Travelling waves in hybrid chemotaxis models
Franz, Benjamin; Painter, Kevin J; Erban, Radek
2013-01-01
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant) which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybr...
Travelling Waves in Hybrid Chemotaxis Models
Franz, Benjamin
2013-12-18
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.
Hybrid Modeling of Elastic Wave Scattering in a Welded Cylinder
Mahmoud, A.; Shah, A. H.; Popplewell, N.
2003-03-01
In the present study, a 3D hybrid method, which couples the finite element region with guided elastic wave modes, is formulated to investigate the scattering by a non-axisymmetric crack in a welded steel pipe. The algorithm is implemented on a parallel computing platform. Implementation is facilitated by the dynamic memory allocation capabilities of Fortran 90™ and the parallel processing directives of OpenMp™. The algorithm is validated against available numerical results. The agreement with a previous 2D hybrid model is excellent. Novel results are presented for the scattering of the first longitudinal mode from different non-axisymmetric cracks. The trend of the new results is consistent with the previous findings for the axisymmetric case. The developed model has potential application in ultrasonic nondestructive evaluation of welded steel pipes.
Li, Ben Q; Liu, Changhong
2011-01-15
A hybridization model for the localized surface plasmon resonance of a nanoshell is developed within the framework of long-wave approximation. Compared with the existing hybridization model derived from the hydrodynamic simulation of free electron gas, this approach is much simpler and gives identical results for a concentric nanoshell. Also, with this approach, the limitations associated with the original hybridization model are succinctly stated. Extension of this approach to hybridization modeling of more complicated structures such as multiplayered nanoshells is straightforward.
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Shen, Yanfeng; Cesnik, Carlos E. S.
2016-09-01
This paper presents a new hybrid modeling technique for the efficient simulation of guided wave generation, propagation, and interaction with damage in complex composite structures. A local finite element model is deployed to capture the piezoelectric effects and actuation dynamics of the transmitter, while the global domain wave propagation and interaction with structural complexity (structure features and damage) are solved utilizing a local interaction simulation approach (LISA). This hybrid approach allows the accurate modeling of the local dynamics of the transducers and keeping the LISA formulation in an explicit format, which facilitates its readiness for parallel computing. The global LISA framework was extended through the 3D Kelvin-Voigt viscoelasticity theory to include anisotropic damping effects for composite structures, as an improvement over the existing LISA formulation. The global LISA framework was implemented using the compute unified device architecture running on graphic processing units. A commercial preprocessor is integrated seamlessly with the computational framework for grid generation and material property allocation to handle complex structures. The excitability and damping effects are successfully captured by this hybrid model, with experimental validation using the scanning laser doppler vibrometry. To demonstrate the capability of our hybrid approach for complex structures, guided wave propagation and interaction with a delamination in a composite panel with stiffeners is presented.
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Hybrid Modelling of a Traveling Wave Piezoelectric Motor
DEFF Research Database (Denmark)
El, Ghouti N.
torque at low speed, quiet operation (ultrasonic), simple structure, compactness in size and no electromagnetic interferences. However, the mathematical model of the PEM is complex and difficult to derive due to its driving principle based on high-frequency mechanical vibrations and frictional force...... the performance characteristics of the PEM under various working conditions. The main objective of this PhD project is to derive a suitable model for investigating some nonlinear control strategies in a simulated environment. Most of the existing modeling approaches are inappropriate for the control community due......) and finally the basic laws of dynamics. In order to overcome some of the drawbacks of the existing methods, and thereby meet the needs of the control community, three main approaches are considered in this modeling task. First, the equivalent circuit method is investigated in order to derive a lumped model...
Wave dispersion in the hybrid-Vlasov model: verification of Vlasiator
Kempf, Yann; von Alfthan, Sebastian; Vaivads, Andris; Palmroth, Minna; Koskinen, Hannu E J
2013-01-01
Vlasiator is a new hybrid-Vlasov plasma simulation code aimed at simulating the entire magnetosphere of the Earth. The code treats ions (protons) kinetically through Vlasov's equation in the six-dimensional phase space while electrons are a massless charge-neutralizing fluid [M. Palmroth et al., Journal of Atmospheric and Solar-Terrestrial Physics 99, 41 (2013); A. Sandroos et al., Parallel Computing 39, 306 (2013)]. For first global simulations of the magnetosphere, it is critical to verify and validate the model by established methods. Here, as part of the verification of Vlasiator, we characterize the low-\\beta\\ plasma wave modes described by this model and compare with the solution computed by the Waves in Homogeneous, Anisotropic Multicomponent Plasmas (WHAMP) code [K. R\\"onnmark, Kiruna Geophysical Institute Reports 179 (1982)], using dispersion curves and surfaces produced with both programs. The match between the two fundamentally different approaches is excellent in the low-frequency, long wavelength...
Abortive and propagating intracellular calcium waves: analysis from a hybrid model.
Directory of Open Access Journals (Sweden)
Nara Guisoni
Full Text Available The functional properties of inositol(1,4,5-triphosphate (IP3 receptors allow a variety of intracellular Ca(2+ phenomena. In this way, global phenomena, such as propagating and abortive Ca(2+ waves, as well as local events such as puffs, have been observed. Several experimental studies suggest that many features of global phenomena (e.g., frequency, amplitude, speed wave depend on the interplay of biophysical processes such as diffusion, buffering, efflux and influx rates, which in turn depend on parameters such as buffer concentration, Ca(2+ pump density, cytosolic IP3 level, and intercluster distance. Besides, it is known that cells are able to modify some of these parameters in order to regulate the Ca(2+ signaling. By using a hybrid model, we analyzed different features of the hierarchy of calcium events as a function of two relevant parameters for the calcium signaling, the intercluster distance and the pump strength or intensity. In the space spanned by these two parameters, we found two modes of calcium dynamics, one dominated by abortive calcium waves and the other by propagating waves. Smaller distances between the release sites promote propagating calcium waves, while the increase of the efflux rate makes the transition from propagating to abortive waves occur at lower values of intercluster distance. We determined the frontier between these two modes, in the parameter space defined by the intercluster distance and the pump strength. Furthermore, we found that the velocity of simulated calcium waves accomplishes Luther's law, and that an effective rate constant for autocatalytic calcium production decays linearly with both the intercluster distance and the pump strength.
Development of a hybrid wave based-transfer matrix model for sound transmission analysis.
Dijckmans, A; Vermeir, G
2013-04-01
In this paper, a hybrid wave based-transfer matrix model is presented that allows for the investigation of the sound transmission through finite multilayered structures placed between two reverberant rooms. The multilayered structure may consist of an arbitrary configuration of fluid, elastic, or poro-elastic layers. The field variables (structural displacements and sound pressures) are expanded in terms of structural and acoustic wave functions. The boundary and continuity conditions in the rooms determine the participation factors in the pressure expansions. The displacement of the multilayered structure is determined by the mechanical impedance matrix, which gives a relation between the pressures and transverse displacements at both sides of the structure. The elements of this matrix are calculated with the transfer matrix method. First, the hybrid model is numerically validated. Next a comparison is made with sound transmission loss measurements of a hollow brick wall and a sandwich panel. Finally, numerical simulations show the influence of structural damping, room dimensions and plate dimensions on the sound transmission loss of multilayered structures.
Global SH-wave propagation in a 2D whole Moon model using the parallel hybrid PSM/FDM method
Jiang, Xianghua; Wang, Yanbin; Qin, Yanfang; Takenaka, Hiroshi
2015-06-01
We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids to solve the wave equations and implement the calculation on a parallel PC cluster to improve the computing efficiency. Features of global SH-wave propagation are firstly discussed for a 100-km shallow and 900-km deep moonquakes, respectively. Effects of frequency range and lateral variation of crust thickness are then investigated with various models. Our synthetic waveforms are finally compared with observed Apollo data to show the features of wave propagation that were produced by our model and those not reproduced by our models. Our numerical modeling show that the low-velocity upper crust plays significant role in the development of reverberating wave trains. Increasing frequency enhances the strength and duration of the reverberations. Surface multiples dominate wavefields for shallow event. Core-mantle reflections can be clearly identified for deep event at low frequency. The layered whole Moon model and the low-velocity upper crust produce the reverberating wave trains following each phases consistent with observation. However, more realistic Moon model should be considered in order to explain the strong and slow decay scattering between various phases shown on observation data.
Shen, Yanfeng; Cesnik, Carlos E. S.
2015-03-01
This paper presents a hybrid modeling technique for the efficient simulation of guided wave propagation and interaction with damage in composite structures. This hybrid approach uses a local finite element model (FEM) to compute the excitability of guided waves generated by piezoelectric transducers, while the global domain wave propagation, wave-damage interaction, and boundary reflections are modeled with the local interaction simulation approach (LISA). A small-size multi-physics FEM with non-reflective boundaries (NRB) was built to obtain the excitability information of guided waves generated by the transmitter. Frequency-domain harmonic analysis was carried out to obtain the solution for all the frequencies of interest. Fourier and inverse Fourier transform and frequency domain convolution techniques are used to obtain the time domain 3-D displacement field underneath the transmitter under an arbitrary excitation. This 3-D displacement field is then fed into the highly efficient time domain LISA simulation module to compute guided wave propagation, interaction with damage, and reflections at structural boundaries. The damping effect of composite materials was considered in the modified LISA formulation. The grids for complex structures were generated using commercial FEM preprocessors and converted to LISA connectivity format. Parallelization of the global LISA solution was achieved through Compute Unified Design Architecture (CUDA) running on Graphical Processing Unit (GPU). The multi-physics local FEM can reliably capture the detailed dimensions and local dynamics of the piezoelectric transducers. The global domain LISA can accurately solve the 3-D elastodynamic wave equations in a highly efficient manner. By combining the local FEM with global LISA, the efficient and accurate simulation of guided wave structural health monitoring procedure is achieved. Two numerical case studies are presented: (1) wave propagation in a unidirectional CFRP composite plate
Lipatov, A. S.; Sibeck, D. G.
2016-09-01
We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, wave-particle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere.
A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation
Liu, Yang
2010-03-01
We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.
Hybrid Model Representation of a TLP Including Flexible Topsides in Non-Linear Regular Waves
Directory of Open Access Journals (Sweden)
Christof Wehmeyer
2014-08-01
Full Text Available The rising demand for renewable energy solutions is forcing the established industries to expand and continue evolving. For the wind energy sector, the vast resources in deep sea locations have encouraged research towards the installation of turbines in deeper waters. One of the most promising technologies able to solve this challenge is the floating wind turbine foundation. For the ultimate limit state, where higher order wave loads have a significant influence, a design tool that couples non-linear excitations with structural dynamics is required. To properly describe the behavior of such a structure, a numerical model is proposed and validated by physical test results. The model is applied to a case study of a tension leg platform with a flexible topside mimicking the tower and a lumped mass mimicking the rotor-nacelle assembly. The model is additionally compared to current commercial software, where the need for the coupled higher order dynamics proposed in this paper becomes evident.
Efficient Hybrid-Spectral Model for Fully Nonlinear Numerical Wave Tank
DEFF Research Database (Denmark)
Christiansen, Torben; Bingham, Harry B.; Engsig-Karup, Allan Peter;
2013-01-01
A new hybrid-spectral solution strategy is proposed for the simulation of the fully nonlinear free surface equations based on potential flow theory. A Fourier collocation method is adopted horisontally for the discretization of the free surface equations. This is combined with a modal Chebyshev T...
Wave dispersion in the hybrid-Vlasov model: Verification of Vlasiator
Kempf, Yann; Pokhotelov, Dimitry; von Alfthan, Sebastian; Vaivads, Andris; Palmroth, Minna; Koskinen, Hannu E. J.
2013-01-01
Vlasiator is a new hybrid-Vlasov plasma simulation code aimed at simulating the entire magnetosphere of the Earth. The code treats ions (protons) kinetically through Vlasov's equation in the six-dimensional phase space while electrons are a massless charge-neutralizing fluid [M. Palmroth et al., Journal of Atmospheric and Solar-Terrestrial Physics 99, 41 (2013); A. Sandroos et al., Parallel Computing 39, 306 (2013)]. For first global simulations of the magnetosphere, it is critical to verify ...
Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks
DEFF Research Database (Denmark)
Wright, J.C.; Bonoli, P.T.; Brambilla, M.;
2004-01-01
Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k(perpendi......Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k......). Two full wave codes, a massively-parallel-processor (MPP) version of the TORIC-2D finite Larmor radius code [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)] and also an all orders spectral code AORSA2D [E. F. Jaeger , Phys. Plasmas 9, 1873 (2002)], have been developed which for the first......)] to gain new understanding into the nature of FWMC in tokamaks. The massively-parallel-processor version of TORIC is also now capable of running with sufficient resolution to model planned lower hybrid range of frequencies experiments in the Alcator C-Mod. (C) 2004 American Institute of Physics....
Gravity Waves from Tachyonic Preheating after Hybrid Inflation
Dufaux, Jean Francois; Kofman, Lev; Navros, Olga
2008-01-01
We study the stochastic background of gravitational waves produced from preheating in hybrid inflation models. We investigate different dynamical regimes of preheating in these models and we compute the resulting gravity wave spectra using analytical estimates and numerical simulations. We discuss the dependence of the gravity wave frequencies and amplitudes on the various potential parameters. We find that large regions of the parameter space leads to gravity waves that may be observable in upcoming interferometric experiments, including Advanced LIGO, but this generally requires very small coupling constants.
DEFF Research Database (Denmark)
Bellew, Sarah; Yde, Anders; Verelst, David Robert
2014-01-01
numerical models, which can combine the aerodynamic, hydrodynamic, structural exibility and mooring components. Very little oshore data exists, however, in order to validate these numerical models. Floating Power Plant are the developers of a oating, hybrid wind- and wave-energy device. The device uses...... full-scale prototype, the P80, which has a width of 80 m. As part of the development, Floating Power Plant have completed 4 oshore test-phases (totalling over 2 years oshore operation) on a 37 m wide scaled test device, the P37. This paper focuses on the comparison of one of the leading numerical...... the pitching wave energy devices, not only to increase and smooth the power output from the platform, but also to take the energy from the waves in a controlled manner, resulting in a stable platform for the wind turbine and a safe harbour for O&M. They are currently developing the nal design for their rst...
Stochastic Ion Heating by the Lower-Hybrid Waves
Khazanov, G.; Tel'nikhin, A.; Krotov, A.
2011-01-01
The resonance lower-hybrid wave-ion interaction is described by a group (differentiable map) of transformations of phase space of the system. All solutions to the map belong to a strange attractor, and chaotic motion of the attractor manifests itself in a number of macroscopic effects, such as the energy spectrum and particle heating. The applicability of the model to the problem of ion heating by waves at the front of collisionless shock as well as ion acceleration by a spectrum of waves is discussed. Keywords: plasma; ion-cyclotron heating; shocks; beat-wave accelerator.
Lower hybrid waves at the shock front: a reassessment
Directory of Open Access Journals (Sweden)
S. N. Walker
2008-03-01
Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=V_{i}k_{⊥} and magnetised electrons (ω=V_{e}k_{||}. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.
A stochastic background of gravitational waves from hybrid preheating
García-Bellido, J; Garcia-Bellido, Juan; Figueroa, Daniel G.
2006-01-01
The process of reheating the universe after hybrid inflation is extremely violent. It proceeds through the nucleation and subsequent collision of large concentrations of energy density in bubble-like structures, which generate a significant fraction of energy in the form of gravitational waves. We study the power spectrum of the stochastic background of gravitational waves produced at reheating after hybrid inflation. We find that the amplitude could be significant for high-scale models, although the typical frequencies are well beyond what could be reached by planned gravitational wave observatories like LIGO, LISA or BBO. On the other hand, low-scale models could still produce a detectable stochastic background at frequencies accesible to those detectors. The discovery of such a background would open a new window into the very early universe.
Energy Technology Data Exchange (ETDEWEB)
Vdovin, V. L., E-mail: vdov@nfi.kiae.ru [National Research Centre ' Kurchatov Institute,' (Russian Federation)
2013-02-15
The innovative concept and 3D full-wave code modeling the off-axis current drive by radio-frequency (RF) waves in large-scale tokamaks, ITER and DEMO, for steady-state operation with high efficiency is proposed. The scheme uses the helicon radiation (fast magnetosonic waves at high (20-40) ion cyclotron frequency harmonics) at frequencies of 500-700 MHz propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by helicons, in conjunction with the bootstrap current, ensure the maintenance of a given value of the total current in the stability margin q(0) {>=} 2 and q(a) {>=} 4, and will help to have regimes with a negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure {beta}{sub N} > 3 (the so-called advanced scenarios) of interest for the commercial reactor. Modeling with full-wave three-dimensional codes PSTELION and STELEC showed flexible control of the current profile in the reactor plasmas of ITER and DEMO, using multiple frequencies, the positions of the antennae and toroidal wave slow down. Also presented are the results of simulations of current generation by helicons in the DIII-D, T-15MD, and JT-60AS tokamaks. Commercially available continuous-wave klystrons of the MW/tube range are promising for commercial stationary fusion reactors. The compact antennae of the waveguide type are proposed, and an example of a possible RF system for today's tokamaks is given. The advantages of the scheme (partially tested at lower frequencies in tokamaks) are a significant decline in the role of parametric instabilities in the plasma periphery, the use of electrically strong resonator-waveguide type antennae, and substantially greater antenna-plasma coupling.
Vdovin, V. L.
2013-02-01
The innovative concept and 3D full-wave code modeling the off-axis current drive by radio-frequency (RF) waves in large-scale tokamaks, ITER and DEMO, for steady-state operation with high efficiency is proposed. The scheme uses the helicon radiation (fast magnetosonic waves at high (20-40) ion cyclotron frequency harmonics) at frequencies of 500-700 MHz propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by helicons, in conjunction with the bootstrap current, ensure the maintenance of a given value of the total current in the stability margin q(0) ≥ 2 and q( a) ≥ 4, and will help to have regimes with a negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure β N > 3 (the so-called advanced scenarios) of interest for the commercial reactor. Modeling with full-wave three-dimensional codes PSTELION and STELEC showed flexible control of the current profile in the reactor plasmas of ITER and DEMO, using multiple frequencies, the positions of the antennae and toroidal wave slow down. Also presented are the results of simulations of current generation by helicons in the DIII-D, T-15MD, and JT-60AS tokamaks. Commercially available continuous-wave klystrons of the MW/tube range are promising for commercial stationary fusion reactors. The compact antennae of the waveguide type are proposed, and an example of a possible RF system for today's tokamaks is given. The advantages of the scheme (partially tested at lower frequencies in tokamaks) are a significant decline in the role of parametric instabilities in the plasma periphery, the use of electrically strong resonator-waveguide type antennae, and substantially greater antenna-plasma coupling.
Hybrid Unifying Variable Supernetwork Model
Institute of Scientific and Technical Information of China (English)
LIU; Qiang; FANG; Jin-qing; LI; Yong
2015-01-01
In order to compare new phenomenon of topology change,evolution,hybrid ratio and network characteristics of unified hybrid network theoretical model with unified hybrid supernetwork model,this paper constructed unified hybrid variable supernetwork model(HUVSM).The first layer introduces a hybrid ratio dr,the
A Gravitational Wave Background from Reheating after Hybrid Inflation
Garcia-Bellido, Juan; Sastre, Alfonso
2007-01-01
The reheating of the universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubble-like structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating. First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally produce a self-similar time evolution, which allows us to extrapolate the amplitude and shape of this background till the end of reheating. We find that the fraction of energy density today in these primordial gravitational waves could be significant for GUT-scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA or BBO. However, low-scale models ...
Particle acceleration in tangential discontinuities by lower hybrid waves
Directory of Open Access Journals (Sweden)
D. Spicer
2002-01-01
Full Text Available We consider the role that the lower-hybrid wave turbulence plays in providing the necessary resistivity at collisionless reconnection sights. The mechanism for generating the waves is considered to be the lower-hybrid drift instability. We find that the level of the wave amplitude is sufficient enough to heat and accelerate both electrons and ions.
Large Unifying Hybrid Supernetwork Model
Institute of Scientific and Technical Information of China (English)
LIU; Qiang; FANG; Jin-qing; LI; Yong
2015-01-01
For depicting multi-hybrid process,large unifying hybrid network model(so called LUHNM)has two sub-hybrid ratios except dr.They are deterministic hybrid ratio(so called fd)and random hybrid ratio(so called gr),respectively.
DEFF Research Database (Denmark)
Burcharth, H. F.; Larsen, Brian Juul
The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...
Directory of Open Access Journals (Sweden)
Nahidul Hoque Samrat
2014-01-01
Full Text Available Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV- wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.
Samrat, Nahidul Hoque; Bin Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Bin Taha, Zahari
2014-01-01
Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.
Zhang, Rong-Hua
2016-10-01
Tropical Instability Waves (TIWs) and the El Niño-Southern Oscillation (ENSO) are two air-sea coupling phenomena that are prominent in the tropical Pacific, occurring at vastly different space-time scales. It has been challenging to adequately represent both of these processes within a large-scale coupled climate model, which has led to a poor understanding of the interactions between TIW-induced feedback and ENSO. In this study, a novel modeling system was developed that allows representation of TIW-scale air-sea coupling and its interaction with ENSO. Satellite data were first used to derive an empirical model for TIW-induced sea surface wind stress perturbations (τTIW). The model was then embedded in a basin-wide hybrid-coupled model (HCM) of the tropical Pacific. Because τTIW were internally determined from TIW-scale sea surface temperatures (SSTTIW) simulated in the ocean model, the wind-SST coupling at TIW scales was interactively represented within the large-scale coupled model. Because the τTIW-SSTTIW coupling part of the model can be turned on or off in the HCM simulations, the related TIW wind feedback effects can be isolated and examined in a straightforward way. Then, the TIW-scale wind feedback effects on the large-scale mean ocean state and interannual variability in the tropical Pacific were investigated based on this embedded system. The interactively represented TIW-scale wind forcing exerted an asymmetric influence on SSTs in the HCM, characterized by a mean-state cooling and by a positive feedback on interannual variability, acting to enhance ENSO amplitude. Roughly speaking, the feedback tends to increase interannual SST variability by approximately 9%. Additionally, there is a tendency for TIW wind to have an effect on the phase transition during ENSO evolution, with slightly shortened interannual oscillation periods. Additional sensitivity experiments were performed to elucidate the details of TIW wind effects on SST evolution during ENSO
Double hybrid inflation and gravitational waves
Lazarides, G
2015-01-01
A double hybrid inflationary scenario in non-minimal supergravity which can predict values of the tensor-to-scalar ratio up to about 0.05 is presented. Larger values of this ratio would require unacceptably large running of the scalar spectral index. The underlying supersymmetric particle physics model possesses, for the chosen values of the parameters, practically two inflationary paths, the trivial and the semi-shifted one. The trivial path is stabilized by supergravity and supports a first stage of inflation with a limited number of e-foldings. The tensor-to-scalar ratio can become appreciable with the scalar spectral index remaining acceptable, as a result of the competition between the relatively mild supergravity and the strong radiative corrections to the inflationary potential. The additional number of e-foldings required for solving the puzzles of hot big bang cosmology are generated by a second stage of inflation along the semi-shifted path. This is possible only because the semi-shifted path is alm...
DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves
Bell, T. F; Inan, U. S.; Lauben, D.; Sonwalkar, V. S.; Helliwell, R. A.; Sobolev, Ya. P.; Chmyrev, V. M.; Gonzalez, S.
1994-01-01
Past work demostrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength lambda. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which lambda less than or equal to 3.5 m when excitation occurs at a frequency roughly equal to the local lower hybrid resonance frequency. This wavelength limit is a factor of approximately 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H(+) ions with energy less than or equal to 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells.
Hybridizing matter-wave and classical accelerometers
Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A.
2014-10-01
We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.
Hybridizing matter-wave and classical accelerometers
Energy Technology Data Exchange (ETDEWEB)
Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A., E-mail: arnaud.landragin@obspm.fr [LNE-SYRTE, Observatoire de Paris, CNRS, UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)
2014-10-06
We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.
Hybridizing matter-wave and classical accelerometers
Lautier, Jean; Hardin, Thomas; Merlet, Sebastien; Santos, Franck Pereira Dos; Landragin, Arnaud
2014-01-01
We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performances without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely the dead times between consecutive measurements.
Active graphene-silicon hybrid diode for terahertz waves.
Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili
2015-05-11
Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.
Active graphene–silicon hybrid diode for terahertz waves
Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili
2015-01-01
Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene–silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene–silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices. PMID:25959596
Active graphene-silicon hybrid diode for terahertz waves
Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili
2015-05-01
Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.
Poloidal rotation induced by injecting lower hybrid waves in tokamak plasma edge
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The poloidal rotation of the magnetized edge plasma in tokamak driven by theponderomotive force which is generated by injecting lower hybrid wave(LHW) electric field hasbeen studied. The LHW is launched from a waveguide in the plasma edge, and by Brambilla’sgrill theory, analytic expressions for the wave electric field in the slab model of an inhomogeneouscold plasma have been derived. It is shown that a strong wave electric field will be generated inthe plasma edge by injecting LH wave of the power in MW magnitude, and this electric field willinduce a poloidal rotation with a sheared poloidal velocity.PACS: 52.55.Fa
Unified Hybrid Network Theoretical Model Trilogy
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The first of the unified hybrid network theoretical model trilogy (UHNTF) is the harmonious unification hybrid preferential model (HUHPM), seen in the inner loop of Fig. 1, the unified hybrid ratio is defined.
Active graphene–silicon hybrid diode for terahertz waves
Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili
2015-01-01
Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene–silicon hybrid film. The di...
Model Reduction of Hybrid Systems
DEFF Research Database (Denmark)
Shaker, Hamid Reza
systems are derived in this thesis. The results are used for output feedback control of switched nonlinear systems. Model reduction of piecewise affine systems is also studied in this thesis. The proposed method is based on the reduction of linear subsystems inside the polytopes. The methods which......High-Technological solutions of today are characterized by complex dynamical models. A lot of these models have inherent hybrid/switching structure. Hybrid/switched systems are powerful models for distributed embedded systems design where discrete controls are applied to continuous processes...... of hybrid systems, designing controllers and implementations is very high so that the use of these models is limited in applications where the size of the state space is large. To cope with complexity, model reduction is a powerful technique. This thesis presents methods for model reduction and stability...
Tamma, Kumar K.; Railkar, Sudhir B.
1989-01-01
Accurate solutions have been obtained for a class of non-Fourier models in dynamic thermoelasticity which are relevant to the understanding of thermally-induced stress wave disturbances. The method employs tailored hybrid formulations based on the transfinite element approach. The results show that significant thermal stresses may arise due to non-Fourier effects, especially when the speeds of propagation of the thermal and stress waves are equal.
短波射线追踪技术中的电离层混合建模方法%Ionosphere hybrid modeling method for short-wave ray tracing
Institute of Scientific and Technical Information of China (English)
栗伟珉; 苏东林; 阎照文; 刘焱
2012-01-01
在国际参考电离层模型和多层准抛物模型的基础上,提出了一种混合应用两种模型进行电离层建模的新方法.利用射线追踪技术,分别对混合模型和传统国际参考电离层模型下短波射线在电离层中的轨迹进行了仿真,得到了电波群路径.通过与实测电波群路径的对比,结果表明：对中国中纬度地区在电离层混合模型下的射线追踪精度优于传统国际参考电离层模型下的射线追踪精度,同时混合建模方法降低了多层准抛物模型对输入条件的要求,扩展了多层准抛物模型在射线追踪技术中的应用范围.%Based on the international reference ionosphere（IRI） and the quasi-parabolic segments（QPS） model,a new ionosphere hybrid modeling method for short-wave ray tracing was proposed.The group ranges which show the short-wave propagation trace in the ionosphere were obtained separately by simulation in the hybrid model and the IRI model.By comparing the simulated results and the ionospheric oblique incidence sounding experimental data,the hybrid modeling method accuracy at mid-latitude region in China was analyzed.It indicates the ray tracing simulation accuracy in the hybrid model on experimental day better than the one in the IRI model.The limit to the QPS model＇s input is reduced by the hybrid modeling method and the QPS model＇s application range is extended in ray tracing technology.
Hybrid Model of Content Extraction
DEFF Research Database (Denmark)
Qureshi, Pir Abdul Rasool; Memon, Nasrullah
2012-01-01
We present a hybrid model for content extraction from HTML documents. The model operates on Document Object Model (DOM) tree of the corresponding HTML document. It evaluates each tree node and associated statistical features like link density and text distribution across the node to predict signi...
Kashchenko, Serguey
2015-01-01
This monograph examines in detail models of neural systems described by delay-differential equations. Each element of the medium (neuron) is an oscillator that generates, in standalone mode, short impulses also known as spikes. The book discusses models of synaptic interaction between neurons, which lead to complex oscillatory modes in the system. In addition, it presents a solution to the problem of choosing the parameters of interaction in order to obtain attractors with predetermined structure. These attractors are represented as images encoded in the form of autowaves (wave memory). The target audience primarily comprises researchers and experts in the field, but it will also be beneficial for graduate students.
Hybrid models for complex fluids
Tronci, Cesare
2010-01-01
This paper formulates a new approach to complex fluid dynamics, which accounts for microscopic statistical effects in the micromotion. While the ordinary fluid variables (mass density and momentum) undergo usual dynamics, the order parameter field is replaced by a statistical distribution on the order parameter space. This distribution depends also on the point in physical space and its dynamics retains the usual fluid transport features while containing the statistical information on the order parameter space. This approach is based on a hybrid moment closure for Yang-Mills Vlasov plasmas, which replaces the usual cold-plasma assumption. After presenting the basic properties of the hybrid closure, such as momentum map features, singular solutions and Casimir invariants, the effect of Yang-Mills fields is considered and a direct application to ferromagnetic fluids is presented. Hybrid models are also formulated for complex fluids with symmetry breaking. For the special case of liquid crystals, a hybrid formul...
Yan, Yunju; Li, Pengbo; Lin, Huagang
2016-06-01
The finite element (FE) method is suitable for low frequency analysis and the statistical energy analysis (SEA) for high frequency analysis, but the vibro-acoustic coupling analysis at middle frequency, especially with a certain range of uncertainty system, requires some new methods. A hybrid FE-SEA method is proposed in this study and the Monte Carlo method is used to check the hybrid FE-SEA method through the energy response analysis of a beam-plate built-up structure with some uncertainty, and the results show that two kinds of calculation results match well consistently. Taking the advantage of the hybrid FE-SEA method, the structural vibration and the cabin noise field responses under the vibro-acoustic coupling for an aircraft model are numerically analyzed, and, also, the corresponding experiment is carried out to verify the simulated results. Results show that the structural vibration responses at low frequency accord well with the experiment, but the error at high frequency is greater. The error of sound pressure response level in cabin throughout the spectrum is less than 3 dB. The research proves the reliability of the method proposed in this paper. This indicates that the proposed method can overcome the strict limitations of the traditional method for a large complex structure with uncertainty factors, and it can also avoid the disadvantages of solving complex vibro-acoustic system using the finite element method or statistical energy analysis in the middle frequency.
A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves.
Harb, M S; Yuan, F G
2015-08-01
A rapid, fully non-contact, hybrid system which encompasses an air-coupled transducer (ACT) and a laser Doppler vibrometer (LDV) is presented for profiling A0 Lamb wave dispersion of an isotropic aluminum plate. The ACT generates ultrasonic pressure incident upon the surface of the plate. The pressure waves are partially refracted into the plate. The LDV is employed to measure the out-of-plane velocity of the excited Lamb wave mode at some distances where the Lamb waves are formed in the plate. The influence of the ACT angle of incidence on Lamb wave excitation is investigated and Snell's law is used to directly compute Lamb wave dispersion curves including phase and group velocity dispersion curves in aluminum plates from incident angles found to generate optimal A0 Lamb wave mode. The measured curves are compared to results obtained from a two-dimensional (2-D) Fast Fourier transform (FFT), Morlet wavelet transform (MWT) and theoretical predictions. It was concluded that the experimental results obtained using Snell's law concept are well in accordance with the theoretical solutions. The high degree of accuracy in the measured data with the theoretical results proved a high sensitivity of the air-coupled and laser ultrasound in characterizing Lamb wave dispersion in plate-like structures. The proposed non-contact hybrid system can effectively characterize the dispersive relation without knowledge of neither the materials characteristics nor the mathematical model.
Influence of collisions on parametric instabilities induced by lower hybrid waves in tokamak plasmas
Castaldo, C.; Di Siena, A.; Fedele, R.; Napoli, F.; Amicucci, L.; Cesario, R.; Schettini, G.
2016-01-01
Parametric instabilities induced at the plasma edge by lower hybrid wave power externally coupled to tokamak plasmas have, via broadening of the antenna spectrum, strong influence on the power deposition and current drive in the core. For modeling the parametric instabilities at the tokamak plasma edge in lower hybrid current drive experiments, the effect of the collisions has been neglected so far. In the present work, a specific collisional parametric dispersion relation, useful to analyze these nonlinear phenomena near the lower hybrid antenna mouth, is derived for the first time, based on a kinetic model. Numerical solutions show that in such cold plasma regions the collisions prevent the onset of the parametric instabilities. This result is important for present lower hybrid current drive experiments, as well as in fusion reactor scenarios.
Sanbonmatsu, K. Y.; Goldman, M. V.; Newman, D. L.
A hybrid kinetic-fluid model is developed which is relevant to lower hybrid spikelets observed in the topside auroral ionosphere [Vago et al., 1992; Eriksson et al., 1994]. In contrast to previous fluid models [Shapiro et al., 1995; Tam and Chang, 1995; Seyler, 1994; Shapiro et al., 1993] our linear low frequency plasma response is magnetized and kinetic. Fluid theory is used to incorporate the nonlinear wave coupling. Performing a linear stability analysis, we calculate the growth rate for the modulational instability, driven by a lower hybrid wave pump. We find that both the magnetic and kinetic effects inhibit the modulational instability.
Hybrid Model of Content Extraction
DEFF Research Database (Denmark)
Qureshi, Pir Abdul Rasool; Memon, Nasrullah
2012-01-01
We present a hybrid model for content extraction from HTML documents. The model operates on Document Object Model (DOM) tree of the corresponding HTML document. It evaluates each tree node and associated statistical features like link density and text distribution across the node to predict...... model outperformed other existing content extraction models. We present a browser based implementation of the proposed model as proof of concept and compare the implementation strategy with various state of art implementations. We also discuss various applications of the proposed model with special...
Hybrid2 - The hybrid power system simulation model
Energy Technology Data Exchange (ETDEWEB)
Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)
1996-12-31
There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.
Quantum electrostatic surface waves in a hybrid plasma waveguide: Effect of nano-sized slab
Shahmansouri, M.; Mahmodi Moghadam, M.
2017-10-01
The propagation properties of surface plasmon (SP) waves are studied in a hybrid plasma waveguide (consisting of plasma-gap-dielectric layers) with quantum effects including the Fermi-pressure, the Bohm potential and the exchange-correlation interaction. By using a quantum hydrodynamic model and Maxwell's equations, the dispersion relation of SP waves is derived, which describes the quantum corrected features of the dispersion properties of such surface waves. Previous results in this context are recovered. It is found that the exchange-correlation interactions and the presence of the second dielectric layer drastically modify the behaviors of the surface plasmon waves. The implications of our finding are discussed in some particular cases of interest. Our finding is applicable for understanding the surface wave behaviors in nano-scale systems.
Modeling and analysis using hybrid Petri nets
Ghomri, Latéfa
2007-01-01
This paper is devoted to the use of hybrid Petri nets (PNs) for modeling and control of hybrid dynamic systems (HDS). Modeling, analysis and control of HDS attract ever more of researchers' attention and several works have been devoted to these topics. We consider in this paper the extensions of the PN formalism (initially conceived for modeling and analysis of discrete event systems) in the direction of hybrid modeling. We present, first, the continuous PN models. These models are obtained from discrete PNs by the fluidification of the markings. They constitute the first steps in the extension of PNs toward hybrid modeling. Then, we present two hybrid PN models, which differ in the class of HDS they can deal with. The first one is used for deterministic HDS modeling, whereas the second one can deal with HDS with nondeterministic behavior. Keywords: Hybrid dynamic systems; D-elementary hybrid Petri nets; Hybrid automata; Controller synthesis
Ichiba, Tomoyuki; Banner, Adrian; Karatzas, Ioannis; Fernholz, Robert
2009-01-01
We study Atlas-type models of equity markets with local characteristics that depend on both name and rank, and in ways that induce a stability of the capital distribution. Ergodic properties and rankings of processes are examined with reference to the theory of reflected Brownian motions in polyhedral domains. In the context of such models, we discuss properties of various investment strategies, including the so-called growth-optimal and universal portfolios.
Hybrid Modelling of Individual Movement and Collective Behaviour
Franz, Benjamin
2013-01-01
Mathematical models of dispersal in biological systems are often written in terms of partial differential equations (PDEs) which describe the time evolution of population-level variables (concentrations, densities). A more detailed modelling approach is given by individual-based (agent-based) models which describe the behaviour of each organism. In recent years, an intermediate modelling methodology - hybrid modelling - has been applied to a number of biological systems. These hybrid models couple an individual-based description of cells/animals with a PDE-model of their environment. In this chapter, we overview hybrid models in the literature with the focus on the mathematical challenges of this modelling approach. The detailed analysis is presented using the example of chemotaxis, where cells move according to extracellular chemicals that can be altered by the cells themselves. In this case, individual-based models of cells are coupled with PDEs for extracellular chemical signals. Travelling waves in these hybrid models are investigated. In particular, we show that in contrary to the PDEs, hybrid chemotaxis models only develop a transient travelling wave. © 2013 Springer-Verlag Berlin Heidelberg.
Indian Academy of Sciences (India)
M Singh; P N Deka
2006-03-01
A theoretical study is made on the generation mechanism of ion acoustics wave in the presence of lower hybrid wave turbulence field in inhomogeneous plasma on the basis of plasma-maser interaction. The lower hybrid wave turbulence field is taken as the low-frequency turbulence field. The growth rate of test high frequency ion acoustics wave is obtained with the involvement of spatial density gradient parameter. A comparative study of the role of density gradient for the generation of ion acoustics wave on the basis of plasma-maser effect is presented. It is found that the density gradient influences the growth rate of ion acoustics wave.
Nemeth, A.A.; Hulscher, S.J.M.H.; Damme, van R.M.J.
2003-01-01
Sand waves form a prominent regular pattern in the offshore seabeds of sandy shallow seas. A two dimensional vertical (2DV) flow and morphological numerical model describing the behaviour of these sand waves has been developed. The model contains the 2DV shallow water equations, with a free water su
Wave groups in uni-directional surface-wave models
Groesen, van E.
1998-01-01
Uni-directional wave models are used to study wave groups that appear in wave tanks of hydrodynamic laboratories; characteristic for waves in such tanks is that the wave length is rather small, comparable to the depth of the layer. In second-order theory, the resulting Nonlinear Schrödinger (NLS) eq
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-07-01
Previous to this project a scale model 1:50 of the wave energy converter (WEC) Wave Dragon was built by the Danish Maritime Institute and tested in a wave tank at Aalborg University (AAU). The test programs investigated the movements of the floating structure, mooring forces and forces in the reflectors. The first test was followed by test establishing the efficiency in different sea states. The scale model has also been extensively tested in the EU Joule Craft project JOR-CT98-7027 (Low-Pressure Turbine and Control Equipment for Wave Energy Converters /Wave Dragon) at University College Cork, Hydraulics and Maritime Research Centre, Ireland. The results of the previous model tests have formed the basis for a redesign of the WEC. In this project a reconstruction of the scale 1:50 model and sequential tests of changes to the model geometry and mass distribution parameters will be performed. AAU will make the modifications to the model based on the revised Loewenmark design and perform the tests in their wave tank. Grid connection requirements have been established. A hydro turbine with no movable parts besides the rotor has been developed and a scale model 1:3.5 tested, with a high efficiency over the whole head range. The turbine itself has possibilities for being used in river systems with low head and variable flow, an area of interest for many countries around the world. Finally, a regulation strategy for the turbines has been developed, which is essential for the future deployment of Wave Dragon.The video includes the following: 1. Title, 2. Introduction of the Wave Dragon, 3. Model test series H, Hs = 3 m, Rc = 3 m, 4. Model test series H, Hs = 5 m, Rc = 4 m, 5. Model test series I, Hs = 7 m, Rc = 1.25 m, 6. Model test series I, Hs = 7 m, Rc = 4 m, 7. Rolling title. On this VCD additional versions of the video can be found in the directory 'addvideo' for playing the video on PC's. These versions are: Model testing of Wave Dragon, DVD version
Energy Technology Data Exchange (ETDEWEB)
Gerlagh, Reyer [University of Manchester, Manchester (United Kingdom); Van der Zwaan, Bob [ECN Policy Studies, Petten (Netherlands)
2009-11-15
This insightful book explores the issue of sustainable development in its more operative and applied sense. Although a great deal of research has addressed potential interpretations and definitions of sustainable development, much of this work is too abstract to offer policy-makers and researchers the feasible and effective guidelines they require. This book redresses the balance. The authors highlight how various indicators and aggregate measures can be included in models that are used for decision-making support and sustainability assessment. They also demonstrate the importance of identifying practical means to assess whether policy proposals, specific decisions or targeted scenarios are sustainable. With discussions of basic concepts relevant to understanding applied sustainability analysis, such as definitions of costs and revenue recycling, this book provides policy-makers, researchers and graduate students with feasible and effective principles for measuring sustainable development.
Numerical modeling of water waves
Lin, Pengzhi
2008-01-01
Modelling large-scale wave fields and their interaction with coastal and offshore structures has become much more feasible over the last two decades with increases in computer speeds. Wave modelling can be viewed as an extension of wave theory, a mature and widely published field, applied to practical engineering through the use of computer tools. Information about the various wave models which have been developed is often widely scattered in the literature, and consequently this is one of the first books devoted to wave models and their applications. At the core of the book is an introduction to various types of wave models. For each model, the theoretical assumptions, the application range, and the advantages and limitations are elaborated. The combined use of different wave models from large-scale to local-scale is highlighted with a detailed discussion of the application and matching of boundary conditions. At the same time the book provides a grounding in hydrodynamics, wave theory, and numerical methods...
Role of fast waves in the central deposition of lower hybrid power
Heikkinen, J. A.; Tala, T. J. J.; Pättikangas, T. J. H.; Piliya, A. D.; Saveliev, A. N.; Karttunen, S. J.
1999-10-01
In tokamaks, lower hybrid (LH) waves are routinely used for current drive and heating of plasmas. The LH waves have two modes of propagation that are called the slow and the fast wave. Usually, the lower hybrid waves are launched as slow waves into a tokamak, but during the propagation part of the wave power can be transformed to fast waves. General characteristics of the mode transformation of slow waves to fast waves are first investigated with a simple quasitoroidal ray-tracing model. Next, the effect of mode transformed LH power on the deposition profiles in a JET-like tokamak is analysed by using the fast ray-tracing code FRTC. When the launched spectrum is at small values of the toroidal refractive index (1.6 icons/Journals/Common/lesssim" ALT="lesssim" ALIGN="TOP"/> nicons/Journals/Common/phi" ALT="phi" ALIGN="TOP"/>0 icons/Journals/Common/lesssim" ALT="lesssim" ALIGN="TOP"/> 2.0), the contribution of the fast wave to the deposited power is found to be significant and responsible for most of the absorption at the centre. When nicons/Journals/Common/phi" ALT="phi" ALIGN="TOP"/>0 is large (nicons/Journals/Common/phi" ALT="phi" ALIGN="TOP"/>0 icons/Journals/Common/gtrsim" ALT="gtrsim" ALIGN="TOP"/> 2.2), the effect of the mode transformed fast waves is small or negligible. At modest central densities (ne0 ~ 0.5 × 1020 m-3), the contribution of the fast wave to the power deposition can be more than 50% in the plasma centre. In consequence, the significant amount of wave energy absorbed in the fast mode must be carefully taken into account in modelling LH current drive experiments in the future. At low central densities (ne0 icons/Journals/Common/lesssim" ALT="lesssim" ALIGN="TOP"/> 0.3 × 1020 m-3), practically no absorption of fast waves occurs.
Stochastic generation of currents by lower-hybrid waves
Energy Technology Data Exchange (ETDEWEB)
Gell, Y.; Nakach, R.
1984-03-01
A scheme for current generation based on a stochastic driving mechanism is proposed. The current in this approach is generated by launching into the plasma two lower-hybrid waves having appropriate different frequencies, wave numbers, and amplitudes. The phase-space analysis of the electron motion in such a configuration reveals the existence of a relatively broad stochastic layer far away from the separatrix, allowing for diffusion in velocity space of high-velocity electrons. The diffusion coefficient of this process is evaluated and the solution of the Fokker-Planck equation for the electron velocity distribution function is used to calculate the current J and the power dissipated P/sub d/ in generating it. A favorable J-to-P/sub d/ ratio for steady-current drive is found.
Chen, Qiang; Chen, Bin
2012-10-01
In this paper, a hybrid electrodynamics and kinetics numerical model based on the finite-difference time-domain method and lattice Boltzmann method is presented for electromagnetic wave propagation in weakly ionized hydrogen plasmas. In this framework, the multicomponent Bhatnagar-Gross-Krook collision model considering both elastic and Coulomb collisions and the multicomponent force model based on the Guo model are introduced, which supply a hyperfine description on the interaction between electromagnetic wave and weakly ionized plasma. Cubic spline interpolation and mean filtering technique are separately introduced to solve the multiscalar problem and enhance the physical quantities, which are polluted by numerical noise. Several simulations have been implemented to validate our model. The numerical results are consistent with a simplified analytical model, which demonstrates that this model can obtain satisfying numerical solutions successfully.
Wave Generation in Physical Models
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...
The effect of lower hybrid waves on JET plasma rotation
Nave, M. F. F.; Kirov, K.; Bernardo, J.; Brix, M.; Ferreira, J.; Giroud, C.; Hawkes, N.; Hellsten, T.; Jonsson, T.; Mailloux, J.; Ongena, J.; Parra, F.; Contributors, JET
2017-03-01
This paper reports on observations of rotation in JET plasmas with lower hybrid current drive. Lower hybrid (LH) has a clear impact on rotation. The changes in core rotation can be either in the co- or counter-current directions. Experimental features that could determine the direction of rotation were investigated. Changes from co- to counter-rotation as the q-profile evolves from above unity to below unity suggests that magnetic shear could be important. However, LH can drive either co- or counter-rotation in discharges with similar magnetic shear and at the same plasma current. It is not clear if a slightly lower density is significant. A power scan at fixed density, shows a lower hybrid power threshold around 3 MW. For smaller LH powers, counter rotation increases with power, while for larger powers a trend towards co-rotation is found. The estimated counter-torque from the LH waves, would not explain the observed angular frequencies, neither would it explain the observation of co-rotation.
Abnormal Waves Modelled as Second-order Conditional Waves
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2005-01-01
The paper presents results for the expected second order short-crested wave conditional of a given wave crest at a specific point in time and space. The analysis is based on the second order Sharma and Dean shallow water wave theory. Numerical results showing the importance of the spectral density......, the water depth and the directional spreading on the conditional mean wave profile are presented. Application of conditional waves to model and explain abnormal waves, e.g. the well-known New Year Wave measured at the Draupner platform January 1st 1995, is discussed. Whereas the wave profile can be modelled...... quite well by the second order conditional wave including directional spreading and finite water depth the probability to encounter such a wave is still, however, extremely rare. The use of the second order conditional wave as initial condition to a fully non-linear three-dimensional analysis...
Near Shore Wave Modeling and applications to wave energy estimation
Zodiatis, G.; Galanis, G.; Hayes, D.; Nikolaidis, A.; Kalogeri, C.; Adam, A.; Kallos, G.; Georgiou, G.
2012-04-01
The estimation of the wave energy potential at the European coastline is receiving increased attention the last years as a result of the adaptation of novel policies in the energy market, the concernsfor global warming and the nuclear energy security problems. Within this framework, numerical wave modeling systems keep a primary role in the accurate description of wave climate and microclimate that is a prerequisite for any wave energy assessment study. In the present work two of the most popular wave models are used for the estimation of the wave parameters at the coastline of Cyprus: The latest parallel version of the wave model WAM (ECMWF version), which employs new parameterization of shallow water effects, and the SWAN model, classically used for near shore wave simulations. The results obtained from the wave models near shores are studied by an energy estimation point of view: The wave parameters that mainly affect the energy temporal and spatial distribution, that is the significant wave height and the mean wave period, are statistically analyzed,focusing onpossible different aspects captured by the two models. Moreover, the wave spectrum distribution prevailing in different areas are discussed contributing, in this way, to the wave energy assessmentin the area. This work is a part of two European projects focusing on the estimation of the wave energy distribution around Europe: The MARINA platform (http://www.marina-platform.info/ index.aspx) and the Ewave (http://www.oceanography.ucy.ac.cy/ewave/) projects.
Fluid and hybrid models for streamers
Bonaventura, Zdeněk
2016-09-01
Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.
Nonlinear lower hybrid modeling in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Napoli, F.; Schettini, G. [Università Roma Tre, Dipartimento di Ingegneria, Roma (Italy); Castaldo, C.; Cesario, R. [Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati (Italy)
2014-02-12
We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.
Modeling fluctuations in scattered waves
Jakeman, E
2006-01-01
Fluctuations in scattered waves limit the performance of imaging and remote sensing systems that operate on all wavelengths of the electromagnetic spectrum. To better understand these fluctuations, Modeling Fluctuations in Scattered Waves provides a practical guide to the phenomenology, mathematics, and simulation of non-Gaussian noise models and discusses how they can be used to characterize the statistics of scattered waves.Through their discussion of mathematical models, the authors demonstrate the development of new sensing techniques as well as offer intelligent choices that can be made for system analysis. Using experimental results and numerical simulation, the book illustrates the properties and applications of these models. The first two chapters introduce statistical tools and the properties of Gaussian noise, including results on phase statistics. The following chapters describe Gaussian processes and the random walk model, address multiple scattering effects and propagation through an extended med...
Direct detection of lower hybrid wave using a reflectometer on Alcator C-Moda)
Shiraiwa, S.; Baek, S.; Dominguez, A.; Marmar, E.; Parker, R.; Kramer, G. J.
2010-10-01
The possibility of directly detecting a density perturbation produced by lower hybrid (LH) waves using a reflectometer is presented. We investigate the microwave scattering of reflectometer probe beams by a model density fluctuation produced by short wavelength LH waves in an Alcator C-Mod experimental condition. In the O-mode case, the maximum response of phase measurement is found to occur when the density perturbation is approximately centimeters in front of the antenna, where Bragg scattering condition is satisfied. In the X-mode case, the phase measurement is predicted to be more sensitive to the density fluctuation close to the cut-off layer. A feasibility test was carried out using a 50 GHz O-mode reflectometer on the Alcator C-Mod tokamak, and positive results including the detection of 4.6 GHz pump wave and parametric decay instabilities were obtained.
Envelope Soliton in Multi-ion Plasma and Ion-Ion Hybrid Wave Excited by Energetic Electron Beam
Institute of Scientific and Technical Information of China (English)
WANG De-Yu; HUANG Guang-Li
2001-01-01
Another envelope soliton event below the H+ gyrofrequency and localized density depletion has been discoveredin the low auroral region (～1760 kin) by the Freja satellite. This envelope soliton has a characteristic frequencyat ～190 Hz, which is also close to the resonance frequency of hydrogen ion-oxygen ion hybrid wave. This event iscorrelated in time with the observations of the sharp increase of the ratio of oxygen ion density to hydrogen andwith the electron energization along the magnetic field. A theoretical model on the ion-ion hybrid wave excitedby an energetic electron beam has also been presented. It is found that the ion-ion hybrid wave is mainly excitedby the Cherenkov instability in the auroral region.
Numerical Modelling of Wave Run-Up: Regular Waves
DEFF Research Database (Denmark)
Ramirez, Jorge; Frigaard, Peter; Andersen, Thomas Lykke;
2011-01-01
Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...
Numerical Modelling of Wave Run-Up: Regular Waves
DEFF Research Database (Denmark)
Ramirez, Jorge; Frigaard, Peter; Andersen, Thomas Lykke
2011-01-01
Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...
Suitability of post-Newtonian/numerical-relativity hybrid waveforms for gravitational wave detectors
Energy Technology Data Exchange (ETDEWEB)
MacDonald, Ilana; Nissanke, Samaya; Pfeiffer, Harald P, E-mail: macdonald@astro.utoronto.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8 (Canada)
2011-07-07
This paper presents a study of the sufficient accuracy of post-Newtonian and numerical relativity waveforms for the most demanding usage case: parameter estimation of strong sources in advanced gravitational wave detectors. For black hole binaries, these detectors require accurate waveform models which can be constructed by fusing an analytical post-Newtonian inspiral waveform with a numerical relativity merger-ringdown waveform. We perform a comprehensive analysis of errors that enter such 'hybrid waveforms'. We find that the post-Newtonian waveform must be aligned with the numerical relativity waveform to exquisite accuracy, about 1/100 of a gravitational wave cycle. Phase errors in the inspiral phase of the numerical relativity simulation must be controlled to {approx}< 0.1 rad. (These numbers apply to moderately optimistic estimates about the number of GW sources; exceptionally strong signals require even smaller errors.) The dominant source of error arises from the inaccuracy of the investigated post-Newtonian Taylor approximants. Using our error criterion, even at 3.5th post-Newtonian order, hybridization has to be performed significantly before the start of the longest currently available numerical waveforms which cover 30 gravitational wave cycles. The current investigation is limited to the equal-mass, zero-spin case and does not take into account calibration errors of the gravitational wave detectors.
Incommensurate Chirality Density Wave Transition in a Hybrid Molecular Framework
Hill, Joshua A.; Christensen, Kirsten E.; Goodwin, Andrew L.
2017-09-01
Using single-crystal x-ray diffraction we characterize the 235 K incommensurate phase transition in the hybrid molecular framework tetraethylammonium silver(I) dicyanoargentate, [NEt4]Ag3(CN )4 . We demonstrate the transition to involve spontaneous resolution of chiral [NEt4]+ conformations, giving rise to a state in which molecular chirality is incommensurately modulated throughout the crystal lattice. We refer to this state as an incommensurate chirality density wave (XDW) phase, which represents a fundamentally new type of chiral symmetry breaking in the solid state. Drawing on parallels to the incommensurate ferroelectric transition of NaNO2 , we suggest the XDW state arises through coupling between acoustic (shear) and molecular rotoinversion modes. Such coupling is symmetry forbidden at the Brillouin zone center but symmetry allowed for small but finite modulation vectors q =[0 ,0 ,qz]* . The importance of long-wavelength chirality modulations in the physics of this hybrid framework may have implications for the generation of mesoscale chiral textures, as required for advanced photonic materials.
Hadron rapidity spectra within a hybrid model
Khvorostukhin, A S
2016-01-01
A 2-stage hybrid model is proposed that joins the fast initial state of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system at the second stage, treated within ideal hydrodynamics. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider under construction in Dubna. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra. However, reproducing proton rapidity spectra, our hybrid model cannot describe the rapidity distributions of pions. The model should be improved by taking into consideration viscosity effects at the hydrodynamical stage of system evolution.
Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere
Wong, H. K.
1995-01-01
DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.
Statistical Model Checking for Stochastic Hybrid Systems
DEFF Research Database (Denmark)
David, Alexandre; Du, Dehui; Larsen, Kim Guldstrand
2012-01-01
This paper presents novel extensions and applications of the UPPAAL-SMC model checker. The extensions allow for statistical model checking of stochastic hybrid systems. We show how our race-based stochastic semantics extends to networks of hybrid systems, and indicate the integration technique ap...
Tango waves in a bidomain model of fertilization calcium waves
Li, Yue-Xian
2003-12-01
Fertilization of an egg cell is marked by one or several Ca 2+ waves that travel across the intra-cellular space, called fertilization Ca 2+ waves. Patterns of Ca 2+ waves observed in mature or immature oocytes include traveling fronts and pulses as well as concentric and spiral waves. These patterns have been studied in other excitable media in physical, chemical, and biological systems. Here, we report the discovery of a new wave phenomenon in the numerical study of a bidomain model of fertilization Ca 2+ waves. This wave is a front that propagates in a back-and-forth manner that resembles the movement of tango dancers, thus is called a tango wave. When the medium is excitable, a forward-moving tango wave can generate traveling pulses that propagate down the space without reversal. The study shows that the occurrence of tango waves is related to spatial inhomogeneity in the local dynamics. This is tested and confirmed by simulating similar waves in a medium with stationary spatial inhomogeneity. Similar waves are also obtained in a FitzHugh-Nagumo system with a linear spatial ramp. In both the bidomain model of Ca 2+ waves and the FitzHugh-Nagumo system, the front is stable when the slope of a linear ramp is large. As the slope decreases beyond a critical value, front oscillations occur. The study shows that tango waves facilitate the dispersion of localized Ca 2+. Key features of the bidomain model underlying the occurrence of tango waves are revealed. These features are commonly found in egg cells of a variety of species. Thus, we predict that tango waves can occur in real egg cells provided that a slowly varying inhomogeneity does occur following the sperm entry. The observation of tango wave-like waves in nemertean worm and ascidian eggs seems to support such a prediction.
An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation
Zhan, Ge
2013-02-19
The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations. © 2013 Sinopec Geophysical Research Institute.
Hybrid neural network models of transducers
Xie, Shilin; Zhang, Xinong; Chen, Shenglai; Zhu, Changchun
2011-10-01
A hybrid neural network (NN) approach is proposed and applied to modeling of transducers in the paper. The modeling procedures are also presented in detail. First, the simulated studies on the modeling of single input-single output and multi input-multi output transducers are conducted respectively by use of the developed hybrid NN scheme. Secondly, the hybrid NN modeling approach is utilized to characterize a six-axis force sensor prototype based on the measured data. The results show that the hybrid NN approach can significantly improve modeling precision in comparison with the conventional modeling method. In addition, the method is superior to NN black-box modeling because the former possesses smaller network scale, higher convergence speed, higher model precision and better generalization performance.
Rogue waves in a wave tank: experiments and modeling
Directory of Open Access Journals (Sweden)
A. Lechuga
2013-07-01
Full Text Available In past decades theoretical studies have been carried out with the double aim of improving the knowledge of rogue wave main characteristics and of attempting to predict its sudden appearance. As an effort on this topic we tried the generation of rogue waves in a water wave tank using a symmetric spectrum (Akhmediev et al., 2011a as input on the wave maker. To go on further the next step has been to apply a theoretical model to the envelope of these waves. After some considerations the best model has been an analogue of the Ginzburg–Landau equation.
Khazanov, G. V.; Boardsen, S.; Krivorutsky, E. N.; Engebretson, M. J.; Sibeck, D.; Chen, S.; Breneman, A.
2017-01-01
We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of 0.86. We assume that the correlation is the result of LHFR wave generation by the ions' polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD) parallel and perpendicular to the ambient magnetic field to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions' polarization drift in the electric field of an EMIC wave.
Wave Numerical Model for Shallow Water
Institute of Scientific and Technical Information of China (English)
徐福敏; 严以新; 张长宽; 宋志尧; 茅丽华
2000-01-01
The history of forecasting wind waves by wave energy conservation equation is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave energy conservation models for the simulation of shallow water waves are introduced,with emphasis placed on the SWAN model, which takes use of the most advanced wave research achievements and has been applied to several theoretical and field conditions. The characteristics and applicability of the model, the finite difference numerical scheme of the action balance equation and its source terms computing methods are described in detail. The model has been verified with the propagation refraction numerical experiments for waves propagating in following and opposing currents; finally, the model is applied to the Haian Gulf area to simulate the wave height and wave period field there, and the results are compared with observed data.
Khazanov, G. V.
2004-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
Evaluating the Pedagogical Potential of Hybrid Models
Levin, Tzur; Levin, Ilya
2013-01-01
The paper examines how the use of hybrid models--that consist of the interacting continuous and discrete processes--may assist in teaching system thinking. We report an experiment in which undergraduate students were asked to choose between a hybrid and a continuous solution for a number of control problems. A correlation has been found between…
Harmonious Unifying Hybrid Preferential Supernetwork Model
Institute of Scientific and Technical Information of China (English)
LIU; Qiang; FANG; Jin-qing; LI; Yong
2015-01-01
The basic concepts and methods for harmonious unifying hybrid preferential model(HUHPM)are based on random preferential attachment(RPA)mixed with deterministic preferential attachment(DPA),so there is only one unified hybrid ratio dr,which is defined as:
Towards Modelling of Hybrid Systems
DEFF Research Database (Denmark)
Wisniewski, Rafal
2006-01-01
The article is an attempt to use methods of category theory and topology for analysis of hybrid systems. We use the notion of a directed topological space; it is a topological space together with a set of privileged paths. Dynamical systems are examples of directed topological spaces. A hybrid...... system consists of a number of dynamical systems that are glued together according to information encoded in the discrete part of the system. We develop a definition of a hybrid system as a functor from the category generated by a transition system to the category of directed topological spaces. Its...... directed homotopy colimit (geometric realization) is a single directed topological space. The behavior of hybrid systems can be then understood in terms of the behavior of dynamical systems through the directed homotopy colimit....
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
This paper represents an attempt to apply extensions of a hybrid transfinite element computational approach for accurately predicting thermoelastic stress waves. The applicability of the present formulations for capturing the thermal stress waves induced by boundary heating for the well known Danilovskaya problems is demonstrated. A unique feature of the proposed formulations for applicability to the Danilovskaya problem of thermal stress waves in elastic solids lies in the hybrid nature of the unified formulations and the development of special purpose transfinite elements in conjunction with the classical Galerkin techniques and transformation concepts. Numerical test cases validate the applicability and superior capability to capture the thermal stress waves induced due to boundary heating.
Hybrid metal-dielectric, slow wave structure with magnetic coupling and compensation
Energy Technology Data Exchange (ETDEWEB)
Smirnov, A.V., E-mail: asmirnov@radiabeam.com [RadiaBeam Systems LLC, 1713 Stewart St., Santa Monica, CA 90404 (United States); Savin, E. [RadiaBeam Systems LLC, 1713 Stewart St., Santa Monica, CA 90404 (United States); National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)
2016-06-01
A number of electron beam vacuum devices such as small radiofrequency (RF) linear accelerators (linacs) and microwave traveling wave tubes (TWTs) utilize slow wave structures which are usually rather complicated in production and may require multi-step brazing and time consuming tuning. Fabrication of these devices becomes challenging at centimeter wavelengths, at large number of cells, and when a series or mass production of such structures is required. A hybrid, metal-dielectric, periodic structure for low gradient, low beam current applications is introduced here as a modification of Andreev’s disk-and-washer (DaW) structure. Compensated type of coupling between even and odd TE01 modes in the novel structure results in negative group velocity with absolute values as high as 0.1c–0.2c demonstrated in simulations. Sensitivity to material imperfections and electrodynamic parameters of the disk-and-ring (DaR) structure are considered numerically using a single cell model.
Directory of Open Access Journals (Sweden)
J. O. Hall
2009-03-01
Full Text Available We investigate the possibility that lower-hybrid solitary structures (LHSS, which are frequently observed in the Earth's ionosphere and magnetosphere, are formed as a result of a modulational interaction between lower-hybrid and dispersive Alfvén waves of initially small amplitude. A large amplitude lower-hybrid pump wave can excite density structures with length scales transverse to the geomagnetic field of the order of the ion gyroradius via a modulational instability. The structure formation in the nonlinear stage of the instability is investigated by numerical solutions of the governing equations, using plasma parameters relevant for LHSS observations in the upper ionosphere and in the magnetosphere. The numerical solutions reveal that the lower-hybrid waves become self-localized inside cylindrically symmetric (with respect to the ambient magnetic field density cavities, in qualitative agreement with observations. Our model includes thermal electron effects but shows no stabilization at the ion sound gyroradius, suggesting that any preference of observed LHSS for that perpendicular scale likely is due to processes arresting the cavity collapse.
Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard
2013-01-01
Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.
DEFF Research Database (Denmark)
Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin;
2014-01-01
Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramodal...
Modeling hybrid perovskites by molecular dynamics.
Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia
2017-02-01
The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.
Modeling hybrid perovskites by molecular dynamics
Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia
2017-02-01
The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.
Improvements on Mean Free Wave Surface Modeling
Institute of Scientific and Technical Information of China (English)
董国海; 滕斌; 程亮
2002-01-01
Some new results of the modeling of mean free surface of waves or wave set-up are presented. The stream function wave theory is applied to incident short waves. The limiting wave steepness is adopted as the wave breaker index in the calculation of wave breaking dissipation. The model is based on Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF) method (Watson et al., 1992), with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave set-up. The short wave (or incident primary wave) energy equation issolved by use of a traditional Lax-Wendroff technique. The present model is found to be satisfactory compared with the measurements conducted by Stive (1983).
Bounds, S. R.; Kletzing, C. A.; Labelle, J. W.; Samara, M.; Yoon, P. H.
2005-12-01
In January of 2003, the High Bandwidth Auroral Rocket (HIBAR) passed through two regions of strong upper hybrid wave emission associated with the approximate matching of the upper hybrid frequency to twice the electron cyclotron frequency (fuh = 2 fce) (Samara 2004) These types of emission are believed to be the source of the HF auroral roar often observed by ground based receivers. The current model theorizes that the free space 0-mode waves observed on the ground are produced through mode conversion of strong emission of Z-mode, or upper hybrid waves. The relativistic electron cyclotron maser exhibits significant growth rates for the Z-mode when the local upper hybrid frequency is just below (~1%) twice the electron cyclotron frequency and with the appropriately unstable electron distribution (Yoon 1996, Yoon 1998, Yoon 2000). Though auroral roar is frequently observed from the ground, the source region has rarely been identified in-situ and even more rarely with sufficient bandwidth to analyze the underlying physical processes. Analysis of the electron distributions from HIBAR show good agreement with the theoretical distributions used by Yoon:98. HIBAR encountered three separate regions where fuh ≍ 2 fce, two of these regions include strong upper hybrid emission, while the third is void of upper hybrid wave activity. The measured particle distributions demonstrate that, in the two regions with wave emission, the relativistic electron cyclotron maser instability produces Z mode wave growth rates at least an order of magnitude greater than the electron collision frequency. In the third region without wave emission, the growth rates are much smaller in both amplitude and the extent of occurance. Samara, M., J. LaBelle, C. A. Kletzing, and S. R. Bounds, Rocket observations of structured upper hybrid wave at fuh=2fce, Geophys. Res. Lett., 31, L22804, doi:10.1029/2004GL021043. Yoon, P. H., A. T. Weatherwax, and T. J. Rosenberg, Lower ionospheric cyclotron maser
DEFF Research Database (Denmark)
Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard
2013-01-01
Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.......Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process....
Polarization switch of four-wave mixing in large mode area hybrid photonic crystal fibers
DEFF Research Database (Denmark)
Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin;
2015-01-01
Degenerate spontaneous four-wave mixing is considered in a large mode area hybrid photonic crystal fiber. Numerical and experimental results show birefringence assisted four-wave mixing for a certain polarization state of the pump field. The parametric gain can be turned on and off by switching...... the polarization state of the pump field between the two principal axis of the hybrid photonic crystal fiber. (C) 2015 Optical Society of America...
Polarization switch of four-wave mixing in large mode area hybrid photonic crystal fibers.
Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper
2015-02-15
Degenerate spontaneous four-wave mixing is considered in a large mode area hybrid photonic crystal fiber. Numerical and experimental results show birefringence assisted four-wave mixing for a certain polarization state of the pump field. The parametric gain can be turned on and off by switching the polarization state of the pump field between the two principal axis of the hybrid photonic crystal fiber.
A Wave Modulation Model of Ripples over Long Surface Waves
Institute of Scientific and Technical Information of China (English)
CONG Peixiu; ZHENG Guizhen
2011-01-01
A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modulation model is proposed. In this model, the wind surface stress modulation is related to the modulation of tipple spectrum. The model results show that in the case of LW propagating in the wind direction with the wave age parameter of LW increasing, the area with enhanced shear stress shifts from the region near the LW crest on the upwind slope to the LW trough. With a smaller wave age parameter of LW, the tipple modulation has the maximum on the upwind slope in the vicinity of LW crest, while with a larger parameter the enhancement of ripple spectrum does not occur in that region. At low winds the amplitude of ripple modulation transfer function (MTF) is larger in the gravity wave range, while at moderate or high winds it changes little in the range from short gravity waves to capillary waves.
A LINEAR HYBRID MODEL OF MSE AND BEM FOR FLOATING STRUCTURES IN COASTAL ZONES
Institute of Scientific and Technical Information of China (English)
ZHANG Jun; MIAO Guo-ping
2006-01-01
A linear hybrid model of Mild Slope Equation (MSE) and Boundary Element Method (BEM) is developed to study the wave propagation around floating structures in coastal zones. Both the wave refraction under the influence of topography and the wave diffraction by floating structures are considered. Hence, the model provides wave properties around the coastal floating structures of arbitrary shape but also the wave forces on and the hydrodynamic characteristics of the structures. Different approaches are compared to demonstrate the validity of the present hybrid model. Several numerical tests are carried out for the cases of pontoons under different circumstances. The results show that the influence of topography on the hydrodynamic characteristics of floating structures in coastal regions is important and must not be ignored in the most wave period range with practical interests.
HYbrid Coordinate Ocean Model (HYCOM): Global
National Oceanic and Atmospheric Administration, Department of Commerce — Global HYbrid Coordinate Ocean Model (HYCOM) and U.S. Navy Coupled Ocean Data Assimilation (NCODA) 3-day, daily forecast at approximately 9-km (1/12-degree)...
Boltzmann Transport in Hybrid PIC HET Modeling
2015-07-01
Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Boltzmann transport in hybrid PIC HET modeling 5a. CONTRACT NUMBER In...produced a variety of self-consistent electron swarm codes, such as the Magboltz code, focused on directly solving the steady Boltzmann trans-port...Std. 239.18 Boltzmann transport in hybrid PIC HET modeling IEPC-2015- /ISTS-2015-b- Presented at Joint Conference of 30th International
Statistical Model Checking for Stochastic Hybrid Systems
DEFF Research Database (Denmark)
David, Alexandre; Du, Dehui; Larsen, Kim Guldstrand
2012-01-01
This paper presents novel extensions and applications of the UPPAAL-SMC model checker. The extensions allow for statistical model checking of stochastic hybrid systems. We show how our race-based stochastic semantics extends to networks of hybrid systems, and indicate the integration technique...... applied for implementing this semantics in the UPPAAL-SMC simulation engine. We report on two applications of the resulting tool-set coming from systems biology and energy aware buildings....
Overview of Wave to Wire Models
DEFF Research Database (Denmark)
Nielsen, Kim; Kramer, Morten Mejlhede; Ferri, Francesco
A “Wave to Wire” (W2W) model is a numerical tool that can calculate the power output from a specified Wave Energy Converter (WEC), under specified ocean wave conditions. The tool can be used to assess and optimize the performance of a Wave Energy Converter (WEC) design and provide knowledge of th...
Full Wave Simulation of Integrated Circuits Using Hybrid Numerical Methods
Tan, Jilin
Transmission lines play an important role in digital electronics, and in microwave and millimeter-wave circuits. Analysis, modeling, and design of transmission lines are critical to the development of the circuitry in the chip, subsystem, and system levels. In the past several decays, at the EM modeling level, the quasi-static approximation has been widely used due to its great simplicity. As the clock rates increase, the inter-connect effects such as signal delay, distortion, dispersion, reflection, and crosstalk, limit the performance of microwave systems. Meanwhile, the quasi-static approach loses its validity for some complex system structures. Since the successful system design of the PCB, MCM, and the chip packaging, rely very much on the computer aided EM level modeling and simulation, many new methods have been developed, such as the full wave approach, to guarantee the successful design. Many difficulties exist in the rigorous EM level analysis. Some of these include the difficulties in describing the behavior of the conductors with finite thickness and finite conductivity, the field singularity, and the arbitrary multilayered multi-transmission lines structures. This dissertation concentrates on the full wave study of the multi-conductor transmission lines with finite conductivity and finite thickness buried in an arbitrary lossy multilayered environment. Two general approaches have been developed. The first one is the integral equation method in which the dyadic Green's function for arbitrary layered media has been correctly formulated and has been tested both analytically and numerically. By applying this method, the double layered high dielectric permitivitty problem and the heavy dielectrical lossy problem in multilayered media in the CMOS circuit design have been solved. The second approach is the edge element method. In this study, the correct functional for the two dimensional propagation problem has been successfully constructed in a rigorous way
Shinya, T.; Baek, S. G.; Wallace, G. M.; Parker, R. R.; Shiraiwa, S.; Takase, Y.
2016-10-01
Experimental characterization of the lower hybrid (LH) wave propagation from the launcher to the core plasma is important to validate an antenna spectrum model and to identify parasitic wave-edge plasma interactions occurring in front of the launcher. On Alcator C-Mod, the wave frequency spectrum and dominant parallel wavenumber are characterized with two probe arrays installed near the edge plasma. The first one is mounted on a radially movable structure that is about 108 deg toroidally away from the launcher. A phasing scan experiment at moderate density suggests a resonance-cone propagation of the launched slow LH wave with a finite spectral width. As plasma density is raised, the measured power decreases, correlated with the observed loss of efficiency. Recently, the second probe array with an increased number of probes has been installed on a limiter that is 54 deg. toroidally away from the launcher, which is expected to be dominantly sensitive to the wave-field directly leaving the launcher. An initial measurement shows that the probe array detects a coherent wave field. A full-wave model to evaluate the wave electric-field pattern in front of the probe array is under development. If available, further experimental and modeling results will be presented. Supported by USDoE Award(s) DE-FC02-99ER54512 and Japan/U.S. Cooperation in Fusion Research and Development.
Kasimov, Aslan R.
2013-03-08
We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.
Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.
1980-01-01
Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.
Dispersive internal long wave models
Energy Technology Data Exchange (ETDEWEB)
Camassa, R.; Choi, W.; Holm, D.D. [Los Alamos National Lab., NM (United States); Levermore, C.D.; Lvov, Y. [Univ. of Arizona, Tucson, AZ (United States)
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This work is a joint analytical and numerical study of internal dispersive water wave propagation in a stratified two-layer fluid, a problem that has important geophysical fluid dynamics applications. Two-layer models can capture the main density-dependent effects because they can support, unlike homogeneous fluid models, the observed large amplitude internal wave motion at the interface between layers. The authors have derived new model equations using multiscale asymptotics in combination with the method they have developed for vertically averaging velocity and vorticity fields across fluid layers within the original Euler equations. The authors have found new exact conservation laws for layer-mean vorticity that have exact counterparts in the models. With this approach, they have derived a class of equations that retain the full nonlinearity of the original Euler equations while preserving the simplicity of known weakly nonlinear models, thus providing the theoretical foundation for experimental results so far unexplained.
Evolution of Wave Energy Deposition Profile in HT-7 Lower Hybrid Current Drive Experiment
Institute of Scientific and Technical Information of China (English)
方瑜德; 石跃江; 匡光力; 刘岳修; 沈慰慈; 丁伯江
2001-01-01
Lower hybrid waves (LHWs) with a selected n‖ spectrum have been used to control the energy deposition profiles, and then the wave driven current profiles effectively in tokamak discharges. In our lower hybrid current drive experiment in the HT-7 tokamak, it was found that the set-up of the wave energy deposition profile is a graduation process. In the beginning phase of the wave injection duration, the waves (with different n‖ spectra)deposit almost all their energy in the central region of the plasma column, even if their n‖ are very different. Up to around one hundred milliseconds, the wave energy deposition profiles can only take their corresponding shapes according to the n‖ spectra of LHWs. It also shown that this evolution process is affected obviously by the LHW driven current profile, which has been formed early.
A Mathematical Model for Suppression Subtractive Hybridization
2002-01-01
Suppression subtractive hybridization (SSH) is frequently used to unearth differentially expressed genes on a whole-genome scale. Its versatility is based on combining cDNA library subtraction and normalization, which allows the isolation of sequences of varying degrees of abundance and differential expression. SSH is a complex process with many adjustable parameters that affect the outcome of gene isolation.We present a mathematical model of SSH based on DNA hybridization kinetics for assess...
A hybrid stimulation strategy for suppression of spiral waves in cardiac tissue
Energy Technology Data Exchange (ETDEWEB)
Xu Binbin, E-mail: xubinbin@hotmail.fr [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France); Jacquir, Sabir, E-mail: sjacquir@u-bourgogne.fr [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France); Laurent, Gabriel; Bilbault, Jean-Marie [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France); Binczak, Stephane, E-mail: stbinc@u-bourgogne.fr [LE2I, CNRS UMR 5158, Universite de Bourgogne, Dijon (France)
2011-08-15
Highlights: > Simulation of a cardiac tissue by a modified 2D FitzHugh-Nagumo model. > Stimulation of monophasic impulsions from a grid of electrodes to the cardiac tissue. > Propose a method by modifying the tissue's sodium channels and electrical stimulation. > The method leading to suppress spiral waves without generating new ones. > Optimal parameters of a successful suppression of spiral waves are investigated. - Abstract: Atrial fibrillation (AF) is the most common cardiac arrhythmia whose mechanisms are thought to be mainly due to the self perpetuation of spiral waves (SW). To date, available treatment strategies (antiarrhythmic drugs, radiofrequency ablation of the substrate, electrical cardioversion) to restore and to maintain a normal sinus rhythm have limitations and are associated with AF recurrences. The aim of this study was to assess a way of suppressing SW by applying multifocal electrical stimulations in a simulated cardiac tissue using a 2D FitzHugh-Nagumo model specially convenient for AF investigations. We identified stimulation parameters for successful termination of SW. However, SW reinduction, following the electrical stimuli, leads us to develop a hybrid strategy based on sodium channel modification for the simulated tissue.
Numerical Modelling of Wave Run-Up
DEFF Research Database (Denmark)
Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke;
2011-01-01
Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...
Numerical Modelling of Wave Run-Up
DEFF Research Database (Denmark)
Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke
2011-01-01
Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...
A Hybrid 3D Indoor Space Model
Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel
2016-10-01
GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.
A Hybrid 3D Indoor Space Model
Directory of Open Access Journals (Sweden)
A. Jamali
2016-10-01
Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.
Chemical-reaction model for Mexican wave
Nagatani, Takashi
2003-05-01
We present a chemical-reaction model to describe the Mexican wave ( La Ola) in football stadia. The spectator's action is described in terms of chemical reactions. The model is governed by three reaction rates k 1, k 2, and k3. We study the nonlinear waves on one- and two-dimensional lattices. The Mexican wave is formulated as a clockwise forwardly propagating wave. Waves are growing or disappear, depending on the values of reaction rates. In the specific case of k1= k2= k3=1, the nonlinear-wave equation produces a propagating pulse like soliton.
Wave chaotic experiments and models for complicated wave scattering systems
Yeh, Jen-Hao
Wave scattering in a complicated environment is a common challenge in many engineering fields because the complexity makes exact solutions impractical to find, and the sensitivity to detail in the short-wavelength limit makes a numerical solution relevant only to a specific realization. On the other hand, wave chaos offers a statistical approach to understand the properties of complicated wave systems through the use of random matrix theory (RMT). A bridge between the theory and practical applications is the random coupling model (RCM) which connects the universal features predicted by RMT and the specific details of a real wave scattering system. The RCM gives a complete model for many wave properties and is beneficial for many physical and engineering fields that involve complicated wave scattering systems. One major contribution of this dissertation is that I have utilized three microwave systems to thoroughly test the RCM in complicated wave systems with varied loss, including a cryogenic system with a superconducting microwave cavity for testing the extremely-low-loss case. I have also experimentally tested an extension of the RCM that includes short-orbit corrections. Another novel result is development of a complete model based on the RCM for the fading phenomenon extensively studied in the wireless communication fields. This fading model encompasses the traditional fading models as its high-loss limit case and further predicts the fading statistics in the low-loss limit. This model provides the first physical explanation for the fitting parameters used in fading models. I have also applied the RCM to additional experimental wave properties of a complicated wave system, such as the impedance matrix, the scattering matrix, the variance ratio, and the thermopower. These predictions are significant for nuclear scattering, atomic physics, quantum transport in condensed matter systems, electromagnetics, acoustics, geophysics, etc.
Modeling water waves beyond perturbations
Clamond, Didier
2015-01-01
In this chapter, we illustrate the advantage of variational principles for modeling water waves from an elementary practical viewpoint. The method is based on a `relaxed' variational principle, i.e., on a Lagrangian involving as many variables as possible, and imposing some suitable subordinate constraints. This approach allows the construction of approximations without necessarily relying on a small parameter. This is illustrated via simple examples, namely the Serre equations in shallow water, a generalization of the Klein-Gordon equation in deep water and how to unify these equations in arbitrary depth. The chapter ends with a discussion and caution on how this approach should be used in practice.
Hybrid simulation models of production networks
Kouikoglou, Vassilis S
2001-01-01
This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.
Hybrid Models in Loop Quantum Cosmology
Navascués, B Elizaga; Marugán, G A Mena
2016-01-01
In the framework of Loop Quantum Cosmology, inhomogeneous models are usually quantized by means of a hybrid approach that combines loop quantization techniques with standard quantum field theory methods. This approach is based on a splitting of the phase space in a homogeneous sector, formed by global, zero-modes, and an inhomogeneous sector, formed by the remaining, infinite number of modes, that describe the local degrees of freedom. Then, the hybrid quantization is attained by adopting a loop representation for the homogeneous gravitational sector, while a Fock representation is used for the inhomogeneities. The zero-mode of the Hamiltonian constraint operator couples the homogeneous and inhomogeneous sectors. The hybrid approach, therefore, is expected to provide a suitable quantum theory in regimes where the main quantum effects of the geometry are those affecting the zero-modes, while the inhomogeneities, still being quantum, can be treated in a more conventional way. This hybrid strategy was first prop...
Hybrid modelling of anaerobic wastewater treatment processes.
Karama, A; Bernard, O; Genovesi, A; Dochain, D; Benhammou, A; Steyer, J P
2001-01-01
This paper presents a hybrid approach for the modelling of an anaerobic digestion process. The hybrid model combines a feed-forward network, describing the bacterial kinetics, and the a priori knowledge based on the mass balances of the process components. We have considered an architecture which incorporates the neural network as a static model of unmeasured process parameters (kinetic growth rate) and an integrator for the dynamic representation of the process using a set of dynamic differential equations. The paper contains a description of the neural network component training procedure. The performance of this approach is illustrated with experimental data.
Hybrid Modeling of Plasma Discharges
2010-04-01
kinetics. The same cellular structure resulting from a highly exothermic detonation wave can be observed in an endothermic system. In a detonation system...length is 2 cm (dashed line in bottom figure). Note that a better agreement could be obtained with a better definition of the induction length...node position. The weighting function evaluated at the node position itself is of course 1; after using the definition of the centroid, (8-13
Verification of A Numerical Harbour Wave Model
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A numerical model for wave propagation in a harbour is verified by use of physical models. The extended time-dependent mild slope equation is employed as the governing equation, and the model is solved by use of ADI method containing the relaxation factor. Firstly, the reflection coefficient of waves in front of rubble-mound breakwaters under oblique incident waves is determined through physical model tests, and it is regarded as the basis for simulating partial reflection boundaries of the numerical model. Then model tests on refraction, diffraction and reflection of waves in a harbour are performed to measure wave height distribution. Comparative results between physical and numerical model tests show that the present numerical model can satisfactorily simulate the propagation of regular and irregular waves in a harbour with complex topography and boundary conditions.
Alpha Channeling with High-field Launch of Lower Hybrid Waves
Ochs, Ian E; Fisch, Nathaniel J
2015-01-01
Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high- field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and density regime consistent with a hot-ion-mode fusion reactor. These simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.
SDN Controlled mmWave Massive MIMO Hybrid Precoding for 5G Heterogeneous Mobile Systems
Directory of Open Access Journals (Sweden)
Na Chen
2016-01-01
Full Text Available In 5G mobile network, millimeter wave (mmWave and heterogeneous networks (Hetnets are significant techniques to sustain coverage and spectral efficiency. In this paper, we utilize the hybrid precoding to overcome hardware constraints on the analog-only beamforming in mmWave systems. Particularly, we identify the complicated antenna coordination and vast spatial domain information as the outstanding challenges in mmWave Hetnets. In our work, we employ software defined network (SDN to accomplish radio resource management (RRM and achieve flexible spacial coordination in mmWave Hetnets. In our proposed scheme, SDN controller is responsible for collecting the user channel state information (CSI and applying hybrid precoding based on the calculated null-space of victim users. Simulation results show that our design can effectively reduce the interference to victim users and support high quality of service.
Interaction between the lower hybrid wave and density fluctuations in the scrape-off layer
Energy Technology Data Exchange (ETDEWEB)
Peysson, Y., E-mail: yves.peysson@cea.fr [CEA, IRFM, 13108 Saint Paul-lez-Durance (France); Madi, M.; Kabalan, K. [AUB, Bliss Street (Lebanon); Decker, J. [EPFL, CRPP (Switzerland)
2015-12-10
In the present paper, the perturbation of the launched power spectrum of the Lower Hybrid wave at the separatrix by electron density fluctuations in the scrape-off layer is investigated. Considering a slab geometry with magnetic field lines parallel to the toroidal direction, the full wave equation is solved using Comsol Multiphysics® for a fully active multi-junction like LH antenna made of two modules. When electron density fluctuations are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, it is shown that the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the wave propagates. The diffraction effect leads to the appearance of multiple satellite lobes with randomly varying positions, a feature consistent with the recently developed model that has been applied successfully to high density discharges on the Tokamak Tore Supra corresponding to the large spectral gap regime [Decker J. et al. Phys. Plasma 21 (2014) 092504]. The perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength.
Multiobjective muffler shape optimization with hybrid acoustics modeling.
Airaksinen, Tuomas; Heikkola, Erkki
2011-09-01
This paper considers the combined use of a hybrid numerical method for the modeling of acoustic mufflers and a genetic algorithm for multiobjective optimization. The hybrid numerical method provides accurate modeling of sound propagation in uniform waveguides with non-uniform obstructions. It is based on coupling a wave based modal solution in the uniform sections of the waveguide to a finite element solution in the non-uniform component. Finite element method provides flexible modeling of complicated geometries, varying material parameters, and boundary conditions, while the wave based solution leads to accurate treatment of non-reflecting boundaries and straightforward computation of the transmission loss (TL) of the muffler. The goal of optimization is to maximize TL at multiple frequency ranges simultaneously by adjusting chosen shape parameters of the muffler. This task is formulated as a multiobjective optimization problem with the objectives depending on the solution of the simulation model. NSGA-II genetic algorithm is used for solving the multiobjective optimization problem. Genetic algorithms can be easily combined with different simulation methods, and they are not sensitive to the smoothness properties of the objective functions. Numerical experiments demonstrate the accuracy and feasibility of the model-based optimization method in muffler design.
Weather forecasting based on hybrid neural model
Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.
2017-02-01
Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.
MODA - A hybrid atmospheric pollutant dispersion model
Energy Technology Data Exchange (ETDEWEB)
Favaron, M.; Oliveti Selmi, O. [Servizi Territorio srl, Milan (Italy); Sozzi, R. [Agenzia Regionale Protezione Ambiente (ARPA) Lazio, Rieti (Italy)
2004-07-01
MODA is a Gaussian-hybrid atmospheric dispersion model, intended for regulatory applications, and designed to meet the following requirements: ability to operate in complex terrain, standard use of a refined description of turbulence, operational efficiency (in terms of both speed and ease to change simulation parameters), ease of integration in modelling interfaces, output compatibility with the widely-used ISC3. MODA can operate in two modes: a standard mode, in which the pollutant dispersion is treated as Gaussian, and an advanced mode, in which the hybrid relations are used to compute the pollutant concentrations. (orig.)
Parametric decay of plasma waves near the upper-hybrid resonance
Dodin, I. Y.; Arefiev, A. V.
2017-03-01
An intense X wave propagating perpendicularly to dc magnetic field is unstable with respect to a parametric decay into an electron Bernstein wave and a lower-hybrid wave. A modified theory of this effect is proposed that extends to the high-intensity regime, where the instability rate γ ceases to be a linear function of the incident-wave amplitude. An explicit formula for γ is derived and expressed in terms of cold-plasma parameters. Theory predictions are in reasonable agreement with the results of the particle-in-cell simulations presented in a separate publication.
Li, Jian-Bo; He, Meng-Dong; Chen, Li-Qun
2014-10-06
We study theoretically four-wave parametric amplification arising from the nonlinear optical response of hybrid molecules composed of semiconductor quantum dots and metallic nanoparticles. It is shown that highly efficient four-wave parametric amplification can be achieved by adjusting the frequency and intensity of the pump field and the distance between the quantum dot and the metallic nanoparticle. Specifically, the induced probe-wave gain is tunable in a large range from 1 to 1.43 × 10⁵. This gain reaches its maximum at the position of three-photon resonance. Our findings hold great promise for developing four-wave parametric oscillators.
Institute of Scientific and Technical Information of China (English)
伍细如
2015-01-01
proton emits energy wave, electron could sits any position away from nucleus, but be the most stable just when it sits at the trough of energy wave, and this position accords with Bohr radius and Schr?dinger equation.
Modeling Water Waves with Smoothed Particle Hydrodynamics
2013-09-30
flows, such as undertow, longshore currents, and rip currents. APPROACH The approach is based on improving various aspects of the SPH code ...Smoothed Particle Hydrodynamics ( SPH ) is a meshless numerical method that is being developed for the study of nearshore waves and other Navy needs. The...Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes
A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics
Told, Daniel; Astfalk, Patrick; Jenko, Frank
2016-01-01
A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm's law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.
Interaction of runaway electrons with lower hybrid waves via anomalous Doppler broadening
Martín-Solís, J. R.; Sánchez, R.; Esposito, B.
2002-05-01
Due to the relativistic decrease of the electron cyclotron frequency, a cyclotron resonance may appear between runaway electrons and lower hybrid waves. A single particle description of the runaway dynamics [J. R. Martín-Solís et al., Phys. Plasmas 5, 2370 (1998)] is extended to analyze the effect of the interaction of runaway electrons with lower hybrid waves via anomalous Doppler broadening. The conditions under which the resonant interaction can play a role in limiting the runaway energy are established and it is shown that, under typical lower hybrid current drive operation parameters, an efficient wave-particle coupling may occur. Observations of a fast pitch angle scattering event during the current decay phase of Ohmic discharges in the Toroidal Experiment for Technically Oriented Research (TEXTOR) [R. J. E. Jaspers, Ph.D. thesis, Technical University Eindhoven (1995)] are interpreted in terms of such interaction.
Modelling and Simulation of Wave Loads
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...... velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results...
Modelling and Simulation of Wave Loads
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
1985-01-01
A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...... velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results...
SCAN-based hybrid and double-hybrid density functionals from models without fitted parameters
Hui, Kerwin; Chai, Jeng-Da
2015-01-01
By incorporating the nonempirical SCAN semilocal density functional [Sun, Ruzsinszky, and Perdew, Phys. Rev. Lett. 115, 036402 (2015)] in the underlying expression of four existing hybrid and double-hybrid models, we propose one hybrid (SCAN0) and three double-hybrid (SCAN0-DH, SCAN-QIDH, and SCAN0-2) density functionals, which are free from any fitted parameters. The SCAN-based double-hybrid functionals consistently outperform their parent SCAN semilocal functional for self-interaction probl...
Hybrid models in loop quantum cosmology
Elizaga Navascués, Beatriz; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.
2016-06-01
In the framework of Loop Quantum Cosmology (LQC), inhomogeneous models are usually quantized by means of a hybrid approach that combines loop quantization techniques with standard quantum field theory methods. This approach is based on a splitting of the phase space in a homogeneous sector, formed by global, zero-modes and an inhomogeneous sector, formed by the remaining, infinite number of modes, that describe the local degrees of freedom. Then, the hybrid quantization is attained by adopting a loop representation for the homogeneous gravitational sector, while a Fock representation is used for the inhomogeneities. The zero-mode of the Hamiltonian constraint operator couples the homogeneous and inhomogeneous sectors. The hybrid approach, therefore, is expected to provide a suitable quantum theory in regimes where the main quantum effects of the geometry are those affecting the zero-modes, while the inhomogeneities, still being quantum, can be treated in a more conventional way. This hybrid strategy was first proposed for the simplest cosmological midisuperspaces: the Gowdy models, and it has been later applied to the case of cosmological perturbations. This paper reviews the construction and main applications of hybrid LQC.
Hybrid quantum teleportation: A theoretical model
Energy Technology Data Exchange (ETDEWEB)
Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2014-12-04
Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.
A hybrid continuous-wave terahertz imaging system
Energy Technology Data Exchange (ETDEWEB)
Dolganova, Irina N., E-mail: in.dolganova@gmail.com; Zaytsev, Kirill I., E-mail: kirzay@gmail.ru; Metelkina, Anna A.; Karasik, Valeriy E.; Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru [Bauman Moscow State Technical University, 2nd Baumanskaya str. 5, Moscow 105005 (Russian Federation)
2015-11-15
A hybrid (active-passive mode) terahertz (THz) imaging system and an algorithm for imaging synthesis are proposed to enhance the THz image quality. The concept of image contrast is used to compare active and passive THz imaging. Combining the measurement of the self-emitted radiation of the object with the back-scattered source radiation measurement, it becomes possible to use the THz image to retrieve maximum information about the object. The experimental results confirm the advantages of hybrid THz imaging systems, which can be generalized for a wide range of applications in the material sciences, chemical physics, bio-systems, etc.
Transverse ion acceleration by localized lower hybrid waves in the topside auroral ionosphere
Energy Technology Data Exchange (ETDEWEB)
Vago, J.L.
1992-01-01
Up to now, observations had been unable to show conclusively a one-to-one correspondence between perpendicular ion acceleration and a particular type of plasma wave within the O(+) source region below 2000 km. In this thesis, the author demonstrates that intense (100-300 mV/m) lower hybrid waves are responsible for transversely accelerating H(+) and O(+) ions to characteristic energies of up to 6 eV. This wave-particle interaction takes place in thin filamentary density cavities oriented along geomagnetic field lines. The measurements discussed were conducted in the nightside auroral zone at altitudes between 500 km and 1100 km. The results are consistent with theories of lower hybrid wave condensation and collapse.
Transverse ion acceleration by localized lower hybrid waves in the topside auroral ionosphere
Energy Technology Data Exchange (ETDEWEB)
Vago, J.L.; Kintner, P.M.; Chesney, S.W.; Arnoldy, R.L.; Lynch, K.A.; Moore, T.E.; Pollock, C.J. (Cornell Univ., Ithaca, NY (United States) New Hampshire Univ., Durham (United States) NASA, Marshall Space Flight Center, Huntsville, AL (United States))
1992-11-01
Up to now, observations had been unable to show conclusively a one-to-one correspondence between perpendicular ion acceleration and a particular type of plasma wave within the O(+) source region below 2000 km. In this paper we demonstrate that intense (100-300 mV/m) lower hybrid waves are responsible for transversely accelerating H(+) and O(+) ions to characteristic energies of up to 6 eV. This wave-particle interaction takes place in thin filamentary density cavities oriented along geomagnetic field lines. The measurements we discuss were conducted in the nightside auroral zone at latitudes between 500 km and 1100 km. Our results are consistent with theories of lower hybrid wave condensation and collapse. 50 refs.
Transverse ion acceleration by localized lower hybrid waves in the topside auroral ionosphere
Vago, J. L.; Kintner, P. M.; Chesney, S. W.; Arnoldy, R. L.; Lynch, K. A.; Moore, T. E.; Pollock, C. J.
1992-01-01
Up to now, observations had been unable to show conclusively a one-to-one correspondence between perpendicular ion acceleration and a particular type of plasma wave within the O(+) source region below 2000 km. In this paper we demonstrate that intense (100-300 mV/m) lower hybrid waves are responsible for transversely accelerating H(+) and O(+) ions to characteristic energies of up to 6 eV. This wave-particle interaction takes place in thin filamentary density cavities oriented along geomagnetic field lines. The measurements we discuss were conducted in the nightside auroral zone at latitudes between 500 km and 1100 km. Our results are consistent with theories of lower hybrid wave condensation and collapse.
Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions
Strutzenberg, Louise L.; Liever, Peter A.
2011-01-01
This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.
Hybrid localized waves supported by resonant anisotropic metasurfaces
DEFF Research Database (Denmark)
Bogdanov, A. A.; Yermakov, O. Y.; Ovcharenko, A. I.
2016-01-01
We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime.......We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime....
Novel Hybrid Model: Integrating Scrum and XP
Directory of Open Access Journals (Sweden)
Zaigham Mushtaq
2012-06-01
Full Text Available Scrum does not provide any direction about how to engineer a software product. The project team has to adopt suitable agile process model for the engineering of software. XP process model is mainly focused on engineering practices rather than management practices. The design of XP process makes it suitable for simple and small size projects and not appropriate for medium and large projects. A fine integration of management and engineering practices is desperately required to build quality product to make it valuable for customers. In this research a novel framework hybrid model is proposed to achieve this integration. The proposed hybrid model is actually an express version of Scrum model. It possesses features of engineering practices that are necessary to develop quality software as per customer requirements and company objectives. A case study is conducted to validate the proposal of hybrid model. The results of the case study reveal that proposed model is an improved version of XP and Scrum model.
Model-based internal wave processing
Energy Technology Data Exchange (ETDEWEB)
Candy, J.V.; Chambers, D.H.
1995-06-09
A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (dept) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves.
Hermann, Verena; Käser, Martin; Castro, Cristóbal E.
2011-02-01
We present a Discontinuous Galerkin finite element method using a high-order time integration technique for seismic wave propagation modelling on non-conforming hybrid meshes in two space dimensions. The scheme can be formulated to achieve the same approximation order in space and time and avoids numerical artefacts due to non-conforming mesh transitions or the change of the element type. A point-wise Gaussian integration along partially overlapping edges of adjacent elements is used to preserve the schemes accuracy while providing a higher flexibility in the problem-adapted mesh generation process. We describe the domain decomposition strategy of the parallel implementation and validate the performance of the new scheme by numerical convergence test and experiments with comparisons to independent reference solutions. The advantage of non-conforming hybrid meshes is the possibility to choose the mesh spacing proportional to the seismic velocity structure, which allows for simple refinement or coarsening methods even for regular quadrilateral meshes. For particular problems of strong material contrasts and geometrically thin structures, the scheme reduces the computational cost in the sense of memory and run-time requirements. The presented results promise to achieve a similar behaviour for an extension to three space dimensions where the coupling of tetrahedral and hexahedral elements necessitates non-conforming mesh transitions to avoid linking elements in form of pyramids.
CORSICA modelling of ITER hybrid operation scenarios
Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.
2016-12-01
The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.
Mud-Wave Interaction: A Viscoelastic Model
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This study is devoted to the interaction between water surface waves and a thin layer of viscoelastic mud on the bottom. On the assumption that the mud layer is comparable in thickness with the wave boundary layer and is much smaller than the wavelength, a two-layer Stokes boundary layer model is adopted to determine the mud motions under the waves. Analytical expressions are derived for the near-bottom water and mud velocity fields, surface wave-damping rate, and interface wave amplitude and phase lag. Examined in particular is how these kinematic quantities may depend on the viscous and elastic properties of the mud.
A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities
Directory of Open Access Journals (Sweden)
Ioana Voiculescu
2013-03-01
Full Text Available A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS. The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device’s sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35~45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection.
Modeling anomalous surface - wave propagation across the Southern Caspian basin
Energy Technology Data Exchange (ETDEWEB)
Priestly, K.F.; Patton, H.J.; Schultz, C.A.
1998-01-09
The crust of the south Caspian basin consists of 15-25 km of low velocity, highly attenuating sediment overlying high velocity crystalline crust. The Moho depth beneath the basin is about 30 km as compared to about 50 km in the surrounding region. Preliminary modeling of the phase velocity curves shows that this thick sediments of the south Caspian basin are also under-lain by a 30-35 km thick crystalline crust and not by typical oceanic crust. This analysis also suggest that if the effect of the over-pressuring of the sediments is to reduce Poissons` ratio, the over-pressured sediments observed to approximately 5 km do not persist to great depths. It has been shown since 1960`s that the south Caspian basin blocks the regional phase Lg. Intermediate frequency (0.02-0.04 Hz) fundamental mode Raleigh waves propagating across the basin are also severely attenuated, but the low frequency surface waves are largely unaffected. This attenuation is observed along the both east-to-west and west-to-east great circle paths across the basin, and therefore it cannot be related to a seismograph site effect. We have modeled the response of surface waves in an idealized rendition of the south Caspian basin model using a hybrid normal mode / 2-D finite difference approach. To gain insight into the features of the basin which cause the anomalous surface wave propagation, we have varied parameters of the basin model and computed synthetic record sections to compare with the observed seismograms. We varied the amount of mantel up-warp, the shape of the boundaries, the thickness and shear wave Q of the sediments and mantle, and the depth of the water layer. Of these parameters, the intermediate frequency surface waves are most severely affected by the sediments thickness and shear wave attenuation. fundamental mode Raleigh wave phase velocities measure for paths crossing the basin are extremely low.
Modeling lithium/hybrid-cathode batteries
Energy Technology Data Exchange (ETDEWEB)
Gomadam, Parthasarathy M.; Merritt, Don R.; Scott, Erik R.; Schmidt, Craig L.; Skarstad, Paul M. [Medtronic Energy and Component Center, 6700 Shingle Creek Pkwy, Brooklyn Center, MN 55430 (United States); Weidner, John W. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)
2007-12-06
This document describes a first-principles-based mathematical model developed to predict the voltage-capacity behavior of batteries having hybrid cathodes comprising a mixture of carbon monofluoride (CF{sub x}) and silver vanadium oxide (SVO). These batteries typically operate at moderate rates of discharge, lasting several years. The model presented here is an accurate tool for design optimization and performance prediction of batteries under current drains that encompass both the application rate and accelerated testing. (author)
Influence of Deterministic Attachments for Large Unifying Hybrid Network Model
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Large unifying hybrid network model (LUHPM) introduced the deterministic mixing ratio fd on the basis of the harmonious unification hybrid preferential model, to describe the influence of deterministic attachment to the network topology characteristics,
Directory of Open Access Journals (Sweden)
Hadi Fattahi
2016-12-01
Full Text Available Shear wave velocity (Vs data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodology to remove aforementioned problems by use of hybrid adaptive neuro fuzzy inference system (ANFIS with ant colony optimization algorithm (ACO based on fuzzy c–means clustering (FCM and subtractive clustering (SCM. The ACO is combined with two ANFIS models for determining the optimal value of its user–defined parameters. The optimization implementation by the ACO significantly improves the generalization ability of the ANFIS models. These models are used in this study to formulate conventional well log data into Vs in a quick, cheap, and accurate manner. A total of 3030 data points was used for model construction and 833 data points were employed for assessment of ANFIS models. Finally, a comparison among ANFIS models, and six well–known empirical correlations demonstrated ANFIS models outperformed other methods. This strategy was successfully applied in the Marun reservoir, Iran.
Hybrid model for QCD deconfining phase boundary
Srivastava, P. K.; Singh, C. P.
2012-06-01
Intensive search for a proper and realistic equations of state (EOS) is still continued for studying the phase diagram existing between quark gluon plasma (QGP) and hadron gas (HG) phases. Lattice calculations provide such EOS for the strongly interacting matter at finite temperature (T) and vanishing baryon chemical potential (μB). These calculations are of limited use at finite μB due to the appearance of notorious sign problem. In the recent past, we had constructed a hybrid model description for the QGP as well as HG phases where we make use of a new excluded-volume model for HG and a thermodynamically-consistent quasiparticle model for the QGP phase and used them further to get QCD phase boundary and a critical point. Since then many lattice calculations have appeared showing various thermal and transport properties of QCD matter at finite T and μB=0. We test our hybrid model by reproducing the entire data for strongly interacting matter and predict our results at finite μB so that they can be tested in future. Finally we demonstrate the utility of the model in fixing the precise location, the order of the phase transition and the nature of CP existing on the QCD phase diagram. We thus emphasize the suitability of the hybrid model as formulated here in providing a realistic EOS for the strongly interacting matter.
Hybrid modeling and prediction of dynamical systems
Lloyd, Alun L.; Flores, Kevin B.
2017-01-01
Scientific analysis often relies on the ability to make accurate predictions of a system’s dynamics. Mechanistic models, parameterized by a number of unknown parameters, are often used for this purpose. Accurate estimation of the model state and parameters prior to prediction is necessary, but may be complicated by issues such as noisy data and uncertainty in parameters and initial conditions. At the other end of the spectrum exist nonparametric methods, which rely solely on data to build their predictions. While these nonparametric methods do not require a model of the system, their performance is strongly influenced by the amount and noisiness of the data. In this article, we consider a hybrid approach to modeling and prediction which merges recent advancements in nonparametric analysis with standard parametric methods. The general idea is to replace a subset of a mechanistic model’s equations with their corresponding nonparametric representations, resulting in a hybrid modeling and prediction scheme. Overall, we find that this hybrid approach allows for more robust parameter estimation and improved short-term prediction in situations where there is a large uncertainty in model parameters. We demonstrate these advantages in the classical Lorenz-63 chaotic system and in networks of Hindmarsh-Rose neurons before application to experimentally collected structured population data. PMID:28692642
Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung
2010-12-01
This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.
Katsafados, Petros; Papadopoulos, Anastasios; Varlas, George; Korres, Gerasimos
2015-04-01
The two-way fully coupled atmosphere-ocean wave system WEW has been recently developed in order to study the factors that contribute to the air-sea interaction processes and feedbacks. The coupled system consists of two components: the atmospheric component which is based on the Workstation Eta non-hydrostatic limited area model and the ocean-wave component which is based on the fourth generation OpenMP (OMP) version of the WAM model. The WEW has been already evaluated in a number of high-impact weather and sea state events where generally a more realistic representation of the momentum exchanges in the ocean wind-wave system has been shown However, the new developed wind-wave parameterization scheme reduces both the near surface wind speed and the significant wave height as a response to the increased aerodynamic drag considered by the atmospheric model over rough sea surfaces. Such behavior is mainly attributed to the surface layer parameterization scheme of the atmospheric component which is based on the Mellor-Yamada-Janjic (MYJ) scheme. It is noted that this scheme has been adjusted to support independent atmospheric simulations. Therefore, we proceed to develop a new hybrid surface layer parameterization based on the MYJ and the Janssen schemes that operate in the atmospheric and ocean wave components of the WEW, respectively. In this case the roughness length depends on the wave age instead of the Charnock parameter following the formulation proposed by Vickers and Mahrt. The spatial variability of the wave age is estimated at each ocean wave component time step and it is directly provided to the MYJ scheme. The parameterization of the viscous sublayer and the universal functions for the estimation of the near surface wind speed have been also revised accordingly. In this study, a test version of the new hybrid scheme of WEW has been statistically evaluated against a number of buoys and satellite retrievals over the Mediterranean Sea in a case study of high
Opdriftsbaserede modeller for Wave Star
DEFF Research Database (Denmark)
Kramer, Morten
Formålet med dette skrift er at få en forhåndsvurdering af mulige effektforøgelser for Wave Star ved anvendelse af aktiv akkumulatordrift. Disse vurderinger baseres på simuleringsmodeller for driften af Wave Star i uregelmæssige bølger. Modellen er udarbejdet i programmeringssproget Delphi og er en...
Density convection near radiating ICRF antennas and its effect on the coupling of lower hybrid waves
Energy Technology Data Exchange (ETDEWEB)
Ekedahl, A.; Colas, L.; Beaumont, B.; Bibet, Ph.; Bremond, S.; Kazarian, F. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Mayoral, M.L.; Mailloux, J. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX (United Kingdom); Noterdaeme, J.M. [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Garching (Germany)]|[Gent University, EESA Dept. (Belgium); Tuccillo, A.A. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, Rome (Italy)
2003-07-01
Combined operation of lower hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore-Supra and Jet tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore-Supra experiments. Moreover, recent experiments in Jet indicate that the LH coupling degradation depends on the ICRF power and its launched k{sub /} spectrum. The 2D density distribution around the Tore-Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced ExB convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum. (authors)
Hybrid dispersive media with controllable wave propagation: A new take on smart materials
Energy Technology Data Exchange (ETDEWEB)
Bergamini, Andrea E., E-mail: andrea.bergamini@empa.ch [Empa, Materials Science and Technology, Laboratory for Mechanical Integrity of Energy Systems, Überlandstrasse 129, CH-8600, Dübendorf (Switzerland); Zündel, Manuel [ETH Zürich, Institute of Mechanical Systems, Leonhardstrasse 21, CH-8092 Zürich (Switzerland); Flores Parra, Edgar A.; Ermanni, Paolo [ETH Zürich, Composite Materials and Adaptive Structures Laboratory, Leonhardstrasse 21, CH-8092 Zürich (Switzerland); Delpero, Tommaso [Empa, Materials Science and Technology, Laboratory for Mechanical Integrity of Energy Systems, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Ruzzene, Massimo [Georgia Institute of Technology, G.W. Woodruff School of Mechanical Engineering, 801 Ferst Drive, Atlanta, Georgia 30332-0405 (United States)
2015-10-21
In this paper, we report on the wave transmission characteristics of a hybrid one dimensional (1D) medium. The hybrid characteristic is the result of the coupling between a 1D mechanical waveguide in the form of an elastic beam, supporting the propagation of transverse waves and a discrete electrical transmission line, consisting of a series of inductors connected to ground through capacitors. The capacitors correspond to a periodic array of piezoelectric patches that are bonded to the beam and that couple the two waveguides. The coupling leads to a hybrid medium that is characterized by a coincidence condition for the frequency/wavenumber value corresponding to the intersection of the branches of the two waveguides. In the frequency range centered at coincidence, the hybrid medium features strong attenuation of wave motion as a result of the energy transfer towards the electrical transmission line. This energy transfer, and the ensuing attenuation of wave motion, is alike the one obtained through internal resonating units of the kind commonly used in metamaterials. However, the distinct shape of the dispersion curves suggests how this energy transfer is not the result of a resonance and is therefore fundamentally different. This paper presents the numerical investigation of the wave propagation in the considered media, it illustrates experimental evidence of wave transmission characteristics and compares the performance of the considered configuration with that of internal resonating metamaterials. In addition, the ability to conveniently tune the dispersion properties of the electrical transmission line is exploited to adapt the periodicity of the domain and to investigate diatomic periodic configurations that are characterized by a richer dispersion spectrum and broader bandwidth of wave attenuation at coincidence. The medium consisting of mechanical, piezoelectric, and analog electronic elements can be easily interfaced to digital devices to offer a novel
Hybrid dispersive media with controllable wave propagation: A new take on smart materials
Bergamini, Andrea E.; Zündel, Manuel; Flores Parra, Edgar A.; Delpero, Tommaso; Ruzzene, Massimo; Ermanni, Paolo
2015-10-01
In this paper, we report on the wave transmission characteristics of a hybrid one dimensional (1D) medium. The hybrid characteristic is the result of the coupling between a 1D mechanical waveguide in the form of an elastic beam, supporting the propagation of transverse waves and a discrete electrical transmission line, consisting of a series of inductors connected to ground through capacitors. The capacitors correspond to a periodic array of piezoelectric patches that are bonded to the beam and that couple the two waveguides. The coupling leads to a hybrid medium that is characterized by a coincidence condition for the frequency/wavenumber value corresponding to the intersection of the branches of the two waveguides. In the frequency range centered at coincidence, the hybrid medium features strong attenuation of wave motion as a result of the energy transfer towards the electrical transmission line. This energy transfer, and the ensuing attenuation of wave motion, is alike the one obtained through internal resonating units of the kind commonly used in metamaterials. However, the distinct shape of the dispersion curves suggests how this energy transfer is not the result of a resonance and is therefore fundamentally different. This paper presents the numerical investigation of the wave propagation in the considered media, it illustrates experimental evidence of wave transmission characteristics and compares the performance of the considered configuration with that of internal resonating metamaterials. In addition, the ability to conveniently tune the dispersion properties of the electrical transmission line is exploited to adapt the periodicity of the domain and to investigate diatomic periodic configurations that are characterized by a richer dispersion spectrum and broader bandwidth of wave attenuation at coincidence. The medium consisting of mechanical, piezoelectric, and analog electronic elements can be easily interfaced to digital devices to offer a novel
Hybrid Energy System Modeling in Modelica
Energy Technology Data Exchange (ETDEWEB)
William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia
2014-03-01
In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.
mm-Wave Hybrid Photonic Wireless Links for Ultra-High Speed Wireless Transmissions
DEFF Research Database (Denmark)
Rommel, Simon; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso
Hybrid photonic-wireless transmission schemes in the mm-wave frequency range are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Large FCC spectrum allocations for wireless transmission...
Chen, Y. Y.; Hu, G. K.; Huang, G. L.
2016-10-01
A great deal of research has been devoted to controlling the dynamic behaviors of phononic crystals and metamaterials by directly tuning the frequency regions and/or widths of their inherent band gaps. Here, we report a new class of adaptive metamaterial beams with hybrid shunting circuits to realize super broadband Lamb-wave band gaps at an extreme subwavelength scale. The proposed metamaterial is made of a homogeneous host beam on which tunable local resonators consisting of hybrid shunted piezoelectric stacks with proof masses are attached. The hybrid shunting circuits are composed of negative-capacitance and negative-inductance elements connected in series or in parallel in order to tune the desired frequency-dependent stiffness. It is shown theoretically and numerically that by properly modifying the shunting impedance, the adaptive mechanical mechanism within the tunable resonator can produce high-pass and low-pass wave filtering capabilities for the zeroth-order anti-symmetric Lamb-wave modes. These unique behaviors are due to the hybrid effects from the negative-capacitance and negative-inductance circuit elements. Such a system opens up important perspectives for the development of adaptive vibration or wave-attenuation devices for broadband frequency applications.
Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength
Alias, Mohd Sharizal
2017-05-08
We demonstrate the lasing of a perovskite vertical-cavity surface-emitting laser at green wavelengths, which operates under continuous-wave optical pumping at room-temperature by embedding hybrid perovskite between dielectric mirrors deposited at low-temperature.
Mathematical Modeling of Hybrid Electrical Engineering Systems
Directory of Open Access Journals (Sweden)
A. A. Lobaty
2016-01-01
Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the
Observation of the lower hybrid waves near the three-dimensional null pair
Institute of Scientific and Technical Information of China (English)
ZHOU Meng; DENG XiaoHua; FU Song; TANG RongXin; HU YunHui; LI ShiYou; A. VAIVADS; M. ANDRE; LIN Xi; LIN MingHui; ZHOU XiaoMin
2009-01-01
Magnetic reconnection is a fundamental process in plasma, which is thought to play important roles both in laboratory and natural plasmas through affecting magnetic topology, heating and accelerating particles. During an event on Oct. 1st, 2001, the Cluster tetrahedron circled around the magnetic re-connection region several times, and Xiao et al. First identified the null pair and found that the spectrum of the null-point oscillation shows the maximum power near the lower-hybrid frequency. In this paper we report the observation of electromagnetic and electrostatic wave enhancements near lower hybrid frequency associated with the reconnection process near the null pair. The lower hybrid waves (LHWs) with quasi-perpendicular propagation were identified and also confirmed by the power law of the spectrum of electric and magnetic fields.
Observation of the lower hybrid waves near the three-dimensional null pair
Institute of Scientific and Technical Information of China (English)
A.; VAIVADS; M.; ANDRE
2009-01-01
Magnetic reconnection is a fundamental process in plasma,which is thought to play important roles both in laboratory and natural plasmas through affecting magnetic topology,heating and accelerating particles. During an event on Oct. 1st,2001,the Cluster tetrahedron circled around the magnetic reconnection region several times,and Xiao et al. first identified the null pair and found that the spectrum of the null-point oscillation shows the maximum power near the lower-hybrid frequency. In this paper we report the observation of electromagnetic and electrostatic wave enhancements near lower hybrid frequency associated with the reconnection process near the null pair. The lower hybrid waves(LHWs) with quasi-perpendicular propagation were identified and also confirmed by the power law of the spectrum of electric and magnetic fields.
Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices
Energy Technology Data Exchange (ETDEWEB)
Papp, A., E-mail: apapp@nd.edu [Center for Nano Science and Technology and Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Pázmány Péter Catholic University, Faculty of Information Technology, Budapest 1088 (Hungary); Porod, W., E-mail: porod@nd.edu; Csaba, G., E-mail: gcsaba@nd.edu [Center for Nano Science and Technology and Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)
2015-05-07
We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnet structures can be the basis of potentially high-performance, ultra low-power computing devices.
Hybrid single-beam reconstruction technique for slow and fast varying wave fields.
Falaggis, Konstantinos; Kozacki, Tomasz; Kujawinska, Malgorzata
2015-06-01
An iterative single-beam wave field reconstruction technique that employs both non-paraxial, wave propagation based and paraxial deterministic phase retrieval techniques is presented. This approach overcomes two major obstacles that exist in the current state of the art techniques: iterative methods do not reconstruct slowly varying wave fields due to slow convergence and stagnation, and deterministic methods have paraxial limits, making the reconstructions of quickly varying object features impossible. In this work, a hybrid approach is reported that uses paraxial wave field corrections within iterative phase retrieval solvers. This technique is suitable for cases ranging from slow to fast varying wave fields, and unlike the currently available methods, can also reconstruct measurement objects with different regions of both slowly and quickly varying object features. It is further shown that this technique gives a higher accuracy than current single-beam phase retrieval techniques, and in comparison to the iterative methods, has a higher convergence speed.
Yelve, Nitesh P; Mitra, Mira; Mujumdar, P M; Ramadas, C
2016-08-01
A new hybrid method based upon nonlinear Lamb wave response in time and frequency domains is introduced to locate a delamination in composite laminates. In Lamb wave based nonlinear method, the presence of damage is shown by the appearance of higher harmonics in the Lamb wave response. The proposed method not only uses this spectral information but also the corresponding temporal response data, for locating the delamination. Thus, the method is termed as a hybrid method. The paper includes formulation of the method and its application to locate a Barely Visible Impact Damage (BVID) induced delamination in a Carbon Fiber Reinforced Polymer (CFRP) laminate. The method gives the damage location fairly well. It is a baseline free method, as it does not need data from the pristine specimen.
Paraxial Wentzel-Kramers-Brillouin method applied to the lower hybrid wave propagation
Energy Technology Data Exchange (ETDEWEB)
Bertelli, N.; Phillips, C. K.; Valeo, E.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Maj, O.; Poli, E. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748, Garching (Germany); Harvey, R. [CompX, Del Mar, California 92014 (United States); Wright, J. C.; Bonoli, P. T. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Smirnov, A. P. [Lomonosov Moscow State University, Moscow (Russian Federation)
2012-08-15
The paraxial Wentzel-Kramers-Brillouin (pWKB) approximation, also called beam tracing method, has been employed in order to study the propagation of lower hybrid waves in a tokamak plasma. Analogous to the well-know ray tracing method, this approach reduces Maxwell's equations to a set of ordinary differential equations, while, in addition, retains the effects of the finite beam cross-section, and, thus, the effects of diffraction. A new code, LHBEAM (lower hybrid BEAM tracing), is presented, which solves the pWKB equations in tokamak geometry for arbitrary launching conditions and for analytic and experimental plasma equilibria. In addition, LHBEAM includes linear electron Landau damping for the evaluation of the absorbed power density and the reconstruction of the wave electric field in both the physical and Fourier space. Illustrative LHBEAM calculations are presented along with a comparison with the ray tracing code GENRAY and the full wave solver TORIC-LH.
Directional wave measurements and modelling
Digital Repository Service at National Institute of Oceanography (India)
Anand, N.M.; Nayak, B.U.; Bhat, S.S.; SanilKumar, V.
Some of the results obtained from analysis of the monsoon directional wave data measured over 4 years in shallow waters off the west coast of India are presented. The directional spectrum computed from the time series data seems to indicate...
Hybrid optimization model of product concepts
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the proposed method and associated algorithms.
Baroclinic stationary waves in aquaplanet models
Lucarini, V.; Zappa, G.
2012-04-01
An aquaplanet model is used to study the nature of the highly persistent low frequency waves that have been observed in models forced by zonally symmetric boundary conditions. Using the Hayashi spectral analysis of the extratropical waves, we find that a quasi-stationary (QS) wave five belongs to a wave packet obeying a well defined dispersion relation with eastward group velocity. The components of the dispersion relation with k>5 baroclinically convert eddy available potential energy into eddy kinetic energy, while those with kinverse energy cascade, which had been previously proposed as a main forcing for this type of waves, only acts as a positive feedback on its predominantly baroclinic energetics. The QS wave is reinforced by a phase lock to an analogous pattern in the tropical convection, which provides further amplification to the wave. We also find that the Pedlosky bounds on the phase speed of unstable waves provide guidance in explaining the latitudinal structure of the energy conversion, which is shown to be more enhanced where the zonal westerly surface wind is weaker. The wave energy is then trapped in the wave guide created by the upper tropospheric jet stream. In agreement with Green's theory, as the equator to pole SST difference is reduced the stationary marginally stable component shifts toward higher wavenumbers, while the wave five becomes neutral and westward propagating. Some properties of the aquaplanet QS waves are found in interesting agreement with a low frequency wave observed by Salby (1982) in the southern hemisphere DJF, so that this perspective on low frequency variability might be, apart from its value in terms of basic geophysical fluid dynamics, of specific interest for studying the Earth's atmosphere.
Efficient Focusing Models for Generation of Freak Waves
Institute of Scientific and Technical Information of China (English)
ZHAO Xi-zeng; SUN Zhao-chen; LIANG Shu-xiu
2009-01-01
Four focusing models for generation of freak waves are presented. An extreme wave focusing model is presented on the basis of the enhanced High-Order Spectral (HOS) method and the importance of the nonlinear wave-wave interaction is evaluated by comparison of the calculated results with experimental and theoretical data. Based on the modification of the Longuet-Higgins model, four wave models for generation of freak waves (a. Extreme wave model + random wave model; b. Extreme wave model + regular wave model; c. Phase interval modulation wave focusing model; d. Number modulation wave focusing model with the same phase) are proposed. By use of different energy distribution techniques in the four models, freak wave events are obtained with different H_(max)/H_s in finite space and time.
Probing inflation models with gravitational waves
Domcke, Valerie
2016-01-01
A direct detection of primordial gravitational waves is the ultimate probe for any inflation model. While current CMB bounds predict the generic scale-invariant gravitational wave spectrum from slow-roll inflation to be below the reach of upcoming gravitational wave interferometers, this prospect may dramatically change if the inflaton is a pseudoscalar. In this case, a coupling to any abelian gauge field leads to a tachyonic instability for the latter and hence to a new source of gravitational waves, directly related to the dynamics of inflation. In this contribution we discuss how this setup enables the upcoming gravitational wave interferometers advanced LIGO/VIRGO and eLISA to probe the microphysics of inflation, distinguishing between different universality classes of single-field slow-roll inflation models. We find that the prime candidate for an early detection is a Starobinsky-like model.
THE DIABATIC WAVES IN BAROTROPIC MODEL
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The equations of barotropic model are used to discuss the effects of diabatic factors such as heating of convective condensation, evaporation-wind feedback and CISK on the Rossby wave and the Kelvin wave. In low latitudes we have obtained the angular frequency and analyzed the period and stability of waves. The result shows the existence of the diabatic factors not only enlarges the period of adiabatic waves but also changes the stability of waves. Thus we think that the so-called intraseasonal oscillation and some other low-frequency oscillations are a kind of diabatic waves which are important factors producing the long-term weather changes and short-term climatic evolution.
DEFF Research Database (Denmark)
Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard
2015-01-01
Wave models used for site assessments are subjected to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Four different wave models are considered, and validation...... uncertainties can be implemented in probabilistic reliability assessments....
Semi-classical description of matter wave interferometers and hybrid quantum systems
Energy Technology Data Exchange (ETDEWEB)
Schneider, Mathias
2015-02-16
This work considers the semi-classical description of two applications involving cold atoms. This is, on one hand, the behavior of a BOSE-EINSTEIN condensate in hybrid systems, i.e. in contact with a microscopic object (carbon nanotubes, fullerenes, etc.). On the other, the evolution of phase space distributions in matter wave interferometers utilizing ray tracing methods was discussed. For describing condensates in hybrid systems, one can map the GROSS-PITAEVSKII equation, a differential equation in the complex-valued macroscopic wave function, onto a system of two differential equations in density and phase. Neglecting quantum dispersion, one obtains a semiclassical description which is easily modified to incorporate interactions between condensate and microscopical object. In our model, these interactions comprise attractive forces (CASIMIR-POLDER forces) and loss of condensed atoms due to inelastic collisions at the surface of the object. Our model exhibited the excitation of sound waves that are triggered by the object's rapid immersion, and spread across the condensate thereafter. Moreover, local particle loss leads to a shrinking of the bulk condensate. We showed that the total number of condensed particles is decreasing potentially in the beginning (large condensate, strong mean field interaction), while it decays exponentially in the long-time limit (small condensate, mean field inetraction negligible). For representing the physics of matter wave interferometers in phase space, we utilized the WIGNER function. In semi-classical approximation, which again consists in ignoring the quantum dispersion, this representation is subject to the same equation of motion as classical phase space distributions, i.e. the LIOUVILLE equation. This implies that time evolution of theWIGNER function follows a phase space flow that consists of classical trajectories (classical transport). This means, for calculating a time-evolved distribution, one has know the initial
Hamiltonian approach to hybrid plasma models
Tronci, Cesare
2010-01-01
The Hamiltonian structures of several hybrid kinetic-fluid models are identified explicitly, upon considering collisionless Vlasov dynamics for the hot particles interacting with a bulk fluid. After presenting different pressure-coupling schemes for an ordinary fluid interacting with a hot gas, the paper extends the treatment to account for a fluid plasma interacting with an energetic ion species. Both current-coupling and pressure-coupling MHD schemes are treated extensively. In particular, pressure-coupling schemes are shown to require a transport-like term in the Vlasov kinetic equation, in order for the Hamiltonian structure to be preserved. The last part of the paper is devoted to studying the more general case of an energetic ion species interacting with a neutralizing electron background (hybrid Hall-MHD). Circulation laws and Casimir functionals are presented explicitly in each case.
Baroclinic stationary waves in aquaplanet models
Zappa, Giuseppe; Navarra, Antonio; 10.1175/2011JAS3573.1
2011-01-01
An aquaplanet model is used to study the nature of the highly persistent low frequency waves that have been observed in models forced by zonally symmetric boundary conditions. Using the Hayashi spectral analysis of the extratropical waves, we find that a quasi-stationary (QS) wave five belongs to a wave packet obeying a well defined dispersion relation with eastward group velocity. The components of the dispersion relation with k>5 baroclinically convert eddy available potential energy into eddy kinetic energy, while those with k<5 are baroclinically neutral. In agreement with the Green's model of baroclinic instability, the wave five is weakly unstable, and the inverse energy cascade, which had been previously proposed as a main forcing for this type of waves, only acts as a positive feedback on its predominantly baroclinic energetics. The QS wave is reinforced by a phase lock to an analogous pattern in the tropical convection, which provides further amplification to the wave. We also find that the Pedlos...
VLSI Implementation of Hybrid Wave-Pipelined 2D DWT Using Lifting Scheme
Directory of Open Access Journals (Sweden)
G. Seetharaman
2008-01-01
Full Text Available A novel approach is proposed in this paper for the implementation of 2D DWT using hybrid wave-pipelining (WP. A digital circuit may be operated at a higher frequency by using either pipelining or WP. Pipelining requires additional registers and it results in more area, power dissipation and clock routing complexity. Wave-pipelining does not have any of these disadvantages but requires complex trial and error procedure for tuning the clock period and clock skew between input and output registers. In this paper, a hybrid scheme is proposed to get the benefits of both pipelining and WP techniques. In this paper, two automation schemes are proposed for the implementation of 2D DWT using hybrid WP on both Xilinx, San Jose, CA, USA and Altera FPGAs. In the first scheme, Built-in self-test (BIST approach is used to choose the clock skew and clock period for I/O registers between the wave-pipelined blocks. In the second approach, an on-chip soft-core processor is used to choose the clock skew and clock period. The results for the hybrid WP are compared with nonpipelined and pipelined approaches. From the implementation results, the hybrid WP scheme requires the same area but faster than the nonpipelined scheme by a factor of 1.25–1.39. The pipelined scheme is faster than the hybrid scheme by a factor of 1.15–1.39 at the cost of an increase in the number of registers by a factor of 1.78–2.73, increase in the number of LEs by a factor of 1.11–1.32 and it increases the clock routing complexity.
Variational modelling of nonlinear water waves
Kalogirou, Anna; Bokhove, Onno
2015-11-01
Mathematical modelling of water waves is demonstrated by investigating variational methods. A potential flow water wave model is derived using variational techniques and extented to include explicit time-dependence, leading to non-autonomous dynamics. As a first example, we consider the problem of a soliton splash in a long wave channel with a contraction at its end, resulting after a sluice gate is removed at a finite time. The removal of the sluice gate is included in the variational principle through a time-dependent gravitational potential. A second example involving non-autonomous dynamics concerns the motion of a free surface in a vertical Hele-Shaw cell. Explicit time-dependence now enters the model through a linear damping term due to the effect of wall friction and a term representing the motion of an artificially driven wave pump. In both cases, the model is solved numerically using a Galerkin FEM and the numerical results are compared to wave structures observed in experiments. The water wave model is also adapted to accommodate nonlinear ship dynamics. The novelty is this case is the coupling between the water wave dynamics, the ship dynamics and water line dynamics on the ship. For simplicity, we consider a simple ship structure consisting of V-shaped cross-sections.
Flores Parra, Edgar; Bergamini, Andrea E.; Ermanni, Paolo
2017-04-01
This work reports on the wave transmission characteristics of a hybrid one dimensional (1D) medium. The hybrid characteristic is the result of the coupling between a mechanical waveguide in the form of an elastic beam, and an electrical network. The network configuration investigated is an LC high-pass, consisting of a series of capacitors connected in series through grounded inductors. The capacitors correspond to a periodic array of piezoelectric patches that are bonded to the beam thus coupling the two waveguides. The coupling is characterized by a coincidence frequency/wavenumber corresponding to the intersection of the dispersion curves. At this coincidence frequency, the hybrid medium features attenuation of wave motion as a result of the energy transfer to the electrical network. This energy exchange is depicted in the dispersion by eigenvalue crossing, a particular case of eigenvalue veering. This paper presents the numerical investigations of the wave propagation in the considered medium, and validates the numerical findings with experimental evidence of the wave transmission characteristics. Moreover, the dispersion properties of the electrical network are further studied by varying the inductances thus exploiting the tunability of the periodic electrical domain, i.e: monoatomic and diatmomic unit cell configurations. The LC high-pass network offers several advantages over other configurations, from ease of implementation as the piezoelectric elements are not grounded, to a smaller inductance values to achieve attenuation at a given frequency. Such media could be interfaced with more complex electrical networks to create a new type of smart materials.
Hydraulic Model Tests on Modified Wave Dragon
DEFF Research Database (Denmark)
Hald, Tue; Lynggaard, Jakob
A floating model of the Wave Dragon (WD) was built in autumn 1998 by the Danish Maritime Institute in scale 1:50, see Sørensen and Friis-Madsen (1999) for reference. This model was subjected to a series of model tests and subsequent modifications at Aalborg University and in the following...... are found in Hald and Lynggaard (2001). Model tests and reconstruction are carried out during the phase 3 project: ”Wave Dragon. Reconstruction of an existing model in scale 1:50 and sequentiel tests of changes to the model geometry and mass distribution parameters” sponsored by the Danish Energy Agency...
Energy Technology Data Exchange (ETDEWEB)
Winske, D., E-mail: winske@lanl.gov; Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2015-02-15
We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma 19, 072109 (2012)], but at higher electron beta (β{sub e} = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with T{sub i} = T{sub e}. At higher electron beta, the level of lower hybrid waves at saturation normalized to the ion thermal energy (β{sub i} = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring, and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.
Winske, D.; Daughton, W.
2015-02-01
We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma 19, 072109 (2012)], but at higher electron beta (βe = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta, the level of lower hybrid waves at saturation normalized to the ion thermal energy (βi = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring, and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.
Upper-hybrid wave driven Alfvenic turbulence in magnetized dusty plasmas
Misra, A P
2010-01-01
The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations [J.Plasma Phys. 73, 3 (2006)] that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs is solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths which, in turn, ...
Study of lower hybrid wave propagation in ionized gas by Hamiltonian theory
Casolari, Andrea
2013-01-01
In order to find an approximate solution to the Vlasov-Maxwell equation system describing the lower hybrid wave propagation in magnetic confined plasmas, the use of the WKB method leads to the ray tracing equations. The Hamiltonian character of the ray tracing equations is investigated analytically and numerically in order to deduce the physical properties of the wave propagating without absorption in the confined plasma. The consequences of the Hamiltonian character of the equations on the travelling wave, in particular, on the evolution of the parallel wavenumber along the propagation path have been accounted and the chaotic diffusion of the timeaveraged parallel wave-number towards higher values has been evaluated. Numerical analysis by means of a Runge-Kutta based algorithm implemented in a ray tracing code supplies the analytical considerations. A numerical tool based on the symplectic integration of the ray trajectories has been developed.
Study of lower hybrid wave propagation in ionized gas by Hamiltonian theory
Energy Technology Data Exchange (ETDEWEB)
Casolari, A. [Università di Pisa, Pisa (Italy); Cardinali, A. [Associazione Euratom-ENEA sulla Fusione, C.P. 65 - I-00044 - Frascati, Rome (Italy)
2014-02-12
In order to find an approximate solution to the Vlasov-Maxwell equation system describing the lower hybrid wave propagation in magnetic confined plasmas, the use of the WKB method leads to the ray tracing equations. The Hamiltonian character of the ray tracing equations is investigated analytically and numerically in order to deduce the physical properties of the wave propagating without absorption in the confined plasma. The consequences of the Hamiltonian character of the equations on the travelling wave, in particular, on the evolution of the parallel wavenumber along the propagation path have been accounted and the chaotic diffusion of the timeaveraged parallel wave-number towards higher values has been evaluated. Numerical analysis by means of a Runge-Kutta based algorithm implemented in a ray tracing code supplies the analytical considerations. A numerical tool based on the symplectic integration of the ray trajectories has been developed.
Opportunistic beam training with hybrid analog/digital codebooks for mmWave systems
Eltayeb, Mohammed E.
2016-02-25
© 2015 IEEE. Millimeter wave (mmWave) communication is one solution to provide more spectrum than available at lower carrier frequencies. To provide sufficient link budget, mmWave systems will use beamforming with large antenna arrays at both the transmitter and receiver. Training these large arrays using conventional approaches taken at lower carrier frequencies, however, results in high overhead. In this paper, we propose a beam training algorithm that efficiently designs the beamforming vectors with low training overhead. Exploiting mmWave channel reciprocity, the proposed algorithm relaxes the need for an explicit feedback channel, and opportunistically terminates the training process when a desired quality of service is achieved. To construct the training beamforming vectors, a new multi-resolution codebook is developed for hybrid analog/digital architectures. Simulation results show that the proposed algorithm achieves a comparable rate to that obtained by exhaustive search solutions while requiring lower training overhead when compared to prior work.
On the modelling of equatorial waves
Constantin, A.
2012-03-01
The present theory of geophysical waves that either raise or lower the equatorial thermocline, based on the reduced-gravity shallow-water equations on the β-plane, ignores vertical variations of the flow. In particular, the vertical structure of the Equatorial Undercurrent is absent. As a remedy we propose a simple approach by modeling this geophysical process as a wave-current interaction in the f-plane approximation, the underlying current being of positive constant vorticity. The explicit dispersion relation allows us to conclude that, despite its simplicity, the proposed model captures to a reasonable extent essential features of equatorial waves.
Hellinger, Petr; Trávníček, Pavel M.
2016-11-01
Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton-electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that time owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.
Hellinger, Petr
2016-01-01
Using one-dimensional hybrid expanding box model we investigate properties of the solar wind in the outer heliosphere. We assume a proton-electron plasma with a strictly transverse ambient magnetic field and, beside the expansion, we take into account influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function that rapidly becomes unstable and generate Alfv\\'en cyclotron waves. The Alfv\\'en cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that time owing to the expansion-driven cooling. The Alf\\'ven cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through the cyclotron resonance. At later times, the Alfv\\'en cyclotron waves become parametrically unstable and the generated ion acoustic waves heat protons in the parallel dir...
The new wave of hybrid vehicles in Japan; La nouvelle vague de vehicules hybrides au Japon
Energy Technology Data Exchange (ETDEWEB)
Moille, F.
2000-05-01
The Japan Ministry of international trade and industry (MITI) has foreseen a 23% reduction of the consumption of internal combustion engines between 1995 and 2010. The Japanese automotive companies are seriously working on the development of less polluting and more economical vehicles. After the domination of the internal combustion engine with its good performances, and the quasi-exclusive use of electric-powered vehicles in urban areas for autonomy reasons, time has come for the development of hybrid vehicles which combine the advantages of both principles. With a very simple use for the driver, the hybrid vehicle is in fact based on a particularly complex technology which is explained for some prototypes presented in this paper. (J.S.)
Advances in modeling of lower hybrid current drive
Peysson, Y.; Decker, J.; Nilsson, E.; Artaud, J.-F.; Ekedahl, A.; Goniche, M.; Hillairet, J.; Ding, B.; Li, M.; Bonoli, P. T.; Shiraiwa, S.; Madi, M.
2016-04-01
First principle modeling of the lower hybrid (LH) current drive in tokamak plasmas is a longstanding activity, which is gradually gaining in accuracy thanks to quantitative comparisons with experimental observations. The ability to reproduce simulatenously the plasma current and the non-thermal bremsstrahlung radial profiles in the hard x-ray (HXR) photon energy range represents in this context a significant achievement. Though subject to limitations, ray tracing calculations are commonly used for describing wave propagation in conjunction with Fokker-Planck codes, as it can capture prominent features of the LH wave dynamics in a tokamak plasma-like toroidal refraction. This tool has been validated on several machines when the full absorption of the LH wave requires the transfer of a small fraction of power from the main lobes of the launched power spectrum to a tail at a higher parallel refractive index. Conversely, standard modeling based on toroidal refraction only becomes more challenging when the spectral gap is large, except if other physical mechanisms may dominate to bridge it, like parametric instabilities, as suggested for JET LH discharges (Cesario et al 2004 Phys. Rev. Lett. 92 175002), or fast fluctuations of the launched power spectrum or ‘tail’ LH model, as shown for Tore Supra (Decker et al 2014 Phys. Plasma 21 092504). The applicability of the heuristic ‘tail’ LH model is investigated for a broader range of plasma parameters as compared to the Tore Supra study and with different LH wave characteristics. Discrepancies and agreements between simulations and experiments depending upon the different models used are discussed. The existence of a ‘tail’ in the launched power spectrum significantly improves the agreement between modeling and experiments in plasma conditions for which the spectral gap is large in EAST and Alcator C-Mod tokamaks. For the Alcator C-Mod tokamak, the experimental evolution of the HXR profiles with density suggests
Directory of Open Access Journals (Sweden)
Jiang Xu
2012-01-01
Full Text Available Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables.
Reduction of the equation for lower hybrid waves in a plasma to a nonlinear Schroedinger equation
Karney, C. F. F.
1977-01-01
Equations describing the nonlinear propagation of waves in an anisotropic plasma are rarely exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. The use of MACSYMA to make such approximations, and so reduce the equation describing lower hybrid waves into the nonlinear Schrodinger equation which is soluble by the inverse scattering method is demonstrated. MACSYMA is used at several stages in the calculation only because there is a natural division between calculations that are easiest done by hand, and those that are easiest done by machine.
Hybrid surface waves in semi-infinite metal-dielectric lattices
Miret, Juan J; Jaksic, Zoran; Vukovic, Slobodan; Belic, Milivoj R
2012-01-01
We investigate surface waves at the boundary between a semi-infinite layered metal-dielectric nanostructure cut normally to the layers and a semi-infinite dielectric. Spatial dispersion properties of such a nanostructure can be dramatically affected by coupling of surface plasmons polaritons at different metal-dielectric interfaces. As a consequence, the effective medium approach is not applicable in general. It is demonstrated that Dyakonov-like surface waves with hybrid polarization can propagate in an angular range substantially enlarged compared to conventional birefringent materials. Our numerical simulations for an Ag-GaAs stack in contact with glass show a low to moderate influence of losses.
Study on Solitary Waves of a General Boussinesq Model
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, we employ the bifurcation method of dynamical systems to study the solitary waves and periodic waves of a generalized Boussinesq equations. All possible phase portraits in the parameter plane for the travelling wave systems are obtained. The possible solitary wave solutions, periodic wave solutions and cusp waves for the general Boussinesq type fluid model are also investigated.
-Advanced Models for Tsunami and Rogue Waves
Directory of Open Access Journals (Sweden)
D. W. Pravica
2012-01-01
Full Text Available A wavelet , that satisfies the q-advanced differential equation for , is used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by . The profile is similar to tsunami models in present use. The function is a wavelet that satisfies a q-advanced harmonic oscillator equation. It is also shown that another wavelet, , matches a rogue-wave profile. This is explained in terms of a resonance wherein two small amplitude forcing waves eventually lead to a large amplitude rogue. Since wavelets are used in the detection of tsunamis and rogues, the signal-analysis performance of and is examined on actual data.
Infectious disease modeling a hybrid system approach
Liu, Xinzhi
2017-01-01
This volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes.
Lin, Tzy-Rong; Lin, Chiang-Hsin; Hsu, Jin-Chen
2015-09-08
We propose dynamic modulation of a hybrid plasmonic-photonic crystal nanocavity using monochromatic coherent acoustic phonons formed by ultrahigh-frequency surface acoustic waves (SAWs) to achieve strong optomechanical interaction. The crystal nanocavity used in this study consisted of a defective photonic crystal beam coupled to a metal surface with a nanoscale air gap in between and provided hybridization of a highly confined plasmonic-photonic mode with a high quality factor and deep subwavelength mode volume. Efficient photon-phonon interaction occurs in the air gap through the SAW perturbation of the metal surface, strongly coupling the optical and acoustic frequencies. As a result, a large modulation bandwidth and optical resonance wavelength shift for the crystal nanocavity are demonstrated at telecommunication wavelengths. The proposed SAW-based modulation within the hybrid plasmonic-photonic crystal nanocavities beyond the diffraction limit provides opportunities for various applications in enhanced sound-light interaction and fast coherent acoustic control of optomechanical devices.
Topology optimization of bounded acoustic problems using the hybrid finite element-wave based method
DEFF Research Database (Denmark)
Goo, Seongyeol; Wang, Semyung; Kook, Junghwan
2017-01-01
This paper presents an alternative topology optimization method for bounded acoustic problems that uses the hybrid finite element-wave based method (FE-WBM). The conventional method for the topology optimization of bounded acoustic problems is based on the finite element method (FEM), which...... is limited to low frequency applications due to considerable computational efforts. To this end, we propose a gradient-based topology optimization method that uses the hybrid FE-WBM whereby the entire domain of a problem is partitioned into design and non-design domains. In this respect, the FEM is used...... as a design domain of topology optimization, and the WBM is used as a non-design domain to increase computational efficiency. The adjoint variable method based on the hybrid FE-WBM is also proposed as a means of computing design sensitivities. Numerical examples are presented to demonstrate the effectiveness...
Multiresolution wavelet-ANN model for significant wave height forecasting.
Digital Repository Service at National Institute of Oceanography (India)
Deka, P.C.; Mandal, S.; Prahlada, R.
Hybrid wavelet artificial neural network (WLNN) has been applied in the present study to forecast significant wave heights (Hs). Here Discrete Wavelet Transformation is used to preprocess the time series data (Hs) prior to Artificial Neural Network...
New hybrid model of proton exchange membrane fuel cell
Institute of Scientific and Technical Information of China (English)
WANG Rui-min; CAO Guang-yi; ZHU Xin-jian
2007-01-01
Model and simulation are good tools for design optimization of fuel cell systems. This paper proposes a new hybrid model of proton exchange membrane fuel cell (PEMFC). The hybrid model includes physical component and black-box component. The physical component represents the well-known part of PEMFC, while artificial neural network (ANN) component estimates the poorly known part of PEMFC. The ANN model can compensate the performance of the physical model. This hybrid model is implemented on Matlab/Simulink software. The hybrid model shows better accuracy than that of the physical model and ANN model. Simulation results suggest that the hybrid model can be used as a suitable and accurate model for PEMFC.
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
Modeling of renewable hybrid energy sources
Directory of Open Access Journals (Sweden)
Dumitru Cristian Dragos
2009-12-01
Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.
Hybrid2: The hybrid system simulation model, Version 1.0, user manual
Energy Technology Data Exchange (ETDEWEB)
Baring-Gould, E.I.
1996-06-01
In light of the large scale desire for energy in remote communities, especially in the developing world, the need for a detailed long term performance prediction model for hybrid power systems was seen. To meet these ends, engineers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) have spent the last three years developing the Hybrid2 software. The Hybrid2 code provides a means to conduct long term, detailed simulations of the performance of a large array of hybrid power systems. This work acts as an introduction and users manual to the Hybrid2 software. The manual describes the Hybrid2 code, what is included with the software and instructs the user on the structure of the code. The manual also describes some of the major features of the Hybrid2 code as well as how to create projects and run hybrid system simulations. The Hybrid2 code test program is also discussed. Although every attempt has been made to make the Hybrid2 code easy to understand and use, this manual will allow many organizations to consider the long term advantages of using hybrid power systems instead of conventional petroleum based systems for remote power generation.
Energy Technology Data Exchange (ETDEWEB)
Popov, A. Yu., E-mail: a.popov@mail.ioffe.ru; Gusakov, E. Z., E-mail: evgeniy.gusakov@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation)
2015-01-15
A parametric decay instability (PDI) of an extraordinary wave leading to excitation of two upper hybrid (UH) plasmons at frequencies close to half the pump wave frequency is analyzed. It is shown that the two-plasmon PDI power threshold can be significantly reduced under conditions of electron cyclotron resonance heating (ECRH) experiments in toroidal magnetic devices, where the plasma density profile is often nonmonotonic, which leads to the localization of UH waves.
Surface wave modelling and simulation for wave tanks and coastal areas
Groesen, van, E.; Bunnik, T.; Andonowati
2011-01-01
For testing ships and offshore structures in hydrodynamic laboratories, the sea and ocean states should be represented as realistic as possible in the wave tanks in which the scaled experiments are executed. To support efficient testing, accurate software that determines and translates the required wave maker motion into the downstream waves is very helpful. This paper describes an efficient hybrid spatial-spectral code that can deal with simulations above flat and varying bottom. The accurac...
Gui, Y. L.; Zhao, Z. Y.; Zhou, H. Y.; Wu, W.
2016-10-01
In this paper, a cohesive fracture model is applied to model P-wave propagation through fractured rock mass using hybrid continuum-discrete element method, i.e. Universal Distinct Element Code (UDEC). First, a cohesive fracture model together with the background of UDEC is presented. The cohesive fracture model considers progressive failure of rock fracture rather than an abrupt damage through simultaneously taking into account the elastic, plastic and damage mechanisms as well as a modified failure function. Then, a series of laboratory tests from the literature on P-wave propagation through rock mass containing single fracture and two parallel fractures are introduced and the numerical models used to simulate these laboratory tests are described. After that, all the laboratory tests are simulated and presented. The results show that the proposed model, particularly the cohesive fracture model, can capture very well the wave propagation characteristics in rock mass with non-welded and welded fractures with and without filling materials. In the meantime, in order to identify the significance of fracture on wave propagation, filling materials with different particle sizes and the fracture thickness are discussed. Both factors are found to be crucial for wave attenuation. The simulations also show that the frequency of transmission wave is lowered after propagating through fractures. In addition, the developed numerical scheme is applied to two-dimensional wave propagation in the rock mass.
Mesoscale Wind Predictions for Wave Model Evaluation
2016-06-07
N0001400WX20041(B) http://www.nrlmry.navy.mil LONG TERM GOALS The long-term goal is to demonstrate the significance and importance of high...ocean waves by an appropriate wave model. OBJECTIVES The main objectives of this project are to: 1. Build the infrastructure to generate the...temperature for all COAMPS grids at the resolution of each of these grids. These analyses are important for the proper 2 specification of the lower
Khazanov, G. V.; Krivorutsky, E.; Gamayunov, K.; Avanov, L.
2003-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on our newly developed self-consistent model that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites
2016-03-09
AFRL-AFOSR-VA-TR-2016-0154 Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites Gregory Odegard MICHIGAN TECHNOLOGICAL UNIVERSITY Final Report...SUBTITLE Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0030 5c. PROGRAM ELEMENT NUMBER...DISTRIBUTION A: Distribution approved for public release. Final Report Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites Grant FA9550-13-1-0030 PI
Hybrid Models of Alternative Current Filter for Hvdc
Directory of Open Access Journals (Sweden)
Ufa Ruslan A.
2017-01-01
Full Text Available Based on a hybrid simulation concept of HVDC, the developed hybrid AC filter models, providing the sufficiently full and adequate modeling of all single continuous spectrum of quasi-steady-state and transient processes in the filter, are presented. The obtained results suggest that usage of the hybrid simulation approach is carried out a methodically accurate with guaranteed instrumental error solution of differential equation systems of mathematical models of HVDC.
Modeling and Analysis of Hybrid Dynamic Systems Using Hybrid Petri Nets
GHOMRI Latefa; Alla, Hassane
2008-01-01
Some extensions of PNs permitting HDS modeling were presented here. The first models to be presented are continuous PNs. This model may be used for modeling either a continuous system or a discrete system. In this case, it is an approximation that is often satisfactory. Hybrid PNs combine in the same formalism a discrete PN and a continuous PN. Two hybrid PN models were considered in this chapter. The first, called the hybrid PN, has a deterministic behavior; this means that we can predict th...
Hybrid Modeling Improves Health and Performance Monitoring
2007-01-01
Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.
Wave Modeling of the Solar Wind.
Ofman, Leon
The acceleration and heating of the solar wind have been studied for decades using satellite observations and models. However, the exact mechanism that leads to solar wind heating and acceleration is poorly understood. In order to improve the understanding of the physical mechanisms that are involved in these processes a combination of modeling and observational analysis is required. Recent models constrained by satellite observations show that wave heating in the low-frequency (MHD), and high-frequency (ion-cyclotron) range may provide the necessary momentum and heat input to coronal plasma and produce the solar wind. This review is focused on the results of several recent solar modeling studies that include waves explicitly in the MHD and the kinetic regime. The current status of the understanding of the solar wind acceleration and heating by waves is reviewed.
Analysis of chromosome aberration data by hybrid-scale models
Energy Technology Data Exchange (ETDEWEB)
Indrawati, Iwiq [Research and Development on Radiation and Nuclear Biomedical Center, National Nuclear Energy Agency (Indonesia); Kumazawa, Shigeru [Nuclear Technology and Education Center, Japan Atomic Energy Research Institute, Honkomagome, Tokyo (Japan)
2000-02-01
This paper presents a new methodology for analyzing data of chromosome aberrations, which is useful to understand the characteristics of dose-response relationships and to construct the calibration curves for the biological dosimetry. The hybrid scale of linear and logarithmic scales brings a particular plotting paper, where the normal section paper, two types of semi-log papers and the log-log paper are continuously connected. The hybrid-hybrid plotting paper may contain nine kinds of linear relationships, and these are conveniently called hybrid scale models. One can systematically select the best-fit model among the nine models by among the conditions for a straight line of data points. A biological interpretation is possible with some hybrid-scale models. In this report, the hybrid scale models were applied to separately reported data on chromosome aberrations in human lymphocytes as well as on chromosome breaks in Tradescantia. The results proved that the proposed models fit the data better than the linear-quadratic model, despite the demerit of the increased number of model parameters. We showed that the hybrid-hybrid model (both variables of dose and response using the hybrid scale) provides the best-fit straight lines to be used as the reliable and readable calibration curves of chromosome aberrations. (author)
Generation of acoustic terahertz waves in hybrid InGaN/GaN quantum wells
Mahat, Meg; Llopis, Antonia; Choi, Tae Youl; Periera, Sergio; Watson, Ian; Neogi, Arup
2015-03-01
We have carried out differential transmission measurements on InGaN/ GaN quantum wells with Au nanoparticles inserted inside V-pits with high filling fraction. We have observed acoustic wave packets generated with multiple THz frequencies as 0.12 THz from GaN buffer layer, 0.22 THz from Au-InGaN multiple quantum wells region, 0.07 THz from sapphire substrate, and 0.17 THz mixed signals from the sample. These THz wave packets are observed as a result of generation of coherent acoustic phonons propagating in hybrid Au-InGaN quantum wells. The study of these acoustic THz wave generation is crucial for the imaging of nanostructures.
Modelling supervisory controller for hybrid power systems
Energy Technology Data Exchange (ETDEWEB)
Pereira, A.; Bindner, H.; Lundsager, P. [Risoe National Lab., Roskilde (Denmark); Jannerup, O. [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)
1999-03-01
Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)
A Hybrid Teaching and Learning Model
Juhary, Jowati Binti
This paper aims at analysing the needs for a specific teaching and learning model for the National Defence University of Malaysia (NDUM). The main argument is that whether there are differences between teaching and learning for academic component versus military component at the university. It is further argued that in order to achieve excellence, there should be one teaching and learning culture. Data were collected through interviews with military cadets. It is found that there are variations of teaching and learning strategies for academic courses, in comparison to a dominant teaching and learning style for military courses. Thus, in the interest of delivering quality education and training for students at the university, the paper argues that possibly a hybrid model for teaching and learning is fundamental in order to generate a one culture of academic and military excellence for the NDUM.
Hybrid adaptive control of a dragonfly model
Couceiro, Micael S.; Ferreira, Nuno M. F.; Machado, J. A. Tenreiro
2012-02-01
Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive ( HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive ( DA) method in terms of faster and improved tracking and parameter convergence.
Modeling the effect of wave-vegetation interaction on wave setup
van Rooijen, A. A.; McCall, R. T.; van Thiel de Vries, J. S. M.; van Dongeren, A. R.; Reniers, A. J. H. M.; Roelvink, J. A.
2016-06-01
Aquatic vegetation in the coastal zone attenuates wave energy and reduces the risk of coastal hazards, e.g., flooding. Besides the attenuation of sea-swell waves, vegetation may also affect infragravity-band (IG) waves and wave setup. To date, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are potentially important parameters for coastal risk assessment. In this study, the storm impact model XBeach is extended with formulations for attenuation of sea-swell and IG waves, and wave setup effects in two modes: the sea-swell wave phase-resolving (nonhydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode, a wave shape model is implemented to capture the effect of nonlinear wave-vegetation interaction processes on wave setup. Both modeling modes are verified using data from two flume experiments with mimic vegetation and show good skill in computing the sea-swell and IG wave transformation, and wave setup. In surfbeat mode, the wave setup prediction greatly improves when using the wave shape model, while in nonhydrostatic mode (nonlinear) intrawave effects are directly accounted for. Subsequently, the model is used for a range of coastal geomorphological configurations by varying bed slope and vegetation extent. The results indicate that the effect of wave-vegetation interaction on wave setup may be relevant for a range of typical coastal geomorphological configurations (e.g., relatively steep to gentle slope coasts fronted by vegetation).
Simple opdriftsbaserede modeller for Wave Star
DEFF Research Database (Denmark)
Kramer, Morten
Wave Star modellen er udarbejdet i programmeringssproget Delphi. Modellerne er en videre udarbejdelse af tidligere anvendte Excel-modeller. I forhold til Excelmodellerne udmærker de nye Dephi-modeller sig ved at beregningerne udføres mange gange hurtigere og modellerne kan håndtere lange tidsserier...
Modeling of random wave transformation with strong wave-induced coastal currents
Institute of Scientific and Technical Information of China (English)
Zheng Jinhai; H. Mase; Li Tongfei
2008-01-01
The propagation and transformation of multi-directional and uni-directional random waves over a coast with complicated bathymetric and geometric features are studied experimentally and numerically. Laboratory investigation indicates that wave energy convergence and divergence cause strong coastal currents to develop and inversely modify the wave fields. A coastal spectral wave model, based on the wave action balance equation with diffraction effect (WABED), is used to simulate the transformation of random waves over the complicated bathymetry. The diffraction effect in the wave model is derived from a parabolic approximation of wave theory, and the mean energy dissipation rate per unit horizontal area due to wave breaking is parameterized by the bore-based formulation with a breaker index of 0.73. The numerically simulated wave field without considering coastal currents is different from that of experiments, whereas model results considering currents clearly reproduce the intensification of wave height in front of concave shorelines.
-Advanced Models for Tsunami and Rogue Waves
Pravica, D. W.; Randriampiry, N.; Spurr, M. J.
2012-01-01
A wavelet ${K}_{q}(t)$ , that satisfies the q-advanced differential equation ${K}_{q}^{\\prime }(t)={K}_{q}(qt)$ for $q>1$ , is used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by ${F}_{q}(t,x)={K}_{q}{(t)}_{q}\\text{S}\\text{i}\\text{n}(x)$ . The profile ${F}_{q}$ is similar to tsunam...
A muscle model for hybrid muscle activation
Directory of Open Access Journals (Sweden)
Klauer Christian
2015-09-01
Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.
A Comparison of Nature Waves and Model Waves with Special Reference to Wave Grouping
DEFF Research Database (Denmark)
Burcharth, Hans F.
This paper represents a comparative analyses of the occurrence of wave grouping in field storm waves and laboratory waves with similar power spectra and wave height distribution.......This paper represents a comparative analyses of the occurrence of wave grouping in field storm waves and laboratory waves with similar power spectra and wave height distribution....
Model for predicting mountain wave field uncertainties
Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal
2017-04-01
Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of
Modelling of Natural and Hybrid Ventilation
DEFF Research Database (Denmark)
Heiselberg, Per
be installed in existing buildings after a few modifications. In contrast, ventilation systems using only natural forces such as wind and thermal buoyancy need to be designed together with the building, since the building itself and its components are the elements that can reduce or increase air movement...... as well as influence the air content (dust, pollution etc.). Architects and engineers need to acquire qualitative and quantitative information about the interactions between building characteristics and natural ventilation in order to design buildings and systems consistent with a passive low......-energy approach. These lecture notes focus on modelling of natural and hybrid ventilation driven by thermal buoyancy, wind and/or mechanical driving forces for a single zone with one, two or several openings....
Intermodal and cross-polarization four-wave mixing in large-core hybrid photonic crystal fibers
DEFF Research Database (Denmark)
Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin;
2015-01-01
Degenerate four-wave mixing is considered in large mode area hybrid photonic crystal fibers, combining photonic bandgap guidance and index guidance. Co- and orthogonally polarized pump, signal and idler fields are considered numerically by calculating the parametric gain and experimentally...... by spontaneous degenerate four-wave mixing. Intermodal and birefringence assisted intramodal phase matching is observed. Good agreement between calculations and experimental observations is obtained. Intermodal four-wave mixing is achieved experimentally with a conversion efficiency of 17%. (C) 2015 Optical...
Intermodal and cross-polarization four-wave mixing in large-core hybrid photonic crystal fibers.
Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper
2015-03-09
Degenerate four-wave mixing is considered in large mode area hybrid photonic crystal fibers, combining photonic bandgap guidance and index guidance. Co- and orthogonally polarized pump, signal and idler fields are considered numerically by calculating the parametric gain and experimentally by spontaneous degenerate four-wave mixing. Intermodal and birefringence assisted intramodal phase matching is observed. Good agreement between calculations and experimental observations is obtained. Intermodal four-wave mixing is achieved experimentally with a conversion efficiency of 17%.
DEFF Research Database (Denmark)
Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard
2014-01-01
Wave models used for site assessments are subject to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Considered are four different wave models and validation...... data is collected from published scientific research. The bias, the root-mean-square error as well as the scatter index are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example it is shown how the estimated uncertainties can...
A hybrid Fermi-Ulam-bouncer model
Energy Technology Data Exchange (ETDEWEB)
Leonel, Edson D; McClintock, P V E [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)
2005-01-28
Some dynamical and chaotic properties are studied for a classical particle bouncing between two rigid walls, one of which is fixed and the other moves in time, in the presence of an external field. The system is a hybrid, behaving not as a purely Fermi-Ulam model, nor as a bouncer, but as a combination of the two. We consider two different kinds of motion of the moving wall: (i) periodic and (ii) random. The dynamics of the model is studied via a two-dimensional nonlinear area-preserving map. We confirm that, for periodic oscillations, our model recovers the well-known results of the Fermi-Ulam model in the limit of zero external field. For intense external fields, we establish the range of control parameters values within which invariant spanning curves are observed below the chaotic sea in the low energy domain. We characterize this chaotic low energy region in terms of Lyapunov exponents. We also show that the velocity of the particle, and hence also its kinetic energy, grow according to a power law when the wall moves randomly, yielding clear evidence of Fermi acceleration.
Experimental characteristics of a lower hybrid wave multi-junction coupler in the HT-7 tokamak
Institute of Scientific and Technical Information of China (English)
Ding Bo-Jiang; Jiang Min; Zhang Gong-Rang; Huang Feng; Zhao Yan-Ping; Kuang Guang-Li; HT-7 team; Shan Jia-Fang; Liu Fu-Kun; Fang Yu-De; Wei Wei; Wu Zhen-Wei; Chen Zhong-Yong; Xu Han-Dong; Wang Mao
2006-01-01
A phase-controlled lower hybrid wave (LHW) multi-junction (M J) coupler (3(rows)×4(columns)×4 (subwaveguides)) has been developed in the HT-7 tokamak. Simulations show that it is more effective for driving plasma current than an ordinary phase-controlled LHW antenna (3(rows)× 12(columns)) (traditional coupler). The plasma-wave coupling experiments show that the reflection coefficient (RC) is below 10%, implying that the MJ grill can launch the wave into the plasma effectively. The effect of power spectrum launched by the MJ coupler on RC indicates that an optimal condition is requisite for a better coupling in the lower hybrid current drive (LHCD) experiments. Studies indicate that the drive efficiency of the MJ antenna is higher than that of the traditional one, which is mainly ascribed to the discrepancy in impurity concentration, plasma temperature, and spectrum directivity. An improved confinement with an electron internal transport barrier is obtained by LHCD. The analysis shows that the modified negative (low)magnetic shear and the change of radial electric field profile due to LHCD are possible factors responsible for the eITB formation.
Employing injection-locked FP LDs to set up a hybrid CATV/MW/MMW WDM light wave transmission system.
Lin, Chun-Yu; Lu, Hai-Han; Li, Chung-Yi; Wu, Po-Yi; Peng, Peng-Chun; Jhang, Tai-Wei; Lin, Che-Yu
2014-07-01
A hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW) wavelength-division-multiplexing (WDM) light wave transmission system based on injection-locked Fabry-Perot laser diodes (FP LDs) is proposed and demonstrated. Different from conventional hybrid WDM light wave transmission systems, which need wavelength-selected distributed feedback laser diodes to support various services, the proposed systems employ injection-locked FP LDs to provide multiple applications. Over a 40 km single-mode fiber transport, impressive performances of carrier-to-noise ratio/composite second-order/composite triple-beat/bit error rate are obtained for 550 MHz CATV/20 GHz MW/40 GHz MMW/60 GHz MMW signal transmissions. Such a hybrid WDM light wave transmission system would be attractive for fiber links to provide broadband integrated services.
A Hybrid Model of a Brushless DC Motor
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Hansen, Hans Brink; Kallesøe, Carsten Skovmose
2007-01-01
This paper presents a novel approach to modeling of a Brush-Less Direct Current Motor (BLDCM) driven by an inverter using hybrid systems theory. Hybrid systems combine continuous and discrete (event-based) dynamics, which is exactly the case in an inverter-driven BLDCM. The model presented in thi...
Modeling of Rayleigh wave dispersion in Iberia
Directory of Open Access Journals (Sweden)
José Badal
2011-01-01
Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.
Hybrid Dynamical Systems Modeling, Stability, and Robustness
Goebel, Rafal; Teel, Andrew R
2012-01-01
Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discret
Directory of Open Access Journals (Sweden)
M. J. Kalaee
2010-06-01
Full Text Available In order to clarify the role of the mode conversion process in the generation mechanism of LO-mode waves in the equatorial region of the plasmasphere, we have investigated the linear mode conversion process among upper-hybrid-resonance (UHR-mode, Z-mode and LO-mode waves by a numerical simulation solving Maxwell's equations and the equation of motion of a cold electron fluid. The wave coupling process occurring in the cold magnetized plasma are examined in detail. In order to give a realistic initial plasma condition in the numerical experiments, we use initial parameters inferred from observation data obtained around the generation region of LO-mode waves obtained by the Akebono satellite. A density gradient is estimated from the observed UHR frequency, and wave normal angles are estimated from the dispersion relation of cold plasma by comparing observed wave electric fields. Then, we perform numerical experiments of mode conversion processes using the density gradient of background plasma and the wave normal angle of incident upper hybrid mode waves determined from the observation results. We found that the characteristics of reproduced LO-mode waves in each simulation run are consistent with observations.
Wave climatology of the Indian Ocean derived from altimetry and wave model
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.; Rao, L.V.G.; Kumar, R.; Sarkar, A.; Mohan, M.; Sudheesh, K.; Karthikeyan, S.B.
month. Similar procedure is followed for Geosat data for comparison purpose. The wave model, WAVEIN has been run using ECMWF winds to hindcast waves over the Indian Ocean and to compare with Geosat wave parameters. As altimeter does not provide wave...
A Boussinesq Equation-Based Model for Nearshore Wave Breaking
Institute of Scientific and Technical Information of China (English)
余建星; 张伟; 王广东; 杨树清
2004-01-01
Based on the wave breaking model by Li and Wang (1999), this work is to apply Dally' s analytical solution to the wave-height decay irstead of the empirical and semi-empirical hypotheses of wave-height distribution within the wave breaking zone. This enhances the applicability of the model. Computational results of shoaling, location of wave breaking, wave-height decay after wave breaking, set-down and set-up for incident regular waves are shown to have good agreement with experimental and field data.
Excitation of ion-cyclotron harmonic waves in lower-hybrid heating
Villalon, E.
1981-06-01
The parametric excitation of ion-cyclotron waves by a lower-hybrid pump field is studied in the assumption that the magnitude of the pump is constant. The spatial amplification factor is given as a function of the wavenumber mismatch as produced by the plasma density gradient, and of the linear damping rates of the excited ion-cyclotron and sideband waves. The analysis is applied to plasma edge parameters relevant to the JFT2 heating experiment. It is found that ion-cyclotron harmonic modes are excited depending on pump frequency and plasma density. These modes are shown to have finite damping rates. The parallel refractive indices n1z of the excited sideband fields are found to be always larger than that of the driven pump field. Transition to quasi-mode decay occurs either by decreasing the pump frequency or by increasing the applied RF-power.
Discrete particle modelling of granular roll waves
Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie
2016-11-01
A granular current flowing down an inclined chute or plane can undergo an instability that leads to the formation of surface waves, known as roll waves. Examples of roll waves are found in avalanches and debris flows in landslides, and in many industrial processes. Although related to the Kapitza instability of viscous fluid films, granular roll waves are not yet as well understood. Laboratory experiments typically measure the surface height and velocity of a current as functions of position and time, but they do not give insight into the processes below the surface: in particular, the possible formation of a boundary layer at the free surface as well as the base. To overcome this, we are running discrete particle model (DPM) simulations. Simulations are validated against our laboratory experiments, but they also allow us to examine a much larger range of parameters, such as material properties, chute geometry and particle size dispersity, than that which is possible in the lab. We shall present results from simulations in which we vary particle size and dispersity, and examine the implications on roll wave formation and propagation. Future work will include simulations in which the shape of the chute is varied, both cross-sectionally and in the downstream direction. EPSRC studentship (Tsang) and Royal Society Research Fellowship (Vriend).
Synchronizability Analysis of Harmonious Unification Hybrid Preferential Model
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The harmonious unification hybrid preferential model uses the dr ratio to adjust the proportion of deterministic preferential attachment and random preferential attachment, enriched the only deterministic preferential network model,
Hybrid Information Retrieval Model For Web Images
Bassil, Youssef
2012-01-01
The Bing Bang of the Internet in the early 90's increased dramatically the number of images being distributed and shared over the web. As a result, image information retrieval systems were developed to index and retrieve image files spread over the Internet. Most of these systems are keyword-based which search for images based on their textual metadata; and thus, they are imprecise as it is vague to describe an image with a human language. Besides, there exist the content-based image retrieval systems which search for images based on their visual information. However, content-based type systems are still immature and not that effective as they suffer from low retrieval recall/precision rate. This paper proposes a new hybrid image information retrieval model for indexing and retrieving web images published in HTML documents. The distinguishing mark of the proposed model is that it is based on both graphical content and textual metadata. The graphical content is denoted by color features and color histogram of ...
Modelling of data uncertainties on hybrid computers
Energy Technology Data Exchange (ETDEWEB)
Schneider, Anke (ed.)
2016-06-15
The codes d{sup 3}f and r{sup 3}t are well established for modelling density-driven flow and nuclide transport in the far field of repositories for hazardous material in deep geological formations. They are applicable in porous media as well as in fractured rock or mudstone, for modelling salt- and heat transport as well as a free groundwater surface. Development of the basic framework of d{sup 3}f and r{sup 3}t had begun more than 20 years ago. Since that time significant advancements took place in the requirements for safety assessment as well as for computer hardware development. The period of safety assessment for a repository of high-level radioactive waste was extended to 1 million years, and the complexity of the models is steadily growing. Concurrently, the demands on accuracy increase. Additionally, model and parameter uncertainties become more and more important for an increased understanding of prediction reliability. All this leads to a growing demand for computational power that requires a considerable software speed-up. An effective way to achieve this is the use of modern, hybrid computer architectures which requires basically the set-up of new data structures and a corresponding code revision but offers a potential speed-up by several orders of magnitude. The original codes d{sup 3}f and r{sup 3}t were applications of the software platform UG /BAS 94/ whose development had begun in the early nineteennineties. However, UG had recently been advanced to the C++ based, substantially revised version UG4 /VOG 13/. To benefit also in the future from state-of-the-art numerical algorithms and to use hybrid computer architectures, the codes d{sup 3}f and r{sup 3}t were transferred to this new code platform. Making use of the fact that coupling between different sets of equations is natively supported in UG4, d{sup 3}f and r{sup 3}t were combined to one conjoint code d{sup 3}f++. A direct estimation of uncertainties for complex groundwater flow models with the
Estimating hybrid choice models with the new version of Biogeme
Bierlaire, Michel
2010-01-01
Hybrid choice models integrate many types of discrete choice modeling methods, including latent classes and latent variables, in order to capture concepts such as perceptions, attitudes, preferences, and motivatio (Ben-Akiva et al., 2002). Although they provide an excellent framework to capture complex behavior patterns, their use in applications remains rare in the literature due to the difficulty of estimating the models. In this talk, we provide a short introduction to hybrid choice model...
Lower Hybrid Wave Current Drive Efficiency on the HT-7 Tokamak
Institute of Scientific and Technical Information of China (English)
CHEN Zhong-Yong; WAN Bao-Nian; SHI Yue-Jiang; HU Li-Qun; XU Han-Dong; LI Guo-Chao
2005-01-01
@@ Lower hybrid (LH) wave current drive efficiency on our HT-7 tokamak has been investigated based on the hot electrical conductivity theory.The interaction of the residual toroidal electric field with fast electrons has been included in the determination of current drive efficiency.The LH wave power scan was performed in the plasma parameter ranges of Ip = 50-156kA, (n)e = 0.5 × 1019-1.6 × 1019 m-3, PLH = 50-350kW.The current drive efficiency is derived to be about 0.1 × 1019-0.4 × 1019 Am-2W-1 on the HT-7 tokamak, which depends on the electron density and the LH wave phase velocity.At the electron density of about 1.5 × 1019 m-3, with the LH wave parallel refraction index peaked at 1.8, the highest current drive efficiency was obtained.A more generally normalized method is introduced to analyse the experimental data, which combines all the data in one curve.The normalized parameters are independent of the plasma parameters.
Hybrids of Gibbs Point Process Models and Their Implementation
Directory of Open Access Journals (Sweden)
Adrian Baddeley
2013-11-01
Full Text Available We describe a simple way to construct new statistical models for spatial point pattern data. Taking two or more existing models (finite Gibbs spatial point processes we multiply the probability densities together and renormalise to obtain a new probability density. We call the resulting model a hybrid. We discuss stochastic properties of hybrids, their statistical implications, statistical inference, computational strategies and software implementation in the R package spatstat. Hybrids are particularly useful for constructing models which exhibit interaction at different spatial scales. The methods are demonstrated on a real data set on human social interaction. Software and data are provided.
Phase Diagram of a Holographic Superconductor Model with s-wave and d-wave
Nishida, Mitsuhiro
2014-01-01
We consider a holographic model with a scalar field, a tensor field and a direct coupling between them as a superconductor with an s-wave and a d-wave. We find a rich phase structure in our model. Depending on the direct coupling, the model exhibits coexistence of the s-wave and the d-wave, and/or order competition, and has a triple point.
CMS-Wave Model: Part 5. Full-plane Wave Transformation and Grid Nesting
2012-04-01
are available in previous reports and CHETNs (Lin et al. 2006; Demirbilek et al. 2007). CMS -Wave is part of the Coastal Modeling System ( CMS ...the U.S. Army Corps of Engineers’ (USACE) Surface-water Modeling System (SMS). The CMS -Wave FP option is available in SMS Version 11.1 and higher...ERDC/CHL CHETN-IV-81 April 2012 Approved for public release; distribution is unlimited. CMS -Wave Model: Part 5. Full-plane Wave Transformation
Electromagnetic wave absorption properties of barium titanate/carbon nanotube hybrid nanocomposites
Energy Technology Data Exchange (ETDEWEB)
Melvin, Gan Jet Hong [Interdisciplinary Graduate School of Science and Technology, Shinshu University, Tokida, Ueda 386-8576 (Japan); Ni, Qing-Qing, E-mail: niqq@shinshu-u.ac.jp [Department of Functional Machinery and Mechanics, Shinshu University, Tokida, Ueda 386-8576 (Japan); Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou (China); Natsuki, Toshiaki [Department of Functional Machinery and Mechanics, Shinshu University, Tokida, Ueda 386-8576 (Japan)
2014-12-05
Highlights: • BTO/CNT hybrid nanocomposites was prepared by sol–gel method. • BTO/CNT 60 wt.%, t = 1.1 mm showed a minimum reflection loss of ∼−56.5 dB. • Weight fraction and thickness can be manipulated for various absorption bands. - Abstract: Barium titanate/carbon nanotube (BTO/CNT) hybrid nanocomposites were fabricated by sol–gel method. The BTO/CNT hybrid nanomaterials were characterized using X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Raman and X-ray photoelectron spectroscopy. The BTO/CNT hybrid nanomaterials were then loaded in paraffin wax with different weight percentage, and pressed into toroidal shape with thickness of 1.0 mm to evaluate their complex permittivity and complex permeability using vector network analyzer. The reflection loss of the samples was calculated according to their measured complex permittivity and permeability. The minimum reflection loss of the BTO/CNT 60 wt.% hybrid nanocomposites sample with a thickness of 1.0 mm reached 29.6 dB (over 99.9% absorption) at 13.6 GHz, and also exhibited a wide response bandwidth where the frequency bandwidth of the reflection loss of less than −10 dB (over 90% absorption) was from 12.1 to 13.8 GHz. The BTO/CNT 60 wt.% hybrid nanocomposites with thickness of 1.1 mm showed a minimum reflection loss of ∼−56.5 dB (over 99.999% absorption) at 13.2 GHz and was the best absorber when compared with the other samples of different thickness. The reflection loss peak shifted to lower frequency and wider response bandwidth can be obtained as the thickness of the samples increased. The capability to modulate the absorption band of these samples to suit various applications in different frequency bands simply by manipulating their weight percentage and thickness indicates that these hybrid nanocomposites could be a promising electromagnetic wave absorber.
Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves
Directory of Open Access Journals (Sweden)
Shukui Liu
2011-03-01
Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.
Energy Technology Data Exchange (ETDEWEB)
Wijnands, T.J. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere
1997-03-01
This work is focussed on an important and recent development in present day Controlled Nuclear Fusion Research and Tokamaks. The aim is to optimise the energy confinement for a certain magnetic configuration by adapting the radial distribution of the current. Of particular interest are feedback control scenarios with stationary modifications of the current profile using current, driven by Lower Hybrid waves. A new feedback control system has been developed for Tore Supra and has made a large number of new operation scenarios possible. In one of the experiments described here, there is no energy exchange between the poloidal field system and the plasma, the current is controlled by the power of the Lower Hybrid waves while the launched wave spectrum is used to optimise the current profile shape and the energy confinement. (author) 151 refs.
Patra, Rusha; Dutta, Pranab K
2015-07-01
Reconstruction of the absorption coefficient of tissue with good contrast is of key importance in functional diffuse optical imaging. A hybrid approach using model-based iterative image reconstruction and a genetic algorithm is proposed to enhance the contrast of the reconstructed image. The proposed method yields an observed contrast of 98.4%, mean square error of 0.638×10⁻³, and object centroid error of (0.001 to 0.22) mm. Experimental validation of the proposed method has also been provided with tissue-like phantoms which shows a significant improvement in image quality and thus establishes the potential of the method for functional diffuse optical tomography reconstruction with continuous wave setup. A case study of finger joint imaging is illustrated as well to show the prospect of the proposed method in clinical diagnosis. The method can also be applied to the concentration measurement of a region of interest in a turbid medium.
Hybrid nonlinear model of the angular vestibulo-ocular reflex.
Ranjbaran, Mina; Galiana, Henrietta L
2013-01-01
A hybrid nonlinear bilateral model for the horizontal angular vestibulo-ocular reflex (AVOR) is presented in this paper. The model relies on known interconnections between saccadic burst circuits in the brainstem and ocular premotor areas in the vestibular nuclei during slow and fast phase intervals. A viable switching strategy for the timing of nystagmus events is proposed. Simulations show that this hybrid model replicates AVOR nystagmus patterns that are observed in experimentally recorded data.
Wave-to-wire Modelling of Wave Energy Converters
DEFF Research Database (Denmark)
Ferri, Francesco
, but talking about renewable energy partially ravels the problem out. Wave energy is a large, mostly untapped, renewable energy resource. It has the potential to contribute significantly to the future energy mix, but the sector has not yet rolled off into the market in consequence of a number of technical...... and non-technical issues. These can be efficiently summarised in the cost of the energy produced by the various wave energy converters: If compared with other renewable energy technologies the cost of energy from the ocean waves is still significantly higher. Holding the comparison it also important...... to noticed that there is not a clear front runner in the wave energy sector, which fades effort and funding over a too broad frame. In order to assist efficient development and analysis of wave energy converters and therefore to accelerate the sector progression towards commercialisation, a generally...
Wu, Guang; Dong, Zuomin
2017-09-01
Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.
Generative Modeling for Machine Learning on the D-Wave
Energy Technology Data Exchange (ETDEWEB)
Thulasidasan, Sunil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Sciences Group
2016-11-15
These are slides on Generative Modeling for Machine Learning on the D-Wave. The following topics are detailed: generative models; Boltzmann machines: a generative model; restricted Boltzmann machines; learning parameters: RBM training; practical ways to train RBM; D-Wave as a Boltzmann sampler; mapping RBM onto the D-Wave; Chimera restricted RBM; mapping binary RBM to Ising model; experiments; data; D-Wave effective temperature, parameters noise, etc.; experiments: contrastive divergence (CD) 1 step; after 50 steps of CD; after 100 steps of CD; D-Wave (experiments 1, 2, 3); D-Wave observations.
Bond graph model-based fault diagnosis of hybrid systems
Borutzky, Wolfgang
2015-01-01
This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...
A hybrid model of a subminiature helicopter in horizontal turn
Institute of Scientific and Technical Information of China (English)
Chen Li; Gong Zhenbang; Liu Liang
2007-01-01
A hybrid model of a subminiature helicopter in horizontal turn is presented. This model is based on a mechanism model and its compensated neural network (NN). First, the nonlinear dynamics of a subminiature helicopter is established. Through the linearization of the nonlinear dynamics on a trim point, the linear time-invariant mechanism model in horizontal turn is obtained. Then a diagonal recursive neural network is used to compensate the model error between the mechanism model and the nonlinear model, thus the hybrid model of a subminiature helicopter in horizontal turn is achieved. Simulation results show that the hybrid model has higher accuracy than the mechanism model and the obtained compensated-NN has good generalization capability.
Astrophysical Model Selection in Gravitational Wave Astronomy
Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.
2012-01-01
Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.
A WEAKLY NONLINEAR WATER WAVE MODEL TAKING INTO ACCOUNT DISPERSION OF WAVE PHASE VELOCITY
Institute of Scientific and Technical Information of China (English)
李瑞杰; 李东永
2002-01-01
This paper presents a weakly nonlinear water wave model using a mild slope equation and a new explicit formulation which takes into account dispersion of wave phase velocity, approximates Hedges' (1987) nonlinear dispersion relationship, and accords well with the original empirical formula. Comparison of the calculating results with those obtained from the experimental data and those obtained from linear wave theory showed that the present water wave model considering the dispersion of phase velocity is rational and in good agreement with experiment data.
Detailed modeling of mountain wave PSCs
Directory of Open Access Journals (Sweden)
S. Fueglistaler
2003-01-01
Full Text Available Polar stratospheric clouds (PSCs play a key role in polar ozone depletion. In the Arctic, PSCs can occur on the mesoscale due to orographically induced gravity waves. Here we present a detailed study of a mountain wave PSC event on 25-27 January 2000 over Scandinavia. The mountain wave PSCs were intensively observed by in-situ and remote-sensing techniques during the second phase of the SOLVE/THESEO-2000 Arctic campaign. We use these excellent data of PSC observations on 3 successive days to analyze the PSCs and to perform a detailed comparison with modeled clouds. We simulated the 3-dimensional PSC structure on all 3 days with a mesoscale numerical weather prediction (NWP model and a microphysical box model (using best available nucleation rates for ice and nitric acid trihydrate particles. We show that the combined mesoscale/microphysical model is capable of reproducing the PSC measurements within the uncertainty of data interpretation with respect to spatial dimensions, temporal development and microphysical properties, without manipulating temperatures or using other tuning parameters. In contrast, microphysical modeling based upon coarser scale global NWP data, e.g. current ECMWF analysis data, cannot reproduce observations, in particular the occurrence of ice and nitric acid trihydrate clouds. Combined mesoscale/microphysical modeling may be used for detailed a posteriori PSC analysis and for future Arctic campaign flight and mission planning. The fact that remote sensing alone cannot further constrain model results due to uncertainities in the interpretation of measurements, underlines the need for synchronous in-situ PSC observations in campaigns.
Applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures
Zou, Tao; Kaminski, Miroslaw Lech
2016-09-01
In design and operation of floating offshore structures, one has to avoid fatigue failures caused by action of ocean waves. The aim of this paper is to investigate the applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures. The applicability was investigated for Bluewaters' FPSO (Floating Production, Storage and Offloading) which had been turret moored at Sable field for half a decade. The waves were predicted as sea-state time series consisting of one wind sea and one swell. The predicted waves were compared with wave data obtained from ERA-interim and buoy measurements. Furthermore, the fatigue calculations were also carried out for main deck and side shell locations. It has been concluded that predicted fatigue damages of main deck using WaveWatch-III are in a very good agreement regardless of differences in predicted wind waves and swells caused by differences in wave system partitioning. When compared to buoy measurements, the model underestimates fatigue damages of side shell by approximately 30 %. The reason for that has been found in wider directional spreading of actual waves. The WaveWatch-III wave model has been found suitable for the fatigue assessment. However, more attention should be paid on relative wave directionality, wave system partitioning and uncertainty analysis in further development.
Deterministic combination of numerical and physical coastal wave models
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas; Jakobsen, K.P.
2007-01-01
A deterministic combination of numerical and physical models for coastal waves is developed. In the combined model, a Boussinesq model MIKE 21 BW is applied for the numerical wave computations. A piston-type 2D or 3D wavemaker and the associated control system with active wave absorption provides...
Gao, Q. D.; Budny, R. V.
2015-03-01
By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.
Directory of Open Access Journals (Sweden)
Jing Yin
2015-07-01
Full Text Available A total variation diminishing-weighted average flux (TVD-WAF-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing equations were rewritten in the conservative form and then discretized on a uniform grid. The finite volume method was used to discretize the flux term while the remaining terms were approximated with the finite difference method. The second-order TVD-WAF method was employed in conjunction with the Harten-Lax-van Leer (HLL Riemann solver to calculate the numerical flux, and the variables at the cell interface for the local Riemann problem were reconstructed via the fourth-order monotone upstream-centered scheme for conservation laws (MUSCL. The time marching scheme based on the third-order TVD Runge-Kutta method was used to obtain numerical solutions. The model was validated through a series of numerical tests, in which wave breaking and a moving shoreline were treated. The good agreement between the computed results, documented analytical solutions, and experimental data demonstrates the correct discretization of the governing equations and high accuracy of the proposed scheme, and also conforms the advantages of the proposed shock-capturing scheme for the enhanced version of the Boussinesq model, including the convenience in the treatment of wave breaking and moving shorelines and without the need for a numerical filter.
Lower hybrid wave resonance cone detection via CO/sub 2/ laser scattering
Energy Technology Data Exchange (ETDEWEB)
Wurden, G.A.; Wong, K.L.; Ono, M.
1984-04-01
Lower hybrid waves are studied in the Princeton ACT-I steady-state toroidal plasma device using a radially scanning CO/sub 2/ laser scattering system with both amplitude and phase sensitive detection techniques. Clearly defined resonance cones launched from external electrostatic antennas are seen to disappear as the plasma density is raised. Scaling of LHW laser signal with RF power in the presence of resonance cones shows nonlinearities associated with RF induced changes in the effective laser scattering volume. Absolute fluctuation level estimates suggest this occurs when e PHI/T/sub e/ greater than or equal to 1. Wavefront curvature effects can cause a complete loss of resonance cone laser signals, even though probes indicate that cones are still present. Measurements of the wave k/sub perpendicular/-spectrum in the plasma show direct evidence for electron Landau filtering of the original wave k/sub parallel/-spectrum launched from the antenna at the plasma edge, and strong dependence on antenna phasing. Finally, frequency shifts and loss of the resonance cone signal are associated with high levels of plasma density edge turbulence.
Plasma current start-up using the lower hybrid wave on the TST-2 spherical tokamak
Takase, Y.; Ejiri, A.; Inada, T.; Moeller, C. P.; Shinya, T.; Tsujii, N.; Yajima, S.; Furui, H.; Homma, H.; Imamura, K.; Nakamura, K.; Nakamura, K.; Sonehara, M.; Takeuchi, T.; Togashi, H.; Tsuda, S.; Yoshida, Y.
2015-12-01
Non-inductive plasma current start-up, ramp-up and sustainment by waves in the lower hybrid wave (LHW) frequency range at 200 MHz were investigated on the TST-2 spherical tokamak (R0 ≤ 0.38 m, a ≤ 0.25 m, Bt0 ≤ 0.3T, Ip ≤ 0.14 MA). Experimental results obtained using three types of antenna were compared. Both the highest plasma current (Ip = 18 kA) and the highest current drive figure of merit ηCD≡n¯eIpR0/PRF=1.4 ×1017 A/W/m2 were achieved using the capacitively-coupled combline (CCC) antenna, designed to excite the LHW with a sharp and highly directional wavenumber spectrum. For Ip greater than about 5 kA, high energy electrons accelerated by the LHW become the dominant carrier of plasma current. The low value of ηCD observed so far are believed to be caused by a rapid loss of energetic electrons and parasitic losses of the LHW energy in the plasma periphery. ηCD is expected to improve by an order of magnitude by increasing the plasma current to improve energetic electron confinement. In addition, edge power losses are expected to be reduced by increasing the toroidal magnetic field to improve wave accessibility to the plasma core, and by launching the LHW from the inboard upper region of the torus to achieve better single-pass absorption.
Study on the Detectability of the Sky-Surface Wave Hybrid Radar
Directory of Open Access Journals (Sweden)
Hou Chengyu
2014-01-01
Full Text Available Working in the HF (high-frequency band and the transmitter and receiver locating separately, the sky-surface wave hybrid radar both has the capabilities of the OTHR (over-the-horizon radar and the advantage of the bistatic radar. As the electromagnetic wave will be disturbed by the ionosphere, interfered by the sea clutter and attenuated by the sea surface, the detectability of this radar system is more complex. So, in this paper, we will discuss the problem detailedly. First of all, the radar equation is deduced based on the propagation of the electromagnetic wave. Then, how to calculate the effect of the ionosphere and the propagation loss is discussed. And an example based on the radar equation is given. At last, the ambiguity function is used to analyze the range and velocity resolution. From the result, we find that the resolution has relation with the location of the target and the height of reflection point of the ionosphere. But compared with the location, the effect of the ionospheric height can be ignored.
Impact of surface waves in a Regional Climate Model
DEFF Research Database (Denmark)
Rutgersson, Anna; Sætra, Oyvind; Semedo, Alvaro
2010-01-01
A coupled regional atmosphere-wave model system is developed with the purpose of investigating the impact of climate changes on the wave field, as well as feed-back effects of the wave field on the atmospheric parameters. This study focuses on the effects of introducing a two-way atmosphere-wave...... coupling on the atmosphere as well as on wave parameters. The model components are the regional climate model RCA, and the third generation wave model WAM. Two different methods are used for the coupling, using the roughness length and only including the effect of growing sea, and using the wave age...... and introducing the reduction of roughness due to decaying sea (swell). Introducing a two-way coupling results in an altered frequency distribution of wind speed and wave heights. When only including growing sea the impact of waves on the long term mean atmospheric parameters is limited, inducing a reduction...
Wave transmission through two-dimensional structures by the hybrid FE/WFE approach
Mitrou, Giannoula; Ferguson, Neil; Renno, Jamil
2017-02-01
The knowledge of the wave transmission and reflection characteristics in connected two-dimensional structures provides the necessary background for many engineering prediction methodologies. Extensive efforts have previously been exerted to investigate the propagation of waves in two-dimensional periodic structures. This work focuses on the analysis of the wave propagation and the scattering properties of joined structures comprising of two or more plates. The joint is modelled using the finite element (FE) method whereas each (of the joined) plate(s) is modelled using the wave and finite element (WFE) method. This latter approach is based on post-processing a standard FE model of a small segment of the plate using periodic structure theory; the FE model of the segment can be obtained using any commercial/in-house FE package. Stating the equilibrium and continuity conditions at the interfaces and expressing the motion in the plates in terms of the waves in each plate yield the reflection and transmission matrices of the joint. These can then be used to obtain the response of the whole structure, as well as investigating the frequency and incidence dependence for the flow of power in the system.
Modeling Pancake Formation with a Coupled Wave-Ice Model
Veeramony, J.; Orzech, M.; Shi, F.; Bateman, S. P.; Calantoni, J.
2016-12-01
Recent results from the ONR-sponsored Arctic Sea State DRI cruise (Thomson et al., 2016, EOS, in press) suggest that small-scale pancake ice formation is an important process in the initial recovery and refreezing of the Arctic pack ice each autumn. Ocean surface waves and ambient temperature play significant roles in shaping and/or limiting the pancake growth patterns, which may either facilitate or delay the recovery of the ice pack. Here we apply a phase-resolving, coupled wave-ice system, consisting of a CFD wave model (NHWAVE) and a discrete-element ice model (LIGGGHTS), to investigate the formation processes of pancake ice under different conditions. A series of simulations is run, each beginning with a layer of disconnected ice particles floating on the ocean surface. Wave conditions and ice bonding properties are varied to examine the effects of mild versus stormy conditions, wind waves versus swell, and warmer versus colder temperatures. Model runs are limited to domains of O(1 sq km). Initial tests have shown some success in replicating qualitative results from the Sea State cruise, including the formation of irregularly shaped pancakes from the "frazil" ice layer, changes in formation processes caused by varying ambient temperature (represented through variations in ice bonding strength), occasional rafting of one pancake on top of another, and increased wave attenuation as pancakes grow larger.
Hybrid ODE/SSA methods and the cell cycle model
Wang, S.; Chen, M.; Cao, Y.
2017-07-01
Stochastic effect in cellular systems has been an important topic in systems biology. Stochastic modeling and simulation methods are important tools to study stochastic effect. Given the low efficiency of stochastic simulation algorithms, the hybrid method, which combines an ordinary differential equation (ODE) system with a stochastic chemically reacting system, shows its unique advantages in the modeling and simulation of biochemical systems. The efficiency of hybrid method is usually limited by reactions in the stochastic subsystem, which are modeled and simulated using Gillespie's framework and frequently interrupt the integration of the ODE subsystem. In this paper we develop an efficient implementation approach for the hybrid method coupled with traditional ODE solvers. We also compare the efficiency of hybrid methods with three widely used ODE solvers RADAU5, DASSL, and DLSODAR. Numerical experiments with three biochemical models are presented. A detailed discussion is presented for the performances of three ODE solvers.
A Structural Model Decomposition Framework for Hybrid Systems Diagnosis
Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil
2015-01-01
Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.
Hybrid Computational Model for High-Altitude Aeroassist Vehicles Project
National Aeronautics and Space Administration — A hybrid continuum/noncontinuum computational model will be developed for analyzing the aerodynamics and heating on aeroassist vehicles. Unique features of this...
Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities
Energy Technology Data Exchange (ETDEWEB)
Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina
2012-09-01
The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.
Study of Bridging of the Spectral Gap in the Lower Hybrid Wave Current Drive in the HT-7 Tokamak
Institute of Scientific and Technical Information of China (English)
WANG Mao; DING Bojiang; XU Handong; ZHAO Lianmin; LIU Liang; LIN Shiyao; XU Ping; SUN Youwen; HU Huaichuan; YANG Yong; JIA Hua; WANG Xiaojie; WANG Dongxia; QIN Yongliang; FENG Jianqiang; LIU Fukun; SHAN Jiafang; ZHAO Yanping; HT-7 team
2009-01-01
An additional lower hybrid wave (LHW) with a higher refractive index(N//)was investigated in the HT-7 tokamak to bridge the spectral gap.It was found that the spectral gap between the wave and the electrons in the outer region was bridged by the additional wave with a higher N// spectrum.The results showed that the sawteeth oscillation was suppressed by launching the additional wave,and that the power deposition profile was moved outwards and the current profile was broadened due to the application of the additional wave.Our study indicates that the spectral gap may be bridged by an additional wave with a higher N// spectrum in the outer region.
Underwater Noise Modelling of Wave Energy Devices
Energy Technology Data Exchange (ETDEWEB)
NONE
2009-07-01
Future large-scale implementation of wave energy converts (WECs) will introduce an anthropogenic activity in the ocean which may contribute to underwater noise. The Ocean houses several marine species with acoustic sensibility; consequently the potential impact of the underwater noise needs to be addressed. At present, there are no acoustic impact studies based on acquired data. The WEAM project (Wave Energy Acoustic Monitoring) aims at developing an underwater noise monitoring plan for WECs. The development of an acoustic monitoring plan must consider the sound propagation in the ocean, identify noise sources, understand the operational characteristics and select adequate instrumentation. Any monitoring strategy must involve in-situ measurements. However, the vast distances which sound travels within the ocean, can make in-situ measurements covering the entire area of interest, impracticable. This difficulty can be partially overcome through acoustic numerical modelling. This paper presents a synthetic study, on the application of acoustic forward modelling and the evaluation of the impact of noise produced by wave energy devices on marine mammals using criteria based on audiograms of dolphins, or other species. The idea is to illustrate the application of that methodology, and to show to what extent it allows for estimating distances of impacts due to acoustic noise.
Inflationary gravitational waves in collapse scheme models
Energy Technology Data Exchange (ETDEWEB)
Mariani, Mauro, E-mail: mariani@carina.fcaglp.unlp.edu.ar [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); León, Gabriel, E-mail: gleon@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria – Pab. I, 1428 Buenos Aires (Argentina)
2016-01-10
The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.
Inflationary gravitational waves in collapse scheme models
Directory of Open Access Journals (Sweden)
Mauro Mariani
2016-01-01
Full Text Available The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.
DEVELOPMENT OF A HYBRID MODEL FOR THREE-DIMENSIONAL GIS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This paper presents a hybrid model for three-dimensional Geographical Information Systems which is an integration of surface- and volume-based models. The Triangulat ed Irregular Network (TIN) and octree models are integrated in this hybrid model. The TIN model works as a surface-based model which mainly serves for surface presentation and visualization. On the other hand, the octree encoding supports volumetric analysis. The designed data structure brings a major advantage in the three-dimensional selective retrieval. This technique increases the efficiency of three-dimensional data operation.
WEMo (Wave Exposure Model): Formulation, Procedures and Validation
Malhotra, Amit; Mark S. Fonseca
2007-01-01
This report describes the working of National Centers for Coastal Ocean Service (NCCOS) Wave Exposure Model (WEMo) capable of predicting the exposure of a site in estuarine and closed water to local wind generated waves. WEMo works in two different modes: the Representative Wave Energy (RWE) mode calculates the exposure using physical parameters like wave energy and wave height, while the Relative Exposure Index (REI) empirically calculates exposure as a unitless index. Detailed working of th...
Two-compartment model for competitive hybridization on molecular biochips
Chechetkin, V. R.
2007-01-01
During competitive hybridization the specific and non-specific fractions of tested biomolecules in solution bind jointly with the specific probes immobilized in a separate cell of a microchip. The application of two-compartment model to the two-component hybridization allows analytically investigating the underlying kinetics. It is shown that the behaviour with the non-monotonous growth of complexes formed by the non-specific fraction on a probe cell is a typical feature of competitive hybridization for both diffusion-limited and reaction-limited kinetics. The physical reason behind such an evolution consists in the fact that the characteristic hybridization time for the perfect complexes turns out longer with respect to that for the mismatch complexes. This behaviour should be taken into account for the choice of optimum hybridization and washing conditions for the analysis of specific fraction.
Two-compartment model for competitive hybridization on molecular biochips
Energy Technology Data Exchange (ETDEWEB)
Chechetkin, V.R. [Theoretical Department of Division for Perspective Investigations, Troitsk Institute of Innovation and Thermonuclear Investigations (TRINITI), Troitsk, 142190 Moscow Region (Russian Federation)]. E-mail: chechet@biochip.ru
2007-01-08
During competitive hybridization the specific and non-specific fractions of tested biomolecules in solution bind jointly with the specific probes immobilized in a separate cell of a microchip. The application of two-compartment model to the two-component hybridization allows analytically investigating the underlying kinetics. It is shown that the behaviour with the non-monotonous growth of complexes formed by the non-specific fraction on a probe cell is a typical feature of competitive hybridization for both diffusion-limited and reaction-limited kinetics. The physical reason behind such an evolution consists in the fact that the characteristic hybridization time for the perfect complexes turns out longer with respect to that for the mismatch complexes. This behaviour should be taken into account for the choice of optimum hybridization and washing conditions for the analysis of specific fraction.
A hybrid Scatter/Transform cloaking model
Directory of Open Access Journals (Sweden)
Gad Licht
2015-01-01
Full Text Available A new Scatter/Transform cloak is developed that combines the light bending of refraction characteristic of a Transform cloak with the scatter cancellation characteristic of a Scatter cloak. The hybrid cloak incorporates both Transform’s variable index of refraction with modified linear intrusions to maximize the Scatter cloak effect. Scatter/Transform improved the scattering cross-section of cloaking in a 2-dimensional space to 51.7% compared to only 39.6% or 45.1% respectively with either Scatter or Transform alone. Metamaterials developed with characteristics based on the new ST hybrid cloak will exhibit superior cloaking capabilities.
The development of a mathematical model of a hybrid airship
Abdul Ghaffar, Alia Farhana
The mathematical model of a winged hybrid airship is developed for the analysis of its dynamic stability characteristics. A full nonlinear equation of motion that describes the dynamics of the hybrid airship is determined and for completeness, some of the components in the equations are estimated using the appropriate methods that has been established and used in the past. Adequate assumptions are made in order to apply any relevant computation and estimation methods. While this hybrid airship design is unique, its modeling and stability analysis were done according to the typical procedure of conventional airships and aircrafts. All computations pertaining to the hybrid airship's equation of motion are carried out and any issues related to the integration of the wing to the conventional airship design are discussed in this thesis. The design of the hybrid airship is also slightly modified to suit the demanding requirement of a complete and feasible mathematical model. Then, linearization is performed under a chosen trim condition, and eigenvalue analysis is carried out to determine the general dynamic stability characteristics of the winged hybrid airship. The result shows that the winged hybrid airship possesses dynamic instability in longitudinal pitch motion and lateral-directional slow roll motion. This is due to the strong coupling between the aerostatic lift from the buoyant gas and aerodynamic lift from the wing.
Exploratory Topology Modelling of Form-Active Hybrid Structures
DEFF Research Database (Denmark)
Holden Deleuran, Anders; Pauly, Mark; Tamke, Martin;
2016-01-01
The development of novel form-active hybrid structures (FAHS) is impeded by a lack of modelling tools that allow for exploratory topology modelling of shaped assemblies. We present a flexible and real-time computational design modelling pipeline developed for the exploratory modelling of FAHS tha...
Surface-wave mode coupling : modelling and inverting waveforms including body-wave phases
Marquering, H.A.
1996-01-01
This thesis is concerned with a similar problem as addressed by Li & Tanimoto (1993) in the surfacewave mode approach. In this thesis it is shown that surface-wave mode coupling is required when body-wave phases in laterally heterogeneous media are modelled by surface-wave mode summation. An efficie
Data assimilation using a hybrid ice flow model
Directory of Open Access Journals (Sweden)
D. N. Goldberg
2010-10-01
Full Text Available Hybrid models, or depth-integrated flow models that include the effect of both longitudinal stresses and vertical shearing, are becoming more prevalent in dynamical ice modeling. Under a wide range of conditions they closely approximate the well-known First Order stress balance, yet are of computationally lower dimension, and thus require less intensive resources. Concomitant with the development and use of these models is the need to perform inversions of observed data. Here, an inverse control method is extended to use a hybrid flow model as a forward model. We derive an adjoint of a hybrid model and use it for inversion of ice-stream basal traction from observed surface velocities. A novel aspect of the adjoint derivation is a retention of non-linearities in Glen's flow law. Experiments show that including those nonlinearities is advantageous in minimization of the cost function, yielding a more efficient inversion procedure.
Hybrid modeling of xanthan gum bioproduction in batch bioreactor.
Zabot, Giovani L; Mecca, Jaqueline; Mesomo, Michele; Silva, Marceli F; Prá, Valéria Dal; de Oliveira, Débora; Oliveira, J Vladimir; Castilhos, Fernanda; Treichel, Helen; Mazutti, Marcio A
2011-10-01
This work is focused on hybrid modeling of xanthan gum bioproduction process by Xanthomonas campestris pv. mangiferaeindicae. Experiments were carried out to evaluate the effects of stirred speed and superficial gas velocity on the kinetics of cell growth, lactose consumption and xanthan gum production in a batch bioreactor using cheese whey as substrate. A hybrid model was employed to simulate the bio-process making use of an artificial neural network (ANN) as a kinetic parameter estimator for the phenomenological model. The hybrid modeling of the process provided a satisfactory fitting quality of the experimental data, since this approach makes possible the incorporation of the effects of operational variables on model parameters. The applicability of the validated model was investigated, using the model as a process simulator to evaluate the effects of initial cell and lactose concentration in the xanthan gum production.
Wave equation modelling using Julia programming language
Kim, Ahreum; Ryu, Donghyun; Ha, Wansoo
2016-04-01
Julia is a young high-performance dynamic programming language for scientific computations. It provides an extensive mathematical function library, a clean syntax and its own parallel execution model. We developed 2d wave equation modeling programs using Julia and C programming languages and compared their performance. We used the same modeling algorithm for the two modeling programs. We used Julia version 0.3.9 in this comparison. We declared data type of function arguments and used inbounds macro in the Julia program. Numerical results showed that the C programs compiled with Intel and GNU compilers were faster than Julia program, about 18% and 7%, respectively. Taking the simplicity of dynamic programming language into consideration, Julia can be a novel alternative of existing statically typed programming languages.
Hybrid reliability model for fatigue reliability analysis of steel bridges
Institute of Scientific and Technical Information of China (English)
曹珊珊; 雷俊卿
2016-01-01
A kind of hybrid reliability model is presented to solve the fatigue reliability problems of steel bridges. The cumulative damage model is one kind of the models used in fatigue reliability analysis. The parameter characteristics of the model can be described as probabilistic and interval. The two-stage hybrid reliability model is given with a theoretical foundation and a solving algorithm to solve the hybrid reliability problems. The theoretical foundation is established by the consistency relationships of interval reliability model and probability reliability model with normally distributed variables in theory. The solving process is combined with the definition of interval reliability index and the probabilistic algorithm. With the consideration of the parameter characteristics of theS−N curve, the cumulative damage model with hybrid variables is given based on the standards from different countries. Lastly, a case of steel structure in the Neville Island Bridge is analyzed to verify the applicability of the hybrid reliability model in fatigue reliability analysis based on the AASHTO.
Optimization of multi-model ensemble forecasting of typhoon waves
Directory of Open Access Journals (Sweden)
Shun-qi Pan
2016-01-01
Full Text Available Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles. The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the Optimization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to implement and practical for real-time wave forecasting.
Horizontal circulation and jumps in Hamiltonian wave models
Gagarina, E.; Vegt, van der J.; Bokhove, O.
2013-01-01
We are interested in the numerical modeling of wave-current interactions around surf zones at beaches. Any model that aims to predict the onset of wave breaking at the breaker line needs to capture both the nonlinearity of the wave and its dispersion. We have therefore formulated the Hamiltonian dyn
Chang, C. L.; Lipatov, A. S.; Drobot, A. T.; Papadopoulos, K.; Satya-Narayana, P.
1994-01-01
The dynamic response of a magnetized collisionless plasma to an externally driven, finite size, sudden switch-on current source across the magnetic field has been studied using a two dimensional hybrid code. It was found that the predominant plasma response was the excitation of whistler waves and the formation of current closure by induced currents in the plasma. The results show that the current closure path consists of: (a) two antiparallel field-aligned current channels at the end of the imposed current sheet; and (b) a cross-field current region connecting these channels. The formation of the current closure path occured in the whistler timescale much shorter than that of MHD and the closure region expanded continuously in time. The current closure process was accompanied by significant energy loss due to whistler radiation.
Degenerate four wave mixing in large mode area hybrid photonic crystal fibers
DEFF Research Database (Denmark)
Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper
2013-01-01
Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump...... wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode...... area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions....
Degenerate four wave mixing in large mode area hybrid photonic crystal fibers.
Petersen, Sidsel R; Alkeskjold, Thomas T; Lægsgaard, Jesper
2013-07-29
Spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers, in which photonic bandgap guidance and index guidance is combined. Calculations show the parametric gain is maximum on the edge of a photonic bandgap, for a large range of pump wavelengths. The FWM products are observed on the edges of a transmission band experimentally, in good agreement with the numerical results. Thereby the bandedges can be used to control the spectral positions of FWM products through a proper fiber design. The parametric gain control combined with a large mode area fiber design potentially allows for power scaling of light at wavelengths not easily accessible with e.g. rare earth ions.
Control of spiral waves and turbulent states in a cardiac model by travelling-wave perturbations
Institute of Scientific and Technical Information of China (English)
王鹏业; 谢平; 尹华伟
2003-01-01
We propose a travelling-wave perturbation method to control the spatiotemporal dynamics in a cardiac model.It is numerically demonstrated that the method can successfully suppress the wave instability(alternans in action potential duration) in the one-dimensional case and convert spiral waves and turbulent states to the normal travelling wave states in the two-dimensional case.An experimental scheme is suggested which may provide a new design for a cardiac defibrillator.
Measurement and modeling of bed shear stress under solitary waves
Digital Repository Service at National Institute of Oceanography (India)
Jayakumar, S.; Guard, P.A.; Baldock, T.E.
convolution integration methods forced with the free stream velocity and incorporating a range of eddy viscosity models. Wave friction factors were estimated from skin shear stress at different instances over the wave (viz., time of maximum positive total...
3D mmWave Channel Model Proposal
DEFF Research Database (Denmark)
Thomas, Timothy; Nguyen, Huan Cong; R. MacCartney Jr., George
2014-01-01
There is growing interest in using millimeter wave (mmWave) frequencies for future access communications based on the enormous amount of available spectrum. To characterize the mmWave channel in urban areas, wideband propagation measurements at 73 GHz have recently been made in New York City. Using...... mmWave channel model is developed with special emphasis on using the ray tracer to determine elevation model parameters. The channel model includes distance-dependent elevation modeling which is critical for the expected 2D arrays which will be employed at mmWave....
A new statistical model of wave heights based on the concept of wave breaking critical zone
Institute of Scientific and Technical Information of China (English)
YANG Jiaxuan; LI Xunqiang; ZHU Shouxian; ZHANG Wenjing; WANG Lei
2015-01-01
When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of surf was derived mainly from the wave energy conservation equation and the linear wave dispersion relation, but it cannot reflect accurately the process which is a rapid increasing in wave height near the broken point. So, the concept of a surf breaking critical zone is presented. And the nearshore is divided as deep water zone, shallow water zone, surf breaking critical zone and after breaking zone. Besides, the calculation formula for the height of the surf breaking critical zone has founded based on flume experiments, thereby a new statistical calculation model on the surf has been established. Using the new model, the calculation error of wave height maximum is reduced from 17.62% to 6.43%.
A hybrid random field model for scalable statistical learning.
Freno, A; Trentin, E; Gori, M
2009-01-01
This paper introduces hybrid random fields, which are a class of probabilistic graphical models aimed at allowing for efficient structure learning in high-dimensional domains. Hybrid random fields, along with the learning algorithm we develop for them, are especially useful as a pseudo-likelihood estimation technique (rather than a technique for estimating strict joint probability distributions). In order to assess the generality of the proposed model, we prove that the class of pseudo-likelihood distributions representable by hybrid random fields strictly includes the class of joint probability distributions representable by Bayesian networks. Once we establish this result, we develop a scalable algorithm for learning the structure of hybrid random fields, which we call 'Markov Blanket Merging'. On the one hand, we characterize some complexity properties of Markov Blanket Merging both from a theoretical and from the experimental point of view, using a series of synthetic benchmarks. On the other hand, we evaluate the accuracy of hybrid random fields (as learned via Markov Blanket Merging) by comparing them to various alternative statistical models in a number of pattern classification and link-prediction applications. As the results show, learning hybrid random fields by the Markov Blanket Merging algorithm not only reduces significantly the computational cost of structure learning with respect to several considered alternatives, but it also leads to models that are highly accurate as compared to the alternative ones.
Lamb wave propagation modeling for structure health monitoring
Institute of Scientific and Technical Information of China (English)
Xiaoyue ZHANG; Shenfang YUAN; Tong HAO
2009-01-01
This study aims to model the propagation of Lamb waves used in structure health monitoring. A number of different numerical computational techniques have been developed for wave propagation studies. The local interaction simulation approach, used for modeling sharp interfaces and discontinuities in complex media (LISA/SIM theory), has been effectively applied to numerical simulations of elastic wave interaction. This modeling is based on the local interaction simulation approach theory and is finally accomplished through the finite elements software Ansys11. In this paper, the Lamb waves propagating characteristics and the LISA/SIM theory are introduced. The finite difference equations describing wave propagation used in the LISA/SIM theory are obtained. Then, an anisotropic metallic plate model is modeled and a simulating Lamb waves signal is loaded on. Finally, the Lamb waves propagation modeling is implemented.
WAVE ATTENUATION OVER MUD BED: A PSEUDO-PLASTIC MODEL
Institute of Scientific and Technical Information of China (English)
Zhang Qing-he; Onyx W.H. Wai; Joseph H. W. Lee
2003-01-01
A two-layer model, with the upper layer being the perfect fluid and the lower layer being the pseudo-plastic fluid describing water wave attenuation over mud bed, was established. A simplified method based on the principle of equivalent work was applied to solve the boundary value problems. The computational results of the model show that the two-layer perfect fluid model and the perfect-viscous fluid model are all special cases of the present model. The complex nonlinear properties of wave attenuation over mud bed, can be explained by the present model, e.g., the wave dissipation rate decreases with the wave height in certain cases, while the small wave propagates over mud bed with less energy dissipation and large wave attenuates rapidly in other cases. Other factors influencing the wave attenuation were also discussed.
Rogue waves in a water tank: Experiments and modeling
Lechuga, Antonio
2013-04-01
Recently many rogue waves have been reported as the main cause of ship incidents on the sea. One of the main characteristics of rogue waves is its elusiveness: they present unexpectedly and disappear in the same wave. Some authors (Zakharov and al.2010) are attempting to find the probability of their appearances apart from studyingthe mechanism of the formation. As an effort on this topic we tried the generation of rogue waves in a water wave tank using a symmetric spectrum(Akhmediev et al. 2011) as input on the wave maker. The produced waves were clearly rogue waves with a rate (maximum wave height/ Significant wave height) of 2.33 and a kurtosis of 4.77 (Janssen 2003, Onorato 2006). These results were already presented (Lechuga 2012). Similar waves (in pattern aspect, but without being extreme waves) were described as crossing waves in a water tank(Shemer and Lichter1988). To go on further the next step has been to apply a theoretical model to the envelope of these waves. After some considerations the best model has been an analogue of the Ginzburg-Landau equation. This apparently amazing result is easily explained: We know that the Ginzburg-Landau model is related to some regular structures on the surface of a liquid and also in plasmas, electric and magnetic fields and other media. Another important characteristic of the model is that their solutions are invariants with respectto the translation group. The main aim of this presentation is to extract conclusions of the model and the comparison with the measured waves in the water tank.The nonlinear structure of waves and their regularity make suitable the use of the Ginzburg-Landau model to the envelope of generated waves in the tank,so giving us a powerful tool to cope with the results of our experiment.
Experimental Modeling of the Overtopping Flow on the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik
2011-01-01
The Wave Dragon Wave Energy Converter is currently facing a precommercial phase. At this stage of development a reliable overtopping model is highly required, in order to predict the performance of the device at possible deployment locations. A model formulation derived for an overtopping device...... with general geometry has been used so far. The paper presents an updated formulation drawn through the tank testing of a scaled model the Wave Dragon. The sensitivity analysis of the main features influencing the overtopping flow led to an updated model formulation which can be specifically suited...... for the Wave Dragon....
Experimental Modeling of the Overtopping Flow on the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik
2011-01-01
The Wave Dragon Wave Energy Converter is currently facing a precommercial phase. At this stage of development a reliable overtopping model is highly required, in order to predict the performance of the device at possible deployment locations. A model formulation derived for an overtopping device...... with general geometry has been used so far. The paper presents an updated formulation drawn through the tank testing of a scaled model the Wave Dragon. The sensitivity analysis of the main features influencing the overtopping flow led to an updated model formulation which can be specifically suited...... for the Wave Dragon....
Fluid Survival Tool: A Model Checker for Hybrid Petri Nets
Postema, Björn; Remke, Anne; Haverkort, Boudewijn R.; Ghasemieh, Hamed
2014-01-01
Recently, algorithms for model checking Stochastic Time Logic (STL) on Hybrid Petri nets with a single general one-shot transition (HPNG) have been introduced. This paper presents a tool for model checking HPNG models against STL formulas. A graphical user interface (GUI) not only helps to demonstra
Nuclear Hybrid Energy System Model Stability Testing
Energy Technology Data Exchange (ETDEWEB)
Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-04-01
A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.
Pseudospectral Model for Hybrid PIC Hall-effect Thruster Simulation
2015-07-01
1149. 8Goebel, D. M. and Katz, I., Fundamentals of Electric Propulsion : Ion and Hall Thrusters, John Wiley & Sons, Inc., 2008. 9Martin, R., J.W., K...Bilyeu, D., and Tran, J., “Dynamic Particle Weight Remapping in Hybrid PIC Hall -effect Thruster Simulation,” 34th Int. Electric Propulsion Conf...Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Pseudospectral model for hybrid PIC Hall -effect thruster simulationect
Chen, Yangyang; Huang, Guoliang
2017-04-01
A great deal of research has been devoted to controlling the dynamic behaviors of phononic crystals and metamaterials by directly tuning the frequency regions and/or widths of their inherent band gaps. Here, we present a novel approach to achieve extremely broadband flexural wave/vibration attenuation based on tunable local resonators made of piezoelectric stacks shunted by hybrid negative capacitance and negative inductance circuits with proof masses attached on a host beam. First, wave dispersion relations of the adaptive metamaterial beam are calculated analytically by using the transfer matrix method. The unique modulus tuning properties induced by the hybrid shunting circuits are then characterized conceptually, from which the frequency dependent modulus tuning curves of the piezoelectric stack located within wave attenuation frequency regions are quantitatively identified. As an example, a flexural wave high-pass band filter with a wave attenuation region from 0 to 23.0 kHz is demonstrated analytically and numerically by using the hybrid shunting circuit, in which the two electric components are connected in series. By changing the connection pattern to be parallel, another super wide wave attenuation region from 13.5 to 73.0 kHz is demonstrated to function as a low-pass filter at a subwavelength scale. The proposed adaptive metamaterial possesses a super wide band gap created both naturally and artificially. Therefore, it can be used for the transient wave mitigation at extremely broadband frequencies such as blast or impact loadings. We envision that the proposed design and approach can open many possibilities in broadband vibration and wave control.
Hybrid Modeling and Optimization of Yogurt Starter Culture Continuous Fermentation
Directory of Open Access Journals (Sweden)
Silviya Popova
2009-10-01
Full Text Available The present paper presents a hybrid model of yogurt starter mixed culture fermentation. The main nonlinearities within a classical structure of continuous process model are replaced by neural networks. The new hybrid model accounts for the dependence of the two microorganisms' kinetics from the on-line measured characteristics of the culture medium - pH. Then the model was used further for calculation of the optimal time profile of pH. The obtained results are with agreement with the experimental once.
A Reaction-Diffusion Model of Cholinergic Retinal Waves
Lansdell, Benjamin; Ford, Kevin; Kutz, J. Nathan
2014-01-01
Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability. PMID:25474327
Modification of ordinary-mode reflectometry system to detect lower-hybrid waves in Alcator C-Moda)
Baek, S. G.; Shiraiwa, S.; Parker, R. R.; Dominguez, A.; Kramer, G. J.; Marmar, E. S.
2012-10-01
Backscattering experiments to detect lower-hybrid (LH) waves have been performed in Alcator C-Mod, using the two modified channels (60 GHz and 75 GHz) of an ordinary-mode reflectometry system with newly developed spectral recorders that can continuously monitor spectral power at a target frequency. The change in the baseline of the spectral recorder during the LH wave injection is highly correlated to the strength of the X-mode non-thermal electron cyclotron emission. In high density plasmas where an anomalous drop in the lower hybrid current drive efficiency is observed, the observed backscattered signals are expected to be generated near the last closed flux surface, demonstrating the presence of LH waves within the plasma. This experimental technique can be useful in identifying spatially localized LH electric fields in the periphery of high-density plasmas.
Coupling atmospheric and ocean wave models for storm simulation
DEFF Research Database (Denmark)
Du, Jianting
This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... areas, are challenging for the wind-wave coupling system because: in storm cases, the wave field is constantly modified by the fast varying wind field; in coastal zones, the wave field is strongly influenced by the bathymetry and currents. Both conditions have complex, unsteady sea state varying...... with time and space that challenge the current coupled modeling system. The conventional approach of estimating the momentum exchange is through parameterizing the aerodynamic roughness length (z0) with wave parameters such as wave age, steepness, significant wave height, etc. However, it is found in storm...
Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.
Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J
2015-10-01
The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation.
Faraday pilot-wave dynamics: modelling and computation
Milewski, Paul A.; Galeano-Rios, Carlos A.; Nachbin, André; Bush, John W. M.
2015-01-01
A millimetric droplet bouncing on the surface of a vibrating fluid bath can self-propel by virtue of a resonant interaction with its own wave field. This system represents the first known example of a pilot-wave system of the form envisaged by Louis de Broglie in his double-solution pilot-wave theory. We here develop a fluid model of pilot-wave hydrodynamics by coupling recent models of the droplet’s bouncing dynamics with a more realistic model of weakly viscous quasi-potential wave generati...
Competition between the s-wave and p-wave superconductivity phases in a holographic model
Nie, Zhang-Yu; Gao, Xin; Zeng, Hui
2013-01-01
We build a holographic superconductor model with a scalar triplet charged under an SU(2) gauge field in the bulk. In this model, the s-wave and p-wave condensates can be consistently realized. We find that there are totally four phases in this model, namely, the normal phase without any condensate, s-wave phase, p-wave phase and the s+p coexisting phase. By calculating Gibbs free energy, the s+p coexisting phase turns out to be thermodynamically favored once it can appear. The phase diagram with the dimension of the scalar operator and temperature is drawn. The temperature range for the s+p coexisting phase is very narrow, which shows the competition between the s-wave and p-wave orders in the superconductor model.
A hybrid model for mapping simplified seismic response via a GIS-metamodel approach
Directory of Open Access Journals (Sweden)
G. Grelle
2014-02-01
Full Text Available An hybrid model, consisting of GIS and metamodel (model of model procedures, was introduced with the aim of estimating the 1-D spatial seismic site response. Inputs and outputs are provided and processed by means of an appropriate GIS model, named GIS Cubic Model (GCM. This discretizes the seismic underground half-space in a pseudo-tridimensional way. GCM consists of a layered parametric structure aimed at resolving a predicted metamodel by means of pixel to pixel vertical computing. The metamodel leading to the determination of a bilinear-polynomial function is able to design the classic shape of the spectral acceleration response in relation to the main physical parameters that characterize the spectrum itself. The main physical parameters consist of (i the average shear wave velocity of the shallow layer, (ii the fundamental period and, (iii the period where the spatial spectral response is required. The metamodel is calibrated on theoretical spectral accelerations regarding the local likely Vs-profiles, which are obtained using the Monte Carlo simulation technique on the basis of the GCM information. Therefore, via the GCM structure and the metamodel, the hybrid model provides maps of normalized acceleration response spectra. The hybrid model was applied and tested on the built-up area of the San Giorgio del Sannio village, located in a high-risk seismic zone of Southern Italy.
Wind waves in tropical cyclones: satellite altimeter observations and modeling
Golubkin, Pavel; Kudryavtsev, Vladimir; Chapron, Bertrand
2016-04-01
Results of investigation of wind-wave generation by tropical cyclones using satellite altimeter data are presented. Tropical cyclones are generally relatively small rapidly moving low pressure systems that are capable of generating severe wave conditions. Translation of a tropical cyclone leads to a prolonged period of time surface waves in the right sector remain under high wind forcing conditions. This effect has been termed extended fetch, trapped fetch or group velocity quasi-resonance. A tropical cyclone wave field is thus likely more asymmetrical than the corresponding wind field: wind waves in the tropical cyclone right sector are more developed with larger heights than waves in the left one. A dataset of satellite altimeter intersections of the Western Pacific tropical cyclones was created for 2010-2013. Data from four missions were considered, i.e., Jason-1, Jason-2, CryoSat-2, SARAL/AltiKa. Measurements in the rear-left and front-right sectors of tropical cyclones were examined for the presence of significant wave asymmetry. An analytical model is then derived to efficiently describe the wave energy distribution in a moving tropical cyclone. The model essentially builds on a generalization of the self-similar wave growth model and the assumption of a strongly dominant single spectral mode in a given quadrant of the storm. The model provides a criterion to anticipate wave enhancement with the generation of trapped abnormal waves. If forced during a sufficient timescale interval, also defined from this generalized self-similar wave growth model, waves can be trapped and large amplification of the wave energy will occur in the front-right storm quadrant. Remarkably, the group velocity and corresponding wavelength of outrunning wave systems will become wind speed independent and solely relate to the translating velocity. The resulting significant wave height also only weakly depends on wind speed, and more strongly on the translation velocity. Satellite
Modeling Technology in Traveling-Wave Fault Location
Directory of Open Access Journals (Sweden)
Tang Jinrui
2013-06-01
Full Text Available Theoretical research and equipment development of traveling-wave fault location seriously depend on digital simulation. Meanwhile, the fault-generated transient traveling wave must be transferred through transmission line, mutual inductor and secondary circuit before it is used. So this paper would maily analyze and summarize the modeling technology of transmission line and mutual inductor on the basis of the research achievement. Firstly several models of transmission line (multiple Π or T line model, Bergeron line model and frequency-dependent line model are compared in this paper with analysis of wave-front characteristics and characteristic frequency of traveling wave. Then modeling methods of current transformer, potential transformer, capacitive voltage transformer, special traveling-wave sensor and secondary cable are given. Finally, based on the difficult and latest research achievements, the future trend of modeling technology in traveling-wave fault location is prospected.
Numerical modelling in wave energy conversion systems
Energy Technology Data Exchange (ETDEWEB)
El Marjani, A. [Labo. de Turbomachines, Ecole Mohammadia d' Ingenieurs (EMI), Universite Mohammed V Agdal, Av Ibn Sina, B.P. 765 Agdal, Rabat (Morocco); Castro Ruiz, F.; Rodriguez, M.A.; Parra Santos, M.T. [Depto. de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Valladolid, Paseo del Cauce s/n, E-47011 Valladolid (Spain)
2008-08-15
This paper deals with a numerical modelling devoted to predict the flow characteristics in the components of an oscillating water column (OWC) system used for the wave energy capture. In the present paper, the flow behaviour is modelled by using the FLUENT code. Two numerical flow models have been elaborated and tested independently in the geometries of an air chamber and a turbine, which is chosen of a radial impulse type. The flow is assumed to be three-dimensional (3D), viscous, turbulent and unsteady. The FLUENT code is used with a solver of the coupled conservation equations of mass, momentum and energy, with an implicit time scheme and with the adoption of the dynamic mesh and the sliding mesh techniques in areas of moving surfaces. Turbulence is modelled with the k-{epsilon} model. The obtained results indicate that the developed models are well suitable to analyse the air flows both in the air chamber and in the turbine. The performances associated with the energy transfer processes have been well predicted. For the turbine, the numerical results of pressure and torque were compared to the experimental ones. Good agreements between these results have been observed. (author)
Constraining hybrid inflation models with WMAP three-year results
Cardoso, A
2006-01-01
We reconsider the original model of quadratic hybrid inflation in light of the WMAP three-year results and study the possibility of obtaining a spectral index of primordial density perturbations, $n_s$, smaller than one from this model. The original hybrid inflation model naturally predicts $n_s\\geq1$ in the false vacuum dominated regime but it is also possible to have $n_s<1$ when the quadratic term dominates. We therefore investigate whether there is also an intermediate regime compatible with the latest constraints, where the scalar field value during the last 50 e-folds of inflation is less than the Planck scale.
Modeling the Buoyancy System of a Wave Energy Power Plant
DEFF Research Database (Denmark)
Pedersen, Tom S.; Nielsen, Kirsten M.
2009-01-01
A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...
Modelling wave transformation across a fringing reef using swash
Zijlema, M.
2012-01-01
This paper presents the application of the open source non-hydrostatic wave-flow model SWASH to wave propagation over a fringing reef, and the results are discussed and compared with observations obtained from a laboratory experiment subjected to various incident wave conditions. This study focus no
Modelling wave transformation across a fringing reef using SWASH
Zijlema, M.
2012-01-01
This paper presents the application of the open source non-hydrostatic wave-flow model SWASH to wave propagation over a fringing reef, and the results are discussed and compared with observations obtained from a laboratory experiment subjected to various incident wave conditions. This study focus no
Modeling the Buoyancy System of a Wave Energy Power Plant
DEFF Research Database (Denmark)
Pedersen, Tom S.; Nielsen, Kirsten M.
2009-01-01
A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...
Diagnosing Hybrid Systems: a Bayesian Model Selection Approach
McIlraith, Sheila A.
2005-01-01
In this paper we examine the problem of monitoring and diagnosing noisy complex dynamical systems that are modeled as hybrid systems-models of continuous behavior, interleaved by discrete transitions. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. Building on our previous work in this area (MBCG99;MBCG00), our specific focus in this paper ins on the mathematical formulation of the hybrid monitoring and diagnosis task as a Bayesian model tracking algorithm. The nonlinear dynamics of many hybrid systems present challenges to probabilistic tracking. Further, probabilistic tracking of a system for the purposes of diagnosis is problematic because the models of the system corresponding to failure modes are numerous and generally very unlikely. To focus tracking on these unlikely models and to reduce the number of potential models under consideration, we exploit logic-based techniques for qualitative model-based diagnosis to conjecture a limited initial set of consistent candidate models. In this paper we discuss alternative tracking techniques that are relevant to different classes of hybrid systems, focusing specifically on a method for tracking multiple models of nonlinear behavior simultaneously using factored sampling and conditional density propagation. To illustrate and motivate the approach described in this paper we examine the problem of monitoring and diganosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.
Primordial gravitational waves from the space-condensate inflation model
Koh, Seoktae; Tumurtushaa, Gansukh
2015-01-01
We consider the space-condensate inflation model to study the primordial gravitational waves generated in the early Universe. We calculate the energy spectrum of gravitational waves induced by the space-condensate inflation model for full frequency range with assumption that the phase transition between two consecutive regimes to be abrupt during evolution of the Universe. The suppression of energy spectrum is found in our model for the decreasing frequency of gravitational waves depending on the model parameter. To realize the suppression of energy spectrum of the primordial gravitational waves, we study an existence of the early phase transition during inflation for the space-condensate inflation model.
Optimal parametric modelling of measured short waves
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
The spectral analysis of measured short waves can efficiently be carried out by the fast Fourier transform technique. Even though many present techniques can be used for the simulation of time series waves, these may not provide accurate...
Numerical modelling of nearshore wave transformation
Digital Repository Service at National Institute of Oceanography (India)
Chandramohan, P.; Nayak, B.U.; SanilKumar, V.
A software has been developed for numerical refraction study based on finite amplitude wave theories. Wave attenuation due to shoaling, bottom friction, bottom percolation and viscous dissipation has also been incorporated. The software...
Runoff prediction using an integrated hybrid modelling scheme
Remesan, Renji; Shamim, Muhammad Ali; Han, Dawei; Mathew, Jimson
2009-06-01
SummaryRainfall runoff is a very complicated process due to its nonlinear and multidimensional dynamics, and hence difficult to model. There are several options for a modeller to consider, for example: the type of input data to be used, the length of model calibration (training) data and whether or not the input data be treated as signals with different frequency bands so that they can be modelled separately. This paper describes a new hybrid modelling scheme to answer the above mentioned questions. The proposed methodology is based on a hybrid model integrating wavelet transformation, a modelling engine (Artificial Neural Network) and the Gamma Test. First, the Gamma Test is used to decide the required input data dimensions and its length. Second, the wavelet transformation decomposes the input signals into different frequency bands. Finally, a modelling engine (ANN in this study) is used to model the decomposed signals separately. The proposed scheme was tested using the Brue catchment, Southwest England, as a case study and has produced very positive results. The hybrid model outperforms all other models tested. This study has a wider implication in the hydrological modelling field since its general framework could be applied to other model combinations (e.g., model engine could be Support Vector Machines, neuro-fuzzy systems, or even a conceptual model. The signal decomposition could be carried out by Fourier transformation).
Weakly nonlinear models for internal waves: inverse scattering transform and solitary wave contents
Chen, Shengqian
2016-01-01
The time evolution emanating from ``internal dam-break'' initial conditions is studied for a class of models of stratified Euler fluids in configurations close to two-homogeneous layers separated by a thin diffused interface. Direct numerical simulations and experiments in wave tanks show that such initial conditions eventually give rise to coherent structures that are close to solitary-wave solutions moving ahead of a region of dispersive wave motion and turbulent mixing close to the location of the initial dam step. A priori theoretical predictions of the main features of these solitary waves, such as their amplitudes and speeds, appear to be unavailable, even for simplified models of wave evolution in stratified fluids. With the aim of providing estimates of the existence, amplitude and speed of such solitary waves, an approach based on Inverse Scattering Transform (IST) for completely integrable models is developed here and tested against direct numerical simulations of Euler fluids and some of their mode...
Modeling of aqueous foam blast wave attenuation
Directory of Open Access Journals (Sweden)
Domergue L.
2011-01-01
Full Text Available The use of aqueous foams enables the mitigation of blast waves induced by the explosion of energetic materials. The two-phase confinement gives rise to interphase interactions between the gaseous and liquid phases, which role have been emphasized in shock-tube studies with solid foams [1, 2]. Multifluid formalism enables the thermo-mechanical disequilibria between phases to be taken into account. The flow model ensures the correct estimation of the acoustic impedance of the two-phase media. As for the numerical scheme, Riemann solvers are used to describe the microscopic fluid interactions, the summation of which provides the multiphase flux. The role of the different transfer mechanisms is evaluated in the case where the liquid ligaments of the foam matrix have been shattered into droplets by the shock impingement. Characteristics of blast waves in heterogeneous media leads to a decrease of overpressure. The numerical results have been compared favorably to experimental data [3, 4].
Accurate finite element modeling of acoustic waves
Idesman, A.; Pham, D.
2014-07-01
In the paper we suggest an accurate finite element approach for the modeling of acoustic waves under a suddenly applied load. We consider the standard linear elements and the linear elements with reduced dispersion for the space discretization as well as the explicit central-difference method for time integration. The analytical study of the numerical dispersion shows that the most accurate results can be obtained with the time increments close to the stability limit. However, even in this case and the use of the linear elements with reduced dispersion, mesh refinement leads to divergent numerical results for acoustic waves under a suddenly applied load. This is explained by large spurious high-frequency oscillations. For the quantification and the suppression of spurious oscillations, we have modified and applied a two-stage time-integration technique that includes the stage of basic computations and the filtering stage. This technique allows accurate convergent results at mesh refinement as well as significantly reduces the numerical anisotropy of solutions. We should mention that the approach suggested is very general and can be equally applied to any loading as well as for any space-discretization technique and any explicit or implicit time-integration method.
A full-wave Helmholtz model for continuous-wave ultrasound transmission.
Huttunen, Tomi; Malinen, Matti; Kaipio, Jari P; White, Phillip Jason; Hynynen, Kullervo
2005-03-01
A full-wave Helmholtz model of continuous-wave (CW) ultrasound fields may offer several attractive features over widely used partial-wave approximations. For example, many full-wave techniques can be easily adjusted for complex geometries, and multiple reflections of sound are automatically taken into account in the model. To date, however, the full-wave modeling of CW fields in general 3D geometries has been avoided due to the large computational cost associated with the numerical approximation of the Helmholtz equation. Recent developments in computing capacity together with improvements in finite element type modeling techniques are making possible wave simulations in 3D geometries which reach over tens of wavelengths. The aim of this study is to investigate the feasibility of a full-wave solution of the 3D Helmholtz equation for modeling of continuous-wave ultrasound fields in an inhomogeneous medium. The numerical approximation of the Helmholtz equation is computed using the ultraweak variational formulation (UWVF) method. In addition, an inverse problem technique is utilized to reconstruct the velocity distribution on the transducer which is used to model the sound source in the UWVF scheme. The modeling method is verified by comparing simulated and measured fields in the case of transmission of 531 kHz CW fields through layered plastic plates. The comparison shows a reasonable agreement between simulations and measurements at low angles of incidence but, due to mode conversion, the Helmholtz model becomes insufficient for simulating ultrasound fields in plates at large angles of incidence.
Hybrid continuum-atomistic approach to model electrokinetics in nanofluidics
Energy Technology Data Exchange (ETDEWEB)
Amani, Ehsan, E-mail: eamani@aut.ac.ir; Movahed, Saeid, E-mail: smovahed@aut.ac.ir
2016-06-07
In this study, for the first time, a hybrid continuum-atomistic based model is proposed for electrokinetics, electroosmosis and electrophoresis, through nanochannels. Although continuum based methods are accurate enough to model fluid flow and electric potential in nanofluidics (in dimensions larger than 4 nm), ionic concentration is too low in nanochannels for the continuum assumption to be valid. On the other hand, the non-continuum based approaches are too time-consuming and therefore is limited to simple geometries, in practice. Here, to propose an efficient hybrid continuum-atomistic method of modelling the electrokinetics in nanochannels; the fluid flow and electric potential are computed based on continuum hypothesis coupled with an atomistic Lagrangian approach for the ionic transport. The results of the model are compared to and validated by the results of the molecular dynamics technique for a couple of case studies. Then, the influences of bulk ionic concentration, external electric field, size of nanochannel, and surface electric charge on the electrokinetic flow and ionic mass transfer are investigated, carefully. The hybrid continuum-atomistic method is a promising approach to model more complicated geometries and investigate more details of the electrokinetics in nanofluidics. - Highlights: • A hybrid continuum-atomistic model is proposed for electrokinetics in nanochannels. • The model is validated by molecular dynamics. • This is a promising approach to model more complicated geometries and physics.
Feller Property for a Special Hybrid Jump-Diffusion Model
Directory of Open Access Journals (Sweden)
Jinying Tong
2014-01-01
Full Text Available We consider the stochastic stability for a hybrid jump-diffusion model, where the switching here is a phase semi-Markovian process. We first transform the process into a corresponding jump-diffusion with Markovian switching by the supplementary variable technique. Then we prove the Feller and strong Feller properties of the model under some assumptions.
Hybrid programming model for implicit PDE simulations on multicore architectures
Kaushik, Dinesh K.
2011-01-01
The complexity of programming modern multicore processor based clusters is rapidly rising, with GPUs adding further demand for fine-grained parallelism. This paper analyzes the performance of the hybrid (MPI+OpenMP) programming model in the context of an implicit unstructured mesh CFD code. At the implementation level, the effects of cache locality, update management, work division, and synchronization frequency are studied. The hybrid model presents interesting algorithmic opportunities as well: the convergence of linear system solver is quicker than the pure MPI case since the parallel preconditioner stays stronger when hybrid model is used. This implies significant savings in the cost of communication and synchronization (explicit and implicit). Even though OpenMP based parallelism is easier to implement (with in a subdomain assigned to one MPI process for simplicity), getting good performance needs attention to data partitioning issues similar to those in the message-passing case. © 2011 Springer-Verlag.
Hybrid morphological modelling of shoreline response to a detached breakwater
DEFF Research Database (Denmark)
Kristensen, Sten Esbjørn; Drønen, Nils; Deigaard, Rolf
2013-01-01
to a model study of the principle correlations between evolving salients (spatial and temporal scales), the characteristic dimensions of the breakwater (distance to shore and alongshore length) and wave climate (wave height, normal and oblique wave incidence).The second version is applied to investigate...... in more detail the evolving morphology behind coastal breakwaters. It is demonstrated how the model is able to calculate the evolution of either salient or tombolo planforms, and furthermore it is shown that the results are in reasonable agreement with existing rules....
A Continuum Model of Actin Waves in Dictyostelium discoideum
Khamviwath, Varunyu; Hu, Jifeng; Othmer, Hans G.
2013-01-01
Actin waves are complex dynamical patterns of the dendritic network of filamentous actin in eukaryotes. We developed a model of actin waves in PTEN-deficient Dictyostelium discoideum by deriving an approximation of the dynamics of discrete actin filaments and combining it with a signaling pathway that controls filament branching. This signaling pathway, together with the actin network, contains a positive feedback loop that drives the actin waves. Our model predicts the structure, composition, and dynamics of waves that are consistent with existing experimental evidence, as well as the biochemical dependence on various protein partners. Simulation suggests that actin waves are initiated when local actin network activity, caused by an independent process, exceeds a certain threshold. Moreover, diffusion of proteins that form a positive feedback loop with the actin network alone is sufficient for propagation of actin waves at the observed speed of . Decay of the wave back can be caused by scarcity of network components, and the shape of actin waves is highly dependent on the filament disassembly rate. The model allows retraction of actin waves and captures formation of new wave fronts in broken waves. Our results demonstrate that a delicate balance between a positive feedback, filament disassembly, and local availability of network components is essential for the complex dynamics of actin waves. PMID:23741312
Energy Technology Data Exchange (ETDEWEB)
Gao, Q. D., E-mail: qgao@swip.ac.cn [Southwestern Institute of Physics, Chengdu 610041 (China); Budny, R. V. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)
2015-03-15
By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.
A Bingham-Plastic Model for Fluid Mud Transport Under Waves and Currents
Institute of Scientific and Technical Information of China (English)
刘春嵘; 吴博; 呼和敖德
2014-01-01
Simplified equations of fluid mud motion, which is described as Bingham-Plastic model under waves and currents, are presented by order analysis. The simplified equations are non-linear ordinary differential equations which are solved by hybrid numerical-analytical technique. As the computational cost is very low, the effects of wave current parameters and fluid mud properties on the transportation velocity of the fluid mud are studied systematically. It is found that the fluid mud can move toward one direction even if the shear stress acting on the fluid mud bed is much smaller than the fluid mud yield stress under the condition of wave and current coexistence. Experiments of the fluid mud motion under current with fluctuation water surface are carried out. The fluid mud transportation velocity predicted by the presented mathematical model can roughly match that measured in experiments.
Wang, Yu; Dai, Xiaoqing; Jiang, Wanchun; Wu, Fan; Xie, Aming
2016-07-01
As a kind of costless and lightweight material, SnO2 nanoparticles@polypyrrole hybrid aerogels have been synthesized and displayed electromagnetic wave absorbing (EWA) performance. Only with 10 wt% of nano-SnO2 filler loading in wax, effective EWA bandwidth of the hybrid aerogel can reach 7.28 GHz which is the widest lightweight EWA material among the reported absorbents. Through the regulation of sample thicknesses, effective EWA at lower frequencies can also be achieved. It was demonstrated that this aerogel can be used as an effective lightweight broadband EWA material.
A Hybrid Resynthesis Model for Hammer-String Interaction of Piano Tones
Directory of Open Access Journals (Sweden)
Jensen Kristoffer
2004-01-01
Full Text Available This paper presents a source/resonator model of hammer-string interaction that produces realistic piano sound. The source is generated using a subtractive signal model. Digital waveguides are used to simulate the propagation of waves in the resonator. This hybrid model allows resynthesis of the vibration measured on an experimental setup. In particular, the nonlinear behavior of the hammer-string interaction is taken into account in the source model and is well reproduced. The behavior of the model parameters (the resonant part and the excitation part is studied with respect to the velocities and the notes played. This model exhibits physically and perceptually related parameters, allowing easy control of the sound produced. This research is an essential step in the design of a complete piano model.
A structured modeling approach for dynamic hybrid fuzzy-first principles models
Lith, van Pascal F.; Betlem, Ben H.L.; Roffel, Brian
2002-01-01
Hybrid fuzzy-first principles models can be attractive if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented with fuzzy submodels describing additional equations, such as mass transformation and transfer rate
Directory of Open Access Journals (Sweden)
M. André
Full Text Available Broadband waves around the lower hybrid frequency (around 10 Hz near the magnetopause are studied, using the four Cluster satellites. These waves are common at the Earthward edge of the boundary layer, consistent with earlier observations, and can have amplitudes at least up to 5 mV/m. These waves are similar on all four Cluster satellites, i.e. they are likely to be distributed over large areas of the boundary. The strongest electric fields occur during a few seconds, i.e. over distances of a few hundred km in the frame of the moving magnetopause, a scale length comparable to the ion gyroradius. The strongest magnetic oscillations in the same frequency range are typically found in the boundary layer, and across the magnetopause. During an event studied in detail, the magnetopause velocity is consistent with a large-scale depression wave, i.e. an inward bulge of magnetosheath plasma, moving tailward along the nominal magnetopause boundary. Preliminary investigations indicate that a rather flat front side of the large-scale wave is associated with a rather static small-scale electric field, while a more turbulent backside of the large-scale wave is associated with small-scale time varying electric field wave packets.
Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers – Space plasma physics (waves and in-stabilities
Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Pecher, Arthur; Kofoed, Jens Peter
2010-01-01
The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions of the perf......The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions...
A hybrid model for the computationally-efficient simulation of the cerebellar granular layer
Directory of Open Access Journals (Sweden)
Anna eCattani
2016-04-01
Full Text Available The aim of the present paper is to efficiently describe the membrane potential dynamics of neural populations formed by species having a high density difference in specific brain areas. We propose a hybrid model whose main ingredients are a conductance-based model (ODE system and its continuous counterpart (PDE system obtained through a limit process in which the number of neurons confined in a bounded region of the brain tissue is sent to infinity. Specifically, in the discrete model, each cell is described by a set of time-dependent variables, whereas in the continuum model, cells are grouped into populations that are described by a set of continuous variables.Communications between populations, which translate into interactions among the discrete and the continuous models, are the essence of the hybrid model we present here. The cerebellum and cerebellum-like structures show in their granular layer a large difference in the relative density of neuronal species making them a natural testing ground for our hybrid model. By reconstructing the ensemble activity of the cerebellar granular layer network and by comparing our results to a more realistic computational network, we demonstrate that our description of the network activity, even though it is not biophysically detailed, is still capable of reproducing salient features of neural network dynamics. Our modeling approach yields a significant computational cost reduction by increasing the simulation speed at least $270$ times. The hybrid model reproduces interesting dynamics such as local microcircuit synchronization, traveling waves, center-surround and time-windowing.
Model Predictive Control of a Wave Energy Converter
DEFF Research Database (Denmark)
Andersen, Palle; Pedersen, Tom Søndergård; Nielsen, Kirsten Mølgaard;
2015-01-01
In this paper reactive control and Model Predictive Control (MPC) for a Wave Energy Converter (WEC) are compared. The analysis is based on a WEC from Wave Star A/S designed as a point absorber. The model predictive controller uses wave models based on the dominating sea states combined with a model...... connecting undisturbed wave sequences to sequences of torque. Losses in the conversion from mechanical to electrical power are taken into account in two ways. Conventional reactive controllers are tuned for each sea state with the assumption that the converter has the same efficiency back and forth. MPC...
Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL
Energy Technology Data Exchange (ETDEWEB)
Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-09-01
A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.
MODEL OF LASER-TIG HYBRID WELDING HEAT SOURCE
Institute of Scientific and Technical Information of China (English)
Chen Yanbin; Li Liqun; Feng Xiaosong; Fang Junfei
2004-01-01
The welding mechanism of laser-TIG hybrid welding process is analyzed. With the variation of arc current, the welding process is divided into two patterns: deep-penetration welding and heat conductive welding. The heat flow model of hybrid welding is presented. As to deep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. The heat source of heat conductive welding is composed of two Gaussian distribute surface heat sources. With this heat source model, a temperature field is calculated. The finite element code MARC is employed for this purpose. The calculation results show a good agreement with the experimental data.
Wave Prediction Model To Study On The Wave Height Variation In Terengganu Coast Of Malaysia
Directory of Open Access Journals (Sweden)
Nur Amalina Abdul Latif
2015-08-01
Full Text Available Abstract In this study the significant wave height at the Terengganu and the change of wave height at Kuala Terengganu to Merang shoreline were simulated by using the 2D Near-Shore Wave 2D NSW model. The significant wave height by the 2D NSW model at Kuala Terengganu to Merang shoreline from 2008-2012 were simulated. The model was forced by ECMWF European Centre for Medium Range Weather Forecast data. The simulated significant wave height by the 2D NSW model at Airport Kuala Terengganu AWAC station was compared with the observed significant wave height. The mean annual significant wave height indicate the higher wave height with average mean value in a range of 1.08-1.10 m in Kuala Terengganu to Batu Rakit area and lower in Merang area with average mean value in a range of 0.74 m. The detailed 5 years simulation period demonstrates that the strong variability of wave height exists during North-East monsoon. The findings of this study could be useful for the erosive calculation shoreline protection and coastal zone management activities.
Simulation of Typhoon-Driven Waves in the Yangtze Estuary with Multiple-Nested Wave Models
Institute of Scientific and Technical Information of China (English)
XU Fu-min; Will Perrie; ZHANG Jun-lun; SONG Zhi-yao; Bechara Toulany
2005-01-01
Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoon No. 8114 is chosen because it was very strong, and generated high waves in the Estuary. WW3 was implemented for the East China Sea coarse-resolution computational domain, to simulate the waves over a large spatial scale and provide boundary conditions for SWAN model simulations, implemented on a fine-resolution nested domain for the Yangtze Estuary area. The Takahashi wind model is applied to the simulation of the East China Sea scale (3-hourly) and Yangtze Estuary scale (1-hourly) winds. Simulations of significant wave heights in the East China Sea show that the highest waves are on the right side of the storm track, and maxima tend to occur at the eastern deep-water open boundary of the Yangtze Estuary. In the Yangtze Estuary, incoming swell is dominant over locally generated waves before the typhoon approaches the Estuary. As the typhoon approaches the Estuary, wind waves and swell coexist, and the wave direction is mainly influenced by the swell direction and the complex topography.
Yong, Peng; Huang, Jianping; Li, Zhenchun; Liao, Wenyuan; Qu, Luping; Li, Qingyang; Liu, Peijun
2017-02-01
In finite-difference (FD) method, numerical dispersion is the dominant factor influencing the accuracy of seismic modelling. Various optimized FD schemes for scalar wave modelling have been proposed to reduce grid dispersion, while the optimized time-space domain FD schemes for elastic wave modelling have not been fully investigated yet. In this paper, an optimized FD scheme with Equivalent Staggered Grid (ESG) for elastic modelling has been developed. We start from the constant P- and S-wave speed elastic wave equations and then deduce analytical plane wave solutions in the wavenumber domain with eigenvalue decomposition method. Based on the elastic plane wave solutions, three new time-space domain dispersion relations of ESG elastic modelling are obtained, which are represented by three equations corresponding to P-, S- and converted-wave terms in the elastic equations, respectively. By using these new relations, we can study the dispersion errors of different spatial FD terms independently. The dispersion analysis showed that different spatial FD terms have different errors. It is therefore suggested that different FD coefficients to be used to approximate the three spatial derivative terms. In addition, the relative dispersion error in L2-norm is minimized through optimizing FD coefficients using Newton's method. Synthetic examples have demonstrated that this new optimal FD schemes have superior accuracy for elastic wave modelling compared to Taylor-series expansion and optimized space domain FD schemes.
Modeling of hybrid vehicle fuel economy and fuel engine efficiency
Wu, Wei
"Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.
Wave climatology of Lake Erie based on an unstructured-grid wave model
Niu, Qianru; Xia, Meng
2016-10-01
Hindcast of wave dynamics in Lake Erie during 2002 to 2012 was conducted using a state-of-art finite-volume coastal ocean surface wave model (FVCOM-SWAVE). After model calibration, the surface gravity wave dynamics were examined from the aspects of wave climate and seasonality, inter-basin wave interactions, as well as its potential susceptibility to regional climate change. Compared to the Central and Eastern Basins, the Western Basin has relatively gentle wave climate. The Western Basin and the nearshore areas are most susceptible to the wave-induced bottom orbital oscillations on the seasonal mean scale, and the offshore Central Basin is sensitive to them as well during episodic events. Profound seasonality was found in both mean and extreme wave dynamics during ice-free cycles. Mean significant wave height (SWH) is highest during fall with more occurrences of extreme events (SWH > 3.1 m) and is lowest during summer, which is controlled by wind speed and direction collectively. Besides, swells generated in the Central and Eastern Basins could interact with each other under various wind directions, whereas wave generated in the Central Basin could hardly propagate into the Western Basin. In addition, the regression analysis of surrounding meteorological stations indicates increasing SWH in the Western Basin and decreasing SWH in the Eastern Basin.
Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling
2015-09-30
PROJECTS Section). With the group of Rogers, observation/modeling study of an energetic wave event in the Arctic marginal zone was conducted ...floe. (right) Surface elevation in the lee of a 5 mm thick polypropylene floe (thick black curves) and incident wave (grey), normalised with respect...Toffoli, A., Marusic, I., Klewicki, J., Hutchins, N., Suslov, S., Walker, D., Chung, D., “A Thermally Stratified Sea-Ice-Wave Interaction Facility”, ARC
An Efficient Hydrodynamic Model for Surface Waves
Institute of Scientific and Technical Information of China (English)
WANG Kun; JIN Sheng; LU Gang
2009-01-01
In the present study,a semi-implicit finite difference model for non-bydrostatic,free-surface flows is analyzed and discussed.The governing equations are the three-dimensional free-surface Reynolds-averaged Navier-Stokes equations defined on a general,irregular domain of arbitrary scale.At outflow,a combination of a sponge layer technique and a radiation boundary condition is applied to minimize wave reflection.The equations are solved with the fractional step method where the hydrostatic pressure component is determined first,while the non-hydrostatic component of the pressure is computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric.The advectiou and horizontal viscosity terms are discretized by use of a semi-Lagrangian approach.The resulting model is computationally efficient and unrestricted to the CFL condition.The developed model is verified against analytical solutions and experimental data,with excellent agreement.
KINEMATIC WAVE PROPERTIES OF ANISOTROPIC DYNAMICS MODEL FOR TRAFFIC FLOW
Institute of Scientific and Technical Information of China (English)
姜锐; 吴清松; 朱祚金
2002-01-01
The analyses of kinematic wave properties of a new dynamics model for traffic flow are carried out. The model does not exhibit the problem that one characteristic speed is always greater than macroscopic traffic speed, and therefore satisfies the requirement that traffic flow is anisotropic. Linear stability analysis shows that the model is stable under certain condition and the condition is obtained. The analyses also indicate that the model has a hierarchy of first-and second-order waves, and allows the existence of both smooth traveling wave and shock wave. However, the model has a distinctive criterion of shock wave compared with other dynamics models, and the distinction makes the model more realistic in dealing with some traffic problems such as wrong-way travel analysis.
A hydrodynamic model of nearshore waves and wave-induced currents
Directory of Open Access Journals (Sweden)
Ahmed Khaled Seif
2011-09-01
Full Text Available In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995 and Larson and Kraus (2002. Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF basin and the Hazaki Oceanographical Research Station (HORS. Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.
The innovative concept of three-dimensional hybrid receptor modeling
Stojić, A.; Stanišić Stojić, S.
2017-09-01
The aim of this study was to improve the current understanding of air pollution transport processes at regional and long-range scale. For this purpose, three-dimensional (3D) potential source contribution function and concentration weighted trajectory models, as well as new hybrid receptor model, concentration weighted boundary layer (CWBL), which uses a two-dimensional grid and a planetary boundary layer height as a frame of reference, are presented. The refined approach to hybrid receptor modeling has two advantages. At first, it considers whether each trajectory endpoint meets the inclusion criteria based on planetary boundary layer height, which is expected to provide a more realistic representation of the spatial distribution of emission sources and pollutant transport pathways. Secondly, it includes pollutant time series preprocessing to make hybrid receptor models more applicable for suburban and urban locations. The 3D hybrid receptor models presented herein are designed to identify altitude distribution of potential sources, whereas CWBL can be used for analyzing the vertical distribution of pollutant concentrations along the transport pathway.
A Comment on Interaction of Lower Hybrid Waves with the Current-Driven Ion-Acoustic Instability
DEFF Research Database (Denmark)
Schrittwieser, R.; Juul Rasmussen, Jens
1985-01-01
Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means of a positi......Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means...... of a positively biased cold plate. Schmittwieser et al. do not believe that the observed instability is of the ion-acoustic type but that it is rather the so-called potential relaxation instability....
Ebrahimi, Vahid; Yousefi, Leila; Mohammad-Taheri, Mahmoud
2017-01-01
In this paper, we propose a new method to provide optical link in Photonic Integrated Circuits (PICs). The proposed method uses two hybrid plasmonic leaky-wave optical antennas, operating at the standard optical telecommunication wavelength of 1.55 μm, to provide inter-chip interconnect between two layers in a photonic chip and also intra-chip interconnect between two different photonic ICs. Linearly tapered couplers are designed to couple the optical signal from the silicon waveguide to the hybrid plasmonic antennas. The performance of the proposed optical link is verified using numerical full wave simulation. The proposed structure is planar, and can be fabricated using standard CMOS technology which makes it the superior candidate for realization of future multi-layered Photonic Integrated Circuits.
Pulsar average wave forms and hollow-cone beam models
Backer, D. C.
1976-01-01
Pulsar wave forms have been analyzed from observations conducted over a wide radio-frequency range to assess the wave-form morphologies and to measure wave-form widths. The results of the analysis compare favorably with the predictions of a model with a hollow-cone beam of fixed dimensions and with random orientation of both the observer and the cone axis with respect to the pulsar spin axis. A class of three-component wave forms is included in the model by adding a central pencil beam to the hollow-cone hypothesis. The consequences of a number of discrepancies between observations and quantitative predictions of the model are discussed.
Fatigue reliability based on residual strength model with hybrid uncertain parameters
Institute of Scientific and Technical Information of China (English)
Jun Wang; Zhi-Ping Qiu
2012-01-01
The aim of this paper is to evaluate the fatigue reliability with hybrid uncertain parameters based on a residual strength model.By solving the non-probabilistic setbased reliability problem and analyzing the reliability with randomness,the fatigue reliability with hybrid parameters can be obtained.The presented hybrid model can adequately consider all uncertainties affecting the fatigue reliability with hybrid uncertain parameters.A comparison among the presented hybrid model,non-probabilistic set-theoretic model and the conventional random model is made through two typical numerical examples.The results show that the presented hybrid model,which can ensure structural security,is effective and practical.
Energy Technology Data Exchange (ETDEWEB)
Miller, M. C.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.; Stevenson, B. A. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States)
2012-10-15
A three-channel 1 mm wave interferometer has been designed, assembled, and installed on the Compact Toroidal Hybrid torsatron (CTH). The interferometer design makes novel use of a subharmonic mixer for detection, which simplifies alignment. It employs a single electronically tunable source that is repetitively chirped using a sawtooth waveform of frequency up to 1 MHz. The 15.25 GHz drive oscillator is multiplied in two stages to 122 GHz before a final doubler stage brings it to 244 GHz. Local oscillator (LO) power at 122 GHz is directed through waveguide to the LO input of the subharmonic mixer of each viewing chord, simplifying alignment. Phase detection is performed by directly digitizing the amplified mixer outputs at 50 MHz and processing them with a software algorithm. Initial measurements made with the central chord of the new interferometer agree with those from the existing 4 mm system at low densities. The 1 mm system performs well in current-driven discharges reaching densities over 10{sup 19} m{sup -3}, whereas the lower frequency interferometer is found to be less reliable due to loss of fringes. This is a critical improvement for experiments studying the onset, avoidance, and vacuum magnetic transform dependence of disruptions in the CTH device.
Zhang, Xingyu; Subbaraman, Harish; Wang, Shiyi; Zhan, Qiwen; Luo, Jingdong; Jen, Alex K -Y; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L; Lee, Charles Y -C; Chen, Ray T
2015-01-01
In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300um, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as we...
Energy Technology Data Exchange (ETDEWEB)
Baek, S. G., E-mail: sgbaek@mit.edu; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Porkolab, M.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B.; Lau, C. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Takase, Y. [University of Tokyo, Kashiwa 277-8561 (Japan)
2014-06-15
The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize reactor-relevant steady-state plasmas by controlling current density profile. However, current drive efficiency precipitously decreases as the line averaged density (n{sup ¯}{sub e}) increases above ∼1 × 10{sup 20} m{sup −3}. Previous simulations show that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer plasmas [Wallace et al., Phys. Plasmas 19, 062505 (2012)]. A recent observation [Baek et al., Plasma Phys. Controlled Fusion 55, 052001 (2013)] shows that the configuration dependent ion cyclotron parametric decay instability (PDI) is excited in the density range where the discrepancy between the experiments and simulations remains. Comparing the observed spectra with the homogeneous growth rate spectra indicates that the observed ion cyclotron PDI can be excited not only at the low-field-side but also at the high-field-side (HFS) edge of the tokamak. The model analysis shows that a relevant PDI process to Alcator C-Mod LHCD experiments is decay into ion cyclotron quasi-mode driven by parallel coupling. The underlying cause of the observed onset of ion cyclotron PDI is likely due to the weaker radial penetration of the LH wave in high density plasmas, which can lead to enhanced convective growth. Configuration-dependent PDIs are found to be correlated with different edge density profiles in different magnetic configurations. While the HFS edge of the tokamak can be potentially susceptible to PDI, as evidenced by experimental observations and ray-tracing analyses, enhancing single-pass absorption is expected to help recover the LHCD efficiency at reactor-relevant densities because it could suppress several parasitic loss mechanisms that are exacerbated in multi-pass regimes.
Battery thermal models for hybrid vehicle simulations
Pesaran, Ahmad A.
This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory's (NREL's) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on "Development of Advanced Battery Engineering Models" in August 2001.
An electrostatic particle-in-cell model for a lower hybrid grill
Energy Technology Data Exchange (ETDEWEB)
Rantamaeki, K
1998-07-01
In recent lower hybrid (LH) current drive experiments, generation of hot spots and impurities in the grill region have been observed on Tore Supra and Tokamak de Varennes (TdeV). A possible explanation is the parasitic absorption of the LH power in front of the grill. In parasitic absorption, the short-wavelength part of the lower hybrid spectrum can resonantly interact with the cold edge electrons. In this work, the absorption of the LH waves and the generation of fast electrons near the waveguide mouth is investigated with a new tool in this context: particle-in-cell (PIC) simulations. The advantage of this new method is that the electric field is calculated self-consistently. The PIC simulations also provide the key parameters for the hot spot problem: the absorbed power, the radial deposition profiles and the absorption length. A grill model has been added to the 2d3v PIC code XPDP2. Two sets of simulations were made. The first simulations used a phenomenological grill model. Strong absorption in the edge plasma was obtained. About 5% of the coupled power was absorbed within 1.7 mm in the case with fairly large amount of power in the modes with large parallel refractive index. Consequently, a rapid generation of fast electrons took place in the same region. In order to model experiments with realistic wave spectra, the PIC code was coupled to the slow wave antenna coupling code SWAN. The absorption within 1.7 mm in front of the grill was found to be between 2 and 5%. In the short time of a few wave periods, part of the initially thermal electrons (T{sub e} = 100 eV) were accelerated to velocities corresponding to a few keV. (orig.)
Modeling deflagration waves out of hot spots
Partom, Yehuda
2017-01-01
It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.
Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik
2013-01-01
An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration....... An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection...... of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon...
Velli, M.; Liewer, P. C.; Goldstein, B. E.
2000-05-01
We present simulations of parallel propagating Alfvén waves in the accelerating solar wind and their interactions with protons, alpha particles, and minor ions using an expanding box hybrid code (Liewer et al., 1999). In this model, the average solar wind flow speed is a given external function, and the simulation domain follows a plasma parcel as it expands both in the radial and transverse directions accordingly: the decrease of Alfvén speed and density with distance from the Sun are taken into account self-consistently. It is therefore possible to carry out a detailed study of frequency drifting and the coming into resonance with the waves at different radial locations of particles with differing charge to mass ratios. Simulations of monochromatic waves as well as waves with well-developed spectra are presented for plasmas with one, two and three ion species. We observe preferential heating and acceleration of protons and minor ions. Under some conditions, we obtain the scaling observed in coronal hole solar wind: the heavy ion temperature is proportional to its mass (Liewer et al., 2000). A comparison with predictions from models based on such quasi-linear or linear analyses will also be presented. P. C. Liewer, M. Velli and B. E. Goldstein, in Solar Wind Nine, S. Habbal, R. Esser, J. V. Hollweg, P. A. Isenberg, eds., (AIP Conference Proceedings 471, 1999) 449. P. C. Liewer, M. Velli, and B. E. Goldstein, in Proc. ACE 2000 Conference (2000) to be published.
Hybrid Scheduling Model for Independent Grid Tasks
Directory of Open Access Journals (Sweden)
J. Shanthini
2015-01-01
Full Text Available Grid computing facilitates the resource sharing through the administrative domains which are geographically distributed. Scheduling in a distributed heterogeneous environment is intrinsically very hard because of the heterogeneous nature of resource collection. Makespan and tardiness are two different measures of scheduling, and many of the previous researches concentrated much on reduction of makespan, which measures the machine utilization. In this paper, we propose a hybrid scheduling algorithm for scheduling independent grid tasks with the objective of reducing total weighted tardiness of grid tasks. Tardiness is to measure the due date performance, which has a direct impact on cost for executing the jobs. In this paper we propose BG_ATC algorithm which is a combination of best gap (BG search and Apparent Tardiness Cost (ATC indexing algorithm. Furthermore, we implemented these two algorithms in two different phases of the scheduling process. In addition to that, the comparison was made on results with various benchmark algorithms and the experimental results show that our algorithm outperforms the benchmark algorithms.
Hybrid Scheduling Model for Independent Grid Tasks.
Shanthini, J; Kalaikumaran, T; Karthik, S
2015-01-01
Grid computing facilitates the resource sharing through the administrative domains which are geographically distributed. Scheduling in a distributed heterogeneous environment is intrinsically very hard because of the heterogeneous nature of resource collection. Makespan and tardiness are two different measures of scheduling, and many of the previous researches concentrated much on reduction of makespan, which measures the machine utilization. In this paper, we propose a hybrid scheduling algorithm for scheduling independent grid tasks with the objective of reducing total weighted tardiness of grid tasks. Tardiness is to measure the due date performance, which has a direct impact on cost for executing the jobs. In this paper we propose BG_ATC algorithm which is a combination of best gap (BG) search and Apparent Tardiness Cost (ATC) indexing algorithm. Furthermore, we implemented these two algorithms in two different phases of the scheduling process. In addition to that, the comparison was made on results with various benchmark algorithms and the experimental results show that our algorithm outperforms the benchmark algorithms.
A Holographic P-wave Superconductor Model
Cai, Rong-Gen; Li, Li-Fang
2014-01-01
We study a holographic p-wave superconductor model in a four dimensional Einstein-Maxwell-complex vector field theory with a negative cosmological constant. The complex vector field is charged under the Maxwell field. We solve the full coupled equations of motion of the system and find black hole solutions with the vector hair. The vector hairy black hole solutions are dual to a thermal state with the U(1) symmetry as well as the spatial rotational symmetry breaking spontaneously. Depending on two parameters, the mass and charge of the vector field, we find a rich phase structure: zeroth order, first order and second order phase transitions can happen in this model. We also find "retrograde condensation" in which the hairy black hole solution exists only for the temperatures above a critical value with the free energy much larger than the black hole without hair. We construct the phase diagram for this system in terms of the temperature and charge of the vector field.
Institute of Scientific and Technical Information of China (English)
Zha Qi-Lao; Sirendaoreji
2006-01-01
Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach.This approach can also be applied to other nonlinear differential-difference equations.
Directory of Open Access Journals (Sweden)
Yomna Saber
2015-05-01
Full Text Available Third-Wave Feminism digs its roots in intersectionality and coalition, which were not fully realised in Second-Wave Feminism. However, the movement is usually under attack for lacking a clear agenda. Recent scholarship strongly suggests that third wavers get back to third-world writers, like Audre Lorde, to realise an anti-racist and inclusive feminism. Lorde occupies a distinctive position in feminist literature; a poet who resides in too many margins being black, female and lesbian. This essay draws an analogy between third wave intersectionality and postcolonial hybridity, and argues that Lorde's use of hybridity is a 'third space' that she opens up in her poetry to disrupt spheres of supremacy through its interdependence and reciprocal construction that defy dualisms, hence realising coalition. The analysis is anchored by HomiBhabha's definition of hybridity in colonial discourse. Key Words: Third-Wave Feminism, intersectionality, hybridity, dualism, Audre Lorde, HomiBhabha.
High order Hamiltonian water wave models with wave-breaking mechanism
Kurnia, R.; Groesen, van E.
2014-01-01
Based on the Hamiltonian formulation of water waves, using Hamiltonian consistent modelling methods, we derive higher order Hamiltonian equations by Taylor expansions of the potential and the vertical velocity around the still water level. The polynomial expansion in wave height is mixed with pseudo
Efficient Proof Engines for Bounded Model Checking of Hybrid Systems
DEFF Research Database (Denmark)
Fränzle, Martin; Herde, Christian
2005-01-01
In this paper we present HySat, a new bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL-based pseudo-Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits all...
A novel Monte Carlo approach to hybrid local volatility models
A.W. van der Stoep (Anton); L.A. Grzelak (Lech Aleksander); C.W. Oosterlee (Cornelis)
2017-01-01
textabstractWe present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18–20], [Int. J. Theor. Appl. Finance, 1998, 1, 61–110] models. In particular, we consider the stochastic local volatility model—see e.g. Lipton et al. [Quant.
(Hybrid) Baryons in the Flux-Tube Model
Page, P R
1999-01-01
We construct baryons and hybrid baryons in the non-relativistic flux-tube model of Isgur and Paton. The motion of the flux-tube with the three quark positions fixed, except for centre of mass corrections, is discussed. It is shown that the problem can to an excellent approximation be reduced to the independent motion of a junction and strings.
New Models of Hybrid Leadership in Global Higher Education
Tonini, Donna C.; Burbules, Nicholas C.; Gunsalus, C. K.
2016-01-01
This manuscript highlights the development of a leadership preparation program known as the Nanyang Technological University Leadership Academy (NTULA), exploring the leadership challenges unique to a university undergoing rapid growth in a highly multicultural context, and the hybrid model of leadership it developed in response to globalization.…
Incorporating RTI in a Hybrid Model of Reading Disability
Spencer, Mercedes; Wagner, Richard K.; Schatschneider, Christopher; Quinn, Jamie M.; Lopez, Danielle; Petscher, Yaacov
2014-01-01
The present study seeks to evaluate a hybrid model of identification that incorporates response to instruction and intervention (RTI) as one of the key symptoms of reading disability. The 1-year stability of alternative operational definitions of reading disability was examined in a large-scale sample of students who were followed longitudinally…
A hybrid wind farm parameterization for mesoscale and climate models
Pan, Y.; Archer, C. L.
2016-12-01
To better understand the potential impacts of wind farms on weather and climate at the local to regional scale, a new hybrid wind farm parameterization is proposed here for mesoscale models, such as the Weather Research and Forecasting Model (WRF), or climate models, such as the Community Atmosphere Model (CAM). All previous wind farm parameterizations treat all the wind turbines in the same grid cell as identical (i.e., they all share the same upstream wind velocity) and ignore the effect of wind direction. By contrast, the new hybrid model considers each individual wind turbine, based on its position in the layout and on wind direction. The new parameterization is developed starting from large eddy simulations (LES) of existing wind farms, in which the local flow around each wind turbine is directly simulated at high spatial ( 3.5 m) and temporal ( 0.1 s) resolutions and the effects of subgrid-scale processes are modeled. Based on analytic and statistical relationships between the LES results and several geometric properties of the wind farm layout (such as blockage ratio and blocking distance), the new hybrid parameterization predicts the local upstream wind speed of each individual wind turbine in the same grid cell, and thus successfully account for the effects of layout and wind direction with little computational cost. With the newly predicted upstream velocity, the turbine-induced forces and added turbulence kinetic energy (TKE) in the atmosphere are derived analytically. The wind speed, wind speed deficit, and TKE profiles and power production obtained with the hybrid parameterization for the test case (the 48-turbine Lillgrund wind farm in Sweden) are in better agreement with the LES results than previous parameterizations. Future work includes the insertion of the hybrid parameterization into the WRF code to assess impacts on near-surface properties, such as temperature and heat and momentum fluxes, in the region surrounding the wind farm.
Experimental Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Kofoed, Jens Peter
The Wave Dragon is a floating slack-moored Wave Energy Converter (WEC) of the overtopping type. Oncoming waves are focused by two wing reflectors towards the ramp of the device, surge-up and overtop into a reservoir placed at a higher level than the surface of the sea. The energy production takes...... place as the water is led back to the sea through a set of low-head hydro-turbines. After many years of development, Wave Dragon (WD) is now facing the phase of pre-commercial demonstration. In this phase it is very important to be able to use the available data to predict the performances of the device...... at different scales and locations. A flexible and comprehensive modelling tool is therefore highly required. Wave Dragon produces power through different steps of energy conversion: 1. Primary energy conversion: overtopping – The energy content of the wave (partly in the kinetic and partly in the potential...
The use of a wave boundary layer model in SWAN
DEFF Research Database (Denmark)
Du, Jianting; Bolaños, Rodolfo; Larsén, Xiaoli Guo
2017-01-01
A Wave Boundary Layer Model (WBLM) is implemented in the third-generation ocean wave model SWAN to improve the wind-input source function under idealized, fetch-limited condition. Accordingly, the white capping dissipation parameters are re-calibrated to fit the new wind-input source function...
Development of a coupled wave-flow-vegetation interaction model
Beudin, Alexis; Kalra, Tarandeep; Ganju, Neil Kamal; Warner, John C.
2017-01-01
Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.
Development of a coupled wave-flow-vegetation interaction model
Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.
2017-03-01
Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.
Modeling and Control Of Surface Acoustic Wave Motors
Feenstra, P.J.
2005-01-01
This thesis introduces Rayleigh waves and describes the generation of Rayleigh waves. Furthermore, the principle of operation of a SAW motor is analyzed. The analysis is based on a contact model, which describes the behavior between slider and stator. Due to the contact model, the microscopic and
Hybrid multiscale modeling and prediction of cancer cell behavior.
Zangooei, Mohammad Hossein; Habibi, Jafar
2017-01-01
Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset.
Brain anatomical structure segmentation by hybrid discriminative/generative models.
Tu, Z; Narr, K L; Dollar, P; Dinov, I; Thompson, P M; Toga, A W
2008-04-01
In this paper, a hybrid discriminative/generative model for brain anatomical structure segmentation is proposed. The learning aspect of the approach is emphasized. In the discriminative appearance models, various cues such as intensity and curvatures are combined to locally capture the complex appearances of different anatomical structures. A probabilistic boosting tree (PBT) framework is adopted to learn multiclass discriminative models that combine hundreds of features across different scales. On the generative model side, both global and local shape models are used to capture the shape information about each anatomical structure. The parameters to combine the discriminative appearance and generative shape models are also automatically learned. Thus, low-level and high-level information is learned and integrated in a hybrid model. Segmentations are obtained by minimizing an energy function associated with the proposed hybrid model. Finally, a grid-face structure is designed to explicitly represent the 3-D region topology. This representation handles an arbitrary number of regions and facilitates fast surface evolution. Our system was trained and tested on a set of 3-D magnetic resonance imaging (MRI) volumes and the results obtained are encouraging.
A consistent collinear triad approximation for operational wave models
Salmon, J. E.; Smit, P. B.; Janssen, T. T.; Holthuijsen, L. H.
2016-08-01
In shallow water, the spectral evolution associated with energy transfers due to three-wave (or triad) interactions is important for the prediction of nearshore wave propagation and wave-driven dynamics. The numerical evaluation of these nonlinear interactions involves the evaluation of a weighted convolution integral in both frequency and directional space for each frequency-direction component in the wave field. For reasons of efficiency, operational wave models often rely on a so-called collinear approximation that assumes that energy is only exchanged between wave components travelling in the same direction (collinear propagation) to eliminate the directional convolution. In this work, we show that the collinear approximation as presently implemented in operational models is inconsistent. This causes energy transfers to become unbounded in the limit of unidirectional waves (narrow aperture), and results in the underestimation of energy transfers in short-crested wave conditions. We propose a modification to the collinear approximation to remove this inconsistency and to make it physically more realistic. Through comparison with laboratory observations and results from Monte Carlo simulations, we demonstrate that the proposed modified collinear model is consistent, remains bounded, smoothly converges to the unidirectional limit, and is numerically more robust. Our results show that the modifications proposed here result in a consistent collinear approximation, which remains bounded and can provide an efficient approximation to model nonlinear triad effects in operational wave models.
Modelling of Performance of Caisson Type Breakwaters under Extreme Waves
Güney Doǧan, Gözde; Özyurt Tarakcıoǧlu, Gülizar; Baykal, Cüneyt
2016-04-01
Many coastal structures are designed without considering loads of tsunami-like waves or long waves although they are constructed in areas prone to encounter these waves. Performance of caisson type breakwaters under extreme swells is tested in Middle East Technical University (METU) Coastal and Ocean Engineering Laboratory. This paper presents the comparison of pressure measurements taken along the surface of caisson type breakwaters and obtained from numerical modelling of them using IH2VOF as well as damage behavior of the breakwater under the same extreme swells tested in a wave flume at METU. Experiments are conducted in the 1.5 m wide wave flume, which is divided into two parallel sections (0.74 m wide each). A piston type of wave maker is used to generate the long wave conditions located at one end of the wave basin. Water depth is determined as 0.4m and kept constant during the experiments. A caisson type breakwater is constructed to one side of the divided flume. The model scale, based on the Froude similitude law, is chosen as 1:50. 7 different wave conditions are applied in the tests as the wave period ranging from 14.6 s to 34.7 s, wave heights from 3.5 m to 7.5 m and steepness from 0.002 to 0.015 in prototype scale. The design wave parameters for the breakwater were 5m wave height and 9.5s wave period in prototype. To determine the damage of the breakwater which were designed according to this wave but tested under swell waves, video and photo analysis as well as breakwater profile measurements before and after each test are performed. Further investigations are carried out about the acting wave forces on the concrete blocks of the caisson structures via pressure measurements on the surfaces of these structures where the structures are fixed to the channel bottom minimizing. Finally, these pressure measurements will be compared with the results obtained from the numerical study using IH2VOF which is one of the RANS models that can be applied to simulate
Hybrid modelling of a sugar boiling process
Lauret, Alfred Jean Philippe; Gatina, Jean Claude
2012-01-01
The first and maybe the most important step in designing a model-based predictive controller is to develop a model that is as accurate as possible and that is valid under a wide range of operating conditions. The sugar boiling process is a strongly nonlinear and nonstationary process. The main process nonlinearities are represented by the crystal growth rate. This paper addresses the development of the crystal growth rate model according to two approaches. The first approach is classical and consists of determining the parameters of the empirical expressions of the growth rate through the use of a nonlinear programming optimization technique. The second is a novel modeling strategy that combines an artificial neural network (ANN) as an approximator of the growth rate with prior knowledge represented by the mass balance of sucrose crystals. The first results show that the first type of model performs local fitting while the second offers a greater flexibility. The two models were developed with industrial data...
Is Hybrid Education and Videoconferencing the Wave of the Future for Online Courses?
Popma, Joe
2012-01-01
A comprehensive literature review examines the effectiveness of hybrid education utilizing videoconferencing. The observations and perceptions of both students and the instructor participating in a hybrid pilot program will be discussed. Discussion highlights the value of hybrid education within the context of the students' busy schedules and…
Hybrid Sludge Modeling in Water Treatment Processes
Brenda, Marian
2015-01-01
Sludge occurs in many waste water and drinking water treatment processes. The numeric modeling of sludge is therefore crucial for developing and optimizing water treatment processes. Numeric single-phase sludge models mainly include settling and viscoplastic behavior. Even though many investigators emphasize the importance of modeling the rheology of sludge for good simulation results, it is difficult to measure, because of settling and the viscoplastic behavior. In this thesis, a new method ...
Improving Short Wave Breaking Behavior In Surfbeat Models
Roelvink, J.; Daly, C.; Vandongeren, A. R.; van Thiel de Vries, J.; McCall, R.
2009-12-01
In present surfzone modeling three approaches are widely applied: short-wave resolving models, ‘surfbeat’ models, which resolve wave energy modulations on the time-scale of wave groups and their associated infragravity waves, and wave averaged models. In all three approaches, wave breaking is a process that is highly schematized and governed by several empirical coefficients. In this presentation we will focus on the breaking process in ‘surfbeat’ models, such as XBeach (Roelvink et al, 2009). These models need to describe the short wave dissipation by breaking as a function of the slowly-varying short wave energy or wave height. The model usually applied is that by Roelvink (1993), which combines a probability that waves are breaking as function of wave heigth over water depth ratio H/h with a bore-type dissipation formulation similar to that by Battjes and Janssen (1978). A drawback of such a formulation is that there is no ‘memory’ in the breaking process, and the amount of breaking instantly varies with the water depth (though the wave height itself does have a memory). For cases with bichromatic waves, or for long-period swell, this does not reflect reality enough: waves that start breaking do not instantly stop breaking once the water depth increases, but continue until some lower threshold is reached. This concept was captured in Dally’s (1992) wave-by-wave approach, where individual waves are tracked in a probabilistic setting. We have now implemented a similar formulation in XBeach, where the property that waves are breaking is tracked; it is switched on when H/h exceeds a first criterion; this property is propagated using an advection equation and when H/h gets below a second criterion breaking is switched off. This formulation can do two things the previous one can’t: maintain groupiness inside the surf zone and have a maximum of wave breaking in the trough after a steep bar, as was observed for instance in Arcilla et al’s (1994) test 1
Rogue wave variational modelling through the interaction of two solitary waves
Gidel, Floriane; Bokhove, Onno
2016-04-01
The extreme and unexpected characteristics of Rogue waves have made them legendary for centuries. It is only on the 1st of January 1995 that these mariners' tales started to raise scientist's curiosity, when such a wave was recorded in the North Sea; a sudden wall of water hit the Draupner offshore platform, more than twice higher than the other waves, providing evidence of the existence of rogue or freak waves. Since then, studies have shown that these surface gravity waves of high amplitude (at least twice the height of the other sea waves [Dyste et al., 2008]) appear in non-linear dispersive water motion [Drazin and Johnson, 1989], at any depth, and have caused a lot of damage in recent years [Nikolkina and Didenkulova, 2011 ]. So far, most of the studies have tried to determine their probability of occurrence, but no conclusion has been achieved yet, which means that we are currently unenable to predict or avoid these monster waves. An accurate mathematical and numerical water-wave model would enable simulation and observation of this external forcing on boats and offshore structures and hence reduce their threat. In this work, we aim to model rogue waves through a soliton splash generated by the interaction of two solitons coming from different channels at a specific angle. Kodama indeed showed that one way to produce extreme waves is through the intersection of two solitary waves, or one solitary wave and its oblique reflection on a vertical wall [Yeh, Li and Kodama, 2010 ]. While he modelled Mach reflection from Kadomtsev-Petviashvili (KP) theory, we aim to model rogue waves from the three-dimensional potential flow equations and/or their asymptotic equivalent described by Benney and Luke [Benney and Luke, 1964]. These theories have the advantage to allow wave propagation in several directions, which is not the case with KP equations. The initial solitary waves are generated by removing a sluice gate in each channel. The equations are derived through a
Modelling and analysis of real-time and hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Olivero, A.
1994-09-29
This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.
A hybrid parallel framework for the cellular Potts model simulations
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yi [Los Alamos National Laboratory; He, Kejing [SOUTH CHINA UNIV; Dong, Shoubin [SOUTH CHINA UNIV
2009-01-01
The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approach achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).
Local numerical modelling of ultrasonic guided waves in linear and nonlinear media
Packo, Pawel; Radecki, Rafal; Kijanka, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear ultrasonic techniques provide improved damage sensitivity compared to linear approaches. The combination of attractive properties of guided waves, such as Lamb waves, with unique features of higher harmonic generation provides great potential for characterization of incipient damage, particularly in plate-like structures. Nonlinear ultrasonic structural health monitoring techniques use interrogation signals at frequencies other than the excitation frequency to detect changes in structural integrity. Signal processing techniques used in non-destructive evaluation are frequently supported by modeling and numerical simulations in order to facilitate problem solution. This paper discusses known and newly-developed local computational strategies for simulating elastic waves, and attempts characterization of their numerical properties in the context of linear and nonlinear media. A hybrid numerical approach combining advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE) is proposed for unique treatment of arbitrary strain-stress relations. The iteration equations of the method are derived directly from physical principles employing stress and displacement continuity, leading to an accurate description of the propagation in arbitrarily complex media. Numerical analysis of guided wave propagation, based on the newly developed hybrid approach, is presented and discussed in the paper for linear and nonlinear media. Comparisons to Finite Elements (FE) are also discussed.
QCD Phase Transition in a new Hybrid Model Formulation
Srivastava, P K
2013-01-01
Search of a proper and realistic equations of state (EOS) for strongly interacting matter used in the study of QCD phase diagram still appears as a challenging task. Recently, we have constructed a hybrid model description for the quark gluon plasma (QGP) as well as hadron gas (HG) phases where we use a new excluded-volume model for HG and a thermodynamically-consistent quasiparticle model for the QGP phase. We attempt to use them to get a QCD phase boundary and a critical point. We test our hybrid model by reproducing the entire lattice QCD data for strongly interacting matter at zero baryon chemical potential ($\\mu_{B}$)and predict the results at finite $\\mu_{B}$ and $T$.
Strongly Interacting Matter at Finite Chemical Potential: Hybrid Model Approach
Srivastava, P. K.; Singh, C. P.
2013-06-01
Search for a proper and realistic equation of state (EOS) for strongly interacting matter used in the study of the QCD phase diagram still appears as a challenging problem. Recently, we constructed a hybrid model description for the quark-gluon plasma (QGP) as well as hadron gas (HG) phases where we used an excluded volume model for HG and a thermodynamically consistent quasiparticle model for the QGP phase. The hybrid model suitably describes the recent lattice results of various thermodynamical as well as transport properties of the QCD matter at zero baryon chemical potential (μB). In this paper, we extend our investigations further in obtaining the properties of QCD matter at finite value of μB and compare our results with the most recent results of lattice QCD calculation.
Catastrophic instabilities of modified DA-DC hybrid surface waves in a semi-bounded plasma system
Lee, Myoung-Jae; Jung, Young-Dae
2016-06-01
We find the catastrophic instabilities and derive the growth rates for the dust-cyclotron resonance (DCR) and dust-rotation resonance (DRR) modes of the modified dust-acoustic and dust-cyclotron (DA-DC) hybrid surface waves propagating at the plasma-vacuum interface where the plasma is semi-bounded and composed of electrons and rotating dust grains. The effects of magnetic field and dust rotation frequency on the DCR- and DDR-modes are also investigated. We find that the dust rotation frequency enhances the growth rate of DCR-mode and the effect of dust rotation on this resonance mode decreases with an increase of the wave number. We also find that an increase of magnetic field strength enhances the DCR growth rate, especially, for the short wavelength regime. In the case of DRR-mode, the growth rate is found to be decreased less sensitively with an increase of the wave number compared with the case of DCR, but much significantly enhanced by an increase of dust rotation frequency. The DRR growth rate also decreases with an increase of the magnetic field strength, especially in the long wavelength regime. Interestingly, we find that catastrophic instabilities occur for both DCR- and DRR-modes of the modified DA-DC hybrid surface waves when the rotational frequency is close to the dust-cyclotron frequency. Both modes can also be excited catastrophically due to the cooperative interaction between the DCR-mode and the DRR-mode.
Active diagnosis of hybrid systems - A model predictive approach
2009-01-01
A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and faulty outputs constrained by tolerable performance requirements. As in standard model predictive control, the first element of the optimal input is applied to the system and the whole procedure is repeate...
Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model
Directory of Open Access Journals (Sweden)
Bogdan Gliwa
2011-01-01
Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.
Advanced Geometric Modeler with Hybrid Representation
Institute of Scientific and Technical Information of China (English)
杨长贵; 陈玉健; 等
1996-01-01
An advanced geometric modeler GEMS4.0 has been developed,in which feature representation is used at the highest level abstraction of a product model.Boundary representation is used at the bottom level,while CSG model is adopted at the median level.A BRep data structure capable of modeling non-manifold is adopted.UNRBS representation is used for all curved surfaces,Quadric surfaces have dual representations consisting of their geometric data such as radius,center point,and center axis.Boundary representation of free form surfaces is easily built by sweeping and skinning method with NURBS geometry.Set operations on curved solids with boundary representation are performed by an evaluation process consisting of four steps.A file exchange facility is provided for the conversion between product data described by STEP and product information generated by GEMS4.0.
Moulin, Emmanuel; Grondel, Sébastien; Assaad, Jamal; Duquenne, Laurent
2008-12-01
The work described in this paper is intended to present a simple and efficient way of modeling a full Lamb wave emission and reception system. The emitter behavior and the Lamb wave generation are predicted using a two-dimensional (2D) hybrid finite element-normal mode expansion model. Then the receiver electrical response is obtained from a finite element computation with prescribed displacements. A numerical correction is applied to the 2D results in order to account for the in-plane radiation divergence caused by the finite length of the emitter. The advantage of this modular approach is that realistic configurations can be simulated without performing cumbersome modeling and time-consuming computations. It also provides insight into the physical interpretation of the results. A good agreement is obtained between predicted and measured signals. The range of application of the method is discussed.
Travelling wave analysis of a mathematical model of glioblastoma growth.
Gerlee, Philip; Nelander, Sven
2016-06-01
In this paper we analyse a previously proposed cell-based model of glioblastoma (brain tumour) growth, which is based on the assumption that the cancer cells switch phenotypes between a proliferative and motile state (Gerlee and Nelander, 2012). The dynamics of this model can be described by a system of partial differential equations, which exhibits travelling wave solutions whose wave speed depends crucially on the rates of phenotypic switching. We show that under certain conditions on the model parameters, a closed form expression of the wave speed can be obtained, and using singular perturbation methods we also derive an approximate expression of the wave front shape. These new analytical results agree with simulations of the cell-based model, and importantly show that the inverse relationship between wave front steepness and speed observed for the Fisher equation no longer holds when phenotypic switching is considered.
Hybrid grey model to forecast monitoring series with seasonality
Institute of Scientific and Technical Information of China (English)
WANG Qi-jie; LIAO Xin-hao; ZHOU Yong-hong; ZOU Zheng-rong; ZHU Jian-jun; PENG Yue
2005-01-01
The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) model, the forecasting series of GM(1,1) was built, and an inverse process was used to resume the seasonal fluctuations. Two deseasonalization methods were presented , i.e., seasonal index-based deseasonalization and standard normal distribution-based deseasonalization. They were combined with the GM(1,1) model to form hybrid grey models. A simple but practical method to further improve the forecasting results was also suggested. For comparison, a conventional periodic function model was investigated. The concept and algorithms were tested with four years monthly monitoring data. The results show that on the whole the seasonal index-GM(1,1) model outperform the conventional periodic function model and the conventional periodic function model outperform the SND-GM(1,1) model. The mean absolute error and mean square error of seasonal index-GM(1,1) are 30.69% and 54.53% smaller than that of conventional periodic function model, respectively. The high accuracy, straightforward and easy implementation natures of the proposed hybrid seasonal index-grey model make it a powerful analysis technique for seasonal monitoring series.
Ground Signatures of EMIC Waves obtained From a 3D Global Wave Model
Rankin, R.; Sydorenko, D.; Zong, Q.; Zhang, L.
2016-12-01
EMIC waves generated in the inner magnetosphere are important drivers of radiation belt particle loss. Van Allen Probes and ground observations of EMIC waves suggest that localized magnetospheric sources inject waves that are guided along geomagnetic field lines and then reflected and refracted in the low altitude magnetosphere [Kim, E.-H., and J. R. Johnson (2016), Geophys. Res. Lett., 43, 13-21, doi:10.1002/2015GL066978] before entering the ionosphere. The waves then spread horizontally within the F-region waveguide and propagate to the ground. To understand the observed properties of EMIC waves, a global 3D model of ULF waves in Earth's magnetosphere, ionosphere, and neutral atmosphere has been developed. The simulation domain extends from Earth's surface to a spherical boundary a few tens of thousands of km in radius. The model uses spherical coordinates and incorporates an overset Yin-Yang grid that eliminates the singularity at the polar axis and improves uniformity of the grid in the polar areas [Kageyama, A., and T. Sato (2004), Geochem. Geophys. Geosyst., 5, Q09005, doi:10.1029/2004GC000734]. The geomagnetic field in the model is general, but is dipole in this study. The plasma is described as a set of electron and multiple species ion conducting fluids. Realistic 3D density profiles of various ion species as well as thermospheric parameters are provided by the Canadian Ionosphere Atmosphere Model (C-IAM) [Martynenko O.V. et al. (2014), J. Atmos. Solar-Terr. Phys., 120, 51-61, doi:10.1016/j.jastp.2014.08.014]. The global ULF wave model is applied to study propagation of EMIC waves excited in the equatorial plane near L=7. Wave propagation along field lines, reflection and refraction in the zone of critical frequencies, and further propagation through the ionosphere to the ground are discussed.
Multiview coding mode decision with hybrid optimal stopping model.
Zhao, Tiesong; Kwong, Sam; Wang, Hanli; Wang, Zhou; Pan, Zhaoqing; Kuo, C-C Jay
2013-04-01
In a generic decision process, optimal stopping theory aims to achieve a good tradeoff between decision performance and time consumed, with the advantages of theoretical decision-making and predictable decision performance. In this paper, optimal stopping theory is employed to develop an effective hybrid model for the mode decision problem, which aims to theoretically achieve a good tradeoff between the two interrelated measurements in mode decision, as computational complexity reduction and rate-distortion degradation. The proposed hybrid model is implemented and examined with a multiview encoder. To support the model and further promote coding performance, the multiview coding mode characteristics, including predicted mode probability and estimated coding time, are jointly investigated with inter-view correlations. Exhaustive experimental results with a wide range of video resolutions reveal the efficiency and robustness of our method, with high decision accuracy, negligible computational overhead, and almost intact rate-distortion performance compared to the original encoder.
Whispered speaker identification based on feature and model hybrid compensation
Institute of Scientific and Technical Information of China (English)
GU Xiaojiang; ZHAO Heming; Lu Gang
2012-01-01
In order to increase short time whispered speaker recognition rate in variable chan- nel conditions, the hybrid compensation in model and feature domains was proposed. This method is based on joint factor analysis in training model stage. It extracts speaker factor and eliminates channel factor by estimating training speech speaker and channel spaces. Then in the test stage, the test speech channel factor is projected into feature space to engage in feature compensation, so it can remove channel information both in model and feature domains in order to improve recognition rate. The experiment result shows that the hybrid compensation can obtain the similar recognition rate in the three different training channel conditions and this method is more effective than joint factor analysis in the test of short whispered speech.
Credit Scoring Model Hybridizing Artificial Intelligence with Logistic Regression
Directory of Open Access Journals (Sweden)
Han Lu
2013-01-01
Full Text Available Today the most commonly used techniques for credit scoring are artificial intelligence and statistics. In this paper, we started a new way to use these two kinds of models. Through logistic regression filters the variables with a high degree of correlation, artificial intelligence models reduce complexity and accelerate convergence, while these models hybridizing logistic regression have better explanations in statistically significance, thus improve the effect of artificial intelligence models. With experiments on German data set, we find an interesting phenomenon defined as ‘Dimensional interference’ with support vector machine and from cross validation it can be seen that the new method gives a lot of help with credit scoring.
A Hybrid Tool for User Interface Modeling and Prototyping
Trætteberg, Hallvard
Although many methods have been proposed, model-based development methods have only to some extent been adopted for UI design. In particular, they are not easy to combine with user-centered design methods. In this paper, we present a hybrid UI modeling and GUI prototyping tool, which is designed to fit better with IS development and UI design traditions. The tool includes a diagram editor for domain and UI models and an execution engine that integrates UI behavior, live UI components and sample data. Thus, both model-based user interface design and prototyping-based iterative design are supported
IMPLICIT REPRESENTATION FOR THE MODELLING OF HYBRID DYNAMIC SYSTEMS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Hybrid systems can be represented by a discrete event model interacting with a continuous model, and the interface by ideal switching components which modify the topology of a system at the switching time. This paper deals with the modelling of such systems using the bond graph approach. The paper shows the interest of the implicit representation: to derive a unique state equation with jumping parameters, to derive the implicit state equation with index of nilpotency one corresponding to each configuration, to analyze the properties of those models and to compute the discontinuity.
Quasi-linear modeling of lower hybrid current drive in ITER and DEMO
Energy Technology Data Exchange (ETDEWEB)
Cardinali, A., E-mail: alessandro.cardinali@enea.it; Cesario, R.; Panaccione, L.; Santini, F.; Amicucci, L.; Castaldo, C.; Ceccuzzi, S.; Mirizzi, F.; Tuccillo, A. A. [ENEA, Unità Tecnica Fusione, Via E Fermi 45 Rome (Italy)
2015-12-10
First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modeled by coupling the ray tracing equations with the quasi-linear evolution of the electron distribution function in 2D velocity space. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor, owing to the accessibility condition which, depending on the density, restricts the parallel wavenumber to values greater than n{sub ∥crit} and, at the same time, to the high electron temperature that would enhance the wave absorption and then restricts the RF power deposition to the very periphery of the plasma column (near the separatrix). In this work, by extensively using the “ray{sup star}” code, a parametric study of the propagation and absorption of the LH wave as function of the coupled wave spectrum (as its width, and peak value), has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration, and how to help the suppression of MHD mode that can develop in the outer part of the plasma. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor as well as the tearing mode stabilization, but also in order to reconsider the feasibility of steady state regime for DEMO.
HYBRID TRUST MODEL FOR INTERNET ROUTING
Directory of Open Access Journals (Sweden)
Pekka Rantala
2011-05-01
Full Text Available The current Internet is based on a fundamental assumption of reliability and good intent among actors inthe network. Unfortunately, unreliable and malicious behaviour is becoming a major obstacle forInternet communication. In order to improve the trustworthiness and reliability of the networkinfrastructure, we propose a novel trust model to be incorporated into BGP routing. In our approach,trust model is defined by combining voting and recommendation to direct trust estimation for neighbourrouters located in different autonomous systems. We illustrate the impact of our approach with cases thatdemonstrate the indication of distrusted paths beyond the nearest neighbours and the detection of adistrusted neighbour advertising a trusted path. We simulated the impact of weighting voted and directtrust in a rectangular grid of 15*15 nodes (autonomous systems with a randomly connected topology.
Hybrid Trust Model for Internet Routing
Rantala, Pekka; Isoaho, Jouni
2011-01-01
The current Internet is based on a fundamental assumption of reliability and good intent among actors in the network. Unfortunately, unreliable and malicious behaviour is becoming a major obstacle for Internet communication. In order to improve the trustworthiness and reliability of the network infrastructure, we propose a novel trust model to be incorporated into BGP routing. In our approach, trust model is defined by combining voting and recommendation to direct trust estimation for neighbour routers located in different autonomous systems. We illustrate the impact of our approach with cases that demonstrate the indication of distrusted paths beyond the nearest neighbours and the detection of a distrusted neighbour advertising a trusted path. We simulated the impact of weighting voted and direct trust in a rectangular grid of 15*15 nodes (autonomous systems) with a randomly connected topology.
Sediment mathematical model for sand ridges and sand waves
Institute of Scientific and Technical Information of China (English)
LI Daming; WANG Xiao; WANG Xin; LI Yangyang
2016-01-01
A new theoretical model is formulated to describe internal movement mechanisms of the sand ridges and sand waves based on the momentum equation of a solid-liquid two-phase flow under a shear flow. Coupling this equation with two-dimensional shallow water equations and wave reflection-diffraction equation of mild slope, a two-dimensional coupling model is established and a validation is carried out by observed hydrogeology, tides, waves and sediment. The numerical results are compared with available observations. Satisfactory agreements are achieved. This coupling model is then applied to the Dongfang 1-1 Gas Field area to quantitatively predict the movement and evolution of submarine sand ridges and sand waves. As a result, it is found that the sand ridges and sand waves movement distance increases year by year, but the development trend is stable.
Directory of Open Access Journals (Sweden)
Gao Hongtao
2015-09-01
Full Text Available Floating-type wave energy converter has the advantages of high wave energy conversion efficiency, strong shock resistance ability in rough sea and stable output power. So it is regarded as a promising energy utilization facility. The research on hydrodynamic performance of wave capture buoys is the precondition and key to the wave energy device design and optimization. A simplified motion model of the buoys in the waves is established. Based on linear wave theory, the equations of motion of buoys are derived according to Newton’s second law. The factors of wave and buoys structural parameters on wave energy absorption efficiency are discussed in the China’s Bohai Sea with short wave period and small wave height. The results show that the main factor which affects the dynamic responses of wave capture buoys is the proximity of the natural frequency of buoys to the wave period. And the incoming wave power takes a backseat role to it at constant wave height. The buoys structural parameters such as length, radius and immersed depth, influence the wave energy absorption efficiency, which play significant factors in device design. The effectiveness of this model is validated by the sea tests with small-sized wave energy devices. The establishment methods of motion model and analysis results are expected to be helpful for designing and manufacturing of floating-type wave energy converter.
Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter
Energy Technology Data Exchange (ETDEWEB)
Parmeggiani, Stefano [Wave Dragon Ltd., London (United Kingdom); Kofoed, Jens Peter [Aalborg Univ. (Denmark). Department of Civil Engineering; Friis-Madsen, Erik [Wave Dragon Ltd., London (United Kingdom)
2013-04-15
An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration. An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection between platform and reflectors. The study is carried out in four phases, each of them specifically targeted at quantifying one of these effects through a sensitivity analysis and at modeling it through custom-made parameters. These are depending on features of the wave or the device configuration, all of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon increased, as the updated model allows improved accuracy and precision respect to the former version.
Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter
Directory of Open Access Journals (Sweden)
Erik Friis-Madsen
2013-04-01
Full Text Available An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration. An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection between platform and reflectors. The study is carried out in four phases, each of them specifically targeted at quantifying one of these effects through a sensitivity analysis and at modeling it through custom-made parameters. These are depending on features of the wave or the device configuration, all of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon increased, as the updated model allows improved accuracy and precision respect to the former version.
Modeling sheet-flow sand transport under progressive surface waves
Kranenburg, W.M.
2013-01-01
In the near-shore zone, energetic sea waves generate sheet-flow sand transport. In present day coastal models, wave-induced sheet-flow sand transport rates are usually predicted with semi-empirical transport formulas, based on extensive research on this phenomenon in oscillatory flow tunnels. Howeve
Modeling radar backscatter from breaking waves on the surface
Melief, H.W.; Greidanus, H.S.F.; Hoogeboom, P.; Genderen, P. van
2003-01-01
A model for describing radar sea clutter is proposed. It consists of two parts, an oceanographic and an electromagnetic one. The former contains swell, small capillary and gravity waves as well as breaking wave events. The latter combines ray tracing, Bragg scattering and the Method of Moments. It i
Numerical Modelling of Wind Waves. Problems, Solutions, Verifications, and Applications
Polnikov, Vladislav
2011-01-01
The time-space evolution of the field is described by the transport equation for the 2-dimensional wave energy spectrum density, S(x,t), spread in the space, x, and time, t. This equation has the forcing named the source function, F, depending on both the wave spectrum, S, and the external wave-making factors: local wind, W(x, t), and local current, U(x, t). The source function contains certain physical mechanisms responsible for a wave spectrum evolution. It is used to distinguish three terms in function F: the wind-wave energy exchange mechanism, In; the energy conservative mechanism of nonlinear wave-wave interactions, Nl; and the wave energy loss mechanism, Dis. Differences in mathematical representation of the source function terms determine general differences between wave models. The problem is to derive analytical representations for the source function terms said above from the fundamental wave equations. Basing on publications of numerous authors and on the last two decades studies of the author, th...
Attenuation of surface waves due to monsoon rains: A model study for the north Indian Ocean
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.; Kumar, B.P.; Sarma, Y.V.B.
The dynamic interaction of intense rain with waves based on momentum exchange is applied to a second generation wave model to predict wave attenuation during monsoon. The scheme takes into account the characteristics of rain and wave parameters...
A New Hybrid Model Rotor Flux Observer and Its Application
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A new hybrid model rotor flux observer, based on a new voltage model, is presented. In the first place, the voltage model of an induction machine was constructed by using the modeling method discussed in this paper and then the current model using a flux feedback was adopted in this flux observer. Secondly, the two models were combined via a filter and then the rotor flux observer was established. In the M-T synchronous coordinate, the observer was analyzed theoretically and several important functions were derived. A comparison between the observer and the traditional models was made using Matlab software. The simulation results show that the observer model had a better performance than the traditional model.
Scroll wave dynamics in a model of the heterogeneous heart
Konovalov, P. V.; Pravdin, S. F.; Solovyova, O. E.; Panfilov, A. V.
2016-07-01
Scroll waves are found in physical, chemical and biological systems and underlie many significant processes including life-threatening cardiac arrhythmias. The theory of scroll waves predicts scroll wave dynamics should be substantially affected by heterogeneity of cardiac tissue together with other factors including shape and anisotropy. In this study, we used our recently developed analytical model of the human ventricle to identify effects of shape, anisotropy, and regional heterogeneity of myocardium on scroll wave dynamics. We found that the main effects of apical-base heterogeneity were an increased scroll wave drift velocity and a shift towards the region of maximum action potential duration. We also found that transmural heterogeneity does not substantially affect scroll wave dynamics and only in extreme cases changes the attractor position.
Statistical model on the surface elevation of waves with breaking
Institute of Scientific and Technical Information of China (English)
2008-01-01
In the surface wind drift layer with constant momentum flux, two sets of the consistent surface eleva- tion expressions with breaking and occurrence conditions for breaking are deduced from the first in- tegrals of the energy and vortex variations and the kinetic and mathematic breaking criterions, then the expression of the surface elevation with wave breaking is established by using the Heaviside function. On the basis of the form of the sea surface elevation with wave breaking and the understanding of small slope sea waves, a triple composite function of real sea waves is presented including the func- tions for the breaking, weak-nonlinear and basic waves. The expression of the triple composite func- tion and the normal distribution of basic waves are the expected theoretical model for surface elevation statistics.
A Secured Hybrid Architecture Model for Internet Banking (e - Banking
Directory of Open Access Journals (Sweden)
Ganesan R
2009-05-01
Full Text Available Internet banking has made it easy to carry out the personal or business financial trans action without going to bank and at any suitable time. This facility enables to transfer money to other accounts and checking current balance alongside the status of any financial transaction made in the account. However, in order to maintain privacy and t o avoid any misuse of transactions, it is necessary to follow a secured architecture model which ensures the privacy and integrity of the transactions and provides confidence on internet banking is stable. In this research paper, a secured hybrid architect ure model for the internet banking using Hyperelliptic curve cryptosystem and MD5 is described. This hybrid model is implemented with the hyperelliptic curve cryptosystem and it performs the encryption and decryption processes in an efficient way merely wi th an 80 - bit key size. The various screen shots given in this contribution shows that the hybrid model which encompasses HECC and MD5 can be considered in the internet banking environment to enrich the privacy and integrity of the sensitive data transmitte d between the clients and the application server
Digital Repository Service at National Institute of Oceanography (India)
Samiksha, S.V.; Polnikov, V.G.; Vethamony, P.; Rashmi, R.; Pogarskii, F.; Sudheesh, K.
for the model comparison. Based on the error estimates of significant wave heights and spectral wave energy, improvement achieved in wave prediction using ModWAM is demonstrated. We find that the ModWAM improved the accuracy of significant wave height prediction...
Stochastic waves in a Brusselator model with nonlocal interaction.
Biancalani, Tommaso; Galla, Tobias; McKane, Alan J
2011-08-01
We show that intrinsic noise can induce spatiotemporal phenomena such as Turing patterns and traveling waves in a Brusselator model with nonlocal interaction terms. In order to predict and to characterize these stochastic waves we analyze the nonlocal model using a system-size expansion. The resulting theory is used to calculate the power spectra of the stochastic waves analytically and the outcome is tested successfully against simulations. We discuss the possibility that nonlocal models in other areas, such as epidemic spread or social dynamics, may contain similar stochastically induced patterns.
Coupling model for waves propagating over a porous seabed
Directory of Open Access Journals (Sweden)
C.C. Liao
2015-03-01
Full Text Available The wave–seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one-way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave–seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model.
Reverse engineering cellular decisions for hybrid reconfigurable network modeling
Blair, Howard A.; Saranak, Jureepan; Foster, Kenneth W.
2011-06-01
Cells as microorganisms and within multicellular organisms make robust decisions. Knowing how these complex cells make decisions is essential to explain, predict or mimic their behavior. The discovery of multi-layer multiple feedback loops in the signaling pathways of these modular hybrid systems suggests their decision making is sophisticated. Hybrid systems coordinate and integrate signals of various kinds: discrete on/off signals, continuous sensory signals, and stochastic and continuous fluctuations to regulate chemical concentrations. Such signaling networks can form reconfigurable networks of attractors and repellors giving them an extra level of organization that has resilient decision making built in. Work on generic attractor and repellor networks and on the already identified feedback networks and dynamic reconfigurable regulatory topologies in biological cells suggests that biological systems probably exploit such dynamic capabilities. We present a simple behavior of the swimming unicellular alga Chlamydomonas that involves interdependent discrete and continuous signals in feedback loops. We show how to rigorously verify a hybrid dynamical model of a biological system with respect to a declarative description of a cell's behavior. The hybrid dynamical systems we use are based on a unification of discrete structures and continuous topologies developed in prior work on convergence spaces. They involve variables of discrete and continuous types, in the sense of type theory in mathematical logic. A unification such as afforded by convergence spaces is necessary if one wants to take account of the affect of the structural relationships within each type on the dynamics of the system.
Modelling hybrid stars in quark-hadron approaches
Energy Technology Data Exchange (ETDEWEB)
Schramm, S. [FIAS, Frankfurt am Main (Germany); Dexheimer, V. [Kent State University, Department of Physics, Kent, OH (United States); Negreiros, R. [Federal Fluminense University, Gragoata, Niteroi (Brazil)
2016-01-15
The density in the core of neutron stars can reach values of about 5 to 10 times nuclear matter saturation density. It is, therefore, a natural assumption that hadrons may have dissolved into quarks under such conditions, forming a hybrid star. This star will have an outer region of hadronic matter and a core of quark matter or even a mixed state of hadrons and quarks. In order to investigate such phases, we discuss different model approaches that can be used in the study of compact stars as well as being applicable to a wider range of temperatures and densities. One major model ingredient, the role of quark interactions in the stability of massive hybrid stars is discussed. In this context, possible conflicts with lattice QCD simulations are investigated. (orig.)
Transient Response Model of Standing Wave Piezoelectric Linear Ultrasonic Motor
Institute of Scientific and Technical Information of China (English)
SHI Yunlai; CHEN Chao; ZHAO Chunsheng
2012-01-01
A transient response model for describing the starting and stopping characteristics of the standing wave piezoelectric linear ultrasonic motor was presented.Based on the contact dynamic model,the kinetic equation of the motor was derived.The starting and stopping characteristics of the standing wave piezoelectric linear ultrasonic motor according to different loads,contact stiffness and inertia mass were described and analyzed,respectively.To validate the transient response model,a standing wave piezoelectric linear ultrasonic motor based on in-plane modes was used to carry out the simulation and experimental study.The corresponding results showed that the simulation of the motor performances based on the proposed model agreed well with the experimental results.This model will helpful to improve the stepping characteristics and the control flexibility of the standing wave piezoelectric linear ultrasonic motor.
A hybrid neural network model for consciousness
Institute of Scientific and Technical Information of China (English)
蔺杰; 金小刚; 杨建刚
2004-01-01
A new framework for consciousness is introduced based upon traditional artificial neural network models. This framework reflects explicit connections between two parts of the brain: one global working memory and distributed modular cerebral networks relating to specific brain functions. Accordingly this framework is composed of three layers,physical mnemonic layer and abstract thinking layer,which cooperate together through a recognition layer to accomplish information storage and cognition using algorithms of how these interactions contribute to consciousness:(1)the reception process whereby cerebral subsystems group distributed signals into coherent object patterns;(2)the partial recognition process whereby patterns from particular subsystems are compared or stored as knowledge; and(3)the resonant learning process whereby global workspace stably adjusts its structure to adapt to patterns' changes. Using this framework,various sorts of human actions can be explained,leading to a general approach for analyzing brain functions.
A hybrid neural network model for consciousness
Institute of Scientific and Technical Information of China (English)
蔺杰; 金小刚; 杨建刚
2004-01-01
A new framework for consciousness is introduced based upon traditional artificial neural network models. This framework reflects explicit connections between two parts of the brain: one global working memory and distributed modular cerebral networks relating to specific brain functions. Accordingly this framework is composed of three layers, physical mnemonic layer and abstract thinking layer, which cooperate together through a recognition layer to accomplish information storage and cognition using algorithms of how these interactions contribute to consciousness: (l) the reception process whereby cerebral subsystems group distributed signals into coherent object patterns; (2) the partial recognition process whereby patterns from particular subsystems are compared or stored as knowledge; and (3) the resonant learning process whereby global workspace stably adjusts its structure to adapt to patterns' changes. Using this framework, various sorts of human actions can be explained, leading to a general approach for analyzing brain functions.
Recent progress in battery models for hybrid wind power systems
Energy Technology Data Exchange (ETDEWEB)
Manwell, J.F.; McGowan, J.G.; Baring-Gould, I.; Stein, W. [Univ. of Massachusetts, Amherst, MA (United States)
1995-12-31
This paper summarizes the latest University of Massachusetts work on the analytical modeling and experimental testing of battery component models for hybrid power systems. An extension of the Kinetic Battery Model (KiBaM), developed at the University of Massachusetts is presented. The original model was based on a combination of phenomenological and physical considerations. As described in this paper, the modified KiBaM can now model the sharp increase in voltage near the end of charging, and the sharp drop in voltage when the battery is nearly empty. This model may readily be coupled with a DC load or charging source (such as a DC wind turbine or photovoltaic panels) to determine the corresponding DC bus voltage. For example, it is now an integral part of the DC bus section of the University of Massachusetts HYBRID simulation models. The paper describes the development of the extensions to the KiBaM model and the method of determining the constants from test data. On the experimental/applications side, it includes an illustration of how the constants are obtained from representative data (using a specially developed testing apparatus), and an example of how the model can be used.
Energy Technology Data Exchange (ETDEWEB)
Budden, K.G.; Jones, D.
1987-02-01
The linear conversion of electrostatic upper hybrid emissions via the Z mode to electromagnetic ordinary (O) mode waves has for some time been invoked for the source of Terrestrial and Saturnian myriametric and Jovian kilometric radiations. The conversion occurs by virtue of the emissions' propagation in concentration gradients, and for it to be efficient it is necessary for the gradient to be normal to the ambient magnetic field. Suitable concentration gradients are believed to occur at the plasmapause and at the magnetopause. Ray theory predicts only O mode production whereas full wave theory in a cold plasma shows that both O and X (extraordinary) mode are produced, their relative intensities depending on the plasma parameters. Full wave theory in a warm plasma, besides yielding more accurate information on the O and X modes also provides an insight into the effect of conversion on the source plasma wave. Results obtained from these three levels of theory are compared using plasma parameters derived from wave experiments on spacecraft.
Modelling wave-boundary layer interaction for wind power applications
Jenkins, A. D.; Barstad, I.; Gupta, A.; Adakudlu, M.
2012-04-01
Marine wind power production facilities are subjected to direct and indirect effects of ocean waves. Direct effects include forces due to wave orbital motions and slamming of the water surface under breaking wave conditions, corrosion and icing due to sea spray, and the effects of wave-generated air bubbles. Indirect effects include include the influence of waves on the aerodynamic sea-surface roughness, air turbulence, the wind velocity profile, and air velocity oscillations, wave-induced currents and sediment transport. Field observations within the boundary layers from floating measurement may have to be corrected to account for biases induced as a result of wave-induced platform motions. To estimate the effect of waves on the atmospheric boundary layer we employ the WRF non-hydrostatic mesoscale atmosphere model, using the default YSU planetary boundary layer (PBL) scheme and the WAM spectral wave model, running simultaneously and coupled using the open-source coupler MCEL which can interpolate between different model grids and timesteps. The model is driven by the WRF wind velocity at 10 m above the surface. The WRF model receives from WAM updated air-sea stress fields computed from the wind input source term, and computes new fields for the Charnock parameter and marine surface aerodynamic roughness. Results from a North Atlantic and Nordic Seas simulation indicate that the two-way coupling scheme alters the 10 metre wind predicted by WRF by up to 10 per cent in comparison with a simulation using a constant Charnock parameter. The changes are greatest in developing situations with passages of fronts, moving depressions and squalls. This may be directly due to roughness length changes, or may be due to changes in the timing of front/depression/squall passages. Ongoing work includes investigating the effect of grid refinement/nesting, employing different PBL schemes, and allowing the wave field to change the direction of the total air-sea stress.
Traveling waves in an optimal velocity model of freeway traffic
Berg, Peter; Woods, Andrew
2001-03-01
Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].
Barbosa, D. D.
1986-01-01
A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.
A light neutralino in hybrid models of supersymmetry breaking
Dudas, Emilian; Parmentier, Jeanne; 10.1016
2008-01-01
We show that in gauge mediation models where heavy messenger masses are provided by the adjoint Higgs field of an underlying SU(5) theory, a generalized gauge mediation spectrum arises with the characteristic feature of having a neutralino much lighter than in the standard gauge or gravity mediation schemes. This naturally fits in a hybrid scenario where gravity mediation, while subdominant with respect to gauge mediation, provides mu and B mu parameters in the TeV range.
A Novel of Hybrid Maintenance Management Models for Industrial Applications
Tahir, Zulkifli
2010-01-01
It is observed through empirical studies that the effectiveness of industrial process have been increased by a well organized of machines maintenance structure. In current research, a novel of maintenance concept has been designed by hybrid several maintenance management models with Decision Making Grid (DMG), Analytic Hierarchy Process (AHP) and Fuzzy Logic. The concept is designed for maintenance personnel to evaluate and benchmark the maintenance operations and to reveal important maintena...
Controllability in hybrid kinetic equations modeling nonequilibrium multicellular systems.
Bianca, Carlo
2013-01-01
This paper is concerned with the derivation of hybrid kinetic partial integrodifferential equations that can be proposed for the mathematical modeling of multicellular systems subjected to external force fields and characterized by nonconservative interactions. In order to prevent an uncontrolled time evolution of the moments of the solution, a control operator is introduced which is based on the Gaussian thermostat. Specifically, the analysis shows that the moments are solution of a Riccati-type differential equation.
Incorporating RTI in a Hybrid Model of Reading Disability
2014-01-01
The present study seeks to evaluate a hybrid model of identification that incorporates response-to-intervention (RTI) as a one of the key symptoms of reading disability. The one-year stability of alternative operational definitions of reading disability was examined in a large scale sample of students who were followed longitudinally from first to second grade. The results confirmed previous findings of limited stability for single-criterion based operational definitions of reading disability...
On the modeling of wave-enhanced turbulence nearshore
Moghimi, Saeed; Thomson, Jim; Özkan-Haller, Tuba; Umlauf, Lars; Zippel, Seth
2016-07-01
A high resolution k-ω two-equation turbulence closure model, including surface wave forcing was employed to fully resolve turbulence dissipation rate profiles close to the ocean surface. Model results were compared with observations from Surface Wave Instrument Floats with Tracking (SWIFTs) in the nearshore region at New River Inlet, North Carolina USA, in June 2012. A sensitivity analysis for different physical parameters and wave and turbulence formulations was performed. The flux of turbulent kinetic energy (TKE) prescribed by wave dissipation from a numerical wave model was compared with the conventional prescription using the wind friction velocity. A surface roughness length of 0.6 times the significant wave height was proposed, and the flux of TKE was applied at a distance below the mean sea surface that is half of this roughness length. The wave enhanced layer had a total depth that is almost three times the significant wave height. In this layer the non-dimensionalized Terray scaling with power of - 1.8 (instead of - 2) was applicable.
Solvable Model of Spiral Wave Chimeras
DEFF Research Database (Denmark)
Martens, Erik Andreas; Laing, Carlo R.; Strogatz, Steven H.
2010-01-01
Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral...... can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core....
Statics of levitated vehicle model with hybrid magnets
Institute of Scientific and Technical Information of China (English)
Desheng LI; Zhiyuan LU; Tianwu DONG
2009-01-01
By studying the special characteristics of permanent and electronic magnets, a levitated vehicle model with hybrid magnets is established. The mathematical model of the vehicle is built based on its dynamics equation by studying its machine structure and working principle. Based on the model, the basic characteristics and the effect between the excluding forces from permanent magnets in three different spatial directions are analyzed, statics characteristics of the interference forces in three different spatial directions are studied, and self-adjusting equilibrium characteristics and stabilization are analyzed. Based on the structure above, the vehicle can levitate steadily by control system adjustment.
Matda, Y.; Crawford, F. W.
1974-01-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.
Modeling of Mud-Wave Interaction: Mud-Induced Wave Transport & Wave-Induced Mud Transport
2007-11-01
seabed. This can be a fairly rapid process (i.e. of the order of tens of seconds, up to a few minutes at most, e.g. Foda and Zhang (1994); Lindenberg...response of cohesive sediments to water waves, PhD-dissertation, University of California, Berkeley, USA. Chou, H.-T., M.A. Foda and J.R. Hunt, 1993...Dingemans, M.W., 1997, Water wave propagation over uneven bottoms; Part I & II, World Scientific, Singapore. Foda , M.A. and S.-Y. Tzang, 1994
Stochastic analysis and modeling of abnormally large waves
Kuznetsov, Konstantin; Shamin, Roman; Yudin, Aleksandr
2016-04-01
In this work stochastics of amplitude characteristics of waves during the freak waves formation was estimated. Also amplitude characteristics of freak wave was modeling with the help of the developed Markov model on the basis of in-situ and numerical experiments. Simulation using the Markov model showed a great similarity of results of in-situ wave measurements[1], results of directly calculating the Euler equations[2] and stochastic modeling data. This work is supported by grant of Russian Foundation for Basic Research (RFBR) n°16-35-00526. 1. K. I. Kuznetsov, A. A. Kurkin, E. N. Pelinovsky and P. D. Kovalev Features of Wind Waves at the Southeastern Coast of Sakhalin according to Bottom Pressure Measurements //Izvestiya, Atmospheric and Oceanic Physics, 2014, Vol. 50, No. 2, pp. 213-220. DOI: 10.1134/S0001433814020066. 2. R.V. Shamin, V.E. Zakharov, A.I. Dyachenko. How probability for freak wave formation can be found // THE EUROPEAN PHYSICAL JOURNAL - SPECIAL TOPICS Volume 185, Number 1, 113-124, DOI: 10.1140/epjst/e2010-01242-y 3.E. N. Pelinovsky, K. I. Kuznetsov, J. Touboul, A. A. Kurkin Bottom pressure caused by passage of a solitary wave within the strongly nonlinear Green-Naghdi model //Doklady Physics, April 2015, Volume 60, Issue 4, pp 171-174. DOI: 10.1134/S1028335815040035
Nonlinear Pressure Wave Analysis by Concentrated Mass Model
Ishikawa, Satoshi; Kondou, Takahiro; Matsuzaki, Kenichiro
A pressure wave propagating in a tube often changes to a shock wave because of the nonlinear effect of fluid. Analyzing this phenomenon by the finite difference method requires high computational cost. To lessen the computational cost, a concentrated mass model is proposed. This model consists of masses, connecting nonlinear springs, connecting dampers, and base support dampers. The characteristic of a connecting nonlinear spring is derived from the adiabatic change of fluid, and the equivalent mass and equivalent damping coefficient of the base support damper are derived from the equation of motion of fluid in a cylindrical tube. Pressure waves generated in a hydraulic oil tube, a sound tube and a plane-wave tube are analyzed numerically by the proposed model to confirm the validity of the model. All numerical computational results agree very well with the experimental results carried out by Okamura, Saenger and Kamakura. Especially, the numerical analysis reproduces the phenomena that a pressure wave with large amplitude propagating in a sound tube or in a plane tube changes to a shock wave. Therefore, it is concluded that the proposed model is valid for the numerical analysis of nonlinear pressure wave problem.
Hybrid Surface Mesh Adaptation for Climate Modeling
Institute of Scientific and Technical Information of China (English)
Ahmed Khamayseh; Valmor de Almeida; Glen Hansen
2008-01-01
Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, lesspopular method of spatial adaptivity is called "mesh motion" (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is pro-duced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is de-signed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.
Magnetic equivalent circuit model for unipolar hybrid excitation synchronous machine
Directory of Open Access Journals (Sweden)
Kupiec Emil
2015-03-01
Full Text Available Lately, there has been increased interest in hybrid excitation electrical machines. Hybrid excitation is a construction that combines permanent magnet excitation with wound field excitation. Within the general classification, these machines can be classified as modified synchronous machines or inductor machines. These machines may be applied as motors and generators. The complexity of electromagnetic phenomena which occur as a result of coupling of magnetic fluxes of separate excitation systems with perpendicular magnetic axis is a motivation to formulate various mathematical models of these machines. The presented paper discusses the construction of a unipolar hybrid excitation synchronous machine. The magnetic equivalent circuit model including nonlinear magnetization curves is presented. Based on this model, it is possible to determine the multi-parameter relationships between the induced voltage and magnetomotive force in the excitation winding. Particular attention has been paid to the analysis of the impact of additional stator and rotor yokes on above relationship. Induced voltage determines the remaining operating parameters of the machine, both in the motor and generator mode of operation. The analysis of chosen correlations results in an identification of the effective control range of electromotive force of the machine.
Farkašovský, Pavol
2017-04-01
We study the combined effects of local and nonlocal hybridization on the formation and condensation of the excitonic bound states in the extended Falicov-Kimball model by the density-matrix-renormalization-group (DMRG) method. Analysing the resultant behaviours of the excitonic momentum distribution N(q) we found, that unlike the local hybridization V, which supports the formation of the q=0 momentum condensate, the nonlocal hybridization Vn supports the formation of the q = π momentum condensate. The combined effect of local and nonlocal hybridization further enhances the excitonic correlations in q=0 as well as q = π state, especially for V and Vn values from the charge-density-wave (CDW) region. Strong effects of local and nonlocal hybridization are observed also for other ground-state quantities of the model such as the f-electron density, or the density of unbound d-electrons, which are generally enhanced with increasing V and Vn. The same calculations performed for nonzero values of f-level energy Ef revealed that this model can yield a reasonable explanation for the pressure-induced resistivity anomaly observed experimentally in TmSe0.45Te0.55 compound.
A hybrid double-observer sightability model for aerial surveys
Griffin, Paul C.; Lubow, Bruce C.; Jenkins, Kurt J.; Vales, David J.; Moeller, Barbara J.; Reid, Mason; Happe, Patricia J.; Mccorquodale, Scott M.; Tirhi, Michelle J.; Schaberi, Jim P.; Beirne, Katherine
2013-01-01
Raw counts from aerial surveys make no correction for undetected animals and provide no estimate of precision with which to judge the utility of the counts. Sightability modeling and double-observer (DO) modeling are 2 commonly used approaches to account for detection bias and to estimate precision in aerial surveys. We developed a hybrid DO sightability model (model MH) that uses the strength of each approach to overcome the weakness in the other, for aerial surveys of elk (Cervus elaphus). The hybrid approach uses detection patterns of 2 independent observer pairs in a helicopter and telemetry-based detections of collared elk groups. Candidate MH models reflected hypotheses about effects of recorded covariates and unmodeled heterogeneity on the separate front-seat observer pair and back-seat observer pair detection probabilities. Group size and concealing vegetation cover strongly influenced detection probabilities. The pilot's previous experience participating in aerial surveys influenced detection by the front pair of observers if the elk group was on the pilot's side of the helicopter flight path. In 9 surveys in Mount Rainier National Park, the raw number of elk counted was approximately 80–93% of the abundance estimated by model MH. Uncorrected ratios of bulls per 100 cows generally were low compared to estimates adjusted for detection bias, but ratios of calves per 100 cows were comparable whether based on raw survey counts or adjusted estimates. The hybrid method was an improvement over commonly used alternatives, with improved precision compared to sightability modeling and reduced bias compared to DO modeling.
Numerical Modelling of Solitary Wave Experiments on Rubble Mound Breakwaters
Guler, H. G.; Arikawa, T.; Baykal, C.; Yalciner, A. C.
2016-12-01
Performance of a rubble mound breakwater protecting Haydarpasa Port, Turkey, has been tested under tsunami attack by physical model tests conducted at Port and Airport Research Institute (Guler et al, 2015). It is aimed to understand dynamic force of the tsunami by conducting solitary wave tests (Arikawa, 2015). In this study, the main objective is to perform numerical modelling of solitary wave tests in order to verify accuracy of the CFD model IHFOAM, developed in OpenFOAM environment (Higuera et al, 2013), by comparing results of the numerical computations with the experimental results. IHFOAM is the numerical modelling tool which is based on VARANS equations with a k-ω SST turbulence model including realistic wave generation, and active wave absorption. Experiments are performed using a Froude scale of 1/30, measuring surface elevation and flow velocity at several locations in the wave channel, and wave pressure around the crown wall of the breakwater. Solitary wave tests with wave heights of H=7.5 cm and H=10 cm are selected which represent the results of the experiments. The first test (H=7.5 cm) is the case that resulted in no damage whereas the second case (H=10 cm) resulted in total damage due to the sliding of the crown wall. After comparison of the preliminary results of numerical simulations with experimental data for both cases, it is observed that solitary wave experiments could be accurately modeled using IHFOAM focusing water surface elevations, flow velocities, and wave pressures on the crown wall of the breakwater (Figure, result of sim. at t=29.6 sec). ACKNOWLEDGEMENTSThe authors acknowledge developers of IHFOAM, further extend their acknowledgements for the partial supports from the research projects MarDiM, ASTARTE, RAPSODI, and TUBITAK 213M534. REFERENCESArikawa (2015) "Consideration of Characteristics of Pressure on Seawall by Solitary Waves Based on Hydraulic Experiments", Jour. of Japan. Soc. of Civ. Eng. Ser. B2 (Coast. Eng.), Vol 71, p I
Morphodynamic modeling of an embayed beach under wave group forcing
Reniers, A. J. H. M.; Roelvink, J. A.; Thornton, E. B.
2004-01-01
The morphodynamic response of the nearshore zone of an embayed beach induced by wave groups is examined with a numerical model. The model utilizes the nonlinear shallow water equations to phase resolve the mean and infragravity motions in combination with an advection-diffusion equation for the sediment transport. The sediment transport associated with the short-wave asymmetry is accounted for by means of a time-integrated contribution of the wave nonlinearity using stream function theory. The two-dimensional (2-D) computations consider wave group energy made up of directionally spread, short waves with a zero mean approach angle with respect to the shore normal, incident on an initially alongshore uniform barred beach. Prior to the 2-D computations, the model is calibrated with prototype flume measurements of waves, currents, and bed level changes during erosive and accretive conditions. The most prominent feature of the 2-D model computations is the development of an alongshore quasi-periodic bathymetry of shoals cut by rip channels. Without directional spreading, the smallest alongshore separation of the rip channels is obtained, and the beach response is self-organizing in nature. Introducing a small amount of directional spreading (less than 2°) results in a strong increase in the alongshore length scales as the beach response changes from self-organizing to being quasi-forced. A further increase in directional spreading leads again to smaller length scales. The hypothesized correlation between the observed rip spacing and wave group forced edge waves over the initially alongshore uniform bathymetry is not found. However, there is a correlation between the alongshore length scales of the wave group-induced quasi-steady flow circulations and the eventual alongshore spacing of the rip channels. This suggests that the scouring associated with the quasi-steady flow induced by the initial wave groups triggers the development of rip channels via a positive feedback
Tracing Distortion Product (DP) Waves in a Cochlear Model
de Boer, Egbert; Shera, Christopher A.; Nuttall, Alfred L.
2013-01-01
In many cases a cochlear model suffices to explain (by simulation) the properties of waves in the cochlea. This is not so in the case of a distortion product (DP) set up by presenting two primary tones to the cochlea. A three-dimensional model predicts, apart from a DP wave traveling in the apical direction, a DP wave that travels from the region of overlap of the two tone patterns towards the stapes—setting the stapes in motion so as to produce an otoacoustic emission at the DP frequency. Experimental research has shown, however, that the actual DP wave in the cochlea appears to travel in the opposite direction, from near the stapes to the overlap region. This feature has been termed “inverted direction of wave propagation” (IDWP). The forward wave could result from an unknown process such as a “hidden source” near the stapes. In the present study we have disproved this notion, by using a one-dimensional model of the cochlea. It is found that both reverse and forward waves are set up by the source of nonlinearity, in the same way as has been published in an earlier work. The present results reveal that IDWP in the data corresponds to the region where the DP wave, originally created as a reverse wave but reflected from the stapes, has received so much amplification that it starts to dominate over the reverse wave. Hence we conclude that IDWP in a one-dimensional model is a direct manifestation of cochlear amplification. PMID:25284909
US Navy Global and Regional Wave Modeling
2014-09-01
source terms still include some empirical coefficients, required by limitations on current theory and observational capabilities, simplifying...assumptions (e.g., linear wave theory , linear superposition of sinusoids, local homogeneity), and generally chaotic nature of the real ocean. A particular...terms, including the effects of bottom friction, bottom scattering, sea ice, reflection from icebergs and steep shorelines, surf breaking
Hybrid and adaptive meta-model-based global optimization
Gu, J.; Li, G. Y.; Dong, Z.
2012-01-01
As an efficient and robust technique for global optimization, meta-model-based search methods have been increasingly used in solving complex and computation intensive design optimization problems. In this work, a hybrid and adaptive meta-model-based global optimization method that can automatically select appropriate meta-modelling techniques during the search process to improve search efficiency is introduced. The search initially applies three representative meta-models concurrently. Progress towards a better performing model is then introduced by selecting sample data points adaptively according to the calculated values of the three meta-models to improve modelling accuracy and search efficiency. To demonstrate the superior performance of the new algorithm over existing search methods, the new method is tested using various benchmark global optimization problems and applied to a real industrial design optimization example involving vehicle crash simulation. The method is particularly suitable for design problems involving computation intensive, black-box analyses and simulations.
Alfven Wave Solar Model: Part 1, Coronal Heating
van der Holst, Bart; Meng, Xing; Jin, Meng; Manchester, Ward B; Toth, Gabor; Gombosi, Tamas I
2013-01-01
We present the new Alfven Wave Solar Model (AWSoM), a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfven wave turbulence. The injection of Alfven wave energy at the inner boundary is such that the Poynting flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic field boundaries; those develop self-consistently. The physics includes: (1) The model employs three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion temperatures. The firehose, mirror, and ion-cyclotron instabilities due to the developing ion temperature anisotropy are accounted for. (2) The Alfven waves are partially reflected by the Alfven speed gradient and the vorticity along the field lines. The resulting counter-propagat...
Wave speeds in the macroscopic extended model for ultrarelativistic gases
Energy Technology Data Exchange (ETDEWEB)
Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)
2013-11-15
Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.
Measurement and modelling of bed shear induced by solitary waves
Digital Repository Service at National Institute of Oceanography (India)
JayaKumar, S.
to combined waves and current. Ocean Engineering, 29(7): 753-768. Coussot, P., 1997. Mudflow rheology and dynamics, xvi, Balkema, Rotterdam, 255 pp. DHI, 2009. Mike21 flow model - hydrodynamic module - scientific documentation. DHI, Denmark, 60 pp...
Wave speeds in the macroscopic extended model for ultrarelativistic gases
Energy Technology Data Exchange (ETDEWEB)
Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)
2013-11-15
Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.
Fully Coupled Electromechanical Elastodynamic Model for Guided Wave Propagation Analysis
Borkowski, Luke; Chattopadhyay, Aditi
2013-01-01
Physics-based computational models play a key role in the study of wave propagation for structural health monitoring (SHM) and the development of improved damage detection methodologies. Due to the complex nature of guided waves, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, a fully coupled electromechanical elastodynamic model for wave propagation in a heterogeneous, anisotropic material system is developed. The final framework provides the full three dimensional displacement and electrical potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated theoretically and proven computationally efficient. Studies are performed with surface bonded piezoelectric sensors to gain insight into the physics of experimental techniques used for SHM. Collocated actuation of the fundamental Lamb wave modes is modeled over a range of frequenc...
A minimalist pilot-wave model for quantum electrodynamics
National Research Council Canada - National Science Library
W Struyve; H Westman
2007-01-01
We present a way to construct a pilot-wave model for quantum electrodynamics. The idea is to introduce beables corresponding only to the bosonic and not to the fermionic degrees of freedom of the quantum state...
Gidel, Floriane; Bokhove, Onno; Kalogirou, Anna
2017-01-01
In this work, we model extreme waves that occur due to Mach reflection through the intersection of two obliquely incident solitary waves. For a given range of incident angles and amplitudes, the Mach stem wave grows linearly in length and amplitude, reaching up to 4 times the amplitude of the incident waves. A variational approach is used to derive the bidirectional Benney-Luke equations, an asymptotic equivalent of the three-dimensional potential-flow equations modelling water waves. This nonlinear and weakly dispersive model has the advantage of allowing wave propagation in two horizontal directions, which is not the case with the unidirectional Kadomtsev-Petviashvili (KP) equation used in most previous studies. A variational Galerkin finite-element method is applied to solve the system numerically in Firedrake with a second-order Störmer-Verlet temporal integration scheme, in order to obtain stable simulations that conserve the overall mass and energy of the system. Using this approach, we are able to get close to the 4-fold amplitude amplification predicted by Miles.
Digital Repository Service at National Institute of Oceanography (India)
Patil, S.G.; Mandal, S.; Hegde, A.V.; Muruganandam, A.
of HIMMFPB using regular wave fl ume at Marine Structure Laboratory, National Institute of Technology, Surathkal, India. The results are compared with artifi cial neural network (ANN) model in terms of Correlation Coeffi cient, Root Mean Square Error...
Anderson, T. R.
2015-12-01
Hawaii State legislators recently formed the Interagency Committee on Climate Adaptation to investigate community vulnerability to sea level rise. We developed modeling to provide the committee with assessments of exposure to coastal erosion, wave inundation, and passive flooding based on the IPCC RCP 8.5 model of sea level rise over the 21st Century. We model the exposure to coastal erosion using a hybrid equilibrium profile model (Anderson et al., 2015) that combines historical rates of shoreline change with a Bruun-type model of beach profile translation. Results are mapped in a GIS showing the 80th percentile probability of potential erosion at years 2030, 2050, 2075, and 2100. Wave inundation is modeled using XBeach. We use a 3 m significant wave height to represent a seasonal high swell event. A separate simulation was run for each heightened sea level (corresponding to the years previously mentioned); which accounts for changes in wave dynamics due to the change in water level over the reef platform. We use a bare earth topo/bathy LiDAR DEM derived from data collected during the 2013 JBLTX survey of the Hawaiian Islands. XBeach modeling is done along one-dimensional profiles spaced 20 m apart. From this, we develop a gridded product of water depth and velocity for use in a vulnerability analysis. Passive inundation due to sea level rise, the so-called "bath tub" method, provide estimates of storm drain flooding and groundwater inundation. Our analysis of these three impacts of sea level rise, combined - coastal erosion, wave inundation, and passive flooding - are used with other available data in the FEMA Hazus software to estimate exposure and loss of upland assets.
Uccellini, L. W.; Johnson, D. R.; Schlesinger, R. E.
1979-01-01
A solution is presented for matching boundary conditions across the interface of an isentropic and sigma coordinate hybrid model. A hybrid model based on the flux form of the primitive equations is developed which allows direct vertical exchange between the model domains, satisfies conservation principles with respect to transport processes, and maintains a smooth transition across the interface without need for artificial adjustment or parameterization schemes. The initial hybrid model simulations of a jet streak propagating in a zonal channel are used to test the feasibility of the hybrid model approach. High efficiency of the hybrid model is demonstrated.
On forced oscillations of a simple model for a novel wave energy converter
Orazov, Bayram
2011-05-11
The dynamics of a simple model for an ocean wave energy converter is discussed. The model for the converter is a hybrid system consisting of a pair of harmonically excited mass-spring-dashpot systems and a set of four state-dependent switching rules. Of particular interest is the response of the model to a wide spectrum of harmonic excitations. Partially because of the piecewise-smooth dynamics of the system, the response is far more interesting than the linear components of the model would suggest. As expected with hybrid systems of this type, it is difficult to establish analytical results, and hence, with the assistance of an extensive series of numerical integrations, an atlas of qualitative results on the limit cycles and other forms of bounded oscillations exhibited by the system is presented. In addition, the presence of unstable limit cycles, the stabilization of the unforced system using low-frequency excitation, the peculiar nature of the response of the system to high-frequency excitation, and the implications of these results on the energy harvesting capabilities of the wave energy converter are discussed. © 2011 Springer Science+Business Media B.V.
An improved wave-vector frequency-domain method for nonlinear wave modeling.
Jing, Yun; Tao, Molei; Cannata, Jonathan
2014-03-01
In this paper, a recently developed wave-vector frequency-domain method for nonlinear wave modeling is improved and verified by numerical simulations and underwater experiments. Higher order numeric schemes are proposed that significantly increase the modeling accuracy, thereby allowing for a larger step size and shorter computation time. The improved algorithms replace the left-point Riemann sum in the original algorithm by the trapezoidal or Simpson's integration. Plane waves and a phased array were first studied to numerically validate the model. It is shown that the left-point Riemann sum, trapezoidal, and Simpson's integration have first-, second-, and third-order global accuracy, respectively. A highly focused therapeutic transducer was then used for experimental verifications. Short high-intensity pulses were generated. 2-D scans were conducted at a prefocal plane, which were later used as the input to the numerical model to predict the acoustic field at other planes. Good agreement is observed between simulations and experiments.
Ocean wave prediction using numerical and neural network models
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
for first-generation and second- generation models. The updated source function components (second-generation) are established based on extensive analysis and field measurements of wave growth under uni- form fetch-limited wind condition [27... are computed over period where observed data is also available [31]. Three hourly values of Significant wave height (Hs), zero-crossing period, Maximum energy and peak period computed by hindcast model and those based on measured data seems to be quite...
An Arctic Ice/Ocean Coupled Model with Wave Interactions
2015-09-30
ocean waves and sea ice interact, for use in operational models of the Arctic Basin and the adjacent seas; – improve the forecasting capacities of...spectra and modify their directional spread. Being the primary focus of the current project, we are developing innovative methods to model these...during WIFAR (Waves-in-Ice Forecasting for Arctic Operators), a partnership between the Nansen Environmental and Remote Sensing Center (NERSC) in