectors for preheating fresh air

    NARCIS (Netherlands)

    Hensen, J.L.M.; Wit, de M.H.; Ouden, den C.

    1984-01-01

    In dwellings with mechanical ventilation systems the fresh air can easily be preheated by means of simple solar air systems. These can be an integral part of the building facade or roof and the costs are expected to be low. By means of computer experiments a large number of systems were evaluated.

  20. Genomic networks of hybrid sterility.

    Directory of Open Access Journals (Sweden)

    Leslie M Turner

    2014-02-01

    Full Text Available Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities". The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL. Many trans eQTL cluster into eleven 'hotspots,' seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL-but not cis eQTL-were substantially lower when mapping was restricted to a 'fertile' subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is

  1. Hybrid magnets at Tohoku University

    International Nuclear Information System (INIS)

    Muto, Yoshio; Nakagawa, Yasuaki; Noto, Koshichi; Hoshi, Akira; Miura, Shigeto; Watanabe, Kazuo; Kido, Giyuu

    1984-01-01

    The High Field Laboratory for Superconducting Materials was established in April 1981 at Tohoku University in order to provide research facilities for the development of superconducting materials suitable for superconducting magnets for the plasma confinement in fusion reactors. Main facilities of this laboratory are three hybrid magnets up to 30 Tesla dc magnetic fields with inner bores from 32 to 52mm in diameter. The magnets consist of superconducting outer solenoids and water-cooled inner ones with a maximum steady power dissipation of 8 MW. The design and construction of these three hybrid magnets have finished in last three years, and two of them (HM-3;20T, 32 mm bore and HM-2; 23T, 52 mm bore) have already opened to scientists and engineers in the superconductivity and other fields. The rated field of the third hybrid magnet (HM-1) is 31 (or 29) Tesla in a bore of 32 (or 52) mm in diameter. By this hybrid system we have succeeded to produce 29.3 Tesla on April 21, 1984. Detailed descriptions are presented on the superconducting magnets, power supplies and cooling systems for them, water-cooled magnets, dc-high power source and water-cooled system for them, the monitoring and control system for the hybrid magnets including a super-minicomputer system, a hard-wired interlock system for the safety of human beings and machines, and so on. The fourth hybrid magnet system which aims at 35 Tesla as the next phase is also discussed. (author)

  2. Genomic networks of hybrid sterility.

    Science.gov (United States)

    Turner, Leslie M; White, Michael A; Tautz, Diethard; Payseur, Bret A

    2014-02-01

    Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci ("Dobzhansky-Muller incompatibilities"). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven 'hotspots,' seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL-but not cis eQTL-were substantially lower when mapping was restricted to a 'fertile' subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is applicable in a broad

  3. Hybrid modeling approach to improve the forecasting capability for the gaseous radionuclide in a nuclear site

    International Nuclear Information System (INIS)

    Jeong, Hyojoon; Hwang, Wontae; Kim, Eunhan; Han, Moonhee

    2012-01-01

    Highlights: ► This study is to improve the reliability of air dispersion modeling. ► Tracer experiments assumed gaseous radionuclides were conducted at a nuclear site. ► The performance of a hybrid modeling combined ISC with ANFIS was investigated.. ► Hybrid modeling approach shows better performance rather than a single ISC model. - Abstract: Predicted air concentrations of radioactive materials are important for an environmental impact assessment for the public health. In this study, the performance of a hybrid modeling combined with the industrial source complex (ISC) model and an adaptive neuro-fuzzy inference system (ANFIS) for predicting tracer concentrations was investigated. Tracer dispersion experiments were performed to produce the field data assuming the accidental release of radioactive material. ANFIS was trained in order that the outputs of the ISC model are similar to the measured data. Judging from the higher correlation coefficients between the measured and the calculated ones, the hybrid modeling approach could be an appropriate technique for an improvement of the modeling capability to predict the air concentrations for radioactive materials.

  4. The Surface of Hybrid Perovskite Crystals: A Boon or Bane

    KAUST Repository

    Banavoth, Murali

    2017-03-03

    Hybrid perovskite single crystals have garnered tremendous research attention and are expected to be next-generation materials for high-efficiency photoactive devices. Therefore, it is fundamentally important to understand the 8 relationship between the optoelectronic properties of these materials and the marginally exploited surface chemistry in ambient air. For instance, a strong surface disorder, including hydration and ion migration, can possibly lead to extremely different optical and electronic properties at the surface compared to the bulk of the single crystal (SC). From this perspective, we evaluate the key variables that underlie the perovskite SC surface restructuring in ambient air and discuss their merits and limitations. In addition, a comprehensive picture of surface disordering, the remarkable change in the charge carrier dynamics and carrier mobility, surface hydration, and the effect of ion migration on the surface behavior will be discussed. Finally, surface passivation methods are highlighted to resolve or overcome the challenges for device integration.

  5. Review of laser hybrid welding

    DEFF Research Database (Denmark)

    Bagger, Claus

    2004-01-01

    In this artucle an overview og the hybrid welding process is given. After a short historic overview, a review of the fundamental phenomenon taking place when a laser (CO2 or Nd:YAG) interacts in the same molten pool as a more conventional source of energy, e.g. tungsten in-active gas, plasma......, or metal inactive gas/metal active gas.This is followed by reports of how the many process parameters governing the hybrid welding process can be set and how the choice of secondary energy source, shielding gas, etc. can affect the overall welding process....

  6. Reverse hybrid total hip arthroplasty

    DEFF Research Database (Denmark)

    Wangen, Helge; Havelin, Leif I.; Fenstad, Anne M

    2017-01-01

    Background and purpose - The use of a cemented cup together with an uncemented stem in total hip arthroplasty (THA) has become popular in Norway and Sweden during the last decade. The results of this prosthetic concept, reverse hybrid THA, have been sparsely described. The Nordic Arthroplasty....... Patients and methods - From the NARA, we extracted data on reverse hybrid THAs from January 1, 2000 until December 31, 2013. 38,415 such hips were studied and compared with cemented THAs. The Kaplan-Meier method and Cox regression analyses were used to estimate the prosthesis survival and the relative risk...

  7. Hard electroproduction of hybrid mesons

    International Nuclear Information System (INIS)

    Anikin, I.V.; LPT Universite Paris-Sud, Orsay; Szymanowski, L.; Teryaev, O.V.; ); Wallon, S.

    2005-01-01

    We estimate the sizeable cross section for deep exclusive electroproduction of an exotic J PC = 1 -+ hybrid meson in the Bjorken regime. The production amplitude scales like the one for usual meson electroproduction, i.e. as 1/Q 2 . This is due to the non-vanishing leading twist distribution amplitude for the hybrid meson, which may be normalized thanks to its relation to the energy momentum tensor and to the QCD sum rules technique. The hard amplitude is considered up to next-to-leading order in as and we explore the consequences of fixing the renormalization scale ambiguity through the BLM procedure. (author)

  8. Inference in hybrid Bayesian networks

    International Nuclear Information System (INIS)

    Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio

    2009-01-01

    Since the 1980s, Bayesian networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability techniques (like fault trees and reliability block diagrams). However, limitations in the BNs' calculation engine have prevented BNs from becoming equally popular for domains containing mixtures of both discrete and continuous variables (the so-called hybrid domains). In this paper we focus on these difficulties, and summarize some of the last decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability.

  9. Essentialism, hybridism and cultural critique

    DEFF Research Database (Denmark)

    Frello, Birgitta

    2007-01-01

    to social and cultural critique. Through a critical discussion of the concept of hybridity, I argue that rather than expecting to find definite emancipating or suppressing capacities connected to constructions of the ‘hybrid' and the ‘pure', we should focus on how these two poles are invested with meaning...... and related to power. Hence, while insisting on Cultural Studies' commitment to social and cultural critique, I argue that this critique would benefit from an analytical sensitivity towards the uses and abuses of the discursive power to designate meaningful and legitimate subject positions, rather than...

  10. Hybrid Simulation of Composite Structures

    DEFF Research Database (Denmark)

    Høgh, Jacob Herold

    experiment. The technique has primarily been used within earthquake engineering but many other fields of engineering have utilized the method with benefit. However, these previous efforts have focused on structures with a simple boundary between the numerical and physical substructure i.e. few degrees...... the transfer system and the control and monitoring techniques in the shared boundary is therefore a key issue in this type of hybrid simulation. During the research, hybrid simulation platforms have been programmed capable of running on different time scales with advanced control and monitoring techniques...

  11. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Facilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  12. Allegheny County Air Quality

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Air quality data from Allegheny County Health Department monitors throughout the county. Air quality monitored data must be verified by qualified individuals before...

  13. Air Quality System (AQS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements...

  14. Lead (Pb) Air Pollution

    Science.gov (United States)

    ... Regional Offices Labs and Research Centers Lead (Pb) Air Pollution Contact Us Share As a result of EPA's ... and protect aquatic and terrestrial ecosystems. Lead (Pb) Air Pollution Basic Information How does lead get in the ...

  15. Indoor Air Pollution

    Science.gov (United States)

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  16. Nuclear air cleaning

    International Nuclear Information System (INIS)

    Bellamy, R.R.

    1994-01-01

    This report briefly describes the history of the use of high- efficiency particulate air filters for air cleaning at nuclear installations in the United States and discusses future uses of such filters

  17. AirCompare

    Data.gov (United States)

    U.S. Environmental Protection Agency — AirCompare contains air quality information that allows a user to compare conditions in different localities over time and compare conditions in the same location at...

  18. From hybrid-media system to hybrid-media politicians

    DEFF Research Database (Denmark)

    Blach-Ørsten, Mark; Eberholst, Mads Kæmsgaard; Burkal, Rasmus

    2017-01-01

    ’ media use is changing rapidly; 15%–16% of Danish candidates used Twitter in 2011 but 68% in 2015. In this large-sample content analysis, party leaders have high traditional-news-media and low Twitter presence, and younger candidates visa-versa, but some politicians have high presence in both. Hybrid...

  19. Field errors in hybrid insertion devices

    International Nuclear Information System (INIS)

    Schlueter, R.D.

    1995-02-01

    Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed

  20. Field errors in hybrid insertion devices

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, R.D. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed.

  1. Indoor air quality

    DEFF Research Database (Denmark)

    Jensen, Trine Susanne; Recevska, Ieva

     The objective of the 35th specific agreement is to provide support to the EEA activities in Environment and Health (E&H) on the topic of indoor air quality. The specific objectives have been to provide an overview of indoor air related projects in EU and indoor air related policies as well...... as idenfiying "good practices" to reduce health impact of indoor air exposure and suggest areas for future improvements....

  2. Indoor air: Reference bibliography

    International Nuclear Information System (INIS)

    Campbell, D.; Staves, D.; McDonald, S.

    1989-07-01

    The U. S. Environmental Protection Agency initially established the indoor air Reference Bibliography in 1987 as an appendix to the Indoor Air Quality Implementation Plan. The document was submitted to Congress as required under Title IV--Radon Gas and Indoor Air Quality Research of the Superfund Amendments and Reauthorization Act of 1986. The Reference Bibliography is an extensive bibliography of reference materials on indoor air pollution. The Bibliography contains over 4500 citations and continues to increase as new articles appear

  3. AIR NCO's AND AIRMEN

    African Journals Online (AJOL)

    D.F.C. o Proceeded to Cape Town 9:5:22. Left Cape Town for. African Protectorate 25:2:22. J Left for South West African Protectorate 25:2:22. [ Left for South West African Protectorate. 1:6:22. Colonel: Director of Air Services. Air Directorate. 6th June 1922. SOUTH AFRICAN AIR FORCE. NOMINAL ROLL OF AIR W.O.'s,.

  4. Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model

    Science.gov (United States)

    Yeganeh, B.; Motlagh, M. Shafie Pour; Rashidi, Y.; Kamalan, H.

    2012-08-01

    Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS-SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS-SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65-85% for hybrid PLS-SVM model respectively. Also it was found that the hybrid PLS-SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS-SVM model.

  5. Hybrid ATDL-gamma distribution model for predicting area source acid gas concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Jakeman, A J; Taylor, J A

    1985-01-01

    An air quality model is developed to predict the distribution of concentrations of acid gas in an urban airshed. The model is hybrid in character, combining reliable features of a deterministic ATDL-based model with statistical distributional approaches. The gamma distribution was identified from a range of distributional models as the best model. The paper shows that the assumptions of a previous hybrid model may be relaxed and presents a methodology for characterizing the uncertainty associated with model predictions. Results are demonstrated for the 98-percentile predictions of 24-h average data over annual periods at six monitoring sites. This percentile relates to the World Health Organization goal for acid gas concentrations.

  6. Demonstration of Hybrid DSMC-CFD Capability for Nonequilibrium Reacting Flow

    Science.gov (United States)

    2018-02-09

    AFRL-RV-PS- TR-2018-0056 AFRL-RV-PS- TR-2018-0056 DEMONSTRATION OF HYBRID DSMC-CFD CAPABILITY FOR NONEQUILIBRIUM REACTING FLOW Thomas E...4. TITLE AND SUBTITLE Demonstration of Hybrid DSMC-CFD Capability for Nonequilibrium Reacting Flow 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9453-17-1...simulation codes. The models are based on new ab-intio rate data obtained using state -of-the-art potential energy surfaces for air species. A probability

  7. Current progress in the design and setup of a SOFC/GT hybrid power plant

    OpenAIRE

    Schnegelberger, Christian; Henke, Moritz; Tomberg, Marius; Heddrich, Marc; Friedrich, K. Andreas

    2017-01-01

    The German Aerospace Center (DLR) is setting up a hybrid power plant with 30 kW electrical power output. It consists of a SOFC and a micro gas turbine (MGT). The hybrid power plant can reach electrical system efficiencies greater than 60 % throughout a wide operating range. Due to the SOFC’s high operation temperature and incomplete fuel utilisation, the exhaust gas will always contain usable energy. The MGT will use this energy to provide compressed and preheated air for the SOFC and ge...

  8. Air Pollution Training Programs.

    Science.gov (United States)

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  9. Clean Air and Water

    Centers for Disease Control (CDC) Podcasts

    The air we breathe and the water we drink are both vital components of our health. Nevertheless, bacteria, pollutants, and other contaminates can alter life-giving air and water into health-threatening hazards. Learn about how scientists at the Centers for Disease Control and Prevention work to protect the public from air and water-related health risks.

  10. Indoor Air Quality Manual.

    Science.gov (United States)

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  11. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  12. Air quality and disease

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Climate change is an important determinant of air quality. Climate change is an important determinant of air quality. Poor air quality associated with higher levels of respiratory and cardiovascular disease. Exposure to high levels of ground-level ozone associated with ...

  13. Air Force Leadership Diversity

    Science.gov (United States)

    2017-04-06

    served as a deputy maintenance group commander. Following Air War College he will take command of the 8th Maintenance Group, Kunsan Air Base, Korea ...discrimination in terms of 3 race, religion , sex, etc.: the demographics we have all heard about for years. Air Force Policy Directive (AFPD) 36

  14. Constructing decidable hybrid systems with velocity bounds

    NARCIS (Netherlands)

    Belta, C.; Habets, L.C.G.J.M.

    2004-01-01

    In this paper, the question of bi-similarity between hybrid systems and their discrete quotients is studied from a new point of view. We consider two classes of hybrid systems: piecewise affine hybrid systems on simplices and piecewise multi-affine systems on multi-dimensional rectangles. Given a

  15. Deriving simulators for hybrid Chi models

    NARCIS (Netherlands)

    Beek, van D.A.; Man, K.L.; Reniers, M.A.; Rooda, J.E.; Schiffelers, R.R.H.

    2006-01-01

    The hybrid Chi language is formalism for modeling, simulation and verification of hybrid systems. The formal semantics of hybrid Chi allows the definition of provably correct implementations for simulation, verification and realtime control. This paper discusses the principles of deriving an

  16. Hybrid Doctoral Program: Innovative Practices and Partnerships

    Science.gov (United States)

    Alvich, Dori; Manning, JoAnn; McCormick, Kathy; Campbell, Robert

    2012-01-01

    This paper reflects on how one mid-Atlantic University innovatively incorporated technology into the development of a hybrid doctoral program in educational leadership. The paper describes a hybrid doctoral degree program using a rigorous design; challenges of reworking a traditional syllabus of record to a hybrid doctoral program; the perceptions…

  17. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  18. Hybrid Logical Analyses of the Ambient Calculus

    DEFF Research Database (Denmark)

    Bolander, Thomas; Hansen, Rene Rydhof

    2010-01-01

    In this paper, hybrid logic is used to formulate three control flow analyses for Mobile Ambients, a process calculus designed for modelling mobility. We show that hybrid logic is very well-suited to express the semantic structure of the ambient calculus and how features of hybrid logic can...

  19. The Hybrid Automobile and the Atkinson Cycle

    Science.gov (United States)

    Feldman, Bernard J.

    2008-01-01

    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle…

  20. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid ...

  1. Conceptual Design of Operation Strategies for Hybrid Electric Aircraft

    Directory of Open Access Journals (Sweden)

    Julian Hoelzen

    2018-01-01

    Full Text Available Ambitious targets to reduce emissions caused by aviation in the light of an expected ongoing rise of the air transport demand in the future drive the research of propulsion systems with lower CO2 emissions. Regional hybrid electric aircraft (HEA powered by conventional gas turbines and battery powered electric motors are investigated to test hybrid propulsion operation strategies. Especially the role of the battery within environmentally friendly concepts with significantly reduced carbon footprint is analyzed. Thus, a new simulation approach for HEA is introduced. The main findings underline the importance of choosing the right power-to-energy-ratio of a battery according to the flight mission. The gravimetric energy and power density of the electric storages determine the technologically feasibility of hybrid concepts. Cost competitive HEA configurations are found, but do not promise the targeted CO2 emission savings, when the well-to-wheel system is regarded with its actual costs. Sensitivity studies are used to determine external levers that favor the profitability of HEA.

  2. Synthesis of poly(ethylene oxide)-silica hybrids

    International Nuclear Information System (INIS)

    Ishak Manaf

    2002-01-01

    A hybrid material incorporating silica networks in poly (ethylene oxide) was produced using the sol-gel process from solution mixtures of poly (ethylene oxide) dissolved in water and partially polymerized tetraethylorthosilicate (TEOS) with and without compatibilisation agent. These mixtures were converted into films by solvent evaporation and drying them in an air-circulating oven at 60 degree C. Depending on the alkoxysilane solution composition and several mixing parameters, different morphologies were obtained, varying from semi-interpenetrating networks of PEO within highly cross linked silica chains, to finely dispersed heterogeneous system exhibiting either co-continuous or particulate microstructure. The influence of pH, type of solvents, mixing temperatures and time, as well as the nature of compatibiliser was found to be extremely important in controlling the morphology and properties of the fine hybrid films. It was found that compatibilisation of PEO-SiO 2 hybrid system is achieved exclusively with the use of γ-glycidyloxypropyltrimethoxysilane (GOTMS) coupling agent. (Author)

  3. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  4. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage.

    Science.gov (United States)

    El-Kady, Maher F; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F; Chaney, Lindsay; Lech, Andrew T; Kaner, Richard B

    2015-04-07

    Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm(3). This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive "dry rooms" required for building today's supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems.

  5. User acceptance of diesel/PV hybrid system in an island community

    International Nuclear Information System (INIS)

    Phuangpornpitak, N.; Kumar, S.

    2011-01-01

    This paper presents the results of a study conducted at a rural (island) community to understand the role of PV hybrid system installed on an island. Until 2004, most islanders had installed diesel generators in their homes to generate electricity, which was directly supplied to appliances or stored in the batteries for later use. A field survey was carried out to study the user satisfaction of the PV hybrid system in the island community. The attitude of islanders to the PV hybrid system was mostly positive. The islanders can use more electricity, the supply of which can meet the demand. A comparison of pollutions before and after installation of the PV hybrid system was made along with the interviews with the users. The data show that the users are highly satisfied with the PV hybrid system which can reduce environmental impact, especially air and noise pollutions. New opportunities as a result of access to electric service include studying and reading at night that were not possible earlier. All the islanders use the PV hybrid system and more importantly, no one found that the system made their life worse as compared to the earlier state of affairs. (author)

  6. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage

    Science.gov (United States)

    El-Kady, Maher F.; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F.; Chaney, Lindsay; Lech, Andrew T.; Kaner, Richard B.

    2015-01-01

    Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm3. This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive “dry rooms” required for building today’s supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems. PMID:25831542

  7. Formal Description of Hybrid Systems

    DEFF Research Database (Denmark)

    Zhou, Chaochen; Ji, Wang; Ravn, Anders P.

    1996-01-01

    A language to describe hybrid systems, i.e. networks of communicating discrete and continuous processes, is proposed. A semantics of the language is given in Extended Duration Calculus, a real-time interval logic with a proof system that allows reasoning in mathematical analysis about continuous ...

  8. Hybrid mesons with auxiliary fields

    International Nuclear Information System (INIS)

    Buisseret, F.; Mathieu, V.

    2006-01-01

    Hybrid mesons are exotic mesons in which the color field is not in the ground state. Their understanding deserves interest from a theoretical point of view, because it is intimately related to nonperturbative aspects of QCD. Moreover, it seems that some recently detected particles, such as the π 1 (1600) and the Y(4260), are serious hybrid candidates. In this work, we investigate the description of such exotic hadrons by applying the auxiliary fields technique (also known as the einbein field method) to the widely used spinless Salpeter Hamiltonian with appropriate linear confinement. Instead of the usual numerical resolution, this technique allows to find simplified analytical mass spectra and wave functions of the Hamiltonian, which still lead to reliable qualitative predictions. We analyse and compare two different descriptions of hybrid mesons, namely a two-body q system with an excited flux tube, or a three-body qg system. We also compute the masses of the 1 -+ hybrids. Our results are shown to be in satisfactory agreement with lattice QCD and other effective models. (orig.)

  9. The threat of hybrid Phytophthoras

    Science.gov (United States)

    The majority of invasive plant pathogens have resulted from the introduction of exotic organisms. However, another mechanism for invasiveness results from hybridization between species. This phenomenon has been documented in plants and animals, but its role in plant pathology has only recently been ...

  10. Hybrid cycles for micro generation

    International Nuclear Information System (INIS)

    Campanari, S.

    2000-01-01

    This paper deals with the main features of two emerging technologies in the field of small-scale power generation, micro turbines and Solid Oxide Fuel Cells, discussing the extremely high potential of their combination into hybrid cycles and their possible role for distributed cogeneration [it

  11. Inference in hybrid Bayesian networks

    DEFF Research Database (Denmark)

    Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2009-01-01

    Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....

  12. Towards Modelling of Hybrid Systems

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2006-01-01

    system consists of a number of dynamical systems that are glued together according to information encoded in the discrete part of the system. We develop a definition of a hybrid system as a functor from the category generated by a transition system to the category of directed topological spaces. Its...

  13. Transgressive Hybrids as Hopeful Monsters.

    Science.gov (United States)

    Dittrich-Reed, Dylan R; Fitzpatrick, Benjamin M

    2013-06-01

    The origin of novelty is a critical subject for evolutionary biologists. Early geneticists speculated about the sudden appearance of new species via special macromutations, epitomized by Goldschmidt's infamous "hopeful monster". Although these ideas were easily dismissed by the insights of the Modern Synthesis, a lingering fascination with the possibility of sudden, dramatic change has persisted. Recent work on hybridization and gene exchange suggests an underappreciated mechanism for the sudden appearance of evolutionary novelty that is entirely consistent with the principles of modern population genetics. Genetic recombination in hybrids can produce transgressive phenotypes, "monstrous" phenotypes beyond the range of parental populations. Transgressive phenotypes can be products of epistatic interactions or additive effects of multiple recombined loci. We compare several epistatic and additive models of transgressive segregation in hybrids and find that they are special cases of a general, classic quantitative genetic model. The Dobzhansky-Muller model predicts "hopeless" monsters, sterile and inviable transgressive phenotypes. The Bateson model predicts "hopeful" monsters with fitness greater than either parental population. The complementation model predicts both. Transgressive segregation after hybridization can rapidly produce novel phenotypes by recombining multiple loci simultaneously. Admixed populations will also produce many similar recombinant phenotypes at the same time, increasing the probability that recombinant "hopeful monsters" will establish true-breeding evolutionary lineages. Recombination is not the only (or even most common) process generating evolutionary novelty, but might be the most credible mechanism for sudden appearance of new forms.

  14. Hybrid technology for regional railcars

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Christoph [DVV Eurailpress, Hamburg (Germany)

    2012-05-15

    It is possible to reduce the fuel consumed by diesel railcars operating short-distance regional services by making use of newly developed hybrid technology. Voith Turbo is setting out to produce evidence of that through two completely different projects. (orig.)

  15. Sugar pine and its hybrids

    Science.gov (United States)

    W. B. Critchfield; B. B. Kinloch

    1986-01-01

    Unlike most white pines, sugar pine (Pinus lambertiana) is severely restricted in its ability to hybridize with other species. It has not been successfully crossed with any other North American white pine, nor with those Eurasian white pines it most closely resembles. Crosses with the dissimilar P. koraiensis and P....

  16. Organic and hybrid solar cells

    CERN Document Server

    Huang, Hui

    2014-01-01

    This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.

  17. Multifunctional hybrids for electromagnetic absorption

    International Nuclear Information System (INIS)

    Huynen, I.; Quievy, N.; Bailly, C.; Bollen, P.; Detrembleur, C.; Eggermont, S.; Molenberg, I.; Thomassin, J.M.; Urbanczyk, L.

    2011-01-01

    Highlights: → EM absorption requires low dielectric constant and ∼1 S/m electrical conductivity. → New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. → The EM absorption in the GHz range is superior to any known material. → A closed form model is used to guide the design of the hybrid. → The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  18. Information transmission on hybrid networks

    Science.gov (United States)

    Chen, Rongbin; Cui, Wei; Pu, Cunlai; Li, Jie; Ji, Bo; Gakis, Konstantinos; Pardalos, Panos M.

    2018-01-01

    Many real-world communication networks often have hybrid nature with both fixed nodes and moving modes, such as the mobile phone networks mainly composed of fixed base stations and mobile phones. In this paper, we discuss the information transmission process on the hybrid networks with both fixed and mobile nodes. The fixed nodes (base stations) are connected as a spatial lattice on the plane forming the information-carrying backbone, while the mobile nodes (users), which are the sources and destinations of information packets, connect to their current nearest fixed nodes respectively to deliver and receive information packets. We observe the phase transition of traffic load in the hybrid network when the packet generation rate goes from below and then above a critical value, which measures the network capacity of packets delivery. We obtain the optimal speed of moving nodes leading to the maximum network capacity. We further improve the network capacity by rewiring the fixed nodes and by considering the current load of fixed nodes during packets transmission. Our purpose is to optimize the network capacity of hybrid networks from the perspective of network science, and provide some insights for the construction of future communication infrastructures.

  19. Thermo-optic characteristics of hybrid polymer/silica microstructured optical fiber: An analytical approach

    Science.gov (United States)

    Sharma, Dinesh Kumar; Sharma, Anurag; Tripathi, Saurabh Mani

    2018-04-01

    Microstructured optical fibers (MOFs) allow a variety of advanced materials to be infiltrated in their air-voids for obtaining the increased fiber functionality, and offering a new versatile platform for developing the compact sensors devices. We aim to investigate the thermal characteristics of high-index core triangular hybrid polymer/silica MOFs with circular air-voids infused with polymer by using the analytical field model [1]. We demonstrate that infiltration of air-voids with polymer, e.g., polydimethylsiloxane (PDMS) can facilitate to tune the fundamental modal properties of MOF such as effective index of the mode, near and the far-field profiles, effective mode area and the numerical aperture over the temperature ranging from 0 °C to 100 °C, for different values of relative air-void ratios. The evolution of the mode shape for a given temperature has been investigated in transition from near-field to far-field regime. We have studied the thermal dependence of splice losses between hybrid MOF and the standard step-index single-mode optical fiber in combination with Fresnel losses. For enhancing the evanescent field interactions, we have evaluated fraction of power associated with fundamental mode of hybrid MOF. We have compared the accuracy of our results with those based on full-vector finite-difference (FD) method, as available in the literature.

  20. Manual for THOR-AirPAS - air pollution assessment system

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Ketzel, Matthias; Brandt, Jørgen

    The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS.......The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS....

  1. Solar-Driven Air-Conditioning Cycles: A Review

    Directory of Open Access Journals (Sweden)

    A. M. Abu-Zour

    2007-12-01

    Full Text Available Most conventional cooling/refrigeration systems are driven by fossil fuel combustion, and therefore give rise to emission of environmentally damaging pollutants. In addition, many cooling systems employ refrigerants, which are also harmful to the environment in terms of their Global Warming Potential (GWP and Ozone Depletion Potential (ODP. Development of a passive or hybrid solar-driven air-conditioning system is therefore of interest as exploitation of such systems would reduce the demand for grid electricity particularly at times of peak load. This paper presents a review of various cooling cycles and summarises work carried out on solar-driven air-conditioning systems.

  2. Review of hybrid laminar flow control systems

    Science.gov (United States)

    Krishnan, K. S. G.; Bertram, O.; Seibel, O.

    2017-08-01

    The aeronautic community always strived for fuel efficient aircraft and presently, the need for ecofriendly aircraft is even more, especially with the tremendous growth of air traffic and growing environmental concerns. Some of the important drivers for such interests include high fuel prices, less emissions requirements, need for more environment friendly aircraft to lessen the global warming effects. Hybrid laminar flow control (HLFC) technology is promising and offers possibility to achieve these goals. This technology was researched for decades for its application in transport aircraft, and it has achieved a new level of maturity towards integration and safety and maintenance aspects. This paper aims to give an overview of HLFC systems research and associated flight tests in the past years both in the US and in Europe. The review makes it possible to distinguish between the successful approaches and the less successful or outdated approaches in HLFC research. Furthermore, the technology status shall try to produce first estimations regarding the mass, power consumption and performance of HLFC systems as well as estimations regarding maintenance requirements and possible subsystem definitions.

  3. Shape Memory Composite Hybrid Hinge

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen

    2012-01-01

    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  4. Photochemical air pollution

    International Nuclear Information System (INIS)

    Te Winkel, B.H.

    1992-01-01

    During periods of severe photochemical air pollution (smog) the industry in the Netherlands is recommended by the Dutch government to strongly reduce the emissions of air pollutants. For the electric power generating companies it is important to investigate the adequacy of this policy. The purpose of this investigation is to determine the contribution of electric power plants to photochemical air pollution and to assess the efficacy of emission reducing measures. A literature survey on the development of photochemical air pollution was carried out and modelled calculations concerning the share of the electric power plants to the photochemical air pollution were executed

  5. Air-water screen

    Energy Technology Data Exchange (ETDEWEB)

    Prokopov, O.I.; Kutepov, A.I.

    1980-12-08

    The air-water screen based on inventor's certificate No. 577364 contains horizontal water and air lines with water and air nozzles. The air line is situated inside the water line eccentrically and contracts it in the area of the nozzle, whose orifices are situated along the line of contact, while the orifices of the water nozzle are situated symmetrically relative to the air orifices and are located at an acute angle to them. To raise the protective properties, on the end of the water line is a lateral nozzle water distributor is an additional nozzle, connected to this container.

  6. Development and Analysis of Hybrid Thermoelectric Refrigerator Systems

    Science.gov (United States)

    Saifizi, M.; Zakaria, M. S.; Yaacob, Sazali; Wan, Khairunizam

    2018-03-01

    Thermoelectric module (TEM) is a type of solid-state devices which has the capability to maintain the accuracy of small temperature variation application. In this study, a hybrid thermoelectric refrigerator system is introduced by utilizing TEMs; direct and air to air thermoelectric heat pump to cool down and maintain low temperature for vaccines storage. Two different materials which are aluminum and stainless steel are used as container in hybrid thermoelectric refrigerator (HTER) configuration to investigate the response of every system in transient and steady state mode. A proper temperature sensor calibration technique is implemented to make certain real time data acquisition of the systems are not affected very much from the noise generated. From step response analysis, it is indicated that HTER I (aluminum) has rapid settling time from transient to steady state than HTER II (stainless steel) since aluminum has better thermal conductivity as compared to stainless steel. It is found that HTER I is better in cooling capability with the same input current instead of HTER II which required a longer time to achieve steady state mode. Besides, in Pseudo Random Binary Sequence (PRBS) response analysis injected to both systems shows HTER I is very sensitive to current input as the sequence length of HTER I is shorter than HTER II. However both systems depict the varying temperature in the range of 4 oC due to differences in thermal conductivity of container.

  7. régression linéaire multiple

    African Journals Online (AJOL)

    Mots clés: Alcools et phénols – Représentation numérique de la structure chimique – Facteur acentrique – Régression linéaire multiple – Modèle RSP hybride. English Title: Structure / acentric factor relationship of alcohols and phenols: genetic algorithm – multiple linear regression approach. English Abstract. The acentric ...

  8. Air Quality Management Using Pollution Prevention: A Joint Service Approach

    Science.gov (United States)

    1998-03-01

    sites to promote polymerization. High solids coatings may be one or two component systems based on acrylic , alkyd , epoxy, polyester, or urethane...formulation to form high molecular weight polymers. Examples include acrylic , epoxy/polyester hybrid , functional epoxy, thin film epoxy, and urethane...Air Human System Center (HSC/OEBQ) Naval Facilities Engineering Service Center (NFESC) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 9

  9. Hybrid heat pipe based passive cooling device for spent nuclear fuel dry storage cask

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Highlights: • Hybrid heat pipe was presented as a passive cooling device for dry storage cask of SNF. • A method to utilize waste heat from spent fuel was suggested using hybrid heat pipe. • CFD analysis was performed to evaluate the thermal performance of hybrid heat pipe. • Hybrid heat pipe can increase safety margin and storage capacity of the dry storage cask. - Abstract: Conventional dry storage facilities for spent nuclear fuel (SNF) were designed to remove decay heat through the natural convection of air, but this method has limited cooling capacity and a possible re-criticality accident in case of flooding. To enhance the safety and capacity of dry storage cask of SNF, hybrid heat pipe-based passive cooling device was suggested. Heat pipe is an excellent passive heat transfer device using the principles of both conduction and phase change of the working fluid. The heat pipe containing neutron absorber material, the so-called hybrid heat pipe, is expected to prevent the re-criticality accidents of SNF and to increase the safety margin during interim and long term storage period. Moreover, a hybrid heat pipe with thermoelectric module, a Stirling engine and a phase change material tank can be used for utilization of the waste heat as heat-transfer medium. Located at the guide tube or instrumentation tube, hybrid heat pipe can remove decay heat from inside the sealed metal cask to outside, decreasing fuel rod temperature. In this paper, a 2-step analysis was performed using computational fluid dynamics code to evaluate the heat and fluid flow inside a cask, which consisted of a single spent fuel assembly simulation and a full-scope dry cask simulation. For a normal dry storage cask, the maximum fuel temperature is 290.0 °C. With hybrid heat pipe cooling, the temperature decreased to 261.6 °C with application of one hybrid heat pipe per assembly, and to 195.1 °C with the application of five hybrid heat pipes per assembly. Therefore, a dry

  10. Air Conditioner/Dehumidifier

    Science.gov (United States)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  11. Air filtration and air cooling in dairies

    Energy Technology Data Exchange (ETDEWEB)

    Rubzov, J A

    1986-01-01

    In addition to the maintenance of optimum temperatures and relative humidities, a continuous cleaning of the circulating air by means of suspended matter filters and regular disinfection of the spaces and equipment are required in the maturing and storage room for cheese. This contribution presents solutions to the use of suspended matter filters in air cooling plant for dairies in the U.S.S.R.

  12. Coping with Indoor Air Pollution

    Science.gov (United States)

    ... Pollution > Coping with Indoor Air Pollution Font: Outdoor Pollution Indoor Air Pollution Asthma Triggers For Kids and Teachers Coping with Indoor Air Pollution Indoor air pollution is irritating to everyone: But people who ...

  13. Health Effects of Air Pollution

    Science.gov (United States)

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  14. Liberalisation of air cargo transport

    Science.gov (United States)

    2002-05-02

    Over a period of many years, international air cargo demand has continued to increase more rapidly than international air passenger demand. Air cargo arrangements need to be as efficient and expeditious as possible, to meet user requirements for air ...

  15. Released air during vapor and air cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Jablonská, Jana, E-mail: jana.jablonska@vsb.cz; Kozubková, Milada, E-mail: milada.kozubkova@vsb.cz [VŠB-Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Hydromechanics and Hydraulic Equipment, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic)

    2016-06-30

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ε model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  16. The air quality in ventilation installations. Practical guidelines; Qualite de l'air dans les installations aerauliques. Guide pratique

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, L. [France Air, 91 - Chilly Mazarin (France); Bianchina, M. [Unelvent, 93 - Le Bourget (France); Blazy, M. [Anjos, 01 - Torcieu (France); Boulanger, X. [Aldes, 21 - Chenove (France); Chiesa, M. [Atlantic (France); Duclos, M. [Groupe Titanair, 69 - Lyon (France); Hubert, D.; Kridorian, O. [Groupe Astato, Blanc Mesnil (France); Josserand, O. [Carrier (Belgium); Lancieux, C. [Camfil, 60 - Saint Martin Longueau (France); Lemaire, J.C. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Petit, Ph. [Compagnie Industrielle d' Applications Thermiques ( CIAT ), 75 - Paris (France); Ribot, B. [Electricite de France (EDF), 75 - Paris (France); Tokarek, S. [Gaz de France (GDF), 75 - Paris (France); Bernard, A.M.; Tissot, A. [Centre Technique des Industries Aerauliques et Thermiques (CETIAT), 69 - Villeurbanne (France)

    2004-07-01

    The present guide aims to provide design departments, maintenance companies and builders with practical guidelines and recommendations for the installation of ventilation and air-conditioning systems. The objective is to ensure good Indoor Air Quality (IAQ) and to safeguard the health and well-being of the occupants. The guide deals with aspects of design, dimensioning, installation and servicing, all of which play a major role in guaranteeing IAQ and duct-work hygiene. These steps are reviewed for the principal ventilation systems met in both residential and commercial premises. The first part presents the system and draws the attention of the user to specific points which require particular care in term of IAQ. The second part details recommended practice component by component, in respect of design, installation and servicing. Application of these simple guidelines during the various project stages is essential, in order to ensure a good IAQ in ventilation systems. Content: introduction; good ventilation; systems: exhaust ventilation, balanced ventilation, air handling unit, terminal ventilation units, impact of systems on indoor air quality, components: air inlet, air filter, heat recovery unit, heating or cooling coil, humidifier, mechanical fan unit, cowl and hybrid ventilation fan, mixing box, ventilation duct-work, air outlet and air terminal device; references.

  17. Overview of hybrid electric vehicle trend

    Science.gov (United States)

    Wang, Haomiao; Yang, Weidong; Chen, Yingshu; Wang, Yun

    2018-04-01

    With the increase of per capita energy consumption, environmental pollution is worsening. Using new alternative sources of energy, reducing the use of conventional fuel-powered engines is imperative. Due to the short period, pure electric vehicles cannot be mass-produced and there are many problems such as imperfect charging facilities. Therefore, the development of hybrid electric vehicles is particularly important in a certain period. In this paper, the classification of hybrid vehicle, research status of hybrid vehicle and future development trends of hybrid vehicles is introduced. It is conducive to the public understanding of hybrid electric vehicles, which has a certain theoretical significance.

  18. Development of high performance hybrid rocket fuels

    Science.gov (United States)

    Zaseck, Christopher R.

    . In order to examine paraffin/additive combustion in a motor environment, I conducted experiments on well characterized aluminum based additives. In particular, I investigate the influence of aluminum, unpassivated aluminum, milled aluminum/polytetrafluoroethylene (PTFE), and aluminum hydride on the performance of paraffin fuels for hybrid rocket propulsion. I use an optically accessible combustor to examine the performance of the fuel mixtures in terms of characteristic velocity efficiency and regression rate. Each combustor test consumes a 12.7 cm long, 1.9 cm diameter fuel strand under 160 kg/m 2s of oxygen at up to 1.4 MPa. The experimental results indicate that the addition of 5 wt.% 30 mum or 80 nm aluminum to paraffin increases the regression rate by approximately 15% compared to neat paraffin grains. At higher aluminum concentrations and nano-scale particles sizes, the increased melt layer viscosity causes slower regression. Alane and Al/PTFE at 12.5 wt.% increase the regression of paraffin by 21% and 32% respectively. Finally, an aging study indicates that paraffin can protect air and moisture sensitive particles from oxidation. The opposed burner and aluminum/paraffin hybrid rocket experiments show that additives can alter bulk fuel properties, such as viscosity, that regulate entrainment. The general effect of melt layer properties on the entrainment and regression rate of paraffin is not well understood. Improved understanding of how solid additives affect the properties and regression of paraffin is essential to maximize performance. In this document I investigate the effect of melt layer properties on paraffin regression using inert additives. Tests are performed in the optical cylindrical combustor at ˜1 MPa under a gaseous oxygen mass flux of ˜160 kg/m2s. The experiments indicate that the regression rate is proportional to mu0.08rho 0.38kappa0.82. In addition, I explore how to predict fuel viscosity, thermal conductivity, and density prior to testing

  19. Implementation and evaluation of change-over speed in plug-in hybrid electric two wheeler

    International Nuclear Information System (INIS)

    Amjad, Shaik; Rudramoorthy, R.; Sadagopan, P.; Neelakrishnan, S.

    2016-01-01

    In Asia, two wheelers are popular mode of transportation to a large group of people because of their relative affordability and ability to maneuver in heavy city traffic. However, the rate of fuel consumption and emission contribution by them, especially in urban areas need more attention to improve sustainability of energy and air quality. Recently, plug-in hybrid technology has been emerged as one of the most promising alternatives in reducing petroleum consumption and emission. This paper presents the implementation of plug-in hybrid technology on a two wheeler by formulation of novel control strategy suitable for Indian city driving needs. Experimental investigations on hub motor and IC (internal combustion) engine has been carried out to fix the change-over speed in hybrid mode, followed by road test on prototype vehicle. The performance of prototype vehicle on IDC (Indian driving cycle) simulated road pattern and actual road driving, confirmed the change-over speed of vehicle in hybrid mode. The converted plug-in hybrid electric two wheeler also demonstrated the drive strategy adopted for higher energy efficiency up to 2.5 times. So, plug-in hybrid electric two wheelers show significant improvements in fuel economy by replacing petroleum fuel with electricity for portions of trip to achieve nations' energy security. - Highlights: • Implementation of plug-in hybrid concept for two wheelers suitable for city driving. • Investigation on hub motor, engine and prototype vehicle to fix change-over speed. • Plug-in hybrid electric two wheeler demonstrates 2.48 times higher fuel efficiency. • Significant improvements in fuel economy help to achieve nations' energy security.

  20. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac, E-mail: jaehacko@pkusz.edu.cn

    2015-07-15

    Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.